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ABSTRACT

The direct-modulation of semiconductor lasers is the simplest and most compact
approach to pass data onto an optical fiber; however, their intrinsic limitations under
direct-modulation such as wavelength chirp and inherent relaxation oscillation frequency
constraints impede their high-speed and long-distance capabilities. The injection-locking
of semiconductor lasers improves the injected laser's operational characteristics under
direct-modulation, attracting a large degree of interest over the past decade. These
improvements include increasing the modulation bandwidth through the enhancement of
the resonance frequency, suppressing nonlinear distortion, and reducing relative intensity
noise, mode-hopping, and chirp. The nonlinear dynamics associated with optically-

injected semiconductor lasers has also attracted great interest due to potential applications
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including: all-optical amplitude-modulation to frequency-modulation conversion,
chaotic-communication, and photonic microwave generation.

In this dissertation, the optical-injection of quantum-dash and quantum-dot Fabry-
Perot semiconductor lasers is investigated in the context of modeling the impact of their
characteristically large nonlinear gain component. The impact of the large degree of gain
compression on the differential and nonlinear carrier relaxation rates observed in
nanostructure lasers under large operational photon densities is also investigated under
strong optical-injection conditions.

A novel small-signal microwave modulation response function is derived and
shown to improve upon current models at modeling the microwave modulation response
under optical-injection. The nonlinear dynamics observed under weak injection strengths
are theoretically analyzed using a novel dimensionless rate equation model where
including the impact of the nonlinear carrier relaxation rate is shown to improve the
agreement with experimentally collected data.

The novel tools derived to analyze the operation of the optically-injected system
encompass the physical nature of the injected laser in a more complete manner than
previously derived approaches. Theoretical predictions derived here show that large
nonlinear carrier relaxation rates, along with suitably small linewidth enhancement
parameter values of nanostructure lasers suppress the instability of the optically-injected
system. The quantum-dash laser’s potential for implementation as a tunable photonic
oscillator for use in radio-over-fiber applications or directly-modulated slave laser in a
coherent optical communication system is described, along with the quantum-dot laser’s

highly stable operation under optical-injection.
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GLOSSARY OF TERMS

The following parameters are associated with the free-running (solitary) laser:

1. differential carrier relaxation rate in Hz

7»: nonlinear carrier relaxation rate in Hz

%: spontaneous carrier relaxation rate in Hz

J.. cavity photon decay rate in Hz

7,: photon lifetime in seconds, s

o linewidth enhancement parameter (alpha-factor, Henry-factor), unitless

75 overall relaxation oscillation frequency damping rate rad/s, ()%= 7+ Jp + %)

Q)+ angular relaxation oscillation frequency, rad/s, (Qf,2 =¥t )s)

[ relaxation oscillation frequency in Hz

I': optical confinement factor

g: gain coefficient implicitly incorporating the group velocity v,, in Hz

gm: gain at threshold implicitly incorporating the group velocity v, in Hz

gns: differential gain parameter implicitly incorporating the group velocity s, cm’/s

gps: nonlinear gain parameter characterizing the effect of gain compression due to the
saturation of gain by the intra-cavity photon density implicitly incorporating the
group velocity v, cm’/s

g, differential gain parameter normalized to field strength implicitly incorporating

the group velocity v, cm’/s
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gp»: nonlinear gain parameter characterizing the effect of gain compression due to the
saturation of gain by intra-cavity photons normalized to field strength implicitly
incorporating the group velocity v, cm’/s

&: nonlinear gain compression coefficient

7: parasitic RC carrier transport time in seconds, s

. inverse parasitic RC carrier transport time (% =1/7;) in Hz

ng: group index of the active region

V. group velocity in the active region in m/s

The following parameters are associated with the optically-injected system:

Af: detuning frequency in GHz defined as Af'= fiaser - fsiave = finj - fsiave
fmaster: frequency of the master laser
Jsiave: frequency of the free-running slave laser

Aw: angular detuning frequency defined as Aw = Wyaster - Wsiave

Wmaster: angular frequency of the master laser

Wsiave: angular frequency of the slave laser

k.: coupling coefficient in Hz

Rpg: field enhancement factor defined as A,/44, unitless

A,: steady-state field magnitude of the slave laser under optical-injection
Ay steady-state field magnitude of the free-running slave laser

A;nj: steady-state field magnitude of the injected master laser

6,: steady-state phase offset between the injected master laser field and free-running

slave laser field

XXi



1,: maximum injection strength in Hz define as

Airg/' _ c (1 - R) I)inj,external
‘ Afr 2ngL '\/E PFR,total

n,=k

A
7. injection strength in Hz defined as n=4k, — = 1;7_0
FE

o

.. . l_R Pin'exerna
Nratio: 1njected field ratio defined as 77, = c ( ) yexternal
2n gL VR P,

R, total

, unitless

ya: threshold gain shift defined as y;, =2 ncos(6,)

J: bias current density

Ju: bias current density at threshold
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Characterization of the Dynamics of Optically-Injected

Nanostructure Lasers

Chapter 1.  Introduction

Due to their low propagation loss and immunity to electromagnetic interference,
optical fibers have become the medium of choice over copper wire in the
telecommunications industry. The direct modulation of semiconductor lasers is the
simplest and most compact approach to pass data onto an optical fiber; however,
drawbacks such as wavelength chirp and inherent relaxation oscillation frequency limits
impede the high-speed and long-distance capabilities of such systems [1], [2]. The
limitations of directly-modulated semiconductor lasers have narrowed their application to
low-frequency, short-haul systems in the ~10 Gb/s range, leading to the implementation
of external modulation architectures as the primary means of passing data onto an optical
fiber for long-haul communications at 40 Gb/s and above [1], [2].

In external modulation, the optical source is operated continuously and its output
light is modulated using an optical external modulator. Although more complicated in
design, the zero-chirp operation and higher bandwidth capabilities (~40 Gb/s) of external
modulators has motivated their large-scale use in fiber-optic systems [3]. Along with
external modulation techniques, wavelength division multiplexing is commonly used to
multiply the available transmission capacity through an optical fiber by adding new

channels, where each channel is on a different wavelength [2]. The drawback to



implementing wavelength division multiplexing is the increase in transmitting and
receiving equipment, leading to increased system cost and complexity.

Improvements in the capabilities of strained quantum-well lasers in the near-IR
[4], [5], tunnel injection and the introduction of nanostructure lasers in the late 1990°s has
increased the modulation bandwidth and materials complexity of directly-modulated
semiconductor lasers [6]. The novelty of the nanostructure laser is its high characteristic
temperature, its low threshold current when compared to quantum-well lasers and most
importantly its low linewidth enhancement parameter (chirp parameter) [6]. One practical
limitation to the 3-dB bandwidth of directly-modulated semiconductor lasers is their
relaxation oscillation frequency, driven largely by device heating and gain compression
[71, [8].

The injection-locking of semiconductor lasers has been shown to improve the
injected laser's operational characteristics under direct modulation, attracting a large
degree of interest over the past decade. These improvements include increasing the
modulation bandwidth through the enhancement of the resonance frequency, suppressing
nonlinear distortion, and reducing relative intensity noise, mode hopping, and chirp [9]-
[13]. The nonlinear dynamics associated with optically-injected semiconductor lasers has
also attracted great interest due to potential applications including all-optical amplitude-
modulation (AM) to frequency-modulation (FM) conversion, chaotic-communication,
and photonic microwave generation [14]-[16].

The objective of this dissertation is to provide a thorough investigation of
optically-injected nanostructure lasers. Specifically, the optical-injection of a quantum-

dash Fabry-Perot semiconductor laser emitting at 1.55-um and a quantum-dot Fabry-



Perot semiconductor laser emitting at 1.3-um is detailed in the context of modeling the
impact of their large nonlinear carrier relaxation and overall damping rates, along with
the impact of gain compression on the differential and nonlinear carrier relaxation rates.
The nonlinear dynamics observed under weak injection strengths and the bandwidth
enhancement characteristics observed under strong injection are studied. The small-signal
modulation response function and the dimensionless rate equation model derived in this
work, which invoke non-linear gain in the small-signal response for the first time, are
shown to improve upon the current approaches used in predicting the behavior of
nanostructure semiconductor lasers under optical-injection.

The intrinsic properties of semiconductor lasers are unique based on their material
properties and structural design. This work aims to understand the dependence of the
dynamic behavior of the optically-injected system on free-running slave laser parameters,
with a specific focus on the slave laser’s nonlinear carrier relaxation rate. Theoretical
predictions derived here show that large nonlinear carrier relaxation rates, along with
suitably small linewidth enhancement parameter values of nanostructure lasers suppress

the instability of the coupled system.

1.1. Overview of Optical-Injection

Optical-injection of semiconductor lasers involves two optical sources referred to
as the master and slave lasers as seen in Figure 1. The master laser, typically a high-
power single-mode narrow-linewidth tunable laser, is injected into the slave laser,
thereby affecting the operation and inherent free-running characteristic parameters of the
slave laser. An isolator is placed between master and slave lasers to eliminate reflected

light coupling back to the master laser. Under stable injection-locking of semiconductor

3



lasers, which occurs when the strength of the injected master laser light and frequency
difference between the master and slave fall within a certain range, the slave’s lasing
wavelength is pulled/locked to the injected master laser’s wavelength. Stable injection-
locking provides several improvements to directly-modulated lasers [9], [10]. These
improvements include increasing the modulation bandwidth, suppressing nonlinear
distortion, and reducing relative intensity noise, mode hopping, and chirp [9]-[13]. A
basic example of the spectral improvements under stable injection-locking for a multi-
mode Fabry-Perot quantum-dash slave laser is shown in Figure 2. An example of the
modulation bandwidth enhancement for the injection-locked Fabry-Perot quantum-dash
semiconductor laser is shown in Figure 3. The characteristics of the modulation response
curves in Figure 3 are observed to vary as a function of the detuning frequency between

the master and slave lasers for a fixed injection strength.

Quantum Dash

Single-Mode Master

Slave

Figure 1. Basic cartoon describing optical-injection.
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Besides the stable injection-locking regime, the optically-injected system
demonstrates a dynamic behavior whereby the optical spectra are characterized by the
appearance of relaxation oscillation sidebands and coherence collapse [17]-[23]. The
optical power spectra associated with the dynamic states exhibited by a diode laser under
optical-injection are referred to as period-one, period-doubling, four-wave mixing, and
coherence-collapse, and are illustrated in Figure 4. The optical spectra shown in Figure 4
are unique in nature due to the high resolution of the spectrometer used in data collection
(maximum resolution = 1 MHz), which allowed extreme detail of the optically-injected
quantum-dash laser’s behavior to be observed. In Figure 4 and throughout this work, the
detuning frequency is defined as: Af = fuasier — fsiave-

An unlocked system, where either the injected signal strength is weak and/or the
frequency difference is too large resulting in the master laser field having no impact on
the slave laser, is shown in Figure 4(a) [19], [23]. The period-one state, illustrated in
Figure 4(b), is characterized by the presence of undamped relaxation oscillation
sidebands. Figure 4(c) shows the period-doubling state which is similar to the period-one
state, but with additional relaxation oscillation side-bands associated with a second
periodic-oscillator at roughly half the slave laser's characteristic relaxation oscillation
frequency [19], [23]. Stable locking is shown in Figure 4(d) and is characterized by single
mode operation with a significant degree of side mode suppression (defined here as > 30-
dB), where the single locked-mode has a narrow linewidth, reduced chirp and noise
compared to the slave laser's free running characteristics. The small side modes (side
mode suppression > 40 dB) in Figure 4(d) are attributed to feedback in the experimental

setup. The coherence-collapse state pictured in Figure 4(e) is characterized by a large



broadening of the coupled system’s linewidth. Four-wave-mixing is shown in Figure 4(f)
and is a described as a pseudo-unlocked state where two additional frequencies are
generated due to optical non-linearities in the device. Under four-wave mixing, the slave
laser’s operating frequency is unaffected by the injected power. For a fixed injected
master power, the coupled system will progress from the period-one state to four-wave-
mixing for increased detuning frequencies and a clear boundary is typically difficult to
quantitatively determine. The microwave modulation response under period-one, period-
doubling, and coherence collapse are normally considered undesirable for use in high-
speed coherent optical communication systems where the slave laser is directly-
modulated.

With the optical power spectral descriptions describing the operational states
(stable-locking, period-one, period-doubling, coherence collapse, four-wave-mixing),
stability maps characterizing the dynamic state as a function of the maximum injection
strength and detuning frequency can be constructed for a given slave laser. An example is
illustrated in Figure 5 for the quantum-dash Fabry-Perot slave laser. The relatively stable
operation under zero frequency-detuning conditions and the large period-one oscillation
state parameter space open the quantum-dash laser to possible applications as a tunable
photonic oscillator or directly-modulated slave laser in a coherent optical communication

system. These potential applications are discussed in the next section.
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1.2. Applications of Optically-Injected Lasers

Communication applications of optically-injected semiconductor lasers have
predominantly focused on the stable locking state achieved under strong injection where
desirable high frequency modulation characteristics have been exhibited [12], [24], [25].
Recently, however, the complex nonlinear dynamical states resulting from the optical-
injection of semiconductor lasers have generated increased interest for many novel

applications [14]-[16]. Potential applications based on their rich nonlinear dynamics



include: chaotic communications, chaotic lidar, chaotic radar, photonic microwave
generation, dual-frequency precision radar/lidar, all-optical AM-to-FM conversion, and
single-sideband radio-over-fiber transmission [16]. In this section, the applications of the
period-one operational state are discussed.

The period-one state is described as the condition where the slave laser is locked
to the injected field and the coupled system oscillates at the injected frequency (f;,;) with
sidebands at frequencies of f;,; £ f;, where f, is the resonance frequency of the optically-
injected laser as illustrated in Figure 6 [14]-[15]. The resultant electric field of the
optically-injected slave laser oscillates without being damped towards a steady-state
value as in a free-running or stable-locked semiconductor laser. The period-one
resonance frequency is tunable based on the injection strength and/or detuning frequency
between the master and slave laser, generating a microwave modulation on the laser

output in an all-optical manner [15], [26]-[28].
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Compared with direct modulation, external modulation, mode-locking, self
pulsation, and optical phase-lock loops, the period-one approach presents several
advantages in microwave generation [14]-[16]. The primary advantage identified is that
the all-optical approach of optical-injection avoids the limitations of microwave
electronics and electrical parasitics. In this regard, the system is controlled using the DC
injection current of the master laser to modulate its output power resulting in a tunable
resonance frequency varying from the free-running laser’s natural relaxation oscillation
frequency to up to six times this value [14]. Chan et al. and Hwang et al. report the
generation of period-one microwave frequencies up to 60 GHz, making the period-one

optical-injection system an ideal radio-over-fiber source [14], [15].
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Radio-over-fiber technology uses optical fibers to transmit information between
central locations and base stations, where the data is transmitted via a microwave signal
carrier on an optical wave taking advantage of the efficient, low-loss and electromagnetic
interference-free signal transportation offered by optical fibers; conversely, traditional
electrical systems using coaxial cables and metallic waveguides have extremely large
attenuation and are complex and expensive. The advantage of radio-over-fiber is the
location of expensive microwave components at a centralized base station, simplifying
the data conversion at the individual base stations [29]. In conventional narrowband
communication systems, radio-frequency signal processing functions (frequency up-
conversion, carrier modulation, and multiplexing) are performed at each base stations that
receive transmitted data via an amplitude-modulated optical signal. The frequency
tunability of the period-one resonance frequency based on the strength of the injected
signal opens the possibility of all-optical AM-to-FM conversion, enabling the integration
of the optical-injection architecture into radio-over-fiber systems.

In the AM-to-FM conversion application, the input amplitude modulated signal is
used to drive the master laser injecting the slave laser under a condition that results in the
period-one oscillation state; the amplitude modulated signal injecting the slave laser will
then be converted to a frequency modulated microwave signal. The optical-injection
based AM-to-FM frequency modulation conversion increases bandwidth capabilities, and
reduces signal distortion, electronic noise, and power consumption [25]. A depiction of
the radio-over-fiber architecture using optical-injection to perform the AM-to-FM

conversion is given in Figure 7.
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Figure 7. Generic depiction of the radio-over-fiber architecture. The AM-to-FM
conversion is performed at the central office and the FM modulated optical signal is
transmitted to the base stations simplifying base station processing requirements.

1.3. Nanostructure Lasers

In this dissertation, nanostructure lasers (referring to quantum-dot and quantum-
dash lasers) under optical-injection are investigated due to their theoretically superior
free-running lasing characteristics compared to quantum-well lasers resulting from their
delta-function density of states. The theoretically superior properties arising from their
three-dimensional carrier confinement include the following: low-threshold current
densities, temperature insensitivity of the threshold current, ultra-high differential gain,
increased cutoff frequency, and chirp free operation under direct modulation [30], [31].
Quantum-dot lasers are also attractive in that by varying the dot size and composition,

emission wavelengths are achievable over wider ranges on given substrates since the
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three dimensional structure of the dots helps to relax the strain from the lattice mismatch
while minimizing dislocation formation [31]. The density of states for increased degrees
of carrier confinement in bulk, quantum-well, quantum-wire, and quantum-dot

semiconductor materials is depicted in Figure 8 [32].
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Figure 8. Cartoon of the basic structure and the associated density of states of bulk,
quantum-well, quantum-wire, and quantum-dot semiconductor material.

Of particular interest in the modeling of the stability of an optically-injected
semiconductor laser is its linewidth enhancement parameter [17], [21]. Previous
theoretical and experimental work has highlighted a strong correlation between nonlinear
operation and the linewidth enhancement parameter [21]. It is the high degree of stability
predicted for low linewidth enhancement parameter lasers that attracts interest in

optically-injected nanostructure lasers. The three-dimensional carrier confinement
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exhibited by quantum-dot lasers and their delta function density of states predicts a
symmetric gain spectrum based on the Kramers-Kronig relation. The symmetric gain
spectrum of a quantum-dot laser theoretically yields a linewidth enhancement parameter
of zero at the peak gain because the index of refraction will not change with carrier
density. Experimental investigations have proven this theoretical concept, as Newell et
al., Kondratko et al., and Fathpour et al. have reported near zero linewidth enhancement
parameters for quantum-dot lasers at or near threshold [33], [34], and [6].

Along with the linewidth enhancement parameter, the impact of the relatively
large nonlinear carrier relaxation rate of a nanostructure laser in modeling its stability is
of strong interest. Nanostructure lasers are known to be more strongly damped than
quantum-well and hetero-junction lasers, and this strong damping leads to a sizeable
nonlinear carrier relaxation rate. Previous works have discussed the effect of nonlinear
gain in suppressing the instability of the system [21]; this work aims to quantify the
impact of the nonlinear carrier relation rate in both the small-signal microwave
modulation response and the nonlinear dynamics observed in the coupled system.

This work focuses on two nanostructure laser types: a quantum-dash Fabry-Perot
laser emitting at 1.55-um grown on an n'-InP substrate, and a quantum-dot Fabry Perot
laser emitting at 1.31-pum grown on an n'-GaAs substrate. Both lasers were obtained from
Zia Laser, a company that commercialized quantum-dot products based on the “dots-in-a-
well” (DWELL) design. In the DWELL structure, the active region is similar to that of a
quantum-well; however, the well contains an embedded layer of pyramid-shaped indium-
arsenide dots. Additional details describing the quantum-dot and quantum-dash lasers

will be presented in Chapter 4.
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1.4. Document Organization

This work provides a thorough investigation of optically-injected quantum-dash
and quantum-dot nanostructure lasers. Chapter 2 derives a predictive model to investigate
the small-signal microwave modulation response of an optically-injected nanostructure
laser. The function derived is unique in that it accounts for both the nonlinear carrier
relaxation rate parameter and the saturation of this parameter under considerably strong
injection conditions. In Chapter 3 a normalized approach is described that theoretically
evaluates the behavioral state as a function of the injected field ratio and/or the detuning
frequency for varied slave laser bias cases. Chapter 4 gives a detailed device
characterization of the nanostructure lasers under test and highlights their characteristic
parameters that make them ideal for implementation in optically-injected architectures.
Chapter 5 and Chapter 6 describe the experimental validation of the theory described in
Chapter 2 and Chapter 3. Additionally, Chapter 5 and Chapter 6 present experimental
data characterizing the steady-state microwave modulation response under varied degrees
of detuning, with a focus on the zero-detuning and the positive frequency detuning edge
conditions. A stability map describing the operation of the quantum-dash laser under
optical-injection is presented in Chapter 5. Chapter 7 summarizes the work and suggests

future topics of study related to optical-injection.
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Chapter 2.  Modulation Response of the Optically-Injected Nanostructure Laser

As introduced in Chapter 1, optical-injection enhances the 3-dB bandwidth and
resonance frequency of a diode laser. The purpose of this chapter is to theoretically
derive a predictive model to investigate the microwave modulation response of an
optically-injected nanostructure laser. The function derived is unique in that it for the first
time accounts for the nonlinear carrier relaxation rate parameter and the saturation of this
parameter under considerably strong injection conditions. Pervious works have dismissed
the necessity to consider the impact of these parameters. This work shows that when
modeling nanostructure lasers, these parameters play a sizable role in the coupled
system's response.

The dynamic parameters describing the microwave modulation response are also
used to describe the stability limits in frequency detuning and injection strength
parameter space. In Chapter 5 and Chapter 6, the function derived here is shown to
increase the level of accuracy in predicting experimental results over models where the

nonlinear carrier relaxation rate is not considered.

2.1. Rate Equations Describing Optically-Injected Diode Lasers

The resonance frequency and microwave modulation response of an optically-
injected diode laser is investigated by performing a small-signal analysis of the single
mode rate equations. The rate equations describing optically-injected diode lasers are
given in equations (1) — (3), which are based on the conventional equations describing
diode lasers in the absence of optical-injection (free-running) with terms introduced to

describe the impact of the injected light [35], [36]. As in the free-running rate equation
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model, the field magnitude and phase equations given in (1) and (2) arise from the

fundamental complex field rate equation [36].

dA(t) 1 1
— ErgA(t) —5Ye A(t) + k4, cos(6(1)) (1)
o) _a .  a_ o Ay
5 I'g 5 V. —Ao—k, 10 sin(&(¢)) (2)
dN(t) >

7 =J () =y N(@)— g4 (1) 3)

where A(?) and N(t) are the electric field magnitude and carrier density of the injected
slave, respectively. 4;, is the magnitude of the injected field. ) is the phase offset
between the master and slave laser. Aw is the detuning frequency between the master and
slave laser defined by Aw = @master — WOsiave- J 18 the bias current density, j; is the
spontaneous carrier relaxation rate, y. is the cavity photon decay rate given by: . = gy,
where 7. = 1/7, and 7, is the photon lifetime [37]. I is the optical confinement factor, g is
the gain coefficient, and g, is the gain at threshold. « is the slave laser linewidth
enhancement parameter. The coupling coefficient, k., is dependent on the internal cavity
round trip time.

The rate equations describing a diode laser under optical-injection have been
thoroughly analyzed in various works, most recently in a manner to derive an expression
modeling the absolute small-signal microwave frequency modulation response [38]-[40].
The small-signal modulation response models in Lau et al. and Naderi et al. do not
directly account for the nonlinear carrier relaxation rate, y,, nor the gain compression

characteristic of diode lasers, as their impact in most diode lasers is considered relatively
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small [39], [40]; nanostructure lasers, however, have been shown to a possess a large
damping rate driven by a large nonlinear carrier relaxation rate when compared to
quantum-well lasers [41]-[43] as well as gain compression coefficients roughly an order
magnitude larger than quantum-well lasers [8]. The purpose of the derivation presented
here is to determine the small-signal modulation response where the nonlinear carrier
relaxation rate parameter, j, and its compression (along with the differential carrier
relaxation rate parameter) under strong injection is considered in order to more
effectively model optically-injected nanostructure lasers.

Under the dynamical perturbation of a small-signal current modulation, the free-
running gain coefficient can deviate from g, due to the variations in the carrier and
photon densities [37]. Based on this free-running dependence of the gain coefficient on a
small-signal perturbation, it is inferred that it will also be impacted by the external
optically-injected perturbation. The dependence of the gain coefficient on the carrier and

photon densities is defined in (4) [37]:
g=g,+g,(N-N,)+g, ((S+5,)-S,) @

where g, (> 0) is the differential gain parameter and g, (< 0) is the nonlinear gain
parameter characterizing the effect of gain compression due to the saturation of gain by
intra-cavity photons, where S is the photon density resulting from the small-signal current
perturbation. g, Ny, and S are the gain at threshold, carrier density and photon density
at steady-state under free-running operation, respectively [35], [37]. S is the injected
photon density. In (4), gu, g», and g, implicitly incorporate the group velocity. Next, (4)
is adjusted to reflect the relationship between the normalized field and the photon density

given by: 4°(¢) = S(¢), yielding the relationship given in (5) [37].
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g:gth+gn(N_Nth)+gp((A2+A131j)_A;”) (5

where A is the steady-state free-running normalized field and 4;, is the injected field
strength.

The rate equations are re-written in (6) — (8) to reflect the expanded gain
coefficient definition in (5) and the time dependence is dropped for simplification

purposes (4(?) -> A, G(t) -> 6. N(t) -> N).

dd 1 |
<= Er(gthA+ g, (N-N,)A+g, (4> +42)- 42 )A)—EyckaAmj cos(8) (g
A .
?:gr(gth +gn(N_Nth)+gp((A2 +A3y)_A;))_g]/( _kc isul(g)_Aa) (7)
t 2 2 A
dN
Ty N=-g, A —g,(N=N A g (47 + 42) - 42 )4* (8)

dt

2.2. Steady-state solutions to rate equations:

The steady-state solutions of (6), (7), and (8) are found in order to simplify the
resultant small-signal, differential analysis results [35], [36]. The steady-state solutions
also yield important relationships between parameters under stable-locking conditions
and parameter range limits that are useful in modeling various detuning conditions that
will be described in detail later.

The steady-state solution of the field magnitude rate equation in (6) is the

following expression:

0= %F(gn(No N4, + g, (42 + 42)— A2 )4, )+ k A, cos(6),) ©)

inj ¢ 7inj
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N, is given by AN + Ny, where N, and 4, are the steady-state modified carrier density and
enhanced field magnitude, respectively, under optical-injection. AN is the shift in carrier
density from threshold. Rearranging (9) and defining the threshold gain shift parameter,
Vi, as 21-cos(8,), and the injection-strength as 7 = k.(A4;,/4,) yields (10) and (11), which

will be used later in simplifying the differential analysis based small-signal modulation

response:

OZanAN-i-ng(AZ +A51j —A;,)-f— Y (10)
_ T Va 8p (4 2 2

AN = —an 2 (Ao +Amj Aﬁ) (11)

The steady-state solution of the phase-offset rate equation in (7) under zero-

detuning is the following expression:

(24 Ain' .
0=2T(g,(V, = Ny)+ g, (47 + 45— 43 )~k = -sin(0) (12)

Replacing (I'g,AN + l“gp(A,,2 + A,-,U-Z —Aﬁz)) from (10) with -y, yields:
0=-ancos(8,)—nsin(b,) (13)

Expression (13) leads to the following phase-to-linewidth enhancement parameter

relationship under zero-detuning conditions:
0, =—tan ' (a) (14)

For cases away from the zero-detuning condition, (12) is modified to include the

detuning frequency yielding the result in (15).
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Ao =g, AN +Tg, (4° + 42~ 43))-nsin(0,) (15)

inj

Replacing [[g, AN + Tg,(4,° + A — A3)] from (10) with -y, yields the
relationship between detuning frequency and the injection strength, steady-state phase
offset between the master and slave lasers, and linewidth enhancement parameter shown

here:
Aw=—-ancos(8,)—nsin(6,) (16)

Simplifying (16) results in the commonly used expression relating the detuning
frequency to the injection strength, steady-state phase offset between the master and slave

laser, and linewidth enhancement parameter [9], [38], [40]:
Aa)=—77(1+a2)”2sin(6’0 +tan‘1(a)) (17)

Expression (17) is used to determine the constraints to the phase offset between
the master and slave fields under stable locking conditions. By manipulating (17) into the
form given in (18), it is found that a real solution for the phase can only be obtained if the
argument of the inverse-sine function is < 1, leading to the expression given in (19),
which was originally introduced by Mogensen et al. as the locking half-width [9]. This
locking half-width leads to the injection-locking approach for measuring the slave laser’s
linewidth enhancement parameter under strong injection, discussed later in the work [44].
The locking half-width is shown to approximate the experimentally measured negative
frequency detuning boundary. Returning to (18), the maximum and/or minimum value of

the inverse-sine function is #7772, simplifying (18) to the expression given in (20) and
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leading to a set of constraints for the steady-state phase offset that will be used later in

applying parameter limits to the small-signal microwave modulation response function.

-Aw
+sin” (————=) —tan () = 0,
n-Nl+a’ (18)
Aa)£77(1+052)1/2 (19)
T _1 T -1 _ -1
5T tan (o)<, < +5 —tan” (a)=cot (&) (20)

From the steady-state solution of the electric field rate equation given in (9), a
second constraint on the stead-state phase offset is determined based on theory stating
that the carrier number cannot be above N, the threshold value [45]. Under this
constraint, the change in carrier density, AN, will be a negative value. Rearranging (9)
yields the expression shown in (21). The negative value of AN and the nonlinear gain
parameter, g,, and positive value of the change in field magnitude, Ad? = 4,7 + Amjz —
Afr2 , due to optical-injection makes the left hand side of (21) a positive quantity under all
stable-locking conditions leading to €, being constrained to values yielding in a positive

cosine argument, as given in (22).

-Iv
—gg"(AN+g—pAA2JScos(00) 1)
2n g,
T T
50 <7 (22)

The constraints on 6, given in (20) and (22) can then be combined, keeping the
most restrictive parameter limits to give the important result shown in (23). Note that the

constraints in (23) are based on a positive linewidth enhancement parameter, . For cases
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where « is negative, the inverse-tangent value is negative, making the lower constraint of

0, greater than -7/2.
- % <6 <cot'(a) (23)

Inserting the steady-state phase offset constraints for stable-locking in (23) into
(17) yields the detuning boundaries originally presented by Mogensen et al. given in
expression (24) [9]. The simplification in (24) is based on the trigonometric identities:

tan” (x) + cot”(x) = /2 and sin(-7/2 + x) = -cos(x).

—77(1+a2)1/2£Aa)£77 (24)

An additional stability constraint is determined through the analysis of the poles of the
small-signal microwave modulation response, discussed later in section 2.8 [11], [36].
Next, the steady state solution of the carrier density rate equation given in (8) is

found to be given by the following expression:
Ve
0=J =7, (AN +N,) T 4 —g, (AN)4] —g, (47 + 43) — 43 )4 25)

Substituting for AN as given in (11) results in:

Ig, ¢ " r

n n

0=J (7, + gnAf)[‘“—g”((Az +AL)- A2 )J—zyN,h e gog (@ 2)- ) (g6
Expression (26) is then expanded and solved for 4,°, yielding expression (27):

inj

J—r.Ny +}Ij§lh+7s?(’43 + A4, _A;r)
Ajz n n
(j/c_ythj (27)

r
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Manipulating (27) and given that the steady-state free-running (7 = 0) field magnitude

density (44° = 0) is described by: 45 = % =TI'(J - Jum)/y. results in the following
7. /T

equation [35], [40]:

inj

Uyol 7a &
A, +(”’+”(AO2 + A2 —A_f.r))

4 7. \I'g, g,
{1 _ 7/!/1 j
7. (28)
v, g
y A2 4Ty, (F;+;<A3 A >]
(.= 74)

Multiplying both sides of expression (28) by g, yields a form similar to that
presented in previous works, however, here the result shown in expression (29) includes
the nonlinear carrier relaxation rate component interacting with the varies intra-cavity
field components [40].

}/cgnAjz"r +)/s7th +F7/vgp(A02 +Al§lj _A/%r)

g, 4. =
(r.=7a)

(29)

Given that 4, is the enhanced slave field magnitude, a field enhancement factor
is introduced to quantitatively define the resultant degree of enhancement. As introduced
in [40], the field enhancement factor, Ryz, is defined by Rrr = A,/Aj-

The injection strength is then manipulated into a ratio of the injected field
magnitude to the free-running slave field magnitude using the field enhancement factor,
Rpg, resulting in what is referred to as the maximum injection strength, 77,, defined in

(30).
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4, n 4
n==k =—"— where 7, =k,

‘4 "R, 4, (30)

inj

In order to simplify expression (29), the free-running differential carrier
relaxation rate, j,, and nonlinear carrier relaxation rate, y,, are defined per (31) and (32),

respectively [37].
Vn = gn,sSfr: gnA i’2 (3 1)
1= TgpS=Tgdy’ (32)

The free-running relaxation oscillation frequency is defined here as Qf,,z =0t %9 [37).

Substituting (30) - (32) into (29) and substituting for y, results in the following

expression:
n n A
2 o _ 2 0 _ 2 nj
YRz (yc —2—RFE cos(Ha)j =Q5 +27, R, cos(0,) = 7,7 Rex = 7,7, i (33)

Manipulating (33) results in a cubic that can be solved for the field enhancement factor,
Rrg, based on the maximum injection strength, 7,, free-running relaxation oscillation
frequency, €);, spontaneous carrier relaxation rate, %, and the differential carrier

relaxation rate, y,.

n,

QRip = 27,11, €086, Rey ~ Q5 Rey 477,75

—2y,n,cos(8,)=0 (34)

Solving for the roots of (34) yields two complex and one real solution for Rpg.
The complex and/or negative roots can be ignored, while the real, positive root is used to
quantitatively describe the enhancement of the steady-state locked slave field. For cases

close to the negative frequency detuning edge, where the steady-state phase offset is
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shown to be approximately -7/2, the roots are reduced to +/- 1, indicating that at this
detuning condition, the internal slave field will be minimally enhanced regardless of the

injection strength.

2.3. Differential analysis of the rate equations given in (6) - (8):

In order to determine the dynamic response to a small-signal current modulation,
the time derivatives of the rate equations are examined [35]. Starting with the field

magnitude rate equation from (6):

d 1 3 1 . 1
E(dA) = dA[EanAN + Ergij -~ ErgpA;, j +d0O(-nA, sin(0))+ dN(E anAoj (35)

Substituting for AN based on (11) and 27-cos(6,) for the threshold gain shift term, j, and

collecting like terms yields:
d : 1
o) = dA(=cos(0) +Tg, 42 )+ d6(-n4, sin(6)) + dN(E anAoj 36)

Differential analysis of the rate equation describing the field phase offset as given in (7)

results in the following:

d in(6
E(de) = dA(%(O) ~alg, 4, j +dO(=1cos(0))+ dN(% Fg,,j 37)

o

The differential analysis of the carrier density rate equation given in (8) yields:

L (aNy=dr -dN(y, + g, 42)
—dA(2g, 4, —2g,ANA, —4g, A} +2g, 4,42 )

Substituting for AN based on the steady-state relationship given in (11) results in:
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d 2A07/c 2Ao]/t
Z(dN):dJerN(—ys —g, A2 )+ dA(— e —2gijj (39)

2.4. Deriving the relative small-signal modulation response:

In order to derive the small-signal microwave modulation response, the
differential analysis results from (36), (37), and (39) are used to define a set of rate
coefficients given in (40). In (40), the field enhancement parameter, (31) and (32) are

used to simplify the resultant coefficient terms.

1Ty R;
M= ncos(0,)+y, Ry Mao= NA4,Rpy sin(6,) may=— Lo r
2 AR,

V4 R}27E @ ]/Rz
mey=+a—-t———n sin(@,) mgg=n cos(0,) mov= — —T 222 (40)
A() RFE A()RFE 2 AU RFE

24 Ry, — v, -7 R
- FE( th P FE) myg=0 myw =y, + }/nR;E

r

The rate coefficients allow for the differential rate equations to be expressed in a compact

matrix form:
J dA -m,, —-m,, -—m, |\ dA 0
E do |= — Mgy, — My, — Mgy do |+ 0 (41)

dN —my, 0 —my \dN) \dJ

Using the small-signal frequency response approach described in Coldren et al. and

setting d/dt equal to jo yields [35]:

m, +jo m,, m dA 0
m, My, + j@ m,y, do |=| 0 (42)
my, 0 my, + jo \ dN dJ
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Cramer’s rule is used to solve for the small-signal photon density response in terms of

modulation current given by H(w) = AA,/AJ:

0 m e m
Det] 0 my+ jo m gy
dJ 0 My + j@
H(w)= . (43)
my,+jo m,y m
Det|  my,, Mgy, + j@ m gy
my, 0 Myy + j@

The denominator is given in (44).

Denominator = — j@° — @’ (}/nRéE + 7PR;E +y, + 7/”,)

+joly,y RE: + 7,7, R 407+ 7,7y +7,RE<08(0,) = y REzansing@,))  (as)

+ 27, R2 +7.)-n(asin(8,) - cos(0,)r, Recy. +7,R27, = 7, R 7))
Expression (44) is then simplified by defining a set of parametric elements A4, B,

and C, allowing the system determinant to be expressed in the form Det = -jo’ — 0’4 +

joB + C, where the coefficients 4, B, and C are given by:

A=y, Reg +7,Rig + 7, +7, (45)
B=y,7Riy + 7,7 Rz +1° + 7.7y = Z7 Ry (46)
C=n*(y, Rz +7.)-Z(r, 7R3 + 7,7 REs — 7,70 RE: ) (47)
Z = ansin(d)—ncos() (48)

Based on (45) - (48), the simplified small-signal field magnitude modulation response is

given by:
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Ty, (jo+2)

H(w) =
(@) - jo’ -0’ A+ joB+C )
The relative modulation response can be defined by:
H(w) (C/Z)jo+2Z) =S (CIZ)(S+2)
H(w) = = ; >3 L o2 (50)
HO) —-jo -w"A+ joB+C S°+S8S°4+SB+C

The absolute, relative modulation response, |Hz(w)|’, is defined by multiplying (49) by its

complex conjugate and is given by:

(CI1Z2Y (0> +Z%)
(C— Aa*) +(Bo— o) (1)

[H (@) =

For the limit of 77 = 0 (free-running), the coefficients A4, B, and C, and the relative
small-signal modulation response are reduced as given in (52) — (56), where (56) is the
equivalent free-running modulation response [35], [37]. The relaxation oscillation
frequency and overall damping rate of the free-running system are observed to be

equivalent to the B and 4 coefficients, respectively.

Apo=0t %+ 1% (52)

Byeo = pu¥e T 1o (53)

Cpo=10 (54)

Zy=0=0 (55)
H  (0) B,

Hy,o(@) = 207 = ! (56)

Hp(0) B, —w’ + JjoA,
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Analysis of the 4, B, and C coefficients in (45) - (47) shows that the damping rate
given in 4 is increased by the injected field via the enhancement of y, and y, with Rpi’, as
well as by the threshold gain shift, y;. The resonance frequency driving term, B'”, is
dependent on the enhanced free-running resonance frequency given by Qﬁ«z = (Wye +
%%)RFEZ, the square of the injection strength, 77, and the interaction between the
threshold gain shift and the spontaneous carrier relaxation rate. The nonlinear carrier
relaxation rate, j,, impacts the resonance frequency through its interaction with the Z
coefficient, which is a function of the steady-state phase offset between the master and
slave fields, the slave laser linewidth enhancement parameter, and the injection strength.

With the absolute, relative modulation response function described in (51), along
with the 4, B, and C coefficients defined in (45) - (47), the modulation response of the
optically-injected diode laser can be effectively modeled. Likewise, the function
presented can be verified by least-square fitting experimentally collected microwave

modulation response data.

2.5. Resonance frequency of the coupled system:

The resonance frequency of the coupled system is analyzed using the determinant
of the matrix introduced in (43), Det = -jo’ — w’A + jwB + C, which is put into a more
common representation by replacing jo with S, yielding:

Det=5+ A8 +BS+C (57)

Under stable-locking conditions, the roots of (57) will be a pair of complex
conjugate roots and a real, negative root [11], [52]. As with a free-running laser, the

resonance frequency is equivalent to the absolute value of the complex root. However,
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solving for the roots of a cubic as in (57) is not as simple as in the quadratic free-running
case. One approximation, as discussed in Lau et al. is to assume that for modulation

frequencies in the GHz range, the C coefficient can be neglected, reducing (57) to[45]:

Det=S(S* + AS + B) (58)

Replacing S with jo in (58) results in:

Det = jo(-o” + jod + B) (59)
The (-w” + jwA + B) portion matches that of the free-running diode laser as described

in Lau et al., whereby two complex conjugate poles will be found, along with a pole at 0

[35]. For the C = 0 case in (59), the resonance frequency is related to the B coefficient

given: Q,° = B, and the damping rate given by =4 [35].

2.6. Key Detuning Cases under Stable Locking:

Based on the small-signal microwave modulation response function derived
above, and the phase-detuning frequency constraints described in (23) and (24), the
and Z parameters can be simplified at the positive frequency detuning edge where 6, = -
n/2. Likewise, based on relationship between the linewidth enhancement parameter and
steady-state phase offset under zero-detuning given in (14), the y;, and Z parameters can
be simplified to eliminate their dependence on &,. Both the positive wavelength detuning
boundary for stable-locking and the zero-detuning conditions play an important role in
analyzing experimentally collected small-signal modulation response data and in
predicting the optically-injected behavior at these two operational conditions for varied
slave laser structures and bias conditions. The interest in the zero-detuning condition is

motivated by its relatively flat microwave modulation response, observed both
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theoretically and experimentally under moderate injection strength, making this detuning
condition ideal for broad-band applications. The positive frequency detuning edge is
attractive due to the resonance frequency’s direct proportionality to the maximum
injection strength, giving the system the maximum resonance frequency and maximum
possible 3-dB bandwidth. The drawback associated with the positive detuning edge is the
large pre-resonance sag observed in the modulation response, which can be explored
using the model described here. The simplifications to the j, and Z parameters are

discussed in the next two sub-sections.

Simplification of the 4, B, and C coefficients at zero-detuning

At the zero-detuning condition, the steady-state solution of expressions (6) and (7)
yield the relationship between the linewidth enhancement parameter and phase given in
(14): 6, = -tan' (). The 7, and Z parameters can be simplified using the trigonometric

identities: sin[-tan"' ()] = /(1 + &2)"? and cos[-tan™ ()] = 1/(1 + &)"?, resulting in:
yi=21rc0s(6,) = 2rcos(-tan” (@) = 217 /(1 + &)"? (60)

Z= n(asin(6,) - cos(6,)) = nlesin(-tan”())) - cos(-tan” () = -7(1 +e)" (61)

The importance of the simplification in (60) and (61) is that the steady-state phase
offset can be determined based on the linewidth enhancement parameter of the slave
laser, which can be measured experimentally using the injection-locking setup or various

other methods [44], [46]-[48].

Simplification of the 4, B, and C coefficients at the positive detuning edge
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At the positive frequency detuning edge of stable-locking, the steady-state phase
offset has been shown to be approximately -772. The field enhancement factor, R, is
approximately 1 under this detuning case. This phase offset reduces j;; and Z as given in
(62) and (63). Assuming a strong injection condition such that 7702 >> Qﬁz & 3, the 4, B,

and C coefficients given in (45) - (47) are reduced to those given in (64)— (66):
yn=21c0s(6,) =0 (62)

Z = n(asin(6,) — cos(6,)) =-an (63)

simplifying the 4, B, and C coefficients to:

Ao=2 =T 1T =W (64)
Bo-.mn = erz“‘ 7702 +any, = 7702 (65)
Coomn = 10" + 1)+ a1, i’ = 1" 1+ gy (66)

As it was previously shown that the resonance frequency of the coupled system is
characterized by: Q,° = B in section 2.6, we see in (65) that B is approximately equal to
1., thereby Q,° =~ 5, at the positive frequency detuning boundary of stable-locking
where 7,” >> erz . The large resonance peak experimentally observed in the small-signal
modulation response at the positive frequency detuning boundary can then be used to
verify the maximum injection strength value calculated based on the facet reflectivity,
internal cavity round trip time, coupling efficiency of the master laser to the slave laser
facet and the measured master and slave laser powers as described in the next section.

The theoretical small-signal response for varied bias current values for the

quantum-dash Fabry-Perot laser studied in this work is plotted in Figure 9 to exemplify
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the strong dependence of the resonance peak on the maximum injection strength, 7,, at
the positive frequency detuning edge. Figure 9 shows that for varied slave laser bias
currents (and hence different free-running damping rates and linewidth enhancement
parameter), the resonance peak remains relatively constant. The positive frequency
detuning edge of the injection-locked system is attractive due to the resonance
frequency’s direct proportionality to the maximum injection strength under this
condition, giving the system a large 3-dB bandwidth and/or resonance frequency
enhancement that is controlled mainly by the external master laser.

In Figure 9, the maximum injection strength, 77,, is fixed at 100 GHz for each
case, leading to a resonance peak at 100 GHz/27 = 15.91 based on Q. = B”. As
discussed in [49], the drawback of the positive frequency detuning edge is the large pre-
resonance sag which typically limits the 3-dB bandwidth as in Figure 9. Noting the cubic
frequency dependence of (51), the extraction of a simple 3-dB equation that accounts for
the low-frequency sag in the response is problematic. In order to simplify the analysis of

12

the sag, the two competing resonant frequencies, B"? and (C/4)"", are reduced to the

following forms using (64) - (66): B =1n,” and (C/4) = n," + (Q°/ys)(an’) [49]. When the

two resonances coincide with one another, a large resonance peak and pre-resonance sag

12

are observed. As the (C/4)"” pole increases beyond the B pole due to an increase in

(erz/yf,) and/or the linewidth enhancement parameter o for various pumping scenarios,

12

the sag decreases in severity. When the (C/4)" pole is adequately increased beyond the

pole, the sag remains above the 3-dB threshold as shown in the 80 mA case of Figure 9.
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Figure 9. Theoretical modulation response at the positive frequency detuning edge where

the steady-state phase offset is fixed to -n/2 using the simplified parametric terms given
in (64) - (66).

For comparison purposes, the full model using the parametric terms given in (45)-
(47) at the negative frequency detuning edge where the steady-state phase offset is fixed
to -77/2 is plotted in Figure 10. The free-running parameters in both Figure 9 and Figure
10 are equivalent. The full model in Figure 10 shows that the B parameter is enhanced by
the erz and arn,y, products, leading to an increase in the resonance peak as the individual

Qy, a and y, terms increase with the bias current. Based on this finding, it is found that
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the free-running slave laser terms should not be ignored under strong injection when

analyzing the response at the positive detuning edge beyond a first order approximation.
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Figure 10. Theoretical modulation response at the positive detuning edge where the
steady-state phase offset is fixed to -7/2 using the full coefficients given in (45) - (47).

2.7. Calculation of the Coupling Coefficient, k:

The maximum injection strength,7,, introduced in (30) describes the rate at which
the injected master laser field adds to the slave laser’s free-running electric field. The

value of the coupling coefficient, k., can be determined using several methods found in
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the literature. Chrostowski summarizes the various methods, highlighting how the various
approaches differ in the manner the injected field adds to the slave field with regards to
the reflectivity of the slave laser facets [50]. The generic representation given by
Chrostowski is k. = Tr{lgf where 7, is the internal round-trip time, and & is the field
transmission coefficient [50]. The internal cavity round trip time is given by: 7, = 2n,L/c,
where c is the speed of light in vacuum, L is the length of the laser cavity, and n, is the
group index. The field transmission coefficient, &, translates the measured external power
ratio to an internal ratio. In this work where the optically-injected characteristics of
Fabry-Perot diode lasers are analyzed, & is determined in a manner similar to that given
in Lau et al.,, where the internal power ratio is determined using the ratio of co-
directionally propagating waves just inside the injected slave laser facet [39]. An
illustration of the approach taken in [39] is given in Figure 11. In Figure 11, Pggr and
Prpr are the free-running internal forward and reverse propagating wave power levels,
respectively, and are both taken just within the injected facet. Pgg.y is the externally
measured free-running slave laser power out of an injected slave laser facet measured
using a wide area detector. The external and internal injected powers are given by Piyjex
and P;,;in, respectively. The relationship between the internal and external, forward and
reverse propagating waves are given in expressions (67) — (69), where R is the Fabry-

Perot facet reflectivity. The relationship between the internal and external power ratios is

given in (70).
Prrex = Prrr(1 — R) (67)
PFR,R(R) = PFR,F (68)
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Pinj,ext(l - R) = Pinj,int (69)

a=R" (70)

ext

R, =R

int

where Rext is giVen by Rext =P irzj,ext/ P FR,ext,single-facet-

R, R,

PFj ext APFR, R

Pfﬁ’, F
p

p. . o
Hjsext i Note: not to scale

L 4

-3

Figure 11. Illustration of the approach taken in [39] to determine the external to internal
injected power ratio at a single slave laser facet. The internal power ratio is taken just
within the slave laser facet under optical-injection using the forward traveling waves. The
internal power ratio is given by: Riy = Piyj ind Prr F.

The drawback of using (70) in determining the external-to-internal power ratio is
that only a portion of the slave laser’s total output (that of a single slave laser facet) is
considered. A portion of the experimental investigations in this work was on diode lasers
with cleaved facets, where equal power is output from the front and back facets [51]. In
order to account for the total slave laser free-running output power, the internal power
ratio is taken at the mid-point of the slave laser cavity, as illustrated in Figure 12. In
Figure 12, the power ratio is then taken not as the ratio of forward propagating waves, but

as the total power ratio. In this fashion, the total free-running slave laser power is
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accounted for, yielding the relationship between external and internal power ratios given
in (70), where R, is given by: Rey; = Pintex/PFR ext.ora Under the premise that the left and
right facet reflectivity are equal (Prrextiomi = Prriexr + Prroex. Given that the injected
optical field and the forward traveling free-running slave laser field at the facet under
injection travel in parallel, they each experience identical gain traveling in the diode
laser’s optical waveguide. Likewise, the forward-traveling free-running slave laser field
(after reflection off the left facet) and the reverse-traveling free-running slave laser field
(after reflection off the right facet) will be identical at the mid-point of the optical

cavity’s length, as illustrated in Figure 12.

R; R>

PFR2,F PFRZ, ext

- r 4

Prryext | Pera,R

P;RLF

‘.—
PFR2,R
t t
inj,ex > inj, ity
X R;=R
--—> 12

Figure 12. Illustration of the approach taken to calculate the external to internal injected
power ratio where the output at both slave laser emitting facets is considered. The
internal power ratio is taken at the center of the slave laser cavity, indicated by the dotted
line. The internal power ratio is given by: Riy = Piujind (Prr1,r+ Prro,r)-

Using the relationships described in (67) — (69) to determine the appropriate

relationship between the external slave laser free-running power at each facet and internal

40



power strengths Prg; r and Prgo g, the complete representation of the external to internal

power ratio is given in (71).

])inj,internal _ ])inj,external (1 - Rl) _ Ijinj,external (1 - Rl)
PFR,intemal PFRLF + PFRLR PFRl,extnalRl + PFR2,extnalR2 (71)
(1-R,) (1-R,)

Given symmetric mirror reflectivities at the left and right facets, (71) simplifies

to:
2
})inj,mtemal _ ‘Pinj,extemal (1 - R) R (1 - R)Z
P - P R ’Rint = Rext (72)
FR,internal FR,total

where Ry is given by: Piyexternat/(PFR extiotar). Experimentally, the externally measured
injected power accounts for the coupling efficiency between the lensed fiber and the
slave laser facet. The coupling efficiency is based on the ratio between the slave laser
free-running power measured using a wide area detector and the power measured out of
the lensed fiber (in experiments, this number typically rangers from 40 — 50%). The total
representation of the maximum injection strength is given in (73) [51]. Based on the
measured microwave modulation response at the positive frequency detuning edge of
stable-locking, where the maximum resonance frequency enhancement is observed, the
frequency of the resonance peak is used to verify the maximum injection strength, 7,
using the approach described here. This approach was observed to be in good agreement

with the experimentally measured data [51], discussed later in this work.

77 — k Sl_nj — k Pinj — C \/Pinj,external (1 - R)2 _ C (1 — R) })inj,external (73)
©s, VP, 2L Prp o R 2n,L R\ Prgow
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The significance of (73) is the correlation between both facet reflectivity and
cavity length on the coupling coefficient, generating a means to examine changes to a
slave laser cavity's dimensions and facet properties on the efficiency of the optical-
injection process. The resonance frequency enhancement is directly correlated to the
maximum injection strength, 77,. In turn, 7, is inversely related to the mirror reflectivity

and the cavity length.

2.8. Stability Analysis of the Coupled System at Zero-Detuning:

The microwave modulation response can be analyzed based on the poles and
zeros of the small-signal transfer function given in (51). Murakami et al. discusses the
complex pole-zero plot relationship as a function of injection-ratio and detuning
frequency, primarily under strong injection [36]. Additionally, both Simpson et al. and
Murakami at al. detail the stability analysis of an optically-injected diode laser based on
(57), with a focus on the case where the phase offset is 0 [11], [36]. Simpson et al. and
Murakami at al. also focus on the relatively weak injection regime, where the coupled
system is dominated by nonlinear dynamics [11], [36]. In this section, the poles of the
transfer function polynomial are used to investigate the impact of the slave laser’s
linewidth enhancement parameter and nonlinear carrier relaxation rate on the coupled
system’s stability under zero-detuning as a function of the maximum injection strength,
To-

One approach to determine if the coupled system operates in a stable or unstable
manner is to examine the sign of the real part of the complex roots of (57) [36]. For cases
where the real part of the root is negative, a stable damped oscillation exists and the

system operates in the stable regime [36], [45]. For cases where the real part is positive,
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the system moves toward the unstable regime, in which the system exhibits periodic
fluctuations. Figure 13 illustrates the trend of the real part of the complex root as a
function of the maximum injection strength, 77,, under zero-detuning. Figure 13 also
shows the stability analysis’s dependence on the slave laser linewidth enhancement
parameter. It is in Figure 13 that the attractiveness of optically-injected nanostructure
lasers is exhibited, since their characteristically low linewidth enhancement parameters is
shown to inhibit unstable operation. In Figure 13, completely stable behavior is observed
assuming operational parameters for the quantum-dash laser biased at 70 mA for a

linewidth enhancement parameter of ~2 or below at zero-detuning.
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Figure 13. Progression of the real part of the complex root of the polynomial function
found in (57) at zero-detuning emphasizing the impact of the slave laser linewidth
enhancement parameter. Negative values are a sign of stable-locking conditions and
positive values are a sign of undamped oscillations indicative of unstable-locking. The
free-running laser values are for the quantum-dash laser under a bias current of 70 mA.

Figure 14 shows the impact of the nonlinear carrier relaxation rate, j,, on the real
part of the complex poles as a function of injection strength at zero-detuning. In the
figure, it is observed that the nonlinear carrier relaxation rate parameter reduces the size
of the unstable operation region. This will be analyzed in greater detail using a

dimensionless, normalized rate equation model in Chapter 3.
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Figure 14. Impact of the nonlinear carrier relaxation rate on the real part of the complex
root of the polynomial function found in (57) at zero-detuning. The free-running laser
parameters (J;, J) are for the quantum-dash laser under a bias current of 70 mA. When
the real part of the root is negative, a stable damped oscillation exists and the system
operates in the stable regime

Where Figure 13 plots the real part of the complex pole as a function of the
maximum injection strength, 77,, at zero-detuning, a corresponding plot (Figure 15) can
be used to determine the steady state phase offset limit to stable-locking for a given
maximum injection strength. This analysis yields a phase offset constraint further limiting
the stable-locking phase region given in (23), and is the mechanism for generating
stability maps as given in Lau et al. and Murakami et al. [38], [36]. Solving for the

steady-state phase offset limit of stable-locking can be used to determine the field
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enhancement factor using expression (17) and the experimentally measured frequency
detuning edge. The real part of the complex root of (57) is plotted as a function of phase
offset in Figure 15, where the stable-boundary is observed to be -1.529 radians. The
significance here is that the positive frequency detuning edge of stable-locking,
which is typically approximated to be -a/2, deviates only slightly from this value
(under strong injection conditions). Once the steady-state phase offset is determined at
this boundary, the field enhancement factor can then be determined using (17). The field
enhancement factor is typically approximated to be 1 at the positive frequency detuning
edge of stable-locking [40], and the plot shown here affirms this assumption as it is found
to be 1.05 (indicated on Figure 15(bottom)).

The drawback to the stability analysis of examining the sign of the real part of the
complex root in the transfer function polynomial is that it merely indicates that undamped
oscillations occur, not the specific behavior of the unstable operation. The nature of the
undamped, unstable operation is examined in greater detail in Chapter 3 using a newly
derived normalized rate equation model based on the approach detailed by Erneux et al.
and Gavrielides et al. [17], [20]. The utility of the stability analysis depicted in Figure 13
and Figure 15 is its simplicity in evaluating a laser’s stability under optical-injection

based on its free-running parameters.
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Figure 15. (top) Progression of the real part of the complex root of (57) as a function of
steady-state phase offset for a fixed maximum injection strength of 100 GHz. Negative
values are a sign of stable-locking conditions and positive values are a sign of undamped
oscillations indicative of unstable-locking. (bottom) The corresponding field
enhancement factor based on the phase offset. The free-running laser parameters are
based on the quantum-dash laser biased at 70 mA. Takeaway: the steady-state phase
offset boundary of stable-locking is approximately -r/2. The corresponding field
enhancement factor is ~1.
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2.9. Pole-Zero Analysis at Zero-Detuning

This section analyzes the poles and zeros of the small-signal transfer function
given in (51) at zero-detuning in order to give a complete picture of the modulation
response's dependence on the maximum injection strength parameter, 77,. The impact of
the nonlinear carrier relaxation rate of the nanostructure lasers is compared with the
model where it is not included in the derivation.

Increasing the injection strength modifies the poles and zeros of the small-signal
transfer function, resulting in an increased overall damping of the modulation response
under zero-detuning conditions. The progression of the transfer function poles and zeros
as a function of maximum injection strength, 7,, at zero-detuning is illustrated in Figure
16. In Figure 16, it is noted that the absolute value of the complex roots indicate the
resonance frequency of the coupled system. The field enhancement factor, Rz, which
increases with the maximum injection strength 7,, decreases the proportionality between
the resonance frequency of the coupled system (given by the absolute value of the
complex roots) and the maximum injection strength 77, leading to a sub-linear
relationship. The relationship between the injection strength, 1 = 7, / Rpg, and the
resonance frequency of the coupled system is illustrated in Figure 16 by the purple and

dark blue lines, respectively.
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Figure 16. Absolute value of the roots/pole of the transfer function in (51) at zero-
detuning; « = 3. The field enhancement factor, Rz, which increases with the maximum
injection strength 7,, decreases the proportionality between the resonance frequency of

the coupled system (given by the absolute value of the complex roots) and the maximum
injection strength 77,, leading to a sub-linear relationship. The free-running laser
parameters are based on the quantum-dash laser biased at 70 mA.

The third, real root of the transfer function’s denominator results in a low
frequency roll-off that is relatively constant as the maximum injection strength is
increased. The zero increases at a faster rate than either of the transfer function’s poles.
This relationship will cause the pole to have little impact at lower modulation frequencies
such that it does not offset the impact of the low frequency poles under strong injection

conditions.
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The impact of the slave laser linewidth enhancement parameter on the zero, as
given in (48), is illustrated in Figure 17. The decreased zero will result in its offsetting a
pole in the transfer function, leading to a greater damping of the modulation response.
The decrease in the linewidth enhancement parameter, a, is also shown to decrease the
resonance frequency of the coupled system. At zero-detuning, the steady-state phase
offset between the master and slave is given by the relationship in (14). As « is
decreased, 6, decreases in magnitude; given that the real root of (34) yields the value of
Rrr and is dependent on the cosine of the phase offset 6,, this relationship results in an
increase in Rpr which decreases the injection strength 7 = 77, / Rpg. The overall impact of
the linewidth enhancement parameter on the small-signal modulation response is

illustrated in Figure 18 and Figure 19.

50



a=1, 5, =1.34GHz, 7, = 3.98GHz, 7, = 4.5GHz, 7_= 333.3GHz

150 .
— Complex Roots
— Real Root
——Zero (-Z)
I
O 100 7/ Rep
<
=
[y
-]
=
=
8 50 ..............................................
O
=L
) A A R
0 50 100 150
Maximum Injection Strength, » c),GHz

Figure 17. Absolute value of the roots/pole of the transfer function in (50) at zero-
detuning; = 1. Compared with Figure 16, the zero increases at a much smaller rate and
a weaker relationship exists between the maximum injection strength 77, and resonance
frequency of the coupled system (given by the absolute value of the complex roots). The
decreased zero will result in its offsetting a pole in the transfer function, leading to a
greater damping of the modulation response. The free-running laser parameters are based
on the quantum-dash laser biased at 70 mA.
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Figure 18. Modulation response as a function of maximum injection strength at zero-

detuning, « = 3. The free-running laser parameters are based on the quantum-dash laser
biased at 70 mA.
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Figure 19. Modulation response as a function of maximum injection strength at zero-
detuning, = 1. Compared with Figure 18, the response is more strongly damped. The
free-running laser parameters are based on the quantum-dash laser biased at 70 mA.

The impact of the linewidth enhancement parameter @ on the modulation transfer
function is also examined using the 4, B, and C coefficients defined in (45) - (47). Figure
20 and Figure 21 show the A, B, and C coefficients as a function of the maximum
injection strength, 7,, for ¢ = 3, and a = 1, respectively. The o = 1 case shows that the
damping rate driven by the A coefficient increases at a faster rate than the resonance
frequency approximated by the B coefficient, leading to the damped response at increased
maximum injection strengths observed in Figure 19. Recall that for a free-running diode

laser, the damping rate is linearly dependant on the laser output power and the resonance
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frequency is proportional to the square root of the output power [37]. For the case of the
optically-injected diode laser at zero-detuning, the 6,-a-Rpg inter-relationship modifies
the observed behavior between maximum injection-strength (proportional to the square

root of the injected power), damping rate, and resonance frequency.
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Figure 20. 4, B, and C coefficients as a function maximum injection strength at zero-
detuning, o= 3. Notice that the resonance frequency driving term, B"?, remains larger
than the damping rate driving term, 4. The free-running laser parameters are based on the
quantum-dash laser biased at 70 mA (y, = 1.34 GHz, 5, =3.98 GHz, ,=4.5 GHz, y. =
333.3 GHz).
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Figure 21. 4, B, C and Z coefficients as a function maximum injection strength at zero-
detuning, = 1. Notice that the resonance frequency driving term, B'"?, remains smaller
than the damping rate driving term, 4, contrasting with the results in Figure 20. The
larger damping rate term leads to the damped response observed in Figure 19. The free-
running laser parameters are based on the quantum-dash laser biased at 70 mA (y, = 1.34
GHz, y, =3.98 GHz, 5 = 4.5 GHz, y. = 333.3 GHz).

The impact of the nonlinear carrier relaxation rate, y,, is examined in Figure 22,
where the 4, B, and C coefficients with and without y, are plotted as function of the
maximum injection strength. In the case where the contribution of y, is neglected, y, has
been adjusted such that Qﬁ«z = %7 (as opposed to Qﬁ«z = %o T %) Figure 22 illustrates
the relatively linear increase in both 4 and B coefficients to larger magnitudes when y, is

considered. The impact of the nonlinear carrier relaxation rate, y,, on the modulation
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transfer function is given in Figure 23, where the microwave modulation response is
plotted for increased maximum injection strengths under zero-detuning with the nonlinear
carrier relaxation rate excluded. As expected, Figure 23 illustrates that the nonlinear
carrier relaxation rate increases the degree of damping exhibited in the modulation
response. Counter-intuitively, the nonlinear carrier relaxation rate is also observed to
increase the resonance frequency of the coupled system, observable in Figure 22 and

Figure 23.
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Figure 22. 4, B, and C coefficients comparing their values with and without the inclusion
of the nonlinear carrier relation rate as a function maximum injection strength at zero-
detuning; o= 3. Notice that the resonance frequency driving term, B2, increases with the
inclusion of the nonlinear carrier relaxation rate y, in the simulation. Additionally, the
damping rate term is also observed to increase with the inclusion of y,. The free-running
laser parameters are based on the quantum-dash laser biased at 70 mA. The impact of y,
on the C term is negligible.
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Figure 23. Microwave modulation response plotted both with and without the
consideration of the nonlinear carrier relation rate as a function maximum injection
strength at zero-detuning; o = 3. Notice that simulating the response with the nonlinear
carrier relaxation rate y, increases both the resonance frequency and damping of the
coupled system. The free-running laser parameters are based on the quantum-dash laser
biased at 70 mA.

2.10. Impact of Gain Compression

The next step in modeling the optically-injected nanostructure laser is to account
for the gain compression observed under strong injection. Among the intrinsic dynamical

parameters (%, %, %, and %) describing free-running diode lasers, y. and y; are constants
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independent of the laser power while y, and y, are linearly proportional to the laser power
[37]. The nonlinear carrier relaxation rate, y,, is defined as -I'g, S in (32), where g, 5 is
the nonlinear gain parameter characterizing the effect of gain compression due to the
saturation of gain by intra-cavity photons [37]. Likewise, the differential carrier
relaxation rate, y,, is defined as g, (S5 in (31), where g, is the differential gain parameter
characterizing the dependence of the gain parameter on the carrier density as described in
(4) [37]. For most quantum-well and heterostructure lasers, the impact of gain
compression can be neglected and both g, ; and g, ; can be considered constant over large
ranges of carrier and photon density levels [35], [37]. This is not the case, however, for
the nanostructure lasers investigated in this work, where y, and y, are found to be
compressed at large free-running laser output powers. This compression or roll-off as
regards the quantum-dash device investigated in this work is illustrated in Figure 24,
where Q;°, 7, and y, are plotted as a function of total output power.

The takeaway from Figure 24 is that y, and y, are observed to lose their linear
proportionality to the laser output power as the output power is increased beyond ~8 mW.
In section 2.2, the field enhancement factor Rpr was introduced to quantify the
enhancement of the steady-state field of the optically-injected slave laser (and likewise
the enhanced steady-state photon density, S,) and used to scale y, and , under optical-
injection. This scaling with Rrr assumes that the linear relationship holds regardless of
the magnitude of the injected field. To account for the roll-off of the differential and
nonlinear carrier relaxation rates induced by the injected photons (or injected field), the
gain compression coefficient is introduced into the gain function in the standard way as

discussed by Coldren at al. [35].
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Figure 24. (top) Illustration of free-running nonlinear carrier relaxation rate and
differential carrier relaxation rate saturation with increased laser output power. (bottom)
Saturation of the relaxation oscillation frequency squared with increased laser output
power. Data shown was collected on the quantum-dash Fabry Perot laser.
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Coldren et al. describes relationship of the laser gain to carrier density using (74),
where a coefficient describing the compression of gain at high photon densities is defined
by &,[35]. The laser gain is then described by [35]:

g N+N
N,S) = > —In >
g(N.5) (1+¢,9) [N,,+NS] (74)

Where g, is the nominal, unsaturated gain coefficient, N, is the transparency current
density, N; is a term introduced for force the natural logarithm to be finite at N =0, and S
is the photon density [35]. At threshold, N = Ny, and g(Nyu, 0) = gu, the threshold gain

value. Based on (74), the gain derivative with respect to both carrier and photon density

is given by (75) and (76).
g __ & 1
ON  (1+¢&,5) (N+N,) (73)

g 5,8 h{NHVSJ -£,8(N,S)

oS (I+¢,5° (N, +N,)  (+5,5) (76)

Changes in carrier and photon density from both small-signal current
perturbations and/or optical-injection on the gain are reflected by the differential
expression in (77). The change in gain, along with carrier density and photon density,

taken in reference to the free-running, steady-state threshold value where AN = N, - Ny,

and AS = S, + Sinj — Sp yields (78).

— &
g(N,S) = £, L ovs+ p8o ppf NAN, o
(I+¢&,(5+S,,) (N+N) (I+¢&,(5+S,,)) N, +N, (77)

inj
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(I+¢&,(8,+S

N _Nth)

gret D, EN)

inj

- &
+ LI ln[ Ny + N, j(sn +8, =S, )
1+ £, (S, + S ) N, +N, : :

(78)

Defining g, s and g, s using (79) and (80) where S, is the total photon density in
the slave laser cavity simplifies (78) to the expression given in (81) using (79) and (80),
as previously defined in (4). Although g,, and S; (likewise g, and S;) cannot be
individually determined using the approach used, the (1 + &,S4) portion in the
denominator of g,s and g,s can be determined. Quantifying &,S; allows the gain
compression term to be scaled with the injection strength, resulting in the differential and
nonlinear carrier relaxation rates defined in (82) and (83) where gain compression and the

scaling of Sy due to optical-injection is included.

_0g _ 8, 1
gnjs aN (1 + gpStotal) (N + Ns) (79)
og -£,8, N+ N
== = 1n :
808 788 T (Ire,S,) (N” TN, ] (80)
g=8u +gn,s(N_Nth)+gp,S((S+Sinj)_Sﬁ‘) (81)

The effect of the compression on the microwave modulation response at zero-
detuning for increasing maximum injection strengths is illustrated in Figure 25. Although
the impact of gain compression on the overall modulation response is relatively small, it
is shown to reduce the resonance frequency enhancement, thereby limiting the potential
3-dB bandwidth enhancement. The impact of gain compression on the A4, B, and C

parametric terms is given in Figure 26, where each parameter is reduced compared to the
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‘uncompressed’ value. Figure 26 also shows that the impact of gain compression

increases with the maximum injection strength.
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Figure 25. Microwave modulation response plotted both with and without the
consideration of the gain compression coefficient shown in eqn. (74) on the differential
and nonlinear carrier relation rate at zero-detuning; o = 3. The free-running laser
parameters are based on the quantum-dash laser biased at 70 mA, and the gain
compression coefficient is 0.06 mW™.
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Figure 26. 4, B, and C parametric terms plotted both with and without the consideration
of the gain compression effect on the differential and nonlinear carrier relation rates
plotted as a function of maximum injection strength at zero-detuning; o = 3. The free-
running laser parameters are based on the quantum-dash laser biased at 70 mA, and the
gain compression coefficient is 0.06 mW™.

In both Figure 25 and Figure 26, the impact of gain compression on y, and y, is
given in (82) and (83). Essentially, the approach used here to illustrate the impact of gain
compression on », and y, re-normalize the gain compression to the scaled free-running
slave power. The Rp” factor in (82) and (83) scales the value based on the slave field

enhancement as described in Section 2.2.
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2.11. Overall Modulation Response Function

Overall, the modulation response function derived in this chapter expands upon the
approach analyzed by Murakami et al. and Lau et al. by including the impact of the
nonlinear carrier relaxation rate, j,, and the gain compression coefficient’s impact on
both the differential and nonlinear carrier relaxation rates [36], [38]. In the previous
sections, the impact of the nonlinear carrier relaxation rate was illustrated by comparing
the modulation response with and without its consideration (Figure 23). The impact of
gain compression was then added to account for the usual sub-linear dependence of the
free-running relaxation frequency with optical power (Figure 25). The normalized
relative modulation response function in (51) is illustrated in Figure 27, where the
physical effects of gain compression and the nonlinear carrier relaxation rate on the
modulation response under optical-injection are exhibited through the parametric terms in
(45) - (47). In Figure 27, the complete physical model shows more damped response
compared to the basic model where y, and &, equal 0, while the resonance frequency
enhancement remains largely unchanged. In Chapter 5 and Chapter 6, this model will be

used as a predictive tool data and used to least-square-fit experimental data.
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Figure 27. Modulation response function incorporating the physical effects of the
nonlinear carrier relaxation rate and gain compression under optical-injection. The free-
running laser parameters are based on the quantum-dash laser biased at 70 mA, o= 3.
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Chapter 3.  Dynamic Operation of Optically-Injected Nanostructure Diode Lasers

In the previous chapter, the microwave modulation response of an optically-
injected nanostructure laser was theoretically analyzed. Based on the dynamic parameters
describing the modulation response under steady-state conditions, the frequency detuning
and injection strength limits for stable-locking were derived. The drawback of the
stability limits described in Chapter 2 is that the nature of the unstable/nonlinear
operation cannot be described in detail. In this chapter, a dimensionless normalized
approach to theoretically evaluate the behavioral state (i.e. stable locking, period-one,
period-doubling, or chaos) as a function of the injected field ratio and/or the detuning
frequency for varied slave laser bias cases is described [17], [20]. The normalized model
reformulates the rate equations in (6) - (8) into a dimensionless form; this approach is
largely due to the relatively small value of the photon lifetime of the semiconductor laser
[17]. The normalized model is advantageous compared with other methods due to its
fundamental parameter scaling approach that facilitates the comparison of one laser to
another. The model derived here is unique in that it includes the impact of the nonlinear
carrier relaxation rate, . The slave laser linewidth enhancement parameter and y, are
shown to have a strong impact on the level of stability exhibited by the optically-injected

laser at low injected field ratios.

3.1. The Normalized Rate Equations

The normalized approach presented here differs from the model previously
published in that the impact of the nonlinear carrier relaxation rate is included. The

expanded rate equations given Chapter 2 are reiterated below as a starting point:
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The time-scale in (6) - (8) is normalized to the cavity decay rate such that: t = 7 /%,

simplifying the time-step used in solving the coupled differential equations [17], [20].

Next, substitutions are made based on the following parameter definitions given in (84) —

(87), yielding the normalized rate equations given in (88) — (90).

AN =(N = N,)——>dAN =dN

Nth _ﬁ
2
r 2 2
7118 an AN =z L aan—dz e
2y, I'g, I'g,
yri=Sn g0 yy- [ Sy sav= |[Eiag
2y, 2y, 2y,
d—Y=ZY—5Y(Y2—P)+17N cos(0)
dr
ﬁzaZ—ag(Y2 —P)—U—Nsin(ﬁ)—AQ
dr Y
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T92 P 7Y (1427 - 267" +26P) (90)
dr

In the normalized model given in (88) — (90), Y is described as the
dimensionless/normalized field magnitude, and Z is the normalized carrier density. The
normalized model is dependent on four parameters derived from the free-running slave
laser: P, T, & and «. The T-parameter is the ratio of the cavity decay rate, y, to the
spontaneous carrier relaxation rate, j%, such that 7" = (3 /x). Both » and y are
independent of slave laser output power, making 7 constant for a slave laser regardless of
the bias current. P is proportional to the pumping current above threshold, and is
calculated using P = (1/2)(3/ %) o< (J — Ju)/Jm, where J is the injected current density and
Ju, 1s the threshold current density. The free-running relaxation rate, normalized to the
cavity decay rate is given by fo = [2P(1+&]/T = ny. + 1p¥s» and the normalized free-
running damping rate is given by y; = [(1+2P)/T + 2P¢g]/= 3+ 3% + 5. € accounts for the
nonlinear carrier relaxation rate and is defined as: ¢ = y,%/(%). Thus, the P-, T-, and &
parameters are calculated for a given slave laser bias current knowing the free-running
damping rate, and relaxation oscillation frequency, along with the constant photon
lifetime and spontaneous carrier lifetime values. In solving the coupled, normalized
differential equations, the normalized field magnitude Y is not at steady-state, and is thus
represented as a dependant term in the normalized field magnitude and phase rate
equations. The detuning parameter, AQ, is normalized to the cavity decay rate such that
AQ = Aw/y..

Contrary to the definition for the injection strength, 7, defined in Chapter 2, the

normalized injection strength in (88) and (89) is purely derived from the injected power
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and is defined as: nv = (ke /%)Yy = . Recall that n was defined as 7 =

kd(Aini/4,) 1n Chapter 2, where 4, is the steady-state photon density under optical-

| kA,
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Vs Ve
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Ny = JP= p =, which is rearranged to yield the previously defined expression for the
Ve iy

Ny k. A

c*inj

\/F V4 c = Aﬁ.

maximum injection strength based on ny: 77, =

3.2. Simulating the Nanostructure Laser

To simulate the nanostructure laser's behavior under optical-injection, the coupled
normalized differential equations in (88) - (90) are solved in the time domain, and
qualitative changes can be observed in the normalized field magnitude solution. The
stability of this solution is examined by introducing a small perturbation to the field
amplitude. Using this new field amplitude as an initial condition (along with the
unperturbed phase and normalized carrier density), the rate equations are solved and
allowed to come to a new equilibrium-state. The stability of the system is characterized
by the number of extrema in the new equilibrium-state. A single extrema observed is
indicative of a stable-locking state; a large number of extrema in the equilibrium-state
solution is indicative of an unsettled, chaotic response. For this work, the electric field
solution is analyzed as the injection strength, 7y, is varied for a constant detuning
frequency, as well as for a fixed injection strength as the detuning frequency is varied.

Together, the two means of analysis: fixed injection strength/varied detuning and vice
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versa are able to generate two dimensional stability maps as given in Simpson et al.,
Hwang et al., Wieczorek et al., and most recently Bonatto et al. [19], [21], [54], [55]. The
extrema to the normalized photon density solution’s time response is plotted as a function
of the maximum injection strength, 7,, or detuning frequency and are referred to as
bifurcation diagrams as they indicate the transition between operational states as the
maximum injection strength is varied [53].

Bifurcation diagrams for representative quantum-dash slave laser bias conditions
are given in Figure 28, where the y-axis is normalized to the free-running steady-state
field magnitude (equivalent to Rpz in the stable-locking regime). The x-axis in Figure 28
is translated from the injection-strength, 77y, to an injection strength ratio, 7,, given the
relationship: 7 = nvy.Y, f/l = nyy.P"”. The free-running normalized field magnitude, Y,
is equal to the square root of the pumping term, P'?, based on the free-running steady-
state solution of (88).

The P- and 7-terms and linewidth enhancement parameter, , values in Figure 28
are representative of varied slave laser bias conditions for the quantum-dash Fabry-Perot
slave laser. The quantum-dash devices investigated in the course of this work have been
found to possess a linewidth enhancement parameter, e, that increases with increased bias
currents [56]. Specifically, the quantum-dash devices have demonstrated an a-factor that
increases from ~1 to ~14 as the bias current is increased from threshold to approximately
twice the threshold value [56].

The bifurcation diagrams in Figure 28 show that as the linewidth enhancement
parameter and P-term increase with bias current, larger injection strengths are necessary

to achieve stable-locking; stable locking is characterized in the diagrams by a single
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extrema value observed in the electric field solution. Additionally, the numerical
simulations in Figure 28 show that as the linewidth enhancement parameter is increased
from 2.2 to 6.0, more chaotic states are observed in the solution at lower injection
strengths. Figure 28 also shows that the ‘bubble’ indicating operational states other than
stable locking increases in size as the linewidth enhancement parameter and P-term
increase with bias current. The quantum-dash laser is unique in allowing examination of
dynamics over a large range of linewidth enhancement parameter values within a single
device. In Figure 28, the maximum injection strength, 77,, associated with the stable-
locking (single-extrema) to period-one or period-doubling (multiple extreme) transition is
referred to as the Hopf-bifurcation point. Likewise, the injection strength associated with
the period-one (two-extreme) to stable-locking (single extrema) transition is referred to as
the reverse-Hopf-bifurcation point. The theoretical bifurcation diagrams in Figure 28 will
be compared with experimentally collected data in Chapter 5. The Matlab code used to

generate the diagrams is included in Appendix AA.
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Figure 28. Bifurcation diagrams showing theoretical solutions to the normalized rate
equations in (88) - (90) for zero-detuning conditions. The four cases correspond to
respective P, T, and a-factor values for 60, 70, and 80 mA slave bias conditions of the
quantum-dash slave laser.

Next, the impact of the nonlinear carrier relaxation rate, j,, on the stability of the
coupled system in analyzed where the free-running parameters of the quantum-dash laser
biased at 70 mA are used as baseline values. Recall from Figure 14 in section 2.8 that the
nonlinear carrier relaxation rate was shown to suppress the emergence of unstable
operation based on the real part of the complex pole of the small-signal modulation
response. In Figure 29, the impact on the size of the unstable regions at zero-detuning is

illustrated by plotting the extrema of the normalized electric field solution as a function
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of maximum injection strength for cases where y, is and is not included. The single
extreme is a sign of stable optical-injection, whereas the two extrema solutions illustrated
by the ‘bubble’ in Figure 29(right) is a sign of undamped relaxation oscillations over that
range of maximum injection strengths, 77,. The theoretical values, and specifically the
linewidth enhancement parameter, were chosen to coincide with the values analyzed in
Figure 14, where the simulation results are in good agreement with one another. The
results of each model where the nonlinear carrier relaxation rate is not included shows
that a small window of unstable operation for maximum injection strengths from 5 GHz
to 25 GHz will occur.

Although Figure 14 and Figure 29 are in strong agreement in predicting if the
coupled system operates in a stable or unstable manner, the more basic approach used in
Figure 14 is limited in its application. The approach used in Figure 14 to examine the
stability of the semiconductor laser’s operation under optical-injection only confirms
stable or unstable operation; solving the dimensionless, normalized rate equations given
in (88) — (90), however, gives an indication regarding the nature of the unstable operation
based on the number of extrema observed in the electric field solution of the coupled

rate equation.
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Figure 29. Bifurcation diagrams predicting the stability at zero-detuning where the
nonlinear carrier relaxation rate parameter is (a) and is not considered (b) in the
numerical simulation.

The impact of the nonlinear carrier relaxation rate in suppressing the multi-
extrema indicative of chaotic operation is illustrated also in Figure 30. In Figure 30(a),
the coupled system is predicted to exhibit only stable and period-one operation. In Figure
30(b), however, a small region of chaotic operation is expected at maximum injection
strengths of approximately 10 GHz. With all parameters held constant minus the
nonlinear carrier relaxation rate, its impact is highlighted here to have a strong influence
on the dynamical characteristics of the coupled optically-injected system.

Next, Figure 31 illustrates the impact of the linewidth enhancement parameter on
the stability of the optically-injected system. With all other parameters held constant, the
increased linewidth enhancement parameter is shown to move the system from
completely stable (Figure 29(a)) to one a case where undamped period-one (Figure 31(a))

and period-doubling (Figure 31(b)) oscillations will be generated.
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Chapter 4.  Free-Running Nanostructure Characterization

In this chapter, the free-running operation of the quantum-dot and quantum-dash
nanostructure lasers is studied. The free-running operational parameters are critical in
validating the theoretical models derived in Chapter 2 and Chapter 3 with the
experimental data presented in Chapter 5 and Chapter 6.

For testing, each nanostructure laser device is mounted on a gold-coated copper
heat sink using indium solder. Because the bottom side of the laser device serves as the
ground plane, a ground pad with the same thickness as the laser device is mounted
adjacent to the laser to bring it up to the same height as the top/signal contact pad. A two-
finger RF signal/ground probe was used to contact the signal and ground pads of the
device in order to minimize high frequency parasitics. The laser output was coupled to a
lensed fiber mounted on a piezoelectric-controlled stage, and coupling efficiencies of
approximately 50% were reached. Once coupled to the lensed fiber, the laser output was
either converted to an electrical signal using a 40 GHz photodiode to measure the
modulation response or directly to an optical spectral analyzer to observe the optical
response. The experimental study of the free-running microwave modulation response
(S21) of both nanostructure lasers was accomplished using an HP8722D network
analyzer, and the response data was then used to extract the relaxation oscillation
frequency and damping rate as a function of laser bias current. A high-resolution (10 pm /
1.75 GHz @ 1310-nm and 1.25 GHz at 1550-nm) optical spectrum analyzer (OSA)
(Yokogawa AQ6319) was also used to monitor the optical response of the laser devices.
For a portion of the characterization of the quantum-dash laser, an Agilent high resolution

spectrometer (Agilent 83453B) with a maximum resolution of 1 MHz was used in place
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of the OSA; its operating wavelength span, however, did not cover the 1310-nm output
wavelength of the quantum-dot Fabry-Perot device investigated in this work. An
illustration of the experimental setup used to characterize the free-running laser
parameters is given in Figure 32. The temperature of the copper heat sink was maintained
using a thermo-electric cooler. In order to measure the light-current characteristics of the

laser devices, an integrating sphere replaces the lensed fiber in Figure 32.

Coaxial DC + RF To Network
Analyzer:
To Networ Port 2
Analyzer:

Port 1

Lensed Fiber

s &

y.

Optical
Fiber

Manual X/Y/Z
Stage
Adjustment

Connected to

Piezoelectric
Control

Figure 32. Illustration of the experimental setup used to characterize the free-running

laser parameters. The optical fiber feeding from the lensed fiber can be connected to

either the optical spectrum analyzer or the photodetector; a 50/50 coupler is not used.
Note: not to scale.

The above threshold linewidth enhancement parameter was measured for each

device using the injection-locking approach, which is based on the asymmetry of the
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stable-locking region as the master laser is detuned from the slave laser [44]. The
relationship of the linewidth enhancement parameter to the positive and negative

frequency detuning boundaries of stable locking is given by (91):

2 2
A AA
o= L -1= L .| 91)
Afpos A/’Lneg

where Af,.s and Af,., are the positive and negative frequency detuning boundaries of

stable locking, respectively [Liu01]. The detuning convention is described by: Af = frasier

*f:vlave (Aﬂv = lmaster = slave)-

4.1. Description of the Quantum-dot Fabry-Perot slave laser

The quantum-dot slave laser was grown using solid source molecular beam
epitaxy on an n'-GaAs substrate. The dots-in-a-well active region consists of 6 layers of
InAs quantum-dots embedded in compressively-strained Ing;sGaggsAs quantum-wells
separated by 30-nm undoped GaAs spacers. A 45-nm layer of undoped GaAs was added
on each side of the active region. The epitaxial structure is shown in Figure 33. The lasers
have 3-um wide ridge waveguides and 300 um cavity lengths. The front and back
cleaved facets were HR coated to have a reflectivity of 80% and 95%, respectively, to
enable the device to lase at the ground state. The light-current characteristic is shown in

Figure 34, from which a threshold current of 1.9 mA (J;, =211.1 A/cmz) was found.
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Figure 33. Epitaxial layer composition of the quantum-dots-in-a-well laser structure.
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Figure 34. Light-current characteristics of the quantum-dot Fabry-Perot laser showing a
measured threshold current of 1.9 mA at 20°C.
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The optical response at a bias current of 5 mA is shown in Figure 35. The average
group index of the gain region was calculated to be 3.706 based on an average Fabry-
Perot free-spectral-range (FSR) of 134.68 GHz (~770pm) across the 30-nm span shown
(ngavg = ¢/(2A4Va4 L)) in Figure 35. The 30-nm span illustrated in Figure 35 was also used
to calculate the group index of the gain region as a function of Fabry-Perot mode and is
plotted in Figure 36. The group index of the active region, as a function of Fabry-Perot
mode was calculated using: ng, = A?/(2LAJ), where A is the mode wavelength and AA is
the FSR. The FSR was taken as the average FSR measured between the two adjacent
modes. The jaggedness illustrated in Figure 36 is likely due to a non-uniform variation of
the measured FSR. The facet reflectivity values, group index and internal loss (4-cm™) of

the device, yield a photon lifetime of 14.4 ps.
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Figure 35. Optical spectra of the free-running quantum-dot laser observed under a bias
current of SmA. Top: 30-nm span. Bottom: 2-nm span.
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Figure 36. Group index of the active region as a function of Fabry-Perot mode at a bias
current of 5 mA. The free-spectral range (41) was averaged between each two adjacent
modes, and calculated using ng = PIQRLAX).

The relaxation oscillation frequency, €2, overall damping rate, y;, and parasitic
carrier transport time, 7, (z; = 1/y,) are determined by least-squares fitting of the free-
running modulation response for different bias currents as shown in Figure 37 using the
standard model in (92) [31]. Figure 37 shows typical free-running modulation response of
the quantum-dot laser under test. The highly damped nature of the device tested here is

similar to other nanostructure lasers characterized in the literature [42], [43].

I 2 ijr 1
| R(w)| - ((er —(02)2 +]/;Aa)2)(1+(a)/]/,)2) (92)
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Figure 37. Free-running modulation responses of the quantum-dot laser. The current
indicated in the legend is the applied DC bias current.

The slave laser damping rate plotted as a function of f;” (Q4 = 27f;) is used to
extrapolate the value of the spontaneous carrier relaxation rate, y,, given: y; = Kﬁrz + ys.
75 plotted as a function of ﬁ,z is shown in Figure 38, where y; is 7.5 GHz. The vy, value is
significantly larger compared to quantum-well lasers, where the typical value reported for

quantum-well devices is 1-2 GHz [37].
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Figure 38. Free-running damping rate (y5) as a function of the relaxation oscillation
frequency squared (/jz-rz). The dotted red line is a least-squares linear fit to the data points,
which is extrapolated to determine the spontaneous carrier relaxation rate, vs.

The impact of the non-linear gain compression coefficient on the free-running

relaxation oscillation frequency was evaluated using the following relation:

f 2 APout _ APout
o (1+gppaut)_ (1+P0ut /})sat) (93)

where ¢, is the gain compression coefficient related to the total output power P, and A4 is
a fitting constant [Wong, Takahashi, Su]. A plot of the square of the measured relaxation
oscillation frequency as a function of power is given in Figure 39, where the gain
compression coefficient is extracted to be 0.155 mW™'. This value is more than 2X the

value measured for a quantum-dash Fabry-Perot laser with cleaved facets (see next
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section), where &, was measured to be 0.06 mW™', and is approximately 10X the value

reported for quantum-well lasers [8].
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Figure 39. Quantum-dot laser free-running relaxation oscillation (}jz-,z) as a function of the
total output power (P,,,). The dotted line is a least squares linear fit using expression (93),
where the gain compression coefficient is found to be 0.155 mW™". In each plot, the
experimental values (blue asterisks) correspond to laser bias currents of 3.8, 5, 10, 15, 20,
25, and 30 mA.

The linewidth enhancement parameter measured using the injection-locking
technique for various slave laser bias currents is shown in Table 1, where the linewidth
enhancement parameter for each bias current is averaged over several injected master
strengths (minimum of 3 injection strength levels). The measured linewidth enhancement

parameter was fairly consistent as the injection ratio was increased, as indicated in Table
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1. It has been suggested that the linewidth enhancement parameter can be manipulated to
higher values at large injected power levels due to the semiconductor lasers’ nonlinear
gain [59]; the measured results showed no trend with increasing injected power levels,
suggesting that the master powers used were not high enough to induce either gain
compression effects or to shift the threshold carrier density significantly [59]. The
linewidth enhancement parameter was not measured at bias currents above 8 mA, as the
available master laser power was limited to 30 mW. For bias currents above 8§ mA, the
stable-locking detuning ranges were too small to yield reliable measurements due to the

resolution of the OSA.

Table 1. Quantum-dot laser linewidth enhancement parameter measured using the
injection-locking technique for varied slave laser bias currents. The linewidth
enhancement parameter is averaged over several injection strengths.

Slave Laser Bias Standard
Current (mA) o4 Deviation

2 0.9 0.2

25 0.6 0.1

3 1.2 0.4

4 1.6 0.2

5 20 0.2

6 2.7 0.4

7 4.6 0.5

Below-threshold amplified spontaneous emission (ASE) measurements were
performed to measure the material linewidth enhancement parameter, also referred to as
the Hakki-Paoli technique [33]. The net modal gain, g, was extracted from the peak-to-

valley ratio of sub-threshold Fabry-Perot oscillations using the relationship in (94):
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1 1(x"? =1
e o9

where L is the laser cavity length, x is the ratio of the peak-to-valley power levels, and r
is the facet reflectivity given by (R,«-m,,,-Rback)” 2, and Rpon and Ry,ex are the front and back
facet reflectivity, respectively. The differential gain was calculated using the relationship
Ag/Al, where Al is the current increment. The differential index was calculated using
[33]: An/Al = -(n/A)AA/Ag. The linewidth enhancement parameter is calculated using the

differential gain and differential index results [33]:

Y _[472" j%v _ _[WJM /o _(4;"}2:?5 (95)

Temperature effects were excluded from the AL/Al measurement by operating the
current source (ILX LPD-3871) in pulsed mode [60]. Heating effects in the laser cavity
resulting from increased bias currents can offset the wavelength decrease resulting from
increased bias currents, as shown in Figure 40(b). Specifically, the quantum-dot laser was
biased using 20 us pulse widths while the duty cycle was operated at different levels: 1%,
and 10% increments from 10% to 100%. The observed optical mode was then least-
squares-fit using a Gaussian function and its wavelength peak recorded for each duty
cycle increment. For each sub-threshold bias current, the modal peak wavelength was
plotted as a function of duty cycle, as shown in Figure 40(a). This data was then
extrapolated to 0% duty cycle and the results for each current step (0.1 mA increments)
were used to calculate AA/Al The lower limit of operational pulse widths was constrained

by the sensitivity of the optical spectrum analyzer, which was unable to resolve the
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optical signal for 1% duty cycles and pulse widths below 20 ps. Figure 41(a) depicts the
ASE spectra for a slave laser bias of 1.8 mA (/; measured to be 1.9 mA), where the
modal peaks and valleys have been extracted to calculate the net modal gain as a function
of wavelength (Figure 41(b)). The ASE spectrum was measured for bias currents ranging
from 1.0 mA to 2.0 mA in 0.1 mA increments. From 1311-nm to 1316-nm, the gain was
relatively flat for each current increment, as observed in Figure 41(b). At a bias current of
1.9 mA, the peak net modal gain was measured to be 4-cm™. The linewidth enhancement
parameter was calculated using expression (3) and the results are reported in Table 2. The
modal gain reported in Table 2 was taken as the average from 1311-nm to 1316-nm. At
1.9 mA, the linewidth enhancement parameter fictitiously drops to 0.5 as the bias current
approaches threshold and the differential gain and AA/Al are observed to drastically
decrease. The highest bias current that gives a reliable linewidth enhancement parameter
using the ASE technique is 1.8 mA. The injection-locking method for determining the
linewidth enhancement parameter is in reasonable agreement at bias currents just above

threshold with the Hakki-Paoli method, which is a below-threshold measurement.
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Figure 40. Quantum-dot laser: (a) Peak modal wavelength as a function of duty cycle.

The pulse width was 20us. (b) Optical power response for subthreshold bias currents at
100% duty cycle. The bias currents correspond to 1.1 mA (red), 1.3 mA, 1.5 mA, 1.7
mA, 1.9 mA, and 2.0 mA (gray).
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Figure 41. Quantum-dot laser (a) amplified spontaneous emission spectra at 1.8 mA
where the modal peaks and valleys have been highlighted; (b) net modal gain calculated
using the peak-to-valley ratio measured from the ASE spectra.

Table 2. Calculation of the sub-threshold linewidth enhancement parameter using the
ASE approach for the quantum-dot laser.

Bias Current ALSAT AgfAl

(ma) | (pm/ma) | (cm™/maA) &
2.1 -6.0 0.1 32.5
2.0 -3.1 0.0 42.3
1.9 -7.8 4.6 0.5
1.8 -32.0 6.7 1.3
1.7 -25.0 4.8 1.4
1.6 -38.0 6.6 1.5
1.5 -43.0 8.6 1.4
1.4 -45.9 8.6 1.4
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4.2. Description of the Quantum-Dash Fabry-Perot slave laser

The quantum-dash laser was grown on an n'-InP substrate. The active region
consists of 5 layers of InAs quantum-dashes embedded in compressively-strained
Alp20Gag 16IngeaAs quantum-wells separated by 30-nm of undoped tensile-strained
Alp23GagnlngsoAs spacers. Lattice-matched Alp30GagislngsoAs waveguide layers of
105-nm are added on each side of the active region. The p-cladding layer is step-doped
AllnAs with a thickness of 1.5-um to reduce free carrier loss. The n-cladding layer is
500-nm thick AllnAs. The laser structure is capped with a 100-nm InGaAs layer. The
epitaxial layer structure is given in Figure 42. The lasers were designed to have 4-um
wide ridge waveguides and 500-um cleaved cavity lengths. From the light-current
characteristic curve in Figure 43, the threshold current was measured to be 47 mA (Jy =

2350 A/cm®), with a slope efficiency of 0.16 W/A (considering both laser facets).

p- InGaAs (100 nm)

p- AllnAs (1.5 Lun)
Alp50GaggslngspAs (105 nm)
Aly2sGagpIng sAs (15 nm)
Alp 29 Gag g5lng g4As (6.3 nm)

InAs Dashes
Aly 59 Gag6lnggAs (1.3 nm) B
Aly5GagIngspAs (15 nm)
Al 5yGagg5lngsAs (105 nm)
n*- AllnAs (500 nm)

DWELL

n*- InP substrate

Figure 42. Epitaxial layer composition of the quantum-dashes-in-a-well laser structure.

92



Power, mW

lin = 47 mA @ 20°C

0 20 40 60 80 100 120
Bias Current, mA

Figure 43. Light-current characteristics of the quantum-dash Fabry-Perot laser showing a
measured threshold current of 47 mA at 20°C; power indicated is from a single-facet.

The optical spectral response at a bias current of 65 mA is shown in Figure 44.
The average group index of the gain region was calculated to be 3.53 based on a
measured average Fabry-Perot free-spectral-range (FSR) of 85.1 GHz (~698pm) across
the 30-nm span shown (744,g = ¢/(24V,,, L)) in Figure 44. The 30-nm span illustrated in
Figure 44 was also used to calculate the group index of the gain region as a function of
Fabry-Perot mode and is plotted in Figure 45. The group index of the active region, as a
function of Fabry-Perot mode was calculated using: n, = A*/(2LAX), where A is the mode
wavelength and A4 is the FSR. The FSR was taken as the average free-spectral range
measured between the two adjacent modes. The jaggedness illustrated in Figure 45 is
likely due to a non-uniform variation of the measured FSR. The facet reflectivity values,
group index and internal loss (15-cm™) of the device lead to a calculated photon lifetime

of ~3 ps.
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Figure 44. Optical spectra of the free-running quantum-dash laser observed under a bias
current of 65 mA; Top: 30-nm span; Bottom: 2-nm Span.
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Figure 45. Group index of the active region as a function of Fabry-Perot mode at a bias
current of 65 mA. The free-spectral range (A1) was averaged between each two adjacent
modes, and calculated using n, = AIQLAX).

The relaxation oscillation frequency, €4, overall damping rate, y;, and parasitic
carrier transport time, 7, (r; = 1/y;) are determined by least-squares fitting the free-
running modulation response for varied bias currents as shown in Figure 46 using the

standard model in (92) (page 83) [31]. Compared with the highly damped modulation
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response of the quantum-dot laser in Figure 37, the quantum-dash modulation response in

Figure 46 is not as strongly damped and a resonance peak is clearly identifiable.
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Figure 46. Free-running modulation response of the quantum-dash laser. The current
indicated in the legend is the applied DC bias current.

The slave laser damping rate plotted as a function of f;” (Q4 = 2nf;) is used to
extrapolate the value of the spontaneous carrier relaxation rate, y,, given: y; = Kﬁ,z + ys.
¥ plotted as a function of ﬁ,z is shown in Figure 47, where vy, is 4.5 GHz and K = 0.45 ns.
As in the quantum-dot laser, the y, value is generally higher compared to quantum-well

lasers, whereby the typical value reported for quantum-well devices is 1-2 GHz [37].
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Figure 47. Free-running damping rate (y;) as a function of the relaxation oscillation
frequency squared (]},2). The blue line is a least squares linear fit to the data points, which
is then extrapolated to determine the spontaneous carrier relaxation rate, ;.

The impact of non-linear gain compression on the free-running relaxation
oscillation frequency was evaluated using the relation in (93) (page 85). A plot of the
square of the measured relaxation oscillation frequency as a function of power is given in
Figure 48, where the gain compression coefficient, &, is extracted to be 0.06 mW'.
Although this value is less than its corresponding value for the quantum-dot laser studied,

it remains an order of magnitude greater than typical quantum-well lasers [8].
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Figure 48. Quantum-dot laser free-running relaxation oscillation (]j«-,z) as a function of the

total output power (P, both laser facets). The dotted line is a least squares linear fit
using expression (93).

The linewidth enhancement parameter’s measurement using the injection-locking
technique for the quantum-dash laser differed from those found for the quantum-dot
laser. Where the measured linewidth enhancement parameter for the quantum-dot laser
was found to be relatively constant as a function of injected master laser power, the
quantum-dash laser’s measured linewidth enhancement parameter showed a dependence
on the injected master laser power. The linewidth enhancement parameter was observed
to decrease as the injected power was increased, as illustrated in Table 3 showing
measured values at bias current of 65 mA and varied injected powers. Table 4 and Table

5 show corresponding linewidth enhancement parameter data for bias currents of 75 mA
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and 85 mA, respectively. For fixed injection strengths, the linewidth enhancement

parameter is observed to increase as the laser bias current is increased.

Table 3. Quantum-dash laser linewidth enhancement parameter measured using the
injection-locking technique for varied injected master laser powers at 65mA bias current.

P master(MW) Uo(GHZ) (04
8 124 1.0
6 107 1.2
5 98 1.7
4 87 1.9
3 76 2.2

Table 4. Quantum-dash laser linewidth enhancement parameter measured using the
injection-locking technique for varied injected master laser powers at 7SmA bias current.

P master(MW) | 1,(GHz) a
8 102 2.3
7 95 2.0
6 88 2.4
5 80 2.2
4 72 2.9

Table 5. Quantum-dash laser linewidth enhancement parameter measured using the
injection-locking technique for varied injected master laser powers at 85mA bias current.

P master(MW) | 1,(GHz) a
9 99 2.8
8 94 3.4
6 81 3.2
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The lower current limit in measuring the linewidth enhancement parameter is
limited by the observance of period-one oscillations under positive frequency detuning
conditions. The measured values shown in Table 3 and Table 4 are for injected power
levels where the coupled system transitions from stable-locking to four-wave-mixing at
the positive frequency detuning edge and from stable-locking to unlocked operation at the
negative frequency detuning edge. Injected power levels where period-one operation was
observed as the master laser was positively detuned from the slave laser yielded
unrealistic/irrational values. It is noted that in Table 3 and Table 4, the injection strength
value, 77,, 1s in Grad/s.

The upper limit is constrained by the Fabry-Perot mode spacing, measured for the
quantum-dash laser to be approximately 85 GHz. Dividing this value in half (master will
begin to couple to the adjacent mode past the mode spacing mid-point), stable-locking
observed at a detuning of +42.5 GHz results in continuous stable-locking as further
detuning causes the master laser to lock to the next Fabry-Perot mode. This detuning of
~42.5 GHz equates to an injection strength of ~2:42.5-7 =267 GHz. The observance of
continuous stable-locking under strong injection is further enhanced by the asymmetry of
the stable-locking region as given in (24), where the detuning range is given by -7(1 +
0/)1/ ? < Aw < n. An illustration of the continuously locked case is illustrated in Figure 49.
An example takeaway from Figure 49 is that for an injection strength of 125 GHz, if the
linewidth enhancement parameter is > 3.11, then continuous locking will be observed

between adjacent Fabry-Perot modes of the quantum-dash slave laser.
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Figure 49. Illustration of the upper injection strength limit experienced when measuring
the linewidth enhancement parameter with the injection-locking technique in the
quantum-dash Fabry-Perot laser.
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Chapter 5.  Optically-Injected Quantum-Dash Lasers: Experimental Findings

This chapter investigates the behavior of the optically-injected quantum-dash
Fabry-Perot laser as the injected field strength is increased from near-zero to levels
resulting in stable locking. First, the microwave domain modulation response of the
injection-locked quantum-dash laser is analyzed using the small-signal modulation
response derived in Chapter 2. The newly derived modulation response, where the
nonlinear carrier relaxation rate and compression of the differential and nonlinear carrier
relaxation rates are incorporated, is used to least-squares-fit data collected on the
injection-locked system with a focus on the zero-detuning and positive frequency
detuning boundary conditions. The extracted values are then compared with theoretically
expected values under the given detuning conditions. The correlation between the
frequency of the resonance peak of the modulation response at the positive frequency
detuning edge and a pole in the modulation response function under this detuning
condition is illustrated in order to validate the maximum injection strength, 7,
calculation introduced in (73). The newly derived modulation response function is shown
to accurately simulate the injection-locked behaviors and predict operating conditions
ideal for high-performance optical communication links.

Second, the free-running characterization in section 4.2 is used to theoretically
simulate the dynamic response (stable locking, period-one, period-doubling, or chaos) in
the context of the normalized, dimensionless single-mode rate equations described in
Chapter 3. This theoretical examination is verified with experimental results obtained
using a high resolution spectrometer (1 MHz), yielding a unique data set showing

extreme detail of the coupled system’s optical power spectra. Experimentally, stability
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maps where the dynamic state is characterized as a function of injection strength and
detuning frequency are generated for varied slave laser bias conditions. The experimental
setup used to characterize the quantum-dash laser at 1550-nm under optical-injection is

given in Figure 50.
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Erbium Doped
620_0 External Fiber Amplifier w/ Fabry-Perot
Cavity Tunable |—p 2 Quantum-Dash
; Bandpass Filter
Diode Laser SHd SHeRGETG laser (slave)
(master)
DC +RF
l ¢ l Signal
High Resolution Optical Spectrum High Speed » Netm;rl;TAanatl)y}(zer
Spectrum Analyzer Analyzer Photodetector = 40 GHz Bandwidth
(Agilent 83453B) (Yokogawa AQ6319 )
1 MHz Resolution 1.25 GHz Resolution

Figure 50. Experimental setup used to characterize the optically-injected quantum-dash
laser.

5.1. Microwave modulation response of the injection-locked quantum-dash laser

at the positive detuning edge of stable locking

In this section, the microwave modulation response is examined at the positive
frequency detuning edge of stable-locking using the microwave modulation response
derived in Chapter 2. The transfer function is reiterated here for clarity and to add in a
parasitic carrier transport rate, j, as shown in (96). Expressions (97) — (102) show the
terms used, where 77 = 77,/Rpz. Based on the free-running characterization of the quantum-

dash laser presented in section 4.2, the number of unknowns in (96) — (102) is reduced
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from 10 (%4, %> ¥e» %> Yoo &> To» RiE, @, 6,) t0 3 (775, Rpe, 6,). In (96), y; 1s the inverse
parasitic carrier transport time and is determined by least-squares fitting the free-running
modulation response. The free-running slave parameters y,, 7,, %, and ) are carrier
forward from the free-running characterization and considered constant in the response
function; y, and y, are scaled using Rrr and compressed via g, based on the injected
power, as expressed in (103) and (104). The field enhancement factor, Rpz, is ideally
calculated by solving for the real root of (34) based on the free-running relaxation rates,
maximum injection-strength 7,, and phase-offset between the master and slave. This
relationship between Rpr and the coupled system’s operating parameters essentially

reduces the number of fitting parameters to 2 (77, and 6,).

@) = (C —( jfz;i(j’ (23+O)Z—2303)2 (i+ (a)l/ 7)7) (96)
A= Yoyt Vping T VT Vin ©7)
B= YoiniVe & Youimi¥s T T %l = Zhping (98)
C =17 Ghin + 1) = ZOin¥e & Wpini?s = Yain¥in) 99)
Z =n(asin(6,) - cos(6,)) (100)
Y =2ncos(0,) (101)

77 _ c (1 - R) Enj,external
’ 2ngL \/E PFR,tutal

(102)
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(1+8pPﬁ,)

2

. =v R
7}1,111] yn FE (1+8p (Per;E +an) (103)
(I+¢&,P,)’
Vi = Vo Rig - (104)

(I+&,(P.Ryp +P,)’

inj

Section 2.6 discussed the importance of the positive frequency detuning edge of
stable-locking, where the steady-state phase offset has been shown to be approximately
-2 and the field enhancement factor, Ryz, is approximately 1 reducing y; and Z as given
in (62) and (63). In Figure 51 the modulation response is shown for three cases at the
positive frequency detuning edge of stable-locking, where further detuning resulted in the
side mode suppression ratio falling below 30 dB as the injected power was held constant.
Constraining the fitting function such that there are only 2 freely varying fitting
parameters (77, and 6,) yields the fitting results shown in Figure 51, where the fit only
weakly agrees with the experimentally observed resonance peak. These poor fitting
results are a result of the highly constrained nature of the fitting model. The extracted
parameters (77, and 6,) and the free-running values carried forward are given in Table 6.
The takeaway from Figure 51 and Table 6 is that to adequately fit the experimental
response curves, the parameters in the fitting function will need to be more loosely
constrained. The error in 77, in the far right column of Table 6 indicates the deviation
between the value calculated based on (102) using the externally measured power levels

and the value extracted by least-squares-fitting.
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Figure 51. Modulation response at the positive frequency detuning edge of stable locking.
Markers indicate the experimental data; solid lines are the least-squares-fitting results
with the expressions given in (96) - (104) where only 77, and 6, are allowed to freely vary
as fitting parameters. Ryg is calculated by solving for the real root of (34) based on the
free-running relaxation rates, least-squares-fit value of the injection-strength 7, and
phase-offset between the master and slave. « is constrained based on the free-running
measured value.

Table 6. Extracted operating parameters obtained by least-squares-fitting the
experimental data in Figure 51 with the expressions given in (96) - (104). The columns in
yellow were freely varying fitting parameters; gray columns were held constant; green
columns were tightly constrained within 5% of there free-running value.

V: =333.3GHz, y, =4.5GHz, ¢,=0.06
Calculated max
/ P Slave Injection i
slave inj Yn Yp no errorin
Power 0 a R GHz
(mA) [(mw) | o | Strength, 7, | (@Ha) | (GHD) | (GHz)| e | OHD
(GHz)
60 6 2.23 94.3 0.926| 2.7 104 |-1.52| 1.50 1.07 76.92 10.29
70 4.5 3.98 66.0 1.34 | 3.98 58.2 |-1.49| 3.50 1.06 90.91 | 11.82
70 7 3.98 82.4 1.34 | 3.98 75.1 |-1.53| 3.50 1.04 90.91 8.86
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Next, the least-squares-fitting constraints are loosened such that the real root of
(34) was not used to determine the value of the field enhancement factor and the
linewidth enhancement parameter was allowed to vary in a greater degree; the resultant
fitting results are shown in Figure 52. Table 7 shows the extracted parameter values for
the least-squares-fit curves in Figure 52, along with the maximum injection strength, 7,,
calculated based on the externally measured slave power, injected master power, and
coupling efficiency from the lensed fiber to the slave facet. The error in 7, in the 2" from
far right column of Table 7 indicates the deviation between the value calculated based on
(102) using the externally measured power levels and the value extracted by least-
squares-fitting.

The fitting results in Figure 52 and Table 7 show that the newly derived
modulation response function can adequately model the experimental data. While (34)
was not used in the fitting function (cubic equation used to determine the steady-state
phase offset), it was used to calculate the field enhancement using the extracted
parameters (value given in the right column of Table 7). The calculated field
enhancement factor is generally close to the extracted value; however, using (34) in the
fitting function to determine the field enhancement factor impedes the quality of the fit as
the function becomes overly constrained.

The maximum injection strength, steady-state phase offset and field enhancement
factor are each extracted to be in strong agreement with predicted theoretical values. The
linewidth enhancement parameter is found to be larger than expected for all three cases,
especially for the 60 mA case where it was measured to be in the range of 1.5 per Table 3

in section 4.2. This deviation from the expected value obtained by measuring the
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asymmetry of the stable-locking regime leads one to conclude that the linewidth
enhancement parameter varies as a function of the detuning frequency; this conclusion is
based on suggestions in Nguyen et al. that the linewidth enhancement parameter is
dependent on the injected power [59] and the trend reported in [40]. It is also noted that
the gain compression coefficient was extracted to be either negligible or much smaller
than the value obtained from characterizing the free-running laser; this finding indicates
that the injected photon density may not result in gain compression in the same manner as

the free-running inter-cavity photons.

Response, dB
4
o
|

P g T
4 T+ T

]+ 1= 60mA, Pyi=6m

B0 Iy =TOMA, Pjpj= 4.4 mW %
00 10 5= TOMA, Pypj = 7.0 mw &
T T T T T T T T I

|
5 10 15 20
Modulation Frequency, GHz

Figure 52. Modulation response at the positive frequency detuning edge of stable locking
for 3 different injected powers. Markers indicate the experimental data; solid lines are the
least-squares-fitting results with the expressions given in (96) - (104).
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Table 7. Extracted operating parameters obtained by least-squares-fitting the
experimental data in Figure 52 with the expressions given in (96) - (104). The columns in
yellow were freely varying fitting parameters; gray columns were held constant.

V. =333.3GHz, y, =4.5GHz
Calculated max

| 2 ST Injection & i R e

slave inj Yn Yp Mo p errorin
Power g, a R 1. |t (GH2) BASED

g (%
(mA) | (mW) (mW) Strength, 7, | (GHz) | (GH2) | (GHZ) (mw™) 7, (%) N (34)

(GHz)

60 6 2.23 94.3 0.926 | 2.704 98 -1.57 | 3.82 1.05 0.000 | 71.43 3.92 1.04
70 4.5 | 3.98 66.0 1.34 | 3.98 62 |-1.44| 3.94 1.15 0.000 | 100.00| 6.06 1.11
70 7 3.98 82.4 1.34 | 3.98 81 -1.5 | 3.67 1.10 0.008 |100.00| 1.70 1.06

Based on the extracted parameter values in Table 7, the B-term in (98) is
calculated and compared with the resonance peak of the modulation response.
Additionally, the absolute value of the complex root of (96) is calculated and compared
to the measured resonance frequency; the results are in Table 8. The calculated resonance
frequency values compare well with the measured value. The takeaway is that the B-term

yields a strong approximation of the resonance frequency of the coupled system.

Table 8. Resonance peak of the positive detuning modulation response functions
calculated using the B-term and from the absolute value of the polynomial transfer
function’s roots based on the extracted parameters in Table 7.

Measured 8 /(2 Absolute Value of the
s (MA) [P (MW) /(27) .
Resonance Peak | (GHz) Polynomial Root
60 6 16 16.4 15.7
70 4.5 10.7 10.5 10.7
70 7 13.2 13.1 12.7

Next, the impact of the nonlinear carrier relaxation rate is excluded and the least-
squares-fitting is repeated. Ignoring the contribution of the nonlinear carrier relaxation

rate, the least-squares-fitting results of the data shown in Figure 52 are given in Table 9.
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The least-square-fit results give an equally tight modeling of the experimental data as
those given in Figure 52 where the nonlinear carrier relaxation rate is considered. The
results indicate the drawback of the multi-parameter fitting function, as essentially an
infinite number of possible solutions exist. The extracted parameters for the cases with
and without the inclusion of the nonlinear carrier relaxation rate point out that at this
detuning condition (positive frequency detuning edge), the function is dominated
primarily by the maximum injection strength. All additional parameters have only a

minor impact on the coupled system’s small-signal modulation response.

Table 9. Extracted operating parameters close to the positive frequency detuning edge
where the nonlinear carrier relaxation rate is not included.

Ve =333.3GHz, 7, =4.5GHz,¢,=0, 7, =0 GHz

Calculated max
I'stave || P'imj PSIave Injection Yn Mo 0 R e error in
(ma) | (mw) || Strength, 7, | @ra) | @H2)| T | “ | T | T o

(GHz)

60 6 2.23 94.3 0.926| 97.9 |-1.561| 3.49 | 1.00 76.92 3.82
70 4.5 | 3.98 66.0 1.34 16644 | -1.34 | 1.56 | 1.12 76.92 0.67
70 7 3.98 82.4 1.34 85 [-1.449(2.20| 1.06 | 100.00 | 3.16

The takeaway from comparing Table 8 and Table 9 is that the nonlinear carrier
relaxation rate and gain compression have a minimal impact on modeling the modulation
response at the positive frequency detuning edge where the steady-state phase offset

approaches -772 and Rpr approaches 1. The approximate 4, B, and C parameters at the

positive frequency detuning edge of stable locking are given here (6, =-7/2, Rpp = 1):

Vo =21mc0s(8,)=0 (105)
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Z =n(asin(8,) - cos(6,)) = —an (106)

Simplifying the 4, B, and C coefficients to the following as given in section 2.6:

Ag-2 =t T T =W (107)
Bo- . = Q™+ 1.+ any, (108)
Co-mr = 1" + 1) + any (109)

Therefore we see that the nonlinear carrier relaxation will have no impact on the
C-term, and at strong injection strengths, will have a marginalized impact on the B-term.
The takeaway found here is that the resonance peak of the modulation response at the
positive frequency detuning edge of stable locking is strongly dependant on the
maximum injection strength as given in (102). The experimentally measured resonance
peak can therefore be used to validate the approach used to calculate the maximum
injection strength based on the facet reflectivity, internal cavity round-trip time, and
externally measured master and slave powers. The results show the importance of
accounting for the total slave laser output power in determining the maximum injection
strength 77,, versus the approach in [39] where only the slave output power at the injected
facet is taken into account. In the next section, the modulation response under zero-
detuning is analyzed using the full model derived in Chapter 2.

Using the verified small-signal modulation response transfer function,
semiconductor laser design properties yielding a 1 THz resonance frequency can be
theoretically determined. For this design case, a detuning at the positive frequency
detuning edge is chosen due its maximum degree of resonance frequency enhancement

for a given injection strength. First, it is assumed that the following laser parameters (,,
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¥o» Yes Js» ©) TEMain constant and are equivalent to the quantum-dash laser values under a
bias current of 70 mA reported in this work. It is also assumed that the RC parasitic
damping rate does not limit operation at high frequencies (). The key design parameter
is taken to be the cavity length of the laser in order to modify the internal cavity round
trip time, given its impact on the injection strength calculation as given in (102). As the
laser cavity length is decreased, it is assumed that the device continues to lase for fixed
cleaved facet reflectivity values.

77 — c (I_R) Pinj,extemal 102
*“on,L JR \ P (102)

R total

Given the direct correlation between the B-term (in radian frequency) and the
resonance peak at the positive frequency detuning condition, the maximum injection
strength, 77,, necessary to yield a 1 THz resonance peak is 6280 GHz. To reach this large
value, the cavity length is decreased to enhance the ¢/2ngL term in (102), while the
injected power is increased. Assuming no heating effects at the laser facet and a 50%
coupling efficiency between the injected power and the slave laser facet, an injected
power of 87.5 mW is necessary for a cavity length of 25-um. This cavity length and
injected power condition is simulated in Figure 53. In Figure 53, cases where the inverse
parasitic carrier transport time (%) is and is not considered are included. The figure shows
that when  is considered, an enhanced resonance frequency is achievable; however, the
modulation efficiency will be highly degraded. The dashed lines adjacent to each solid
line illustrate the modification to the small-signal response when gain compression is
considered (¢, is taken to be equal to the free-running extracted value of 0.06 mw"). The

enhanced resonance frequency is essentially unchanged due to gain compression, as the
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B-term is dominated by the maximum injection strength, 7,, at the positive frequency
detuning edge and therefore the compression of y, and y, under strong injection has a

negligible impact.
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Figure 53. Theoretically simulated small-signal modulation response at the positive
frequency detuning edge for a short cavity device (25 um) under strong injection (P, =
87.5 mW) to show a 1 THz resonance frequency. Cases where the inverse parasitic
carrier transport time () is and is not considered are included. The dashed lines illustrate
the impact of gain compression on the response.
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5.2. Microwave modulation response of the injection-locked quantum-dash laser

under zero-detuning and stable locking

The interest in the zero-detuning condition is motivated due to several reasons.
First, it simplifies both theoretical predictions and experimental efforts. Second, its
microwave modulation response has been observed experimentally and theoretically to be
relatively flat in comparison to positive frequency detuning conditions, making this
detuning condition ideal for broad-band applications. Lastly, the zero-detuning condition
will simplify the implementation of the optical-injection architecture into photonic
systems, as the master and slave may be packaged together with a common frequency
locker to maintain the detuning condition. From the modeling perspective, the
attractiveness of zero-detuning was highlighted in section 2.6, where the steady-state

phase to linewidth enhancement parameter relationship was given by: 6, = -tan” (),

reducing the Z and y, terms as given here:

__2n
Vi = (1+a2)1/2 (110)
Z=-n(+a®)" (111)

The modulation response function described in (96) - (104), along with the
simplifications given in (110) and (111), is used to model experimental modulation
response curves collected under the zero-detuned condition as a function of the slave
laser bias and injection strength. The modulation response curves under zero-detuning,
shifted to a DC modulation efficiency of 0-dB, for 65 mA, 70 mA, 75 mA, 80 mA, and

85 mA slave bias conditions are given in Figure 54 to Figure 58, respectively.
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Figure 54. Normalized microwave modulation response under zero-detuning for
increased injection strengths; slave bias is 65 mA.
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Figure 55. Normalized microwave modulation response under zero-detuning for
increased injection strengths; slave bias is 70 mA.
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Figure 56. Normalized microwave modulation response under zero-detuning for
increased injection strengths; slave bias is 75 mA.
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Figure 57. Normalized microwave modulation response under zero-detuning for
increased injection strengths; slave bias is 80 mA.
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modulation curves with the function derived in Chapter 2 holds the free-running slave
parameters (%, %, %, and %) constant. The nonlinear carrier and differential carrier

relaxation rates (7, ) are scaled using Rrr and compressed based on the injected power
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Figure 58. Normalized microwave modulation response under zero-detuning for
increased injection strengths; slave bias is 85 mA.

As in section 5.1, the least-square-fitting of the experimental zero-detuning

using &, per expression (103) and (104).

response curves for a slave laser bias of 70 mA in Figure 59, with the extracted
parameters listed in Table 10. In the curve-fitting function, the maximum injection
strength was restricted to be within 10% of the value calculated using (102) based on the
measured injected power. The extracted linewidth enhancement parameter averages 2.9

and is reasonable for the quantum-dash laser at a bias current of 70 mA. What is not

Least-squares-fitting results are illustrated for the injection-locked modulation
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observed in the extracted parameters is a systematic decrease in the linewidth
enhancement parameter with increased injection strengths, as suggested in [59] and
experimentally reported in section 4.2. The Matlab code used to perform the least-

squares-fitting is found in Appendix A.
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Figure 59. Least-square-fit microwave modulation response under zero-detuning for
increased injection strengths; slave bias is 70 mA. Markers indicate experimental data;
solid lines are the least-squares-fit results.
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Table 10. Extracted parameters (yellow) from the curve fit illustrated in Figure 59 for a
quantum-dash bias current of 70 mA.

I, =70 mA, 0, = tan™ (), y. = 333.3 GHz, 7y, = 4.5 GHz

g Calculated
o ave | | ot .
P inj Power S';Jec I;)hn Tn Yp Mo o R Ep | n e errorin 7,
(MW) | (mw) | >"¢"8™ | (GH2) | (GH2) | (GHz) (mw™) (%)
1, (GHz)

2 3.98 55.0 1.34 | 3.98 | 56.9 [ 3.00 | 1.42 | 0.001 | 83.33 3.44
4 3.98 77.8 1.34 1398 | 81.5 | 3.10 | 1.49 | 0.001 | 83.33 4.76
6 3.98 95.3 1.34 | 3.98 | 99.8 | 3.10 | 1.64 | 0.001 | 83.33 4.75
8 398| 1100 | 1.34 (398 | 115 | 3.10| 1.73 | 0.001 | 83.33 4.53
10 13.98) 123.0 | 1.34 [ 3.98 | 129 | 3.10 | 1.84 | 0.001 | 83.33 4.88
12 13.98| 134.7 | 134 |3.98 | 141 | 3.00 | 1.91 | 0.001 | 83.33 4.64
14 13.98| 1455 1.34 | 3.98 | 153 | 290 | 1.93 | 0.001 | 83.33 5.15
16 |3.98| 1556 | 1.34 | 3.98 | 163 | 2.90 | 1.94 | 0.001 | 83.33 4.76
18 13.98| 165.0 | 1.34 |3.98 | 173 | 290 | 1.96 | 0.002 | 76.92 4.83

Additional least-square-fitting results are reported in Table 11 — Table 14 for the
65 mA, 75 mA, 80 mA, and 85 mA slave bias cases, respectively. In each case, the
starting value for the linewidth enhancement parameter was based on the measured
values reported in section 4.2. The first takeaway from the extracted parameters for the
varied slave laser bias conditions is that the linewidth enhancement parameter remains
relatively constant at ~3 over the entire range of slave laser bias currents. This finding
contrasts with the highly variable nature of the linewidth enhancement parameter
reported by Grillot et al., where the feedback sensitivity of a quantum-dash laser with the
same design as the device investigated in this work was examined [56] (likewise,
reference [40] examines the same laser device; the author of this work is a co-author of
both). It is noted that although identical in design, the operating characteristics of the

quantum-dash laser used in [56] and [40] were slightly different; most notably, the output
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power and slope efficiency (0.2 mW/mA versus 0.16 mW/mA) were slightly higher for
the device in [56] and [40].

In [56] and [40], it was reported that the quantum-dash Fabry-Perot laser’s
linewidth enhancement parameter was approximately 3.2 at 70 mA bias current and 8.0 at
a bias current of 85 mA. Given that the linewidth enhancement factor is dependent on the
output power (equally the inter-cavity photon density) as discussed in [8] and [62], the
quantum-dash device investigated in this work exhibiting slightly lower output power
levels will have lower linewidth enhancement parameter values at identical bias currents
compared with [40] and [56]. Secondly, the linewidth enhancement parameter
measurement is known to have a high degree of experimental error, as discussed by
Melnik et al. in [47].

The second takeaway is in regards to gain compression: it was found that only
under the high bias current condition (85 mA) that the gain compression approaches the
value determined by characterizing the free-running operation of the quantum-dash as
reported in section 4.2 (page 98), where g, was found to be 0.06 mW". This finding is
visually explained using Figure 48 (page 98) where the gain compression coefficient is
determined, showing that gain compression does not have a prominent impact until the
total output power reaches 4 mW, a power level that corresponds to a bias current above
~95 mA. Based on this finding, it is not surprising to see that gain compression does not

affect the modulation response as indicated in Table 11 — Table 14.
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Table 11. Extracted parameters (yellow) from the curve fit for the injection-locked
quantum-dash laser’s modulation response at zero-detuning and 65 mA bias current.

I, =65mA, 0, =-tan” (), y.= 333.3 GHz, ¥, = 4.5 GHz

Calculated
P inj Slave Injection Yn Yp Mo Ep errorin 7,
Power a R § 1t (GH2)
(MW) | (mw) | Strength, | (GH2) | (GHz) | (GHz) (mw™) (%)
n . (GHz)
1.34 |3.140( 49.5 1.12 [ 3.38 | 49.4 | 3.00 | 1.32 | 0.001 | 90.91 0.12
2 3.140| 604 1.12 | 3.38 | 60.4 | 3.00 | 1.38 | 0.001 | 90.91 0.04
2.8 [3.140| 71.5 1.12 | 3.38 | 715 | 3.00 | 1.42 | 0.001 | 100.00 | 0.00
5 3.140| 95.5 1.12 | 3.38 | 955 | 3.30 | 1.54 | 0.001 | 100.00 | 0.04
5.4 |3.140( 99.3 1.12 | 3.38 | 99.2 | 3.30 | 1.57 | 0.001 | 100.00 | 0.09
8.15 |3.140( 122.0 1.12 | 3.38 | 122 | 3.10 | 1.64 | 0.001 | 100.00 | 0.02
11 |3.140( 141.7 1.12 | 3.38 | 142 | 3.30 | 1.67 | 0.001 | 100.00 | 0.20
13.5 |3.140| 157.0 1.12 [ 3.38 | 157 | 3.20 | 1.74 | 0.001 | 100.00 | 0.01

Table 12. Extracted parameters (yellow) from the curve fit for the injection-locked
quantum-dash laser’s modulation response at zero-detuning and 75 mA bias current.

Iy =75mA, 8, =-tan™ («), y. = 333.3 GHz, ¥, = 4.5 GHz

P inj Slave C|?"chel:3|;:>end Y Y n Ep errorin 77
n 0 0
(mW) F;:;nmx)r Strength, | (GHz) (Glzz) (GHz) a R ke (mw ) 7t (GH2) (%)
1, (GHz)
3.1 4.8 62.4 1.53 | 455 | 62.6 | 3.30 | 1.25 | 0.001 | 100.00 | 0.38
4.5 4.8 75.1 153 | 455 | 77.4 | 3.30 | 1.35 | 0.001 | 100.00 | 3.01
6 4.8 86.8 1.53 | 455 | 88.8 | 3.30 | 1.45 | 0.001 | 100.00 | 2.35
9 4.8 106.3 1.53 | 455 | 107 | 3.40 | 1.55 | 0.001 | 100.00 | 0.70
12 4.8 122.7 1.53 | 455 | 126 | 3.30 | 1.65 | 0.001 | 100.00 | 2.69
15 4.8 137.2 1.53 | 455 | 138 | 3.10 | 1.75 | 0.001 | 100.00 | 0.60
17 4.8 146.0 1.53 | 455 | 157 | 3.00 | 1.85 | 0.001 | 100.00 | 7.51
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Table 13. Extracted parameters (yellow) from the curve fit for the injection-locked
quantum-dash laser’s modulation response at zero-detuning and 80 mA bias current.

I, =80 mA, 0, =-tan™ (), y. = 333.3 GHz, ¥, = 4.5 GHz

g Calculated
o ave | ot .
P inj Power sl;Jec Ifhn Tn Yp Mo o R Ep e errorin 7,
(MW) | (mw) | >"¢"8™ | (GH2) | (GH2) | (GH2) (mw™) (%)
1, (GHz)

2.5 5.6 51.8 1.75 | 5.16 | 54.3 | 3.40 | 1.19 | 0.001 | 100.00 | 4.83

5 5.6 73.3 1.75 | 5.16 | 76.8 | 3.10 | 1.49 | 0.001 | 90.91 4.77

7.5 5.6 89.8 1.75 | 5.16 | 94.1 | 3.10 | 1.66 | 0.001 | 83.33 4.79

9 5.6 98.3 1.75 | 5.16 | 103 | 3.10 | 1.68 | 0.003 | 83.33 4.78

10 5.6 106.7 | 1.75 | 5.16 | 109 | 3.20 | 1.66 | 0.008 | 76.92 2.16

125 | 5.6 115.9 1.75 | 5.16 | 121 | 3.10 | 1.76 | 0.005 | 71.43 4.40

15 5.6 1269 | 1.75 | 5.16 | 133 | 3.00 | 1.80 | 0.002 | 76.92 4.81

17.5 | 5.6 137.1 1.75 | 5.16 | 144 | 290 | 1.85 | 0.001 | 71.43 5.03

19 5.6 1429 | 1.75 |5.16 | 150 | 2.90 | 1.90 | 0.002 | 55.56 4.97

Table 14. Extracted parameters (yellow) from the curve fit for the injection-locked
quantum-dash laser’s modulation response at zero-detuning and 85 mA bias current.

I, =85mA, 0, =-tan (), y.= 333.3 GHz, 7, = 4.5 GHz

g Calculated
» ave | | o .
P inj Power sl;Jec Ifhn Tn Yp Mo o R Ep N errorin 7,
(MW) | (mw) | >"¢"8™ | (GH2) | (GH2) | (GH2) (mw ™) (%)
1, (GHz)

3 6.2 54.0 1.90 | 5.55 | 56.6 | 3.30 | 1.30 | 0.022 | 83.33 4.81

4.5 6.2 66.3 1.90 | 5.55 | 69.3 | 3.20 | 1.44 | 0.025 | 83.33 4.52

6 6.2 76.6 1.90 | 5.55 80 3.10 | 1.55 | 0.016 | 83.33 4.44

9 6.2 93.8 1.90 | 5.55 98 3.10 | 1.63 | 0.021 | 76.92 4.48

11 6.2 103.7 | 1.90 | 5,55 | 108 | 3.20 | 1.68 | 0.026 | 50.00 4.15

13 6.2 112.7 1.90 | 5.55 | 118 | 3.20 | 1.71 | 0.019 | 50.00 4.70

16 6.2 125.0 | 1.90 | 5,55 | 131 | 3.20 | 1.72 | 0.020 | 50.00 4.80

Next, a linewidth enhancement parameter focused sensitivity analysis of the
microwave modulation response curves under zero-detuning at the 85 mA slave bias

condition is performed; the response curves are least-squares fit while the linewidth
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enhancement parameter is constrained to larger values (5 < a < 8). Figure 60 shows the
fitting results, where the linewidth enhancement parameter restricted to larger values
inhibits the fitting process and yields weaker results (compared to the extracted results
reported in Table 14. The fitting approach allowed the maximum injection strength to
vary +15% from the value calculated using expression (102), as tighter constraints led to
less adequate fitting results. For the low injection strength cases (77, < 76.5 GHz, P;,; <6
mW) , the extracted parameters showed that the linewidth enhancement parameter
trended to the smallest value within the allowed range (5 < a < 8), as given in Table 15.
Under higher injection strengths, the least-squares-fitting resulted in larger linewidth
enhancement parameter values; however, repeating fitting results showed that at high
injection strengths, the function becomes less dependent on the a-parameter value. For
visual simplification, only four injection strength cases were included in Figure 60. The
fitting results in Table 15 also show that the gain compression coefficient fit tightly to the
predicted free-running value. This was in contrast to the values extracted for a freely
varying linewidth enhancement parameter in the fitting constraints, where the gain
compression coefficient was observed to have a negligible impact on the fitting results.

A similar approach to the 65 mA slave laser bias case resulted in less adequate
fitting results for cases when the linewidth enhancement parameter was restricted based
on the values in Table 3: 1 < a < 2.2. In this case, however, the gain compression

coefficient trended toward values less than 0.01 as correspondingly reported in Table 11.
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Figure 60. Least-square-fit modulation response under zero-detuning for increased
injection strengths; slave bias is 85 mA. The linewidth enhancement parameter is
restricted to: 5 < < 8. Markers indicate experimental data; the fitting results are given
by the solid and dashed lines.

Table 15. Extracted parameters (yellow) from the curve fit for the injection-locked
quantum-dash laser’s modulation response at zero-detuning and 85 mA bias current.

I, =85mA, 0, =-tan” (), y.= 333.3 GHz, ¥, = 4.5 GHz

Slave Cal‘cula?ted
P inj Power Injection Yn Yp Mo a R e Ep vt (GH2) errorin 77,
(MW) | (mw) | S8 | (GH2) | (GH?) | (GHz) (mw?) (%)
1, (GHz)
3 6.2 54.0 1.90 | 5.55 | 47.4 | 5.00 | 1.05 | 0.063 | 90.91 | 12.22
4.5 6.2 66.3 1.90 | 5.55 | 56.1 [ 5.00 | 1.09 | 0.063 | 50.00 | 15.38
6 6.2 76.6 1.90 | 5.55 | 70.6 | 5.00 | 1.32 | 0.063 | 100.00 | 7.83
9 6.2 93.8 1.90 | 5.55 | 79.3 | 5.80 | 1.32 | 0.056 | 83.33 | 15.46
11 6.2 103.7 | 1.90 | 5.55 | 87.7 | 6.00 | 1.39 | 0.063 | 50.00 | 15.43
13 6.2 112.7 | 1.90 | 5.55 | 95.3 | 6.80 | 1.41 | 0.063 | 50.00 | 15.44
16 6.2 125.0 | 1.90 | 5,55 | 106 | 7.90 | 1.52 | 0.063 | 50.00 | 15.20
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Curve-fitting the experimental data with the modulation response function where
the nonlinear carrier relaxation rate is excluded (y, = 0 GHz) yields similar fitting results
due to the multi fitting-parameter nature of the response function. Without the nonlinear
carrier relaxation rate, the fitting results give a small increase in the extracted linewidth
enhancement parameter and a small decrease in the extracted field enhancement factor.

The overall takeaway from this section is that regardless of the slave laser bias
conditions, the linewidth enhancement parameter extracted by least-squares-fitting the
modulation response curves remains relatively constant at ~3. Additionally, the drawback
of the multi-parameter function in modeling strong injection-locking conditions is
apparent with the nonlinear carrier relaxation rate providing only a slight improvement in
the modeling capabilities. Essentially, removing the nonlinear carrier relaxation rate from
the fitting function results in other parameters (77,,, and/or Rpg) varying slightly to
compensate for its contribution. In the next two sections, the impact of the nonlinear
carrier relaxation rate is analyzed for a weakly injected system. Under relatively weak
injection, the nonlinear carrier relaxation rate is observed to have a more significant

impact on the characteristics of the coupled system.
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5.3. Stability map of the optically-injected quantum-dash laser

In this section, stability maps characterizing the dynamic state (stable-locking,
period-one, period-doubling, coherence collapse, and four-wave-mixing) as a function of
maximum injection strength and detuning frequency are given for varied slave laser bias
conditions. The data set is unique in that it was obtained using a high resolution
spectrometer (1 MHz) giving extreme detail of the coupled system’s optical power
Spectra.

Stability maps for the 65 mA and 85 mA cases are displayed in Figure 61 and
Figure 62, respectively. Overall, the stability maps illustrate that the quantum-dash laser
has potential for implementation as a tunable photonic oscillator due to the maps’ large
regions of period-one parameter space. Additionally, the experimental results
demonstrate that only small parameter space regions of period doubling and coherence
collapse are observed. In contrast to the 85 mA stability map, the 65 mA case shows only
period-one and stable locking under zero-detuning conditions. The notion of only period-
one and stable locking under zero-detuning invokes interest in a packaged system where
the period-one state is used to generate a microwave frequency for implementation as a
tunable photonic oscillator. Under such a system, a frequency locker can be implemented
to hold the detuning frequency at zero and the unstable nature of the period-doubling
domain can be avoided by operating the injected slave laser under the proper bias

conditions.
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Figure 61. Stability map for the optically-injected quantum-dash slave laser at a bias
current of 65 mA. The blue diamonds at negative detuning indicate chaotic (coherence

collapse) operation. The trendlines have been added as a visual aid only.
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Figure 62. Stability map for the optically-injected quantum-dash slave laser at a bias
current of 85 mA. The blue diamonds at negative detuning indicate chaotic (coherence
collapse) operation. The trendlines have been added as a visual aid only.

Optical spectra illustrating the detuning series for a fixed maximum injection
strength, 7,, of 14.2 GHz where the quantum-dash laser is biased at 65 mA are shown in
Figure 63 and Figure 64. The figures depict the progression from an unlocked state at a
large negative frequency detuning to four-wave-mixing at a large positive detuning
frequency. Specifically, an unlocked state is observed at a detuning of -5.87 GHz (Figure
64); coherence collapse at -4.83 GHz (Figure 64); stable locking at -1.28 GHz (Figure

64); period-one oscillations at 0 GHz (Figure 63); the onset of period-doubling
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oscillations at 2.2 GHz (Figure 63) and strengthened period-doubling oscillations at 2.9
GHz and 3.85 GHz (Figure 63); the suppression of the period doubling oscillations at 6.4
GHz (Figure 63); and four-wave-mixing at 9.17 GHz where the slave laser operates at its

free-running frequency (Figure 63).
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Figure 63. Positive frequency detuning series for a maximum injection strength of 14.2
GHz and a slave laser bias of 65 mA.
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Figure 64. Negative frequency detuning series for a maximum injection strength of 14.2
GHz and a slave laser bias of 65 mA.

While the 65 mA and 85 mA stability maps are similar in nature, they differ in the
injection strength needed to transition from period-one operation to stable injection-
locking. This trend corresponds to expression (17) in reference [20] which states that the
coupled system reaches the reverse-Hopf-bifurcation point and exhibits stable-locking for
increased injected powers at a maximum injection strength, 7,, given by (112) for zero-

detuning conditions.

1/2
P
nstable = (T (a2 - I)J

Q 2 1/2
L(a” -1
2( )

(112)

The expression illustrates that the threshold maximum injection strength to reach
continued stable locking is directly proportional to the free-running relaxation oscillation
frequency of the slave laser and proportional to the square root of the linewidth
enhancement parameter in the limit of large «. The limitation of (112) is that it was
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derived under various approximations, particularly the case where the nonlinear carrier
relaxation rate was neglected.

Simulations of the quantum-dash laser at zero-detuning using the dimensionless
rate equation model described in Chapter 3 for the 65 mA and 85 mA cases are given in
Figure 65 and Figure 66, respectively. The theoretical results are in reasonable
quantitative agreement with the experimental stability maps, where only regions of
stable-locking and period-one oscillations are predicted at 65 mA, and a small window of
period-doubling below 7, = 15 GHz followed by period-one oscillations and stable-

locking are predicted at 85 mA.
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Figure 65. Theoretical simulation of the quantum-dash laser’s dynamic response at 65
mA and zero-detuning.
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Figure 66. Theoretical simulation of the quantum-dash laser’s dynamic response at 85
mA and zero-detuning.

The large period-one parameter space allows larger degrees of tunability to be
reached, ideal for an optically-injected laser implemented as a tunable photonic oscillator.
The tunability of the period-one resonance frequency, as measured by the spectral
sidebands, for varied #,4, and Af values is illustrated in Figure 67. Specifically, Figure 67
shows that for the quantum-dash laser at a bias current of 65 mA under period-one
operation, the resonance frequency (f;) can be tuned from 4.02 GHz to 19.99 GHz, where

the slave laser’s free-running relaxation oscillation frequency is measured to be 3.1 GHz.
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Figure 67. Optical spectra of the optically-injected quantum-dash slave biased at 65mA.

5.4. Approximation of the period-one resonance frequency at zero-detuning

In this section, the numerical approximation of the quantum-dash laser’s period-
one resonance frequency under zero-detuning conditions is discussed in reference to the
stable solution to the microwave modulation response described in Chapter 2. As
presented in Chapter 4, the quantum-dash nanostructure laser was shown to have
relatively large nonlinear and spontaneous carrier relaxation rates when compared to
quantum-well lasers. These increased rates are shown to enhance the coupled system’s
resonance frequency through interaction with the threshold gain shift induced in the slave
laser, the linewidth enhancement parameter, and the phase offset. The novelty of this

approach is that a stable solution is used to describe the period-one state, which is heavily

133



influenced by the nonlinear dynamics of the slave laser and not assumed to fall under
steady-state approximations. This approach is shown to give strong agreement between
measured and predicted period-one resonance frequencies.

Using expression (46) (page 29) and assuming that relatively weak injection
strengths do not modify the slave laser’s optical field from its free-running value (Rpg =
1) yields a resonance frequency of the coupled system given by (113). The function used
to calculate the resonance frequency is applicable to all detuning conditions, given that
the phase offset between the master and slave fields is known. The data presented in this
section focuses on the zero-detuning conditions due to the phase-to-linewidth
enhancement parameter relationship given by (14), which simplifies (113). Additionally,
the zero-detuning case is especially attractive because both the master and slave lasers

can be packaged with a reference wavelength locker to ensure frequency stability.

. Y
QO =Qf +n; +7,7,~7,@,asn6, - =) (113)

where Q. is the period-one resonance frequency and € is the free-running relaxation
oscillation frequency. This work uses (113) to calculate the period-one resonance

frequency, whereas two commonly used approximations are given by (114) and (115) [9],

[17].

2 2 2
Q=+ (114)
Q= 471, +7u2, (115)

The key difference between (114) and (115) is the last term that accounts for the

interaction between y,, and y,. (113) accounts for the large nonlinear gain of the quantum-
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dash laser through the nonlinear carrier relaxation rate j,, and its interaction with the
slave laser linewidth enhancement parameter a, 7,, and phase offset between the master
and slave 6,.

Optical spectra of the injected slave laser in the period-one state and zero-
detuning are shown in Figure 68, where the slave laser is biased at 70 mA. The resonance
frequency in Figure 68 is measured by the spectral sidebands. Expression (113) is used to
calculate the enhanced resonance frequency observed in Figure 68, and a strong
agreement between experimental and the calculated value are reported (Figure 69). Using
the free-running characterization results in Chapter 4, and by least-squares fitting the
microwave modulation response at zero-detuning and the injection strength
corresponding to the Hopf bifurcation, the linewidth enhancement parameter is found to
be 3.2. This 3.2 value is in agreement with the values given in Table 10 (page 119)
obtained by least-squares-fitting modulation response curves under strong injection

conditions.
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Figure 68. Optical spectra of the optically injected quantum-dash slave laser under a bias
of 70 mA and zero-detuning showing the increase in resonance frequency with injection
strength. £, is the measured resonance frequency value. The spectra shown in blue are
within the period-one operational region. The oscillations below -40 dBm are a result of
residual feedback in the experimental setup.
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Figure 69. Measured and calculated period-one resonance frequency as a function of the
injection strength for the quantum-dash slave laser at a bias current of 70 mA and zero-
detuning. The resonance frequency was measured using the spectral sidebands as
depicted in Figure 68.

The accuracy of (113) in predicting the period-one resonance frequency is
illustrated in Figure 69, where the measured resonance frequency under zero-detuning is
plotted with the values calculated using (114) and (115) as well. For the 70 mA slave bias
case, the parameter values were Qg = 21.6 GHz, y. = 9.8 GHz, 5, = 4.5 GHz, and o =3.2.
7. and y, were calculated to be 1.34 GHz and 3.98 GHz, respectively. Using (113), the

average error between experimental and calculated period-one resonance frequency is
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3.0%, whereas the average error using the approximation in (114) was 12.5%. Using
(115), which accounts for the threshold gain shift but neglects the nonlinear component,
the average error is 10.1%. Although (113) is only exact at the reverse-Hopf-bifurcation
point where the system operates under steady-state conditions, these results show that the
resonance frequency of the undamped period-one oscillations trends with the solution
derived under steady-state conditions and is a good approximation below the reverse
Hopf bifurcation point.

Data sets corresponding to Figure 69 for other slave laser bias currents showed
similar accuracy. For these other bias cases, y, and y, were adjusted based on the
measured €4 and y; for the specific bias current under test. The corresponding linewidth
enhancement parameter was extracted from the modulation response at the injection

strengths corresponding to the reverse bifurcation point.
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Chapter 6.  Optically-Injected Quantum-Dot Lasers: Experimental Findings

In this chapter, the experimental findings covering the optically-injected quantum-
dot laser are described and analyzed. First, the free-running characterization in section
4.1 is used to theoretically simulate the dynamic response (stable locking, period-one,
period-doubling, or chaos) in the context of the normalized, dimensionless single-mode
rate equations described in Chapter 3. This theoretical examination is compared with the
collected experimental results. Specifically, the dynamic response is theoretically and
experimentally examined under zero-detuned injection conditions for external injected
power ratios ranging from 9 GHz to 75 GHz and slave current bias levels of 1.3X, 2X,
and 2.6X threshold. The experimentally collected small-signal modulation response is
theoretically examined at weak injection strengths using the modulation response transfer
function derived in Chapter 2. Although experimentally limited by the resolution of the
optical spectrum analyzer, the quantum-dot laser is observed to exhibit highly stable

operation under optical-injection.

6.1. Optical spectral response under optical-injection at zero-detuning

The optical-injection experimental setup is illustrated in Figure 70. The master
laser was a temperature-tunable 30 mW Fujitsu DFB quantum well laser at 1310-nm
(model FLD3F7CZ) that had a polarization-maintaining (PM) fiber-coupled output. The
high-resolution (10 pm / 1.75 GHz) optical spectrum analyzer (OSA) (Yokogawa
AQ6319) and HP8722D vector network analyzer used in characterizing the free-running
parameters were employed in the same fashion as previously to monitor the optical power

spectra and small-signal S;; modulation response, respectively. A 3-port optical circulator
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based on 1310-nm single mode PM fiber was used to connect the master and slave lasers
and the test equipment with proper isolation. Experimentally, this fidelity of this work
was limited by the resolution of the optical spectrum analyzer, as the 1.75 GHz resolution
at ~1310-nm hampered the ability to observe weakly undamped relaxation oscillations at

frequencies < 1.75 GHz from the locked mode.
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Figure 70. Experimental setup used to optically-inject the quantum-dot laser.

Using the free-running relaxation oscillation frequency and damping rate, photon
decay rate, and spontaneous carrier relaxation rate, the optically-injected quantum-dot
laser is simulated using the dimensionless rate equations derived in Chapter 3. Recall that

in Chapter 3, sample bifurcation diagrams simulating the quantum-dash laser showed rich
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nonlinear behavior under various bias conditions. The simulation results for the quantum-
dot laser, shown in Figure 71, predict a highly stable response as the laser is subjected to
increasing levels of injected power. The takeaway from Figure 71 is that under zero-
detuning for both the 3.8 mA (2X threshold current) and 5 mA (2.6X threshold current),
only stable-locking operation is expected due to the low linewidth enhancement
parameter and significant nonlinear carrier relaxation rate. Although the stable behavior
the quantum-dot laser has been previously described for optical feedback by O’Brien et
al., the experimental results have not been compared in detail to numerical models that

explicitly call out the dependence on non-linear gain for the optical feedback case [42].
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Figure 71. Bifurcation diagrams simulating the response under zero-detuning. The two
cases correspond to respective P, T, and a-factor values for 3.8 mA(2X 7,), and 5 mA
(2.6X I;) bias conditions and illustrate the stability of the quantum-dot slave laser’s
operational behavior.

This high degree of stability in Figure 71 owes primarily to the small linewidth

enhancement parameter value measured for the device. The stability is also impacted by
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the large nonlinear carrier relaxation rate, y,, of the quantum-dot laser under test.
Specifically, for the 3.8 mA case: y, = 2.75 GHz, y, = 1.65 GHz; for the 5 mA case: y, =
4.14 GHz, y,=2.23 GHz.

The simulations in Chapter 3 showed that the nonlinear carrier relaxation rate
suppressed periodic pulsations in the equilibrium condition. This ¢ parameter accounting
for the impact of the nonlinear carrier relaxation rate in the dimensionless model, defined
as & = »)/(7)), 1s relatively larger for the quantum-dot laser versus the quantum-dash
laser. Essentially, the characteristic relaxation rates of the quantum-dot laser enhance the
impact of the typically ignored nonlinear carrier relaxation rate. For comparison
purposes, £~ 0.04 for the quantum-dash laser exhibits rich nonlinear dynamics (for larger
linewidth enhancement parameters), while & ~ 0.2 for the quantum-dot laser exhibits a
high degree of stability (for smaller linewidth enhancement parameters) as simulated in
Figure 71. While the stability of the laser under optical-injection is driven strongly by the
linewidth enhancement parameter, its dependence on the nonlinear parameter described
by ¢ strongly contributes to the stability of the quantum-dot device investigated here. The
dependence on ¢ with respect to the device’s stability is highlighted in the bifurcation
diagrams in Figure 72, where the quantum-dot device is simulated at a bias current of 5
mA for a fictitious linewidth enhancement parameter of 4 and cases where the nonlinear
carrier relaxation rate is and is not considered. The simulation where the nonlinear carrier
relaxation rate is not considered (and hence ¢ = 0) predicts that a two-extrema solution
indicative of period-one pulsations will occur for injection strengths ranging from 4 GHz

to 68 GHz. As we shall see, this behavior is not observed experimentally.
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Figure 72. Bifurcation diagram for a linewidth enhancement parameter of 5 and
relaxation rates based on a 5 mA bias current for the quantum-dot laser. (a) includes and
(b) ignores the nonlinear carrier relaxation rate in the rate equations.

The second unique feature noted in simulating the quantum-dot laser is the
extremely small 7-term of 9.2. The 7-term is given by y./y and is a fixed value for a
given slave laser (i.e. not dependant on bias current); for this particular quantum-dot laser
with HR-coated facets and a 300-um cavity length, j. is relatively small and y is
relatively large compared to the quantum-dash laser. For comparison purposes, the 7-
term for the quantum-dash is ~74, and simulations found in the literature for quantum-
well lasers using the dimensionless rate equation approach implemented here (where the
impact of the nonlinear component is neglected) have a 7-term of ~155 [17].

Experimentally, the quantum-dot laser was injected with strengths ranging from 9
GHz to 50 GHz at a bias current of 2.6X the threshold value (5 mA). The optical spectra
for the 2.6X threshold bias current case at the onset of stable-locking are shown in Figure
73, where the maximum injection strength is calculated to be 14.8 GHz. Due to the

single-mode nature of the dimensionless rate equation model derived in Chapter 3, a

143



discrepancy at low maximum injection strengths for the multi-mode slave under study is
observed. The spectra in Figure 73(c) (30-nm span) shows only moderately suppressed
Fabry-Perot modes away from the injected mode, where the side mode suppression ratio
(SMSR) is measured to be 7 dB. In the 0.5-nm span shown in Figure 73(a), the small
side-mode at ~1311.8-nm is believed to be a suppressed relaxation oscillation, where the

SMSR is measured to be 44.8-dB.
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Figure 73. Experimental optical spectra for the quantum-dot laser under weak optical-
injection at zero-detuning and a bias current of 5 mA. The maximum injection strength is
14.8 GHz for all three cases. The 0.5-nm span in (a) shows no observable undamped
relaxation oscillations. The 4-nm span in (b) shows that the adjacent Fabry-Perot modes
are not suppressed beyond 30 dB, the criteria for stable-locking. The 30-nm span in (c)
shows that the Fabry Perot modes at ~1305-nm are minimally suppressed (7 dB).
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The spectra in Figure 74 correspond to the experimentally observed onset of
stable-locking, where the maximum injection strength is 17.4 GHz. The 0.5-nm span in
Figure 74(a) shows no evidence of undamped relaxation oscillations, concluding that
period-one operation is suppressed under zero-detuning conditions. As the maximum
injection strength was increased up to 50 GHz, the Fabry-Perot side modes were more
strongly suppressed. Experimental optical spectra collected at a slave laser bias current of
3.8 mA (2X I;;) showed similar results to those in Figure 73 and Figure 74 for the 5 mA
slave bias current case (2.6X ;). For the 3.8 mA bias current under external power ratios
varied from 11 GHz to 90 GHz, unlocked behavior was observed at low maximum
injection strengths followed by stable-locking as the injected power was increased,
optical power spectra showing characteristics of undamped relaxation oscillations were

not observed for the full range of external power ratios.
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Figure 74. Experimental optical spectra for the quantum-dot laser under optical-injection
at the onset of stable-locking at zero-detuning. The adjacent Fabry-Perot modes are
suppressed beyond 30 dB, the criteria for stable locking; however, the 30-nm span shows
that the distant Fabry-Perot modes are suppressed below the 30 dB threshold for stable-
locking. The maximum injection strength is 17.4 GHz for all three cases. The wavelength

spans are: (a) 0.5-nm; (b) 4-nm; and (c) 30-nm.
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Although derived for the case where the nonlinear carrier relaxation rate is
ignored, Erneux et al. and Gavrielides et al. introduce stability boundaries in terms of the
T- and P- parameters and linewidth enhancement parameter [17], [20]. The analytical
derivations of the expressions for steady-state locking (reverse-Hopf-bifurcation point)
and Hopf-bifurcation boundaries are taken assuming a large 7-parameter on the order of
100 — 1000. The applicability of the stability boundaries given by Erneux et al. is
observed to be only an approximation for the slave laser analyzed in this work, as the 7-
parameter is calculated to be below 100 [17]. Expression (17) in Gavrielides et al. shows
that the coupled system reaches the reverse-Hopf-bifurcation point and exhibits stable-

locking for increased injected powers at an injection strength given by (116) [20].

1/2
P 2 er 2 1/2
= —=(a” -1 = a -1
M suabie [T( )} 5( ) (116)

From (116), the influence of the onset of stable-locking conditions is seen to be
strongly dependent on the linewidth enhancement parameter, and conditions where the
linewidth enhancement parameter is less than two will lead to sufficiently small threshold
injection strengths for stable-locking making operation below this point difficult to
observe experimentally. Gavrielides et al. also introduces an expression for a Hopf
bifurcation line (ref. [20], expression (19)) describing the onset of unstable optical-
injection (period-one, chaotic pulsations), which when zero-detuning is considered,

reduces to (117).
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For cases of a sufficiently large y; compared to 4, and small linewidth enhancement
parameter, the 77poprBifircaion Value 1s greater than 7., resulting in the stable operation
described by the single extrema electric field solution as simulated in illustrated in Figure
71. This particular case where 7sapie < MHopfBifurcation at zero-detuning is observed for the
3.8 mA case, where a = 1.6, ;. = 2nf; = 11.6 GHz and y; = 11.9 GHz. At a slave bias of
5 mA, this case (7sapie < MHopfBifurcaion) 1S Not met. The 5 mA forward and reverse
bifurcation points equate t0: 7uopzBifircation = 10.4 GHz and 74 = 16.7 GHz, indicating
that for a small range of injection strengths periodic pulsations will occur. The
discrepancy between this conclusion and the bifurcation diagram in Figure 71 is believed
to arise from the omission of the nonlinear parameter in (116) and (117), and from the
initial approximations used in Gavrielides et al. to derive the expressions [20]. The
significance of this particular approximation (7supie < MHopf-Bifurcation) 15 an indicator that
the highly damped nature of quantum-dot lasers are ideal for suppressing periodic

pulsations leading to instabilities.

Next, the stability analysis illustrated in Figure 13, Chapter 2 based on the real
part of the complex root of the polynomial function found in (57) at zero-detuning is
implemented to theoretically investigate the quantum-dot laser’s stability under optical-
injection. The quantum-dot’s stability is illustrated in Figure 75, where the impact of the
slave laser linewidth enhancement parameter is emphasized. Negative values are a sign of
stable-locking conditions and positive values are a sign of undamped oscillations
indicative of unstable-locking. The conclusion from Figure 75 is that based on the free-
running relaxation rates at 5 mA, only stable locking is predicted for linewidth

enhancement parameters below 5 given the relatively large non-linear carrier relaxation
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rate of the quantum-dot laser. The impact of the nonlinear carrier relaxation rate on
modeling the stability of the optically-injected quantum-dot laser is illustrated in Figure
76. Both linewidth enhancement parameter cases in Figure 76 where the nonlinear carrier
relaxation rate parameter is ignored predict that unstable operation will occur for a range
of injection strengths. Stated in another way, the large nonlinear carrier relaxation rate of
the quantum-dot laser suppresses unstable operation for fictitiously simulated increased
linewidth enhancement parameter values. These results correspond to those based on the

dimensionless rate equations illustrated in Figure 72.
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Figure 75. Quantum-dot stability analysis based on the real part of the complex roots of
the polynomial function in (57) at zero-detuning emphasizing the impact of the slave
laser linewidth enhancement parameter. Negative values are a sign of stable-locking

conditions and positive values are a sign of undamped oscillations indicative of unstable-
locking. The free-running quantum-dot laser values are for a bias current of 5 mA.
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Figure 76. Impact of the nonlinear carrier relaxation rate on the predicted stability of the
quantum-dot laser based on the real part of the complex roots of the polynomial function
in (57) at zero-detuning.

6.2. Small-signal microwave modulation response

In this section, the experimentally collected small-signal modulation response is
theoretically examined at weak injection strengths using the modulation response transfer
function derived in Chapter 2. Figure 77 shows the normalized microwave modulation
response where the slave laser is biased at 5 mA for injected master laser powers of 1.4

mW, 0.8 mW, and 0.5 mW under zero-detuning conditions. Figure 78 shows the
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corresponding data without normalization and the associated least-square-fitting results
for the modulation response curves using the transfer function in (118). Expression (118)
is the equivalent of (51) with the second term in the denominator of (118) accounting for

the parasitic RC and carrier transport effects;  is the parasitic transport time.

(CIZ2) (> +Z%) 1
(C— A0’ +(Bo-0')’ (1+(@/7,)") (118)

|H (o))" =

In Figure 78, the modulation efficiency is observed to decrease as the injected
power is increased. The number of fitting parameters in the transfer function is reduced
using the following: the phase-to-linewidth enhancement parameter constraint at zero-
detuning given in (14); the phase-to-field enhancement factor relationship given in (34);
and by holding the free-running relaxation rates given by ., %, 7, and y, constant (they

are scaled under optical-injection using Rrg).
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Figure 77. Normalized small-signal modulation response at zero-detuning.

The parameter values extracted by least-square-fitting the experimental data are
shown in Table 16. The response curve for the 1.4 mW injected case could not be
effectively least-square-fit with the zero-detuning phase-to-linewidth enhancement
parameter constraint given in (14), and thus it was removed for this case. The fitting
results for this curve show that the linewidth enhancement parameter dips extremely low.
The linewidth enhancement parameter is found to decrease with increased injected
powers based on the fitting results, a trend that was not observed in the linewidth
enhancement parameter measurements based on the asymmetry of the stable-locking

region. This result indicates that optical-injection can be used to manipulate the linewidth
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enhancement parameter of the quantum-dot laser, a behavior that was not observed in the

optically-injected quantum-dash laser.
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Table 16. Least-square-fitting results for the response curves in Figure 78.

p W Calculated [Least-Square-Fit o (rad) (GHz)
a
master (m ) 770 (GHZ) 770 (GHZ) 7t £
0.5 15.5 9.6 2 -invTan(8) 15
0.8 20 13 1.33 |-invTan(#) 58
1.4 26 20.8 0.167 -1.34 1000
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A takeaway from the curve fitting results is the inaccuracy of the maximum
injection strength, 7,, fitting the response curve versus the value calculated based on the
internal cavity round trip time, facet reflectivity, and external power ratio. This
discrepancy is attributed to inaccuracy in the measured coupling efficiency from the
lensed fiber to the slave laser facet and/or inaccuracy in the facet reflectivity value. The
emitting facet of the slave was HR-coated to have a reflectivity of 0.8. A small deviation
in this value causes a relatively large variation in calculated injection strength. The high
reflectivity of the injected slave facet is also noted to decrease the injected power

efficiency according to (73).
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Chapter 7.  Conclusions and Future Work

7.1. Summary

In this work, the complete operation of optically-injected nanostructure lasers was
investigated with emphasis on the contribution of their characteristically large nonlinear
gain component. Explicitly accounting for the nonlinear gain of nanostructure lasers
through the nonlinear carrier relaxation rate and nonlinear gain compression coefficient is
found to enhance the capability of modeling optically-injected quantum-dash and
quantum-dot Fabry-Perot devices.

First, a predictive model describing the small-signal microwave modulation
response of the optically-injected nanostructure laser was derived and used to extract the
operating parameters from experimentally collected modulation response curves for
varied degrees of injection strength and frequency detuning levels. Under zero-detuning
conditions, 3-dB bandwidth improvements greater than 3X were observed for the
quantum-dash laser. Next, the novel small-signal modulation response function was used
to least-squares-fit experimental data sets collected for varied quantum-dash slave laser
bias conditions; the results showed that the quantum-dash laser’s linewidth enhancement
parameter varied less as a function of bias current conditions under zero-detuning than
measured using the injection-locking technique discussed in section 4.2. The results also
showed that the linewidth enhancement parameter varied minimally as the injection
strength was increased; this finding was contrary to the linewidth enhancement parameter
values reported in section 4.2 measured using the injection-locking technique, where «

was observed to decrease as the injected power was increased. These finding are
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concluded to arise from the injection-locking measurement technique’s lack of
dependence on the detuning frequency and thus the linewidth enhancement parameter’s
dependence on the detuning frequency.

Second, a dimensionless/normalized approach to theoretically evaluate the
operational state (i.e. stable locking, period-one, period-doubling, or chaos) of an
optically-injected nanostructure laser as a function of the injection strength and/or the
detuning frequency for varied slave laser bias cases was described. The normalized
model reformulated the rate equations describing optically-injected lasers into a
dimensionless form that was advantageous compared with other methods due to its
fundamental parameter scaling approach that facilitated the comparison of one laser to
another. The model derived here is unique in that it includes the impact of the nonlinear
carrier relaxation rate. The slave laser linewidth enhancement parameter and the
nonlinear carrier relaxation rate are observed to have a strong impact on the level of
stability exhibited by the optically-injected laser at low injected field ratios.

The operational stability map of the quantum-dash laser under optical-injection
was observed to have a suitably large period-one parameter space; this behavior was
concluded to be due to the relatively large nonlinear and spontaneous carrier relaxation
rates and relatively small linewidth enhancement parameter. The resonance frequency of
the optically-injected quantum-dash system in the period-one operational state was able
to be enhanced over a wide range from 4 to 20 GHz. Additionally, the resonance
frequency enhancement was well-approximated using the steady-state solution to the full
rate equations derived with the novel small-signal modulation response function

presented in this work. Overall, the large tunability of the undamped period-one
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resonance suggests that the optically-injected quantum-dash slave laser operating at
1550-nm is applicable for photonic applications such as radio-over-fiber.

Lastly, it was found that the quantum-dot laser was highly stable under optical-
injection. Contrary to the optically-injected quantum-dash laser, the optically-injected
quantum-dot laser showed no signs of undamped relaxation oscillations as the injection
strength and/or detuning frequency were varied; this highly stable finding indicated that
the optically-injected quantum-dot laser is well-suited for implementation in wideband
transmitters. One discrepancy between the theoretical predictions and experimental
observations for the quantum-dot laser is the failure of the theoretical model to predict the
unlocked operation in reference to adjacent Fabry-Perot modes at low injection strengths;
this result shows the weakness of the single mode rate equations in modeling the

complete operational space of a multi-mode slave laser.

7.2. Suggestions for Future Work

Previous works found in the literature have suspected that the slave laser
linewidth enhancement parameter varies as a function of injection strength and/or
detuning frequency [59]. This relationship cannot be determined using the injection-
locking technique described in this work and thus it is suggested that FM/AM response
ratio technique and/or time-resolved chirp measurements should be employed to fully
understand the dependence of the linewidth enhancement parameter on the injection
strength and detuning [7], [46]. Such an understanding would improve the applicability of
the predictive tools derived in this work, as the linewidth enhancement parameter is

theoretically predicted to have a strong impact on both the small-signal microwave
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modulation response of an injection-locked laser and the nonlinear dynamics observed
under weak injection strengths.

Next, noise measurements of the AM-to-FM conversion microwave signal would
assist in determining the period-one oscillation state’s capabilities as a tunable photonic
oscillator. Bit error rate tests with the injection-locked quantum-dash and quantum-dot
lasers would highlight the nanostructure lasers’ potential for implementation in wideband
transmitters.

Additionally, the injection-locked modulation response suffers a degraded
modulation efficiency. The two-section gain-lever laser has been reported to improve
modulation efficiency over the free-running single section laser [62]. These two findings
open the possibility for an optically-injected two-section gain lever laser, where the bias
characteristics of the gain lever device can be manipulated to yield an ideal slave laser to
be optically-injected.

Lastly, this work combined with the optical-injection research over the past two
decades shows that the optical-injection architecture is poised to transition from theory
and lab-bench setups to packaged, engineered products for the market. The short-term
step may be a dual butterfly packaged system with an optical-isolator in between the
master and slave, reducing the size of the bench top footprint of the test setup and making
headway towards a marketable design. The desired end result for the optical-injection
architecture is a single-chip monolithic type design where the master and slave laser are

butt-coupled to one another.

160



Chapter 8.  References

[1]

[2]

[3]

[8]

[9]

[10]

[11]

Kimura, T., “Coherent Optical Fiber Transmission,” I[EEE Journal of Lightwave
Technology, LT-5(4), 414-428 (1987).

Williamson, R. C., and Esman, R., “RF Photonics,” IEEE Journal of Lightwave
Technology, 26(9), 1145-1153 (2008).

Seeds, A. J., “Microwave Photonics,” IEEE Transactions on Microwave Theory and
Techniques, 50(3), 877-887 (2002).

Lester, L. F., Schaff, W. J., Offsey, S. D., Eastman, L. F., “High-speed Modulation of
InGaAs — GaAs Strained-Layer Multiple-Quantum-Well Lasers Fabricated by Chemically
Assisted lon-Beam Etching,” IEEE Photonics Technology Letters, 3(5), 403-405 (1991).

Matsui, Y., Murai, H., Arahira, S., Kutsuzawa, S., and Ogawa, Y., “30 GHz bandwidth
1.55 pum strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics
Technology Letters, 9(1), 25-27 (1997).

Fathpour, S., Mi, Z., and Bhattacharya, P., “High-speed quantum-dot lasers,” Journal of
Physics D: Applied Physics, 38, 2103-2111 (2005).

Tucker, R., S., “High-Speed Modulation of Semiconductor lasers,” IEEE Journal of
Lightwave Technology, LT-3(6), 1180-1192 (1985).

Su, H., Lester, L. F., “Dynamic properties of quantum-dot distributed feedback lasers:
high speed, linewidth and chirp,” Journal of Physics D: Applied Physics, 38,2112-2118
(2005).

Mogensen, F., Olesen, H., and Jacobsen, G., “Locking Conditions and Stability Properties
for a Semiconductor Laser with External Light Injection,” IEEE Journal of Quantum
Electronics, 21(7), 784-793 (1985).

Petitbon, 1., Gallion, P., Debarge, G., and Ghabran, C., “Locking Bandwidth and
Relaxation Oscillation of an Injection-Locked Semiconductor Laser,” IEEE Journal of
Quantum Electronics, 24(2), 148-154 (1988).

Simpson, T. B., Liu, J. M., and Gavrielides, A., “Small-Signal Analysis of Modulation
Characteristics in a Semiconductor Laser Subject to Strong Optical Injection,” IEEE
Journal of Quantum Electronics, 32(8), 1456-1468 (1996).

Simpson, T. B., and Liu, J. M., “Enhanced Modulation Bandwidth in Injection-Locked
Semiconductor Lasers,” IEEE Photonics Technology Letters, 9(10), 1322-1324 (1997).

Liu, J. M., Chen, H. F., Meng, X. J., and Simpson, T. B., “Modulation Bandwidth, Noise,

and Stability of a Semiconductor Laser Subject to Strong Injection Locking,” IEEE
Photonics Technology Letters, 9(10), 1325-1327 (1997).

161



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[24]

[25]

[26]

Chan, S. C., Hwang, S. K., and Liu, J. M., “Period-one oscillation for photonic microwave
transmission using an optically-injected semiconductor laser,” Optics Express, 15(22),
14921-14933 (2007).

Hwang, S. K., Chen, H. F., and Lin, C. Y., “All-optical frequency conversion using
nonlinear dynamics of semiconductor lasers,” Optics Letters, 34(6), 812-814 (2009).

Liu, J. M., Applications of Nonlinear Dynamics. Berlin/ Heidelberg: Springer, 341-354
(2009).

Erneux, T., Kovanis, V., Gavrielides, A., and Alsing, P. M., "Mechanism for
period-doubling bifurcation in a semiconductor laser subject to optical injection,"
Physical Rev. A, 53(6), 4372-4380 (1996).

Simpson, T. B., Liu, J. M., Gavrielides, A., Kovanis, V., and Alsing, P. M., "Period-
doubling cascades and chaos in a semiconductor laser with optical injection," Physical
Rev. 4,51,5,4181-4185 (1995).

Simpson, T. B., “Mapping the nonlinear dynamics of a distributed feedback
semiconductor laser subject to external optical injection,” Optics Communications, 215,
135-151 (2003).

Gavrielides, A., Kovanis, V., and Erneux, T., "Analytical stability boundaries for a
semiconductor laser subject to optical injection," Optics Communications, 136, 253-256
(1997).

Hwang, S. K., and Liu, J. M., “Dynamical characteristics of an optically-injected
semiconductor laser,” Optics Communications, 183, 195-205 (2000).

Eriksson, S., “Dependence of the experimental stability diagram of an optically-injected
laser on the laser current,” Optics Communications, 210, 343-353 (2002).

Pochet, M., Naderi, N. A., Terry, N., Kovanis, V., and Lester, L. F., "Dynamic behavior of
an injection-locked quantum-dash Fabry-Perot laser at zero-detuning," Optics Express,
17(23), 20623-20630 (2009).

Chrostowski, L., Faraji, B., Hofmann, W., Amann, M. C., Wieczorek, S., and Chow, W.
W., “40 GHz Bandwidth and 64 GHz Resonance Frequency in Injection-Locked 1.55 pm
VCSELSs,” IEEE Journal of Selected Topics in Quantum Electronics, 13(5), 1200-1208
(2007).

Lau, E. K., Zhao, X., Sung, H. K., Parekh, D., Chang-Hasnain, C., and Wu, M. C.,
“Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz
resonance frequencies and 80-GHz intrinsic bandwidths,” Optics Express, 16(9), 6609-
6618 (2008).

Hwang, S. K., Liu, J. M., and White, J. K., “Characteristics of Period-One Oscillations in

Semiconductor Lasers Subject to Optical Injection,” IEEE Journal of Selected Topics in
Quantum Electronics, 10(5), 974-981 (2004).

162



[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Pochet, M., Naderi, N. A., Kovanis, V., and Lester, L. F., “Optically-injected Quantum-
dash Lasers at 1550 nm Employed as Highly Tunable Photonic Oscillators,” Conference
for Lasers and Electro-Optics, San Jose, Ca (2010).

Pochet, M., Naderi, N. A., Li, Y., Kovanis, V., and Lester, L. F., “Tunable Photonic
Oscillators Using Optically-injected Quantum-Dash Diode Lasers,” IEEE Photonics
Technology Letters, 22(11), 763-765 (2010).

Nirmalathas, C., Lim, C., Novak, D., and Waterhouse, R. B., “Progress in Millimeter-
Wave Fiber-Radio Networks,” Annals of Telecommunications, 56(1-2), 27-28 (2001).

Bimberg, D., Kirstaedter, N., Ledentsov, N. N., Alferov, Zh., 1., Kop’ev, P. S., Ustinov,
“InGaAs-GaAs Quantum-Dot Lasers”, IEEE Journal of Selected Topics in Quantum
Electronics, 3(2), 196-204 (1997).

Bhattacharya, P., Klotzkin, D., Qasaimeh, O., Zhou, W., Krishna, S., Zhu, D., “High-
Speed Modulation and Switching Characteristics of In(Ga)As-Al(Ga)As Self-Organized
Quantum-Dot Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, 6(3),
426-438 (2000).

Asada, M., Miyamoto, Y., Suematsu, Y., “Gain and the Threshold of Three-Dimensional
Quantum-Box Lasers,” IEEE Journal of Quantum Electronics, QE-22(9), 1915-1921
(1986).

Newell, T. C., Bossert, D. J., Stintz, A., Fuchs, B., Malloy, K. J., and Lester, L. F., "Gain
and Linewidth Enhancement Factor in InAs Quantum-Dot Laser Diodes," IEEE
Photonics Technology Letters, 11(12), 1527-1529 (1999).

Kondratko, P. K., Chuang, S. L., Walter, G., Chung,T., and Holonyak, N., Jr.,
“Observations of near-zero linewidth enhancement parameter in a quantum-well coupled
quantum-dot laser,” Applied Physics Letters, 83(23), 4818-4820 (2003).

Coldren, L. A., and Corzine, S. W., Diode Lasers and Photonic Integrated Circuits, New
York: John Wiley & Sons, Inc., 187-206 (1995).

Murakami, A., Kawashima, K., and Atsuki, K., “Cavity Resonance Shift and Bandwidth
Enhancement in Semiconductor Lasers with Strong Light Injection,” IEEE Journal of
Quantum Electronics, 39(10), 1196-1204 (2003).

Liu, J. M., Photonic Devices, Cambridge: Cambridge University Press, 909-912 (2005)

Lau, E. K., Sung, H. K., and Wu, M. C., “Frequency Response Enhancement of Optical-
injectionLocked Lasers,” IEEE Journal of Quantum Electronics, 44(1), 90-99 (2008).

Lau, E. K., Wong, L. J., and Wu, M. C., “Enhanced Modulation Characteristics of Optical

Injection-Locked Lasers: A Tutorial,” IEEE Journal of Selected Topics in Quantum
Electronics, 15(3), 618-633 (2009).

163



[40]

[41]

[42]

[43]

[45]

[46]

[47]

(48]

[49]

[52]

Naderi, N. A., Pochet, M., Grillot, F., Terry, N., Kovanis, V., and Lester, L. F., “Modeling
the Injection-Locked Behavior of a Quantum-dash Semiconductor Laser,” IEEE Journal
of Selected Topics in Quantum Electronics, 15(3), 563-571 (2009).

Goulding, D., Hegarty, S. P., Rasskazov, O., Melnik, S., Hartnett, M., Greene, G.,
Mclnerney, J. G., Rachinskii, D., and Huyet, G., “Excitability in a Quantum-dot
Semiconductor Laser with Optical Injection,” Physical Review Letters, 98, 153903-1-
153903-4 (2007).

O’Brien, D., Hegarty, S. P., Huyet, G., Mclnerney, J. G., Kettler, T., Laemmlin, M.,
Bimberg, D., Ustinov, V. M., Zhukov, A. E., Mikhrin, S. S., and Kovsh, A. R., “Feedback
sensitivity of 1.3um InAs/GaAs quantum-dot lasers,” Electronic Letters, 39, 1819-1820
(2003).

Huyet, G., O’Brien, D., Hegarty, S. P., Mclnerney, J., Bimberg, D., Ribbat, C., Ustinov,
V. M., Mikhrin, S. S., Kovsh, A. R., and Uskov, A. V., “Reduced sensitivity to external
feedback in quantum-dot lasers,” Proceeding of the SPIE, 5631(24), (2004)

Liu, G., Jin, X., and Chuang, S. L., “Measurement of linewidth enhancement parameter of
semiconductor lasers using an injection-locking technique,” IEEE Photonic Technology
Letters, 13(5), 430-432 (2001).

Lau, E. K., “High-Speed Modulation of Optical Injection-Locked Semiconductor Lasers,”
PhD Dissertation, UC Berkeley (2006).

Harder, C., Valhala, K., and Yariv, A., “Measurement of the linewidth enhancement
parameter o, of semiconductor lasers,” Applied Physics Letters, 42(4), 328-330 (1983).

Melnik, S., Huyet, G., and Uskov, A. V., “The linewidth enhancement parameter o of
quantum-dot semiconductor lasers,” Optics Express, 14(7), 2950-2955 (2006).

Villafranca, A., Giuliani, G., Donati, S., and Garces, 1., “Investigation on the linewidth
enhancement parameter of multiple longitudinal mode semiconductor lasers,”
Proceedings of the SPIE, 6997, 699719.1-699719.8 (2008).

Pochet, M., Naderi, N. A., Grillot, F., Terry, N., Kovanis, V., and Lester, L. F., “Methods
for Improved 3-dB bandwidth in an Injection-Locked QDash Fabry Perot Laser @
1550nm,” Conference for Lasers and Electro-Optics, CTuQ4 (2009).

Chrostowski, L., “Optical-injection Locking of Vertical Cavity Surface Emitting Lasers,”
PhD Dissertation, UC Berkeley (2004).

Pochet, M., Naderi, N. A., Grillot, F., Terry, N., Kovanis, V., and Lester, L. F.,
“Modulation Response of an Injection Locked Quantum-Dash Fabry Perot Laser at

1550nm,” Proceedings of the SPIE, 7211, 721107-1 —721107-9 (2009).

Murakami, A., “Phase Locking and Chaos Synchronization in Injection-Locked
Semiconductor lasers,” IEEE Journal of Quantum Electronics, 39(3), 438-447 (2003).

164



[53]

[54]

[55]

[56]

[59]

[60]

[61]

[62]

[63]

Kovanis, V., Gavrielides, A., Simpson, T. B., and Liu, J. M., “Instabilities and chaos in
optically-injected semiconductor lasers,” Applied Physics Letters, 67(19), 2780-2782
(1995).

Wieczorek, S., Krauskopf, B., Simpson, T. B., and Lenstra, D., “The dynamical
complexity of optically-injected semiconductor lasers,” Physical Reports, 416, 1-128
(2005).

Bonatto, C., Gallas, J. A. C., “Accumulation horizons and period adding in optically-
injected semiconductor lasers,” Physical Review E, 75, 055204-1 — 055204-4 (2007).

Grillot, F., Naderi, N. A., Pochet, M., Lin, C. Y., and Lester, L. F., “Variation of the
feedback sensitivity in a 1.55 um InAs/InP quantum-dash Fabry—Perot semiconductor
laser,” Applied Physics Letters, 93, 191108-1—191108-3 (2008).

Wong, Y. C. A., Shore, K. A., “Influence of nonlinear gain on intrinsic bandwidth of
quantum well and strained layer semiconductor lasers,” I[EE Proceedings-J, 138(6), 413-
419 (1991).

Takahashi, T., Arakawa, Y., “Nonlinear Gain Effects in Quantum Well, Quantum-Well
Wire, and Quantum Well Box Lasers,” IEEE Journal of Quantum Electronics, 27(6),
1824-1829 (1991).

Nguyen, Q. T., Besnard, P., Vaudel, O., Shen, A., Duan, G. H., "Strong dependence of the
Linewidth Enhancement Factor onto an externally injected optical signal for locked
Fabry-Perot laser diodes," The Conference on Lasers and Electro-Optics- Europe (2009).

Ukhanov, A. A., “Study of the Carrier-Induced Optical Properties in I1I-V Quantum
Confined Laser Nano-Structures,” PhD Dissertation, The University of New Mexico
(2004).

Lin, C., and Mengel, F., "Reduction of frequency chirping and dynamic linewidth in high-
speed directly-modulated semiconductor lasers by injection locking," Electronics Letters,
20, 1073-1075 (1984).

Grillot, F., Naderi, N. A., Pochet, M., Lin, C. Y., Besnard, P., Dziak, C., Xin, Y. C.,
Kovanis, V., and Lester, L. F., "Tuning of the critical feedback level in 1.55-um quantum-

dash semiconductor laser diodes," The Institution of Engineering and Technology, 3(6),
242-247 (2009).

Naderi, N, Li, Y., Dziak, C., Xin, Y. C., Kovanis, V., and Lester, L. F., "Quantum-dot

gain-lever laser diode," Conference Proceedings - Lasers and Electro-Optics Society
Annual Meeting-LEOS, 52-53 (2007).

165



Appendix A. Relevant Matlab Code

The following is used to call the small-signal modulation response and observe the

impact of varied injection strengths and/or slave laser parameters:

5427710 2:52 PM  C:wDocuments and Sectingsh\OwneriDesktop’\PTLPlot.m

% with this code

f = linspace{d, endf, 100);
DC1 = 0;

tauc = 0.012; % RC transport time

ap =
gammat = l/tauc;

[==]

.001; % monlinear gain compression coefficient

%¥sa2t wvarious data strings to call with the function
datal = [DC1 etal alpha tauc ep Pinjll;
dataZ = [DC1 etal alpha tauc ep Pinjll;
datal = [DC1 etal alpha tauc ep Pinj3);
datad = [DC1 etad alpha tauc ep Pinjdl;
datas = [DC1 etas alpha tauc ep Pinjsl;
datat = [DC1 etad alpha tauc ep Pinjel;
data? = [DC1 eta? alpha tauc ep Pinj7];

FTL1 = my PTLOdt {datal, f);
FTLZ = my_ PTLOdt (dataz, f);
FTL3 = my_PTLOdt {data3d, f);
EFTL4 = my PTLOdt {datad, f);
FTLS = my_ FPTLOdt (datas, f);
FTLE = my_PTLOdt (datat, f);
PFTLT7 = my_ PTLOdt {data7, f);

plet (£, PTL1, '--k', £, PTILZ, '-b', £, PTL3,'r*', £, PTL4,'-.g", ...
£, BTLS, 'm——', £, PTL&, 'k-', £, PILT7,'r-", £, (PTL1*0 - 3),'-k', 'Linewidth"', 2}

xlakel { "Modulation Freguency, GHz', "FontSize',l14);

ylakel { "Modulation Besponse, dB", "Fontfize',14);

hold on;

box on;

grid on;

textitringl = ["‘\Bf\it'alpha “rm =" numZstr{alpha)...

', Abfvit\gammatitibf t \rm= " num?str(gammat,2) "GHz'];

166



The following is the small-signal response function:

5427710 2:52 PM  C:nwDocuments and Setctings\OwnerhDesktop'my PILOdt.m 1l of

function FullModel = my PTLOdt (param, £)

%Pass im the relevant paramsters and theilr associated limics
IZ = param(l);

2ta = paramii);

algha = param(3);

tau_c = param(4]};

¥fixed free-running laser paramsters for a given bias current
gamma n = 1.12; %differential carrier relaxation rate

gamma_c = 333.3; %photon decay rate rate

gamma p = 3.35; %nonlinear carrier relaxation rate

= 4.5; %spontanecus carrier relaxation rate

14y %fres-running slawve plower

T; %coupling coefficient

% phase to linewidth enhancement parameter relationship at zerco-detuning
phi = -atanialphal;

% scale the terms with injection strength
gamma n = gamma n.* {1 + ep*Psl) . il + ep¥{Psl+ 0.7*Pinjll;
gamma_p = gamma_p.*{{l + ep*Psl).*2)./{(l + ep¥*{Psl + 0.7*Pinjl).~2);

Wr = sgrt{gamma_ n*gamma ¢ + gamma_p*gamma s); % compute the ermhanced
% relaxation oscillation fregusncy
Rculric eguation for solving Bfe kased on injection strength
RfeExp = [wr~Z - Z¥gamma_n“eta*cos (phi) -wr~2 ...
lgamma_s*gamma_p* (eta~2) f (ke*2) - Z¥gamma_s*eta‘cosiphil)];
®pull cut the max, real root

Bfe = max({roots (Rf=Exp));

ot

compute paramsetroc Terms

gamma_th = Z.%({eta./Rfe)*cos{phi);
Z = —(eta. /Rfe) *cos{phi) + (alpha*(eta./Bfe) . *sinighi));
R = garma_s + gamma p* {Rfe."Z) + gamma n* {Rfe.~Z) + gamma th;
B = (eta./Rfe)."2 + gamma c*gamma_n.* (Rfe."2) + garma_p*gamma_s.* (Rfe."2) ...
+ gamma s.*gamma_th - alpha‘gamma_p.* {(Rfe.~2).*(eta./Rfe) *siniphi) ...
+ gamma p.* (Rfe."2) ." {eta./Rfel *cos(phil;
C = {((eta./Rfe) . *2).*(gamma_n.*{Rfe.*2) + gamma s) - Z.%...
igamma_n.* (Rfe."2) *gamma c + gamma p.*(Rfe."Z)*gamrma_ s - gamma n.*{Rfe.~2Z).*gamma th);
numer = ({C/Z).~Z)._ ¥ {4¥(pi*2)*f . ~2 + Z.°2);
denom = ({C - A#*4¥* (pi~2)*(£.-2)).=2) + ((B*2%(pi)*{f) - B*({pi~3)*(E.~3))_."2);

denom_taul = denom.* (1l + {Z*pi*f*tau c)."~2);

FullModel = DC + 10%logll{numer./denom_taul);
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The following is used to least-squares-fit experimental data with the small-signal

modulation response function on the previous page:

5427710 3:08 B ConwDoocuments and Settings\Owner’\Desktop'QDashFit.m

2819
¥_cad the cxaperimental data {y-data only)

load nASONWZ . txt;

¥ — Lianspuse wmASoW2Z 110233 ,10),

¥create the corresponding frecusncy data

% = linspace{.sSUbY, L1E._UY, ZHL);

¥ input the nominsl irjecticon strength calculated using externally measured
¥ master and slave povers

% input IC's in the order [dco eta alpha tauc Pindl
ipitialConditions = [-55 eta_rom 3.5 0.015 0.0e];

Th = [-fE era_nmm¥0 =R T Coannt noanntl: #sen Tower hounds
ub = [-47.0 eta nom*1.08 8.C 0.04 0.01]; %set upper bounds

% call the leasst-sguares—-fit function using the custom function deriwved
[mewParamelers, errur] — lsguurwelil (Bwy FTLOAL, inibialCunditivos, =, vy, 1lb, ubid,
generate a curve based
:

- the lesst-sguares-fit parameters extractbed

%
¥e = .‘l}-‘_:"_LLElt- inewdarsmeters, Xx);

ploti{x, vy, x, ¥Z, 'Linewvidzh', Z)

textStringl = " 2 = " numZstr inewParameters{1l1,2) "dBE ‘eta_ o = '...
numZstr (inewParameters 2] , 3} " GHz'l;
textString? = [" ‘alpha = ' rumlstr (newlarameters (3) ,2), ', “Tauw o = '...

numZstr (newParameters (4] ,2

textitringd = [" erzor = nunZ=tr (erroc (1) , 3], N "-.-=|_:-:'_l:u'._1:- - -
numZstr (inewParameters |5} ,2), 15

x_abel {'Fregusency, EHz', "'FoncsEize’,13);

v_abel {'Response, dB', "Fontiize',13);

hold on;

box on;

TZTLE'"QDash @ Odz, S(mA",'FortSize”,13)
text (2, -62, textitrirgl, "FontSize',l
text (1, -6@, textitrirgZ, "FontZize',l
text (2, —-65, textSitring3i, "FontSize',l3

¥ text{l.Z, -7%, textfitrirgd, 'FontSize',1ll
grid on
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Code for Figure 13 and Figure 14:

S/28/10 10:45% BM C:hZDocuments and Settings'0Owne_ . % EZeroDetPlotPFolesRootsFiglild m

1

o

S%free-running slawve laser damping rates
gamma n = 1.34;
gamma_o = F33.3;
gamma @ = 2.93;

gamma_s = 4 5;

14

nhancement DAarametner
while eta <= 151

Fphass to linewidth enhancemsnt paramster relationshi

4]

phi = -atamn(alphak;
WrE = sgriigamma n*gamma < + gamma_pYgamma s}

determine Efe based on inj=ction strength
Fl = gamma_n*eta*cos(phil;
EZ -3*(wr*4) - 47Fl1_"Z;
=]
=i 2¥P1. (3% (w21 ) 5
s2num = —{Z4{1/3)F . *B2;
s2den = I¥{wr~2).*({P3 + sgre{d*(D2.°3) + (P2.~2)))1.~{1/3)0;
82 = s2num/sl2den;

B3 = (L/A{B¥2~(l/3) 1% (we2) 1) ¥ (P23 + sgre(dv(P2.°3) + (BI."Z) 1) .~ {17530} ;

[}
[
t

Bfe = 52 + 53;

gamma th = 2.% (eta./Rfe)*cos{phi);

Z = —-(eta./Rie) . *cosiphi}l + {alpha®leta./Bfe).*sin{phi)l;

B = gamma_s + gamma p* {Rfe.~2) + gamma n* {Rfe.~2) + gamma th;

B = {(eta./Rfe) ."Z + gamma c*gamma_n.* (Rfe."2) + gamma_p*gamma s.* (Rfa."2)
&

garma th — alpha*gamma p.*(Rfe."2) . *(eta./Rfe)*sin(phi} ...
+ gamma p.*Rfe.*({eta. /Rfe)*cos(phi);

+ gamma_s. ¢

T = lieta./Rfe} _*2] ¥ (gaoma_n_ * (Afe *2) + gamma_s) — I.*(gamma_n_ % [RAfe *2)Ygamma_c

gamma_p.* {Rfe. *2) *gamma_s - gamma_n.* (Rfe_*2) .*gamma_th};
detl = [1 & B C1;

detnum = [-1 +2]1;
numrooks = roots {detnum) ;

rdetl = roots{detl);
rdatltrans = transpose [rdetl);
rootl(Y) = abs(rdetltrans{:, 1ll);

» L))

rootlreal (Y] = real (rdetltransi(:
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Z:\Documents and Settings'\Cwne. . “ZercDetPlotPolesRootsFiglllde . m 2 of 2

Imagirdetltrans{:, 1j!;
rdetcltrans {1, 1};
{rdewltrans {:, 2Z});
real {rdetltransi:z, 211;
rdetltrans {:, 2};

root3(¥) = rdetltrans(:, 3);
root3comp (Y = imagirdetltransi:, 3));

Zt (¥ =

ra

STaxiI] = eTa;
staxRfe (Y] = eta/Rfes;

pla (Y] = &;
sgE{¥Y] = sgrt(B);
cuC{¥) = C.~{1/,3);

¥ =% + 1;

2Ta
and

sta + L;

rootlfulltra = tramspose (rootlfull);

plotdetax, rootl, =tamx, abs(root3)l, etax, —IL =tax, etax, =tax, =taxBfe
xlabel {"Maximum Injection Strength, ‘itibfleta o, \rmibiGHz', 'Fontsi

lg, "fontweight',"'b"};
legend|{'Complex Roots',
"LithbE)
ylabel '
title("®

GH=

hold onj;
box on;
grid on;
set {gea, "FontSicz

i

v, 14)

set{gca,
ylimd{ [0 150
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Code for Figure 15:

5/28/10 10:55 BAM C:“\Documents and Settings‘Owner‘Deskto...“FlotRealPolevsPhassB.m 1 of

clear;
ole
olf;

= 0.8%5;
= 333.3;
2.74;

= 4.5;

while phase < -1.48

phi = phase;
Wwr = sgrt{gamma_ n*gamma ¢ + gamma pYgamma s

Pl = gamma_n*eta“cos (phil;

F2 = -3%(wr~4) - 4¥pP1_"ZI;

F3 = 18*Pl*(wr*4) + S4*gamma s*eta*({wr~4)*cosiphi} + 1&*(Pl."~3);

Bl = 2¥B1_ /(3% (wEe*2));

s2num = —{2~{1/3)) _¥B2;

s2den = 3% (w2} .*({P3 + sgrt{4¥(B2.*3) + (P3.~2))).~{1/3));

E? = sInum/sZden;

53 = (L/A0{3%2~({1/3) )% (w20 1) . *{(P3 + sgrei(d4¥(P2_.*3) + (P3_~2))1)_.~{1/3)};
Rfe = 51 + 5Z + 33;

= gamma_n* (1l + ep*Psl) /{1l + ep*(Psl*Rfe~2Z + Pin
1) 7

injlh;
1 = garma_p* ({1 + ep*Psl}~2}/{(1l + ep* {Psl*Rfe~Z + Finjl}-2};
gamma th = Z.%(eta./Rfe)*cos{phi);

= —ieta./Rfe] .*cosiphi) + {alpha®(eta./RBfe).*sini{phi)l;
. = garma s + gamma p* (Rfe.~2) + gamma n*{Rfe."~2) + gamma th;
B = {e2ta. /Rfe). "2 + gamma_ c*gamma n.* (Rfe."1) + gamma p*gamma_s.*(Rfe."~2) + gamma_s. ¢
*gamma_ th - alpha*gamma p.* (Rfe."2).*(ecta. /Rfe} *sin(phi} ...
+ gamma p.*Rfe.*(eta. /Rfe)*cos(phi);
= {(eta. /Rfe) .~2) .*i(gamma _n.*{Rfe."2) + gamma s} - IZ.*(gamma_n.¥ [Rfe."*Z) ‘gamma c +¥

gamma_p.* {Rfe.*Z) *gamma_s - gamma_n.* (Rfe."I).*gamma_th);
detl = [1 & B Cl;

rdetl = roots(detl);
rdetltrans = transpose (rdetl);

rootl (YY) = abs(rdetltrans{:, 1});
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5/2%/10 10:55 BM C:\Documents and Settings'Cwner‘\Deskto...“PlotRealPolewsPhas=E.m 2 of 2

rooklreal (¥} = real{rdetltransi(:, 1l))r
rookloomp (T} = imag{rdetltransi(:, 1l))r
roobliull (¥} = rdetltrans{:, 1l}s
r
{

root2(¥) = abs(rdetltcramns

rootlreal {Y) = realirdetltrans(:, 2));
rook2full{¥} = rdetltrans{:, 2Z};

P
rooct3conp (¥} = imag{rdetltransi{:, 3}))
rootldreal (¥} = real {rdetltransi:, 3))

Ze(¥) = Z;

root3d (YY) = rdetltrans|

phiz(Y) = phase;

Efex (Y] = EBfe;

=1+ 1;

phase = phase + 0.005;

end

subplot(2,1,1)
plot (phix, rootZreal, 'Li

xlakel ['Etead—-Etate Phase

¥lagend | "RBeal Portion of
ylabel (" I

title('Real

—bbl=mz o,
hold ong
box on;

grid om;

set {gca, "FontSize ' 15]
set (goa, "xminortick®, "on','yminocrtick', "on');

Exlim([-1.57 -1.45]1)

subplot (2,1, 2)
plot (phix, Rfex, "Linewidth', Z}
title('‘it\garma n homibf= 1.34GHz, ‘it'gamma_phirm - “ithgemma_s\rmibf = 4. 5«

GHz, ‘\ithwgamma chrmibf = 333.3GHz', "FontSize',l15,'
zlakel {'Stead—-Ztate FPhase (0ifset,
ylakel [ 'Y

15, "fontweight', 'B'};

ield Enhancement Factor, “itR F |
hold on;

box on;

grid om;

cet (gea, "FontSize ', 15)

set (goa, "xminortick®, om
¥xlim([-pis2 —1.451)

¥ylim([1 1.11)
= 1.075;
= -1.53;
dell = —-l{eta/Rf=2) *sgre(l + alpha®2)*sini(phiZ - atanialphall/2/pi
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Code used to generate the bifurcation diagrams in Chapter 3:

This code was modified from an earlier version outlined by Nate Terry at AFRL/RYDP

5/28/10 11:10 BEM H:vcodewbifurcacionInjections.m of
¥ The parpose of this code is to create a bifurcation diagram using the
¥ normalized rate sguations, whers the nonlinear carrier relaxation rate
¥ iz avouvunbed f[ur o Lhe rabe egualbluns.
clo;clear all;
close all;
an array will &1l the wvalues of =ta
0._009;
0.0,
.098;
etafull=zat (2,ztal,eza, etald);
- Initial Conditions
alpha = 31 0; & Timawidth enhanceamant fartnr
gammal = 1.122; % differential carrier relaxstion rate, GHz
gammas = 4.5; ¥ sponzaneous carrier relaxation rate, GHz
gammaZ = JJII.J; % caricy decay rate, Gz, l/tp, where tp = photon lifetime
gammalP = 3.378; % differential carrier relaxstion rate, GHz
ko = B5.7;
ep = gammalb*gammab/ |gammal gammal) ;
I = Ofgammal/kz;
p=(l/2) *gammal/gammas; % pumping level
T=gammaC/gamma3; % ratioc of carrier decay to photcon decay
wr=sgrt (2%p* (1 + ep) /T) % resonance freguercy
O.0; %-20:0.2:20.0; %normalized to relaxaticn oscillation
m=p*0_005; % modulation amplitude
Cmega=2; % modilation freguency
&—— Variables
options = odesst('RelTcl’, le—-4, "iksTol',le—-4, "HaxStep', .1); % define
R®options for ode solwver
Elpic={sgroig)+.0000L)
InitCond=[Einit O 0]:
h=waitkbar {0, "Working, check back in a few');
count=0;
counttotal=length (etafull) *length (dwfull) ;
- Calculats the Electr:c field
count = 1;
dw=dwfull;
for n=0:lengthi{etafull)-1
eta=etafall (nt+l);
[, B] = adedR{(iTnijecninnMadulatar, [0 11001, Trinlnnd, notiones, n, T, eta, alpha, dw, m, Omaga, wr,

M ;
ep, M) ;
lengthE=length(E{:,Z1]; & figure out how many data points are in E

ninetyE=zeil{.35%1lengthE)}; % gets about %0% of the length

% o examine the bifuraction diagram for only the last 10% of the

% polnts on th: £ field--this 15 hopetully trhe stead state--1t can be
% plotted individually using the commented code below to check
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- Plot Electric field
¥figure(l)
qplot (tininetyE:lengthiE) , aks {(EininstyE:lengthE, 21)11%
%legend ("E1"')
% —--- Translate ths eta used in thes rate sguaticons to that commeonly used
% as giwven in the JETQE and PTL manuscripts
EtaVec (countl = eta;
Elaverage = mean(abks (E (ninstyE:lengthE, L)1) ;
2taPTL = eta¥gammaC/sgrt(p)
F-—-—— Identify Extrema
%¥--Local Max
Emax= localmaxmin(aks (E (ninetyE:lengthE, 1)},
% Ones in this list are locations of local maxima

‘max");
% only want to examins the last 10% of E fis=ld

indmax=find (Emax(2:end-1)); % finds all the locations of the local maxima
maxlist=abks (E(ninecyE+indma=-1,1)}; % calcs the walue of the local maxima
¥--Local Min

Emin= localmaxmin{aks (E(ninetyE:lengthE, 1)), 'min");

% Ones in this list are locations of local maxima

% only want to examine the last 10% of E fisld

indmin=£find(Emin{2:end-1)); % £finds all the locations of the local maxima
minlist=abs (E({ninetyE+indmin-1,1)}; % calcs the wvalue of the local maxima
Extrema{n+tl}=cat(l,minlist maxlist); % makes master list of the extrema
% the curlsy brackets indicate a cell array
B-—-—- Plot the bifurcation diagram
¥——only plot it if there are extrema to plot
if isempty (Extrema{ntl}]

else
figure (2}
plot {etaPTL, (Extrema{n+tl}/ssgrtipl), 'r.") % plots the bifur diagram
xlabel ("‘ithbfieta o\rm\bEf, GHz', '"FontSize' 17, "fontweight',K "B’

ylabel ( "“bfHormalized Extrema, “it¥/Y\rm £ r ,“bf unitless',6 "FontSize', ¥

17, "fontweight', 'b"}
title{strecat('‘ittalpha ‘“rm= ',numZstrialpha, 2), ", %“itT “rm= "',
", WitPE hvrm= ' numZstrip,2), ', M\ithepsilon hrm= ", num2str {abs(ep),Z)),
17, "fontweight', 'b"}
set(goa, "FontSize', 18)
set(gca, '#minortick”, 'on', 'yminortick', 'on'l:
axis tight
hold on % keesps the plot open so that the
& data from the next eta will alsc be considered
end
and
close(h)
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% This code is the dimens:conless normalized opbicsl infection
¥ rate eguations

function dy=InjectionModulator(s,¥,pd,T,eta, alpha, dw, m,imega, wr, ep, M)

%T iz ratioc of proton lifetime to carrier lifetime
¥eca i1s the coupling strenght

Falpha iz Ll licewidill eobagcmednlt Laclor

¥dw is detuning

#m is modulation amplituda
dv=zerosi(3,1);

dyil) = ¥ {3*Y(1l) - (Y{1) wr)*{ep*¥(L1*Y(l} - ep*pl + (H"Z)*[eca"l)) + (eta/wr)*cosi(¥{Z)] ¥
Tdwvtl

dy(Z) = falpha)*Yi3) - {alpha*ep/wr)* (Y{l)*¥{1l} — p0 + HM-2)*({eca~2)} - {etas(Y{l)*wWr)) «

"

*sin (Y {Z)+dw¥t] - dw/vr;

dyi3) = (L 2%pld*{l + epl) . *{{pl+tm*cos (Omega*t) ) - wr*Yi13) - Ti(l)*¥{l)*({l + Z*wr*Y (3] -«
Z¥ep*Y(1)¥Y (1) + 2¥ep'pld - Z¥ep'H*etal);
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function [x,n]=localmaxmin (v, xn)
FLOCALMRYMIN(Y) Local Mamima and Minima.

% X = LOCALMAXMIN(Y) or LOCRLMAXMIN(Y, 'max') £
vaector X the same size as Y such that Y ({X) contains the local maxima in ¥.

r wector ¥ returns a logical

Fh -

¥ = LOCALMAREMINI(Y, "'min") for wector ¥ returns a logical wector W the same
size as ¥ such that Y(N) contains the local minima in Y.

= LOCALMRMMIN(Y) for wvector ¥ returns logical wectors X and N such
that Y (X) contains the local maxima and ¥ (N) contains the local minima.

When Y is a matrix, outputs are logical array(s) the same size as ¥, and
the minima and/or maxima are computed down the rows of each column inm Y.

o ot of of o o o o o of o o

See alsoc MRE, MIN.

% D.C. Hanselman, University of Maine, Jrono, ME 04458
% MasteringMatlakgfvahoo.com

% Mastering MATLRE 7

% 200g-03-08

mm=["'min"'; "max"];
if nargin==

xn="max';
elseif nargin~=Z

error ("localmaxmin:MotEnoughInputArguments"', . . .

"One or Two Input Arguments Reguired.")

end
if ~ischar(xn) | isempty{stromg (xn,mm)

error ("localmaxmin:UnknownfArgument ", "Unknown Second Imput Zrgument. ')
end
if ~isnumericiyl || ~isrsaliy)

error ("localmaxmin:IncorrectDatalype', 'Y Must ke Real Valusd. ')

end
ysiz=sizelyl;

isrow=ysiz(l)==1; &% == tests to see if this is size 1l or not (i.2 column O row)

if isrow % if row, convert to column for now
¥=y';
ysiz(l)=ysiz (2};
vsiz(21=1;
and
if ysiz(l) <=4
error ("localmaxmin:Insufficisntlata’, 'Y Must Hawve at Least 4 Elemsnts. ")
and
xn=false(ysiz);

sdiff=sign{diffy));
zdiff=sdiff==0; %% gives ones and =zeros depending on whether sdiff=0

ide=find (sum{zdiff)); % columns where zeroc differences appear

if stroempi{xn, 'min') || nargout==:Z % get minima
&% if the input argument on m file is
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(8]

&% xn, this function only locks for
&% minima
mi2:end-1,:)=diff (sdiff)==I;
z(l,:)=sdiff (1, :)=*];
ziend, :)=sdiffiend, :)<d;
if anyl(=diff) %% amy rherks if therse arse any nnr-zmerm wraluas
ir=l:ysiz(l); %% a list of the colunns
for I—ide % handlc columms with mero differenccos
itmp=ir; %% uses list of columns
LbmppfediCO{. k) 1=[]
if all(sdiff
®ni:, ki=trie;
glse
top=diff(sign{diffiyi{icmp k)] }==I; %% does derivatiwve stay possitiwve
%% i.e. 15 1 4+ 1 =12
ziitmp (tmp) +1, k) =zrue: %% records location of everywhers
%% derivative stays
%% positive
if sdiffil.ki== %% checks to see if endpoints are
%% zeroc

I % entire column is f£lat

ne=find {sdiff {:, ky=0,1;
nf=find {sdiff{:, k)<0,1;
if - (isempsy(nc) | |izempty (nfl)
= {1, ki=nr<ni;
end
and
1f gdiff(znd, x)==
nr=find{sdiff{:, k)>0,1,
nf=find {sdiff{:, k)<0,1 "
if ~(izemptyinc)||isemptyinf)]
= {end, ki =nr<nf;

end

end
if nargout==2
n=m;
end
end
if strempixn, 'max'l || nargous==2Z % getT maxima
w=falsz(vsiz);
zi(2:end-1,:)=diff (sdiff)==-2;
wil, ~l==diff (1, - 1<
y=sdiffiend, 1 )=0;

if anyiocdiff)

lend

.-

oM

ir=l:ysiz(l);
Lur k—ide % handle columns wilbh serw dillesences

itmp=ir;
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itmp{=diff{:, ki1=[1;

o

tnp=diffisign(diffiyiitmp,k}]}]l==-2;
ziitme (tmo) +1, k) =true;
if sdiff(1,k]

nr=fipd(sdiff N
nf=find {sd . 1
if ~{is=mpty P i lisempeyins) )
{l,k)=nrrnf;
=nd
‘last'l;
last'};
if ~(isemptyinr)l|isempty(nfl]
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