University of New Mexico

UNM Digital Repository

Electrical & C ter Engi ing Facult
ec .r1c§ & Computer Engineering Faculty Engineering Publications
Publications

12-9-2003

Dynamical discrete-time load balancing in
distributed systems in the presence of time delays
Chaouki T. Abdallah

S. Dhakal

B. S. Paskaleva

M. M. Hayat

E. Schamiloglu

Follow this and additional works at: https://digitalrepositoryunm.edu/ece fsp

Recommended Citation
Abdallah, Chaouki T.; S. Dhakal; B. S. Paskaleva; M. M. Hayat; and E. Schamiloglu. "Dynamical discrete-time load balancing in

distributed systems in the presence of time delays." Proceedings of the 42nd IEEE Conference on Decision and Control (2003):
5128-5134. d0i:10.1109/CDC.2003.1272450.

This Article is brought to you for free and open access by the Engineering Publications at UNM Digital Repository. It has been accepted for inclusion in
Electrical & Computer Engineering Faculty Publications by an authorized administrator of UNM Digital Repository. For more information, please

contact disc@unm.edu.

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Proceedings of the 42nd IEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003

FrAPI-7

Dynamical Discrete-Time Load Balancing in Distributed Systems in

S. Dhakal

B. S. Paskalcvg

the Presence of Time Delays

M. M. Hayat

Department of Electrical and Computer Engineering
University of New Mexico
Albuquerque, NM 87131-1356, USA

E. Schamilogiu

C. T. Abdallah

0-7803-7924-1/03/$17.00 ©2003 \EEE

Abstract— The implementation of a load balancing policy
on a continuous basis in a delay-limited distributed com-
puting environment may not only drain the computational
resources of each computational element (CE), but can also
lead to an unnecessary exchange of loads between the CEs.
This degrades the system performance, measured by the
overall completion time of the total tasks in the system.
Thus, for a given distribution of the load among the CEs,
there has to be an optimal number and distribution of
discrete balancing instants. This paper focoses on £xing the
number of balancing instants and eptimizing the completion
time over the strength of load balancing, which is contrelled
by the so-called gain parameter, and the time when the bal-
ancing is executed. First, the case when the load balancing is
implemented at a single instant per node is presented. Then,
a sirategy is considered where a second load balancing
instant is allowed for each node. The simulations show that
both strategies outperform the continuous balancing pelicy.

Moreover, with the double lead-balancing strategy the .

overall completion time is further reduced in comparison to
the single load balancing case. It is also seen that the optimal
choice of the gain parameter depends on the delay and this
dependence becomes more signifcant as the delays increase.
This interplay between the strength of load balancing and
the magnitude delay has a direct effect on the performance
of the policy and on the semsitivity to the selection of the
balancing instants.

I. INTRODUCTION

The development of effective and computationally
effcient load balancing techniques is an essential task
in parallel and distributed computing environments, Ef-
fective load balancing relies on accurate knowledge of
the state of the individval computational elements (CEs)
whereby such knowledge is used to distribute the in-
coming computationa} tasks to appropriate CEs in accor-
dance to a load balancing policy. However, large-scale
distributed computing systems with physically and/or
logically distant CEs inherently involve time delays.
Consequently, the information that a particular node has
about other nodes, at any given time, is dated and may
not accurately represent their current states, Such time-
delay factors can seriously alter the expected performance
of load balancing policies designed without taking into
account such delays. One source of time delay is the
computational limitations of the CEs and the execution
of the load balancing policy itself. A more signifcant
source of time delay is the limitations imposed by the

communication medium between the CEs. This includes
delays in transferring a load between the nodes and delays
in the exchange in communications between them. For
example, network QoS factors such as latency, congestion
and corruption, can signifcantly contribute to delays
during dynamic load balancing when loads are being
re-distributed between the CEs. In addition, the delays
encountered in dynamic load balancing are actvally ran-
dom due to the uncertainty in the condition of the shared
network that connects the CEs. Such network conditions
include the level of traffc and network confguration and
architecture, This uncertainty is particularly prominent in
wireless networks, and especially for satellite links that
operate at very high transmission rates with low band-
widths and relatively high bit-error rates. Other factors
that contribute to the stochastic nature of the distributed-
computing problem are: randomness and possible burst-
like nature of the arrival of new job requests at each
node from external sources, randomness of the load-
transfer process itself being queue-size dependent, and
randomness in the task completion process at each node.
In the recent years, dynamic load balancing has been
an area of extensive research and a number of strategies
have been proposed [1], [2], [3], [4]. Generally, the
developed policies can be categorized according to their
operationa! settings, which include local versus global,
static versus dynamic, and centralized versus distributed
scheduling, However, there have been very limited focus
on the inherent latency involved in geographicaily-distant
distributed systems and the stochastic behavior of this
latency.

Thus, if we are designing a load-balancing policy
under no delay or £xed-delay assumptions, the policy
will not perform as expected in real situation when
delays are non-zero or random. To adequately describe
and investigate load balancing behavior in such delay-
infested environments, we have previously taken a new
look at the problem of dynamic load balancing using
a dynamical model that captures the stochastic delays
discussed above [5], [6]. We incorporated the stochastic
dynamics of load balancing and applied the model to
predict the impact of random delays on the performance.
In particular, we considered the effect of the strength
of load balancing, which is governed by the fraction,

5128

K, that dictates what portion of any CE’s excess load
should be agsigned to other CEs [7]. In the ideal case
where the communication and load-transfer delays are
negligible (as in a fast Ethernet environment) and the time
required to implement the load-balancing policy is also
negligible, the best performance (minimizing the waiting
times associated with all CEs} is obtained when the
load balancing is executed almost continuously without
any reservation. Namely, at almost every instant, each
CE compares its queue size to the average queue size
of the network and distributes all its excess load to
other nodes. Every other node also follows a similar
policy. However, in a practical setting such a strategy
has two main disadvantages: 1) the implementation of
the load balancing policy on a continuous basis can
drain the computational resources of each CE; and 2)
excessive load balancing, both in frequency and strength,
can lead to timely and possibly whnecessary exchange
of loads between CEs. This means that valuable time
may be unduly waisted exchanging loads back and forth
between nodes (as the system is diligently artempting
o balance the queues) while this time could have been
used-to actually execute the tasks submitted! In fact. in
our prior work [5] we have shown that if the delays
are dominated by the communication and load transfer,
then there is an optimal load-balancing strength (viz., an
optimal value for the parameter K), that minimizes the
waiting time in each CE. In particular, we have shown
that the strength of the load-balancing policy must be
reduced in a delayed environment to avoid any “over-
reaction” consequences that may arise due to such delay
factors. In 1], remote communication is minimized by
reducing the number of balancing instants between the
distant CEs while alfowing the local CEs to batance
continuously, To improve the network effciency, Hui and
Chanson [4] proposed transferring a single large job by
combining several balancing instants.

In a more practical setting, the continuous imple-
mentation of load balancing, as we stated earlier, can
be very costly (wasteful of computational resources)
and more importantly, it can intict an additional delay,
namely, the time needed to implement the load balancing
policy. Thus, there is an inherent tradeoff between the
strength and frequency of load balancing on one hand,
and the need to conserve computational resources used
in implementing any load-balancing policy. Motivated by
such a fundamental tradeoff, in this paper we investigate
whether limiting the number of load balancing instants
while optimizing the strength of the load balancing and
the actual load-balancing instants is a feasible solution
to the problem of load balancing in a delay-limited envi-
ronment. This paper addresses the performance of such a
potentially computationally-ef£cient load-balancing strat-
egy.

II. DESCRIPTION OF THE STOCHASTIC DYNAMICAL
MODEL

We begin by briemy describing the queuing model
that characterizes the stochastic dynamics of the load
balancing problem described so far drawing freely from
our prior work {5], [7]. This model is subsequently used
as basis for the development of a custom-made simulation
software used to generate all the results included in this
paper.

Suppose that we have a cluster of n nodes, Let Q,(t)
dencte the number of tasks awaiting processing at the
ith node at time ¢. Assume that the ith node completes
tasks according to a Poisson process and ar a constant
rate u;. Let the counting process Ji(t1,f2) denote the
number of external tasks (requests) arriving at node i
in the interval [t1,t2). We will assume that the process
Ji(£1,t2) is a compound Poisson process with a constant
rate A;.[8), that is, J;(t1,t2) = Zk:tlsemt; H,., where
& are arrival times of job requests arriving according
to a Poisson process with rate A;. The random sequence
Hy,k=1,2...,is a sequence of imteger-valyed random
variables describing the number of tasks associated with
the kth job request. The load balancing mechanism is
described as follows: The ith node, at a specifc load-
balancing instant T}, looks at its own load ;(7}) and
the loads of other nodes at randomly delayed instants
{due to communication delays), and decides whether it
should allocate a fraction A of its load to the other nodes
according 10 a deterministic policy. Moreover, at the time
when it is not balancing its foad, it may receive loads
from the neighboring nodes subject to random delays
(due to the load-transfer delays).

With the above description of task assignments be-
tween nodes, we can write the dynamics of the ith queuve
in a differential form as (in At time increments);

Qi(t+At) = Qi(t)—Cilt+ A =D L) +
i
3Lyt —y(8) + Jilt,t + A),

J#i
ey

where C;(t 4+ At) is a Poisson process (with rate ;)
describing the random number of tasks completed in the
interval [t,t + At), Ji(¢, ¢ + At) is a random number of
new, external tasks arriving in the same interval, 73;(2)
is the delay in transferring load from node j to node 7 at
the same interval, and L,;(t) is the load transferred from
node i to 7 in the interval [t,1 + At). More precisely,
for any k # !, the random load Ly; diverted from node
[to node & has the form Ly(t) = gri(@i(2), Qrlt —
me(t)), -, Q;(t — my(t)),...), where for any § £ &,
i (t) = njx(t) is the communication delay between the
kth and jth nodes at time £ The function gy, dictates
the load-balancing policy between the kth and /th nodes.

5129

One common example is ;
gie(Qu(t), Qi — me(2)), ..., Qi(¢ — ms(8)),.)
= Kyppuy - (Ql(t) —n7t Y Q- sz(t)))
i=1

(@0 -2 Lot -mw). @

i=1

where u(-) is the unit step function with the obvious
convention 7;(¢) = 0, and K is a parameter that
controls the “strength” or “gain” of load balaacing at the
kth (load distributing) node. In this example, the lth node
simply compares its load to the average over all nodes
and sends out a fraction py;. of its excess load to the lth
node. (Of course, Z#k e =1)

III. SIMULATION RESULTS

Consider a cluster of three nodes with equal computing
power (i.e., the task completion rates, ;1 = 1,2,3,
are all the same), and let us assume that each node is
allowed to execute load balancing at only two scheduling
times. Throughout this paper, we will assume that the
average task completion time is 10 ps per task, and the
load-balancing policy is implemented according to the
policy described in the previous section. The initial load
for these experiments was distributed unevenly among
the three nodes as 7000, 4500, and 500 tasks, with no
additional external arrival of tasks (in this paper we only
consider the zero-input response).

Some of our earlier experimental results that motivated
the present study are summarized in Fig. 1. The top graph
in this £gure shows the empirical average of the queue
size (dashed curves show the number tasks cumulatively
performed). It is seen that approximately only 87% of
the total tasks were completed within 60 ms. The fact
that the total number of tasks performed by each CE
are not the same indicates that load-balancing has not
been effective (since all nodes have the same computing
capability), which is attributed mainly to the presence of
delay. To have better insight into the time elapsed before
all the tasks are computed, we generated the empirical
variance of the queues, as shown by the bottom graph
in Fig. 1. The graph shows a high-degree of uncertainty
in the smallest queue and, more importantly, near the
tail of the queues (beyond 30 ms). We observed that
even in the fastest completion period, 95% of the tasks
were completed around 15 ms faster then the time taken
to complete the last 5% the tasks. This is an indicator
that the nodes are continuing to exchange tasks back and
forth near the tail of the queue even when load-balancing
seems unnecessary. The more cften we try to equalize the
work load between the nodes, the more often portions of
loads are transferred between the CEs. As a result, the
CEs are not able to complete their assigned tasks by the
time of the new load balancing policy execution. The net

effect is that loads are bouncing between the nodes with
litle actual work being performed.

Mean Raalization of the Random-Delay Case

7000 — . y v -
— Queue 1
| -—— Queus 2]
6000 — Queus 3
--- mean tasks completed

g
LIZ.I 4000+
)
=1
o 3000+
2
s}

2000

1000} - -/

Py
o . . i ; .
v} 20 40 60 80 100 120
TIME, ms
VARIANCE

120 T T ! T T
W
Q
P4
<
i
<
>
fal
w
N
2
=
[
[=3
4

Fig. 1. Tep: The empirical mean queue length using 100 realizations of
the queues for each nade (solid curves). Dashed curves are empirical
averages of the tasks performed by each node cumulatively in time,
Bottom: The empirical variance of the queue length normalized by the
mean-square values.

A. Single Load-balancing Strategy

We now present the results for the case when load-
balancing is implemented at a single instant only per
node. We assumed initial loads of Q;(0) = 7000,
Q2(0) = 4500, and Q3(0) = 500, and an average
communication and load-transfer delays of 8 ms (cor-
responding to relatively short load balancing transfer
delays). The results showed that the optimal value for
the load-balancing strength parameter K., is 0.8 ms,
the optimal load balancing instant fp.; is 0.02 ms, and
the corresponding completion time £.qmpt is 47.57 ms, as
seen in Fig. 2 (top). Now from the bottom graph in Fig. 2,
we can see that the queue lengths change abruptly as a
result of load-balancing events associated with the three

5130

BALANCING INSTANT WITH K2=0.8

56 T T T —_
551
s4F
k)
é BaF-- g b . .I
Wl
E
E sab oo Ao W 4
=
Q : . :
wd . H
a H : H
3 : :
49’..‘ PR L Rt EEEE
agkf - - e el e o]
47 L ' —_ s
Qo 1 2 3 4 5
INSTANTS FOR FIRST BALANCING(ms)
One Tirg Balancing
7000 v — T T
BOOOL- - b eeh D .
E — Queua T
bt -- Queue2 .
2 40 - QUGUGS . - e Caeeeee Lt o d
] —— Done By 1 ; :
u:J -- DoneBy2
I]
2
) 4

TIME, ms

Fig. 2. Optimal single load-balancing scheduling for the short-delay
case. Top: completion time vs. load-balancing instant, £y,,1; Bottom:
queve lengths and cumulative tasks completed by each node.

nodes (a total of six transitions and two transitions per
node in this case: one transition when & node transmits
tasks to other nodes, and once when it receives the tasks
that were sent to it). The group of increasing curves
represents the tasks completed cumulatively in time by
each node. We also noticed that when K ranges between
0.4 and 0.9, the completion time £rst decreases to a
minimum of 47.57 ms, and then increases to 55 ms, The
optimal range of the gain parameter is between 0.7 and
0.8. Within this range to; is changing from 0.01 ms to
3.68 ms. Therefore, for relatively small communications
delays, we can execute the load balancing policy either
before the present states of the neighboring nodes are
known, or after we receive this information. Nevertheless,
there is a tradeoff involved in choosing one choice over
the other. If completion time is the primary optimization
goal, then it is advantageous to execute the load balancing
policy at the very beginning, combined with a large value

5131

Bafancing instant

58 —
o
E
w
=
k=
Zz
Q
=
]
ad
[
g
5 L .
1) 2 4 6 8 10
INSTANTS FOR FIRST BALANCING(ms}
One Time Balancing
7000 T v —
— Queus 1 .
-- Queue 2
& I Queus 3 i
Gooor Cone By 1
-- DoneBy2
5000% ------ DeneBY3|]
< .
=
o
z
]
e
w
o)
r
>3
[=]

TIME, ms

Fig. 3. Single load-balancing scheduling for the Jong-delay case. Top:
completion time as a function of t,gr1: Botiom: queue evolution and
the cumulative tasks don¢ by each node.

of the gain parameter. However, this comes at the price of
sensitivity to any delay in executing the load balancing.
For example, if the execution is delayed to just before the
time when communication from other nodes arrive, then
the completion is signifcantly prolonged, as can be seen
from the peak near tp,; = 0.6 ms. On the other hand, if
maintaining a stable (i.e., less sensitivity to error in the
execution time) is sought, then it would be advantageous
to execute the load balancing after receiving information
from the neighboring nodes at a slight price of prolonged
task completion time.

Next we consider a case where the delays are relatively
long, both in communication and load transfer. As can be
seen from the top plot in Fig. 3, the shortest completion’
time possible is approximately 52 ms for tp,;; = 0.01
ms and the optimal value of X is found to be 0.65.
Like in the above scenario, there is no reason for CEs
to wait for the information to reach them, because if

Baiancng weh ¥ 08

o s 0 %
INSTANTS FOR SECOND LGAD BALANCING(ma)

Balancing inetwil wih k =08

GOMPLETION TIME (s}
o4 & & B K T & B B8 B

W 20 k] 40 S0 @
INSTANTS FOR SECOND LOAT BALANCING [me)

7000, Two Time Balancing PolicyfXa=0 8)
60GC !
so00) -
E .
2 uxo
1
§ =
2000}
1000 -
h 20)
TUAE. ms.
Fig. 4. Double load-balancing scheduling for the short-delay case.

Top: K =06, trann = 0.01 mS, tpgn = 0.02 ms; Middle: K = 0.8,
thart = 0.01 ms, tpee = 3.69 ms; Bottom: queue evelution length
and the cumulative tasks done by each node.

they do valuable time will be wasted (due to the large
communication delay) since one node is idle. Thus, in
this case, “informed” load balancing does not render
effciency. Moreover, the optimal value of the balancing
strength parameter has to be smaller compared to the
case with short load-transfer delays. The reason is that
in the present situation it will take longer for most of the
information to reach its destination, and consequently,
the overall completion time will increase. In addition,
our simulations show that even with the optimal value
of K, the task-completion time camnot reach the one
corresponding to the short-delay case considered earlier.
From the bottom plot in the same £gure weé can see that
CE1 and CE2 complete their work 5 ms after CE3. Thus,
the system’s foad was not totally balanced.

To investigate the relationship between the initial load
distribution and the optimal values for the system pa-
rameters, we considered a case where the initial loads

)
E
w
=
S
z
Q
=
w
-
[-%
=
Q
Q
. ; ; : P
3 10 15 20 25 30
INSTANTS FOR SECOND LOAD BALANCING (ms)
Two Tima Batancing Poli
7000 . en T :
— Queus : : . .
-- CQuoug 2
gooof - | - Queue3 E
—— Dona By 1
~=- DoneBy2| :
5000 L D‘-)“QB 31 ﬁ
3 : i i
5
8
@ 3000 B
2
(s}
2000 E
1000 ! .
)
a : [N
- Lo
0 ;

[+} 10 20 30 40 50 &0
TIME, mg

Fig. 5. Double load-balancing scheduling for the long-delay case. Top:
K = 0.5, tyo1 = 0.01 ms, tpqr = 0.02 ms; Bortom: queue length
evolution and the cumulative tasks done by each node.

are almost equally distributed between the nodes. In par-
ticular, we considered (21 (0) = 7000, Q-{0) = 6500, and
@3(0) = 6000. For this setting, the shortest completion
time was 66.51 ms at K = (0.725 and for t3,;;; = 0.63
ms. These values are very close to the ideal case when
no time delays are present and the minimum completion
time for a total of 19500 tasks is 65 ms. From our
empirical measurements we can conclude that when we
have only one load-balancing execution per node in a
small-delay environment, the best time to implement the
load balancing is almost right at the beginning with a
relatively large K (that actually depends on the initial
load distribution). For the longer-delay case, however, K
has to be decreased.

B. Double Load-balancing Strategy

Next, we consider a strategy for which a second load
balancing instant, denoted by tp,2, is allowed for each
node. From the point of view of each node, #pa2 can

5132

Small Delay Casa

MINIMUM COMPLETION TIME(mS)

10z o3 04 05 08 07 08 08 4
GAIN PARAMETER(K,)

BIG DELAY CASE
70 T T T

MINIMUM COMPLETION TIME({ms)

83 N - . . n i

02 o0z o4 05 08 07
GAIN PARAMETER (Kz)

Fig. 6. Double load-balancing scheduling showing the task completion
time as a function of the load-balancing strength parameter K. Top:
small-delay case; Bottom: large-delay case.

be chosen using several options. For example, f50s2 Can
be chosen just after the £rst load balancing instant,
between the moments in which the nodes are receiving
loads from their neighbors, or at the end of the load
exchange. If we choose @1(0) = 7000, Q2(0) = 4500,
©23{0) = 500, an average communication delay of 0.8
ms, and a similar average load-transfer delay, then the
best fcompt 1s found to be 43.15 ms, which occurs when
thoty = 0.01 ms and #pp2 = 0.02 ms with K = 0.6. A
similar completion time can be achieved by executing
the two load-balancing instants at a later time, after
the nodes have received information. We found that this
requires two load balancing instants following each other,
In particular, our experiment shows that 4,3 = 3.87 and
trarz = 3.88 yields one of the best completion times.

From the top plot in Fig. 4 we see that balancing in
the beginning of the process leads to shorter completion
times. The same plot indicates that execution of the load
balancing within the range 0,03-2 ms is sensitive to error

in the scheduling time. In particular, a small deviation
of #pq leads to a substantial increase in completion
time. This time interval coincides with the time when
every node receives information from its neighbots in a
random way. Therefore, reliable load balancing is not
possible during this time interval due to the commu-
nication delays. For the same reason, when K = (.8,
the best execution strategy is to execute the £rst load
balancing policy right at the beginning with Zpe; = 0.01
ms and after that to wait until each one of the nodes
received information from its neighbors before executing
the second load balancing, as seen from Fig. 4 (middie).
The completion time achieved in this case is 45 ms. Thus,
qualitatively speaking, when we have two load-balancing
instants in a small-delay environment, the optimal way
to place them is either in the beginning, or immediately
after the CEs have completed the information exchange.

For the case of large delays, the optimal solution with
two load balancing instants is JX = 0.5, tpeyy = 0.01
ms and tpers = 0.02 ms. While a completion time of
approximately 46 ms is slightly higher than that in the
previous case, it is still close to its optimal value. We see
from Fig. 5 (top) that the two instants are in the beginning
of the process. Long delays will cause nodes to use
dated information to determine the load redistribution.
We also found that the value of A, is lower compared
to the short-delay case. The long time delays require
smaller vilues of K, because it takes longer time to
transfer larger packets of data between the nodes, and
selecting a high value for K will be “aver-reactive.” For
example, for K = 0.9 the cluster behavior is unstable and
small perturbations in the load balancing instant cause
increase in the completion time. The behavior of the
double-balancing case is summarized in Fig, 6. The top
plot shows the dependence of the minimum f.ompt @8
a function of the load-balancing strength parameter K
for small delays, and the bottom plot shows the same
dependency for the long-delay case.

IV. CONCLUSIONS

Qur simulations indicate that with a double-load-
balancing strategy, it is possible to achieve improved
overall performance, measured by the completion time of
the total tasks in the system, in comparison to the single-
load-balancing strategy. In either case, a performance al-
most comparable to the continuous-load-balancing strat-
egy can be achieved. The optimal selection of the load-
balancing instants is shown to be in the beginning of the
work process with the provision that the gain parameter
should be selected more conservatively as the delay
becomes more pronounced. However, if the delays are
relatively small, it is possible to delay the execution of
the load balancing until the information about the state of
other nodes is collected. This “better informed” balancing
will have the advantage of reduced sensitivity to errors
in the selection of load-balancing instants.

5133

Our future work will include the implementation and
performance analysis of the load-balancing strategies pro-
posed here on real systems. We have successfully imple-
mented the balancing algorithm on three geographically
distributed CEs located respectively in Spain, Argentina
and the US. The resuits have been encouraging and a
detailed study of the real system is underway. This work
was supported by the National Science Foundation (under
an Information Technology Research Grant).

V. REFERENCES

(1] Z. Lan, V. E. Taylor, and G. Bryan, “Dynamic load
balancing for adaptive mesh refnement application,” in
Proc. ICPP’2001, Valencia, Spain, 2001.

(2] T.L.Casavant and J. G. Kuhl, “A 1axonomy of scheduling
in general-purpose distributed computing systems.” JEEE
Trans. Software Eng., vol. 14, pp. 141-154, Feb. 1988.

{31 G. Cybenko, “Dynamic load balancing for distributed
memory multiprocessors,” IEEE Trans. Parallel and Dis-
tributed Computing, vol. 7, pp. 279-301, Oct. 1989

{4] C-C. Hui and S. T. Chanson, Hydrodynamic joad bal-
ancing,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, Issue 11, Nov, 1999,

15 M. M. Hayat, S. Dhakal, C. T. Abdallah * Dynamic

time delay modeis for load balancing. Part JI: Stochastic

analysis of the effect of delay uncertainty, CNRS-NSF

Workshop: Advances in Control of Time-Delay Syvstems,

Paris France, January 2003. Also to appear in an edited

book by Springer, Keqin Gu and Silviu-Iulian Niculescu,

Editors.

J. D. Bridwell, J. Chisson, Z. Tang, T. Wang, C. T. Abdal-

lah, and M. M. Hayat, “Dynamic time délay models for

load balancing. Part I: Deterministic models,” CNRS-NSF
workshop: Advances in Control of Time-Delay Systems,

Paris France, Jan. 2003. Also to appear in an edited book

by Springer, K. Gu and S-1. Niculescu, Editors,

[7] C. T. Abdallah, N. Alluri, J. D. Birdwell, J. Chiasson,
V. Chupryna, Z. Tang. and T. Wang “A linear time delay
model for studying load balancing instabilities in paral-
lel Computations”, The International Journal of System
Science, to appear, 2003.

{8]1 D. J. Daley and D. Vere-Jones, An introduction to the
theory af point processes. Springer-Verlag, 1988,

6

—

5134

	University of New Mexico
	UNM Digital Repository
	12-9-2003

	Dynamical discrete-time load balancing in distributed systems in the presence of time delays
	Chaouki T. Abdallah
	S. Dhakal
	B. S. Paskaleva
	M. M. Hayat
	E. Schamiloglu
	Recommended Citation

	Dynamical discrete-time load balancing in distributed systems in the presence of time delays - Decision and Control, 2003. Proceedings. 42nd IEEE Conference on

