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Abstract

Parallel magnetic resonance imaging offers a framework for acceleration of conven-

tional MRI encoding using an array of receiver coils with spatially-varying sensitivi-

ties. Novel encoding and reconstruction techniques for parallel MRI are investigated

in this dissertation. The main goal is to improve the actual reconstruction meth-

ods and to develop new approaches for massively parallel MRI systems that take

advantage of the higher information content provided by the large number of small

receivers. A generalized forward model and inverse reconstruction with regulariza-

tion for parallel MRI with arbitrary k-space sub-sampling is developed. Regular-

ization methods using the singular value decomposition of the encoding matrix and

pre-conditioning of the forward model are proposed to desensitize the solution from

data noise and model errors. Variable density k-space sub-sampling is presented

to improve the reconstruction with the common uniform sub-sampling. A novel
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method for massively parallel MRI systems named Superresolution Sensitivity En-

coding (SURE-SENSE) is proposed where acceleration is performed by acquiring

the low spatial resolution representation of the object being imaged and the stronger

sensitivity variation from small receiver coils is used to perform intra-pixel recon-

struction. SURE-SENSE compares favorably the performance of standard SENSE

reconstruction for low spatial resolution imaging such as spectroscopic imaging.

The methods developed in this dissertation are applied to Proton Echo Planar

Spectroscopic Imaging (PEPSI) for metabolic imaging in human brain with high

spatial and spectral resolution in clinically feasible acquisition times.

The contributions presented in this dissertation are expected to provide methods

that substantially enhance the utility of parallel MRI for clinical research and to offer

a framework for fast MRSI of human brain with high spatial and spectral resolution.
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Chapter 1

Introduction

This chapter presents an overview and motivation of the research developed and

expose the goals and novel contributions of this dissertation.

1.1 Overview and Motivation

Magnetic Resonance Imaging (MRI) techniques can produce images of the structure,

metabolism and function of the human or any biological system in a non-invasive way

[4, 5]. The technique had a significant impact on clinical diagnosis due to the high

quality obtained in anatomical images with different constrast mechanisms. As a re-

sult, MRI has become the preferred method for many diagnostic studies of the head,

spine and joints [6]. However; imaging modalities with higher information content,

such as metabolic and functional imaging, impose temporal and physical constraints

that represent a challenge for conventional MRI due to low encoding speed. This fac-

tor is particularly dominant in experiments with three spatial dimensions (3D) and

for imaging of moving structures such as the heart. Conventional MRI uses magnetic

field gradients to produce a signal that represents the spatial frequency-domain (k-
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space) of the object being imaged with a spatial resolution many times finer than the

signal wavelength [7, 1]. However, gradient-encoding limits k-space sampling to one

position at a time making k-space speed the crucial component for encoding time.

Gradient performance improvement along with echo-planar encoding techniques [2]

have reduced significantly the encoding time; but safety guidelines regarding mag-

netic field gradient switching and RF power deposition constraint further increases

in k-space speed.

MR spectroscopic imaging (MRSI) [8, 9] provides spatial localization of metabolism

by adding the spectral dimension to MRI. MRSI can identify biomarkers relevant to

psychiatric and neurologic disease and there is growing interest in exploring its use

in clinical research applications for the entire human body. The major limitation

of MRSI is the long encoding time which is mainly due to the sequential encoding

mechanism of conventional methods. As a consequence, MRSI is usually restricted

to low spatial resolution and single slice acquisition in clinical practice. The devel-

opment of fast MRSI methods that enable whole brain coverage with high spatial

resolution remains a major challenge in MRSI research.

Functional MRI (fMRI) provides spatial localization of functional activation us-

ing the blood oxygenation as constrast agent [10, 11]. Using echo-planar imaging

(EPI) with the current gradient performance, 1-2 sec of temporal resolution and

3-5 mm of spatial resolution can be achieved simultaneously for whole brain fMRI.

Finer spatiotemporal resolutions are restricted due to the technical and physiological

constraints mentioned earlier.

Parallel MRI [12, 13, 14, 15, 16, 17] has been proposed to accelerate gradient-

encoding by using an array of receiver coils with spatially-varying sensitivities. The

knowledge of coil sensitivities allows for reconstruction using a subset of the encoding

functions required for conventional Fourier reconstruction, thus some of the Fourier

encoding steps can be omitted in the acquisition to accelerate the process. The most
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common approach for acceleration is uniform sub-sampling of k-space, where the

densitiy of k-space sampling is reduced by an integer factor of the Nyquist rate. The

reconstruction for this case is well developed, e.g. SENSE [16] in the spatial-domain;

SMASH[15] and GRAPPA [17] in k-space). Non-uniform sub-sampling schemes have

demonstrated improved reconstruction for the same acceleration factor [18, 19]. How-

ever; optimal selection of k-space samples for parallel MRI still remains an open

question.

High acceleration factors in parallel MRI are still challenging due to the SNR

loss with respect to acceleration and the presence of residual aliasing artifacts. Re-

cently, the design of large-N arrays, i.e. arrays with a large number of small elements,

demonstrated higher acceleration capability due to the increased number of indepen-

dent projections [20, 21] and higher sensitivity even at appreciable distance from the

coils [22]. The use of large-N arrays also introduced new reconstruction algorithms

such as inverse imaging [23] that can reduce the application of gradient encoding to

a minimum by using an analogy to the reconstruction of magnetoencephalography

(MEG) data, where all the spatial information is derived from the array geometry.

Advanced reconstruction methods that make use of the higher information content

provided by the large array coil still need to be investigated.

For human brain imaging, helmet-shaped arrays with a close-fitting desing have

demonstrated to be very efficient for parallel MRI providing a high increase in the

baseline SNR and large acceleration capability along all the spatial dimensions [24].

For example, the 32-channel receiver array with soccer ball geometry [25] (Fig. 1.1)

offers nearly three-fold higher peripheral SNR and 40-50% higher SNR in the center

of the head than the commercial 12-channel circular array. The 96-channel array with

a similar geometry (Carbon-240 bucky-ball) [26] presents nearly seven-fold SNR gain

at the periphery and close 100% SNR gain in the center of the head when compared

to the commercial 12-channel circular array. Both array coils were employed in this
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dissertation for phantom and in vivo experiments. The idea behind using this type

of array is to tradeoff the high increase in SNR for shorter acquisition times and/or

higher spatial resolution.

Two areas of active research are also motivating the use of parallel MRI with high

acceleration. First, the use of high magnetic field strength has been demonstrated

to improve the performance of parallel imaging by increasing the baseline SNR and

providing stronger modulations of the coil sensitivity profiles [27]. Second, very

short encoding times are advantageous for applications using hyperpolarized contrast

agents [28], allowing highly accelerated acquisition of large data volumes during the

short duration of enhanced polarization.

Figure 1.1: a) 32-channel soccer-ball array. b) 96-channel array with Carbon-240
bucky-ball geometry. c) SNR images and d) SNR profiles of the large-N arrays
compared to the commercial 12-channel array coil.
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1.2 Goals and Contributions.

This dissertation introduces novel encoding and reconstruction methods for parallel

MRI in order to enhance the spatial and temporal resolution of current MRI tech-

niques. The main goal is to improve the actual reconstruction methods for parallel

MRI and to develop new approaches for massively parallel MRI systems that take

advantage of the higher information content provided by the large number of small

receivers. The specific contributions are presented below. The first three contribu-

tions are related to advanced parallel MRI reconstruction methods that have general

application to any MRI modality. The last three contributions present applications

for MR spectroscopic imaging. The contributions presented in this dissertation are

expected to substantially enhance the utility of parallel MRI for clinical research and

to offer a framework for fast MRSI of human brain.

1.2.1 SVD-Based Regularization of Parallel MRI Reconstruction

Parallel MRI reconstruction involves the inversion of the encoding matrix which is

commonly computed using the Moore-Penrose pseudoinverse. Large amplification

of noise and systematic errors in coil sensitivity estimation may occur when the

encoding matrix becomes ill-conditioned. Regions with low-value and overlapped

coil sensitivities produce an ill-conditioned encoding matrix since the information

provided by each coil is similar. Regularization methods were proposed to desensitize

the solution of the inverse problem to data noise and model errors. A novel method

for regularization of the matrix inverse problem based on the SVD representation of

the encoding matrix is presented for SENSE reconstruction as an efficient alternative

to the commonly used Tikhonov regularization. The method is proven to improve

SNR and reduce the effect of systematic errors in coil sensitivity estimation at the

expense of loss in ideal reconstruction accuracy.
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1.2.2 Parallel MRI with Variable k-Space Sub-Sampling

Uniform sub-sampling of k-space is not optimal for parallel MRI if the coil sensitivi-

ties overlap, which is the case in practice. Variable sub-sampling has been proposed

to improve the reconstruction. For example, in the SPACE-RIP method [18] data is

sampled at the Nyquist rate at the center of k-space and more sparsely as we move

away from the center. This variable density sampling scheme is based on the prop-

erty that most of the information content is concentrated within a small region at

low k-space values whereas the edge information is distributed over a much broader

region of higher k-space values. In this dissertation, k-space sampling positions are

chosen according to the k-space representation of the coil sensitivities in order to

achieve better reconstruction than uniform sub-sampling. Practical variable sub-

sampling schemes and a general framework for parallel MRI with arbitrary k-space

sub-sampling are described.

1.2.3 Superresolution Parallel MRI Reconstruction

Parallel MRI has been introduced as a method to accelerate the encoding process by

sub-sampling k-space while maintaining the total extent. The rationale for this sub-

encoding scheme is that the coil sensitivity maps are very smooth and retrieve k-space

information only from the neighborhood of the actual gradient-encoding point. New

array coil designs with a large number of small elements provide stronger variation

of the coil sensitivities which may result in residual aliasing artifacts in conventional

parallel MRI method due to sensitivity variation within the image pixel. In this

dissertation, a novel parallel MRI method known as superresolution sensitivity en-

coding (SURE-SENSE) is proposed as an alternative to standard SENSE using coils

with strongly varying coil sensitivities. Acceleration is performed by acquiring the

low spatial resolution representation of the object being imaged and the coil sensitiv-
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ity maps are acquired with higher target spatial resolution. The increase in spatial

resolution will be determined by the degree of coil sensitivity variation within the

low resolution voxel and the SNR in the low resolution object image. The technique

is particularly applicable to intrinsically low spatial resolution modalities such as

spectroscopic imaging where conventional parallel MRI methods are vulnerable to

artifacts.

1.2.4 Proton Echo Planar Spectroscopic Imaging (PEPSI) at High-

Field: SNR and Spectral Resolution Improvements

Proton Echo Planar Spectroscopic Imaging (PEPSI) [29] is a fast spatial-spectral

encoding technique that uses a trapezoidal readout gradient for simultaneous encod-

ing of one spatial dimension and the spectral dimension. Theoretical expectations

for MRS show a linear increase in SNR and spectral resolution with respect to the

magnetic field strength (B0). However, no experimental validation has been per-

formed for echo-planar MRSI. SNR per unit volume and unit time and line width of

the three main metabolites N-Acetyl-Aspartate (NAA), Creatine (Cr) and Choline

(Cho) were estimated from in vivo PEPSI acquisitions at 1.5, 3, 4 and 7 Tesla on

scanners sharing a similar software and hardware platform, using single-channel and

8-channel head receiver coils. Data were corrected for ramp sampling and relaxation

differences, processed with a time-domain matched filter and fitted to a paramet-

ric model adapted to each B0. The noise characteristics of the PEPSI encoding

technique were evaluated and compared to the conventional phase-encoded MRSI.

1.2.5 Parallel 3D-PEPSI

3D-PEPSI is still very time consuming due to phase-encoding (sequential) along the

third spatial dimension. In this dissertation, parallel imaging techniques are proposed
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to accelerate the phase-encoding dimensions of PEPSI. Specifically, the combination

of PEPSI with SENSE [16] is presented. The goal is to show 2D-MRSI and 3D-

MRSI of human brain in clinically feasible acquisition times: less than 1 minute for

2D-PEPSI and within 1-2 minutes for 3D-PEPSI. SENSE reconstruction is applied

to each spectral point to reconstruct the accelerated spatial dimensions, where the

aliasing due to k-space sub-sampling is removed. Even though SENSE reconstruc-

tion involves only spatial dimensions, the spectral dimension can suffer from strong

lipid contamination due to residual spatial aliasing in SENSE reconstruction. The

following approaches are presented to optimize the implementation:

- 32-channel soccer-ball array coil: to increase the acceleration capability.

- Optimization of coil sensitivity estimation: smoothing of the raw sensitivity

maps with extrapolation beyond the border of the brain using a 3-rd order

polynomial model.

- SVD-based regularization of SENSE-PEPSI reconstruction: to reduce amplifi-

cation of noise and coil sensitivity estimation errors in regions with low-value

and overlapped coil sensitivities.

1.2.6 Superresolution Parallel PEPSI

MRSI is intrinsically constrained by low SNR, due to the relative low metabolite

concentration. As a consequence, k-space coverage in acquisition is sacrificed to

achieve an adequate SNR within a feasible acquisition time. The lack of high k-

space information leads to blurred metabolite maps and strong lipid contamination

due to Gibbs ringing when the Fourier transform is directly applied to reconstruct

the image. The strong lipid signal arises from subcutaneous lipids in the scalp and

the resulting resonance cover a large spectral region and overlap with the metabolite

resonances. In this dissertation, the superresolution parallel MRI approach presented

8



Chapter 1. Introduction

in Chapter 5 is applied to PEPSI in order to to reduce lipid contamination and to

enhance the spatial resolution of the metabolite maps.

1.3 Organization

The present chapter presented an overview and motivation of the research work;

and exposed the goals and novel contributions of this doctoral dissertation. Chap-

ter 2 presents background information about MRI and parallel MRI exposing the

limits of actual techniques. The next three chapters present novel parallel imag-

ing reconstruction methods. In Chapter 3, SVD-based solution and regularization

for SENSE reconstruction is presented. Parallel MRI with variable sub-sampling of

k-space is presented in Chapter 4. Chapter 5 presents the method of superresolu-

tion parallel MRI reconstruction. The next three chapters present applications for

MRSI. SNR and spectral resolution improvements in PEPSI at high magnetic field

are presented in Chapter 6. Parallel 3D-PEPSI using the 32-channel soccer-ball array

is presented in Chapter 7 for fast volumetric metabolite mapping in human brain.

Chapter 8 presents superresolution parallel PEPSI for high resolution 2D-MRSI of

human brain. Chapter 9 concludes the dissertation and discusses future work.
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Chapter 2

Background

This chapter is not intended to provide a comprehensive exposition of the physical

and engineering principles of MRI and MRSI, which are well documented in many

textbooks [4, 5]. Principles regarding to spatial encoding and image reconstruction

techniques for conventional and parallel MRI are reviewed in order to provide a plat-

form of dicussion for the dissertation. Spatial-spectral encoding and reconstruction

methods for spectroscopic imaging are also presented. Image reconstruction is for-

mulated as a generalized linear inverse problem. Selected examples of parallel MRI

reconstruction methods and the application of parallel MRI to spectroscopic imaging

are discussed.

2.1 The MR Signal

The MR signal originates from the nuclear magnetic resonance (NMR) phenomenon

discovered independently by Edward Purcell and Felix Bloch in 1945 [30, 31]. In

atoms with an odd number of protons and/or odd number of neutrons, such as 1H

(hydrogen) and 31P (phosphorus), the atomic magnetic moments (spins) do not add
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up to zero, resulting in a net nuclear spin. When such atoms are exposed to an

external magnetic field B0 each spin will experience a precession about the direction

of the field (Fig. 2.1) with an angular frequency ω0 given by:

ω0 = γB0, (2.1)

where B0 is the magnitude of B0 and γ is a physical constant known as the gyro-

magnetic ratio. For example, γ
2π

= 42.58 MHz/T for 1H. Note that the precession

frequency can be forced to be spatially varying by using a spatially varying magnetic

field B(r). The main effect of the external magnetic field B0 is the creation of a

macroscopic magnetization M in the direction of the field (Fig. 2.1).
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Figure 2.1: a) Nuclear precession about the B0 axis. b) Net magnetization vector
M, aligned with the external field B0. c) Tipping M away from the B0 axis produces
a transverse magnetization that precesses at ω0 = γB0.

The magnetization vector can be rotated from the z axis by applying a radio

frequency (RF) pulse that produces a magnetic field B1 in the transverse plane (x-

y), resulting in a time varying magnetization Mxy(t) (Fig. 2.1). The flip angle α(r)

for the position r can be expressed as:

α(r) =
∫ Tp

0
γB1(r, t)dt. (2.2)

where Tp is the duration of the RF pulse.
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After the spins have been rotated into the x-y plane, they gradually return to

equilibrium, which is in the z axis. This process, referred to as relaxation, has an ex-

ponential behavior characterized with two time constants, T1 and T2. T1 is associated

with the exponential recovery of the longitudinal component of the magnetization

Mz(t) and T2 with the exponential decay of the transverse component Mxy(t). The

relaxation process governs the magnetization behavior after the RF pulse is switched

off. The behavior of the spins is described by a single equation, referred to as the

Bloch equation:

dM

dt
= M × γB − Mxî + My ĵ

T2

− (Mz − Mo)k̂

T1

, (2.3)

where M = (Mx(t),My(t),Mz(t)), and î, ĵ, and k̂ are unit vectors along the x, y, and

z dimensions respectively. For a RF pulse with α = 90o , the solution is given by:

Mz(t) = M0(1 − e−t/T1), (2.4)

Mxy(t) = M0e
−t/T2e−jω0t. (2.5)

The oscillating magnetization vector produces a varying magnetic flux in the

receiving coil and the voltage induced can be expressed in terms of a volume integral

of Mxy:

v(t) ∝
∫

r

c(r)Mxy(r)e
jω(r)tdr, (2.6)

where c(r) is the RF coil reception sensitivity.

The voltage v(t) is subsequently demodulated by cos(ω0t) and sin(ω0t) and ob-

serving that Mxy(r) = M0(r) sin(α(r)), the following MR signal is obtained:

y(t) =
∫

r

c(r)M0(r) sin(α(r))ej(ω(r)−ω0)tdr. (2.7)
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2.2 Generalized Spatial Encoding and Image Re-

construction

MRI methods encode identifiable spatial information into the MR signal, and the im-

age is reconstructed by properly decoding the spatially encoded MR signal. From Eq.

(2.7), there are four spatially dependent functions: magnetization (M0(r)), receiver

pattern (c(r)), excitation pattern (α(r)) and magnetic field (B). The magnetization

is the goal of image reconstruction and thus unknown, but the other three functions

can be used for spatial encoding representing mechanisms at different stages: at the

beginning, the RF pulse provides an excitation pattern α(r); then the magnetic field

B(r) dictates the spin phase evolution; and at the end, the detected MR signal is

weighted by the coil sensitivity c(r).

In the general case where all the functions are employed, the spatial encoding

kernel ǫi(r) may be defined as follows:

ǫi(r) = c(r) sin(α(r))ejω(r)ti . (2.8)

Defining an image function s(r) that accounts for the magnetization, relaxation

and the constants terms, the observation yi = y(t = ti) can be interpreted as a

projection of s(r) onto ǫi(r):

yi = 〈ǫi(r), s(r)〉 , (2.9)

where 〈·〉 is the inner product operator. In theory, it would require an infinite number

of projections to reconstruct s(r), since it is a continuous function. In practice,

appropiate discretization of the continuous position vector r to n points provides the

following encoding equation in matrix formulation:

y = Es, (2.10)

where y is the observation vector (m × 1), E is the encoding matrix (m × n) whose

entries are given by the corresponding discretized basis functions ǫi,k and s is the set
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of pixels to be reconstructed (n×1). Using this model, image reconstruction in MRI

is formulated as a generalized linear inverse problem. The reconstruction is given by

the inverse of the encoding matrix:

ŝ = E−1y. (2.11)

Note that s can be uniquely reconstructed from n linearly independent projections

(m = n). If m 6= n, a generalized inverse needs to be defined in order to solve the

system.

The remaining sections will use this linear algebra framework to charactize the

spatial encoding and reconstruction methods of conventional and parallel MRI.

2.3 Conventional MRI

2.3.1 Spatial Encoding Using Magnetic Field Gradients

Conventional MRI relies on the spatially varying magnetic field B(r) for spatial

encoding. Principles of spatial encoding using magnetic field gradients, originally

called zeugmatography, were introduced by Paul Lauterbur in 1972 [7]. A spatially

uniform RF excitation is employed to rotate the magnetization at a constant flip

angle α. The coil sensitivity is combined with the object function to form the coil-

weighted object function s(r). The resulting MR signal equation is simplified to:

y(t) =
∫

r

s(r)ejγ(B(r)−B0)tdr, (2.12)

where the constant term sin(α) corresponding to the excitation pattern is now in-

cluded in the object function. The gradient vector is given by:

G(t) = Gx(t)̂i + Gy(t)̂j + Gz(t)k̂. (2.13)
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Each gradient causes a linear variation of the magnetic field along the gradient di-

rection. The magnitude of the magnetic field is now represented by:

B(r, t) = B0 + G(t) · r = B0 + Gx(t)x + Gy(t)y + Gz(t)z. (2.14)

The phase evolution over time can be expressed in terms of k · r, where the vector k

is defined as the gradient moment vector:

k(t) =
γ

2π

∫ t

0
G(τ)dτ. (2.15)

The MR signal equation is then expressed as:

y(t) =
∫

r

s(r)ejk(t)·rdr. (2.16)

Note that k defines a spatial-frequency space, commonly known as k-space, and that

the acquired signal is the spatial Fourier transform of the object function. The spatial

encoding functions are given by:

ǫi(r) = ejk(ti)·r, (2.17)

which corresponds to the Fourier basis functions.

The MRI dataset is acquired by traversing k-space using a specific trajectory and

the image is reconstructed by applying an inverse Fourier transformation. In this

case, the reconstruction is accomplished without the need of computing the inverse

of the encoding matrix E explicitely. The most common acquisition trajectory is

the Cartesian grid (Fig. 2.2), where the image can be reconstructed by a direct

inverse Fast Fourier Transform (FFT) [1]. However, the encoding process for the

Cartesian grid is slow requiring repetitions for each line in k-space. Faster encoding

may accomplished using time-varying gradients, e.g. echo-planar and spiral MRI

methods (Fig. 2.2), where a complete 2D set of k-space points can be acquired within

a single excitation (single-shot techniques). However, the reconstruction process

becomes more complicated since the k-space trajectory does not fall into a Cartesian
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grid and the acquired dataset needs to be regridded in order to use the FFT for

reconstruction [32]. Another possibility is to use a non-uniform FFT approach for

direct reconstruction of the non-Cartesian data [33].

Figure 2.2: Pulse sequence diagram and k-space trajectory for a) Cartesian or Fourier
MRI [1], b) echo-planar MRI [2] and c) spiral MRI [3]. The gradient Gz selects a slice
along the z-dimension while Gy and Gx traverse a trajectory in the ky − kx plane for
2D imaging. The Cartesian MRI approach only encodes one line per excitation, then
the procedure needs to be performed Ny times and the acquisition time TACQ is given
by TACQ = NyTR, where TR is the interval between two consecutive RF excitations.
Echo-planar and spiral MRI can traverse a complete 2D trajectory within a single
excitation (TACQ = TR). For 3D imaging, the process is repeated for each slice.

2.3.2 Fourier Reconstruction, Spatial Resolution and SNR

The problem of reconstructing the object function s(r) from its Fourier transform

samples S(kn) acquired onto the k-space grid D can be expressed using the following

formulation:

Given S(kn) =
∫

r
s(r)ej2πkn·rdr, kn ∈ D; determine s(r). (2.18)
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In theory, the object function can be recovered unambiguosly for infinite k-space

sampling using the Discrete Fourier Transform (DFT). In practice, reconstruction

from finite k-space data is represented as the convolution of the true object function

s(r) and the point spread function (PSF) h(r):

ŝ(r) = s(r) ∗ h(r). (2.19)

For the case of the DFT, the PSF is given by a sinc function. The spatial resolution

is limited to the effective width of the PSF, e.g. the width of the main lobe, which

corresponds to the maximum value of k-space. The spatial resolution for the spatial

dimension r is given by:

∆r =
1

kmax

=
1

Nr∆k
, (2.20)

where Nr is the number of points acquired along the dimension r and ∆k is the k-

space sampling interval determined by the sampling theorem. The Nyquist sampling

interval for the spatial dimension r is given by ∆k = 1/Wr, where Wr is the Field

of View (FOV) along r. Any attempt to decrease ∆r by sampling at a slower rate

will lead to aliasing. In addition to limited resolution, the convolution with the PSF

results in Gibbs ringing due to the oscillatory nature of the PSF. One way to reduce

ringing is to use a window in k-space before applying the DFT reconstruction at

the expense of loss in spatial resolution, e.g. the Hamming window attenuates the

side lobes by roughly 30 dB but increases the width of the main lobe by a factor of

1.6. One of the goals of this dissertation is to study superresolution reconstruction,

this is to estimate high k-space components from limited k-space acquisitions using

prior information and therefore achieve both reduction of the main lobe width and

attenuation of the side lobes of the PSF.

The signal-to-noise ratio (SNR) in MRI is proportional to the square root of

the acquisition time (Ta) and to the voxel volume (Vr) which determines the spatial

resolution:

SNR ∝
√

Ta Vr. (2.21)
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This fundamental equation establishes the limits for spatial and temporal resolution

as a SNR constrain. A reduction of acquisition time with the same voxel volume

or viceversa, results in SNR loss. Conventional MRI methods require a trade-off

between spatial resolution and acquisition time according to the available SNR.

2.3.3 Limitations on Conventional MRI Speed

The imaging speed of conventional MRI is basically limited by the sequential data

acquisition scheme where k-space data is acquired one point at a time making k-

space speed the crucial component for encoding time. To accelerate data acquisition

for the same k-space coverage, conventional MRI requires stronger field gradients,

faster gradient switching rates and more frequently applied RF pulses (higher RF

power deposition). Unfortunately, these techniques increase the risk of damaging the

underlying biological tissues which constrains further increases in k-space speed.

2.4 Parallel MRI

2.4.1 Spatial Encoding Using RF Coil Sensitivities

Parallel MRI [34, 35, 36] uses an array of receiver RF coils with spatially-varying

sensitivities to acquire multiple signals of distinct spatial information content simul-

taneously. Each receiver coil provides different spatial information due of its different

spatial reception profile. The signal acquired by each coil can be expressed as:

Yl(k) =
∫

r
s(r)cl(r)e

j2πk·rdr, l = 1, 2, ..., Nc; (2.22)

where cl(r) is the complex-valued spatially-varying sensitivity for the l -th coil and

Nc is the number of receiver coils. Note that the encoding functions are given by the
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gradient (Fourier) encoding functions weighted by the coil sensitivities:

ǫl,n(r) = cl(r)e
jkn·r. (2.23)
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Figure 2.3: a) Circular array coil with 8 elements. b) Gradient encoding function
for kx = 5/Wx and ky = 5/Wy: pure plane waves in the image space and impulse
function in k-space. c) Hybrid encoding functions for different elements in the array.
The plane waves are weighted by the coil sensitivities in the image space resulting
in a k-space distribution around the point (kx, ky). The shape of the distribution is
given by the spatial Fourier transform of the corresponding coil sensitivity.

The gradient encoding functions correspond to pure spatial plane waves with a

k-space representation given by an impulse function at the kn value specified by the

gradients (Fig. 2.3). Therefore only one position in k-space can be sampled at a

time. However, the hybrid encoding functions correspond to weighted spatial plane
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waves with a k-space representation given by the spatial Fourier transform of the

coil sensitivity centered at kn. Therefore a distribution in k-space with a different

shape and extent is sampled at a time for each coil (Fig. 2.3). In other words, the

use of multiple receiver coils with different spatial sensitivities allows for performing

different conventional gradient encoding steps at a time.

2.4.2 Conventional MRI Acceleration

Simultaneous encoding by different coil sensitivities can be used to complement gradi-

ent encoding and thus to reduce the number of gradient encoding functions necessary

to reconstruct the image. Acceleration is performed by k-space sub-sampling, this

is using a k-space sampling rate below the Nyquist rate. The working hypothesis is

that the hybrid encoding functions contain k-space information from the neighbor-

hood of the point defined by the gradients that will cover the non sampled region

(Fig. 2.3). In the framework of the generalized linear inverse problem, the number

of equations is increased by a factor of Nc (number of coils) while the number of un-

knowns remains the same. The matrix system is overdetermined and the redundancy

is exploited to allow acceleration of the conventional encoding process.

The most common approach for acceleration is to reduce the density of k-space

sampling by an integer factor while the extent is maintained to achieve the same

spatial resolution (uniform sub-sampling). However; uniform sub-sampling of k-

space is optimal only for the theoretical case of coils with non-overlapped sensitivities.

One of the goals of this dissertation is to study sub-sampling schemes that take into

account the k-space extent of the coil sensitivities and the partial overlap between

coil sensitivities (Chapter 4).
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2.4.3 Parallel MRI Reconstruction

Since the encoding functions in parallel MRI no longer form a Fourier basis, re-

construction cannot be achieved by just applying a Fourier transform. Instead, the

encoding matrix E and its inverse need to be computed explicitely. The signal ac-

quired by each receiver coil can be expressed as:

Yl(k) =
∫

r
s(r)ǫl,n(r)dr, l = 1, 2, ..., Nc; (2.24)

where ǫl,n(r) corresponds to the hybrid encoding function given in Eq. (2.23). After

discretization of the object function to Nr points and considering the acquisition of

Nk k-space points, the system can be expressed using the generalized linear inverse

model y = E s given by Eq. (2.9), y is the observation vector (NcNk × 1), E is the

encoding matrix (NcNk ×Nr) and s is the set of points to be reconstructed (Nr × 1).

In general, the solution of this system can be formulated as a minimization of the

mean square error (MSE):

arg min
s

||y − Es||22, (2.25)

where ||.||2 is the L2-norm. If the system is overdetermined, this is NcNk ≥ Nr, the

solution is given by the Moore-Penrose pseudoinverse of E [16]:

ŝ = (EHΦ−1E)−1EHΦ−1y, (2.26)

where Φ is the noise covariance matrix, which can be computed using an average

sample estimate from data acquired in the absence of MR signal, e.g. without RF

excitation:

Φ̂ =
1

Nn

Nn
∑

i=1

nin
H
i , (2.27)

where n = [n1, n2, ..., nNc
] is the array noise vector and Nn is the number of points

acquired. Note that this reconstruction is general and can be performed in the image

space or k-space, but it might be numerically unstable and computationally intensive.

Practical methods for parallel MRI reconstruction exploit simplifications based on

the sampling pattern or perform iterative reconstruction.
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Image Space Reconstruction

Image space reconstruction methods first produce aliased images from the sub-

sampled k-space data for each coil by direct DFT reconstruction and then remove

the aliasing using coil sensitivity information. This type of reconstruction is referred

to as Sensitivity Encoding (SENSE) [16]. In its simplest form, SENSE is applicable

to uniformly sub-sampled Cartesian data, where the extent of k-space is kept the

same, maintaining the image resolution, but the distance between adjacent k-space

lines is increased by a factor R. Therefore, the signals from R locations, equally

spaced along the sub-sampled dimension (r), overlap in the image. Provided that

the coil sensitivity is not the same at those different locations, the weight given by

each coil to the signal components will be different. The aliased image for the l -th

coil is given by:

yl(r) =
R−1
∑

m=0

s(r − mŴr)cl(r − mŴr), (2.28)

where Ŵr = Wr/R is the reduced FOV. This equation can be formulated in the same

format of Eq. (2.9) for each point in the aliased image using:

y =





















y1(r)

y2(r)
...

yNc
(r)





















, s =





















s(r)

s(r − Ŵ )
...

s(r − (R − 1)Ŵ )





















,

and E =





















c1(r) c1(r − Ŵ ) . . . c1(r − (R − 1)Ŵ )

c2[r] c2(r − Ŵ ) . . . c2(r − (R − 1)Ŵ )
...

...
. . .

...

cNc
(r) cNc

(r − Ŵ ) . . . cNc
(r − (R − 1)Ŵ )





















.

Note that uniform sub-sampling allows to break down the general reconstruction

into a series of small equations solved separately for each set of aliased points. The
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solution comes from the inversion of small matrices. For a reduction factor of R, it

would be necessary to invert Nr/R Nc × R-sized matrices.

In the general case of arbitrary sub-sampling, every spatial point can potentially

alias with all the others and the whole encoding matrix needs to be inverted. Given

the very large size of this matrix, the memory requirements and the time needed to

solve this problem would be impractical. Iterative methods such as the Conjugate

Gradient can be used to solve the normal equations of parallel MRI reconstruction:

(EHΦ−1E)s = EHΦ−1y, (2.29)

provided that the matrix E is positive definite. In Chapter 4, a general reconstruction

for parallel MRI with arbitrary sub-sampling is presented.

Reducing the number of encoding points leads in itself to a reduction in SNR of
√

R due to reduced DFT averaging. Also the SNR at each point in the reconstructed

image will depend on how easily the matrix inversion can be performed, i.e. on

how different the coil sensitivities are at the aliased pixels. The geometry factor or

g-factor, which is dependent on the particular geometry of the array coil, describes

the error amplification due to numerical instabilities and has become a standard

method to describe the performance of a parallel MRI method. In general, noise and

errors due to innacurate coil sensitivity estimation will be amplified. For SENSE-like

reconstruction algorithms, the g-factor at position r is given by [16]:

g(r) =

√

[

(

EHΦ−1E
)−1

]

r

[

EHΦ−1E
]

r
≥ 1. (2.30)

The spatially varying SNR in parallel MRI reconstruction can be expressed as:

SNRacc(r) =
SNRfull(r)

g(r)
√

R
, (2.31)

where SNRfull(r) is the SNR for full encoding. One of the goals of this dissertation is

to investigate methods to reduce the g-factor to improve image reconstruction quality

at high acceleration factors by performing regularization of the inverse problem.
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Figure 2.4: SENSE reconstruction example. Multi-coil data was simulated multiply-
ing a Shepp-Logan phantom with a) the coil sensitivity maps for the array shown in
Fig. 2.3 and adding Gaussian noise. b) DFT reconstruction for different simulated
uniform accelerations. The last acceleration was performed along the two spatial
dimensions. c) SENSE reconstruction. d) g-factor maps. Note the g-factor and thus
noise reduction when using 2D-acceleration for R = 4.
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k-Space Reconstruction

k-space reconstruction techniques computes directly in k-space the missing data due

to sub-sampling using the multiple information proportioned by the array coil. DFT

reconstruction is then applied to get the final image. Note that in k-space the object

function is convolved with the coil sensitivities.

The basic concept of SMASH (Simultaneous Acquisition of Spatial Harmonics)[15]

is that a linear combination of the sub-sampled k-space data provided by the array

coil can directly generate the missing k-space information. The weigths are given

by the coil sensitivities. The SMASH estimate of the missing k-space information is

given by:

Ŝ(k − m∆k) =
Nc
∑

l=1

w
(m)
l Yl(k), (2.32)

where Yl(k) is the sub-sampled k-space data acquired by the l -th coil and the weights

w
(m)
l are calculated to fit the m-th harmonic:

Nc
∑

l=1

w
(m)
l cl(r) = ejm∆k·r. (2.33)

However, SMASH is strongly restricted to coil configurations that are able to generate

the desired spatial harmonics. In contrast to the use of specific coil sensitivities,

AUTO-SMASH [37] introduced the concept of autocalibration, where a small number

of additionally acquired Auto Calibration Signal (ACS) points are used to represent

the coil sensitivities. The weights are computed fitting a point in the reduced data

set to the ACS point, which is given by:

Nc
∑

l=1

w
(m)
l Yl(k) =

Nc
∑

l=1

Y ACS
l (k − m∆k), (2.34)

where Y ACS
l (k− m∆k) is the ACS point for the l -th coil corresponding to an offset

m∆k. The weigths are used to get a estimate of the missing point in the same way

as the SMASH technique (Eq. (2.32)).
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Figure 2.5: Schematic description of k-space reconstruction with Ry = 2. a) AUTO-
SMASH: A single line from all coils is fit to a single ACS line in a composite k-space.
b) GRAPPA: multiple lines from all coils are fit to one line in one coil (here coil 4).
The procedure is repeated for every coil, resulting in single coil images.

GRAPPA (Generalized Auto Calibrating Partially Parallel Acquisition)[17] rep-

resents a more generalized implementation of the SMASH-type methods, where coil-

by-coil reconstruction is performed by applying multiple blockwise reconstructions.

The weights are computed fitting a point in the reduced data set to the ACS point

of each coil, which is given by:

Nc
∑

l=1

w
(m)
l Yl(k) = Y ACS

l (k − m∆k). (2.35)

The process of reconstructing data in coil k at the position (k − m∆k) from the

sub-sampled data using a blockwise reconstruction is represented by:

Ŝk(k − m∆k) =
Nc
∑

l=1

Nb
∑

b=1

w(k, b, l,m)Yl(k − bR∆k), (2.36)

where R is the acceleration factor, Nb is the number of blocks. A block is defined as

a single acquired line and R − 1 missing lines (Fig. 2.5). By using more blocks of

data to fit each point, GRAPPA improves the reconstruction in comparison to the

previously described k-space methods.

26



Chapter 2. Background

2.4.4 Coil Sensitivity Estimation

Parallel MRI reconstruction methods require accurate coil sensitivity information

to reconstruct properly the image from sub-sampled k-space data. The sensitivities

depend not only on the array coil geometry, but are strongly influenced by the sample

and therefore experimental estimation of sensitivity information using reference data

is necessary. Reference data can be acquired as a separate acquisition (pre-scan) or

as an integral part of the acquisition (auto-calibration).

The auto-calibration method does not require to compute explicitely the coil

sensitivity maps and has the advantage that the reference data and the target data

are locked together in time more closely, so that the reconstruction is less susceptible

to temporal changes, e.g. motion. On the other hand, the reconstruction is not

perfect since it does not follow exactly the encoding equation.

The pre-scan method require to compute explicitely the complex coil sensitivity

maps. The reference signal for the l -th coil can be represented as:

yref,l(r) = cl(r)sref (r), (2.37)

where cl(r) is the sensitivity function to be estimated, sref (r) is the object function

for the reference acquisition. The object function can be estimated using a method

for array coil signal combination, such as Sum of Squares (SoS) reconstruction:

ŝref (r) =
1

Nc

√

√

√

√

Nc
∑

l=1

|yref,l(r)|2. (2.38)

A raw sensitivity map is created by dividing the image from each coil by ŝref (r):

ĉl(r) =
sref,l(r)

ŝref (r)
. (2.39)

The raw sensitivity maps are impaired by noise. Refinement of the sensitivity maps

can be accomplished using smoothing, such as polynomial fitting [16].
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2.5 Parallel Transmission

2.5.1 Spatial Encoding Using Spatially-Selective RF Pulses

The remaining spatially-varying term in the MR signal equation is the flip angle

α(r), which does not provide by itself an inmediate benefit of accelerating image

acquisition. Even though this dissertation assumes spatially uniform RF excitations,

the potential of using RF pulses to perform additional spatial encoding is presented.

Spatially-selective RF pulses are commonly used to provide uniform excitation within

a region of the object function. Complex excitation patterns can be achieve by

using appropiate combinations of RF and gradient waveforms at the expense of

longer duration of RF pulses and/or increase in the RF power deposition which

constrained the application of spatially-selective RF pulses. In analogy to the use

of multiple receiver coils to reduce the image acquisition time, parallel transmission

using multiple transmitter coils can be performed to reduce the duration of the

spatially- selective RF pulse and/or reduce the RF power deposition. Katscher et al.

introduced the method using the SENSE algorithm synthesize the desired excitation

profile with shorter RF pulses [38].

2.6 Magnetic Resonance Spectroscopic Imaging

The goal of magnetic resonance spectroscopy (MRS) is to make quantitative mea-

surements of the concentrations of chemical components by encoding the spectral

dimension of the MR signal. In spectroscopic imaging, concentration maps are gen-

erated using a combination of spatial encoding techniques from MRI and spectral

encoding techniques from MRS (spatial-spectral encoding).
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2.6.1 MR Spectroscopy (MRS)

Nuclei do not only experience the external magnetic field, but they are also very

sensitive to their chemical environment. This causes a small displacement of the

precession frequency during the MR experiment, referred to as chemical shift, due to

shielding created by the orbital motion of the surrounding electrons in response to

the main field [39, 40]. Therefore, the MR signal contains components with different

chemical shifts that can be measured by collecting the time-domain response of the

systems to produce a MR spectrum. Chemical shift is not expressed in units of Hertz,

since this would make it dependent on the magnetic field strength. Therefore, it is

expressed in terms of dimensionless parts per million (ppm):

ν = 106f − fr
fr

, (2.40)

where fr is a reference frequency that depends on the nucleus being used. Feasible

nuclei for in vivo measurements are hydrogen (1H), phosphorus-31 (31P) and carbon-

13 (13C). 1H is the preferred nucleus for MRS due to its high abundance and therefore

high sensitivity. The typical proton spectrum of the human brain is a superposition

of signals arising from approximately 20 different low molecular weight metabolites

(Fig. 2.6). Metabolites are present as single and multiplet resonances. Multiplets are

produced by spin-spin coupling of the metabolites (J-coupling). 1H-MRS techniques

require water suppression, due to the ∼ 104 higher concentration of water in com-

parison to the metabolites, which is accomplished by a spectral filter that saturates

the water resonance during the acquisition [41, 42].

Spectral encoding is perfomed by collecting the time-domain signal resulting from

exciting a selected voxel (volume element). Single voxel excitation is performed

by a combination of slice-selective excitations along the three spatial dimensions,

where each excitation selects a slice and the intersection of the three slices defines

the volume. The time-domain signal represents the impulse response of the voxel
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within a limited spectral width given by SW = 1/∆t where ∆t is the temporal

sampling interval (dwell time in the MR literature). The signal acquired from a

single resonance fi can be represented as a complex-valued exponentially-decaying

sinusoid:

si(t) = si,0e
j2πfite

− t
T2,i , (2.41)

where si,0 is the signal amplitude at t = 0, and T2,i is the effective transverse-

relaxation time-constant. The complete spectrum is modeled as a superposition of

single resonances.
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Figure 2.6: 1H-MRS water-suppressed time-domain signal and spectrum of human
brain at 3 Tesla. Singlet resonances such as N-Acetyl Aspartate (NAA), Creatine
(Cr) and Choline (Cho) as well as J-coupled metabolites such as Glutamate (Glu)
and Inositol (Ins) are shown in the spectrum.

Spectral quantification is performed by fitting the acquired spectrum to a mathe-

matical model, which provides the information required for metabolite concentration

estimation. In vivo spectra present complicated patterns due to spectral overlapping

and distortions due to magnetic field inhomogeneities, e.g. linebroadening. More-

over, broad spectral contributions from sources other than the metabolites of interest,
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such as macromolecules and residual water, form a baseline difficult to model [43]. A

better spectral fitting can be obtained using a model based on a linear combination

of basis spectra (basis sets). The basis spectra can be measured from phantoms

with known metabolite concentrations or they can be simulated according with the

metabolite physical model and acquisition parameters. The acquired spectra are

then fitted by finding the linear combination of the basis sets which best describes

the data. LCModel spectral fitting [44], an implementation of this method, is used

in this dissertation for spectral quantification.

2.6.2 MR Spectroscopic Imaging (MRSI)

MRSI encodes the chemical shift and spatial distribution of metabolites simultane-

ously using a combination of MRI and MRS techniques. Metabolite concentration

images are obtained using spectral fitting in each voxel. The signal equation for

MRSI using gradient-encoding can be represented as:

Y (k, t) =
∫

r,f
s(r, f)ej2π(k·r+ft)drdf, (2.42)

where s(r, f) is the spatial-spectral object function. For 3D-MRSI, the signal traverse

a path in four dimensions (kx, ky, kz, t), which is the Fourier space corresponding to

(x, y, z, f).

The conventional method, originally called Chemical Shift Imaging (CSI) [8],

applies sequential phase-encoding to the spatial dimensions and then acquires a time-

domain signal in the absence of gradients to preserve the spectroscopic information

(Fig. 2.7). The procedure is repeated for each point in k-space defined by the

gradients. The spectroscopic image is then obtained by direct DFT reconstruction.

This sequential method is very time consuming with an acquisition time given by

TACQ = NxNyNzTR, where Nx, Ny and Nz are the number of points acquired along

the x, y and z dimensions respectively and TR is the repetition time.

31



Chapter 2. Background

The major limitation of MRSI is the long acquisition time which is dictated by

the intrinsic low sensitivity of MRS as well as the slow encoding speed of conven-

tional methods. MRSI presents an intrinsically low SNR due to the relative low

concentrations of the metabolites which might require signal averaging to achieve an

acceptable spectral quality for an accurate quantification. As a consequence, MRSI

is usually restricted to low spatial resolution and single slice acquisition in clinical

practice, e.g. 2-4 cc. Moreover, low spatial resolution MRSI is susceptible to spectral

contamination from regions with strong non-metabolite signals due to the increased

ringing in a poorly defined PSF. For example, in 1H-MRSI of the human brain, strong

lipid signals from extracranial fat can contaminate the metabolite spectra within the

brain. In this dissertation, methods to increase the available SNR in MRSI such as

higher magnetic field strength and array coils with a large number of elements are

presented and evaluated quantitatively.

The development of fast MRSI methods that enable whole brain coverage with

high spatial-spectral resolution remains a major challenge in MRSI research. Many

methods have been developed to provide faster spatial-spectral encoding [45], such

as echo-planar techniques that allow for simultaneous spatial-spectral encoding us-

ing time-varying gradients [46]. The encoding of spectral information is a relatively

slow process due to the small spectral bandwidth. For example the typical sampling

period of 1H-MRS at 3 Tesla is about 1 ms. Spatial information can be encoded

much faster, e.g. sampling period in order of microseconds. Therefore it is possible

to simultaneously encode spectral and spatial information in an interleaved fashion

using a series of inverted readout gradients. Each gradient encodes a 1D spatial pro-

jection and the progression of gradients encodes spectral information as shown in Fig.

2.7. Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) [29] is an implementation

of this technique with a trapezoidal readout gradient for simultaneous encoding of

one spatial dimension (x ) and the spectral dimension (f) providing a net acceleration

of Nx over the conventional phase-encoding method with comparable signal-to-noise
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Figure 2.7: Gradient waveforms within a single excitation and corresponding k-
space trajectories for a) Conventional CSI and b) Echo-planar CSI (PEPSI). Note
that PEPSI traverses a complete kx − t trajectory while conventional CSI only a line
along t which represents an accelerstion factor of Nx.

ratio (SNR) per unit time and unit volume. Simultaneous spatial and spectral en-

coding can be also achieved using spiral trajectories in k-space. Each spiral encodes

a 2D image and the progression of spirals encodes spectral information [47].

Accelerated spatial encoding for MRSI can be accomplished using parallel imag-

ing techniques. Even though parallel MRI reconstruction can be applied in the same

way as in MRI for each spectral point of the MRSI data, the low resolution char-

acteristics of the MRSI acquisition can produce residual aliasing artifacts if the coil

sensitivities vary within the voxel and/or the coil sensitivities present discontinuities.

Moreover, MRSI data requires reconstruction of the spectral dimension for coherent

combination of the signals from the multiple receiver coils, e.g. spectral-phase correc-

tion and frequency alignment. In this dissertation, the reconstruction of accelerated

parallel PEPSI data is presented for fast 3D-MRSI of human brain (Chapter 7).
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2.6.3 Echo-Planar Spectroscopic Imaging

The main component of the PEPSI technique is the echo-planar readout which allows

for simultaneous spatial-spectral encoding (Fig. 2.7). kx and t are sampled simul-

taneously during the readout interval on a zig-zag trajectory defined by a periodic

trapezoidal gradient (Fig. 2.8):

kx(t) = γ
∫ t

0
Gx(τ)dτ, (2.43)

where γ is the gyromagnetic ratio and Gx(t) is the magnetic field gradient along the

x direction. Simultaneous kx − t encoding is possible since the sampling period for

t is much longer than the sampling period for x and then we can sample a complete

line of kx for each t.
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Figure 2.8: Trapezoidal readout gradient and resulting x-t trajectory for a spectral
width of 1250 Hz and a FOV along the x-dimension of 20 cm. The circles represents
the Cartesian sampling grid resulting from regridding (black for positive echoes and
gray for negative echoes).

34



Chapter 2. Background

Data regridding is required to resample the data acquired with the zig-zag tra-

jectory onto a Cartesian grid in order to reconstruct the data using the Fast Fourier

Transform (FFT). Convolutional regridding methods [32] present an improved per-

formance when compared to conventional interpolation methods. The non-Cartesian

data can be described by:

Ms(k) = M(k) · S(k), (2.44)

where M(k) is the spatial Fourier transform of the object function and S(k) rep-

resents the non-Cartesian sampling trajectory as a set of impulse functions. To

resample this data onto a Cartesian grid, Ms(k) is weighted by the density of the

sampling trajectory ρ(k), then convolved with a kernel C(k) and finally resampled

onto a regularly spaced grid:

Mc(k) =

[

Ms(k)

ρ(k)
∗ C(k)

]

· Π(k), (2.45)

where Π(k) is the set of uniformly spaced impulses, i.e. the Cartesian grid. The

regridding procedure is applied to data acquired with positive and negative gradients

separately (Fig. 2.8). Positive and negative echo data are added after time reversal

of the data acquired with negative gradients.

2.7 Summary

Spatial encoding and image reconstruction in MRI can be represented as a gener-

alized linear inverse problem. The forward model is built using the physical model

of the acquired MR signal which presents three functions for spatial encoding: ex-

citation pattern, magnetic field (gradients) and reception pattern. Moreover, prior

information can be easily incorporated in the forward model to reduce errors in the

reconstructed image, e.g. magnetic field inhomogeneity. Parallel MRI can acceler-

ate conventional gradient encoding at the expense of SNR loss due to the reduced
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number of samples and ill-conditioning of the inverse problem. In Chapter 3, reg-

ularization of the inverse problem is presented in order to reduce the second effect.

Acceleration in parallel MRI is achieved by k-space subsampling which is commonly

performed by decreasing the sampling density uniformly. In Chapter 4, methods to

optimize the sub-sampling pattern are presented. The major limitation of MRSI is

the long acquistion time which constrains the spatial resolution and coverage of the

method. Chapter 7 presents the development of parallel PEPSI for fast 3D-MRSI of

the human brain and Chapter 7 shows the feasibility of single-shot 2D-MRSI using

a modification of parallel PEPSI. Moreover, the intrinsically low SNR of MRSI fur-

ther limits the spatial resolution. Chapter 5 presents superresolution parallel MRI

reconstruction for spatial resolution enhancement of intrinsically low spatial resolu-

tion MRI modalities such as MRSI. The method offers an alternative to conventional

parallel MRI reconstruction for low spatial resolution modalities.
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Chapter 3

SVD-Based Regularization of

Parallel MRI Reconstruction

1 Parallel MRI techniques allow for reconstruction of sub-sampled (accelerated) MRI

acquisitions at the expense of SNR loss in the reconstructed image. Part of this

SNR loss results from the numerical instabilities in the matrix inversion due to

ill-conditioning of the encoding matrix. Moreover, parallel MRI reconstruction is

sensitive to errors in coil sensitivity estimation especially when the encoding matrix

is ill-conditioned. Regularization methods were proposed to desensitize the solution

of the inverse problem to data noise and model errors. A novel method for reg-

ularization of the matrix inverse problem based on the SVD representation of the

encoding matrix is presented for SENSE reconstruction as an efficient alternative to

the commonly used Tikhonov regularization.

1The work in this chapter was published as part of: R. Otazo, S-Y. Tsai, F-H. Lin and
S. Posse. “Accelerated Short-TE 3D Proton-Echo-Planar-Spectroscopic-Imaging using 2D-
SENSE with a 32-Channel Array Coil”. Magn Reson Med. In Press.
Presented at the 15th ISMRM Meeting, Berlin, Germany, 2007, pp. 46.
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3.1 SENSE Reconstruction

SENSE reconstruction [16] in its simplest form is applicable to uniformly sub-sampled

Cartesian k-space data, where the extent of k-space is kept the same to maintain

image resolution, but the distance between adjacent k-space points is increased by

a factor R. Therefore, the signals from R locations, equally spaced along the sub-

sampled dimension (r), overlap in the aliased image. For each point in the aliased

images we have the following encoding equation:

y = E s, (3.1)

where y is the vector of aliased points (Nc × 1), E is the encoding equation (Nc ×R)

and s is the vector of points to be reconstructed (Nc × 1). Note that uniform sub-

sampling allows to break down the complete system into a series of small systems.

For a reduction factor of R, it would be necessary to invert Nr/R Nc × R-sized

matrices, where Nr is the number of points in the reconstructed image.

Correlation between coils can be removed by pre-whitening the acquired data and

the estimated coil sensitivity functions [48]. The benefit of this operation is that the

noise covariance matrix becomes equal to identity and hence can be omitted later in

the reconstruction. Pre-whitening is performed by:

y = Φ̂− 1

2y0,

E = Φ̂− 1

2E0,
(3.2)

where Φ̂ is the noise covariance matrix estimate. Φ can be estimated using a sample

average estimate from a time-series chosen from a position outside the object that

contains only noise or from an extra acquisition without RF excitation nt (Nc × 1):

Φ̂ =
1

Nt

Nt
∑

t=1

(nt − n̄) (nt − n̄)H , (3.3)

where Nt is the number of time points and n̄ is the mean of nt. Φ̂− 1

2 can be obtained
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using the Singular Value Decomposition (SVD) of Φ̂:

Φ̂ = U
Φ̂
Σ

Φ̂
UH

Φ̂
,

Φ̂− 1

2 = Σ
− 1

2

Φ̂
UH

Φ̂
.

(3.4)

From this point onwards, we consider that the observation vector and encoding ma-

trix were pre-whitened thus creating a set of virtual channels that are uncorrelated.

The standard SENSE solution s given by the Moore-Penrose pseudoinverse of the

encoding matrix E:

ŝ = E†y =
(

EHE
)−1

EHy. (3.5)

Noise amplification due to ill-conditioning of the encoding matrix is computed by

the g-factor [16]:

g(r) =

√

[

(

EHE
)−1

]

r

[

EHE
]

r
≥ 1. (3.6)

g-factor is particularly high in regions with low-value or overlapped coil sensitivities

where the spatial information provided by the different coils is similar and the en-

coding matrix becomes close to singular, e.g. the central region for a circular array

coil (Fig. 3.1).
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Figure 3.1: a) Coil sensitivity maps for 4 coils from the 8-channel circular array coil.
b) g-factor corresponding to uniform 2D acceleration factor of R = 2 × 2.
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SENSE reconstruction is also very sensitive to errors in coil sensitivity estimation,

especially when E is ill-conditioned. To desensitize the solution of the inverse problem

to data noise and model errors, regularization methods are often used [49]. The idea

of using regularization of the inverse problem is to tradeoff matrix conditioning (SNR)

with ideal reconstruction accuracy to reduce noise and model error amplification.

3.2 Tikhonov Regularization

Tikhonov regularization [50] is the most common regularization scheme for SENSE

reconstruction, in which we form a weighted sum of the data mismatch ‖Es − y‖2
2

and a regularization term ‖(s − s0)‖2
2 using a weighting factor λ2 and find the solution

that minimizes the sum:

ŝt = arg min
s

‖Es − y‖2
2 + λ2 ‖(s − s0)‖2

2 , (3.7)

where λ is referred to as the regularization parameter and s0 is a regularization

image, i.e. prior information about the final solution. A closed-form solution exits

for the L2-norm and it is given by:

ŝt = s0 +
(

EHE + λ2I
)−1

EH (y − Es0) . (3.8)

Selecting appropiate values for λ and s0 is essential for the regularized reconstruction

method. For the regularization image, there are two options: (a) set s0 = 0 or

(b) collect an image that contains prior information about the final solution. The

performance of the last scheme is limited by inconsistencies between the reference

and the actual image. For the regularization parameter, the simplest form is to use

a constant value of λ over the complete image [51]. However, this method is not

effective because the condition of E varies at different regions. A more elaborate

way is to select λ adaptively using methods such as the L-curve [48] or modeling λ

as a linear function of the condition number of E [52].
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3.3 SSVD Regularization

In this Chapter, a novel regularization technique for SENSE reconstruction based

on the Singular Value Decomposition (SVD) of the encoding matrix is proposed.

The SVD of E is given by UEΣEVH
E

, where UE (Nc × Nc) and VE (R × R) are

unitary matrices containing the singular vectors ui and vi in their columns. ΣE is a

diagonal matrix (Nc ×R) containing the singular values of E (σi’s). The SVD-based

pseudoinverse of E is then given by E† = VEΣ−1
E

UH
E

and the SENSE-SVD solution

is represented as:

ŝSVD = VEΣ−1
E

UH
E
y =

R
∑

i=1

uH
i y

σi

vi. (3.9)

The SVD and the standard SENSE solution are mathematically equivalent. Note

that small values of σi represent potential numerical instabilities in the reconstruc-

tion. Since small singular values will be inverted to large values, either noise or

errors in sensitivity estimation affecting the singular vectors associated with these

small singular values will be amplified in the reconstruction resulting in a decreased

SNR and residual aliasing artifacts. This situation is particularly evident in regions

with overlapped and/or low-value coil sensitivities where the coils are not able to

provide distinct information and the encoding matrix becomes close to singular. If

the number of singular values is high, the truncated SVD solution [53] could be used

to eliminate the components responsible for noise and error propagation by setting

a minimum singular value threshold. However; for SENSE we have only R singular

values, commonly R < 10, therefore it is not possible to separate those components.

Instead of truncating the SVD, the set of singular values can be shifted away

from zero using a shift value given by a small portion of the largest singular value,

then the solution components for large singular values will remain similar to the

non-shifted SVD while the components corresponding to small singular values will

be attenuated. The shifted-SVD (SSVD) approach proposed in this work shifts the
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set of singular values away from zero using a minimum singular value shift based

on an upper bound on the condition number (CN) of E (c0). The shifted singular

values are given by:

σs
i = σi + ∆σ = σi +

σmax

c0

, (3.10)

where σmax is the largest singular value. The condition number (CN) is the ratio of

the maximum to the minimum singular value. In this way, the set of singular values

will be shifted away from zero by adding a minimum singular value to improve the

conditioning of E. The shifted SVD (SSVD) of E is then ES = UEΣs
E
VH

E
, where

Σs
E

is a diagonal matrix with the shifted singular values. Note that ES is a shifted

version of E. Since we have a large CN for an ill-conditioned matrix, e.g. CN > 1000,

and c0 is chosen in the range of a well-conditioned matrix, e.g. 10 < c0 < 100, the

shift is very small for large singular values but it is significant for small singular

values which are responsible for numerical instabilities. If the encoding matrix is

well-conditioned, e.g. CN= 5, ES remains very close to E (Fig. 3.2)

The SENSE-SSVD solution is given by:

ŝSSVD = VEΣs
E

−1UH
E
y =

R
∑

i=1

uH
i y

σi + ∆σ
vi. (3.11)

Note that the method acts like a filter, attenuating more the effect of small singular

values. For example, assuming that c0 = 50, then ∆σ = 0.02 σmax. For components

with σi > 0.2 σmax, the difference will be less than 10%. Components with σi ≈

Figure 3.2: Effect of SSVD regularization on the set of singular values for: a) well-
conditioned matrix and b) ill-conditioned matrix.
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∆σ will be attenuated by a factor of 2. Since small singular values correspond

to more oscillatory singular vectors, the method is attenuating fine details in the

reconstructed image. Therefore, with SSVD regularization, we are improving the

SNR and reducing the effect of model errors at the expense of blurring in regions

susceptible to numerical instability.

The difference between the SVD and the SSVD solution is given by:

ŝSVD − ŝSSVD =
R

∑

i=1

∆σ

σi

uH
i y

σi + ∆σ
vi. (3.12)

Note that for components with large singular values and therefore small ∆σ/σi, the

difference is very small.

The regularization procedure will reduce g-factor since it improves the condition-

ing of the matrix E and consequently of EHE at the expense that certain features

will be omitted in the reconstructed image, e.g. blurring in positions with strongly

overlapped coil sensitivities. Therefore it allows a tunable tradeoff between ideal

accuracy and practical image quality.

3.3.1 Relation to Tikhonov Regularization

Setting s0 = 0, the SENSE-Tikhonov solution is given by:

ŝt =
(

EHE + λ2I
)−1

EHy. (3.13)

This solution can be represented using the SVD formulation in the following way:

ŝt =
R

∑

i=1

σ2
i

σ2
i + λ2

uH
i y

σi

vi =
R

∑

i=1

uH
i y

σi + λ2

σi

vi. (3.14)

Tikhonov regularization can be thought as the SSVD solution with ∆σ = λ2/σi.
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3.3.2 Tuning the Regularization Parameter

The regularization parameter c0 can be selected from the reconstruction of the ref-

erence data to estimate the sensitivity maps which is always acquired in accelerated

parallel MRI. For example, reconstructing for different values of c0 between 10 and

100 with steps of 5 and choosing the value of c0 that provides the smallest root mean

square error (RMSE). For optimal results, c0 needs to be re-optimized for each ge-

ometry/subject, which does not represent an increase in acquisition time, only extra

processing time.

3.4 Simulations

Coil sensitivity maps were simulated using the Biot-Savart law and the circular ar-

ray geometry with 8 elements shown in Fig. 2.3. Multiple receiver coil data were

created by multiplying a Shepp-Logan phantom with the coil sensitivity maps. Two

simulations were performed: (a) noiseless data and (b) noisy data: adding Gaussian

noise to have a SNR=50. The first data set will be used to assess the performance

with respect to errors in the sensitivity maps and the second for noise amplification

in the reconstruction. Accelerated data were simulated by decimating the k-space

data from each coil uniformly according to the given acceleration factor (R). Fully-

encoded data were reconstructed by applying the Fourier transform to each channel

and sensitivity-weighted combination (DFT-SWC), i.e. SENSE with R = 1. To vi-

sualize the degree of aliasing, the accelerated image was conventionally reconstructed

by DFT to each channel and sum-of-squares (DFT-SOS) combination. SNR in the

reconstructed image was computed by the ratio of the mean value and the standard

deviation of a region outside the object.
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3.4.1 1D acceleration of the noisy data

The standard SENSE reconstruction presented a high SNR loss especially in the

central region where g-factor is higher (Fig. 3.3). The average SNR loss was 25.7

which is in agreement with the theoretical value of ḡ
√

R = 24.6. SENSE-SSVD

provided lower g-factors and thus increased SNR in the reconstructed image at the

expense of residual aliasing. The optimal point for the tradeoff between SNR and

residual aliasing was found at c0 = 50 where the average g-factor was 3.6 and the

computed SNR loss was 9.2 (ḡ
√

R = 7.2).

Figure 3.3: Reconstruction of the noisy data with 1D acceleration (R = 4) using
standard SENSE and SENSE-SSVD for different c0 values.
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3.4.2 2D acceleration of the noisy data

2D acceleration presented lower and more uniform g-factor than 1D acceleration for

the same overall R (Fig. 3.4). The optimal regularization parameter for the tradeoff

between SNR and residual aliasing was found at c0 = 25 where the average g-factor

was 1.3 and the computed SNR loss was 3.1 (ḡ
√

R = 2.6). SSVD regularization

presented an improved performance for 2D acceleration than for 1D acceleration

since g-factor is lower and more uniform.

Figure 3.4: Reconstruction of the noisy data with 2D acceleration (R = 2× 2) using
standard SENSE and SENSE-SSVD for different c0 values.
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3.4.3 2D acceleration of the noiseless data with innacurate

coil sensitivity maps

Reconstruction with innacurate coil sensitivity information was simulated with bi-

ased coil sensitivity maps. The biased sensitivity map for the l -th coil is given by

c′l(r) = cl(r) + 0.05cmax
l . Standard SENSE reconstruction produced artifacts due

to amplified model errors (ḡ = 2.4). SENSE-SSVD reduced the effect of innacurate

sensitivity function due to a better conditioning of the encoding matrix (ḡ = 1.6).

Figure 3.5: Reconstruction of the noiseless data with 2D acceleration (R = 2 × 2)
and bias error in the coil sensitivity profiles (∆E = 0.05 E).

3.5 Experiments

Human brain data were acquired using a 3 Tesla MR scanner equipped with the 32-

channel soccer-ball array [25]. A gradient-echo sequence was employed with 256×256
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spatial matrix and FOV of 256 × 256 mm2. Coil sensitivity maps were estimated

following the procedure indicated in section 2.2.4. Fully-encoded data was recon-

structed using the DFT-SWC method. A high 2D acceleration with R = 4 × 4 was

simulated by decimating the k-space data from each coil uniformly. Reconstruction

results are presented in Fig. 3.6. Standard SENSE reconstruction has noticeable

errors specially in the central region due to the combined effect of noise and model

error amplification (ḡ = 2.9). SENSE-SSVD reduced this amplification (ḡ = 1.6)

providing a higher quality reconstruction (RMSE=13.4%).

Figure 3.6: Reconstruction of the human brain data with high 2D acceleration (R =
4 × 4) using standard SENSE and SENSE-SSVD (c0 = 35). The error images are
taken with respect to the fully-encoded reconstruction (DFT-SWC).
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3.6 Discussion

The regularization approach presented in this Chapter was intended to reduce noise

and model error amplification by constraining the matrix inversion at the expense

of reducing the ideal reconstruction accuracy. For example, for the case of noisy

data, SNR was increased at the expense of residual aliasing. For most of the appli-

cations, the increase in SNR compensates for the small residual aliasing offering a

reconstructed image with higher quality.

Regularization of the encoding matrix inversion can be performed by constraining

the SVD solution of the inverse problem. One possible strategy is to truncate the

singular values which are lower than a certain threshold. This solution, known as

truncated SVD, can be applied when the encoding matrix is sufficiently large so that

the fraction of eigenvalues retained still provides a reasonable approximation to the

true solution [49]. For SENSE, a small encoding matrix is used for each position

in the aliased images, therefore the number of singular values is very small and

truncated SVD is not an adequate approach. In this work, we proposed the SSVD

solution, which consists of shifting the set of singular values of the encoding matrix

away from zero based upon a threshold on the condition number. The method proved

to work adequately for SENSE to improve the conditioning of the encoding matrix in

positions with low-value and overlapped coil sensitivities at the expense of reduction

in ideal reconstruction accuracy.

In SSVD regularization, the degree of regularization is adapted automatically to

each spatial region, since the shifting value (∆σ = σmax/c0) depends on the maximum

singular value of the encoding matrix being employed. Therefore, it is more robust

than the conventional Tikhonov regularization where the regularization parameter

is a constant over the image. Moreover, the tuning of the regularization parameter

is simpler than with Tikhonov regularization methods that use prior images, e.g.
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L-curve. Since the reference image is only used to tune the optimal value to shift

the set of singular values, inconsistencies bewteen the reference and the acquisition

will not be reflected in the final reconstruction.

In conclusion, SSVD regularization presents an effective tradeoff between ideal

reconstruction accuracy and practical image quality for parallel MRI applications.

The method is ideally suited for high accelerations where a significant SNR loss is

produced due to ill-conditioning of the encoding matrix.

3.7 Summary

A novel regularization method of the inverse problem based on the SVD representa-

tion of the encoding matrix was presented for SENSE-like parallel MRI reconstruc-

tion. The method improves the SNR and reduce the effect of systematic errors in

coil sensitivity estimation at the expense of loss in ideal reconstruction accuracy.

SSVD regularization offers an efficient alternative to the commonly used Tikhonov

regularization with a simpler tuning of the regularization parameter. The degree of

regularization is automatically adapted to each spatial region in order to regularize

only where it is required. The method is expected to work adequately for different

array geometries and k-space sampling strategies.
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Parallel MRI with Variable

k-Space Sub-Sampling

Uniform sub-sampling of k-space is not optimal for parallel MRI if the coil sensitiv-

ities overlap, which is the case in practice. Variable density k-space sub-sampling

schemes that reduce the mean square error of the reconstruction with uniform k-space

sub-sampling are investigated in this Chapter. A general framework for parallel MRI

with arbitrary k-space sub-sampling is also presented.

4.1 Introduction

Parallel MRI methods make use of multiple receiver coils with different spatially-

varying sensitivities to simultaneously acquire a region in k-space at a time instead of

a single k-space point. The extent of that region is given by the shape of the spatial

Fourier transform of the coil sensitivities. This reduces the effective field of view

(FOV) for each coil and thus relaxes the k-space Nyquist sampling rate requirement.

For example, to obtain a reconstruction free of aliasing with a single receiver coil, the
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distance bewteen k-space samples cannot exceed the Nyquist sampling interval ∆k =

1/W , where W is the FOV. For two receiver coils with non-overlapping sensitivities

the required sample spacing is doubled to 2/W since the FOV for each coil is half of

the total FOV and therefore the acquisition process can be accelerated by a factor

of 2. However, this analysis is not appropiate for coil sensivities with partial overlap

which is the case in practice. The effect of overlapped coil sensitivities can be reduced

in part by the pre-whitening procedure presented in Chapter 3, which minimizes

the correlation between coils. In general, the k-space sampling positions should be

selected according to the partial overlap between coil sensitivies. For example, in

the SPACE-RIP method [18] data is sampled at the Nyquist rate at the center of

k-space and more sparsely as we move away from the center. This variable density

sampling scheme is based on the property that most of the information content is

concentrated within a small region at low k-space values whereas the edge information

is distributed over a much broader region of higher k-space values. Aggarwal et al.

[19] presented a more rigorous approach where the sampling positions were chosen

considering the object and noise spatial statistics. The object was modeled as a

stationay Gaussian random process and the optimal sampling scheme was derived

by minimizing the mean squared error (MSE).

Parallel MRI reconstruction with arbitrary sub-sampling of k-space requires in-

version of the complete encoding matrix since each spatial point can potentially

alias with all the others. For the case of variable sub-sampling along one spatial

dimension, the inversion can be performed separately for each point in the other

dimensions. For variable sub-sampling along two spatial dimensions, the size of the

encoding matrix makes impractical a straightforward inversion. Iterative methods

such as the Conjugate Gradient can be used to solve the inverse problem [54].

This Chapter presents a general model and reconstruction method for parallel

MRI with arbitrary k-space sub-sampling schemes and a method for selection of
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k-space samples under partial overlap between coil sensitivities. Selection of by

reducing the mean square error (MSE) of the reconstruction with respect to the

fully-sampled reconstruction. In contrast to [19], the approach only make use of

the sensitivity maps and thus is object independent. Variable density sub-sampling

schemes that reduce the mean square error of the reconstruction with uniform sub-

sampling are presented.

4.2 Parallel MRI Modeling and Reconstruction

for Arbitrary k-Space Sub-Sampling

The general approach for parallel MRI reconstruction is to first build the forward

model that relates the sub-sampled k-space data with the fully-sampled k-space

representation of the image to be reconstructed. This relationship is given by the

encoding matrix which represents the combined effect of gradient and sensitivity

encoding. The reconstructed image is then computed by the inverse of the encoding

matrix. In this Section a general forward model in the spatial domain is presented for

parallel MRI with arbitrary k-space sub-sampling as well as practical reconstruction

algorithms to efficiently invert the encoding matrix.

4.2.1 Forward Model

Considering the discretization of the object function to Nr points (reconstruction

grid), and the acquisition of Nk k-space points (acquisition grid), a discretized version

of the signal acquired by each coil in k-space can be represented as:

Yl,n =
Nc
∑

l=1

s [rm] cl [rm] ej2πkn·rm , (4.1)
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where n = 1, 2, . . . , Nk is the sampling index, m = 1, 2, ..., Nr is the reconstruction

index and l = 1, 2, ..., Nc is the coil index. This equation can be also represented as:

FNk
yl = FNr

Cls, (4.2)

where FN (N ×N) is the discrete spatial Fourier transform matrix, yl (NkNc × 1) is

the aliased observation vector in the spatial domain, Cl (Nr×Nr) is a diagonal matrix

with the l -th coil sensitivity values and s (Nr × 1) is the image to be reconstructed.

After applying a spatial inverse Fourier transform, the encoding equation for the l -th

coil in the spatial domain can be expressed as:

yl = F−1
Nk

SFNr
Cls = Els, (4.3)

where S (Nk × Nr) is the sampling matrix relating the reduced and full sampling

schemes. The element S(i, j) = 1 if the k-space position with index j is sampled and

equal to 0 otherwise. After concatenating the encoding equations from all coils, we

obtain the complete encoding equation:

y = Es,y =





















y1

y2

...

yNc





















,E =





















E1

E2

...

ENc





















(4.4)

Note that the encoding equation provides a general forward model for arbitrary sub-

sampling over a Cartesian grid.

4.2.2 Inverse Reconstruction

Parallel MRI reconstruction with arbitrary sub-sampling of k-space requires inversion

of the complete encoding matrix since each spatial point can potentially alias with

all the others. For the case of variable sub-sampling along one spatial dimension,
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the inversion can be performed separately for each point in the other dimensions.

For example, in 2D MRI acceleration is only practical along the phase-encoding

dimension (y). Therefore, the complete inversion can be performed separately for

each point along the x dimension using the conventional pseudo-inverse approach.

Using the general model and reconstruction, artifacts in SENSE reconstruction with

odd uniform acceleration factors can be removed (Fig. 4.1).

Figure 4.1: a) Effect of k-space sub-sampling with Ry = 3. Note that each point
in the sub-encoded image (y-acc) is a combination of more than 3 points from the
fully-encoded image (y-full). b) Standard SENSE reconstruction presents artifacts
due to the modeling errors described in part a). c) SENSE reconstruction with the
general model removes the artifacts.

For 3D MRI, acceleration can be performed along the two phase encoding di-

mensions (y and z). Conventional inversion of the complete encoding matrix is

impractical due to computational requirements. The solution of the inverse problem
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in parallel MRI leads to the following normal equations:

EHE s = EHy. (4.5)

The system can be solved iteratively using the Conjugate Gradient (CG) algorithm

since it is conjugate symmetric and the encoding matrix is positive definite as it

was described by Pruessmann et al. for the case of SENSE reconstruction with non-

Cartesian trajectories [54]. In this work, we are using the same approach but for the

case of Cartesian sampling of k-space where density correction and regridding are

not required.

The rate of convergence of the conjugate gradient algorithm depends on the

conditioning of the encoding matrix E. If the singular values cluster around a fixed

point, e.g. well-conditioned matrix, the solution will be stable and convergence will

be fast. Pre-conditioning can be used to achieve faster convergence. The idea behind

pre-conditioning is to transform the original system to improve the conditioning of

the encoding matrix [55]. Pre-conditioning can be also thought as a regularization

method since the condition of the encoding matrix is improved (see Chapter 5 for

more details). Consider a symmetric, positive-definite matrix M that approximates

EHE, but is easier to invert. We can solve the original normal equations by solving

M−1EHE s = M−1EHy instead. Now, this transformed system may not be positive

definite. In order to force this property, the following decomposition of the matrix

M can be used: M−1 = CCH . Since the matrices M−1EHE and CEHECH have

the same singular values, the original normal equations can be transformed into the

following positive definite system [55]:

(

CEHECH
) (

C−Hs
)

= CEHy, (4.6)

which can be solved iteratively using the CG algorithm. For M we can use the matrix

EHE for the case of fully-encoding where we have a diagonal matrix with entries given

by the sum of coil sensitivity squares, i.e. mi,i =
∑Nc

l=1 |cl(ri)|2. Note that this matrix
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is symmetric and positive definite. Therefore, the matrix C (Nr × Nr) will be also

diagonal with entries:

ci,i =
1

√

∑Nc

l=1 |cl(ri)|2
, (4.7)

and the pre-conditioned normal equations are given by:

(

CEHEC
) (

C−1s
)

= CEHy. (4.8)

The proposed iterative image reconstruction consists basically of the following steps:

- Compute the right side of the pre-conditioned normal equations: a = CEHy.

- The i -th CG iteration determines the solution b̂i of
(

CEHEC
)

bi = a.

- The approximate solution for the i -th iteration is given by: ŝi = Cbi.

Each iteration provides a refined approximation ŝi of the exact solution until the

norm of the residual
∥

∥

∥EHE s − EHy
∥

∥

∥ converges to a minimum. The stopping point

was established when the norm of the residual falls below a small fraction ǫ of the

initial residual. Since the exact solution is not known, the accuracy of the current

approximation can be estimated using the relative error in the second step of the

iterative reconstruction:

δi =

∥

∥

∥CEHECb̂i − a
∥

∥

∥

‖a‖ . (4.9)

When δi < ǫ, the CG iterations will stop and the corresponding ŝi is set as the final

solution.

4.3 Variable Density k-Space Sampling

Optimal selection of k-space samples for parallel MRI under the presence of partial

overlap bewteen coil sensitivities can be performed by choosing Nk points out of
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Nr points that gives the minimum mean square error (MSE) reconstruction (R =

Nr/Nk). Considering the pre-whitened encoding equation for parallel MRI acquis-

tion y = Es and the least-squares solution ŝ =
(

EHE
)−1

EHy, the MSE of the

reconstructed image is given by:

MSE = E
[

‖s − ŝ‖2
]

= trace
{

(

EHE
)−1

}

, (4.10)

where E is the expectation operator. The exhaustive search for the Nk best k-space

points is a combinatorial optimization problem and thus is impractical for parallel

MRI applications.

In this Chapter, a variable density sampling scheme is developed based on the k-

space representation of the coil sensitivity maps. The idea is to increase the sampling

distance as we move away from the center of k-space, as in the SPACE-RIP method

[18], but using the density of the coil sensitivities in k-space. The sub-sampling

method reduces the MSE of the reconstruction using uniform sub-sampling at the

expense of g-factor amplification due to increased distance bewteen samples espe-

cially at high k-space values. Therefore, regularization must be used with variable

density sub-sampling to achieve an appropiate SNR in the reconstructed image.

SSVD regularization (see Chapter 3) was employed with the variable density sub-

sampling scheme for acceleration along one spatial dimension. The regularization

parameter was adjusted in order to minimize the MSE error described above. Fig.

8.2 shows an example using the simulated 8-channel circular array and acceleration

along the y dimension. The k-space representation of the coil sensitivity maps were

fitted to a piece-wise linear function in order to select 32 points out of 128 (R = 4).

The slope of the piece-wise linear function increased from 1 (k-space center) up to

9 (k-space periphery). SENSE with uniform sub-sampling (SENSE-US) presented

low SNR in the reconstruction. SENSE with variable sub-sampling (SENSE-VS)

outperforms SENSE-US when using regularization presenting a reconstruction free

of residual aliasing artifacts with appropiate SNR.

58



Chapter 4. Parallel MRI with Variable k-Space Sub-Sampling

Figure 4.2: a) k-space representation of the coil sensitivity maps. b) Piece-wise
linear variable density sub-sampling (VS) and uniform sub-sampling (US) schemes
for R = 4. The slope of the linear function varies according to the k-space density of
the coil sensitivity maps. c) SENSE reconstruction with uniform sub-sampling (US)
and SSVD regularization reduces noise at the expense of residual alising. Residual
aliasing in the SSVD regularization is removed by the variable density k-space sub-
sampling approach.

The conjugate gradient algorithm with pre-conditioning and variable density sub-

sampling scheme was employed for acceleration along two spatial dimensions. Fig.

8.3 shows an simulation example using the 32-channel soccer-ball array and accelera-

tion along x and y dimension. The k-space representation of the coil sensitivity maps

was fitted to a 2D piece-wise linear function in order to select 32 × 32 points out of

128 × 128 (R = 4 × 4). The residual aliasing in SENSE with uniform sub-sampling

was highly reduced for the variable sub-sampling scheme.
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Figure 4.3: a) Map of the variable sub-sampling distance given by the 2D k-space
density of the coil sensitivities. b) SENSE reconstruction with uniform sub-sampling.
c) SENSE reconstruction with the variable sub-sampling given in a).

4.4 Summary

This Chapter presented a general framework for parallel MRI with arbitrary k-space

sub-sampling. A practical variable density k-space sub-sampling using the k-space

density of the coil sensitivity maps was presented. The approach reduces the mean

square error of reconstruction with uniform k-space sub-sampling and it is advante-

geous for cases where regularization is used.
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Chapter 5

Superresolution Parallel MRI

Reconstruction

3 Parallel MRI reconstruction is formulated as a superresolution problem where ac-

celeration is performed by acquiring the low spatial resolution representation of the

object being imaged and receiver coil sensitivity maps are acquired with higher target

spatial resolution. The increase in spatial resolution will be determined by the degree

of coil sensitivity variation within the low resolution image voxel. The method is ap-

plicable to receiver arrays with a large number of small elements which provide strong

spatial variation of the coil sensitivity maps. Superresolution Sensitivity-Encoding

(SURE-SENSE) represents an alternative approach to standard SENSE for the same

acceleration factor and it is advantageous for low spatial resolution imaging which

present stronger variation of the coil sensitivities within the image voxel.

3The work in this chapter was published as: R. Otazo, R. Jordan, F-H. Lin and S. Posse.
“Superresolution Parallel MRI”. Proceedings of the 14th IEEE International Conference
on Image Processing (ICIP), San Antonio, USA, 2007, pp. III-153-156.
Submitted as a full paper to Magnetic Resonance in Medicine.
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5.1 Introduction

MRI methods involve imaging objects with high k-space content in a limited amount

of time. However, due to SNR and time constraints, information over only a lim-

ited k-space range is usually acquired in practice. For example, in MRSI which is

constrained by low SNR and slow encoding methods, k-space coverage is sacrificed

to achieve an adequate SNR within a feasible acquisition time. In functional MRI

(fMRI), where a time-series of images is acquired, k-space coverage is traded off for

increased temporal resolution.

The lack of high k-space information leads to limited spatial resolution and Gibbs

ringing when the Fourier transform is directly applied to reconstruct the image. Con-

strained image reconstruction techniques using prior information [56] have been pro-

posed to achieve superresolution image reconstruction, i.e to estimate high k-space

values without actually measuring them. For example, the finite spatial support of

an image can be used to perform extrapolation of k-space at expense of SNR loss.

However, this method performs well only at positions close to the periphery defined

by the spatial support [57]. For experiments with temporal repetitions such as MRSI

and fMRI; k-space substitution[58], also known as key-hole method, was proposed

to fill the missing high k-space values of the series of low resolution aquisitions using

a high resolution reference. However, this method is vulnerable to artifacts due to

inconsistencies between the reference and the actual acquisition. An improvement

of this approach, known as generalized series reconstruction [59, 60], forms a para-

metric model using the high resolution reference to fit the series of low resolution

acquisitions and thus reduce the effect of data replacement inconsistencies. Alterna-

tively, superresolution reconstruction can be performed by combination of several low

resolution images acquired with sub-pixel differences [61, 62]. This method is well

developed for picture and video applications and was employed before in MRI by ap-

plying a sub-pixel spatial shift to each of the low resolution acquisitions [63, 64, 65].
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However, this method is very limited since a spatial shift is equivalent to a linear

phase modulation in k-space which does not represent new information to increase

the k-space coverage of the acquisition.

Parallel MRI [15, 16] has been introduced as a method to accelerate the sequential

gradient-encoding process by acquiring fewer k-space points using multiple receivers

with different spatially-varying sensitivities. The standard strategy for accelerated

encoding is to reduce the density of k-space sampling while maintaining the extent

in order to have the same spatial resolution of the fully encoded acquisition. The

rationale for this sub-sampling scheme is that the coil sensitivities are very smooth

and retrieve k-space information only from the neighborhood of the actual gradient-

encoding point. This acceleration could be used to increase k-space coverage in order

to obtain a reconstructed image with higher spatial resolution. However, a larger

coverage of k-space in the acquisition will produce a SNR loss that can be prohibitive

for certain MRI modalities such as MRSI. In the other hand, standard SENSE recon-

struction strictly removes aliasing only at the voxel center. Strong aliasing artifacts

may occur for low spatial resolution imaging where the coil sensitivities are varying

within the image voxel [66, 67]. Standard SENSE reconstruction with coil sensitivity

information acquired with higher spatial resolution than the actual image along with

minimum norm reconstruction were proposed to reduce this effect at the expense of

g-factor amplification [67].

Parallel MRI using large-N arrays [21] provides higher sensitivity encoding capa-

bility due to stronger variation of the coil sensitivities in the spatial domain and thus

extended k-space coverage. Extreme accelerated encoding with only one gradient-

encoding point was presented using large-N arrays where all the spatial information

was derived from the coil reception profiles. For example, a 64-channel planar array

was employed in the Single Echo Acquisition (SEA) technique [68]. However, the

in-plane resolution of this technique decreases rapidly with increasing depth, in ac-
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cordance with the RF coil sensitivity profiles. In the Inverse Imaging (InI) technique

[23], a 90-channel array and MEG-like inverse reconstruction were proposed for func-

tional MRI of human brain with temporal resolution of only 20 ms. However, the

price to pay for this extreme acceleration is reconstruction with low spatial resolution

which is determined by the degree of variation of the coil sensitivity maps.

This Chapter presents a novel method for parallel MRI where acceleration is

performed by acquiring only the central region of k-space instead of increasing the

sampling distance over the complete k-space matrix. The proposed method, known

as Superresolution SENSE (SURE-SENSE), increases the spatial resolution of the

acquisition using coil sensitivities acquired with the target spatial resolution. The

attainable increase in spatial resolution is determined by the degree of variation of the

coil sensitivities within the acquired image voxel. The method is proposed for large-N

arrays, which provide stronger variation of the coil sensitivity maps. Superresolution

parallel MRI is intrinsically poor conditioned since the variation of coil sensitivities

within the image voxel is lower than at larger distances. To overcome conditioning

problems, a conjugate gradient algorithm with pre-conditioning is employed to solve

the inverse problem. Comparison to standard SENSE reconstruction is presented at

low spatial resolution in terms of residual aliasing artifacts and point spread function

reconstruction. Application to MRSI of human brain is presented in Chapter 7 as a

method to reduce lipid contamination and to enhance the spatial resolution of the

metabolite maps.

5.2 Superresolution SENSE (SURE-SENSE)

The goal of superresolution image reconstruction is to combine information from

different low resolution images that contain sub-pixel differences [61, 62]. For the

case of parallel MRI, each receiver coil provides a different view of the same object
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function according to the array geometry, e.g. in a circular array each coil provides

a view from a different direction. Since the image acquired by each coil is weighted

by the corresponding spatial sensitivity of the coil, superresolution is possible if the

sensitivities are varying within the low resolution image pixel or different coils have

a distinct sensitivity profile across the low resolution image pixels. Superresolution

SENSE increases the spatial resolution of the acquisition using coil sensitivity maps

acquired with the target spatial resolution (Fig. 5.1).

Figure 5.1: Superresolution parallel MRI idea. k-space representation, image and
point spread function (PSF) for: a) high and b) low spatial resolution acquisitions.
The high resolution data can be estimated from different low resolution acquisitions
where the coil sensitivities are varying within the image voxel. Large-N arrays will
provide improved performance due to stronger variation of the coil sensitivity maps
and thus larger k-space coverage.
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The working hypothesis of the first factor is that the coil sensitivities will pro-

vide extended k-space information. Even though this provides only limited k-space

expansion for commercially available arrays with a small number of elements and

therefore very smooth sensitivity functions, recently developed array designs with a

large number of small elements will provide very localized information in the spatial

domain that will increase k-space coverage of the sensitivity function [24] (Fig. 5.2).

Figure 5.2: Coil sensitivity simulation using the Biot-Savart law [4] for coils with
different diameters d= 5 and 10 cm respectively. a) Spatial domain and b) k-space
representation. Note that the stronger decay in the spatial domain increases the
k-space extent of the coil sensitivity.

5.2.1 Acquisition Model

The forwad model in matrix form y = Es is generated using the generalized model for

parallel MRI with arbitrary k-space sampling presented in Section 4.3.1. For super-

resolution parallel MRI, accelerated data is acquired from the central k-space region

and coil sensitivity data is acquired from a extended k-space region determined by the

target spatial resolution (Fig. 5.1). Both data sets are acquired at the Nyquist rate.

The forward model describes the relationship between the acquired low resolution

images (Nk-grid) and the high resolution sensitivity maps (Nr-grid). Comparison of
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the effect of reduced k-space sampling in the spatial domain for standard (k-space

sub-sampling) and superresolution SENSE (k-space truncation) is shown in Fig. 5.3.

In superresolution SENSE, even though all the points from the fully encoded data

are contributing to each point in the reduced data, most of the interation is limited

within the low resolution voxel.

Figure 5.3: Effect of reduced k-space sampling with R=2 in the spatial domain
for a) standard SENSE and b) superresolution SENSE. For standard SENSE, R
equidistant points from the fully encoded data are combined in each point of the
data with reduced encoding. For superresolution SENSE, all the points in the fully
encoded data are combined in each point of the reduced data with weights given by
the PSF of the low spatial resolution acquisition.

5.2.2 Image Reconstruction

Superresolution SENSE reconstruction is performed using the pre-conditioned con-

jugate algorithm presented in Section 4.3.2 for reconstruction of parallel MRI data

acquired with arbitrary k-space sampling. Note that superresolution parallel MRI is

intrinsically an ill-conditioned inverse problem. The encoding matrix in this case is

more susceptible to become singular than in standard parallel MRI since the variation

of coil sensitivities is lower within the low resolution voxel than at larger distances

which is case for sub-sampled acquisitions. The idea behind pre-conditioning is to

transform the original system to improve the conditioning of the transformed en-
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coding matrix, which represents a regularization method by itself. Following the

procedure indicated in Section 4.3.2, the original normal equations EHE s = EHy

can be transformed to M−1EHE s = M−1EHy, where M is a symmetric, positive-

definite matrix M that approximates EHE, but is easier to invert. In order to have

a positive definite transformed system, the following decomposition of the matrix

M can be used: M−1 = CCH . Since the matrices M−1EHE and CEHECH have

the same singular values, the original normal equations can be transformed into the

following positive definite system [55]:

(

CEHECH
) (

C−Hs
)

= CEHy, (5.1)

which can be solved iteratively using the CG algorithm (see Section 4.3.2 for more

details). Note that the transformed system is well-conditioned since the singular

values of the transformed matrix CEHECH will be clustered around 1. For M we can

use the matrix EHE for the case of fully-encoding where we have a diagonal matrix

with entries given by the sum of coil sensitivity squares, i.e. mi,i =
∑Nc

l=1 |cl(ri)|2.
Therefore, the matrix C (Nr × Nr) will be also diagonal with entries:

ci,i =
1

√

∑Nc

l=1 |cl(ri)|2
, (5.2)

5.2.3 SNR and Spatial Resolution Analysis

The enhancement in spatial resolution comes at the expense of SNR loss dictated by

the reduction in acquisition time and noise amplification in the reconstruction due

to ill-conditioning of the encoding matrix (g-factor) [16].The spatially-varying SNR

loss is the same as in standard parallel imaging and it is given by:

SNRloss(r) =
SNR1

SNRR

=
√

Rg(r), (5.3)

where SNR1 corresponds to the fully-encoded reconstruction and SNRR to the reduced-

encoded reconstruction with a sampling reduction factor of R = Nr/Nk. The regu-
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larization procedure presented before will enforce low values of g-factor which repre-

sents SNR gain at the expense of attenuating high spatial frequencies in the solution.

Therefore, the maximum gain in spatial resolution is limited by the original g-factor

that needs to be reduced by regularization in order to obtain an appropriate SNR

which is in agreement with the fact that stronger sensitivity variations will result in

higher acceleration factors.

5.3 Experimental Validation

Simulations and experiments were performed focusing on human brain imaging.

5.3.1 Scanner and Array Coil

Phantom and human brain data were acquired using a 3 Tesla MR scanner (Tim

Trio, Siemens Medical Solutions, Erlangen, Germany). Head array coils with 32 [25]

and 96 [26] receiver elements were used for RF reception, while RF transmission

was performed with a quadrature body coil. The array coils were built with close-

fitting helmet design and circular elements arranged in patterns of hexagonal and

pentagonal symmetry similar to a soccer-ball for the 32-channel array and to a C240

bucky-ball for the 96-channel array (see Fig. 1.1). The 32-channel array offers nearly

three-fold higher peripheral SNR and 20-30% higher SNR in the center of the head

than the commercial 12-channel circular array. The 96-channel array presents a two-

fold SNR gain in the periphery and close to 50% SNR gain in the center of the head

when compared to the 32-channel array. Besides the high increase in sensitivity, the

large number of small elements provide strong variation of the coil sensitivities in

the spatial domain which translates to larger coverage in k-space and thus higher

acceleration capability for superresolution SENSE.
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5.3.2 High Resolution Coil Sensitivity Maps

Coil sensitivity maps were estimated at the high spatial resolution of the correspond-

ing acquisition. Raw sensitivity maps were obtained dividing the image from each

coil by the sum-of-squares combination of the multi-coil data to remove anatomical

features. Refinement of the raw sensitivity maps was performed by a 4-th order poly-

nomial fitting and spatial extrapolation beyond the borders of the object following

the polynomial model as described in Section 2.4.4. The 4-th order polynomial was

employed to accomodate stronger variations in the coil sensitivity model as required

in SURE-SENSE.

5.3.3 Data Processing and Error Quantification

Low resolution data was obtained from the central k-space matrix. SURE-SENSE re-

construction was applied to the low resolution data using the high resolution coil sen-

sitivity maps. For error quantification purposes, the high resolution acquisition was

reconstructed by applying DFT reconstruction to each coil and sensitivity-weighted

combination of the individual coil images (DFT-SW), i.e. standard SENSE recon-

struction for the fully encoded data. For comparison purposes, the low resolution

acquisition was conventionally reconstructed using the DFT-SW procedure with low

resolution coil sensitivity maps and the result was interpolated to the high reso-

lution spatial grid by zero-filling the k-space data. The interpolated conventional

reconstruction will be referred to as DFT-SW-ZF reconstruction. The quality of the

reconstruction was estimated using the root mean square error (RMSE) with respect

to the fully-encoded reconstruction.

The point spread function (PSF) or impulse response was computed by recon-

structing the data from a source point, e.g. s(r0) = δ(r0) where δ is the Dirac

function and r0 is the position of the source point. Spatial resolution will be de-
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termined using the full width at half maximum (FWHM) of the main lobe of the

resulting PSF.

5.3.4 Simulations

Simulated 32-channel array data were created using the sensitivity maps estimated

from a phantom acquisition. The phantom consisted of a uniform sphere with saline

composition. Data was acquired with the 32-channel array coil using a gradient-echo

sequence with a 128 × 128 spatial matrix and a field of view (FOV) of 256 × 256

mm2, resulting in in-plane spatial resolution of 4.0 mm2.

Structural MRI

Structural MRI data was simulated using a modified Shepp-Logan head phantom as

object function. Multi-coil data was generated by multiplying the numerical phantom

with the sensitivity maps and adding Gaussian noise corresponding to SNR=100.

Fig. 5.4 shows the reconstruction of the simulated phantom data. SURE-SENSE

reconstruction reduced the spatial ringing and increased the spatial resolution of the

conventional DFT reconstruction with k-space zero-filling. Very low average g-factors

of 1.07 were obtained as expected from the pre-conditioning procedure.

Fig. 5.5 shows the PSF reconstruction for the data with reduced encoding factor

R = 4 × 4 (encoding matrix size: 32 × 32). The average FWHM of the PSF for

DFT-SW-ZF reconstruction is 16.4 points while for SURE-SENSE is only 1.84 point

which represents an average gain of 8.9 in spatial resolution.

Note that the average FWHM for SURE-SENSE is larger than the theoretical

limit, which corresponds to one pixel width. This indicates that the method could not

get the maximum spatial resolution given by the fully-encoded data and it is limited
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Figure 5.4: Simulated phantom reconstruction using the 32-channel array. a) Con-
ventional DFT with sensitivity-weighting (DFT-SW) reconstruction of the fully-
encoded data (encoding matrix size: 128 × 128, R=1). DFT-SW with zero-filling
(DFT-SW-ZF) and SURE-SENSE reconstruction of the data with reduced encoding:
b) encoding matrix size: 64 × 64, R=4, c) encoding matrix size: 32 × 32, R = 16.

by the coil sensitivity variation within the low resolution voxel which determines the

conditioning of the original encoding matrix.

The spatial resolution of SURE-SENSE reconstruction is spatially-varying as ex-

pected and provides better defined PSF in regions with stronger spatial variation of

the coil sensitivity maps.
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Figure 5.5: Point spread function (PSF) reconstruction of the simulated phantom
data with reduced encoding (encoding matrix size: 32 × 32, reconstruction ma-
trix size: 128 × 1282) using DFT-SW-ZF and SURE-SENSE: a) full-width at half-
maximum (FWHM) images, b) PSF in a voxel close to the periphery (r1), and c)
PSF of a central voxel (r2).

Comparison to standard SENSE

Reconstruction with low target spatial resolution was simulated to compare the per-

formance of standard SENSE and SURE-SENSE at the low spatial resolution regime.
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Fully-encoded low resolution data was obtained from the central 64×64 k-space ma-

trix. Coil sensitivity maps were estimated from the fully-encoded low resolution data.

Sub-sampled low resolution data was obtained by decimating the fully-encoded low

resolution data along two-dimensions by a factor R = 4 × 4. Standard SENSE re-

construction was applied to the sub-sampled low resolution data. Truncated low

resolution data was obtained from the central 16 × 16 k-space matrix, which repre-

sent the same acceleration factor of SENSE. Superresolution SENSE reconstruction

was applied to the truncated low resolution data. The reconstruction results were

interpolated to a 256 × 256 matrix by using zero-filling in k-space.

Standard SENSE reconstruction presented residual aliasing artifacts due to coil

sensitivity variation within the low spatial resolution target voxel (Fig. 5.6). This

effect is particularly evident at the periphery where sensitivity variation is stronger.

For example, the PSF of the point close to the periphery shows poor suppression

of the aliasing peaks. The RMSE for standard SENSE was 13.7% and for SURE-

SENSE was 4.2%. Superresolution SENSE is free of residual aliasing artifacts since

the reconstruction paradigm is different. The accelerated data for SURE-SENSE

presents a PSF with broad main lobe and significant side lobes. The reconstruction

improves the PSF using sensitivity maps that vary within the lobes of the PSF to

reduce the width of the main lobe and the power of the side lobes. Since the extent

of the side lobes is larger than the extent of the main lobe and the variation of the

coil sensitivities is higher for larger distances, side-lobe suppression presented better

performance than reduction of the main-lobe width.

5.3.5 Experiments

Human brain data were acquired using a gradient-echo sequence with a 256 × 256

spatial matrix and a FOV of 256× 256 mm2, resulting in in-plane spatial resolution
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Figure 5.6: Comparison of standard SENSE and SURE-SENSE reconstruction at
low spatial resolution using the 32-channel array. The reconstruction of the fully
encoded data is shown for comparison purposes. a) Absolute images. b) Point spread
function along the x dimension. The PSF of conventional DFT reconstruction of the
accelerated data are shown in gray lines: aliasing peaks for SENSE sub-sampling
and broadening with increased side lobes for SURE-SENSE truncated sampling.

of 1 mm2. Two acquisitions were performed on different subjects using the 32- and

96-channel arrays respectively. Fig. 5.7.a shows the reconstruction using the 32-

channel array with a high acceleration factor of 28.4. The RMSE with respect to

the fully-encoded reconstruction for conventional DFT reconstruction was 35.5% and

for SURE-SENSE was only 9.6%. Fig. 5.7.b shows the reconstruction of a different

human brain MRI data using the 96-channel array with a higher acceleration factor

of 64. The RMSE with respect to the fully-encoded reconstruction for conventional

DFT reconstruction was 71.1% and for SURE-SENSE was only 10.9%. Note that

the reconstruction using the 96-channel array is recovering more spatial features

as suggested by the error image, which is due to the stronger variation of the coil

sensitivities.
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Figure 5.7: Human brain MRI reconstruction for a) 32-channel array and b) 96-
channel array.

76



Chapter 5. Superresolution Parallel MRI Reconstruction

5.4 Discussion

In this Chapter, a novel reconstruction technique is proposed for parallel MRI using

large scale array coils with strongly varying coil sensitivity maps. In analogy to su-

perresolution image reconstruction from picture and video processing, where multiple

low resolution images with sub-pixel differences are combined, parallel MRI recon-

struction was formulated as a superresolution problem. Acceleration is performed

by acquiring only the central region of k-space instead of increasing the sampling

distance over the complete k-space matrix, which represents the low spatial resolu-

tion representation of the object being imaged. Single coil sensitivity variation and

different sensitivity profiles within the acquired low resolution pixels are employed

to perform intra-pixel reconstruction.

The proposed method offers an alternative approach to standard parallel MRI

methods for the same acquisition time which is particularly suitable to large-N ar-

ray coils that present much stronger spatial variation of the coil sensitivity pro-

files than the commercially available reciver arrays with 8 and 12 elements. While

strong variation in the coil sensitivity maps represents a cause of artifacts in stan-

dard SENSE or GRAPPA parallel MRI methods due to the intra-pixel sensitivity

variation or equivalently increased k-space extent of the coil sensitivity maps [66],

SURE-SENSE is taking advantage of the stronger sensitivity variation to perform

intra-pixel reconstruction with improved performance. Moreover, the reconstruction

error for standard SENSE is distributed in bands across the entire image while for

SURE-SENSE is limited to the extent of the low resolution PSF. This reflects the

difference in k-space sampling with the two techniques: localized errors in k-space

when reconstructing missing k-space samples in SENSE lead to distributed arti-

facts in the spatial-domain, whereas errors in reconstructing extrapolated k-space in

SURE-SENSE lead to localized errors in the reconstructed image.
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SURE-SENSE is particularly advantageous for application of parallel imaging to

intrinsically low spatial resolution data such as spectroscopic imaging, since it does

not present residual aliasing artifacts as in standard SENSE reconstruction for cases

where the coil sensitivities are varying within the image voxel.

The reconstruction of accelerated data in parallel MRI comes at the expense of

SNR loss dictated by the reduced number of encoding points and noise amplification

in the reconstruction due to ill-conditioning of the encoding matrix (g-factor). Pre-

conditioning reduces the g-factor for SURE-SENSE reconstruction close to one at

the expense of slight spatial resolution reduction in the reconstructed image due to

the attenuation of small singular values, which are related to high spatial frequencies.

As we have shown in our results, this tradeoff is quite acceptable when the data is

acquired with large-scale array coils that provide strongly modulated coil sensitivity

profiles and high SNR. Alternatively, regularization methods using prior information

about the final image could be used to improve the tradeoff between SNR and spatial

resolution [48].

The maximum gain in spatial resolution is given by the degree of variation of the

coil sensitivities within the image voxel. Stronger variations in the spatial domain

correspond to a larger extent in k-space. We expect that the performance of SURE-

SENSE reconstruction for human brain imaging will improve with the number of

receiver coils using array geometries similar to the soccer-ball, as we have shown in

the results for the 96-channel array. In central regions of the brain further away

from the top of the soccer-ball shaped array the coil sensitivity profiles are varying

less strongly, which will limit resolution enhancement. We are in the process of

implementing the technique using similar arrays at 7 Tesla which will provide higher

sensitivity and stronger spatial modulation of the sensitivity functions [27].
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5.5 Summary

The Superresolution SENSE method introduced in this Chapter represents a novel

parallel imaging method that compares favorably the performance of standard SENSE

reconstruction for low spatial resolution imaging and large-scale RF arrays with

strong spatial sensitivity variation of the coil profiles. However, superresolution

SENSE is not limited to low resolution MRI as we have shown and future work

will characterize the optimal operating regimes of superresolution SENSE. The tech-

nique is particularly applicable to intrinsically low spatial resolution modalities such

as spectroscopic and functional imaging and provides flexible tradeoff between spatial

and temporal resolution for accelerating scans in clinical studies.
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Chapter 6

PEPSI at High-Field: SNR and

Spectral Resolution Improvements

4 This chapter analyzes quantitatively the advantages of using high magnetic field

strength (B0) in Proton Echo Planar Spectroscopic Imaging (PEPSI). Theoretical

expectations for MRS show a linear increase in SNR and spectral resolution with

respect to B0. However, no experimental validation was performed for echo-planar

MRSI. SNR per unit volume and unit time and spectral line width of the main

metabolites N-Acetyl-Aspartate (NAA), Creatine (Cr) and Choline (Cho) were esti-

mated from in vivo PEPSI acquisitions at 1.5, 3, 4 and 7 Tesla on scanners sharing

a similar software and hardware platform. Data were corrected for relaxation differ-

ences and fitted to a parametric model adapted to each B0.

4The work in this chapter was published as: R. Otazo, B. Mueller, K. Ugurbil, L. Wald
and S. Posse. “Signal-to-Noise Ratio and Spectral Line Width Improvements between 1.5
and 7 Tesla in Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI)”. Magn Reson Med
2006; 56(6):1200-1210.
Presented in part at the 13th Annual Meeting of the International Society of Magnetic
Resonance in Medicine (ISMRM), Miami, FL, USA, 2005, pp. 2521.
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6.1 Introduction

The main advantage of using high field strength (B0) in all magnetic resonance exper-

iments is a significant improvement in signal-to-noise ratio (SNR). For in vivo appli-

cations using the 1H nucleus, a linear gain of SNR with respect to B0 was theoretically

predicted provided that relaxation times do not change, experimental parameters are

the same, sample losses dominate the noise source and RF penetration effects are not

significant [69, 70, 71]. For high fields, SNR becomes rather complex due to B1 field

inhomogeneity and it has to be treated as a function of the position, but on average

the theoretical limit remains the same [72]. Experimentally, for imaging it was found

that SNR increases at least linearly with the field strength in a range from 0.5 Tesla

to 7 Tesla [73, 74]. For single voxel spectroscopy gains less than linear (23-28%) were

found in 3 T vs. 1.5 T experiments [75]. For conventional Chemical Shift Imaging

(CSI) 23-46% gains were found in 3 T vs. 1.5 T comparisons [76]. Many factors that

may reduce the expected SNR improvement at higher field have been reported such

as longer T1 relaxation times that lead to saturation related signal losses at short

TR [73], line broadening due to magnetic susceptibility effects [75, 76], shorter T2

at higher fields [77], limited RF power and limitations in the design of homogeneous

RF coils [78]. MRS at high-field benefits from improved spectral resolution due to

increased chemical shift dispersion and reduced higher-order coupling effects [73, 78].

Using short echo-time single voxel spectroscopy coupled metabolites in the human

brain (like glutamate and glutamine) were more easily resolved at 4T compared to

1.5T [79]. Additionally, the spectral linewidth (LW) in ppm decreased. Increased

SNR and spectral resolution in MRS translate to improved metabolite quantification

precision or may be traded for a higher spatial resolution which still maintains ade-

quate SNR for reliable quantification. Comparisons of quantification precision across

field strengths have shown a considerable decrease in the Cramer-Rao lower bound

with increasing B0 for all the metabolites [80].
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An experimental comparison and analysis of sensitivity and spectral resolution

as a function of the magnetic field strength has not been reported yet for fast spec-

troscopic imaging techniques. The aim of this work was to study the advantages of

increasing the magnetic field strength in Proton-Echo-Planar-Spectroscopic-Imaging

(PEPSI) where time-varying gradients are used to encode simultaneously spectral-

spatial information [29]. We present a comparison of SNR and spectral line width of

the main singlet metabolites (N-Acetyl-Aspartate (NAA), Creatine (Cr) and Choline

(Cho)) at 1.5, 3, 4 and 7 Tesla in a supra-ventricular para-axial slice location us-

ing PEPSI with short echo times in scanners sharing same hardware and software

platforms with circularly polarized (CP) head coil and 8-channel phased-array (PA)

head coils to quantitatively evaluate gains across field strengths. Spectral fitting

using metabolite and macromolecule basis sets for each magnetic field strength is

employed to estimate the SNR and spectral linewidth of NAA, Cr and Cho. The

effects of gradient configuration and sampling scheme on SNR are analyzed by eval-

uating the noise characteristics as a function of the degree of ramp sampling. The

dependence of spectral line width on transverse relaxation time T2, line broadening

due to microscopic susceptibility and diffusion effects on local susceptibility gradients

is analyzed across field strengths.

6.2 Methods

6.2.1 Measurements

Scanners with clinical interface sharing the same Siemens Syngo hardware and soft-

ware platform were employed: Siemens Sonata Maestro 1.5 Tesla, Siemens Trio 3

Tesla, Bruker MedSpec 4 Tesla and Siemens 7 Tesla scanner. Trio and MedSpec

scanners were equipped with Sonata gradients (maximum amplitude: 40 mT/m,
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slew rate: 200 mT/m/ms). The 7 Tesla scanner was equipped with a head gradient

insert (80 mT/m, 600 mT/m/ms). All scanners were equipped with CP head coils

and 8-channel head PA coils. The 8-channel array coils at 1.5 and 3 Tesla were

receive-only in circular configuration. Transmission was performed with a quadra-

ture body RF coil. At 4 and 7 Tesla the PA head coil consisted of a quadrature

birdcage head coil for transmission and an integrated circular 8-channel surface coil

array for reception.

Figure 6.1: PEPSI pulse sequence with water suppression (WS), outer volume sup-
pression (OVS), spin echo excitation and echo-planar readout. Data are collected in
blocks during each of the cyclically inverted readout gradients (Gr).

Measurements with the PEPSI technique were performed in a supraventricular

para-axial slice location on 24 healthy volunteers (18 males and six females, age

range: 2035 years, mean age: 26 years). Twenty subjects were scanned with the

CP coil, and four were scanned with the PA coil at 1.5T, 3T, 4T, and 7T. The

measurement parameters are listed in Table 1. Spatial and spectral encoding was

performed with the PEPSI method [29] using a train of 1024 alternating positive and

negative readout gradients along the x-direction (Fig. 6.1). Data were collected with

twofold oversampling for each readout gradient separately using a ramp sampling

delay of 8 µs to limit chemical shift artifacts. The gradient waveform was tuned for
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B0[T] Coil SW[Hz] TE[ms] FOV[mm] ∆z[mm] TA[min] Vr[cc]

1.5 CP(3) 780 30 320 15 8:32 1.5
CP(3) 1080 15 260 15 8:32 1
PA(1) 1080 15 260 15 8:32 1

3 CP(6) 1080 15 260 15 8:32 1
PA(1) 1080 15 260 15 8:32 1

4 CP(6) 1080 15 320 10 8:32 1
PA(1) 1080 15 320 10 8:32 1

7 CP(1) 1380 15 320 10 1:04 1
CP(1) 1380 15 320 10 8:32 1
PA(1) 1080 15 320 10 8:32 1

Table 6.1: Measurement parameters for PEPSI acquisitions. B0: magnetic field
strength, SW: spectral width, TE: echo time, FOV: field of view, ∆z: slice thickness,
TA: acquisition time, Vr: voxel volume.

each of the scanners to encompass the entire spectral range from 0 to 4.7 ppm (Table

6.1). Phase encoding was performed along the y-direction. Data were collected at

TR: 2 s using a 32×32 spatial matrix. Complete eight-slice outer volume suppression

(OVS) was applied along the perimeter of the brain. The complete data acquisition

included water-suppressed (WS) and non-WS (NWS) scans. Online regridding was

implemented as a Functor in the ICE reconstruction software environment (Siemens

Medical Solutions, Erlangen, Germany) to correct for ramp sampling distortion of

the k-space trajectory. After regridding, the twofold oversampling was removed.

Four additional measurements were performed at 1.5 and 4 Tesla using conven-

tional phase-encoded CSI (two measurements at each field-strength on the same

subject). Water-suppressed and non-water suppressed reference data sets were col-

lected with conventional PRESS CSI sequence provided by the manufacturer using a

CP head coil. The following parameters were the same for all the acquisitions: TR:

2 s, TE: 30 ms, 16×16 spatial matrix, rectangular sampling, voxel volume: 4 cc, scan

time: 8.5 min.
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6.2.2 Reconstruction

Reconstruction was performed using an automated data processing routine (Fig. 6.2)

developed in IDL. Odd and even echoes were sorted into separate arrays perform-

ing time reversal and phase inversion of odd echo data relative to even echo data,

producing four separate kx − ky − t data arrays with CSI format (WS-ODD, WS-

EVEN, NWS-ODD, NWS-EVEN). A sine bell k-space filter is then applied to reduce

contamination due to ringing in the Fourier reconstruction.

Figure 6.2: Single coil reconstruction flow chart for PEPSI data. Odd and even
echoes are separately processed and added to the end after phasing and frequency
shift corrections. The water reference scan (NWS) is used for phase correction and
frequency referencing.

Two water-suppressed data sets were created for comparison: (i) without a time-

domain filter; and (ii) with an exponential time-domain filter e−αt (matched-filter)

to maximize the SNR [45]. For the parameter of the filter (α), we used the intrinsic

linewidth of the spectral line of interest adjusted to each magnetic field strength.

Assuming that the intrinsic linewidth of NAA in Hz increases linearly with the field
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strength (as it will be shown here - see Results section), we used 2 Hz line broadening

for 1.5 Tesla, 4 Hz for 3 Tesla, 6 Hz for 4 Tesla and 10 Hz for 7 Tesla.

Each array is then subjected to 3-D Fast Fourier Transform (FFT) reconstruction

to produce four distinct x-y-f arrays. The reconstructed spectra were interpolated

to 2048 points using zero-filling in the time-domain. Zero order phases of the water

signals are automatically determined in the NWS data and these phase corrections

are applied to the corresponding WS data arrays. Spectral frequency assignment

in the WS array is made using the NWS data and assuming the largest signal in

the NWS data represents water. Odd and even data are then added to form NWS

and WS arrays and reconstructed to obtain NWS and WS spectroscopic images

(NWS-SI and WS-SI). Eddy current correction using Klose’s method [81] was applied

to the reconstructed spectroscopic images using the phase of NWS-SI to remove

residual line shape distortion and possible water sidebands. Removal of peripheral

lipid contamination using k-space extrapolation and the Papoulis-Gerchberg (PG)

algorithm [82] was applied only to 7 Tesla data. The lipid threshold was selected

manually to create a mask that identifies peripheral lipid regions.

For acquisitions with the phased-array coil, sensitivity-weighted combination was

performed [83]. The coil sensitivity maps are estimated from spectral water images,

i.e. integration along the spectral axis of the reconstructed NWS data (NWS-SI). The

signal from each array coil element was reconstructed separately using the method

described previously (Fig. 6.2). The combined spectroscopic image was given by:

S(x, y, f) =

∑Nc

l=1 Sl(x, y, f)Cl(x, y)
∑Nc

l=1 |Cl(x, y)|2
, (6.1)

where Nc is the number of coils. The procedure was applied to WS and NWS data

sets.
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6.2.3 Spectral Fitting

Averaged spectra in selected ROIs (Fig. 6.3) were obtained by:

S̄(f) =
1

NR

∑

(x,y)∈R

S(x, y, f), (6.2)

where NR is the number of voxels in the ROI. Two ROIs were defined: a rectangular

brain region for comparisons using the CP coil (R1); and a ring centered within the

FOV with a variable radius for the array coil (R2), which allowed obtaining a spatial

distribution of the SNR in experiments with the PA coil.

Figure 6.3: Regions of interest to compute the averaged spectrum. a) R1: 3 × 3
rectangular ROI in the center of the FOV for the CP coil. b) R2: ring-shaped ROI
centered within the FOV for the PA coil. r is the Euclidean distance from the center.
9 voxels are chosen from R2 to match the noise power in R1. The positions of the
outer volume saturation bands are shown as rectangles.

The water-suppressed averaged spectrum was quantified using the jMRUI package

[84]. The residual water peak was filtered with the Hankel-Lanczos singular value

decomposition (HLSVD) algorithm [85]. The QUEST method (QUantification based

on quantum ESTimation) [86] was used to estimate the metabolite signals from

the averaged spectrum. The basis set was simulated with NMR-SCOPE [87] using

the spin Hamiltonian parameters (number of spins, chemical shifts and J-couplings)

given by Govindaraju et al. [88] and the spin-echo excitation module of the PEPSI
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sequence for each magnetic field strength and echo time. The basis sets included 13

metabolite signals: Aspartate (Asp), Choline (Cho), Creatine (Cr), -Amino Butyric

Acid (GABA), Glucose (Glc), Glutamate (Glu), Glutamine (Gln), Lactate (Lac),

myo-Inositol (mI), N-Acetyl-Aspartate (NAA), Phospho-Creatine (PCr), Phospho-

Choline (PCho) and Taurine (Tau).

00.511.522.533.54

b)

a)

c)

d)

Chemical shift [ppm] Area [au] Damping [Hz]

0.90 0.8 70

1.47 0.92 140

2.10 0.76 96

3.00 0.2 120

Chemical shift [ppm] Area [au] Damping [Hz]

0.90 1.00 100

1.31 0.60 120

1.49 0.65 120

2.06 1.2 150

2.24 0.5 100

2.95 0.25 80

3.10 0.28 90

Chemical shift [ppm] Area [au] Damping [Hz]

0.89 1.00 107

1.35 0.81 115

1.50 0.96 160

2.05 1.14 160

2.20 0.58 122

2.45 0.19 96

2.65 0.19 97

2.90 0.30 110

3.15 0.24 90

Chemical shift [ppm] Area [au] Damping [Hz]

0.90 1.00 85

1.51 0.90 120

2.10 0.75 110

3.00 0.25 140

Figure 6.4: Simulated macromolecular spectra (left) and parameterization of the sim-
ulation (right) by fitting metabolite-nulled spectra with a combination of Lorentzian
lines for: a) 1.5 Tesla, b) 3 Tesla, c) 4 Tesla and d) 7 Tesla.

Macromolecule (MM) information was added to the basis set by parameteriza-

tion of metabolite-nulled in vivo spectra [89] for each magnetic field strength. For
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1.5 and 4 Tesla, metabolite-nulled PEPSI spectra were measured using a modified

pulse sequence with a slice selective adiabatic inversion pulse. Spectra were averaged

across the FOV to improve SNR. For 3 and 7 Tesla, metabolite-nulled spectra of 12

healthy volunteers using PRESS and STEAM respectively were averaged. Param-

eterization of MM spectra was performed in jMRUI with the AMARES algorithm

using Lorentzian lines. Fig. 6.4 shows the macromolecule model at each magnetic

field strength and the parameters for the Lorentzian model.

6.2.4 Comparisons across field strengths

SNR and spectral LW of NAA, Cr and Cho were computed using the averaged

spectrum S̄(f) from a selected region of interest Ri for the two types of coils used

(Fig. 6.3).

SNR comparisons

SNR per unit volume and unit time was used to compare the sensitivity across

magnetic field strengths. Since the SNR in MRI is proportional to the voxel volume

and the square root of the scan time [90], the SNR per unit volume and unit time of

the metabolite mj is defined by:

SNR(mj) =
SNRmeas(mj)

Vr

√
Ta

, (6.3)

where SNRmeas(mj) is the estimated SNR from the measurement. Vr is the voxel

volume (cc: cubic centimeter) and Ta is the total acquisition time (min). Two types

of SNR were estimated from the averaged spectrum using the results of spectral

fitting:

(i) Metabolite amplitude to noise (SNR-peak):

SNRpeak(mj) =
peak(mj)

σ̄
, (6.4)
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where peak(mj) is the peak amplitude of the fitted metabolite mj, and

(ii) Metabolite area (concentration) to noise (SNR-area):

SNRarea(mj) =
area(mj)

σ̄
, (6.5)

where area(mj) is the area of the fitted metabolite mj.

The noise (σ̄) is the standard deviation of S̄(f) in a spectral region without signal

(maximum-length window with minimum-variance). To estimate the latter quantity

the averaged spectrum is divided into Nσ regions. For each k-th region, the standard

deviation is computed (σk). The minimum σk is taken for each division and the

minimum σk of the divisions is used to get the final σ̄. We used Nσ= 32, 64, 128,

and 256.

To correct for differences in T1 related signal saturation and T2 related signal

decay at different field strengths, SNR was multiplied by the following correction

factor [45]:

CF (T1, T2, TR, TE) =
1

(1 − exp(−TR/T1)) exp(−TE/T2)
. (6.6)

Literature values for T1 and T2 of NAA, Cr and Cho were used (Table 6.2).

Spectral line width comparisons

For spectral line width comparisons, the intrinsic line width of NAA, Cr and Cho

were measured. The line width was estimated using the full-width at half-maximum

(FWHM) of the fitted metabolite signal from the reconstructed WS data without

the matched-filter.

To estimate the contribution of the transverse relaxation time T2, magnetic sus-

ceptibility and diffusion in local susceptibility related gradients to the line width LW,

90



Chapter 6. PEPSI at High-Field: SNR and Spectral Resolution Improvements

T1 [s] T2 [ms]
B0 [T] NAA Cr Cho NAA Cr Cho

1.5 1.27 [91] 1.24 [91] 1.15 [91] 450 [78] 240 [78] 330 [78]
3 1.47 [91] 1.33 [91] 1.25 [91] 280 [92] 178 [92] 222 [92]
4 1.63 [77] 1.72 [77] 1.29 [77] 230 [77] 141 [77] 179 [77]
7 1.73 ∗ 1.82 ∗∗ 1.33 ∗∗ 141 [93] 109 [93] 109 [93]

∗ I. Tkac, Personal communication.
∗∗T1 values for Cr and Cho at 7 Tesla were extrapolated with a power function using
the values at 1.5, 3 and 4 Tesla.

Table 6.2: Literature values of T1 and T2 for NAA, Cr and Cho at different magnetic
field strengths.

the following model was used:

LW =
1

πT2

+ ∆fmacro + ∆fmicro + ∆fdiff , (6.7)

where ∆fmacro and ∆fmicro are the line broadening components due to macroscopic

and microscopic susceptibility effects respectively and ∆fdiff is the line broadening

component due to diffusion in local susceptibility related gradients. Assuming that

macroscopic susceptibility is highly reduced by the shimming procedure, i.e. line

width is independent of voxel size, LW is modeled by:

LW =
1

πT2

+
1

πT2,micro

+
1

πT2,diff

=
1

πT2

+
γGs

π
+

γ2G2
sT

2
ED

12π
, (6.8)

where γ is the gyromagnetic ratio, Gs is the effective local susceptibility related

gradient, and D is the diffusion coefficient [4]. Modeling the local susceptibility

related gradient proportional to B0, i.e. Gs = α B0, line broadening (LB) across

field strengths was fitted with:

LB = LW − 1

πT2

= α1B0 + α2B
2
0 , (6.9)

where α1B0 and α2B
2
0 represent line broadening due to microscopic susceptibility

and diffusion respectively. Literature values were used for T2 of NAA, Cr and Cho

(Table 6.2).
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6.3 Results

Short echo time spectra with well defined resonances were obtained with the PEPSI

method across field strengths. Spectroscopic images at 1.5, 3 and 4 Tesla were re-

constructed without lipid removal by post-processing. Lipid removal using k-space

extrapolation [82] was only employed at 7 Tesla to control increased lipid contami-

nation due to B1-inhomogeneity.

0.511.522.533.54
n [ppm]

0.511.522.533.54
n [ppm]

a) 1.5 Tesla

d) 4 Tesla

0.511.522.533.54
n [ppm]
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d) 7 Tesla

S

S

fitS

R

( )n

( )n

( )n

S

fitS

R

( )n

( )n

( )n

S

fitS

R

( )n

( )n

( )n

S

fitS

R

( )n

( )n

( )n

Figure 6.5: Water-suppressed PEPSI spectra using the CP coil for a) 1.5 T, b) 3 T,
c) 4 T, d) 7T (voxel size: 1 cc, and total acquisition time: 8.5 min). The spectral
water image, spectral array from the region R1, corresponding averaged-spectrum
S̄(ν), fitted averaged-spectrum S̄fit(ν) and fitting residual R(ν) are shown for each
magnetic field strength.
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Line shape distortion due to eddy currents was very small and removed by eddy

current correction. Spectral arrays and corresponding averaged spectrum using the

CP coil for a region of interest R1 showed a considerable gain in spectral resolution at

higher fields, e.g. J-coupled metabolites such as Glutamate (Glu) and Inositol (Ino)

are clearly separated at 4 and 7 Tesla while Glu and NAA overlapped at 1.5 T (Fig.

6.5). The inclusion of parametric models for macromolecules at each magnetic field

strength in the basis sets provided improved spectral fitting results, especially at 1.5

Tesla, reducing possible over-estimation of the metabolite peak heights and areas

at that field strength due to overlapping macromolecule resonances. For example,

omitting the macromolecule resonance located around 2.10 ppm produce erroneous

results in the estimation of NAA.
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Figure 6.6: Comparison of PEPSI and PRESS-CSI spectra at 1.5 and 4 Tesla (CP
coil, same subject at each B0, total acquisition time: 8.5 min). a) Averaged spectrum.
b) SNR-peak for NAA, Cr and Cho as a function of B0 for four measurements (two
measurements at each B0). c) Line width for NAA, Cr and Cho as a function of B0.

PEPSI and PRESS CSI presented spectra with similar characteristics (Fig. 6.6.a)

in 4 experiments at 1.5 and 4 Tesla (two experiments on the same subject at each B0).

SNR and linewidth of NAA, Cr and Cho for PEPSI and PRESS CSI acquisitions are

listed on Table 3. A quantitative comparison was performed for the data sets at each

B0 to compute the ratio in % of SNR-peak: |SNR(PEPSI) − SNR(CSI)| /SNR(CSI)

and line width: |LW(PEPSI) − LW(CSI)| /LW(CSI) between the two pulse sequences.
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B0[T] SNR-peak [cc−1min−1/2] LW [Hz]
NAA Cr Cho NAA Cr Cho

1.5 PEPSI 9.77 6.31 2.01 3.22 3.41 3.36
PRESS-CSI 9.33 5.94 1.76 3.05 3.19 3.20

1.5 PEPSI 10.52 7.45 2.37 2.96 3.02 2.85
PRESS-CSI 10.21 6.86 2.12 3.13 3.27 3.15

4 PEPSI 28.02 21.33 6.45 6.11 6.21 6.15
PRESS-CSI 26.15 20.65 4.98 5.89 6.08 6.08

4 PEPSI 29.76 23.45 7.87 5.98 6.32 6.02
PRESS-CSI 30.56 25.12 8.10 5.91 6.12 6.12

Table 6.3: SNR-peak (with T1-T2 relaxation correction and matched-filtering) and
LW comparison for NAA, Cr and Cho of PEPSI and PRESS-CSI at 1.5 and 4 Tesla
for four different subjects in experiments with the CP coil.

SNR-peak ratios were: 3.8% for NAA, 7.1% for Cr and 12.4 for Cho at 1.5 Tesla;

2.2% for NAA, 5.2% for Cr and 7.1% for Cho at 4 Tesla. LW ratios were: 4.9% for

NAA, 7.6% for Cr and 7.8 for Cho at 1.5 Tesla; 2.9% for NAA, 2.7% for Cr and 1.4%

for Cho at 4 Tesla. PEPSI and PRESS-CSI showed similar SNR-peak and linewidth

at 4 Tesla. At 1.5 Tesla differences were slightly higher, which are due in part to

spectral fitting performance.

SNR-peak and SNR-area of NAA, Cr and Cho increased with magnetic field

strength (Fig. 6.7). NAA presented a larger SNR in comparison to Cr and Cho due

to its larger concentration. A power fit y = axb, shows that an increasing linear

function describes well the SNR dependence with B0 (the exponent b is close to

1). To describe the goodness of the fit we used: R-square, square of the correlation

between the data values and the fit values (R2). There was a considerable SNR

gain using the matched-filter compared to the data without the filter. The use of an

exponential matched-filter, with a line broadening parameter that increases linearly

with the field strength, improved the SNR especially at higher fields (7 Tesla), where

T2 is shorter, obtaining a more linear dependence of the SNR on the field strength.
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Figure 6.7: SNR-peak (peak-amplitude to noise) and SNR-area (concentration to
noise) as a function of B0 for NAA, Cho and Cr in measurements using the CP
coil. a) SNR-peak with and without a matched-filter (MF) that is adjusted to the
measured signal decay as a function of B0 b) SNR-peak with relaxation correction.
c) SNR-area for the reconstructed data without the matched-filter. SNR-peak with
relaxation correction and SNR-area increase linearly with B0.

When additionally accounting for different T1 and T2 related saturation across

field strengths, a gain in SNR close to 100% with respect to B0 was found when using

the matched- filter (Fig. 6.7.b): 97% for NAA, 100% for Cr and 98% for Cho (gains

are computed using the power fit results). Concentration-to-noise ratio also showed

nearly linear gains with the magnetic field strength: 96% for NAA, 83% for Cr and
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100% for Cho. There was a larger variation in the concentration-to-noise ratio fit

(R2 is smaller) compared to the SNR-peak fit, which is due in part to the increased

uncertainty in linewidth estimation.
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Figure 6.8: a) SNR-peak as a function of B0 and position with respect to the center
of the FOV (d: radius of the region R2) for NAA, Cho and Cr in measurements using
the 8-channel PA coil. SNR increases from the center towards the periphery of the
brain (d=5 cm). The decay at the periphery (d=6 cm) is due to the OVS bands. b)
SNR-peak dependence with B0 for positions close to the center of the FOV (d = 1
cm) and at the edges (d = 5 cm).
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Measurements with the PA coil suffer from an inhomogeneous SNR across the

field of view due to the use of smaller receive elements. Higher SNR was obtained

at the periphery of the brain as compared to the center of the array coil for NAA,

Cho and Cr (Fig. 6.8.a). The periphery of the measurement volume was determined

by the position of the outer volume saturation bands, which approximately form an

ellipse with a minor axis of 6 cm in the frequency encoding direction. SNR in the

center of the FOV was similar to the SNR of the CP coil in the VOI. SNR-peak of

NAA, Cr and increased with B0. The SNR dependence with B0 was more linear

towards the center of the FOV (Fig. 6.8.b). SNR gains with respect to B0 at the

center (d= 1cm) were: 92% for NAA, 93% for Cr and 85% for Cho. SNR gains with

respect to B0 at the periphery (d= 1cm) were: 57% for NAA, 73% for Cr and 58%

for Cho.

Linewidths of NAA, Cr and Cho increased with the magnetic field strength when

measured in Hz (Fig 6.9.a). However, they decreased when measured in ppm (Fig

6.9.c). The combined contribution of static and diffusion line broadening components

to the linewidth was much stronger than the contribution of intrinsic transverse

relaxation T2 (Fig. 6.9.b). Line broadening was fitted using Eq. (6.9). Since α2 ≈
0, the component due to diffusion can be ignored. An increasing linear function

α0 + α1B0 thus describes best the dependence of the line broadening component as

a function of B0. The constant term α0 causes the decrease of the linewidth in ppm.

6.4 Discussion

In this work we evaluated quantitative gains in sensitivity and spectral resolution

with respect to the magnetic field strength in Proton Echo Planar Spectroscopic

Imaging, where a trapezoidal readout gradient is used for simultaneous spatial-

spectral encoding. Using the averaged spectrum from a region of interest common to
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all studies for a specific type of coil and accounting for T1 and T2 related saturation,

SNR of NAA, Cr and Cho increased almost linearly with respect to B0, consistent

with previous findings in imaging experiments [74] and predictions for spectroscopy

[73].

Figure 6.9: Linewidth of NAA, Cr and Cho as a function of B0. Decomposition of
the linewidth: T2-component and component due to line broadening (LB). a) The
complete LW in Hz and the T2-component increase with B0. b) The component due
to line broadening increases almost linearly with B0 (α2 << α1). Since α2 ≈ 0,
the diffusion contribution to line broadening is negligible. c) The same line width
decreases slightly with B0 when it is measured in ppm.
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The use of an exponential matched-filter, with a line broadening parameter

adapted to each B0, reduced the effect of different spectral linewidths across field

strengths resulting in an almost linear gain of SNR with increasing B0.

Array coils improve SNR in comparison to the CP coil in peripheral areas close

to the array coil elements, at the expense of inhomogeneous sensitivity across the

field of view. SNR using the PA coil shows the expected increase with B0; however,

this increase is less linear than with the CP coil, which is likely due to differences

in array coil performance and coil sensitivity profiles at different field strengths [27],

and possibly radiation losses that increase with field strength [74].

To assess the influence of the readout gradient waveform on SNR, we compared

the noise variance of a trapezoidal waveform (Figs. 6.10.b and 6.10.c) with the noise

variance of an ideal rectangular gradient (Fig. 6.10.a). A general formula to compute

the noise variance in the reconstructed image for a variety of possible waveforms that

was derived by Pipe and Duerk [94] is given by:

σi =
σ2

∫ t1
t0

G2
i (t)dt

(

∫ t1
t0

Gi(t)dt
)2 , (6.10)

where Gi(t) is the i-th waveform, σ is the standard deviation of the white noise

and [t0, t1] is the sampling interval. σ also corresponds to the noise variance in

conventional phase encoded MRSI, when using the same measurement time and

voxel size. Using ramp sampling with 60 µs ramp time and 8 µs ADC ramp sampling

delay, which correspond to the parameters in this work, the increase in noise variance

is 11.4% with respect to conventional phase encoding. Without ramp sampling,

the increase is 42.9% (Fig. 6.10). Accordingly, the SNR loss in PEPSI caused by

the interruptions of the acquisition due to gradient switching [45]) was significantly

reduced using ramp sampling with regridding reconstruction. Experimentally, SNR

per unit volume and unit time of PEPSI was similar to conventional CSI as reported

before [29].
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Figure 6.10: Noise variance for different gradient waveforms and sampling schemes
(dots) (r: ramp time, s: ADC ramp sampling delay, T: total gradient duration).
a) Ideal rectangular gradient. b) Trapezoidal gradient with ramp sampling. c)
Trapezoidal gradient without ramp sampling. In all cases T= 400 µs to achieve
the same spectral width, which corresponds to the parameters used in this work to
encode a 32x32 spatial matrix. The noise variance for each case is normalized to the
noise variance of the ideal rectangular gradient.

There is still a small loss in SNR due to the ramp sampling delays (with full ramp

sampling, the increase in noise variance is 10.7% with respect to conventional phase

encoding). Full ramp sampling is not desirable with our regridding method due to

the chemical shift artifact at the beginning and the end of the ramp. During ramp

sampling the chemical shift displacement becomes a function of k-space encoding.

High k-space information sampled at the beginning of the ramp-up of the readout

gradient can become significantly displaced as compared to lower k-space information

encoded at the end of the ramp-up phase. This may cause edges of chemically

shifted species (e.g. peripheral lipids) to be displaced more strongly than smoothly

distributed metabolites. This displacement can be limited by delaying the ramp

sampling at the expense of a small loss in SNR.

Significant spectral resolution gains are obtained at higher fields consistent with

previous finding for single voxel spectroscopy [79]. Linewidth of NAA, Cr and Cho

in Hz increased nearly with a linear function with respect to B0, but when measured

in ppm they decreased with increasing B0. In order to explain the decrease in

ppm, the linewidth was decomposed into a contribution from T2, line broadening

due to microscopic static susceptibility inhomogeneity and line broadening due to
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water diffusion in local susceptibility gradients and imaging gradients. Even though

T2 decreases less than linearly with the field strength, its contribution to the final

linewidth is very small compared to line broadening due to other effects, i.e. one order

of magnitude smaller. Since a linear polynomial α0 +α1B0 describes the dependence

of linewidth on field strength, diffusion effects appear to be small. Translating this

linear line width change to the ppm scale, it was found that the decrease of the

linewidth was mostly due to the constant term α0. The physical model used to

describe the B0-dependence of the singlet linewidth (Eq. (6.8)) thus does not seem

to adequately describe the experimental data and the origin of the constant term

needs to be further investigated. However, the decrease in line width when measured

in ppm, is consistent with previous findings for single voxel spectroscopy [79] and

helps to improve the definition of metabolite peaks at high field strength resulting

in reduced spectral overlap and improved delineation of J-coupling patterns.

6.5 Summary

In this chapter, the advantages of using high magnetic field strength for Proton

Echo Planar Spectroscopic Imaging were analyzed and quantified. Quantification of

short echo time spectra was performed using parametric methods including simulated

models for macromolecules at each field strength. This work demonstrates feasibility

of PEPSI with short echo time over a wide range of field strengths with substantial

gains in sensitivity and spectral resolution with respect to field strength and a SNR

per unit time and unit volume and spectral line width similar to that of conventional

phase encoded spectroscopic imaging techniques.
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Parallel 3D-PEPSI

5 This chapter presents the combination of parallel imaging techniques and echo-

planar spectroscopic imaging for fast 3D-MRSI of human brain. In order to maximize

the acceleration capability, acceleration along two spatial dimensions is performed

with the 32-channel soccer-ball receiver array. The SSVD regularization method

proposed in Chapter 3 is employed to reduce noise amplification and extra lipid

contamination due to residual aliasing. The practical goal is to show feasibility

of large scale acceleration for 3D-MRSI with short echo time in order to map the

concentrations of the main metabolites of the human brain in 1-2 min.

5The work in this chapter was published as: R. Otazo, S-Y. Tsai, F-H. Lin and S.
Posse. “Accelerated Short-TE 3D Proton-Echo-Planar-Spectroscopic-Imaging using 2D-
SENSE with a 32-Channel Array Coil”. Magn Reson Med. In Press.
Presented in part at the 14th ISMRM Meeting, Seattle, WA, USA, 2006, pp. 69 and at
the 15th ISMRM Meeting, Berlin, Germany, 2007, pp. 46.
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7.1 Introduction

Magnetic Resonance Spectroscopic Imaging (MRSI) provides spatial distribution of

chemical shifts [8, 9]. As traditionally implemented with phase-encoding, it is very

time consuming requiring as many repetitions as there are voxels in the image, e.g.

the acquisition time for a 3D experiment is given by Ta = NxNyNzTR, where Nx,

Ny and Nz are the dimensions of the spatial grid and TR is the repetition time.

As a consequence, MRSI is usually restricted to low spatial resolution and single

slice acquisition in clinical practice. The development of fast MRSI methods that

enable whole brain coverage with high spatial resolution remains a major challenge

in MRSI research. Many methods have been developed to provide faster spatial-

spectral encoding [45], such as echo-planar techniques that allow for simultaneous

spatial-spectral encoding using time-varying gradients [46]. Proton Echo Planar

Spectroscopic Imaging (PEPSI) [29] is an implementation of this technique with a

trapezoidal readout gradient for simultaneous encoding of one spatial dimension (x )

and the spectral dimension (ν) providing a net acceleration of Nx over the con-

ventional phase-encoding method with comparable signal-to-noise ratio (SNR) per

unit time and unit volume (see Chapter 6). However, 3D-PEPSI is still very time

consuming due to phase-encoding along the third spatial dimension.

Accelerated spatial encoding can be accomplished using parallel imaging tech-

niques [15, 16], where subsampled k-space data is acquired using multiple receive

coils with spatially-varying reception profiles. The knowledge of the spatially-varying

coil sensitivity profiles allows for reconstruction of subsampled data. Acceleration is

obtained at the expense of SNR reduction in the reconstructed image. Sensitivity-

encoding (SENSE) [16] parallel imaging method has been applied to accelerate phase-

encoded [95] and turbo-spin-echo (TSE) MRSI [96]. Even though SENSE reconstruc-

tion is applied in the same way as in MRI for each spectral point of the MRSI data,

the low resolution characteristics of the MRSI acquisition can produce residual alias-
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ing artifacts if the coil sensitivities vary within the voxel and/or the coil sensitivities

present discontinuities. In order to reduce these artifacts Dydak et al. [95] used

extrapolation of the sensitivity maps to avoid discontinuities at the border; Zhao et

al. [66] employed a two-step SENSE reconstruction to optimize the sensitivity maps;

Sanchez et al. [67] proposed to use coil sensitivities with higher spatial resolution to

optimize the point spread function (PSF) with respect to variation of the coil sensi-

tivities within a voxel. Using 2-D SENSE with TSE-MRSI, Dydak et al. have shown

3D-MRSI within 20 min with a 2× 2 acceleration along x and y using a 32× 32× 8

spatial matrix [97].

Acceleration in parallel imaging is limited by the available SNR and the spatially

varying noise amplification factor in the reconstruction (g-factor). Several methods

were proposed to reduce the loss in SNR in order to achieve higher accelerations,

such as acceleration along more than one spatial dimension, e.g. 2D-SENSE [98]

and the use of very high field scanners which increases the baseline SNR and also

improve sensitivity encoding by taking advantage of the stronger spatial modulation

of the coil profiles [27]. Other works have described the adaptation of the array coil

geometry to minimize g-factor [99], regularization in the reconstruction to improve

conditioning of the encoding matrix and thus reduce g-factor [48], and arrays with a

large number of small elements to increase sensitivity and disparate coil sensitivity

encoding along all spatial dimensions [20, 21, 24].

The use of 2D acceleration combined with an array coil with a large number of

elements is expected to provide high acceleration capability for 3D encoding. For

example, accelerations factors as high as 16 were demonstrated in vivo for imaging

experiments using 32-element arrays designed for multidimensional spatial encoding

[21]. Moreover; in contrast to single surface coils, large array coils also provide an

improved depth penetration for volumetric applications [22].

This goal of this work is to develop a fast method for volumetric MRSI in human
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brain at short echo time (TE). Short TE acquisitions are advantageous to maximize

sensitivity and to resolve J-coupled metabolites at the expense of the presence of

strong lipid and macromolecules resonances that complicates the spectral quantifica-

tion. The method uses a combination of 3D-PEPSI encoding with acceleration along

the two phase-encoding dimensions and 2D-SENSE reconstruction with SSVD regu-

larization (Chapter 3). The 32-channel soccer-ball receiver array coil is employed to

maximize the acceleration capability. SSVD regularization and optimization of coil

sensitivity estimation are demonstrated to improve the reconstruction of the Point

Spread Function (PSF) at high acceleration factors and therefore reduce contamina-

tion from peripheral lipids. The experimental goal is to demonstrate feasibility of in

vivo 3D-MRSI at 3 Tesla and TE=15 ms in 1 minute for a 32x32x8 spatial matrix

and 0.7 cc nominal voxel size.

7.2 Accelerated PEPSI Encoding

The 3D-PEPSI sequence [29] consists of water suppression (WS), outer volume sup-

pression (OVS), spin-echo RF excitation, phase-encoding for y and z and the echo-

planar readout module for simultaneous encoding of x and f (Fig. 7.1.a). WS is per-

formed using a 3-pulse WET module [42]. OVS is applied along the perimeter of the

brain to suppress peripheral lipids. Data acquisition includes water suppressed (WS)

and non water suppressed (NWS) measurements. The WS data contains metabolite

information and the NWS data contains water information which is used as a refer-

ence for spectral phase correction, frequency alignment, Eddy current correction and

absolute metabolite concentration estimation.

Spatial-spectral encoding is performed in k-space, where three orthogonal gradi-

ents and the evolution of time traverse a path in four dimensions (kx, ky, kz, t), the

Fourier space corresponding to (x, y, z, f ). ky and kz are sampled on a Cartesian grid
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by phase-encoding prior to readout. kx and t are sampled simultaneously during the

readout interval on a zig-zag trajectory defined by a periodic trapezoidal gradient

(Fig. 7.1.b). Two-dimensional acceleration is performed by sub-sampling uniformly

the k-space data along the ky and kz dimensions by factors Ry and Rz respectively.

The acquisition time is then given by Ta = Ny

Ry

Nz

Rz
TR.

Figure 7.1: a) 3D-PEPSI pulse sequence with water suppression (WS), outer volume
suppression (OVS), spin-echo RF excitation, phase encodes on Gy and Gz for y
and z encoding and trapezoidal Gx gradient for simultaneous encoding of x and f.
b) The resulting k-space trajectory is composed by parallel planes of zig-zag kx-t
trajectories. ∆ky and ∆kz determine the Cartesian sampling grid for ky and kz. The
black lines represents the trajectory after sub-sampling ky and kz by a factor Ry and
Rz respectively.
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7.3 SSVD-SENSE-PEPSI Reconstruction

SENSE-PEPSI reconstruction is performed by first reconstructing the accelerated

spatial dimensions and then the spectral diemnsion by separate processing of positive

and negative echoes (Fig. 7.2). Accelerated positive and negative echoes (Yp(k, t)

and Yn(k, t) respectively, where k is the k-space vector) are sorted into separate

arrays after time reversal of the data acquired with negative gradients. A spatial

Fourier transform is then applied to obtain the spatially aliased signals yp(r, t) and

yn(r, t), where r is the position vector. 2D-SENSE with SSVD regularization as

described below is applied to each time point of yp(r, t) and yn(r, t) to remove alias-

ing along y and z. Coil-by-coil SENSE reconstruction are computed by multiplying

the 2D-SENSE reconstruction by each of the individual coil profiles ( cp(r) for pos-

itive echoes and cn(r) for negative echoes) to obtain ŝp(r, t) and ŝn(r, t). This step

is required to correct the spectral phase of the data from each coil separately due

to the different spectral phase pattern presented by each coil. After reconstructing

the spatial dimensions, the water-suppressed (WS) data from each coil is separately

Figure 7.2: SENSE-PEPSI reconstruction diagram. Accelerated positive and neg-
ative echoes are reconstructed separately using 2D-SENSE reconstruction for each
x -t point. Coil-by-coil PEPSI reconstruction is then performed where positive and
negative echoes are combined after spectral phase correction. The final spectroscopic
image S(r, f) data is obtained by sensitivity-weighted combination of the coil-by-coil
reconstruction.
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phase-corrected and frequency aligned along the spectral dimension using the cor-

responding water reference, i.e. non-water-suppressed (NWS) data set. Zero-order

phases of the water signals are automatically determined in the NWS data, and

these phase corrections are applied to the corresponding WS data arrays. Spectral

frequency assignment in the WS data is made assuming that the largest signal in

the NWS data represents water. Positive and negative echo data are then added.

Eddy-current correction [81] is applied to the reconstructed NWS and WS data using

the phase of the reconstructed NWS data to remove residual line shape distortion

and possible water sidebands. The resulting multi-coil spatial-spectral signal S(r, f)

is then combined using a sensitivity-weighted combination to obtain the final spec-

troscopic image S(r, f), i.e. SENSE reconstruction of fully-encoded data:

S(r, f) =

∑Nc

l=1 w∗
l (r)Sl(r, f)

∑Nc

l=1 w∗
l (r)wl(r)

, (7.1)

where Sl(r, f) is the reconstructed signal for the l-th coil, wl(r) is the coil sensitivity

given by the reconstructed NWS data, and ∗ denotes complex conjugation.

7.3.1 2D-SENSE with SSVD Regularization

2D-SENSE reconstruction is performed on the y-z space for each point of the x -t

space. The discretized signal acquired by each coil in k-space with reduced encoding

given by uniform sub-sampling of ky and kz by factors Ry and Rz respectively can

be represented for each time point as:

Yl(kx, ky, kz) =
∑

x,y,z

s(x, y, z)cl(x, y, z)ej2π(kxx+Rykyy+Rzkzz), l = 1, 2, ..., Nc, (7.2)

where s(x, y, z) is the object function to be reconstructed, cl(x, y, z) is the coil sen-

sitivity function and Nc is the number of coils. Applying a spatial discrete Fourier

transform (DFT), we obtain the spatially aliased signals:

yl(x, y, z) =
Ry−1
∑

my=0

Rz−1
∑

mz=0

s(x, y + myŴy, y + mzŴz)cl(x, y + myŴy, y + mzŴz), (7.3)
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where Ŵy = Wy/Ry and Ŵz = Wz/Rz are the reduced FOV along y and z (Wy and

Wz represent the full FOV). Concatenating the signals acquired by each coil in a

column vector y (Nc × 1), the encoding equation with 2D acceleration for each point

in the aliased images is given by y = Es, where the entries of the encoding matrix E

(Nc×RyRz) are given by the coil sensitivity functions at the corresponding positions

and the vector s (RyRz × 1) corresponds to the set of voxels to be reconstructed.

SSVD reconstruction (Chapter 3) was applied to solve the system. SSVD regulariza-

tion procedure will improve SNR at the expense that certain features will be omitted

in the reconstructed image, e.g. blurring in positions with strongly overlapped coil

sensitivities. Therefore it allows a tunable tradeoff between ideal accuracy and prac-

tical image quality and SNR. To tune the parameter c0, the reconstruction of the

data to estimate the coil sensitivity maps with simulated acceleration is employed

for different values of c0 between 10 and 100 with steps of 5. The value of c0 that

proportioned the smallest root mean square error (RMSE) was chosen.

7.3.2 Coil Sensitivity Estimation

Coil sensitivity maps are estimated using spectral water images from an extra fully-

sampled NWS acquisition with fewer time points, e.g. 16 echoes. The reference signal

is appropriate since it is acquired with the same readout as the accelerated PEPSI

data, which is advantageous to avoid spatial registration errors. Following the inverse

Fourier transform law, the integral along the spectral domain is contained in the first

time point, which it is used as the spectral water image for each coil. The change in

contrast due to a shorter TR and anatomical features were removed by normalizing

the reference signal of each coil by the sum-of-squares (SoS) combination of the multi-

coil reference data (Chapter 2, section 2.4.4). Refinement of the raw sensitivity maps

is performed using a 3-rd order polynomial fit.
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7.4 Low Spatial Resolution Effects

MRSI presents intrisically low SNR due to the relative low metabolite concentrations

compared to water and lipids constraining the sampling of k-space to a few points

in the central region, e.g. common image matrix sizes are 16 × 16 or 32 × 32. Re-

construction from truncated k-space data can be represented as the convolution of

the true object function and the Point Spread Function (PSF) of the reconstruction

method. The PSF is the impulse response of the reconstruction method describing

the signal origin in that voxel. For truncated k-space data sampled at the Nyquist

rate (no acceleration), the PSF limits the spatial resolution of the reconstructed im-

age to its effective width and produces Gibbs ringing due to its oscillatory nature.

In MRSI, spatial ringing can produce strong spectral contamination from lipid com-

ponents located at the periphery of the brain. For accelerated MRSI data, where

truncated k-space data are sampled at a multiple of the Nyquist rate, the PSF will

be also aliased. Residual aliasing in SENSE reconstruction could result if the sensi-

tivity functions vary over the effective width of the PSF and/or the sensitivity maps

present discontinuities, e.g. the border of the object [66]. The following approaches

are presented to reduce residual aliasing in SENSE reconstruction:

- Apodization of accelerated data in k-space using a Hamming window to reduce

the side lobes of the PSF at the expense of spatial resolution loss.

- Extrapolation of the coil sensitivity maps following the polynomial model be-

yond the border of the brain to avoid discontinuities.

- SSVD regularization to reduce the effect of inconsistencies between the polyno-

mial model and the true coil sensitivities especially in the extrapolation region.

Data truncation effects for 2D-SENSE reconstruction were evaluated by computing

the PSF. The PSF was computed by reconstructing a simulated source point at a
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specific spatial position using interpolated coil sensitivity profiles in order to have 4

points along each dimension within each voxel.

7.5 Experimental Validation

7.5.1 Data Acquisition

3D-PEPSI acquisitions were performed on healthy volunteers using a 3T MR scanner

(Tim Trio, Siemens Medical Solutions, Erlangen, Germany) equipped with Sonata

gradients (maximum amplitude: 40 mT/m, slew rate: 200 mT/m/ms) and the 32-

channel soccer-ball array [25]. Outer volume suppression was applied along the

perimeter of the brain using 14 slices: 8 slices were manually positioned in the axial

plane and 6 slices were fixed on the boundaries of the 3D slab. Three accelerations

were employed: R = 4 (Ry = 2,Rz = 2), R = 8 (Ry = 4,Rz = 2) and R = 12

(Ry = 6,Rz = 2). For comparisons the fully-encoded data was also acquired. Data

acquisition includes water suppressed (WS) and non water suppressed (NWS) scans.

Data were acquired in an axial orientation using a 32×32×8 spatial matrix to recon-

struct 8 axial slices (FOV: 240× 240× 100 [mm3], nominal voxel size: 0.7 cc). Fully

encoded data were acquired in 8 min using TR = 2 sec, TE = 15 msec. The readout

gradient consisted of 512 periods. The spectral bandwidth after positive and nega-

tive echo separation was 1087 Hz. A second NWS scan with much shorter readout

duration (16 periods) and TR = 500 msec was acquired to estimate coil sensitivity

maps (2 min). Data were collected with 2-fold over sampling for each readout gradi-

ent separately to improve regridding performance and using a ramp sampling delay

of 8µs to limit chemical shift artifacts. After regridding, 2-fold oversampling was

removed. The data sets were filtered in k-space using a regular Hamming window

along the x and y dimensions which increased the effective voxel size to 1.8 cc.
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7.5.2 Spectral Fitting, Metabolite Images and Error Quan-

tification

Spectra were quantified using LCModel fitting [44]. Basis sets included 18 metabo-

lites which were generated by simulating the spectral pattern of each metabolite us-

ing density matrix simulations based on chemical-shift and J-coupling values [100].

The PEPSI sequence was approximated as a simple spin-echo sequence without slice

selective gradients and assuming infinitely short RF pulses.

Metabolic concentration values in the reconstructed WS data were computed in

reference to the NWS data using the water-scaling method with the following scale

factors: water concentration= 55 molar and attenuation correction for water and

metabolites= 1.0. Combined absolute concentrations in milliMolar [mM] units were

presented in this work: NAA=NAA+NAAG, Cr= Cr+PCr and Glu= Glu+Gln.

Choline (Cho) was represented by GPC only. Errors in metabolite quantification

in LCmodel (%SD) are expressed in Cramer-Rao lower bound (CRLB), i.e. the

lowest bound of the standard deviation of the estimated metabolite concentration

expressed as percentage of this concentration, which when multiplied by 2.0 represent

95% confidence intervals of the estimated concentration values.

Metabolite concentration images were created using the following thresholds to

accept voxels: (a) CRLB≤20% for NAA and Cr, CRLB≤30% for Cho, and CRLB≤50%

for Glu and (b) spectral linewidth (FWHM) ≤ 0.2 ppm. Error maps were computed

using the absolute value of the difference between the accelerated data reconstruc-

tion and the fully-encoded data reconstruction. Finally, the metabolite concentration

maps were interpolated to a 128× 128× 8 matrix using bilinear interpolation to im-

prove visualization.

Lipid images were created by spectral integration between 0.5 and 1.6 ppm of the

reconstructed absorption mode spectra.
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7.6 Results

7.6.1 g-Factor

The g-factor obtained from 1D acceleration was reduced considerably by 2D acceler-

ation (Fig. 7.3). As a result, the average SNR decrease given by ḡ
√

R where ḡ is the

average g-factor for R = 8 × 1 is 12.6 but only 4.4 for R = 4 × 2. Therefore, there

is a 2.8-fold gain in average SNR performance when using 2D-SENSE for an 8-fold

acceleration. However; for high accelerations (R = 4×2 and R = 6×2), g-factor still

presented large values at central zones (Fig. 4.a). SSVD reconstruction reduced g-

factor for R = 4×2 and R = 6×2 specially in central zones where the coil sensitivities

have low value and overlap thus producing an ill-conditioned encoding matrix. The

threshold of c0 = 25 on the condition number of the encoding matrix represented a

good tradeoff to achieve both reasonable numerical conditioning and good unaliasing

Figure 7.3: Average g-factor for simulated 1D and 2D accelerations using the esti-
mated sensitivity maps. For SENSE-SSVD reconstruction, a threshold c0 = 25 on
the condition number of the encoding matrix was employed.
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Figure 7.4: a) g-factor maps for slices 2-7 and b) reconstruction of the 1-st time-
domain point of the NWS data from slice 5 for different accelerations. The threshold
on CN was set using the reconstruction with R = 4 × 2 (c0 = 25). RMSE is the
average RMS error with respect to the fully-encoded data (R = 1 × 1).

performance. For R = 2×2, the encoding matrix was well-conditioned and therefore

the SSVD solution did not affect the reconstruction. Even though SENSE-SSVD

provided low and more uniform g-factors at high accelerations, the SNR penalty due

to highly undersampled data (
√

R-factor) imposed the limit for the maximum feasi-

ble acceleration. SENSE-SSVD reconstruction of the 1-st time-domain point of the

accelerated NWS data presented good performance up to R = 4 × 2 (Fig. 4.b).

7.6.2 Point Spread Function

2D-SENSE reconstruction of the accelerated data with coil sensitivity extrapolation

beyond the border of the brain provided a properly unaliased PSF (Fig. 7.5). With-

out sensitivity extrapolation, SENSE reconstruction may lead to residual aliasing
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artifacts due to discontinuities at the object border. The SSVD solution improved

aliasing suppression for larger accelerations (R = 4× 2 and R = 6× 2). The aliasing

peaks along the y dimension were reduced by 35 dB approximately for Ry = 2 and

Ry = 4. For Ry = 6, standard SENSE failed to remove the aliasing, e.g. peak to the

left. With SSVD the aliasing peaks for Ry = 6 were at least reduced by 20 dB.

Figure 7.5: PSF along y (a) and z (b) for different accelerations. The source point
was located at the border of the brain, where there is a discontinuity of the reference
signal to estimate the coil sensitivities. The top row shows the aliased PSF for SoS
reconstruction of the accelerated data and the bottom row the unaliased PSF for
SENSE reconstruction. Note that the reconstruction using SSVD presented better
aliasing suppression.
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The aliasing peak along the z dimension was reduced by 20 dB approximately

for Rz = 2. The PSF of SENSE reconstruction is asymmetric which is due in part

to asymmetries in the array coil configuration. Note that for R = 1 × 1, the PSF

of SENSE reconstruction presented lower side lobes than the one for sum-of-squares

(SOS) reconstruction, which results in reduced contamination from outside voxels.

This is due to the better defined coil sensitivity functions used in SENSE. For SoS

reconstruction, coil sensitivities are assumed to be equal to the spatial SNR profiles

of the data; for SENSE a polynomial fit was employed.

7.6.3 Metabolite Maps and Spectra

Metabolite concentration mapping was feasible up to R = 4 × 2 (Ta =1 min) with a

moderate reduction in spatial-spectral quality when compared to the fully-encoded

reconstruction: RMSEs were less than 5%; and the increase in average CRLBs were

5.1%, 6.8%, 10.7% and 13.9% for NAA, Cr, Cho and Glu respectively. R = 2 × 2

(Ta =2 min) presented similar results to the fully-encoded reconstruction: RMSEs

were less than 3%; and the increase in average CRLBs were 2.0%, 2.5%, 5.6% and

5.4% for NAA, Cr, Cho and Glu respectively. Fig. 7.6 shows the concentration maps

for the three major single resonances NAA, Creatine and Choline. Fig. 7.7.a shows

the corresponding results for Glutamate (a multiplet resonance with comparatively

Metabolite Concentration [mM]
R = 1 × 1 R = 2 × 2 R = 4 × 2

NAA 9.2±3.4 9.4±3.8 9.5±4.3
Cr 7.3±2.4 7.2±2.2 7.2±2.8
Cho 1.6±0.7 1.4±0.8 1.4±0.9
Glu 8.3±3.6 8.5±3.9 8.8±5.2

Table 7.1: Average absolute concentrations and standard deviations.
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low sensitivity). Table 1 shows average concentration values for each acceleration,

which are within the range of concentration values reported in previous studies [101].

The inferior slices (2 and 3) suffered from larger errors since the coil sensitivities

are lower in those brain regions. The accuracy of spectral quantification, indicated

by the CRLB from LCModel fitting, decreased with acceleration due to reduced

SNR specially in the inferior slices for the reason mentioned above. The Glutamate

Figure 7.6: Metabolite concentration maps of a) NAA, b) Creatine and c) Choline.
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image shows similar intensity in central and lateral gray matter (GM), and much

lower intensity in white matter (WM) (approximately 50% less in the voxel from

Fig. 7.7.a), consistent with previous studies (ratio Glu(GM)/Glu(WM)= 2.4±0.5

[102]). Examples of spectra show decreased SNR with higher acceleration as expected

and small distortions around the lipid region (1.3 ppm) due to imperfections in the

estimation of coil sensitivity information at the periphery (Fig. 7.7.b).

Figure 7.7: a) Glutamate concentration maps at different accelerations for slices 4-7.
b) Raw absorption mode spectrum (black line) and corresponding LCModel fit (red
line) for a gray matter (GM) voxel and a white matter (WM) voxel (voxel locations
are indicated in part a). The remaining baseline is given by the smooth black curve.
The concentration of Glutamate is given in each case.
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However, extra lipid contamination was highly reduced by extrapolation of the

sensitivity maps and the SSVD reconstruction. Fig. 7.8.a shows lipid maps for

slice 5 from the fully-encoded data (R = 1 × 1 and R = 4 × 2 using standard

SENSE (STD) and SSVD reconstruction. Accelerated data reconstruction showed

lipid contamination due to residual aliasing specially in central zones where the

encoding matrix is ill-conditioned as shown in the g-factor maps in Fig. 7.4.a. On

average the lipid contamination in standard SENSE reconstruction was reduced by

a factor of 1.6 when using SSVD reconstruction. Fig. 7.8.b shows an example from

a white matter region where the lipid contamination was reduced by a factor of 1.8.

Figure 7.8: a) Lipid image from slice 5 for R = 1 × 1 and R = 4 × 2 using standard
SENSE (STD) and SSVD reconstruction. b) Absorption mode spectrum from the
voxel indicated in part a. Note the reduction in lipid contamination due to residual
aliasing in areas with high g-factor seen in Fig. 7.4.b when using SSVD reconstruction
as compared to standard SENSE reconstruction.
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7.7 Discussion

In this Chapter, feasibility of fast volumetric metabolic imaging in human brain

was demonstrated using a combination of 3D-PEPSI encoding with large scale two-

dimensional acceleration and SENSE reconstruction with the 32-channel soccer-ball

array coil. The acquisition of short TE (15 ms) 3D-PEPSI with a 32 × 32 × 8

spatial matrix can be accelerated up to 1 min to map the concentrations of N-

Acetyl-Aspartate (NAA), Creatine (Cr), Choline (Cho) and Glutamate (Glu) at the

expense of a moderate reduction in spatial-spectral quality. The short encoding time

constitutes a major advance as compared to previous studies using parallel MRSI,

such as data presented in [97] that required 20 min of encoding time for the same

spatial matrix.

Acceleration applied simultaneously to the ky and kz phase-encoding dimensions

increased the acceleration capability by reducing the large SNR loss from high 1D

accelerations. The conditioning of the reconstruction improved considerably by ex-

ploiting sensitivity encoding along two dimensions and therefore reduced g-factor as

described in [98]. The difference between 1D-SENSE and 2D-SENSE for the same

net acceleration factor is given by the g-factor. 2D-SENSE presents a lower and more

spatially uniform g-factor than 1D-SENSE (see Fig. 7.3 and Fig. 7.4). For example,

the average SNR decrease for R = 8×1 is 12.6 but only 4.4 for R = 4×2. Therefore,

there is a 2.8-fold gain in average SNR performance when using 2D-SENSE in this

work for an 8-fold acceleration.

Even though the combination of the 32-channel soccer-ball array and two-dimensional

acceleration improved the conditioning of the encoding matrix, g-factor was still high

in positions with low-value and overlapped coil sensitivities. When the sensitivities

of the receiver coils severely overlap, different rows of the encoding matrix become

nearly identical. This causes the encoding matrix to become nearly singular and
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therefore highly susceptible to amplify noise and errors in the coil sensitivity esti-

mation associated with small singular values. Regularization of the encoding matrix

inversion can be performed by constraining the SVD solution. SSVD regularization

(Chapter 3) proved to work adequately for SENSE to reduce g-factor at the expense

of spatial resolution. Since MRSI is intrinsically a low spatial resolution technique,

this effect is small. The SSVD was tuned using the 1 st time-domain point of the

NWS data (maximum SNR), and the same procedure was applied to later time points

which are noisy.

The use of sensitivity extrapolation beyond the borders of the object improved

the reconstruction of the PSF consistent with previous findings [95] and SSVD re-

construction reduced the effect of errors in coil sensitivity modeling. These two

factors were very important to reduce extra-cranial lipid contamination due to resid-

ual aliasing. SSVD regularization reduced the lipid contamination inside the brain

as compared to standard SENSE reconstruction by a factor of 1.6 on average due to

better aliasing suppression in regions with ill-conditioned encoding matrix.

The maximum attainable acceleration was evaluated quantitatively using the

RMSE of the metabolite concentration with respect to the non accelerated acquisition

and the CRLB from LCModel spectral fitting. The CRLB represents the combined

influence of SNR, spectral line width and spectral shape on the accuracy of the

fit. Based on these parameters, R = 4 × 2 presented an acceptable reduction in

spatial-spectral quality to map the concentrations of NAA, Cr, Cho and Glu.

In future work, we are planning to implement the technique at 7 Tesla using the

32-channel soccer-ball array. The use of high magnetic field strength has been demon-

strated to improve the performance of parallel imaging reconstruction by increasing

the baseline SNR and providing stronger spatial modulation of the coil sensitivities

[27]. However, in order to take advantage of the larger acceleration capability and to

achieve adequate volume coverage for 3D acquisitions it is necessary to maximize the

121



Chapter 7. Parallel 3D-PEPSI

uniformity of the spectral quality using improved volumetric shim algorithms and

automatic placement of the OVS slices.

7.8 Summary

A high-speed method for 3D-MRSI of human brain was developed using the com-

bination of echo-planar MRSI and parallel imaging with a large-N receiver array.

The SSVD regularization from Chapter 3 was employed to reduce noise and errors

in regions with low-value and overlapped coil sensitivities. As a result, the method

improved the reconstruction of the PSF and reduced lipid contamination inside the

brain from peripheral regions. In vivo results show that single-average 3D-MRSI

with a 32 × 32 × 8 spatial matrix and 0.7 cc nominal vovel size at 3 Tesla can be

accelerated with minimum acquisition time of 1 min to map the concentrations of the

main metabolites. The short encoding time makes the method suitable for volumetric

mapping of metabolites as an add-on in clinical MR studies.
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Superresolution Parallel PEPSI

3 The superresolution SENSE (SURE-SENSE) method introduced in Chapter 5 is

applied to PEPSI encoding for fast metabolic imaging with high spatial resolution

in human brain using the 32-channel soccer-ball array.

8.1 Introduction

MRSI is constrained by low SNR and slow encoding methods [45]. As a consequence,

k-space coverage is sacrificed to achieve an adequate SNR within a feasible acquisition

time. The lack of high k-space information leads to limited spatial resolution and

Gibbs ringing when the Fourier transform is directly applied to reconstruct the image.

For proton MRSI in human brain, the effect of truncated k-space sampling can be

particularly severe due to the presence of an intense signal arising from subcutaneous

lipids in the scalp. The resulting lipid resonances cover a large spectral region and

overlap with the metabolite resonances. Gibbs ringing produces lipid contamination

3The work in this chapter was submitted as part of a full paper to Magnetic Resonance
in Medicine: R. Otazo, F-H. Lin, G.C. Wiggins, R. Jordan and S. Posse. “Superresolution
Parallel Magnetic Resonance Imaging”.
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inside the brain which reduces the spectral quality and complicates the quantification

of metabolites (Fig. 8.1). Several methods were developed to reduce this effect [103].

For example, the lipid resonance can be saturated in the acquisition by an inversion

recovery scheme [104] at the expense of sensitivity loss. The outer volume suppression

(OVS) method [105] saturates the signal from the periphery at the expense of spatial

coverage loss. Post-processing methods such as k-space extrapolation of the lipid

signal using the Papoulis-Gerchberg algorithm were also proposed [82].

Figure 8.1: a) High spatial resolution MRSI: spectrum from a voxel inside the brain
and at the periphery where lipids are located. b) Low spatial resolution MRSI: lipid
contamination from conventional Fourier reconstruction due to Gibbs ringing.

In this Chapter, the SURE-SENSE parallel imaging method introduced in Chap-

ter 5 is applied to PEPSI encoding for fast metabolic imaging with high spatial

resolution in human brain using the 32-channel soccer-ball array. Acceleration of

PEPSI encoding is performed by performing a low spatial resolution acquisition.

SURE-SENSE reconstruction is performed using coil sensitivities estimated from the

fully-sampled water reference acquisition.
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8.2 Methods

8.2.1 Data Acquisition

Human brain MRSI data with two spatial dimensions were acquired with Proton

Echo Planar Spectroscopic Imaging (PEPSI) [29, 106] in axial orientation using a

64×64×512 spatial-spectral matrix (x, y, ν). Data acquisition was performed on a 3

Tesla MR scanner (Tim Trio, Siemens Medical Solutions, Erlangen, Germany) using

the 32-channel soccer-ball array coil [25] (Fig. 1.1). The FOV was 256×256 mm2 and

the slice thickness was 20 mm resulting in a voxel size of 0.32 cc (in-plane spatial res-

olution of 16 mm2). The spectral width was set to 1087 Hz. The 2D-PEPSI sequence

(see Fig.7.1) consisted of water-suppression (WS), outer-volume-suppression (OVS),

spin-echo RF excitation, phase-encoding for y and the echo-planar readout module

for simultaneous encoding of x and t. Data acquisition included water-suppressed

(WS) and non-water-suppressed (NWS) scans. The NWS scan was performed with-

out the WS and OVS modules; and it was used as a reference to estimate the coil

sensitivity maps, spectral phase correction, Eddy current correction and absolute

metabolite concentration. The high resolution NWS and WS PEPSI data sets were

acquired in 2 min each using single signal average. Low resolution data was obtained

from the 32× 32 central k-space matrix which represents an acceleration factor of 2.

8.3 SURE-SENSE-PEPSI Reconstruction

SURE-SENSE reconstruction (see Chapter 5) is applied to the low resolution data

using the high resolution coil sensitivity maps for each spectral point separately. For

error quantification purposes, the high resolution acquisition was reconstructed by

applying DFT reconstruction to each coil and sensitivity-weighted combination of
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the individual coil images (DFT-SW), i.e. standard SENSE reconstruction for the

fully encoded data. For comparison purposes, the low resolution acquisition was

conventionally reconstructed using the DFT-SW procedure with low resolution coil

sensitivity maps and the result was interpolated to the high resolution spatial grid

by zero-filling the k-space data. The interpolated conventional reconstruction will

be referred to as DFT-SW-ZF reconstruction. PEPSI reconstruction as described in

Chapter 7 is then applied to get the spectroscopic image.

8.4 Spectral Fitting and Metabolite Images

Water images were obtained by spectral integration of the reconstructed NWS data.

Lipid images were computed by spectral integration of the reconstructed WS data

from 0 to 2.0 ppm. Metabolite images were obtained by spectral fitting using

LCModel [44] with analytically modeled basis sets [106]. Metabolite imaging perfor-

mance was assessed using the MSE with respect to the high resolution metabolite

image. Spectral fitting errors in LCModel were computed using the Cramer-Rao

Lower Bound (CRLB, the lowest bound of the standard deviation of the estimated

metabolite concentration expressed as percentage of this concentration), which when

multiplied by 2.0 represent 95% confidence intervals of the estimated concentration

values. A threshold of 20% was imposed on the CRLB to accept voxels.

8.5 Results

Superresolution SENSE reconstruction reduced the strong effect of k-space trunca-

tion in the simulated low resolution (32×32) MRSI data set, resulting in metabolite

maps with better spatial resolution and spectra with higher quality as compared to

the conventional DFT reconstruction with k-space zero-filling (Fig. 8.2).
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Figure 8.2: Human brain MRSI reconstruction. Conventional DFT with sensitivity-
weighting (DFT-SW) reconstruction of the fully-encoded data (spatial-encoding ma-
trix size: 64 × 64), DFT-SW with zero-filling (DFT-SW-ZF) and superresolution
SENSE (SURE-SENSE) reconstruction of the data with reduced spatial encoding
(spatial-encoding matrix size: 32 × 32, R = 2 × 2) for a) water, b) lipids, c) N-
Acetyl-Aspartate (NAA)and d) Creatine.
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The maps of NAA and Creatine were very similar to the fully-encoded (64× 64)

reconstruction. Average error in NAA and Creatine concentration maps were 0.57

mM and 0.45 mM respectively for DFT-SW-ZF, and significantly smaller for SURE-

SENSE (0.21 mM and 0.17 mM, respectively).

The accuracy of spectral quantification, indicated by the CRLB from LCModel

fitting, decreased with acceleration as expected due to reduced SNR in the recon-

structed image as a result of the shorter corresponding data acquisition time. Aver-

age CRLB for NAA and Cr were 10.2% and 9.7% respectively for the fully-encoded

reconstruction, while 13.7% and 12.4% for SURE-SENSE. However, the high lipid

contamination inside the brain from conventional DFT reconstruction of truncated

k-space data was reduced 3.1-fold on average by SURE-SENSE, which resulted in

better spectral quality and more accurate quantification as shown in Fig. 8.3.

Figure 8.3: Raw absorption mode spectrum (thin black line) and corresponding
LCModel fit (bold black line) for a central voxel. The remaining baseline is given
by the smooth curve. More than 3-fold reduction in lipid contamination is obtained
with SURE-SENSE in comparison to conventional Fourier reconstruction of the low
resolution data.
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8.6 Discussion

The superresolution SENSE method introduced in Chapter 5 was applied to spectro-

scopic imaging in human brain, where the effect of limited k-space sampling can be

particularly severe due to the presence of an intense signal arising from subcutaneous

lipids in the scalp. Superresolution SENSE reconstruction reduced the strong lipid

contamination, e.g. 3-fold on average for the implementation given in this work,

and improved the spatial resolution of metabolite maps in human brain MRSI when

compared to conventional reconstruction of reduced k-space sampling.

Using echo-planar MRSI (PEPSI) and SURE-SENSE reconstruction, metabolite

mapping with 0.3 cc of spatial resolution and an equivalent acquisition time of only

1 min was feasible with a spatial-spectral quality comparable to the fully-encoded

acquisition. SURE-SENSE will be also advantegeous to increase the spectral width

in PEPSI especially at high magnetic field since it allows for acceleration along the

x dimension which can provide shorter readouts. Future work includes the imple-

mentation of SURE-SENSE-PEPSI at 7 Tesla to extend the spectral width limited

by the gradient performance at that magnetic field strength.

8.7 Summary

In this Chapter, the superresolution SENSE (SURE-SENSE) method introduced in

Chapter 5 is applied to PEPSI encoding for fast metabolic imaging with high spatial

resolution in human brain using the 32-channel soccer-ball array. The short acquisi-

tion time makes the method suitable for high resolution mapping of metabolites as

an add-on in clinical MR studies.
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Conclusions and Future Work

Novel encoding and reconstruction techniques for parallel MRI were investigated in

this dissertation. The main goal was to improve the actual reconstruction meth-

ods and to develop new approaches for massively parallel MRI systems that take

advantage of the higher information content provided by the large number of small

receivers. The contributions of this dissertation were distributed in six chapters. The

first three contributions are devoted to general parallel MRI reconstruction methods.

The last three contributions presented applications for MR spectroscopic imaging.

Parallel MRI reconstruction requires to solve an inverse problem which is sus-

ceptible to become ill-conditioned in regions where the information provided by the

different coils is similar, e.g. the center of a circular array. Large amplification of

noise and effects of systematic errors in coil sensitivity estimation may occur due

to instabilities in the inversion process. Regularization of the inverse problem is an

esential tool to desensitize the solution from data noise and model errors. Chapter

3 presented a novel method for regularization of the matrix inverse problem based

on the SVD representation of the encoding matrix for SENSE reconstruction as an

efficient alternative to the commonly used Tikhonov regularization. Note that for
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SENSE, where a small system is inverted on each iteration, the common method of

truncating the SVD is not appropiate due to the small size of the encoding matrix.

The SSVD method shifts the set of singular values of the encoding matrix away from

zero using a small portion of the largest singular value. In future work, weighting the

set of singular values, e.g. stronger weiths to higher singular values, will be considered

to optimize the performance of SVD-based regularization for SENSE reconstruction.

A two step regularization approach will be also investigated, where first Tikhonov

regularization will be applied using prior information about the object being imaged

[48] and then the SSVD approach will be applied to improve conditioning of the final

matrix inverse problem.

A general framework for parallel MRI with arbitrary k-space sub-sampling was

presented in Chapter 4. The reconstruction in this case is computationally intensive

since each point in the sub-encoded images can be given by a combination of all

the points in the fully-encoded image and the complete encoding matrix needs to be

inverted. The iterative reconstruction technique using the conjugate gradient algo-

rithm originally proposed by Pruessmann et al. [54] for the case of non-Cartesian

sampling was adapted for arbitrary k-space sampling on a Cartesian grid with pre-

conditioning to achieve faster convergence. Pre-conditioning represented an efficient

way to regularize the inverse problem providing a well-conditioned transformed en-

coding matrix with all the singular values clustered around a single point. The

high performance of the pre-conditioning method is due to the availability of an ap-

propiate tranformation matrix which in this case is given by the diagonal projection

matrix EHE for the case of full sampling of k-space. In future work, the inclusion

of prior information in the forward model such as magnetic field inhomogeneities

will be studied. Moreover, computationally efficient implementation of parallel MRI

reconstruction with variable k-space sub-sampling using parallel computing will be

also investigated.
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Uniform sub-sampling of k-space is not optimal for parallel MRI if the coil sensi-

tivities overlap, which is the case in practice. A variable k-space sub-sampling scheme

using the k-space density of the coil sensitivities was derived in Chapter 4. The idea

is to sample densely at the center of k-space and more sparsely as we move away

from the center. This variable density sampling scheme is based on the property

that a large portion of the information is concentrated within a small region of low

k-space values whereas the edge information is distributed over a much broader re-

gion of higher k-space values. The method reduces the mean square error of SENSE

reconstruction with uniform k-space sub-sampling and it is particularly suitable for

reconstruction with regularization. In future work, a fast algorithm for optimal se-

lection of k-space samples that minimizes the mean square error expression derived

in Chapter 4 will be investigated. Moreover, the selection of k-space samples based

on other criteria such as contrast enhancement will be a topic of future research.

Parallel MRI has been introduced has a method to accelerate the encoding pro-

cess by sub-sampling k-space while maintaining the total extent to have the same

spatial resolution. The rationale for this sub-encoding scheme is that the coil sensi-

tivity maps are very smooth and retrieve k-space information only from the neigh-

borhood of the actual gradient-encoding point. New array coil designs with a large

number of small elements provide stronger variation of the coil sensitivities. In

Chapter 5, a novel parallel MRI method known as superresolution sensitivity encod-

ing (SURE-SENSE) was proposed for large-N arrays. In analogy to superresolution

image reconstruction from picture and video processing, where multiple low reso-

lution images with sub-pixel differences are combined, parallel MRI reconstruction

was formulated as a superresolution problem. While strong sensitivity variation may

result in residual aliasing artifacts in conventional parallel MRI method due to sen-

sitivity variation within the image pixel, SURE-SENSE is taking advantage of the

stronger sensitivity variation to perform intra-pixel reconstruction. Acceleration in

SURE-SENSE is performed by acquiring only the central region of k-space instead
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of increasing the sampling distance over the complete k-space matrix. The increase

in spatial resolution will be determined by the degree of coil sensitivity variation

within the acquired low resolution voxel. Superresolution SENSE is intrinsically an

ill-conditioned problem since the intra-pixel variation of the coil sensitivity maps

is lower than across aliased points separated by larger distances. Pre-conditioning

reduced the g-factor for SURE-SENSE reconstruction close to one at the expense of

slight spatial resolution reduction in the reconstructed image due to the attenuation

of small singular values, which are related to high spatial frequencies. As we have

shown in our results, this tradeoff is quite acceptable when the data is acquired with

large-scale array coils that provide strongly modulated coil sensitivity profiles and

high SNR. SURE-SENSE compares favorably the performance of standard SENSE

reconstruction for low spatial resolution imaging where intra-pixel sensitivity varia-

tion is stronger. However, superresolution SENSE is not limited to low resolution

MRI as we have shown and future work will characterize the optimal operating

regimes of the method. Superresolution parallel MRI reconstruction in k-space and

comparison to the proposed spatial-domain reconstruction will be also explored.

MR spectroscopic imaging is constrained by low SNR and slow encoding methods.

As a consequence, k-space coverage is sacrificed to achieve an adequate SNR within

a feasible acquisition time, which restricts MRSI to low spatial resolution and single

slice acquisition in clinical practice. In this dissertation, the Proton Echo Planar

Spectroscopic Imaging (PEPSI) technique was improved for fast MRSI in human

brain with high spatial resolution using parallel imaging approaches. In Chapter

6, advantages of high field strength such as linear increase in SNR of metabolites

and increase in spectral resolution were demonstrated. Moreover, improved spectral

fitting was demonstrated by modeling the baseline using macromolecule information

acquired experimentally at different magnetic field strengths. Therefore, the use of

high magnetic field strength along with improved modeling is expected to provide

high accuracy in metabolite concentration estimation. In Chapter 7, 3D-PEPSI was
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combined with 2D-SENSE parallel imaging technique using the 32-channel soccer-

ball array for volumetric MRSI in clinically feasible acquisition times. The SSVD

regularization from Chapter 3 was employed to reduce noise and errors in regions with

low-value and overlapped coil sensitivities. As a result, the method improved the re-

construction of the point spread function and reduced lipid contamination inside the

brain from peripheral regions. In vivo results have demonstrated that single-average

3D-MRSI with a 32×32×8 spatial matrix and 0.7 cc nominal vovel size at 3 Tesla can

be accelerated with minimum acquisition time of 1 min to map the concentrations

of the main metabolites. In Chapter 8, the superresolution SENSE method intro-

duced in Chapter 5 was applied to PEPSI encoding using the 32-channel soccer-ball

array. SURE-SENSE-PEPSI demonstrated feasibility of metabolite mapping with

0.3 cc of spatial resolution and an acquisition time of only 1 minute. Future work on

parallel PEPSI includes the implementation of the technique at 7 Tesla using a 32-

channel soccer ball array for mapping of J-coupled metabolites. The spectral width

of PEPSI at 7 Tesla could be limited by the gradient performance. SURE-SENSE

will be applied to PEPSI at 7 Tesla to provide larger spectral width since it allows

for acceleration of the readout dimension.

The contributions presented in this dissertation are expected to provide methods

that substantially enhances the utility of parallel MRI for clinical research and to offer

a framework for fast MRSI of human brain with high spatial and spectral resolution.
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