The architects, owners, and contractors of five New Mexico buildings were honored at the recent awards banquet of the Albuquerque Chapter, AIA. The jury selected the winners from more than twenty-five entries submitted by members of the Albuquerque Chapter. Jurors were: John P. Conron, AIA/AID, Santa Fe; Van Deren Coke, Chairman, Dept. of Art, UNM; and William Brubaker, AIA, partner in the Perkins and Will Partnership, Chicago, Illinois.

MERIT AWARD

WILSON PARK SWIMMING POOL

Albuquerque, New Mexico

ARCHITECT: Jess Holmes

OWNER: City of Albuquerque

CONTRACTOR:
Thomas, Sanders, and Stright

The Wilson Park Swimming Pool was designed as a neighborhood swimming facility. While the primary function is for instructional purposes, limited time is scheduled for recreational swimming. Bathhouse facilities are minimal, as most swimmers will come dressed for swimming. There are no diving facilities provided as the pool’s depth ranges only from three to five feet.

(See *NEW MEXICO ARCHITECTURE*, January-February, 1970.)
PUBLIC SERVICE CO. OF NEW MEXICO BUILDING
Albuquerque, New Mexico
ARCHITECT: W. C. Kruger and Associates
OWNER: Public Service Co. of New Mexico
CONTRACTOR: Brennand, Levell
—a joint venture

A simple and direct office structure designed to meet the needs of a growing public utility. The highly textured exterior walls with deep-set, sun-shaded windows form a clearly expressed structural system.
This building complex houses two separate but related components of the university system. The program called for a simple solution to house these elements together—but with their own identity—thus, the two buildings, connected by a bridge at the upper level.

The School of Business and Administrative Sciences occupies the upper floor (administration and faculty offices) and the lower floor (classrooms) of the West building; and the lower floor (classrooms and library) of the East building. The Institute for Social Research and Development occupies the upper floor of the East building.

This complex brought about an opportunity to develop the first building on the university campus which "expresses the structure," and at the same time relates properly to the other campus buildings which are essentially "pueblo style."

The concrete frame and prestressed T-beam system is, therefore, obvious. The exposed concrete and masonry are coated with a sprayed-on cement texture inside and out. Sun control is achieved for the upper floor glass areas by the use of sections of the T-beams mounted vertically.

The courtyards and mall-type access are desirable in the always sunny climate. The balconies provide outdoor areas for conversation, study, and informal group discussion. The building is on the periphery of the campus and future development to the north will emphasize the mall of this complex as somewhat a gateway.
The addition to the Chemistry Building provides flexible teaching and research laboratories and offices for undergraduates, graduate students, and faculty.

The addition adjoins the existing building on the south, and has three floors above ground and one below. Undergraduate teaching laboratories are located on the ground floor with direct access to the outside. Graduate research laboratories are placed on the top floor, and permanent work and study stations for graduate assistants project beyond the main mass of the building and have individual windows with views to northeast and northwest.

Most utilities are carried vertically and exposed through all levels. All heating and cooling equipment is placed on the roof and the equipment room is projected over the south wall of the main mass to provide fresh air supply as remote as possible from the fume hood exhausts on the north side of the building.

The stairways, which because of the connection to the existing building are used primarily for emergency exits, are projected beyond the building cube and left open. These stair towers are sloped outward toward the base to accommodate a major pedestrian walkway against the south side of the building.
Photographs by:
Gordon Ferguson

Mountain Bell

NMA May-June 1970
LOS ALAMOS MAIN EXCHANGE COMPLEX

Los Alamos, New Mexico

ARCHITECT: Ferguson, Stevens, Mallory and Pearl
OWNER: Mountain Bell
CONTRACTOR: J. R. Brennand Construction Co., Inc.

The client wished its buildings to fit into, as well as compliment, the natural and cultural setting, and asked that special care be given to landscaping. The first studies of the functional volumes required by the program had something of the hardness and precipitousness of the mesa walls surrounding the area, and something of the precision of a mathematical formula. These traits were retained and developed. The dark buff brick was chosen because of its color relationship to the native rock, and because of the crispness of line and definition of form which it afforded.

The functions of the buildings are complex, and the volumes express these functions. The predominant vertical element contains the radio signal equipment, sixty feet above the main floor line and Trinity Drive. The primary elements of signal equipment are two cornucopia antennae, one of which is to be added later. Their tops must be entirely exposed, and they must be inspected and maintained from a work platform which is accessible by stairway. The tops of the brick end walls of the tower and the Cor-Ten steel screen cover some of the galvanized steel parts of the equipment, but an effort was made not to disguise but to clarify the function of sending and receiving radio signals as well as to architecturally contain the equipment.

The major volume of the main building, on the east side of the tower, contains two floors of equipment to which the public has no direct relationship or access, including New Mexico's first telephone electronic switching center. As the equipment grows this portion of the building is required to expand, both horizontally and vertically. Mechanical and electrical equipment is housed in a floor below the main equipment volume which opens to the storage and maintenance yard on the south side of the main building, one full level below Trinity Drive.
NEW MEXICO
IS SWITCHING
TO THE MATCHLESS
ECONOMIES
OF
ELECTRIC
HEAT
For further information on an all electric design for your next building, contact:
Engineering Sales Department,
Public Service Company, Albuquerque

PUBLIC SERVICE COMPANY OF NEW MEXICO

WHEN IT’S PRESTRESSED CONCRETE—–
IT’S HERE TO STAY

THE NEW MAINTENANCE AND OFFICE BUILDING FOR THE ALBUQUERQUE METROPOLITAN ARROYO FLOOD CONTROL AUTHORITY FEATURES FLOORS ON BOTH LEVELS OF PRESTRESSED CONCRETE 8’ WIDE TWIN TEES. 2050 SQ. FEET OF PERMANENCE AND DURABILITY.

ARCHITECT—E. GEORGE WYNN—ALBUQUERQUE
JOHN B. ROBERT—EXECUTIVE ENGINEER
CONTRACTOR—
LLOYD GIBSON CONSTR. CO., INC.

PRESTRESSED CONCRETE PRODUCTS, INC.
1304 Menaul Blvd. N.E., Albuquerque, N.M. 87106 (505) 345-2536

NMA May-June 1970
The Business Office is the only part of the building which is entered by the public. Because it is a small volume, subordinate to the tower and the equipment block, its prominence required emphasis. It is placed on the west side of the tower, with large windows in the north and south, and with the public entrance related directly to Trinity Drive and the customer parking area. The entrance is emphasized by the arrangement of walks and planting and by the long wall containing building identification.

A large vehicle storage and maintenance facility is housed in a separate structure on the south side of the main building, to which it is connected by an enclosed passage. Since this facility has no relation to the public and is visually dominated by vehicles and stored materials, it was desirable to screen it from public view. Along with employee parking, it is located one full level below Trinity Drive. This change in elevation follows the natural fall of the land toward the canyon to the south. Walls, black iron railings, and planting complete the screening, and a visitor to the business office might be largely unaware of the complexity seen from the south.

A metal sculpture by John Tatschl covers a prominent wall in the business office opposite the main entrance. The sculpture is based upon the apparatus of modern communications technology, and is used to emphasize the kinship between the community of Los Alamos, renowned for its technological advancement, and this communication industry’s most sophisticated entry into the electronic, computer-oriented world. —George Pearl