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Abstmcl-The implementation of a load balancing policy 
on a continuous basis in a delay-limited distributed com- 
puting environment may not only drain the computational 
resources of each computational element (CE), hut can also 
lead to an unnecessary exchange of loads between the CEs. 
This degrades the system performance, measured by the 
overall completion time of the total tasks in the system. 
Thus, for a given distribution of the load among the CEs, 
there has to he an optimal number and distribution of 
discrete balancing instants. This paper focuses on fxing the 
number of balancing instants and optimizing the completion 
time over the strength of load balancing, which is controlled 
by the so-called gain parameter, and the time when the bal- 
ancing is executed. First, the case when the load balancing is 
implemented at a single instant per node is presented. Then, 
a strategy is considered where a second load balancing 
instant is allowed for each node. The simulations show that 
both strategies outperform the continuous balancing policy. 
Moreover, with the double load-balancing strategy the 
overall completion time is further reduced in comparison tn 
the single load balancing case. It is also seen that the optimal 
choice of the gain parameter depends on the delay and this 
dependence becomes mom signifeant as the delays increase. 
This interplay between the strength of load balancing and 
the magnitude delay has a direct effect on the performance 
of the policy and on the sensitirity to the selection of the 
balancing instants. 

I. INTRODUCTION 

The development of effective and computationally 
effcient load balancing techniques is an essential task 
in parallel and distributed computing environments. Ef- 
fective load balancing relies on accurate knowledge of 
the state of the individual computational elements (CEs) 
whereby such knowledge is used to distribute the in- 
coming computational tasks to appropriate CEs in accor- 
dance to a load balancing policy. However, large-scale 
distributed computing systems with physically andor 
logically distant CEs inherently involve time delays. 
Consequently, the information that a particular node has 
about other nodes, at any given time, is dated and may 
not accurately represent their current states. Such time- 
delay factors can seriously alter the expected performance 
of load balancing policies designed without taking into 
account such delays. One source of time delay is the 
computational limitations of the CEs and the execution 
of the load balancing policy itself. A more signifcant 
source of time delay is the limitations imposed by the 

communication medium between the CEs. This includes 
delays in transferring a load between the nodes and delays 
in the exchange in communications between them. For 
example, network QoS factors such as latency, congestion 
and corruption, can signifcantly contribute to delays 
during dynamic load balancing when loads are being 
re-distributed between the CEs. In addition, the delays 
encountered in dynamic load halancing are actually ran- 
dom due to the uncertainty in the condition of the shared 
network that connects the CEs. Such network conditions 
include the level of traffc and network confguration and 
architecture. This uncertainty is particularly prominent in 
wireless networks, and especially for satellite links that 
operate at very high transmission rates with low band- 
widths and relatively high bit-error rates. Other factors 
that contribute to the stochastic nature of the distrihuted- 
computing problem are: randomness and possible burst- 
like nature of the arrival of new job requests at each 
node from external sources, randomness of the load- 
transfer process itself being queue-size dependent, and 
randomness in the task completion process at each node. 
In the recent years, dynamic load balancing has been 
an area of extensive research and a number of strategies 
have been proposed [I], [Z], [3], [4]. Generally, the 
developed policies can be categorized accodmg to their 
operational settings, which include local versus global, 
static versus dynamic, and centralized versus distributed 
scheduling. However, there have been very limited focus 
on the inherent latency involved in geographically-distant 
distributed systems and the stochastic behavior of this 
latency. 

Thus, if we are designing a load-balancing policy 
under no delay or fxed-delay assumptions, the policy 
will not perform as expected in real situation when 
delays are non-zero or random. To adequately describe 
and investigate load balancing behavior in such delay- 
infested environments, we have previously taken a new 
look at the problem of dynamic load balancing using 
a dynamical model that captures the stochastic delays 
discussed above [ 5 ] ,  [6]. We incorporated the stochastic 
dynamics of load balancing and applied the model to 
predict the impact of random delays on the performance. 
In particular, we considered the effect of the suength 
of load balancing, which is govemed by the fraction, 
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K, that dictates what poriion of any C E s  excess load 
should be assigned to other CEs [71. In the ideal case 
where the communication and load-transfer delays are 
negligible (as in a fast Ethernet environment) and the time 
required to implement the load-balancing policy is also 
negligible, the best performance (minimizing the waiting 
times associated with all CEs) is obtained when the 
load balancing is executed almost continuously without 
any reservation. Namely, at almost every instant, each 
CE compares its queue size to the average queue size 
of the network and distributes all its excess load to 
other nodes. Every other node also follows a similar 
policy. However, in a practical setting such a strategy 
has two main disadvantages: 1) the implementation of 
the load balancing policy on a continuous basis can 
drain the computational resources of each C E  and 2) 
excessive load balancing, both in frequency and strength, 
can lead to timely and possibly unnecessary exchange 
of loads between CEs. This means that valuable time 
may be unduly waisted exchanging loads back and forth 
between nodes (as the system is diligently attempting 
to balance the queues) while this time could have been 
used to actually execute the tasks submitted! In fact. in 
our prior work [5] we have shown that if the delays 
are dominated by the communication and load transfer, 
then there is an optimal load-balancing strength (viz., an 
optimal value for the parameter K),  that minimizes the 
waiting time in each CE. In patticular, we have shown 
that the strength of the load-balancing policy must be 
reduced in a delayed environment to avoid any “over- 
reaction” consequences that may arise due to such delay 
factors. In [I], remote communication is minimized by 
reducing the number of balancing instants between the 
distant CEs while allowing the local CEs to balance 
continuously. To improve the network effcieucy, Hui and 
Chanson [41 proposed transferring a single large job by 
combining several balancing instants. 

In a more practical setting, the continuous imple- 
mentation of load balancing, as we stated earlier, can 
be very costly (wasteful of computational resources) 
and more importautly, it can innict an additional delay, 
namely, the time needed to implement the load balancing 
policy. Thus, there is an inherent tradeoff between the 
strength and frequency of load balancing on one hand, 
and the need to conserve computational resources used 
in implementing any load-balancing policy. Motivated by 
such a fundamental tradeoff, in this paper we investigate 
whether limiting the number of load balancing instants 
while optimizing the strength of the load balancing and 
the actual load-balancing instants is a feasible solution 
to the problem of load balancing in a delay-limited envi- 
ronment. This paper addresses the performance of such a 
potentially computationally-effcient load-balancing strat- 
eu .  

11. DESCRIPTION OF THE STOCHASTIC DYNAMICAL 
MODEL 

We begin by brieoy describing the queuing model 
that characterizes the stochastic dynamics 0.f the load 
balancing problem described so far drawing freely from 
our prior work [5],  [7]. This model is subsequently used 
as basis for the development of a custom-made simulation 
software used to generate all the results included in this 
paper. 

Suppose that we have a cluster of n nodes. Let Q i ( t )  
denote the number of tasks awaiting processing at the 
ith node at time t .  Assume that the ith node completes 
tasks according to a Poisson process and at a constant 
rate fi , .  Let the counting process Ji( t l , t?)  denote the 
number of external tasks (requests) arriving at node i 
in the interval ( t l , t 2 ) .  We will assume that the process 
J,( t l ,  t z )  is a compound Poisson process with a constant 
rate Xi.181, that is, J,(tl,tz) = ~ k : t l s e k < t l  H k ,  where 
& are arrival times of job requests arriving according 
to a Poisson process with rate X i .  The random sequence 
H k ,  k = 1,2. . . , is a sequence of integer-valued random 
variables describing the number of tasks associated with 
the kth job request. The load balancing mechanism is 
described as follows: The ith node, at a specifc load- 
balancing instant q, looks at its own load Q,(?) and 
the loads of other nodes at randomly delayed instants 
(due to communication delays), and decides whether it 
should allocate a fraction K of its load to the other nodes 
according to a deterministic policy. Moreover, at the time 
when it is not balancing its load, it may receive loads 
from the neighboring nodes subject to random delays 
(due to the load-transfer delays). 

With the above description of task assignments be- 
tween nodes, we can write the dynamics of the ith queue 
in a differential form as (in At time increments): 

Q i ( t + A t )  = Q i ( t ) - C i ( t + A t ) - C L j i ( t ) +  

x L i j ( t  - rij(t)) + Ji( t , t  + At) ,  
3#i 

j # i  

(1) 

where C;(t + At) is a Poisson process (with rate hi) 
describing the random number of tasks completed in the 
interval it, t + At), Ji( t ,  t + At) is a random number of 
new, external tasks arriving in the same interval, ~ ~ ~ ( t )  
is the delay in transferring load from node j to node i at 
the same interval, and Lj t ( t )  is the load transferred from 
node i to j in the interval [ t , t  + A t ) .  More precisely, 
for any k # 1, the random load L k i  diverted from node 
1 to node k has the form &(t)  2 gkr($l(t),Qk(t - 
qik(t)), ..., Qj(t - qij(t)),. ..). where for any j # k, 
q k , ( t )  = qjk(t) is the communication delay between the 
kth and j t h  nodes at time t .  The function gkl dictates 
the load-balancing policy between the kth and Ith nodes. 
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One common example is 

where U(.) is the unit step function with the obvious 
convention qii ( t )  = 0, and Kk is a parameter that 
controls the “strength” or “gain” of load b a l k i n g  at the 
kth (load distributing) node. In this example, the lth node 
simply compares its load to the average over all nodes 
and sends out a fraction plk of its excess load to the lth 
node. (Of course, C l i k p [ k  = 1.) 

111. SIMULATION RESULTS 

Consider a cluster of three nodes with equal computing 
power (i.e., the task completion rates, &, i = 1,2,3, 
are all the same), and let us assume that each node is 
allowed to execute load balancing at only two scheduling 
times. Throughout this paper, we will assume that the 
average task completion time is 10 ps per task, and the 
load-balancing policy is implemented according to the 
policy described in the previous section. The initial load 
for these experiments was distributed unevenly among 
the three nodes as 7000, 4500, and 500 tasks, with no 
additional external arrival of tasks (in this paper we only 
consider the zero-input response). 

Some of OUT earlier experimental results that motivated 
the present study are summarized in Fig. 1 .  The t o p  graph 
in this fgure shows the empirical average of the queue 
size (dashed curves show the number tasks cumulatively 
performed). It is seen that approximately only 87% of 
the total tasks were completed within 60 ,ms. The fact 
that the total number of tasks performed by each CE 
are not the same indicates that load-balancing haS not 
been effective (since all nodes have the same computing 
capability), which is attributed mainly to the presence of 
delay. To have better insight into the time elapsed before 
all the tasks are computed, we generated the empirical 
variance of the queues, as shown by the bottom graph 
in Fig. 1. The graph shows a high-degree of uncertainty 
in the smallest queue and, more importantly, near the 
tail of the queues (beyond 30 ms). We observed that 
even in the fastest completion period, 95% of the tasks 
were completed around 15 ms faster then the time taken 
to complete the last 5% the tasks. This is an indicator 
that the nodes are continuing to exchange tasks back and 
forth near the tail of the queue even when load-balancing 
seems unnecessary. The more often we try to equalize the 
work load between the nodes, the more often portions of 
loads are transferred between the CEs. As a result, the 
CEs are not able to complete their assigned tasks by the 
time of the new load balancing policy execution. The net 

effect is that loads are bouncing between the nodes with 
little actual work being performed. 
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Fig. 1. Tap: The empirical mean queue length using 1M) realizations of 
the queues for each node (solid curves). Dashed curves are empirical 
averages of the mash performed by each ncde cumulatively in lime. 
Bonum: The empirical variance of the queue length normalized by the 
mean-sware values. 

A. Single bad-balancing Strategy 
We now present the results for the case when load- 

balancing is implemented at a single instant only per 
node. We assumed initial loads of Ql(0) = 7000, 
Qz(O) = 4500, and Q3(0)  = 500, and an average 
communication and load-transfer delays of 8 ms (cor- 
responding to relatively short load balancing transfer 
delays). The results showed that the optimal value for 
the load-balancing strength parameter KO,, is 0.8 ms, 
the optimal load balancing instant is 0.02 ms, and 
the corresponding completion time tcompl is 47.51 ms, as 
seen in Fig. 2 (top). Now from the bottom graph in Fig. 2, 
we can see that the queue lengths change abruptly as a 
result of load-balancing events associated with the three 
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Fig. 2. Optimal single load-balancing scheduling for the shott-delay 
case. Top: completion time YS. load-balancing instant, &,,I; Bottom: 
queue lenghs and cumulative tasks completed by each node. 

nodes (a total of six transitions and two transitions per 
node in this case: one transition when a node transmits 
tasks to other nodes, and once when it receives the tasks 
that were sent to it). The group of increasing curves 
represents the tasks completed cumulatively in time by 
each node. We also noticed that when K ranges between 
0.4 and 0.9, the completion time frst decreases to a 
minimum of 47.57 ms, and then increases to 55 ms. The 
optimal range of the gain parameter is between 0.7 and 
0.8. Within this range tboll is changing from 0.01 ms to 
3.68 ms. Therefore, for relatively small communications 
delays, we can execute the load balancing policy either 
before the present states of the neighboring nodes are 
known, or after we receive this information. Nevertheless, 
there is a tradeoff involved in choosing one choice over 
the other. If completion time is the primary optimization 
goal, then it is advantageous to execute the load balancing 
policy at the vely beginning, combined with a large value 
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Fig. 3. Single load-balancing scheduling for the long-delay case. Top: 
completion time as a function of t b o l l ;  Bottom: queue evolution and 
the cumulative tasks done by each ncde. 

of the gain parameter. However, this comes at the price of 
sensitivity to any delay in executing the load balancing. 
For example, if the execution is delayed to just before the 
time when communication from other nodes anive, then 
the completion is signifcantly prolonged, as can be seen 
from the peak near te.ll = 0.6 ms. On the other hand, if 
maintaining a stable (i.e., less sensitivity to error in the 
execution time) is sought, then it would be advantageous 
to execute the load balancing after receiving information 
from the neighboring nodes at a slight price of prolonged 
task completion time. 

Next we consider a case where the delays are relatively 
long, both in communication and load transfer. As can be 
seen from the top plot in Fig. 3, the shortest completion 
time possible is approximately 52 ms for tball = 0.01 
ms and the optimal value of K is found to be 0.65. 
Like in the above scenario, there is no reason for CEs 
to wait for the information to reach them, because if 
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Fig. 4. Double load-balancing scheduling for the shan-delay case. 
Top: K = 0.6. = 0.01 ms, tsSLz = 0.02 ms: Middle: K = 0.8, 
tbali = 0.01 ms. tb.12 = 3.69 ms; Botlom: queue evolution length 
and the cumulative tasks done by each node. 

they do valuable time will be wasted (due to the large 
communication delay) since one node is idle. Thus, in 
this case, "informed" load balancing does not render 
effciency. Moreover, the optimal value of the balancing 
strength parameter has to be smaller compared to the 
case with short load-transfer delays. The reason is that 
in the present situation it will take longer for most of the 
information to reach its destination, and consequently, 
the overall completion time will increase. In addition, 
our simulations show that even with the optimal value 
of K, the task-completion time cannot reach the one 
corresponding to the short-delay case considered earlier. 
From the bottom plot in the same fgure we can see that 
CEl and CE2 complete their work 5 ms after CE3. Thus, 
the system's load was not totally balanced. 

To investigate the relationship between the initial load 
distribution and the optimal values for the system pa- 
rameters, we considered a case where the initial loads 

Balaming InsIan1 with k =O 5 

I 

. . . . . . .  

. . . . . . . . . . .  
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. . . . . . . . . . . . . .  
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Fig. 5. Double load-balancing scheduling for the long-delay case. Top: 
K = 0.5, tbalt = 0.01 ms, tbc12 = 0.02 ms; Bottom: queue length 
evolution and the cumulative msks done by each node. 

are almost equally distributed between the nodes. In par- 
ticular, we considered &1(0) = 7000, QZ(0) = 6500, and 
Q3(0) = 6000. For this setting, the shortest completion 
time was 66.51 ms at K = 0.725 and for tml  = 0.63 
ms. These values are very close to the ideal case when 
no time delays are present and the minimum completion 
time for a total of 19500 tasks is 65 ms. From our 
empirical measurements we can conclude that when we 
have only one load-balancing execution per node in a 
small-delay environment, the best time to implement the 
load balancing is almost right at the beginning with a 
relatively large K (that actually depends on the initial 
load distribution). For the longer-delay case, however, K 
has to be decreased. 

B. Double Load-balancing Strategy 

Next, we consider a strategy for which a second load 
balancing instant, denoted by t b l 2 ,  is allowed for each 
node. From the point of view of each node, tbolZ can 
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Fig. 6. Double load-balanciflg scheduling showing the task completion 
time as a function of lhe load-balancing svenyth parameter K. Top: 
small-delay case: Bottom: large-delay case. 

be chosen using several options. For example, tbolZ can 
be chosen just after the Erst load balancing instant, 
between the moments in which the nodes are receiving 
loads from their neighbors, or at the end of the load 
exchange. If we choose Ql(0) = 7000, Q2(0) = 4500, 
Q3(0) = 500, an average communication delay of 0.8 
ms, and a similar average load-transfer delay, then the 
best teompl is found to be 43.15 ms, which occurs when 
t b a l l  = 0.01 ms and tbaiZ = 0.02 ms with K = 0.6. A 
similar completion time can be achieved by executing 
the two load-balancing instants at a later time, after 
the nodes have received information. We found that this 
requires two load balancing instants following each other. 
In particular, our experiment shows that tb,ll = 3.87 and 
t k ( z  = 3.88 yields one of the best completion times. 

From the top plot in Fig. 4 we see that balancing in 
the beginning of the process leads to shorter completion 
times. The same plot indicates that execution of the load 
balancing within the range 0.03-2 ms is sensitive to error 

in the scheduling time. In particular, a small deviation 
of tkl leads to a substantial increase in completion 
time. This time interval coincides with the time when 
every node receives information from its neighbors in a 
random way. Therefore, reliable load balancing is not 
possible during this time interval due to the commu- 
nication delays. For the same reason, when K = 0.8, 
the best execution strategy is to execute the frst load 
balancing policy right at &e beginning with = 0.01 
ms and after that to wait until each one of the nodes 
received information from its neighbors before executing 
the second load balancing, as seen from Fig. 4 (middle). 
The completion time achieved in this case is 45 ms. Thus, 
qualitatively speaking, when we have two load-balancing 
instants in a small-delay environment, the optimal way 
to place them is either in the beginning, or immediately 
after the CEs have completed the information exchange. 

For the case of large delays, the optimal solution with 
two load balancing instants is K = 0.5, = 0.01 
ms and = 0.02 ms. While a completion time of 
approximately 46 ms is slightly higher than that in the 
previous case, it is still close to its optimal value. We see 
from Fig. 5 (top) that the two instants are in the beginning 
of the process. Long delays will cause nodes to use 
dated infomation to determine the load redistribution. 
We also found that the value of KDPt is lower compared 
to the short-delay case. The long time delays require 
smaller vilues of KoPc because it takes longer time to 
transfer larger packets of data between the nodes, and 
selecting a high value for K will be "over-reactive," For 
example, for K = 0.9 the cluster behavior is unstable and 
small perturbations in the load balancing instant cause 
increase in the completion time. The behavior of the 
double-balancing case is summarized in Fig. 6. The top 
plot shows the dependence of the minimum tcompi as 
a function of the load-balancing strength parameter K 
for small delays, and the bottom plot shows the same 
dependency for the long-delay case. 

IV. CONCLUSIONS 

Our simulations indicate that with a double-load- 
balancing strategy, it is possible to achieve improved 
overall performance, measured by the completion time of 
the total tasks in the system, in comparison to the single- 
load-balancing strategy. In either case, a performance al- 
most comparable to the continuous-load-balancing strat- 
egy can be achieved. The optimal selection of the load- 
balancing instants is shown to be in the beginning of the 
work process with the provision that the gain parameter 
should be selected more conservatively as the delay 
becomes more pronounced. However, if the delays are 
relatively small, it is possible to delay the execution of 
the load balancing until the information about the state of 
other nodes is collected. This "better informed" balancing 
will have the advantage of reduced sensitivity to errors 
in the selection of load-balancing instants. 
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Our future work will include the implementation and 
perfonnance analysis of the load-balancing stfategies pro- 
posed here on real systems. We have successfully imple- 
mented the balancing algorithm on three geographically 
distributed CEs located respectively in Spain, Argentina 
and the US. The results have been encouraging and a 
detailed study of the real system is underway. This work 
was supported by the National Science Foundation (under 
an Information Technology Research Grant). 
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