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Abstract

In this paper we develop an optimality-based frame-
work for backstepping controllers. Specifically, using a
nonlinear-nonquadratic optimal control framework we de-
velop a family of globally stabilizing backstepping con-
trollers parameterized by the cost functional that is min-
imized. Furthermore, it is shown that the control Lya-
punov . function guaranteeing closed-loop stability is a so-
lution to the steady-state Hamilton-Jacobi-Bellman equa-
tion for the controlled system and thus guarantees both
optimality and stability. The results are specialized to the
case of integrator backstepping.

1. Introduction

General nonlinear systems are notoriously hard to sta-
bilize. - Control system designers have usually resorted
to Lyapunov methods in order to obtain stabilizing con-
trollers for such systems. Unfortunately, however, there
does not exist a unified procedure for finding a control
Lyapunov function candidate that will stabilize the closed-
loop for general nonlinear systems. Recent work involving
differential geometric methods has made the design of con-
trollers for certain classes of nonlinear systems more me-
thodical. Such frameworks include the concepts of zero
dynamics and feedback linearization. These techniques,
however, usually rely on canceling out system nonlinear-
ities using feedback and may therefore lead to ineflicient
designs since feedback linearizing controllers may gener-
ate unnecessarily large control effort to cancel beneficial
system nonlinearities.

Backstepping control has recently received a great deal
of attention in the nonlinear control literature [1]. The
popularity of this control methodology can be explained
in a large part due to the fact that it provides a frame-
work for designing stabilizing nonlinear controllers for a
large class of nonlinear dynamic cascade systems. This
framework guarantees stability by providing a systematic
procedure for finding a control Lyapunov function for the
closed-loop system and choosing the control such that the
time derivative of the control Lyapunov function along
the trajectories of the closed-loop dynamic system is nega-
tive. Furthermore, the controller is obtained in such a way
that the nonlinearities of the dynamic system which may
be useful in reaching performance objectives need not be
canceled as in state or output feedback linearization tech-
niques. However, no analytical measure of performance
or notions of optimality have been shown to exist for con-
trollers derived via backstepping approaches.

In this paper we develop an optimality-based theory for
backstepping controllers. The key motivation for devel-
oping an optimal nonlinear backstepping control theory is
that it provides a family of candidate backstepping con-
trollers parameterized by the cost functional that is min-
imized. In order to address the optimality-based back-
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stepping nonlinear control problem we use the nonlinear-
nonquadratic optimal control framework developed in {2].
The basic underlying ideas of the results in {ﬂ rely on
the fact that the steady-state solution of the Hamilton-
Jacobi-Bellman equation is a control Lyapunov function
for the nonlinear controlled system thus guaranteeing both
optimality and stability. The nonlinear feedback control
law is chosen so that the Hamilton-Jacobi-Bellman op-
timality conditions are satisfied. In this paper we ex-
tend the framework developed in [2] to cascade systems
for which the backstepping control design methodology is
applicable. Specifically, we show that a particular con-
troller derived via backstepping methods corresponds to
the solution of an optimal control problem that minimizes
a nonlinear-nonquadratic performance criterion. This is
accomplished by choosing the controller such that the con-
trol Lyapunov derivative is negative along the closed-loop
system trajectories while providing sufficient conditions
for the existence of asymptotically stabilizing solutions to
the Hamilton-Jacobi-Bellman equation. Thus, our results
allow us to derive globally asymptotically stabilizing back-
stepping controllers for nonlinear systems that minimize a
correiponding nonlinear-nonquadratic performance func-
tional.

2. Optimal Nonlinear-Nonquadratic Feedback
Control

In this section we consider affine systems of the form
£(t) = f(z(t)) + g(z(t))u(?), t>0, (1)

where z € R, 4 € R™, f: R® — R" such that f(0) =0,
and g : R® — R®"*™ with performance functional

‘T(O) = Z0,

J{zo,u(-)) = /Ooo[Ll(ac) + Ly(z)u + wT Ry(z)u]dt, (2)

where L; : R® — R,Ly : R* — R*™, and Ry : R® —
Pm™*™, Furthermore define the set of asymptotically sta-
bilizing controllers by
S(zo) £ {u(") : u(-) € U and z(-) given by (1) satisfies
z(t) — 0 ast — oo}. (3)
Theorem 2.1 [2]. Consider the controlled system (1)

with performance functional (2). Assume there exists a

C! function V : R® — R and a function Lj : R® — R1Xm™
such that

V(©0)=0, Ly(0) =0, V(z)>0, z€R", z#0, (4)
V'(2)[f(z) — 39(z)R3 ' (z)L] ()
~1g9(@)R3 (@)g" (@)V T ()] <0, TER™, T #£0, (5)

and V(z) — oo as ||z]] — oo. Then the solution z(t) = 0,
t > 0, of the closed-loop system

#(t) = f(z(t) +9(z()$(z(t)), z(0)=z0, t20, (6)
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is globally asymptotically stable with the feedback control
law

$(@) = —1R;'@)LF () + " @V (@),  (7)

and the performance functional (2), with

Li(z) = ¢ (2)Ra(2)$(2) — V'(2) f (=), ®)

is minimized in the sense that

J(.’Eo, ¢($())) = u(-)rg:lsr(lmo) J(xOvu('))7 o € R™. (9)
Finally, |
J(zo, ¢(z())) = V(zo),  xo €R™ (10)

3. Optimal Integrator Backstepping Controllers
In this section we consider the cascade system

&) = f(z(t) + g(z(t)2(t),
2(1) = u(t),  £(0) = o,

z(0) =z, t2>0,(11)

(12)

where (12 has been augmented by an input subsystem con-
sisting of m integrators. For the following result define

L(z,2,u) = Li(z, %) + Lo(z, 2)u + uT Ro(z, 2)u.  (13)

Theorem 3.1. Consider the cascade system (11), (12)
with performance functional

o0
F(0, 80, u()) 2 / B(z@),3),ue)dt,  (14)
0
where u(-) is admissible, (z(t), £(t)), t > 0, solves (11),
(12), and L(z,Z,u) is given by (13). Assume there exist
C! functions o : R® — R™ and V;yp : R™ — R, a function
Ly : R* x R™ — RIX™ and a positive-definite matrix
P € Pmx™ gych that

a(0) =0, L3(0,0) =0, Vaup(0) =0, (15)
Vaun(z) > 0, z€R™, £ #0, (16)
Ve (@)[f(z) + g(2)a(2)] <0, z €R™, x40, (17)

(6~ @)@V @) - 2P [0 @) + 9@

+R; Yz, 2)[P(& — afz)) + -%f};r(m,a%)]] } <0,

(@, &) € R® x R™, & £ a(z). (18)

Then the solution (z(t),Z(t)) = (0,0), t > 0, of the cas-
cade system (11), (12) is globally _asymptotically stable
with the feedback control law u = ¢(z, &), where

$(x,2)=—R3"(z,2) Pz —a(z)]| - 1 Ry Y (2, 2) LT (z, 2).
Furthermore, (19)

j(x()"i‘o’ $($(),ﬁ())) = V(.’Bo,:ﬁo), (xOinO) e R™ x Rm,
(20)

where
V(z,2) = Vaun(z) + [ — a(@)T P2 - a(z)],  (21)

and the performance functional (14), with

ffl(mv :i) = &T(xv :%)R2(x7 ﬁ)&(:@ *’%) _‘/sl\xb(x)[f(z)+g(z)£]

+2[2 — a(@)]TPd/ ()| f(z) + 9(x)3],  (22)
is minimized in the sense that
J(zo, E0, Bz (-), (")) = u(.)fg‘isf(lxo) J(z0,30,u(-)). (23)

Remark 3.1. A particular choice of Ly(z, &) satisfying
condition (18) is given by

Lo@,3) = [Van@)9@P™" - 2(F(2) + 9(2)3)" o (z)]
‘Ra(x, £). (24)

In this case with u(t) € R, t > 0, the feedback control law
given by (19) specializes to the integrator backstepping
controller given by Lemma 2.8 of [1] by setting P= %Im
and Ry(z,2) = 1/e.

_Remark 3.2. If Li(z,2) > 0, Rao(z,&) > 0, and
Lo(z,£) =0, (z,2) € R™ x R™, then the feedback control

law ¢(x,Z) given by (19) can be used to provide guaran-
teed gain margins to sector bounded input nonlinearities.

Specifically, if Ra(z,%) =1y Yz, 2)I,,, where

& 7é a(x),

%= a(z),

) 8T12+(8T8)2-8T~
ra(z,2) = ATp ’

and B = P(% - a(z)), 7 £ 22 (2)[f(2) + g(=)¢] -
P-1gT(2)V, T (), then the control law (19) yields

- { .

In this case it can be shown that $(:L‘, 1) guarantees closed-
loop stability for nonlinear systems with component de-

coupled input nonlinearities in the conic sector (%, 00).

TAy24.(3T8)2—-8T .
8T) ;(Tﬁﬁ )-8 '7] B, &+ a(a),
0, z = a(z).

For a complete exposition of the results of this paper
the interested reader is referred to [3].
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