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Design of Transmitter and Receiver Filters
for Decision Feedback Equalization

By ANDRES C. SALAZAR
(Manuscript received August 14, 1973)

We present the constructive design of finite order equalizer filters for
data transmission systems employing decision feedback equalization.
Both transmitter design with power constraints and recetver design with
ambient noise considerations are treated. Expressions for the filter tap
settings which mazimize a signal-to-noise ratio are found for both baseband
pulse amplitude modulation and quadrature amplitude modulation
(QAM) systems. Design examples are given in a passband equivalent
(of QAM) formulation for an average toll telephone connection. Neglecling
the possibility of error propagation, these examples demonstrate that
decision feedback equalization requires fewer taps for acceptable system
performance as compared to linear equalization. The problem of post-
cursor size in a decision feedback equalized response is treated and shown
to diminish in importance when a hybrid equalization procedure ]
imposed on the linear tap adjustment. The price one pays for allowing the
linear filter taps to reduce the postcursor sizes in this hybrid equalizer is a
lower signal-to-noise ratio.

I. INTRODUCTION

The advantage of using a nonlinear device, referred to as a decision
feedback equalizer, to cancel the tails of pulses whose amplitudes have
already been estimated in a PAM system has long been recognized.
Figure 1 depicts the typical system in which the decision feedback
mechanism has always been envisioned to perform this task. Namely,
by making decisions on a symbol-by-symbol basis and by knowing
the channel response precisely, a data system would be designed so
that postcursor (tails of preceding pulses) ISI could be eliminated
without the ambient noise penalty that a linear filter or equalizer
imposes. The tacit assumption being made in any decision feedback
implementation is that the signal-to-noise ratio is high without
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Fig. 1—Transmitter and receiver filter design.

equalization, and correct decisions are already being made with high
probability.

In this paper we consider the design of finite order nonrecursive
transmitting and receiving filters which counteract the two remaining
sources of noise, the precursor tails which are the interfering samples
of pulses whose amplitudes have not been decided upon, and ambient
noise, everpresent in a communication system. In addition we seek
the variation of the signal-to-noise ratio at the moment of decision
when the sampling time is varied. Along with this variation of the
criterion of system performance, we are also interested at each sampling
time in the amount of postcursor ISI noise which the decision feedback
mechanism is being asked to eliminate. This aspect of our investigation
yields insight into the feasibility of decision feedback system implemen-
tation. It is, of course, possible to design the transmitting and receiving
filters to achieve “hybrid” equalization between simple linear equali-
zation and decision feedback. That is, some of the linear filter’s
degrees of freedom will be used to combat some postcursor ISI,
although decision feedback is being used. The idea is to reduce the
possibility that large postcursor tails will be produced by a linear
filter whose sole job would otherwise be to reduce precursor ISI.

The system model we choose to work with is a sampled data or
discrete one. In addition, the channel and the system’s transmitting
and receiving filters are assumed to be of finite nonrecursive type.
Examples are discussed in a later section which involve voice-grade
toll telephone channel spectra. These spectra have been reduced to a
specified Nyquist equivalent bandwidth, both for baseband and
passband applications. The timing involved in going from continuous
waveforms to sampled data for these examples has been chosen to
maximize a signal-to-noise criterion before any filtering is done at the
receiver. Also, in the demodulation process for QAM, the carrier
phase angle, if fixed, can be absorbed by the receiver’s passband filter
taps. (For more detail on the system model we use in the following
sections, see Appendixes A and B.)
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This paper follows two previous documents'? that have dealt with
asymptotic performance results concerning decision feedback equaliza-
tion. In these previous works, the filters assumed in the decision
feedback equalization scheme were of infinite length. In contrast, we
focus our attention here on designing filters of finite, implementable
Jength and study a channel which is modeled from transmission data
taken from the 1969-70 Toll Connection Survey of the Bell System.

il. TRANSMITTER AND RECEIVER FILTER DESIGN (BASEBAND)

We begin by referring to Fig. 1 and denoting the channel response’
by {kh.}¥. We are seeking nonrecursive filter tap weights {a.}d and
{b.}¥, N < M at the transmitter and receiver, respectively. We note
the total response through the system is then

{rao TV = {an} g {ha} 8% {ba)d (1)

where x denotes sequence convolution.
If we decide to sample at time = and cancel’ ri, ¥ > 7 through
decision feedback, then we can define a signal-to-noise ratio

r2

p(N, 1,2, b)éa—,m (2)
k<t

representing the sampled signal in the numerator and two noise terms
in the denominator. The first noise term consists of the ambient noise
which is modified by the receiving filter. [We write b for (bo, by, - - -, bx)
in EN+! Euclidean space with (a, b) as the usual inner product and
Ibl> = (b,b) the usual norm.] We have assumed that the noise
samples are independent and of generalized variance! ¢ and that the
input binary stream of symbols is independently and fairly signed and
of unit magnitude. The second denominator term is a measure of the
precursor ISI.

2.1 Filter design by integral adjustment

If we assume that the transmitter filter is to be optimized indepen-
dently from the receiver filter we are then concerned with the

T Appendix A explains our use of the sampled response {ha}. We suppress the
constant multiplier 1/7 which converts the z™! coefficients to time samples (where
T is the time between samples).

! We choose to cancel all postcursors. In practice, only a few are cancelled and
others then become part of ISI term in (2).

§ By generalized variance we imply that a constant multiplies the true noise sample
variance. This constant takes into account the sampling speed at which we are
measuring the signal-to-noise ratio.
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response:

(g} = {aa}d*{hald". (3)
Define a = (ao, ay, -, aN) and hk = (hk, hk_.l, ey hk—N). We seck
the maximum of )
__ (hae
o(N, r,a) = 2 ¥ E’ (hy, a)? (4)

subject to the constraint that ||a||? = u* That is, we place an average
power constraint on the transmitter. Hence, by constructing the
quadratic form induced® by the sum of bilinear forms (hy, a)?

X we
reshape p (XN, 7, a) into

(h,, a)?
u2(a, o’la) + (a, Qa)’ (5)
where I is the (N -+ 1) X (N + 1) identity matrix and Q jis the
(N + 1) X (N + 1) positive semidefinite matrix (3",, hi—_ihx_;)
—ihx_;

0 <4, j <N with by =0, 1> 0. By use of the Cauchy-Schwartz
inequality we find readily that the maximum of p(N,7,a) is achieved at

o _ Dl + 0T,
[0 + Q1 h] )

and the maximum is precisely

p(N, 7, a) =

T N, 78) = p(N, 7, 8%) = (b, (W] + Q)7hy). (7

We note that the sequence (ho, hs, - - -, hr) is mapped by the vector a*
into a sequence (go, g1, * * -, g») Which the receiver is now expected to
process in forming the following signal-to-noise ratio:

py &Y
PN, 8% D) = GRS G (&)

where
g; = (g;; g;—l) Tty g;—N)~

Since p(N, 7, a* b) is invariant to any scaling of b, we choose to
maximize the former with respect to |[b| = 1. By the same argument,
which led us to (6) and (7), we find

pr = Lo +RTE;
LT + Rl (9)
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and

p(N, 7, a* b*) = |(g:, [l + R]™'g),  (10)

1

[[e*I + R1 g
where R is the (N + 1) X (N + 1) matrix (T icr gr—igx-), 0 < i,
j < N. Hence, p(N, 7, a*, b*) in (10) represents the maximum signal-
to-noise ratio achievable through the integral or independent adjust-
ment of transmitter and receiver filters for a decision feedback system
committed to sampling at time = and constrained to use nonrecursive
linear filters of length N + 1.

The difference between linear equalization and decision feedback
can be seen readily by observing the denominator terms of the follow-
ing signal-to-noise ratio:

(g-, b)?
P78 b) = GRFF L (8, b F (& D

(11)

For decision feedback systems, the last term in the denominator
does not enter the picture because it is assumed it will be eliminated
without noise penalty. However, in linear equalization, the filter b
is expected not only to combat precursor ISI but postcursor ISI as
well, with as little compromise to ambient noise as possible. We can
rewrite (11) by assuming ||b]|? = 1 (i.e., scaling irrelevant)

o(N, 7,8,b) = (&, b)* (12)
T [(¢*] + R, + Ry)b, b7
where R, and R, are, as usual, positive semidefinite channel response
autocorrelation matrices. Here R, corresponds to precursor distortion
while R, relates to postcursor ISI. We notice that, if we form for
0=as=s1

(g, b)?

pa(N, 7,8, 0) = [T TR, T aB)b, BT (13)
we can continuously vary p.(N, 7, a, b) from the decision feedback
formulation where a = 0 to the linear equalization case where a = 1.
Thus, although we implement decision feedback equalization, it is
possible to design the transmitting and receiving filters so that the
amount of postcursor distortion is still mildly to strongly influential.
Of course, a more general formulation of this “hybrid” design tech-
nique is possible by retracing our steps back to (11) and forming

_ (g, b)
oW m &P = G Y g b T E rgn b
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where A; are W+ 1) X (N +1) diagonal matrices (obviously
A, = I for the linear equalizer case).!

2.2 Joint optimization of transmitter and filter design (baseband)

In the individual design of transmitter and receiver filters treated
in the last section, we were able to find the optimal filters by a simple
rearrangement of interference terms and applying the Cauchy-
Schwartz inequality. We find that for joint filter optimization this
procedure will be slightly modified and additional steps will be taken
to arrive at the solution.

We recall that the total response of the system depicted in Fig. 1 is

(ra} 2P = (@, ) 8% {ha} ¥ {bn}d (15)

and the signal-to-noise ratio:
_ (c, h,)?
P(N, T, &, b) = o_gllbng + E (c, hy)?’

(16)

where ¢ is the 2N + 1 dimensional vector formed from the sequence
{an)¥{b.}d and he = (hw, Pie—r, -+, hi_sn). Here again, p(N, 7, a, b)
is seen to be a continuous function of a and b and functionally in-
variant to the norm of b. Hence, we constrain our search for the
optimal b vector by imposing b} = 1.

The transmitter power constraint was imposed in Section 2.1 by
lal| = u?. In practical situations, the constraint is more likely to be
lla]] < . That is, we want to use only enough power to yield a suffi-
ciently high signal-to-noise ratio at the receiver. For example, we
constrain the receiver filter to be of unit norm since the norm is not
going to contribute toward the enhancement of the signal-to-noise
ratio at its output. Rather, it will be the transmitter filter power
output which determines the output signal-to-noise ratio to a large
extent. A way of solving the joint filter optimization problem with
constraints, then, is by permitting the transmitter power level to be
at that as-yet undetermined level so that the signal power through the
transmitter, channel, and receiver will be at a prespecified ratio to
that of the ambient noise. Hence, we have the following optimization
problem:

(axb, h,)?
N b) = . . 17
Ilhg*ﬁ{wp( 78, b) ||h$%|f=,, o + > (axb, hy)? an
bl =1 bl =1 k<r

t Of course, some constraint must be put on Ax to make the maximization of p
meaningful.
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Proceeding as before, we obtain

2 -1
(@) = o SHTH + R) ., (18)
(where ko is determined from the constraint ||h*axb| = ») with
2 -1
o(N, 7, a*, b¥) = (h,, (%HTH + R) h,) , (19)

where H is the 2M + 1 X 2N + 1 matrix such that H (a*b) = hxaxb
where h = (ho, hy, ha, -+-, hy). The matrix R is formed from the

3" hi_ihe_j terms. Now (18) can be written in its 2! transfer function
k<r
representation.

(axb)*(z71) = k(1 + az™ + a2 ++ - - + awz ™)
A@E B = kQi(z™M)Q:(z7Y) - -Qn(z™),

where k is a determined constant and the Q’s are quadratic factors
with real coefficients. A choice of the quadratic factors for composing
A(z) and B(z™) exists. However, since |[b*|| = 1 we are then left with
a determinable norm for a*. For example, we might choose

(20)

*(p) = )
B = 1q.00 @
Hence,
A*@) = Q) kQ2(z) - - - Qa(z™), (22)
with norm

IA* @] = k@ )lQa(c) - - - Qa7

Regardless of how the quadratic factors are assigned, B*(z7!) is
normalized and A*(z) is then left with some norm value which may
be large or small. The total norm [laxhxb]|, however, was chosen to be
5 and for each receiver filter chosen from the quadratic factors of (20),
a corresponding ||A*(z71)|| results. It is of definite engineering interest
to seek that quadratic factor combination which minimizes [|4*(zY)],
but no obvious solution exists for this combinatorial problem. Other
considerations may come into play at this point which would obviate
the need for minimizing |A*(z)||. For example, a minimum phase
requirement for one of the two filters would delineate the two filters.
Roundoff noise considerations for digital filter implementations might
also contribute toward selecting one quadratic factor over another at
the receiver. Cost considerations may warrant the splitting of the
two filters into equal lengths (N even) so that the number of possible
quadratic combinations is reduced considerably. In any case, this
filter-splitting problem is akin to the quadratic factor placement
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problem in minimizing roundoff noise in digital filter implementations.
In Appendix D we outline a technique for separating the transmitter
and receiver filters.

Of course, it is possible to go through the same generalization on
posteursor and precursor equalization that we did for the integral
optimization problems of Section I1I. We obtain in that case

2 —1
o(N, 7, 8% b¥) = [h,, (%HTH + Ri+ aRz) h,] . (@)
where
2 —1
asb = k(,(';—zHTH + R+ aR2> b, (24)

and where R;(R.) is the matrix corresponding to precursor (post-
cursor) interference terms and 0 £ o £ 1.

Ill. PASSBAND FORMULATION

It is possible to extend the results outlined in the previous sections
to the passband equivalents of transmitter, channel, and receiver for
a quadrature amplitude modulation (QAM) system.! The extension
of results is not without complications, since QAM systems suffer
from another form of distortion—co-channel interference (CCI).
Thus, the transmitting and receiving filters will be expected to combat
not only ambient noise and ISI but also co-channel intersymbol
interference (CCISI).

3.1 Integral optimization

We begin by referring to Fig. 2 which illustrates the QAM system
with decision feedback. We are interested in the transmitter and
receiver filter designs so that a measure of transmission performance
is maximized. Namely, we seek to maximize a sampled signal-to-
generalized-noise ratio similar to that defined in (2). To define the
terms which will appear in our performance measure, we note that
the “in-phase’ response at the receiver is

(r@ 1 = (o)L AP0} — {REP}M{b{0}0]
— {a@ (AP 1D} + (RO )3{0)0],  (25)
while the “quadrature’’ response at the receiver is
(rO )Y = o)L (AP (01 + (011
+ {af®} [ AP {DP 1Y — (RO {bI"}0]. (26)
T We will not concern ourselves with the problems of carrier acquisition and timing

for the QAM system we consider here in discrete form (see Appendix A for a discus-
sion of these items).
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cos 27rf t
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Q
SK
Wz 1 A
Blphz— 1) 6 LOW-PASS X

RECEIVER

Fig. 2—QAM data system with decision feedback equalization.

Each channel response has two ISI components, an in-channel inter-
symbol interference term and the other due to co-channel interference.
We potice that the CCI is completely eliminated if (b} = {h?}
and {b{} = {h®}. However, in our considerations we will always
assume M > N so that our filters do not have a sufficient number of
degrees of freedom to eliminate CCI (also, this action does constitute
suboptimal filtering).

We form the in-phase resultant signal-to-noise ratio for independent
input channels, independent symbols of unit magnitude with equal
chance of occurrence and uncorrelated noise samples of variance o2
We first treat the case where the receiver filter is all pass (e, b = e,
the identity vector in the algebra of convolution)

_ [(@®,b?) — (@@, b)) P
p,(]l\)/';:-, a, b) T g2 + k}: [(a(p), h,‘c’”) — (a(q), h,‘f))]’ 4.
<7

+ ¥ [@@,hf) + @®, )P (27)

k=t

Now we define
a= [a(?), a(Q):]
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and h, = [h®, — h@®7] and h¥ = [h¥? h¥®7], vectors of 2N + 2 unit
length. Hence, we can rewrite (27) into
(a, h,)?
ot + > (a,h)? + 2 (a, h)”
k<t k=t

p-(ll\)f; ™8 b) = (28)

In (27) and (28) we have tacitly assumed that at the receiver each
channel will “talk’” to the other for the purpose of cancelling post-
cursor CCISI also.t That is, we have assumed a dual system of decision
feedback equalization is being implemented.
The maximization of p.(N, 7, a, b) subject to b = e and ||a||? = p?
leads to a solution similar to that of (6) and (7):
#[“——20.21' +Q + Qc]_lhr

2 = % T + 0 F Q.10 (29)

max p(N) 7, &, b) = p(Ny L) a*y e)

llall? =p?
b=e
_ uth,, (W2l + Q + Q)'hy)
[Ca20 + @ + Q.17h |

where Q and @, are respectively the in-phase and co-channel correlation
matrices similarly formed, as was the @ matrix of (6). The a* vector
of (29) separates into a*® and a*(® and the conditionally optimal
transmitter bandpass filter is completely specified. Following the
procedure in Section II, we now hold the transmitter design fixed
at a* and rewrite (25) as

(FEHY g = (D) 01”3 () 8)
— B0} ¥ o )85 (A0})
— B0 ]¥ a0} b} )
— (b8 a1 (R} (D)
= (B gEP N — {gi)ier)
~ (B[ Lo )2 + (g1 ™), (32)

where {g}¥*Y, u = pp, pg, qp, qq are recognizable from (31).
We can now write the expression for p(N, 7, a*, b) as

[(b(ﬂ), g:p)) — (b(d)’ gid)):lz
@blz+ 3 [(b®,gP) — b@,gif) P +---
k<r
+ X [b@,g”) + (b, g, (33)

k=T

(30)

p(N, 7, a*y b) =

t Also, we are assuming we will eliminate all postcursor ISI. However, in practice,
only a few postcursors would be removed. Thus, some postcursor terms would appear
in the denominator of (28) in that case.
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where
g = (¥ — g, g% — %0, -, 0% — g%, (39

and similarly for g®. To maximize p(N, 7, a*, b) subject to bl =1,
we first form the concatenated vectors of 2N + 2 length:

b = (b?, b9), g = @, —&9), &= @& &) (35)
Hence
(b, g.)*
N’ ? *’ b = : C b 36
PN, 7, 8% D) = SpE 5 (b, g0)" + 2 O, 60" (36)
and we proceed to find that
max P(N, T; a*y b) =[gf) (dzI + R + RC)_lg"] (37)
{1b1]=1
achieved at
2 -1
b* (0’ I + R + Rc) gv (38)

=@+ R+ R)&l’

where R and R, are channel response correlation matrices of the type
encountered before.

3.2 Joint optimization

To jointly optimize the transmitter and receiver passband filters, we
follow virtually the same procedure found successful for the baseband
case. A comparable factorization problem arises here, for which only a
combinatorial solution seems to exist.

The in-phase and quadrature responses through a passband trans-
mitter, channel, and receiver are given by

(A = (RPN (a2 13 (b)Y — [0l 15 (b0)5)
(R (a2 3601 + (I (60)8) (39)

Y = (AP (a0 JFx (b + (a0 x(b8)3)
(i (a3 (B3 — (a@ )61 (40)

Rewriting (39) and (40) in terms of a combined passband filter with

responses ¢® = {cf?}3" and ¢! = {c@)3N:
(AP = (P13 — (RNl (D)
(0} B4 = (P P (af0 137 + (MO W ()3, (42)

we form the augmented vectors ¢ = [¢?, c®),

hk = (hﬁp)y hézzl; Tty hl("‘?ﬂNy _hl(:a)) Yy _h£Q2N)
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and
hf = (h)(;q), h;@_l, * héa) 2N (ﬂ)’ v ész) h(m = 0 k < 0 no=m,q.

Our signal-to-noise ratio becomes for the in-phase channel:

(c, h,)?
o*[b]l* + (Re, ¢) + (Rcc, ¢)’

where R and R, are the now-familiar channel correlation matrices and

= (b, b®), It is easy to show that the norm of the receiver filter
is irrelevant in the maximization of p(N, 7, ¢). Hence, we choose
IIb]] = 1. We now specify the amount of signal power 7* we will need
at the receiver upon choosing the optimal filters. That is,

p(N, r,¢) = (43)

M+2N
2 | (e, )2 +|(F c)[* = o2 (44)
=0
But (44) can be rewritten
8oy, (45)
n

where Q is a sum of two correlation matrices. Hence, (43) then yields
the problem:

2
T (46)
o”c"'e' :q:—n— + (Rc, ¢) + (R, c)
to which the solution is
—k(—9+R+R)lh, (47)

and
o(N, 7, ¢*) = [h,, (%Q +R+ Rc)_lh,].

The constant &k is determined from the constraint that (Qc, ¢) = 72
Since ¢ = (c‘?, ¢®) and the vectors (a®®, a@) and (b®, b(®) all
make up ¢® and ¢(?, we encounter a factorization problem. We can
choose (b®, b(@) normalize the receiver filter, and then are left with
the transmitter filter which has a given norm. This norm is then the
transmitter power required to produce 7?/0® generalized signal-to-
noise power at the receiver.

IV. EXAMPLES

To illustrate the difference in performance between decision feedback
and linear equalization, we have taken a telephone DDD toll connec-
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tion as a linear channel model. Specifically, we would like to know the
difference in performance on a telephone connection when both linear
and decision feedback equalization schemes are constrained to use a
finite number of taps. For comparison, we compute the performance
asymptotes (infinite number of taps) for each equalization scheme
(see Appendix C) realized when an infinite number of taps are available.
We ask whether it is possible to approach these asymptotes with a
reasonable (implementable) number of taps. Another point which is
raised in every implementation of decision feedback equalization is
that of posteursor size. If a mistake in symbol identification is made,
then the subtraction, for example, of an erroneously signed postcursor
may lead to a burst of errors if the postcursor size is large. We illustrate
the postecursor sizes for a passband decision feedback equalization
system operating on an average telephone connection.

Figure 3 illustrates the magnitude characteristic of the average
DDD toll telephone connection as measured in the 1969-70 Toll
Connection Survey of the Bell System. The corresponding delay
characteristic follows a parabolic shape and has been numerically
integrated to yield a phase curve. As discussed in Appendix B, the
bandpass channel parameters have been calculated for various carriers
and various flat Nyquist spectral widths assumed at the transmitter.
The spectral width was controlled by superimposing a cosine rolloff
(400-Hz width centered at the Nyquist frequency) on the in-phase
and quadrature spectra. Figures 4 and 5 show typical passband spectra
computed for this channel. When this decomposition of the bandpass
channel into in-phase and quadrature responses is achieved, it is
possible to compute the performance asymptotes for linear and decision
feedback equalization given in Appendix C. The result of these compu-
tations is shown in Table I. It is seen that performance decreases

(o]

—20

LOSS IN DECIBELS

—30 | ] | |
0 800 1600 2400 3200 4000

FREQUENCY IN HERTZ

Fig. 3—Average amplitude characteristic for toll telephone connection (from
1969-70 Toll Connection Survey data).
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CARRIER = 1650 Hz

RAISED COSINE ROLLOFF OF 200 Hz
CENTERED AT 1200 Hz

LOSS IN DECIBELS

_20 ! | l I ! 1
200 400 600 800 1000 1200 1400

FREQUENCY IN HERTZ

Fig. 4—Quadrature amplitude characteristic for average toll telephone connection.

with data rate and slightly with increased carrier frequency. The gap
between decision feedback and linear equalization widens as speed
is increased. For all computations, we have kept the total transmitted
power through the channel fixed at —12 dBm, whereas the noise power
spectral density was kept at that level corresponding to total noise
power of —48.3 dBm over a 0~3000 Hz bandwidth. This noise level
is 3 dB weaker' than the average noise power measured in the 1969-70
Toll Connection Survey.

A finite length receiving filter was increased in length until perform-
ance was reasonably close to the asymptote given in Table I for that
speed and carrier. Figure 6 illustrates the difference in performance
between decision feedback and linear equalization. It is seen that less
than half the number of taps are required by the decision feedback
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@ CENTERED AT 1200 Hz
S
—30 b
_3s5 I ] I 1 1 L
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Fig. 5—In-phase amplitude characteristic for average toll telephone connection.

T Noise level was made weaker only for computational convenience.
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Table | — QAM transmission asymptotic SNR in dB for average
toll telephone connection
Noise at receiver — 48.3 dBm; transmitted power — 12 dBm

Carrier = 1650 Hz Carrier = 1700 Hz Carrier = 1800 Hz
Rate in
Baud/ch.
LE. | DF. | MF. | LLE. | DF. | MF. | L.E D.F. | MF.
2400 314 | 319 | 321 30.7 316 | 319 202 | 309 31.6
2600 31.3 | 315 | 31.7 | 311 31.3 31,5 | 30.5 | 309 | 31.2
2800 273 304 | 31.1 28.5 | 30.2 | 30.9 | 28.8 29.9 | 30.5
3000 278 | 298 | 306 | 27.8 | 29.6 | 304 | 255 28.7 29.9
3200 25.5 | 29.0 ! 30.1 25.1 28.6 | 29.9 104 | 274 | 294

L.E. = Linear equalization asymptote. D.F. = Decision feedback asymptote.
M.F. = Matched filter bound.

equalizer to achieve a level of performance close to the asymptote.
In addition, the linear equalizer even with its 36 tap length per channel
could not keep an acceptable performance level when the data speed
was increased to 3200 symbols/s/channel. On this basis, the premise
that decision feedback equalization has significant advantages over
linear equalization may be too readily accepted. For, if we examine
postcursor sizes on one of these equalized bandpass channels, we can
see that the high signal-to-noise ratio offered by decision feedback
does not come without penalty. Figure 7 illustrates sample sizes of a
toll telephone channel equalized with a 16-tap (8-feedback) decision
feedback equalizer. The precursors, or samples before the main sample
peak, are too small to be seen on this scale. However, it is clear that
the postcursor adjacent to the signal sample, which is greater than
half the latter’s size, presents a problem. Should a decision error occur,
the next signal sample could have its polarity reversed, since more
than twice its strength could be subtracted out by the decision feed-
back processor. Thus, error propagation is possible with only a single
mistake providing the ignition. Let us recall the hybrid equalization
scheme discussed in Section II. We note in Fig. 8 that, for an alpha
value of 0.01, we diminish the size of the large posteursor and more
evenly distribute the heights of all the postcursors to be subtracted
by the decision feedback processor. 1t is now apparent that no one
posteursor is large enough to reverse the polarity of the signal should
a decision error occur. It will take several consecutive decision errors,
for example, before this can happen now. However, we lose 1 dB in
signal-to-noise ratio for this example when we opt for this mitigation
of the postcursor size problem. Of course, a trade-off exists between
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[ DECISION FEEDBACK ASYMPTOTE 29.0
[ MATCHED FILTER BOUND ] 30.0
\ | | § | | | _J
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SNR IN dB

NOISE AT RECEIVER = —48.3d8Bm
TRANSMITTED POWER = —12dBm
CARRIER FREQUENCY = 1650 Hz

* 8 TAPS ARE FEEDBACK

Fig. 6—Performance of finite equalizers for average toll telephone connection.

the loss in signal-to-noise ratio and reduction of postcursor size by
means of this method.

V. SUMMARY

We have treated the design of finite length transmitting and
receiving filters for a data system employing decision feedback
equalization. Our purpose here was to examine the difference in
performance between linear and decision feedback equalization on
a given data channel. Sequential and joint optimization of trans-
mitting and receiving filters were treated for an all-Nyquist equivalent
data system. Although the solutions for the optimum tap settings
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Fig. 7—Postcursor size problem and mitigation.

and signal-to-noise ratio were derived in general terms, applying the
results to the spectrum of a toll telephone connection was of special
interest. For this channel example, it was found that fewer filter taps
were required for decision feedback equalization to achieve a reason-
able performance level. The problem of postcursor size for an overall
response of a passband decision feedback equalized system can be
mitigated by a hybrid equalization scheme. The price for allowing the
linear filter taps to diminish the postcursor sizes in this hybrid equalizer
is a lower signal-to-noise ratio.

APPENDIX A
Details about the discrete channel model

The lowpass filters in the A/D or D/A conversion process shown in
Figs. 1 and 2 delimit the channel frequency band which supports data

:

ALPHA = 0.01
LOSS IN SNR: 1dB
SIGNALING
PERIOD

IN-PHASE RESPONSE H H o] .
U U i )

QUADRATURE RESPONSE

Fig. 8—Total impulse response hybrid equalization.
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transmission. Hence, the channel can be seen as a bandlimited medium
and can also be reduced to discrete form for M sufficiently large:

M . T
H(f) = 2 = hoeT |flS 5,

where T is the data symbol interval or 1/2T is the Nyquist frequency.
The point here is that {h.} is dependent on the timing chosen for
this reduction. Obviously, a timing exists which maximizes a signal-
to-noise ratio, for example, of the unequalized response. We have
found by experimentation that this timing was an excellent approxi-
mation to the timing which leads to a maximum signal-to-noise ratio
after equalization.

For a bandpass channel, the decomposition into discrete form takes
place in two steps. First, a carrier frequency is chosen, and in-phase
and quadrature spectra are then computed. A constant carrier phase
is then a variable parameter. However, it is easily shown that this
carrier constant can be absorbed by either the demodulation process
or the passband equalizer tap settings.

It is important to recall that the time samples of the spectrum

M
H(f) = 2 hne "7
ne=()

1 . . . . .
are {T' ha)¥. Hence, in the formation of the signal-to-noise ratio:

h2
P = T2 X IST

we form the generalized variance parameter o°7” where o2 is the noise
sample variance. This accounts for this transformation from Fourier
coefficients {h.}2 to time samples {1/T-ha}".

APPENDIX B
Channel data from 1969-70 toll connection survey

The average loss and delay measurements of over 600 toll voice-
grade connections made in a 1969-70 survey are recorded in Ref. 4.
For our channel model, interpolative curves were constructed from
the average survey measurements made on 20 frequencies. A linear
loss slope was appended at the lower frequency end to extrapolate loss
down to zero frequency. The slope of the loss curve in decibels at the
lowest measurement frequency (200 Hz) was used for this extrapola-
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tion. A constant was added to the integrated delay curve to achieve
zero phase at zero frequency.

Passband responses at several carrier frequencies were then formu-
lated from the interpolated baseband data. An impulse response was
caleulated for each in-phase and quadrature channel. Timing for the
two channels was chosen to maximize the squared sampled signal to
mean square ISI and CCISI before the receiver filter. One hundred
eight Nyquist samples ({RP}38, and {AP}5) represented each
passband channel.

APPENDIX C
Asymptotic MSE as derived by Falconer-Foschini®

We list here the formulas for the MSE as achieved by linear equali-
zation and decision feedback for passband systems (here, independent
binary =1 transmission is assumed with No/2 input noise spectrum).

(MMSE) oo = [ T( Xl g 1) ar (48)
(MMSE)as = exp {T f_‘:; log ()i]‘)\,(—of—) + 1)_ldf} (49)
where
xu(f) = A% |a(s+3) +io( s+ a1

2

X

n . n
Cl(f + T) +J02(f + T)
The passband transmitter and channel characteristics are denoted

by @, + jG. and Cy + jCy, respectively. For comparison purposes,
it is simple to show that the matched filter bound is

(MMSE) s = {T /”” ()—(]"v(f—) n 1>df}_l. (50)

—1/2T 0

It is of interest to note that we can prove that expressions (48), (49),
and (50) follow the sequence

(48) < (49) = (50)

by invoking Jensen’s Inequality for the logarithm as the concave
function. It is clear that, for the ideal channel and transmitter, i.e.,
Xo(f) = 1/T, we have

1

(MMSE) jinear = (MMSE)as = (MMSE)ws = 7,7yt
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APPENDIX D
A technique for separating transmitter and receiver filters

We wish to determine that factorization of
N
A Bz = I Qa(z7),
n=

which minimizes |4 (z7!)] while [|[B(z™)|| = 1. Each
Q.(z) =1+ af¥27! 4 af¥z?

is a quadratic factor. We assume no real roots occur, although the
extension of the technique we present here to include real roots is
obvious. Now

Qa1 = [ 1@utemmm taf = 1+ @) + (@)

We notice that, upon choosing B(z') = JI @..(z7") (where
ne&Ns
NsUN4 = 1{0,1,2, ---, N}), then

(A =1 II QuGEHIl II QG (51)
nENs nmENa

Thus, what we really want to do is select a partition of the @, factors
so that the product of the norms of the partition factors is minimized.
Much like the quadratic factor partitioning problem in digital filter
implementation for minimizing roundoff noise, the only method for
obtaining the global minimum of |4 (¢7!)|| seems to be the formation
of all possible combinations of quadratic factors. When N is large,
say, 20, this combinatorial method is time-consuming even when the
filters are forced to be of the same order.

A technique for constructing the partition which sequentially
minimizes || 4 (z71)|| is first begun by reordering the quadratic factors by
norm {Q.:},. We think of the two norms of (51) as bins, and we
sequentially fill those bins with quadratic factors. We insert one of
two quadratic factors of largest norms into the first bin and the second
factor into that same bin. We evaluate the norm of the first bin and
now compare it to the product of the norms of the individual factors.
Whichever placement results in smaller norm product, we choose as
our partition initialization. Thus, at the end of the first step we have

either
binl bin2

Q@] 111l
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or

bin1l bin 2

||Q"1” ”Q"z”v
depending on which product is smaller. The next factor, @.,, is brought
into the current partition and the products again arc tested ax to

whether Q,, minimizes the product when placed in bin 1 or bin 2.
The process continues until all quadratic factors are placed into
either bin.

This procedure has been programmed and tested on actual filter
quadratic factors. It has been our experience that the resulting factori-
zation was close to the optimal one. To cite an example: Ten quadratic
factors were randomly placed into two bins 500 times. The product
of the norms of the two bins’ contents ranged from 0.584 to 1183.33.
The partition which our procedure yields for this set of quadratic
factors had the product value of 0.646. Only 36 of the 500 partitions
yielded smaller products. But little could be gained by using any of
these 36 partitions. However, the worst partition was four orders of
magnitude away from the outcome of our procedure. This is possibly
what is most important, namely finding a partition very far away
from the worst one.
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