
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-9-2007

Design and implementation of test-bed for path
planning and formation control of cooperative
robotic agents
Mike Majedi

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Majedi, Mike. "Design and implementation of test-bed for path planning and formation control of cooperative robotic agents." (2007).
https://digitalrepository.unm.edu/ece_etds/167

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/167?utm_source=digitalrepository.unm.edu%2Fece_etds%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Design and implementation of test-bed
for path planning and formation control

of cooperative robotic agents

by

Mike Majedi

B.A.S., ITT, New Mexico, 1998

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2007

Dedication

This is dedicated to my loving wife Xiomara, my three wonderful children Yasamin,

Abraham, Esmael, my mother, my father, my three brothers Mohammad, Mehdi,

Mohsen, and my two sisters Mahsheed, Mahnoosh, my in-laws and my dog princess.

iii

Acknowledgments

I would first like to thank my thesis advisor Professor Chaouki T. Abdallah at Uni-
versity of New Mexico. I would not be here without his support, guidance and
encouragement. His office was always open whenever I ran into a trouble spot or had
a question about my research or writing. I am also extremely grateful to the members
of my committee, Dr. Nadar Vadiee with all his support who has helped me not just
with valuable suggestions and constructive comments but also with other supports
like parts, equipment, guidance and encouragement. I like to thank Professor Herbert
G. Tanner for his valuable research, suggestions and constructive comments. I look
forward to work with him on the future robotic projects. Thanks also to my family,
my loving wife for supporting me in my educational pursuits, to my in-laws for their
prayer, and all my friends for their encouragement. I am particularly indebted to
two guys , Pavlo, and Behshad, who assisted me in my research and set-ups; with-
out their help this would be a lot more difficult, and also whose creative endeavors
allowed me to maintain my (in)sanity throughout the writing of this thesis.

iv

Design and implementation of test-bed

for path planning and formation control

of cooperative robotic agents

by

Mike Majedi

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2007

Design and implementation of test-bed

for path planning and formation control

of cooperative robotic agents

by

Mike Majedi

B.A.S., ITT, New Mexico, 1998

M.S., Electrical Engineering, University of New Mexico, 2007

Abstract

Robots are primary candidates to perform dangerous but controlled missions.

They carry cameras, surveillance instruments, and sensors to collect information

and relay their findings to their human operators. Man is continuously challenged

to seek uncharted territories such as outer space and the ocean’s depths. Robot

data collection allows for an operator to collect data in environments where it may

be unsafe for humans to do so. It also allows for humans to perform inconvenient

and tedious tasks such as waiting, and collecting information over long periods of

time. In this thesis, we propose to design and implement a test-bed platform, which

may be used to control multiple Robots. These robotic platforms are essentially mo-

bile wireless programmable robots with the processing power of a laptop computer.

The robots consist of two mechanically motorized differential drive kinematics sys-

tems. We then discuss the capabilities of our platform with basic behaviors such

vi

as: path-to-goal, avoid-obstacle, maintain relative distance, maintain relative angle

(formation), and maintain general speed to form a guidance algorithm. Furthermore

we use the kinematic model of a two differential steering systems to derive the in-

verse kinematic equations, and generate any type of trajectory within the physical

constrains of the system.

vii

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Introduction . 1

1.2 Thesis Summary . 3

1.3 Contributions . 3

2 Modeling and Simulations 6

2.1 Introduction . 6

2.2 Problem formulation . 7

2.3 Maintaining a Formation . 8

2.4 Maintaining Velocity . 12

2.5 Following a Virtual Leader . 14

2.6 Obstacle Avoidance . 18

viii

Contents

2.7 Conclusions . 22

3 Test-bed design and Construction of the cooperative agents 23

3.1 Introduction . 23

3.2 Physical Structure . 24

3.3 Power Supply and Regulation . 25

3.4 DC motor . 26

3.5 Encoder . 27

3.6 PWM and H-Bridge Motor Drive . 27

3.7 Data Acquisition . 30

3.8 Sensors . 31

3.9 System Identification . 34

3.10 PID Design . 36

3.11 Conclusions . 45

4 Test-Bed Implementation and Experimental Results 46

4.1 Introduction . 46

4.2 Direct Kinematics . 48

4.3 Inverse Kinematics . 51

4.4 Path Planning . 52

4.5 Experimental results . 57

ix

Contents

4.6 Conclusion . 63

5 Conclusions and Future Work 64

A Matlab Scripts 65

A.1 MatLab simulation codes. 65

B System Identification and PID 69

B.1 Introduction . 69

B.2 Model and data organization . 70

B.3 Least square Approximation . 71

B.4 Application to System Identification 72

B.5 Selection of inputs . 74

B.6 PID controller design . 75

References 78

x

List of Figures

2.1 Initial Configuration of the Flock . 8

2.2 A Potential Function for a maintaining formation. 11

2.3 Trajectory of a flock of four agents. (Units of coordinates may be

interpreted as meters.) . 13

2.4 Directions of each of the agents of the flock 14

2.5 Speeds of the agents of the flock . 15

2.6 A virtual leader is not present(k3 = 0). Notations used: initial loca-

tions (•), terminal locations (⊙), obstacles (∗). 17

2.7 A virtual leader is present but weak (k3 = 0.1). Notations used:

initial locations (•), terminal locations (⊙), obstacles (∗). 18

2.8 A virtual leader is present and is very strong (k3 = 1). Notations

used: initial locations (•), terminal locations (⊙), obstacles (∗). . . . 19

2.9 A Potential Function for Obstacle Avoidance. 20

2.10 Navigation through an obstacle field. Notations used: initial loca-

tions (·), terminal locations (⊙), obstacles (×). 21

xi

List of Figures

3.1 Block Diagram of the Robot. 24

3.2 Block Diagram of our Robot . 25

3.3 Relationships between output current, rpm, and the torque. 27

3.4 Direction of Rotation Diagram. 28

3.5 PWM and H.Bridge Printed Circuit Board 28

3.6 Internal Block diagram of the 3524 PWM generator. 29

3.7 Block diagram of PWM with the 18200 (Motor Driver) 30

3.8 Different Angles with Different Distances 32

3.9 GP2D12 Output Voltage to Distance Curve 33

3.10 Connection to the analog input of the controller. 33

3.11 LabView Code/Test-bed/Motion Controller Board And a Flock of

Four Test-beds . 39

3.12 Random binary input data and corresponding output. 40

3.13 System ID for random input for orders 1, 2, 3 and 4. 41

3.14 Step response errors of 2nd , 3rd , and 4th order models. 42

3.15 Block diagram of the system including the controller. 43

3.16 Root Locus result for our PID controller. 43

3.17 Step Response for CL PID controller: Experimental and theoretical

data. 44

4.1 Differential Drive mode . 48

xii

List of Figures

4.2 A general nonholonomic differential drive robot platform 49

4.3 Trajectory planning . 53

4.4 Interpolation Principle . 53

4.5 Interpolation methods . 55

4.6 Estimated and projected linear velocities of the wheels for a circular

trajectory. 59

4.7 Circular trajectory . 60

4.8 Estimated and projected linear velocities of the wheels for a spiral

trajectory. 61

4.9 Spiral trajectory . 62

xiii

List of Tables

3.1 Comparison Between Linear and Switch-Mode Regulators. 26

3.2 The Three-Term Controller with Proportional, Integral, and Differ-

ential gain. 36

4.1 Parameters of the kinematic model. 49

xiv

Chapter 1

Introduction

1.1 Introduction

Control theory is the corner stone of most industrial processes, and is widely used in

vehicles [17]. The control capabilities become increasingly important as the complex-

ity and performance of cars, planes, and other vehicles increase. The development

of such systems often requires knowledge from a wide range of technical disciplines,

and control theory is an important discipline.

As scientists request more data and more accurate readings from various robots,

the need for more sophisticated robots with afforded autonomy and enough compu-

tation power increases. The current need for autonomous robots capable of function-

ing in both self and collective modes is greater than what the world of science and

manufacturing can supply [30]. Robots have for many years been in use in the man-

ufacturing industry, but are now being introduced in transportation and in various

hostile environments [18].

Demand for autonomous robots [21] will surely continue to increase and their

1

Chapter 1. Introduction

design and production are by no means easy. Many sophisticated tasks require

multiples robots, working together to carry out a single mission such as the mapping

of an inhospitable terrain, or acting as patient sitters, security guards, rescuers and

fire fighters, helping in surgery and rehabilitation, in mining as well as in stores and

museums.

Such robots must function in cooperation with each other [15,20], as they are con-

currently busy and focusing on their individual tasks. As the numbers of specialized

robots increase, their individual tasks may be simplified, their architecture better

configured, and they may offer optimum utility factor. While human control via well

rehearsed instructions and various planned exercises may sometimes be required, but

such human intervention may be difficult, or impossible [8]. A robot may find itself

where there is a communication breach due to (caves or large canyons).Bi-directional

communication must help autonomy of individual robots as a well-coordinated sub-

task within the collective’s mission. There is a great need for robots that are capable

of autonomous or semi-autonomous behavior.

Robotic applications require more accuracy, robustness, and reliability as more

autonomy is required. Working prototypes of unmanned ground vehicles (UGV) have

been developed by numerous research groups ([5, 6]). Application to autonomous

guided vehicles (AGV) [34] and wheeled mobile robots (WMR) [34] have focused on

navifation.

Our main objective in this thesis is to evaluate mobile robot bases and to build

a kinematics model of WMR suitable for mobile manipulation tasks and research.

2

Chapter 1. Introduction

1.2 Thesis Summary

In the second chapter we provide mathematical models of the mobile robots, some

control analysis and include the results of numerical simulations, validating our al-

gorithm, and theoretical findings.

In the third chapter, we describe the construction of a wheeled mobile robot

and the general system design. We focus on the , position sensing odometry, the

desired wheel performance, the choice of the discrete components, and design of a

PID controller using the system identification procedure.

In the fourth chapter of this thesis, we derive the kinematic model of the robot

that is based on the differential steering wheel system assuming no slipping condition.

This simple model and reliable wheel-system is commonly used in smaller robots.

This model is used to predict how a robot should respond to changes in its wheel

speed and what path it will follow under various conditions. We develop the inverse

kinematic formula that can execute an arbitrary trajectory.

In the fifth chapter we summarize the results of this thesis and highlight its

contributions. We also include a discussion of the open issues and future work and

improvements.

1.3 Contributions

We summarize the contribution of the work described in this thesis, as follows:

Theoretical expansion

• We implement different scenarios in our simulations and study the individual

components of the control inputs. With the insight gained through this expe-

3

Chapter 1. Introduction

rience, we are able to prioritize our goal of flock formation by adjusting our

numerical coefficients chosen to prevent the saturation in practical implemen-

tations of our flock.

• We develop modular algorithms including Matlab codes and Labview codes

(Appendix A), which are directly implementable and expandable for any num-

ber of agents as needed.

Improvements on the previous design of a single agent and the Test-

bed:

• The previous platform was designed by the Networked Controlled System Lab-

oratory at the University of New Mexico. In an effort to improve the exist-

ing design we develop a new generation of robots using new algorithms and

techniques. The new generation provides modular, lightweight (portable), less

expensive, and easily reproducible platform.

• We build a platform such that its hardware is totally independent of the proces-

sor (microcontroller, and PC), and of any programming environment. The user

could easily use any programming language such as: Labview, C, C++, Java,

Matlab or else, as long as the programming language is capable of establishing

serial communications.

• This platform allows the researchers to interface with Labview SUBVIs or win-

dows dynamic link libraries (DLL) and the software needed to control the robot.

The control is achievable from a friendly and easy-to-use virtual instruments

environments and allow the user to command the wheel movement, extract

data, and establish communications between agents. Autonomous navigation

capabilities of the robot include analog based obstacle avoidance, visual sur-

veying to user-designated goals with a webcam, and modular path planning

capabilities.

4

Chapter 1. Introduction

• Two of the robotic platforms were used in the InterMesh [4] protocols desines,

which was implemented by the Networking Group at the ECE department at

the University of New Mexico. The robots were able to seamlessly communicate

over native Mesh networks and to implement a simple control algorithm. The

demo to this experiment may be viewed hdl.handle.net/2118/tna

5

Chapter 2

Modeling and Simulations

2.1 Introduction

There are many approaches to the multiple agent control problem. One approach

involves Internet-Like-Protocols (ILPs) to coordinate a formation of several agents

[13]. Another approach uses the concept of potential function for the coordination

[9]. This approach relies on specific properties of potential function, which deter-

mines the behavior of each of the agents around its fellow agents and obstacles. A

descriptive discussion of the potential function approach is presented in this chapter.

Different components of the control inputs and their roles in maintaining formation,

obstacle avoidance, maintaining specific velocity mode, and virtual leader navigation

are discussed and explained.

In this chapter we provide a detailed description of the robotic system and the

simulations that were implemented on such a system.

6

Chapter 2. Modeling and Simulations

2.2 Problem formulation

Consider n agents with position coordinates ~rj(t) and velocities ~vj(t). According to

[10] behavior of the agents is governed by the following equations







~̇rj = ~vj

~̇vj = ~uj

, j = 1 . . . n, (2.1)

where ~uj is the control signal of agent Rj. Throughout our discussion, the stan-

dard notation for derivatives with respect to time is used:

~̇r =
d~r

dt
. (2.2)

The initial configuration of the flock is defined by







~rj(0) = ~r0,j

~vj(0) = ~v0,j

, j = 1 . . . n, (2.3)

where ~r0,j describes the initial location of agent Rj and ~v0,j is its velocity at

moment t = 0 (see Figure 2.1).

Our primary goal is to design control signals for each of the robots to incorporate

the following behavioral patterns:

1. maintaining a predefined formation

2. maintaining a general velocity

3. following virtual leader

4. avoiding obstacles

7

Chapter 2. Modeling and Simulations

~v1(0)

~v2(0)

~v3(0)

~v4(0)

~v5(0)

20 30 40 50 60 70 80 90
20

30

40

50

60

70

80

90

100

Figure 2.1: Initial Configuration of the Flock

This can be accomplished by closing the loop with the following control signal [11]

~uj = k1~u
1

j + k2~u
2

j + k3~u
3

j + k4~u
4

j , (2.4)

where each of the individual input components ~ui
j, 1 ≤ i ≤ 4 will be described in

detail next.

2.3 Maintaining a Formation

The control input ~u1
j is responsible for maintaining a formation. At the initial mo-

ment t = 0, the agents are not required to be in any specific configuration. As

time passes, however, the agents must arrange in a formation described by the graph

defined by the following matrix D, which we call a distance matrix:

8

Chapter 2. Modeling and Simulations

D =

















d11 d12 · · · dn1

d21 d22 · · · dn2

...
...

. . .
...

dn1
dn2 · · · dnn

















(2.5)

where each of the components dij represents a desired distance between agents i and

j of the flock:

dij = ‖~ri − ~rj‖ , (2.6)

where ‖·‖ is the standard two-dimensional Euclidian norm defined as follows:

∥

∥

∥

∥

∥

∥





x

y





∥

∥

∥

∥

∥

∥

=
√

x2 + y2. (2.7)

We note that matrix D must be symmetric since dij = dji. It is also obvious that the

diagonal elements of D are zeros but these values are never used in the algorithms and

therefore can be defined as arbitrary non-zero numbers to prevent possible division

by zero.

It is important to note that any arbitrarily generated symmetric matrix D may

not have a corresponding topology of the flock. For example it is clear that it is

impossible to arrange four agents in the plane so that the distance between each of

them is 1. Nonetheless the algorithms used in this thesis will work for any sym-

metric matrix D with nonnegative elements. The result will be the “closest” to D

configuration of the agents.

In order to direct the agents to maintain a certain formation, we use the properties

of the so-called potential function proposed in [10], and [11]

f(s) =
1

s
+ log s, s > 0. (2.8)

9

Chapter 2. Modeling and Simulations

Our algorithm will try to bring the overall system to the state where the potential

function is minimized. In a certain sense the value of potential function is a penalty

the system pays for remaining in a state different from the defined one. By adjusting

the potential function so that its minimum occurs at the configuration of the flock

that is defined by a defined D, we drive the state of the system into a desired

configuration. The choice of the function is influenced by its useful properties.

Let us take a closer look at the behavior of two neighboring agents that are trying

to maintain a predefined distance from each other, while maintaining a safe distance

from an obstacle. We assume that after a period of time the flock has converged

to a steady formation and is moving in a certain direction. If the flock encounters

an obstacle in its path, it may become necessary for it to temporarily break up its

formation in order to avoid a possible collision in between one agent and the obstacle.

It is understood that while breaking up the formation it is safer for the agents to

distance themselves from one another rather than to get closer. This is due to the

fact that by getting closer, the danger of inter-collision increases. Thus, at that

point, the highest priority for the agents is to not get close to each other.

Let the independent variable s represent the distance between two agents. We

can then see that

lim
s→0

f(s) = lim
s→0

f(s) = +∞ (2.9)

i.e as the agents get closer or too far apart, the potential function increases. However

as s → 0 the increase is much more rapid than the one when s → ∞. This can

be explained by the fact that f(s) = O(s−1) around 0, which has a faster rate of

divergence, than f(s) = O(log s) as s → ∞. Therefore, by minimizing f while at the

same time breaking up the formation, the system will choose to increase s (distance)

to avoid the much higher penalization for decreasing s (Fig. 2.2).

It is easy to see that the minimum of the potential function is achieved at s∗ = 1

10

Chapter 2. Modeling and Simulations

O(s−1)

O(log(s))

min

0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

Figure 2.2: A Potential Function for a maintaining formation.

and is equal f ∗ = 1. Since we need to make sure that the minimum would be attained

at s∗ = dij as a predefined distance between any two agents, the potential function

may be easily modified to satisfy this requirement. By taking

F (s) = f

(

s2

d2
ij

)

(2.10)

as a new potential function, we guarantee that the minimum is attained at s∗ = dij

and, therefore, by driving the system to the minimal potential state, the control

input will maintain the predefined formation.

Note that we also to modified the potential function by squaring its argument to

smooth it out to provide differentiability. Later we will see that the gradient of F

will have to be evaluated. Since f(~x) = ‖~x‖ is not differentiable while f(~x) = ‖~x‖2 is,

and since squaring does not radically change the behavior of the function we choose

11

Chapter 2. Modeling and Simulations

to work with the smooth version of potential.

In order to take into consideration the fact that there are more than two agents

in the system, we introduce the total potential between agent Ri and the rest of the

flock, as the sum of potentials between Ri and any other agent,

Pi(~r1, ~r2, . . . , ~rn) =
∑

i6=j

F (‖~ri − ~rj‖) =
∑

i6=j

f
(

‖~ri−~rj‖
2

d2
ij

)

=
∑

i6=j

f
(

‖~rij‖
2

d2
ij

)

(2.11)

Here for simplicity we adopt the notation

~ri − ~rj = ~rij . (2.12)

Now we recall that the gradient of a function of many variables indicates the

direction in which the function increases in the most rapid rate [31]. Therefore,

in order to calculate the direction of the steepest descent, the antigradient must

be calculated. Thus, in order to minimize the total potential and therefore for the

system to reach its desired formation, the input ~u1
i must be chosen to be the opposite

of the gradient of the potential function, i.e

~u1

i = −
~h

~ri

Pi = −
∑

i6=j

~h
~ri

f

(

‖~rij‖
2

d2
ij

)

(2.13)

2.4 Maintaining Velocity

The central input ~u2
j in equation (2.4) is used to maintain the flock’s formation. In

order to achieve this goal we require that all agents move with the same predefined

speed and follow the same direction. To maintain this velocity mode of the flock,

the input to each of the agents must be corrected by the quantity that reflects the

amount of deviation of the velocity of the agent from the rest of the flock, i.e

~u2
j = −k2

∑

i6=j

(~vi − ~vj). (2.14)

12

Chapter 2. Modeling and Simulations

k1 = 0.01, k2 = 1, k3 = 0.1, k4 = 0.01

R1

R1

R2

R2

R3

R3

R4

R4

-50 0 50 100 150 200 250
-50

0

50

100

150

200

250

Figure 2.3: Trajectory of a flock of four agents. (Units of coordinates may be inter-
preted as meters.)

It is shown in [12] that such an input provides convergence of the velocity of

each of the agents to the average of the velocities of the flock. This illustrated by

the following simulations, that involved three obstacles and four agents (Figures 2.3,

2.4, and 2.5).

The algorithm implementing the simulations confirmed that the steady-state ve-

locities of the four robots will be the same and equal to the average of the initial

velocities of the flock

~vstdy
i =

1

n

n
∑

j=1

~v0,j. (2.15)

Remark: there is no subscript i in the righthand side of equation (2.15). This should

not let to a confusion. The absence of the i subscript on the righthand side indicates

that the steady velocities of the agents are the same.

13

Chapter 2. Modeling and Simulations

Time [s]

A
n
gl

e
[r

ad
]

Agent R1

Time [s]

A
n
gl

e
[r

ad
]

Agent R2

Time [s]

A
n
gl

e
[r

ad
]

Agent R3

Time [s]

A
n
gl

e
[r

ad
]

Agent R4

0 100 200 300 4000 100 200 300 400

0 100 200 300 4000 100 200 300 400

0

0.5

1

1.5

2

2.5

-4

-3

-2

-1

0

1

2

3

4

-0.5

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

Figure 2.4: Directions of each of the agents of the flock

2.5 Following a Virtual Leader

In Section 2.4 we discussed that the input ~u2
j is responsible for the convergence

of the velocities of the agents to the average of their initial velocities. However, in

the case when obstacles are present, the steady state velocities will be significantly

influenced by these objects. This is not a desirable behavior since our primary goal

is to define a direction according to which the flock should progress while avoiding

obstacles.

14

Chapter 2. Modeling and Simulations

Time [s]

S
p
ee

d
[m

/s
]

Agent R1

Time [s]

S
p
ee

d
[m

/s
]

Agent R2

Time [s]

S
p
ee

d
[m

/s
]

Agent R3

Time[s]

S
p
ee

d
[m

/s
]

Agent R4

0 100 200 300 4000 100 200 300 400

0 100 200 300 4000 100 200 300 400

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

Figure 2.5: Speeds of the agents of the flock

In order to prevent the flock from diverging from its predefined course, we intro-

duce a so-called virtual leader. A virtual leader is an imaginary flock member that

does not sense the obstacles along its path. The dynamics of a virtual leader serves

as a reference signal for the system. The control signals for the members of the rest

of the flock take into account the velocity of the virtual leader. Using this approach,

we insure that the flock will constantly follow the leader while complying with the

rest of the requirements (i.e. maintain the formation and a constant velocity).

In general, the dynamics of a virtual leader may be described by the following

open-loop linear system

15

Chapter 2. Modeling and Simulations

~̇rvl = ~vvl,

~̇vvl = ~uvl;
(2.16)

where ~rvl is the vector-position of coordinates of a virtual leader, and ~vvl is its

velocity. Vector ~uvl is a reference vector controlling the behavior of the virtual

leader. The initial values are defined as ~rvt(0) and ~vvt(0). The input of the system

~uvl determines behavior of the virtual leader.

In our case, the virtual leader must simply maintain a fixed speed and a fixed

direction. We therefore set ~uvl = ~0, so that the dynamics of the virtual leader is

completely determined by the initial data

~vvl(t) = ~vvl = const. (2.17)

By having a complete description of the virtual leader, we factor its behavior into

the flock dynamics and make the flock follow the imaginary agent regardless of any

probable obstacles. The corresponding control signal component has the following

form:

~u3

i = −k3(~vi − ~vvl). (2.18)

Figures 2.6, 2.7, and 2.8 demonstrate how a virtual leader influences the behavior

of the flock. In all three cases, conditions such as initial speeds and directions, initial

locations of the agents and obstacles are chosen to be the same. Only the coefficient

k3 that regulates the strength of the virtual leader effect is changed.

There was no virtual leader present in the case depicted in Fig. 2.6 (k3 = 0). In

this case, we observe a substantial amount of uncertainty in the behavior of the flock.

16

Chapter 2. Modeling and Simulations

k3 = 0

-10 -5 0 5 10 15 20 25
-5

0

5

10

15

20

25

30

Figure 2.6: A virtual leader is not present(k3 = 0). Notations used: initial locations
(•), terminal locations (⊙), obstacles (∗).

Namely, the trajectories do not converge. In the case of a weak virtual leader, in

Figure 2.7, we choose coefficient k3 = 0.1, which is comparable in magnitude to the

coefficients that are responsible for obstacle avoidance, while maintaining a velocity

mode and formation.

In the case of a weak virtual leader the flock organized itself and followed the

direction identified by the virtual leader (Fig.2.7).

Finally, in the last scenario, depicted in Figure 2.8 we set k3 = 1. In this case,

the trajectories fluctuate a little around the obstacle. The level of self organization

in the flock is significantly higher than in the previous two cases (see Fig.2.8).

17

Chapter 2. Modeling and Simulations

k3 = 0.1

-5 0 5 10 15 20 25 30
-5

0

5

10

15

20

25

30

Figure 2.7: A virtual leader is present but weak (k3 = 0.1). Notations used: initial
locations (•), terminal locations (⊙), obstacles (∗).

2.6 Obstacle Avoidance

In this section we discuss the control input ~u4
j that guides a flock of agents through

a field of obstacles without colliding with them.

The potential function approach described in Section 2.3 may be used to address

this problem. Namely, a suitable potential function whose minimum will be achieved

at the point of the most desired configuration of the flock is created. Then, a gradient

control law is fed into the main dynamics to bring the system into the state with the

smallest potential.

In this case however, the potential function used for maintaining a formation and

described in Section 2.3 is not the best choice. Let us first take a closer look at

the interaction between an agent and an obstacle versus the agent-agent interaction.

18

Chapter 2. Modeling and Simulations

k3 = 1

-2 0 2 4 6 8 10 12 14
-2

0

2

4

6

8

10

12

14

Figure 2.8: A virtual leader is present and is very strong (k3 = 1). Notations used:
initial locations (•), terminal locations (⊙), obstacles (∗).

In the case of an agent-agent interaction, the value of potential function increases

when two agents get closer or separated away from the optimum location. Both

of these scenarios induce a corresponding control signal to correct the problem. In

agent-obstacle interaction, the value of the potential function should remain the

same if the distance between the agent and the obstacle goes above a certain critical

threshold. In other words a potential function for this scenario must remain the same

until a certain distance is reached. This will make the system sensitive to an obstacle

only if one of the agents turns out to be at critical proximity of the obstacle. This

behavior can be implemented by introducing a modified potential function (Fig. 2.9)

f̃(s) =







f(s), x ≤ 1

1, x > 1
(2.19)

where f is the standard potential function given by (2.8) in Section 2.3.

19

Chapter 2. Modeling and Simulations

O(s−1)

O(log(s))

min

s

f(s)

f̃(s)

0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

Figure 2.9: A Potential Function for Obstacle Avoidance.

The rest of the development is the same as in Section 2.3. Namely we define a

combined potential with respect to all obstacles

P̃j(~rj) =

m
∑

i=1

f̃

(

‖~rj − ~ρi‖
2

R2
i

)

, (2.20)

where ~ρi, i = 1, . . . , m represent coordinates of the assumed circular obstacles and

Ri their radii.

Then, the component of the control that corresponds to obstacle avoidance is

given by

20

Chapter 2. Modeling and Simulations

k1 = 0.01, k2 = 1, k3 = 0.1, k4 = 0.01

R1

R2

R3R4

R5

0 20 40 60 80 100 120

-20

0

20

40

60

80

100

120

Figure 2.10: Navigation through an obstacle field. Notations used: initial locations
(·), terminal locations (⊙), obstacles (×).

~u4

j = −
~h

~rj

P̃j = −

m
∑

i=1

~h
~rj

f̃

(

‖~rj − ~ρi‖
2

R2
i

)

. (2.21)

This approach is demonstrated in the example of navigating a flock through a

field of obstacles (Fig.2.10). In this case, we choose using trial and error, the gains

k1 = 0.01, k2 = 1, k3 = 0.1, and k4 = 0.01. The obstacles were uniformly distributed

throughout a rectangular area. The goal of the flock was to cross the field along its

diagonal following a virtual leader. As the simulation shows the flock successfully

accomplished its task (Fig. 2.10).

21

Chapter 2. Modeling and Simulations

2.7 Conclusions

Adding all the components of the control signal that maintain a formation, avoids

obstacles, provides a special velocity mode and, makes the flock follow a virtual

leader, we obtain a control input that closes the loop:

~uj = −k1

∑

i6=j

~h
~rj

f

(

‖~rij‖
2

d2
ij

)

− k2

∑

i6=j

(~vi − ~vj) − k3(~vj − ~vvl)−

k4

m
∑

i=1

~h
~ri

f̃

(

‖~rj − ~ρi‖
2

R2
i

) (2.22)

where k1, k2, k3, and k4 are numerical coefficients chosen to prevent input saturation

in practical implementations of the flock. They also correspond to the rates of

convergence during simulations. It was observed that for example for k1 = 0.1, the

flock attained a predefined structure much faster than in case when k1 = 0.01

While experimenting with the simulations it was also established that by adjust-

ing the coefficients we can prioritize which goal is more important. Thus, by setting

k1 >> k4, we specify that keeping the formation is of significant importance, and

that the formation will unlikely break in the event of encountering an obstacle. On

the other hand if k4 << k1, the formation may be temporarily distorted around

an obstacle but, will be assembled again as the formation distances itself from the

obstacle.

It is important to note that the general controller given by (2.22) has no the-

oretical results for stability. However if we limit the control input to the first two

components, namely ~u1
i and ~u2

i , responsible for maintaining a formation and velocity

convergence, theoretical results for stability are available in [10].

In the next chapter we review the general system design, its components and

characteristics.

22

Chapter 3

Test-bed design and Construction

of the cooperative agents

3.1 Introduction

In this chapter, we start by reviewing the general system design, position sensing

odometry (sensing), desired of the mobile robot performance (motor control), then

describe the physical structure in Section 3.2. In Section 3.2 we review the general

system design of our robot. Furthermore we describe the engineering choice of our

power-supply, and the DC motor in Sections 3.3 and 3.4. In Section 3.5 we explain

the features of the optical encoders. In Section 3.6, we explain the concept of mo-

tor driver/controller including PWM and the Hbridge circuitry. The Section 3.7

explains the features of the National Instrument data acquisition card. The theory

of operation for the IR sensors including the distance measurements formula will

be presented in Section 3.8. System identification is discussed in Section 3.9 and is

followed by a brief discussion about the design of the PID controller in Section 3.10.

23

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.1: Block Diagram of the Robot.

3.2 Physical Structure

Our mobile base platform consists of a 12-inch diameter (30cm) base and half circle

deck. It features dual casters and dual drive motors making it very stable. This

robot will turn on its own central axis making it maneuverable. The base has dual

9.6 volt 20in-lb torque drive motors (The Max speed is 10.56 meter per minute under

full load), The drive wheels are six inches (15 cm) in diameter. Each caster wheel

is three inches (7.5 cm) in diameter. The base is balanced with two casters. The

maximum recommended payload is 35lbs (13.6 kg). The top view of the design with

casters, sensors, position of the motors and encoders is shown in Fig. 3.1.

Figure 3.2 describes the block diagram of the robot including the signal manip-

24

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.2: Block Diagram of our Robot

ulation through DAQ card, sensors, and the power distribution to the PWM, motor

driver and IR sensor.

3.3 Power Supply and Regulation

Linear regulators provide significant advantages over switching regulators in terms of

simplicity, cost, and output noise. They are, however, less efficient than their switch-

ing counterparts. When applied to battery-operated portable equipment, battery life

is more important than individual circuit efficiency. Although the linear regulated

power supplies have very little ripple and output noise, we chose a switching reg-

ulated power supply instead of a linear regulated power supply, due to its higher

efficiency, and lower heat dissipation. In addition, the particular battery character-

istics, whether alkaline, NiCd, NiMH, or Lithium (Li+), must also be considered. A

25

Chapter 3. Test-bed design and Construction of the cooperative agents

Linear Switching

Function Only steps down; input voltage
must be greater than output.

Steps up, steps down, or in-
verts

Efficiency Low to medium, but actual
battery life depends on load
current and battery voltage
over time; high if Vin−Vout dif-
ference is small.

High, except at very low load
currents (µA), where switch-
mode quiescent current is usu-
ally higher.

Waste Heat High, if average load and/ or
input/output voltage differ-
ence are high

Low, as components usually
run cool for power levels below
10W

Complexity Low, which usually requires
only the regulator and low-
value bypass capacitors.

Medium to high, which usually
requires inductor, diode, and
filter caps in addition to the
IC; for high-power circuits, ex-
ternal FETs are needed

Size Small to medium in portable
designs, but may be larger if
heatsinking is needed.

Larger than linear at low
power, but smaller at power
levels for which linear requires
a heat sink

Total Cost Low Medium to high, largely due to
external components

Ripple/Noise Low, no ripple, low noise, bet-
ter noise rejection.

Medium to high, due to ripple
at switching rate.

Table 3.1: Comparison Between Linear and Switch-Mode Regulators.

comparison of linear and switch mode regulators is presented in Table 3.1.

3.4 DC motor

We used a 12V Permanent Magnet Spur Gear-motors type (brushless), which has

a standard torque rating of 300 oz.in, a weight of about 16.5 ounces (without the

wheels), a precision high density sintered gear, and a life-lubricated motor and gear-

box bearings. Figure 3.3 demonstrates the relationship between the output current,

rpm, and the torque of our DC motors.

26

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.3: Relationships between output current, rpm, and the torque.

3.5 Encoder

Our platforms are equipped with two optical encoders featuring two channel quadra-

ture output with optional index pulse, resolutions up to 500 counts per revolution

with −40◦C to 100◦C operating temperature. They are TTL Compatible, and op-

erated with a single 5V supply. These encoders emphasize high reliability and high

resolution. Each encoder contains a lensed LED source, an integrated circuit with

detectors and output circuitry, and a code-wheel which rotates between the emitter

and detector IC. Figure 3.4 shows the direction of the rotation when the output

waveforms code-wheel rotates in the counterclockwise direction (as viewed from the

encoder end of the motor), channel A will lead channel B. If the code-wheel rotates

in the clockwise direction, channel B will lead channel A.

3.6 PWM and H-Bridge Motor Drive

Since the output from the data acquisition card can not directly provide enough

power to drive the motors, we need to use a power amplifier. In this thesis, we used

27

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.4: Direction of Rotation Diagram.

(a) Older Design (b) Newer Design

Figure 3.5: PWM and H.Bridge Printed Circuit Board

a common motor driver known as H-Bridge (LM298 chipset). This chip accepts a

train of pulses as input, and using switching transistors, replicates the input signal

with higher voltage and current levels. The chip has two separate amplifiers for each

motor to provide up to 2Amp continuous current with a maximum voltage of 55V.

In order to change the speed of the motor, only the pulse width of the input pulse

needs to be changed. This is based on a technique called Pulse Width Modulation

(PWM) that is widely known and used in industry. The PWM parameters can be

set directly, or can be managed by a local motor controller. Figure 3.6 contains

designed and constructed PWM and H.Bridge printed circuit board (Fig.3.5(a) -

28

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.6: Internal Block diagram of the 3524 PWM generator.

an older and Fig.3.5(b) - a newer design.) The motor controller can control the

speed or position of the motor, setting the correct PWM value according to the

real speed read on the incremental encoders (Fig. 3.4). To generate the required

PWM (SG3524, Fig.3.6), a separate circuitry was developed to accept an analog

input between 0 to +5 volts and maps it to 0 to 100 percent duty cycle as shown

in Figure 3.7. The frequency of the pulse is fixed and was calculated to be around

20KHz using the simple formula: f = 1.8
RT CT

, where RT and CT are total resistance

and total capacitance respectively. (Fig.3.7). We chose a 1KΩ resistor, and 50pF

capacitor for our purpose. The frequency is chosen to be outside the human hearing

range, yet fast enough so that the motors do not react to the single switching. The

analog input to the PWM modulator is provided by the data acquisition card and is

the control input that is sent out by the PID controller as described in Section 3.10.

29

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.7: Block diagram of PWM with the 18200 (Motor Driver)

3.7 Data Acquisition

To interface with our mobile robot, we used two different types of data acquisition/

The first is the National Instruments USB-6221, which is a USB high-performance M

Series multifunction data acquisition (DAQ) module optimized for superior accuracy

at fast sampling rates. It is ideal for applications such as data-logging and IR sensor

measurements. The other one is the 6024E PCMCI (DAQ).

The National Instruments USB-6221 is designed specifically for mobile or space-

constrained applications. Plug-and-play installation minimizes configuration and

setup time, while direct screw-terminal connectivity helps keep costs down and sim-

plifies signal connections. This module also features the new NI Signal Streaming

technology which allows for DMA-like bidirectional high-speed streaming of data

across the USB bus. The USB-6221 and 6024E PCMCI both have sixteen analog

30

Chapter 3. Test-bed design and Construction of the cooperative agents

inputs, two analog outputs, eight digital input ports and two counters.

3.8 Sensors

In the past few years, several new infrared detectors have been introduced. These

detectors offer a small package, very little current consumption, and a variety of

output options. This section offers an overview of the various types of detectors, and

information on how we were able to interface them in our system.

These detectors are are inexpensive, use very little power, fit in small spaces, and

have a unique range that is ideally suited to small robots in human spaces such as

hallways, rooms, and the occasional maze.

While such detectors do not give absolute range accuracy, they offer rich informa-

tion for a robot that typically deals with noisy information in the first place. Often,

knowing whether a robot is close to a wall/object is enough to make choices about

what to do next.

The operation of such detectors uses triangulation and a small linear CCD array

to compute the distance and/or detect the presence of objects in the field of view.

The basic idea is that a pulse of IR light is emitted by the emitter. This light travels

out in the field of view and either hits an object or just keeps on going. In the case

of no object, the light is never reflected and the reading shows no object. If the light

reflects off an object, it returns to the detector and creates a triangle between the

point of reflection, the emitter, and the detector.

The angles in this triangle vary based on the distance to the object (Fig.3.8). The

receiver portion of these new detectors is actually a precision lens that transmits the

reflected light onto various portions of the enclosed linear CCD array based on the

angle of the triangle described above. The CCD array can then determine what angle

31

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.8: Different Angles with Different Distances

the reflected light came back at, and therefore, it can calculate the distance to the

object.

This new method of ranging is almost immune to interference from ambient light

and is indifference to the color of object being detected. Detecting a black wall in

full sunlight is possible.

Because of some basic trigonometry within the triangle from the emitter to re-

flection spot to receiver, the output of these new detectors is non-linear with respect

to the distance being measured.

The graph on Fig.3.9 shows the GP2D12 output from these detectors, while

Fig.3.10 demonstrates how to connect the Sharp GP2D12 to the microcontroller,

which uses one Analog to Digital I/O Line. There are two interesting features in

the graph of Figure 3.9. First, the output of the detectors is not linear within the

stated range (10 − 80cm) but rather somewhat logarithmic. This curve will vary

slightly from detector to detector so it is a good idea to ”normalize” the output with

a lookup table or parameterized function. In this way, we calibrate each detector

and end up with linear data that is consistent from detector to detector.

The second feature to notice in the graph of Figure 3.9 is that once you fall

32

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.9: GP2D12 Output Voltage to Distance Curve

inside of the stated distance range (less than 10cm), the output drops rapidly and

starts to look like a longer range reading. This can be disastrous if your robot is

Figure 3.10: Connection to the analog input of the controller.

33

Chapter 3. Test-bed design and Construction of the cooperative agents

slowing down as it approaches a solid object, gets below the minimum range, and

then misinterprets the apparently long range reading, and driving full-speed into the

object. The easiest way to avoid this scenario is to cross-fire the detectors across the

width or length of the robot.

A sample of created LabView software and constructed hardware are depicted

in Figure 3.11. Namely Figure 3.11(a) includes the LabView code, Figures 3.11(b),

3.11(c), and 3.11(d) show one test-bed, a motion controller, and a flock of four test-

beds correspondingly.

3.9 System Identification

In this section we describe two methods for identifying the parameters of a linear,

autonomous, discrete time single input-single output system, namely motor. Both

methods consist of finding a model that may describe our dynamic system.

The first method of finding this model is the use of the physical principles such

as, electrical laws, and laws of motion, which we will need to obtain the differential

equations of motion describing our system.

The second method, which we use in this section, is to find a desired model from

the observed output data in the Experimental System Identification by exciting the

dynamic system with a given random binary input. To simplify our system, we

assume that the system we want to identify is linear and time-invariant.

Least square is one of the simplest algorithms in identification. If the system to

be identified exhibits linear behavior and the input/output data is relatively noise-

free, then the least-square approach will provide good estimates of the parameters

of the linear model.

34

Chapter 3. Test-bed design and Construction of the cooperative agents

For our purpose we generated random binary noise using Matlab. This is a

random input that fluctuates between two distinct values, and is a series of pulses

with random duration. Since a step signal has infinite harmonic content, this type

of input will also persistently excite the system.

To generate the desired output signal for the system identification, we exited

our system with a random 5V binary input in our open loop system. We then

recorded the corresponding input/output. The data is presented on Fig.3.12. Since

the plant consists of a mass inertia connected to the motor, the system should be at

least of second order. To account for the possible non linearity in the system and

quantization noise, the model was also derived based on 3rd and 4th order models. In

order to verify how close we are to the real plant we compared the step response of

the simulation models with the real step response of the system as shown in Figures

3.13 and 3.14. We can clearly see in there that the 3rd order model is the best fit

and that higher order models do not offer a significant advantage. Although we did

not use the 2nd order model, do we assumed a second-order to calculate the natural

frequency of our system. Since the rule of thumb suggests a minimum of 10 times

natural frequency to be used as a sampling frequency [53], and that the natural

frequency we have calculated for our system is 1.03Hz (Appendix B), the 500Hz

sampling frequency is sufficient for our design. The step response of the experimental

and identified system follow very closely, which is a good indication of a successful

identification process. However as time passes, the experimental and derived model

response start to diverge, which at first glance look unacceptable. If we examine the

results carefully, it is clear that the system has a free integrator, which accumulates

the error over time. For practical purpose we, neglect this effect since we closed the

loop in our system. The transfer functions given by (3.1) and (3.2) represent the

2nd and 3rd order models of the system (fs = 500Hz). The derivations are presented

35

Chapter 3. Test-bed design and Construction of the cooperative agents

CL Response Rise Time Overshoot Settling time S-S Error

Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Eliminated
Kd Small Change Decrease Decrease Small Change

Table 3.2: The Three-Term Controller with Proportional, Integral, and Differential
gain.

in Appendix B.

G2(z) =
0.08751z + 0.9526z

(z − 0.9992)(z − 0.8748)
(3.1)

G3(z) =
0.08936z2 + 0.1428z + 0.05662

(z − 0.9982)(z − 0.9107)(z − 0.5794)
(3.2)

As one can see, both G2(z) and G3(z) have two poles close to z = 1, which is

expected from theoretical derivation.

3.10 PID Design

The design of a control system is concerned with the choice of a feedback system

to achieve a desirable input to output response. In classical control systems, the

process of output response stabilization may be achieved by the selection of either

Proportional - Integral- Derivative (PID) controllers or Phase compensators (Lead,

Lag and Lead-Lag networks). This section discusses the design of a PID controller

or compensators for a given Linear Time Invariant Discrete Systems (LTIDS), which

we have modeled in Section 3.9. The effects of each of the terms of the controller

Kp, Ki, and Kd on a closed-loop system are summarized in Table 3.2.

As evident from Fig.3.14, the feedback from the plant is provided by an encoder.

The angular position of the motor is then calculated by adding up the counts provided

36

Chapter 3. Test-bed design and Construction of the cooperative agents

by the counter as time passes by and using a scaling factor to convert it to the angular

position when needed. The desired position of the system will also be provided as

counts. As discussed previously, the input to the plant is a voltage in the range of

0 − 5V, which is converted to the (0 − 100%) duty cycle,then sent through a power

amplifier to the motor.

As it is mentioned in the system Identification section, the sampling frequency of

500Hz is used to obtain a model of the plant, and hence in designing the controller.

Figure 3.15 describes the block diagram of the system including the controller. Fol-

lowing the practical rule of thumb, we do not want to have a natural frequency of

more than 50HZ when placing the closed-loop poles of the system. The 50Hz is

the theoretical upper bound, but since we have approximated the plant model, it

is possible that by choosing some natural frequency, some of the dormant modes

would be awakened. Such was the case in the first few trials of our controller design.

Although the controller showed promising results in simulation, it did not work prop-

erly when implemented. After several trials, the following parameters were chosen

for controller:

ωn = 100 rad/c

ξ = 0.5
(3.3)

which corresponds to fn = 15.9Hz. These parameters will ensure an overshoot of less

than 16% and a zero steady-state error. Although the overshoot of 16% may look

unacceptable at first, but since we never subject the system to a direct step input,

this overshoot will not be a problem. It may even be an advantage since it would

result in a faster transient response.

Although a PI controller may have worked, to get a better gain and phase margins,

the PID controller was implemented. The PD portion of the PID controller tends

to enhance the stability of the system, while the PI part will enhance the transient

performance characteristics of the system.

37

Chapter 3. Test-bed design and Construction of the cooperative agents

As described in Appendix B, the resulting controller is

D(z) = K
(z − 0.9107)(z − 0.8)

z(z − 1)
. (3.4)

From the root locus plot (Fig.3.16) one can obtain that K = 0.5 provides a root at

the desired location.

A step response comparison of the Closed Loop PID controller using experimental

and theoretical data is shown on Figure 3.17.

38

Chapter 3. Test-bed design and Construction of the cooperative agents

(a) LabView Code. (b) A Test-bed.

(c) Motion Control Board. (d) A Flock of Four Test-beds.

Figure 3.11: LabView Code/Test-bed/Motion Controller Board And a Flock of Four
Test-beds

39

Chapter 3. Test-bed design and Construction of the cooperative agents

Binary input

Sample number

In
p
u
t

A
m

p
li
tu

d
e

[V
]

Binary ouput

Sample number

P
os

it
io

n
[E

n
co

d
r

co
u
n
t]

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

-400

-200

0

200

-5

0

5

Figure 3.12: Random binary input data and corresponding output.

40

Chapter 3. Test-bed design and Construction of the cooperative agents

Experimental

Sample number

P
os

it
io

n
[E

n
co

d
er

co
u
n
t]

Binary System-ID 2nd order

Sample number

P
os

it
io

n
[E

n
co

d
er

co
u
n
t]

Binary System-ID 3rd order

Sample number

P
os

it
io

n
[E

n
co

d
er

co
u
n
t]

Binary System-ID 4th order

Sample number

P
os

it
io

n
[E

n
co

d
er

co
u
n
t]

Sample number

P
os

it
io

n
[E

n
co

d
er

co
u
n
t]

Binary System-ID 2nd , 3rd and 4th orders

0 1 2 3 4 5 6 7 8 9 10

0 5 100 5 10

0 5 100 5 10

-100

-50

0

50

100

-100

-50

0

50

100

-100

-50

0

50

100

-100

-50

0

50

100

-100

-50

0

50

100

Figure 3.13: System ID for random input for orders 1, 2, 3 and 4.

41

Chapter 3. Test-bed design and Construction of the cooperative agents

2nd order step response error

Sample number

E
rr

or
[E

n
co

d
er

co
u
n
t]

3rd order step response error

Sample number

E
rr

or
[E

n
co

d
er

co
u
n
t]

4th order step response error

Sample number

E
rr

or
[E

n
co

d
er

co
u
n
t]

Sample number

E
rr

or
[E

n
co

d
er

co
u
n
t]

2nd , 3rd , 4th order step response errors.

0 5 100 5 10

0 5 100 5 10

-10

0

10

20

30

-10

0

10

20

30

-10

0

10

20

30

-10

0

10

20

30

Figure 3.14: Step response errors of 2nd , 3rd , and 4th order models.

42

Chapter 3. Test-bed design and Construction of the cooperative agents

Figure 3.15: Block diagram of the system including the controller.

Figure 3.16: Root Locus result for our PID controller.

43

Chapter 3. Test-bed design and Construction of the cooperative agents

Experiment

time [s]

A
m

p
li
tu

d
e

[c
ou

n
t]

Simulation

time [s]

A
m

p
li
tu

d
e

[c
ou

n
t]

Both

time [s]

A
m

p
li
tu

d
e

[c
ou

n
t]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 10 0.5 1

0

50

100

150

0

50

100

150

0

50

100

150

Figure 3.17: Step Response for CL PID controller: Experimental and theoretical
data.

44

Chapter 3. Test-bed design and Construction of the cooperative agents

3.11 Conclusions

In this chapter we have addressed various aspects in the construction of a working,

autonomous mobile robot including its electrical and mechanical modules. We then

used the constructed mobile robot to introduce the principles and steps in control

system design, using system identification, and PID controller design in order to

control the two motors used to maneuver and steer the mobile robot.

In the next chapter we present equations describing the path of a robot equipped

with a differentially steered drive system.

45

Chapter 4

Test-Bed Implementation and

Experimental Results

4.1 Introduction

In this chapter we present equations describing the path of a robot equipped with

a differentially steered drive system. This simple and reliable system is commonly

used in smaller robots. This system is also used in wheelchairs, that have two

wheels mounted on a single axis and are independently powered and controlled, thus

providing both drive and steering functions. The equations derived in this chapter

provide an elementary model for the differentially steered drive system, which is

often called a differential steering system. This model may be used to predict how

a robot equipped with such a system will respond to changes in its wheel speed and

what path it will follow under various conditions.

We should emphasize that the equations used in this chapter represent an ele-

mentary model for the motion of a robot. They describe the robot’s position and

orientation as a function of the movement of its wheels, but in order to simplify

46

Chapter 4. Test-Bed Implementation and Experimental Results

our system, we ignore the physics part of this motions such as torques and forces,

friction, energy and inertia. This method of describing the motion is referred to as

a kinematics approach, which simply ignores the causes of motion (which would be

studied in a dynamics approach) and focuses on the effects.

Wheeled mobile robots (WMR) fall into two main categories, Holonomic and

Nonholonomic. Simply put when there are no restrictions on solution for motion

velocities of a WMR in a plan (2D) the WMR is called holonomic. More elaborate

and mathematical definitions could be found in [1]. Therefore any WMR with 3

degree of freedom in a plane is a holonomic. There are various type of mechanism,

which result in holonomic platform as mentioned in [1]. One advantage of having a

holonomic WMR is that it allows for easier motion planning. On the other hand,

in nonholonomic systems [2] there are some links that restrict the system motion

velocities. Although there are some inherent problems with this type of mechanisms

such as a more difficult path planning paradigm, they are easy and economically

cheap to build.

The mobile robot platform was designed based on a popular differential derive

system. This platform is a nonholomic system since it is obvious that the mobile

base can only move forward and backward, and the sideward motion is restricted by

the nature of the wheel mechanical design. This fact will be shown mathematically

when the model of the platform is derived.

In differential drive mode, we use two driving wheels (plus a roller-ball for bal-

ance). The wheels are fixed to the side of robot as shown in Figure 4.1. As is evident

from Figure 4.1, point P cannot move in a direction perpendicular to the plane of

the wheels.

This setup has some shortcomings. The most important one is that the robot

is sensitive to the relative velocity of the two wheels (small error result in different

47

Chapter 4. Test-Bed Implementation and Experimental Results

Figure 4.1: Differential Drive mode

trajectories, not just speed). A general nonholonomic differential drive robot plat-

form is depicted in Figures 4.2. The robot consists of two drive-wheels which are

symmetrically placed at the side of the platform. Any number of caster wheels may

be placed in front and back to maintain the balance and stability of the robot. These

caster wheels are not driving wheels, and hence are not included in the kinematics

model of the system. To identify the local and global coordinate systems, the frame

(Xm, Ym) is placed at the center of the robot to act as the local coordinate system

(Fig.4.2(a)). The stationary global coordinate system is identified as (X1, Y1). The

rotation of the local coordinate system with respect to the global one is measured

by angle θ, which is the angle between Xm and X1 in a counter clockwise direction.

The parameters used in developing the kinematic model are presented in Table 4.1.

4.2 Direct Kinematics

At each time instant, the left and right wheels must follow a trajectory that moves

around the instantaneous center of coordinates (ICC) at the same angular rate ω.

The angular velocity of the robot ω, instantaneous radius of rotation R and speeds

48

Chapter 4. Test-Bed Implementation and Experimental Results

(a) Global orientation (b) Instantaneous Center of Rotation
(ICR)

Figure 4.2: A general nonholonomic differential drive robot platform

VL and VR are related through the following expressions







ω
(

R + L
2

)

= VR

ω
(

R − L
2

)

= VL

(4.1)

r radius of each wheel (7.3cm)
L distance between the driving wheels along the axis Ym divided by 2 (18cm)
ωL angular velocity of the left motor
ωR angular velocity of the right motor
VL linear velocity of the left motor
VR linear velocity of the right motor
V linear velocity of the robot
ω angular velocity of the robot

(x, y, θ) the current position and orientation of the robot
R instantaneous curvature radius of the robot trajectory (distance from the ICR

to the midpoint between the two wheels (see Fig. 4.2(b)))

Table 4.1: Parameters of the kinematic model.

49

Chapter 4. Test-Bed Implementation and Experimental Results

Solving (4.1) for R and ω yields

R =
L

2

VR + VL

VR − VL

; ω =
VR − VL

L
. (4.2)

The center of the robot is the midpoint of the axis commenting two motorized wheels,

therefore

V =
VL + VR

2
. (4.3)

Taking into consideration the connection between angular and linear speeds

VR = rωR VL = rωL (4.4)

from (4.2) we obtain

V = r
2
(ωL + ωR); ω = r

l
(ωR − ωL) . (4.5)

Let ~V be the velocity vector of the robot at any moment t represented in the global

system of coordinates. Then

d

dt
~V =

d

dt

[

x
y

]

=
[

ẋ
ẏ

]

=
[

V cos θ
V sin θ

]

. (4.6)

By substitution (4.5) into (4.6) and recalling that θ̇ = ω we obtain



















ẋ = r
2
(ωR + ωL) cos θ

ẏ = r
2
(ωR + ωL) sin θ

θ̇ = r
L
(ωR − ωL)

(4.7)

Equations (4.7) represent the Direct Kinematics Equations for the considered

robot. In other words, with defined angular velocities modes ωL(t) and ωR(t), one

can completely resolve the trajectory of the robot (x(t), y(t)) including its orientation

θ(t) at any moment of time provided the initial data x(0), y(0), and θ(0) are given.

50

Chapter 4. Test-Bed Implementation and Experimental Results

4.3 Inverse Kinematics

In this section we consider the inverse problem. Assume that the robot is to follow a

predefined trajectory described by the parametric equations x = x(t) and y = y(t).

We need to derive equations for the angular velocities of each of the wheels in order

to control the currents applied to the motors.

From equations (4.1) we obtain






V + Lω
2

= VR

V − Lω
2

= VL.
(4.8)

The velocity vector ~V defined by (4.6) in the local system of coordinates (XM , YM)

takes on the form

~VM =
[

V
0

]

, (4.9)

since in the local system of coordinate the robot moves along the XM axis only due

to structural restrictions of the model.

The local system of coordinates (XM , YM) and the global system of coordinates

(X1, Y1) are related through a rotation by angle θ (Fig.4.2(a)). Therefore, the tota-

tion between ~VM and ~V may be expressed as

Φ~V = ~VM , (4.10)

where Φ is a rotation matrix given by

Φ =
[

cos θ sin θ
− sin θ cos θ

]

. (4.11)

By substitution (4.11) into (4.10) and expanding obtain






ẋ cos θ + ẏ sin θ = V

−ẋ sin θ + ẏ cos θ = 0
(4.12)

51

Chapter 4. Test-Bed Implementation and Experimental Results

By recalling that VR = rωR, VL = rωL, θ̇ = ω and substituting (4.8) into (4.12)

we obtain


















ẋ cos θ + ẏ sin θ = rωR − Lθ̇
2

ẋ cos θ + ẏ sin θ = rωL + Lθ̇
2

−ẋ sin θ + ẏ cos θ = 0

(4.13)

Solving (4.13) for ωR and ωL we arrive at the inverse kinematics equations:










ωR = 1

r

[

ẋ cos θ + ẏ sin θ + 1

2
Lθ̇
]

ωL = 1

r

[

ẋ cos θ + ẏ sin θ − 1

2
Lθ̇
]

(4.14)

and the nonholonomic constraint

ẏ

ẋ
= tan θ. (4.15)

4.4 Path Planning

In this section we discuss how to implement the inverse kinematics using formulas

(4.14) and (4.15). Equations (4.14) and (4.15) are applicable when the trajectory

of the robot is known. By parameterizing the desired trajectory curve the angular

velocity modes (ωL,ωR) can be calculated. In real world application, the parametric

equations of motion are rarely known as the trajectories may be curves with arbitrary

level of complexity. In practice, a desired trajectory is defined via an ordered set of

points coordinates {(xi, yi)|i = 0 . . . n} (Fig.4.3(a)). Our goal here is to produce a

parametrization of the curve that passes through these points (Fig.4.3(b)). In order

to accomplish this goal, we resort to a technique known as interpolation.

Assume the values of an unknown function f = f(x) are given at points xj ,

j = 0 . . . n (nodes of interpolation) i.e. fj = f(xj) (Fig. 4.4(a)). The goal is to

find a mathematical expression f̂ of function f (Fig. 4.4(b)) that allows to estimate

52

Chapter 4. Test-Bed Implementation and Experimental Results

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)

(x8, y8)

(x9, y9)

(x10, y10)

1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

(a) Points of the path

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)

(x8, y8)

(x9, y9)

(x10, y10)

1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

(b) Interpolated path

Figure 4.3: Trajectory planning

the values of f not only at the nodes of interpolation, but also at any point x in

[x0, xn]. The only restriction we impose is that the original function must agree with

the interpolated function at the nodes: f̂(xj) = fj .

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

(a) Nodes of interpolation: (xj , fj)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

(b) Interpolated path: y = f̂(x)

Figure 4.4: Interpolation Principle

There are numerous techniques of interpolation. For example, Lagrange Interpo-

53

Chapter 4. Test-Bed Implementation and Experimental Results

lation polynomial [54], B3-splines [55], or piecewise linear interpolation (Fig.4.5(a))

. For the purpose of this application, cubic-B-splines are the best suited because of

the following reasons:

• Smoothness. B3-splines are C2-class curves meaning they are twice differen-

tiable and their derivatives are continuous even at the nodes. This is a very

important property of B3-spline, since we would like the robot to follow its

trajectory smoothly without stops and delays to adjust the heading angle θ.

Smoothness is also crucial because of the kinematics model chosen in (4.15)

and (4.14) involve time derivatives.

• Predictability. Cubic splines behave very well between the nodes of interpo-

lation (Fig. 4.5(c)), while Lagrange polynomials are unpredictable at points

that lie between neighboring nodes of interpolation (Fig. 4.5(b)). This behav-

ior is unsuitable for the purposes of trajectory planning since the robot must

follow the trajectory in a predictable way. Figure 4.5(d) shows the comparison

between piecewise-linear, Lagrange, and spline interpolation methods.

• Simplicity: B3-splines are simple to compute and are readily available through

standard software packages such as MatLab and LabView.

The next step required is to estimate how long it will take the robot to complete

the trajectory. This step is very important due to limited hardware capabilities. For

the robot at hand, the maximal linear velocity that may be achieved is

Vmax = 18
cm

s
(4.16)

due to the Gamatronix R© controller limitations. The time needed to traverse the

trajectory is estimated using the following formula

T =
S

Vmax

, (4.17)

54

Chapter 4. Test-Bed Implementation and Experimental Results

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

(a) Piecewise Linear Interpolation

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

(b) Lagrange Interpolation

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

(c) Spline Interpolation

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

(d) Comparison

Figure 4.5: Interpolation methods

where S is estimated length of the trajectory.

S = k
n−1
∑

j=1

√

(xj − xj+1)2 + (yj − yj+1)2, (4.18)

where k is an empirical coefficient that allows us to achieve velocity scope at [0; Vmax].

In practice, it was estimated that 1.0 < k < 1.1

Since the control signal sent to the robot has a discrete nature we need to establish

the time samples at which the robot receives its signals. The Gamatronix R© controller

55

Chapter 4. Test-Bed Implementation and Experimental Results

allows the sampling time to be δt ≥ 20ms. For this experiment we choose

δt = 100ms. (4.19)

This is a particular choice and other discretization times were also successfully tested.

Next we calculate the number of time intervals for the data stream:

N =
T

δt
, (4.20)

where T is calculated from (4.17).

The parametric equations of the trajectory passing through the nodes are defined

via B3-spline technique as follows. Let us consider n points of the trajectory: (xj , yj),

j = 1 . . .N . We define two time scales tj and τj :

tj = j
T

N
(4.21)

and

τj = j
T

n
. (4.22)

τj is a fine time mesh used to update the robot with a control system, while tj is a

rough time scale that fixes the nodes and times at which the robot must arrive to

these nodes. We define two cubic splines based on the rough mesh






x(t) = spline(t, {tj, xj})

y(t) = spline(t, {tj, yj})
(4.23)

Now the trajectory is completely parameterized (Fig. 4.3(b)) and x and y can

be calculated at any time t from [0, T]. From the constructions we have (xj , yj) =

(x(tj), y(tj)).

Let k = 0 . . . n then at any time moment τj of the fine mash according to (4.15)

θk = θ(τk) = tan−1
ẏ(τk)

ẋ(τk)
, (4.24)

56

Chapter 4. Test-Bed Implementation and Experimental Results

where ẋ(τk) and ẏ(τk) are estimated using the central finite difference operator [56]:

df(t0)

dt
≈ D(f, t0) =

f(t0 + h) − f(t0 − h)

2h
(4.25)

with h practically chosen to be h = 10−6. In order to estimate θ̇(τk) we use the

following approximation

ω(τk) = θ̇(τk) ≈

θ(τk+1) − θ(τk)

δt
. (4.26)

At this time all data is available θ(τk), θ̇(τk), ẋ(τk), and ẏ(τk) to calculate ωL(τk)

and ωR(τk) through the inverse kinematics formulas (4.14). Experimental results are

discussed in the next section.

4.5 Experimental results

To test the approach described in Section 4.4 we chose two trajectories: a circle

with a 1m radius and a spiral inscribed in a 2 × 2.6m rectangle. In order to verify

how well the robot performs (follows the trajectory) we measured the outputs of

encoders attached to the wheels. It is known from the documentation provided

with the hardware that each revolution of the wheel results in 63800 counts of the

encoder. The number of counts is dynamically obtained in LabView through the

data acquisition board. By knowing the number of counts at any moment of time

on each of the wheels, the angle each wheels rotates by can be estimated as follows

∆θ = 2π
∆N

63800
. (4.27)

By knowing ∆θL and ∆θR, the angular velocities were estimated

ωL(t) =
∆θL

δt

ωR(t) =
∆θR

δt

(4.28)

57

Chapter 4. Test-Bed Implementation and Experimental Results

and using (4.4) V̂L(t) and V̂R(t) are estimated, where ˆ above the variables signifies

that these are velocities estimated from hardware readings.

Integrating of the direct kinematics equations (4.7) with initial conditions x(0) =

x0, y(0) = y0, and θ(0) = θ0 estimates the coordinates of the robot (x̂(τk), ŷ(τk))

were obtained.

Figures 4.6 and 4.7 present visual results from the experiments of following a

circular trajectory. Figures 4.6(a) and 4.6(b) describes how the linear speeds of each

wheel deviate from the programmed speed. Figures 4.7(a) and 4.7(b) demonstrate

the configurations of the trajectory programmed and the trajectory obtained from

readings from the moders in the circular case. Similar information is presented in

Figures 4.9(a) and 4.9(b) for the spiral path. Figures 4.7(c) and 4.9(c) show how

the obtained trajectory deviates from the preprogrammed one in the two considered

cases. Specifically 4.7(c) and 4.9(c) depict graphs of the following error function

ǫ(t) =
√

(x(t) − x̂(t))2 + (y(t) − ŷ(t))2, (4.29)

where (x(t), y(t)) are the coordinates of the ideal path and (x̂(t), ŷ(t)) are the coor-

dinates of the trajectory estimated from the hardware readings as described above.

From Figures 4.7 and 4.9, one can see that the robot has successfully completed

the preprogrammed paths in the circular and spiral cases. The error may be ex-

plained by the internal signal noise due to hardware imperfection. It is also impor-

tant to emphasize that numerical differentiation used in (4.28), (4.25), and (4.26)

contribute significantly to the general error [56]. Figure 4.8 describes the estimated

and projected linear velocities of the wheels of the robot for the spiral trajectory.

58

Chapter 4. Test-Bed Implementation and Experimental Results

Time [s]

S
p
ee

d
[m
s

]

0 10 20 30 40 50 60
0.029

0.03

0.031

0.032

0.033

0.034

0.035

(a) Estimated V̂L(t) and projected VL(t) velocities of the left wheel.

Time [s]

S
p
ee

d
[m
s

]

0 10 20 30 40 50 60
0.068

0.0685

0.069

0.0695

0.07

0.0705

0.071

0.0715

0.072

(b) Estimated V̂R(t) and projected VR(t) velocities of the right wheel.

Figure 4.6: Estimated and projected linear velocities of the wheels for a circular
trajectory.

59

Chapter 4. Test-Bed Implementation and Experimental Results

x[m]

y
[m

]

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Programmed circular path.

x [m]

y
[m

]

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Circular path estimated using moder
readings

Time [s]

E
rr

or
E
(t

)
[m

]

0 10 20 30 40 50 60
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(c) Error: E(t) See (4.29).

Figure 4.7: Circular trajectory

60

Chapter 4. Test-Bed Implementation and Experimental Results

PSfrag

Time [s]

S
p
ee

d
[m
s

]

0 20 40 60 80 100 120 140 160 180
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) Estimated V̂L(t) and projected VL(t) velocities of the left wheel.

Time [s]

S
p
ee

d
[m
s

]

0 20 40 60 80 100 120 140 160 180
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b) Estimated V̂R(t) and projected VR(t) velocities of the right wheel.

Figure 4.8: Estimated and projected linear velocities of the wheels for a spiral
trajectory.

61

Chapter 4. Test-Bed Implementation and Experimental Results

x[m]

y
[m

]

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Programmed spiral path.

x[m]

y
[m

]

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Spiral path estimated using moder
readings.

Time [s]

E
rr

or
E
(t

)
[m

]

0 20 40 60 80 100 120 140 160 180
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(c) Error: E(t) See (4.29).

Figure 4.9: Spiral trajectory

62

Chapter 4. Test-Bed Implementation and Experimental Results

4.6 Conclusion

In this chapter we have developed the nonholonomic kinematics model for a differ-

entially steered wheeled mobile robot. We have applied this model to obtain the

inverse kinematics formula and algorithms needed for trajectory planning. Finally

we verified the developed techniques on two simple trajectories and obtained the

results that agreed with the expected data.

In the next chapter we draw conclusions and outline the directions of future work.

63

Chapter 5

Conclusions and Future Work

The main objective of this thesis was to evaluate the possible construction of several

nonholonimic testbeds for experimental use by researchers.

In this thesis, we used a potential function for agent coordination. This approach

specified the behavior of each of the agents around its fellow agents, and obstacles.

We then addressed various aspects in the construction of a working, autonomous

mobile robot including electrical and mechanical modules. We used the constructed

mobile robot to apply the principles in control system design using system identifica-

tion to obtain PID controllers. In the last part of this thesis we performed different

set of path-planning configurations, which involved the development of the kinemat-

ics model of the testbed, obtaining the inverse kinematics formula, and finally the

algorithms needed for trajectory planning.

As described in Chapter 2, Section 2.7 there are no theoretical results available

in the case of the controller input provided by (2.22). Therefore our future effort

should be aimed no obtaining theoretical results in the case of presence of obstacles

and a virtual leader.

64

Appendix A

Matlab Scripts

A.1 MatLab simulation codes.

%---

function rr(fname);

t_max=100; %End time

V_abs=1; % Virtual leader speed

V_dir=pi/4; % Virtual leader direction

VL=polar(V_abs,V_dir); % Transfere to cartesians

k=[0.01 1 0.1/10*100 0.01]; % Controlling coefficiants

O = [3 3.1 1.5]; %obstacles and their radii

v0 = [1 1 1];

th = [pi/4 pi/4 pi/4];

r = [0 0; 1 0; 0.5 1];

V= polar(v0,th); % Transform velocities to cartesian

D=metrics(r)*2.5;

z0=data2Z(r,V); % Setup IC

rhs=@(t,Z)getRHS(Z,VL,k,D,O); % Define RHS of the system of ODEs

[T,Z]=ode45(rhs,[0 t_max],z0); % Run an SODE solver

save(fname); % Save obtained data

%---

%--

function Z=getRHS(z,VL,K,D,O); % Defines the Righthandside of the main SODE

[r,V]=z2data(z); % Transform Z into human readable data

M=size(O);

m=M(1); % Get number of obstcikles

n=length(r); % Number of agents

h=1e-4; % Gradient step

65

Appendix A. Matlab Scripts

V_tot=sum(V); %Add all velocities

for k=1:n; %Determining control for each agent

u1=-K(1)*(V_tot-V(k,:)); % Average direction

u2=-K(2)*minpot(k,r,D,n); % Keeping foramtion

u3=-K(3)*(V(k,:)-VL); % Following a virtual leader

u4=-K(4)*obst(k,r,O,m); % Keeping off obstickles

u(k,:)=u1+u2+u3+u4; % Total control

end;

Z(1 : n)= V(:,1); % Forming Z-vector (Human2Machine)

Z(n+1 : 2*n)= V(:,2);

Z(2*n+1 : 3*n)= u(:,1);

Z(3*n+1 : 4*n)= u(:,2);

Z=Z’;

%---

%---

function Z=data2z(r,V); % Human2Machine converter

%Z=[r1(1) r2(1) r3(1) r1(2) r2(2) r3(2) v1(1) v2(1) v3(1) v1(2) v2(2) v3(2)];

DIM=size(r);

n=DIM(1);

Z(1 : n) = r(:,1);

Z(n+1 : 2*n) = r(:,2);

Z(2*n+1 : 3*n) = V(:,1);

Z(3*n+1 : 4*n) = V(:,2);

Z=Z’;

%---

%------------------------------------

% Obtains D-matric for a current configuration

function D=metrics(r);

N=size(r);

n=N(1);

for i=1:n;

for j=1:n;

D(i,j)=norm(r(i,:)-r(j,:));

end;

D(i,i)=1;

end;

%------------------------------------

%--

function u=minpot(i,r,D,n);

h=1e-5;

f = @(s)1/s^2+2*log(s); %potential fucntion for keeping a formation

U = @(a,d)f(norm(a)/d); %potential fucntion vector adopted

u=[0 0];

66

Appendix A. Matlab Scripts

for j=1:n;

a=r(i,:)-r(j,:);

dx=U(a+h*[1 0],D(i,j))-U(a-h*[1 0],D(i,j));

dy=U(a+h*[0 1],D(i,j))-U(a-h*[0 1],D(i,j));

u=u+(i~=j)*[dx dy];

end;

u=u/h/2; %compute the contro lsignal

%--

%--

function u=obst(i,r,O,m);

h=1e-5;

f = @(s)(1/s^2+2*log(s))*(1-heaviside(1-s)); % potential fnciton (obst.)

U = @(a,d)f(norm(a)/d); % vector adapted

u=[0 0];

for j=1:m;

a=r(i,:)-O(j,1:2);

R=O(j,3);

dx=U(a+h*[1 0],R)-U(a-h*[1 0],R);

dy=U(a+h*[0 1],R)-U(a-h*[0 1],R);

u=u+[dx dy];

end;

u=u/h/2; %compute the control signal

%---

%---

% This script allows to visualize the dynamica of the flock

function go(fname,dt);

close all;

load(fname);

N=size(Z);

n=N(2)/4;

TN=N(1);

M=size(O);

m=M(1);

for i=1:n;

RX{i}=Z(:,i);

RY{i}=Z(:,n+i);

MINR(i)=min([RX{i}’ RY{i}’]);

MAXR(i)=max([RX{i}’ RY{i}’]);

VX{i}=Z(:,2*n+i);

VX{i}=Z(:,3*n+i);

end;

minxy=min(MINR);

maxxy=min(MAXR);

figure;

hold on;

67

Appendix A. Matlab Scripts

for i=1:n;

plot(RX{i},RY{i},’k:’);

end;

for j=1:m;

plot(O(j,1),O(j,2),’r*’);

end;

title(sprintf(’Trajectories and obsteckels:

k_1=%g(Dir.); k_2=%g(Dist.); k_3=%g(V.Leader); k_4=%g(Obst.)’,...

k(1),k(2),k(3),k(4)));

for i=1:n;

text(RX{i}(1),RY{i}(1),sprintf(’R_%d’,i),’color’,’b’);

text(RX{i}(TN),RY{i}(TN),sprintf(’R_%d’,i),’color’,’b’);

end;

figure;

%pause;

for t=1:dt:TN;

for i=1:n;

plot(RX{i},RY{i},’k:’);

hold on;

end;

for j=1:m;

plot(O(j,1),O(j,2),’r*’);

end;

title(sprintf(’Trajectories and obsteckels: k_1=%g(Dir.); k_2=%g(Dist.);

k_3=%g(V.Leader); k_4=%g(Obst.)’,k(1),k(2),k(3),k(4)));

for i=1:n;

text(RX{i}(1),RY{i}(1),sprintf(’R_%d’,i),’color’,’g’);

text(RX{i}(TN),RY{i}(TN),sprintf(’R_%d’,i),’color’,’g’);

end;

for i=1:n;

X(i)=RX{i}(t);

Y(i)=RY{i}(t);

end;

plot(X,Y,’b.’);

axis([minxy,1.5*maxxy,minxy,1.5*maxxy]);

pause(0.01);

hold off;

end;

%---

68

Appendix B

System Identification and PID

B.1 Introduction

To design a controller for a dynamic system it is necessary to have a model that

describes the dynamics of the system. There are fundamentally two approaches to

finding this model:

1. Analytical Modeling uses basic principles such as the laws of motion, electrical

laws, and other physical principles. The designer obtains differential equations

of motion describing the response of mechanical, electrical, thermal, fluid, and

other systems.

2. Experimental Identification excites the dynamic system with a given input,

and records its output, then construct a model from this observed data.

While analytical modeling is almost always of some use, if for nothing more than

to give insight into the expected model structure, actual physical phenomena may be

too complex to permit satisfactory description using physical principles. Under these

69

Appendix B. System Identification and PID

circumstances, the designer looks to experimental data and experimental system

identification.

This chapter contains a brief review of system identification using the least square

method. We will make the assumption that the system to be identified is linear and

time-invariant.

B.2 Model and data organization

Let us use a second-order transform-based discrete system to illustrate the procedure.

Consider

Y (z)

U(z)
=

b1z
−1 + b2z

−2

1 − a1z−1 − a2z−2
(B.1)

Note that a feedforward term b0 was not included in above equation.

The difference equation that corresponds to equation (B.1) is

y(k) = a1y(k − 1) + a2y(k − 2) + b1u(k − 1) + b2u(k − 2), (B.2)

now consider a sequence of input samples from k = 0 . . .N , given by u(0), u(1), . . . , u(N).

Assuming zero initial conditions on output y, the output samples are given by

y(2) = a1y(1) + a2y(0) + b1u(1) + b2u(0)

y(3) = a1y(2) + a2y(1) + b1u(2) + b2u(1)
...

y(k) = a1y(k − 1) + a2y(k − 2) + b1u(k − 1) + b2u(k − 2)
...

y(N) = a1y(N − 1) + a2y(N − 2) + b1u(N − 1) + b2u(N − 2)

(B.3)

70

Appendix B. System Identification and PID

Equations B.3 can be arranged into a matrix form






y(2)
y(3)

...
y(N)






=







y(1) y(0) u(1) u(0)
y(2) y(1) u(2) u(1)

...
...

...
...

y(N − 1) y(N − 2) u(N − 1) u(N − 2)













a1

a2

b1

b2






(B.4)

or equivalently

b = AX, (B.5)

where

A =







y(1) y(0) u(1) u(0)
y(2) y(1) u(2) u(1)

...
...

...
...

y(N − 1) y(N − 2) u(N − 1) u(N − 2)






, x =







a1

a2

b1

b2






, b =







y(2)
y(3)

...
y(N)







(B.6)

Just as in (B.6), in the system identification problem matrix A is known (input

u and output y are known), vector b is known (output y are known), and vector x

is unknown (system parameters ai and bi are unknown). Thus we arrive at a system

of linear algebraic equations (SLAE).

B.3 Least square Approximation

A SLAE of the form Ax = b may have none, infinitely many, or a unique solution.

In terms of system identification, this means that the number of data samples taken

is greater than the number of model parameters.

In the case of several possible solutions, one has to identify the best fit. One

approach is to choose the X that minimizes the average error over the entire set of

data. If we denote by X̂ the best estimate of the actual X, one can form the error

vector for the entire data set as E , where

E = AX̂ − b. (B.7)

71

Appendix B. System Identification and PID

There are many ways to define the average error over the entire data set, but a

convenient one is the sum of squares:

E2 = ETE = (AX̂ − b)T (AX̂ − b). (B.8)

The sum of squares of the error E2 is a scalar and it represents the target function

to be minimized. Minimization of E2 is accomplished as follows. Multiplying out

equation (B.8) yields

E2 = X̂T AT AX̂ − 2bT AX̂ + bT b. (B.9)

To minimize (B.8) we find critical points of E2 by equating its gradient to 0:

▽E2 = 2X̂AT A − 2bT A = 0 (B.10)

thus

X̂TAT A = bT A (B.11)

and

AT AX̂ = AT b (B.12)

and we arrive at the optimal value of X̂:

X̂ =
[

AT A
]−1

AT b. (B.13)

B.4 Application to System Identification

The result of the least square approximation of the Section B.3 may be directly

applied to system identification. Consider the case represented by equation (B.4),

72

Appendix B. System Identification and PID

but generalized for an nth order system. Let a data set consist of N +1 measurements

K = 0 . . . N . Define the following matrices, according to equation (B.4):

Y =







y(n)
y(n + 1)
...
y(N)






(B.14)

which is an (N − n + 1) × 1 matrix, where n is the order of the model considered.

Ψ =









y(n − 1) y(n − 2) · · · y(0) u(n − 1) u(n − 2) · · · u(0)
y(n) y(n − 1) · · · y(1) u(n) u(n − 1) · · · u(1)
...

...
...

...
...

...
y(N − 1) y(N − 2) · · · y(N − n) u(N − 1) u(N − 2) · · · u(N − n)









(B.15)

Θ = [a1 a2 · · · an b1 b2 · · · bn]T (B.16)

Using (B.14),(B.15), and (B.16), the equation describing the input-output data

and model parameters can be written in a compact form as

Y = ΨΘ, (B.17)

which is the standard form Ax = b considered in Section B.3. According to B.3 the

optimal vector of parameters Θ∗ that represents the best fit in the least-square sense

can be found using (B.13):

Θ∗ =
[

ΨT Ψ
]−1

ΨT Y. (B.18)

It is important underline that the order of the model is chosen based on the de-

signer’s understanding of the system. The selection of the order is based on physical

reasoning. Often multiple fits are needed to choose the lowest acceptable order of

the model. Selecting a model with an order too-high may result in extra parameter

fitting.

73

Appendix B. System Identification and PID

Least square is the simplest and most straightforward identification method. If

the system to be identified exhibits linear behavior and the input/output data is rel-

atively noise-free, least square will yield acceptable results. There are other sophis-

ticated methods that work better than least square under more difficult conditions,

but they are beyond our scope.

B.5 Selection of inputs

The choice of input u used in identification is important. Consider (B.3) in a trivial

case where the input u(k) is a constant. In particular, consider the input term in-

volving u(k) and bi. Then in each equation in (B.3) the bi terms would be multiplied

by the same number, and would be combined into a single quantity. The bi terms

could never be separated from the observed data. The constant u fails to excite all

the dynamics of the plant. This problem has been studied extensively, and an input

sequence {u(k)} that fluctuates enough to avoid the possibility of linear combina-

tions of the elements of model parameter vector Θ showing up in the error is called

persistently exciting.

Two types of input used in the practical application considered for this theism

are: (Section 3.9)

• Random Input. This is just a random noise, which may be easily generated

using Matlab. The harmonic content in this case will be rich enough to be

persistently exciting. Either a normal or uniform distributions may be used.

• Random Binary Input. This is a random input that fluctuates between two

distinct values. It is a series of pulses with random duration. Since a step

signal has infinite harmonic content, this type of input will also persistently

excite the system.

74

Appendix B. System Identification and PID

B.6 PID controller design

A PID controller consists of three parts:

• Proportional Part - provides stability.

• Differential Part - enhances the stability of the system.

• Integral Part - improve the steady state error.

Continuous domain PID:

u(t) = Kpe(t) + K1

1
∫

0

e(t)dt + KD

de(t)

dt
(B.19)

Discrete domain PID:

Z-tranform

Proportional Part u(k) = KP e(k) D(z) = KP

Differential Part u(k) = KD[e(k) − e(k − 1)] D(z) = KD(1 − z−1) = KD
z−1

z

Integral Part u(k) = u(k − 1) + KIe(k) D(z) =
K1

1 − z−1
=

K1z

z − 1

D(z) = KP + KD

z − 1

z
+ K1

z

z − 1
=

(KP + KD + KI)z
2 − (KP + 2KD)z + KD

z(z − 1)

(B.20)

or by renaming parameters

D(z) = K
z2 − az + b

z(z − 1)
= K

(z + b1)(z + b2)

z(z − 1)
(B.21)

The parameters for the model considered in this thesis are:

75

Appendix B. System Identification and PID

Natural frequency:

ωn = 100
rad

s
, (B.22)

which corresponds to

fn = 15.9Hz (B.23)

The damping ratio:

ξ = 0.5 (B.24)

The denominator of transfer function D(z) in Laplace domain:

Φ(s) = s2 + 2ξωns + ω2

n = s2 + 100s + 10000 (B.25)

For the given ξ and ωn zeros of Φ(s) are

s = −50 ± 86.6025i (B.26)

The discrete counterpart for the given poles is at

z = esT , (B.27)

where

T =
1

500
= 0.002s (B.28)

Therefore

z1 = 0.9813 + 0.1559i, z2 = 0.8913 − 0.1559i (B.29)

For the closed loop system

Φ = 1 + KD(z)G(Z), (B.30)

76

Appendix B. System Identification and PID

where

D(z) =
(z + b1)(z + b2)

z(z − 1)
. (B.31)

For z1 to be on a root locus plot the following must be satisfied:

arg [D(z1)G(z1)] = 180. (B.32)

D(z1)G(z1) =
(z1 + b1)(z1 + b2)

z1(z1 − 1)

0.08936z2 + 0.1428z + 0.05662

(z − 0.9982)(z − 0.9107)(z − 0.5794)
. (B.33)

To get rid of the undesirable pole at z = 0.9107, one of the zeros is placed at the

same point b1 = −0.9107.

D(z1)G(z2) = (−4.0970 − 4.1252i)(z1 + b2)(−0.4586 − 0.7968i) (B.34)

D(z1)G(z2) = (−1.4079 + 5.1564I)(0.8913 + 0.1559i + b2) (B.35)

D(z1)G(z2) = (−2.0590 − 1.4079b2) + (4.3764 + 5.1564b2)i (B.36)

arg [D(z1)G(z1)] = tan−1 4.3764 + 5.1564b2

−2.0590 − 1.4079b2

= 180. (B.37)

4.3764 + 5.1564b2 = 0 =⇒ b2 = 0.8487 (B.38)

77

References

[1] Holmberg R., O. Khatib. Development of a Holonomic Mobile Robot for Mobile Ma-
nipulation Tasks Proceedings of the International Conference on Field and Service
Robotics - FSR’99, Pattsburg, PA, Aug.1999

[2] Katsura S, K.Ohnishi. Human Cooperative Wheelchair for Haptic Interaction based on
Dual Compliance Control IEEE Transactions on Industrial Electronics, Vol.51, No.1,
Febr., 2004.

[3] Coelho P. U. Nunes. Path-following Control of Mobile Robots in Presence of Uncer-
tainties IEEE Transactions On Robotics, Vol.21, No.2, April., 2005.

[4] J. Khoury, J. Crichigno, H. Jerez, C. Abdallah, W. Shu, and G. Heileman, The
InterMesh Network Architecture, submitted to IEEE Network Magazine, April 2007

[5] T. Stentz and P. Rander, Integrated air/ground vehicle system for semi-autonomous
off-road navigation, in AUVSI Symposium, Orlando, Florida, July 2002

[6] D.C Mackenzie, R. C. Arkin, and J.M. Cameron, Multiagent Mission Specification
and Execution. Boston, MA: Kluwer Academic Publisher, 2003

[7] Arkin, R. ”Behavior-Based Robotics,” MIT Press, 1998

[8] Balch, T., and Arkin, R., Behavior-Based Formation Control for Multi-robot Teams,
IEEE Transactions on Robotics and Automation, Volume XX, Number Y, 1999.

[9] A.Regmi, R.Sandoval, R.Byrne, H.Tanner, and C.T.Abdallah Experimental Imple-
mentation of Flocking Algorithms in Wheeled Mobile Robots American Control Con-
ference. Portland, OR, USAm June 8-10-2005.

[10] H.G. Tanner, A. Jadbabaie and G.J. Pappas. Stable flocking of mobile agents, part I:
Fixed Topology, IEEE Conference on Decision and Control. Maui Hawaii, Vol. 2, pp.
2010-2015, December 2003.

78

References

[11] H.G. Tanner, A. Jadbabaie and G.J. Pappas. Stable flocking of mobile agents, part II:
Dynamic Topology, IEEE Conference on Decision and Control. Maui Hawaii, Vol. 2,
pp. 2016-2021, December 2003.

[12] H.G. Tanner, A. Jadbabaie and G.J. Pappas. Flocking with obstacle Avoidance in
Switching Networks of Interconnected Vehicles. IEEE International Conference on
Robotics and Automation, Vol. 3, pp.3006-3011, April 1, 2004 - May 1, LA, USA

[13] R.Sandoval-Rodriguez, C.T. Abdallah, P.F. Hokayem, Internet-like Protocols for the
Control and Coordination of Multiple Agents with Time Delay. IEEE International
Symposium of Intelligent Control, Houston, TX, Oct. 2003

[14] R. Olfati. Flocking for multi-agent dynamic systems: Algorithms and theory. Technical
Report CIT-CDS 2004-005 http://ieeexplore.ieee.org/iel5/9/33736/016055401.pdf

[15] N.E.Leonard and E.Fiorelli. Virtual leaders, artificial potentials, and coordinated con-
trol of groups. IEEE Conference on Decision and Contol, Orlando, FL, Vol.3, pp2968-
2973, December 2001

[16] E. W. Justh and P. S. Krishnaprasad. Institute of System research Technical Report
2002-38, 2002.

[17] P. Ögren, M. Egerstedt and X.Hu, A control Lyapunov function approach to multi-
agent coordination, IEEE Transactions on Robotics and Automation, Vol. 18, No.5,
pp. 847-851, October 2002

[18] J. Cortes, S. Martinez, T.Karatas and F.Bullo. Coverage control for mobile sensing
networks. IEEE Transactions on Robotics and Automation, Vol.20, No.2, pp.243-255,
April 2004.

[19] P. Ögren, E. Fiorelli and N. E. Leonard. Formations with a mission: stable coordina-
tion of vehicle group maneuvers. Proc. 15th International Symposium on Mathemat-
ical Theory of Networks and Systems, August 2002.

[20] J. R. T. Lawton, B. J. Young and R. W. Beard, Decentralized approach to elementary
formation maneuvers IEEE Transactions on Robotics and Automation, Vol. 19, No.
6, pp.933-941, December 2003.

[21] J. H. Reif and H. Wang. Social potential fields: A distributed behavior control for
autonomous robots. Robotics and Autonomous Systems, Vol. 27, pp. 171-194, 1999.

[22] M. J. Mataric. Behavior-based control: examples for navigation, learning and group
behavior. Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9, No.
2-3, pp.323-336, 1997.

[23] C. Reynolds. Flocks, birds and schools: a distributed behavioral model, Computer
Graphics, Vol.21, pp.25-34, 1987.

79

References

[24] T. Vicdec, A. Czirok, E. Ben Jacob, I. Cohen, and O. Schochet. Novel type of phase
transactions in a system with self-driven particles, Physics Review Letters, Vol.75,
pp. 1226-1229, 1995.

[25] H.G.Tanner, A.Jadbabaie and G.J.Pappas, Flocks of autonomous mobile agents. Sec-
ond Annual Symposium on Autonomous Intelligent Networks and Systems, Menlo
Park CA, June 2003.

[26] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile autonomous
agents using nearest neighbor rules, IEEE Transactions on Automatic Control, Vol.48,
No.6, pp.988-1001, July 2002.

[27] R. Vidal, O. Shakernia, and S. Sastry, Formation control of nonholonomic mobile
robots with omnidirectional visual servoing and motion segmentation, IEEE Interna-
tional Conference on Robotics and Automation, Vol. 1, pp.584-589, September 2003.

[28] V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE Transactions on Au-
tomatic Control, Vol.48, No.4, pp.692, April 2003.

[29] J. Fredlund and M. J. Mataric. A general algorithm for robot formations using local
sensing and minimal communications, IEEE Transactions on Robotics and Automa-
tion, Vol.18, No.5, pp.837-846, October 2002.

[30] R. W. Beard, J. Lawton, and F. Y. Hadaegh. A coordination architecture for spacecraft
formation. IEEE Transactions on Control Systems Technology, 9: pp.777-790, 2001.
Available at http://www.ee.byu.edu/beard/papers/cst99.ps

[31] L. J. Corwin Multivariate Calculus CRC Press ISBN 0824769627 pp.128-129.

[32] R.T. Jonathan, R.W. Beard and B.J. Young. A decentralized approach to for-

mation maneuvers. IEEE Transactions on Robotics and Automantions, Vol. 19,
pp. 933-941, 2003

[33] T.D. Barfoot and C.M. Clark. Motion planning for formations of mobile robots.

Robotics and Autonomous Systems, Vol. 46, pp. 65-78, 2004.

[34] D. M. Stipanovica, G. Inalhana, R. Teo and C. J. Tomlina. Decentralized over-

lapping control of a formation of unmanned aerial vehicles. Automatica, Vol.
40, pp. 1285-1296, 2004.

[35] W. Ren and R.W. Beard. Formation feedback control for multiple spacecraft via

virtual structures. IEEE Proceedings Control Theory and Applications, Vol. 151,
pp. 357-368, 2004.

[36] M. Mesbahi and F. Y. Hadaegh. Formation flying control of multiple spacecraft

via graphs, matrix inequalities, and switching. AIAA J. Guidance, Control and
Dynamics, vol. 24, no. 2, pp. 369-377, 2001.

80

References

[37] T. Balch and R. C. Arkin. Behavior-based formation control for multirobot

teams. IEEE Transasctions is Robotics and Automation, Vol. 14, pp. 926-939,
1998.

[38] Q. Chen and J. Y. S. Luh. Coordination and control of a group of small mobile

robots. in Proceedings IEEE International Conference in Robotics and Automa-
tion, pp. 2315-2320, 1994.

[39] N. E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coordi-

nated control of groups in Proceedings IEEE Conference in Decision and Control,
Orlando, FL, pp. 2968-2973, 2001.

[40] M. A. Lewis and K.-H. Tan. High precision formation control of mobile robots

using virtual structures, Autonomous Robots, Vol. 4, pp. 387-403, 1997.

[41] W. Kang and Yeh, H.-H. Coordinated attitude control of multisatellite systems

International Journal on Robust Nonlinear Control, Vol.12, pp. 185-205, 2002.

[42] P. Ogren, Egerstedt, M., and Hu, X. A control Lyapunov function approach

to multiagent coordination, IEEE Transactions on Robotics and Automation
Vol.18, pp. 847-851, 2002.

[43] R.W. Beard, Lawton, J., and Hadaegh, F.Y. A coordination architecture for

formation control IEEE Transactions on Control Systems and Technology, Vol.
9, pp. 777-790, 2001.

[44] E. Rimon and D.E. Koditschek. Exact robot navigation using artificial potential

functions. IEEE Transactions on Robotics and Automation, Vol. 8, no. 5, pp.
501-518, 1992.

[45] E. Rimon and D.E. Koditschek. Robot navigation functions on manifolds with

boundary Advances in Applied Mathematics, Vol. 11, pp. 412-442, 1990.

[46] H.G. Tanner, S.G. Loizou and K.J. Kyriakopoulos. Nonholonomic naviga-

tion and control of multiple mobile robot manipulators. IEEE Transactions on
Robotics and Automation, vol. 19, pp. 53-64, 2003.

[47] H.G. Tanner and A. Kumar. Towards decentralization of multi-robot naviga-

tion functions, IEEE International Conference on Robotics and Automation,
Barcelona, Spain, pp 4143-4148, 2005.

[48] H.G. Tanner and A. Kumar. Formation stabilization of multiple agents using

decentralized navigation functions. Robotics: Science and Systems, in press,
2005.

81

References

[49] E.W. Jush and P.S. Krishnaprasad. Equilibria and steering laws for planar for-

mations. Systems and Control Letters, Vol. 52, pp. 25-38, 2004.

[50] S.S. Ge and Y.J. Cui. New potential functions for mobile robot path planning.

IEEE Transactions on Robotics and Automation, Vol. 16, pp. 615-620, 2000.

[51] S.S. Ge and Y.J. Cui. Dynamics motion planning for mobile robots using poten-

tial field method. Autonomous Robots, Vol. 13, pp. 207-222, 2002.

[52] K.D. Do and J. Pan. Global path-tracking of underactuated ships with non-zero

off-diagonal terms Automatica, Vol. 41, pp. 87-95, 2005.

[53] H. Khalil. Nonlinear systems. Prentice Hall, Englewood Cliffs, NJ, 2000.

[54] Shan Sun Kuo, Computer applications of numerical methods, 341 pages,
Addison-Wesley, 1965

[55] Carl De Boor, A Practical Guide to Splines, Springer, 2001, ISBN 0387953663

[56] A.Quarteroni, F.Saleri Scientific Computing with MATLAB, Springer-Verlag
Berlin Heidelberg 2003

82

	University of New Mexico
	UNM Digital Repository
	9-9-2007

	Design and implementation of test-bed for path planning and formation control of cooperative robotic agents
	Mike Majedi
	Recommended Citation

	thesis.dvi

