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ABSTRACT

This paper introduces robust stability techniques for the
computation of exact bounds for the frequency response of
FIR and IIR digital filters in which the !™ norm of the
coefficients is bounded.

1. INTRODUCTION

In recent years there has been considerable research con-
cerning the stability of uncertain systems, primarily ori-
ented to control applications [1]. The potential of these
methods has not yet heen fully exploited in the Signal Pro-
cessing area, although some well-known problems can be
“robustified” with the new tools. The aim of the present
paper is to introduce these techniques for the computation
of exact bounds for the frequency response of digital filters
in which the I norm of the coefficients is bounded. This
setup is reasonable in a number of different situations: when
the coefficients are regarded as independent and parametric
identification methods are used, it is possible to bound the
coefficients using confidence intervals. Similar-type bounds
are obtained in a linear prediction context when bootstrap
methods are used to calculate the extremes [2]. When set
membership identification methods are used, the resulting
“feasible” set is 3 polytope in the coefficients space [3],
which can also be tackled with the methods that will be
proposed. Finally, the most notorious problem appears
from the quantisation of the filter parameters, when finite
wordlength introduces errors in digital filter design.

The study of boundary implications in the analysis of
the frequency response of FIR and IIR digital filters has
been recently undertaken by Bose and Kim [4]. In their
paper they show that the frequency response of an infinite
family of linear-phase interval filters can be bounded by the
frequency response of a finite number of filters. Specifically,
they consider an FIR filter with transfer function

H(z)= Z h(k)z~*

k=0
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Instead of assigning fixed values to the coefficients h(k), it
is more realistic to expect that
h(k) € [h(k), h* (k)],

k=0,1,---,m (1)

and the problem consists of finding
H™ () = min |H(e/)|, H*(e™) = max|H(e™)|

with the minimisation and maximisation taking place over
the set of possible filter coefficients in (1).

Bose and Kim’s paper imposes a severe linear-phase
constraint on the filter response, although it is widely rec-
ognised that this property does not hold in many practical
filters. In the same paper, this constraint is removed in
an sttempt to solve the problem for general IIR filters at
the expense of overbounding the associated frequency re-
sponse. It is then of interest to reformulate the problem, so
that given the transfer function

)= 568 - e

with similar bounds as in (1) for a(k) and b(k), we want to
eliminate the conservativeness by calculating the following
bounding functions

H™(¢*) = min|H(e)),

YY) = max|H(e) (2)
$u(c) = minarg{H(e™)),

$h(e) = maxarg{H(c)} 3)

Since the coefficients sets have infinite members it might
appear at first that the solution to the problem above can
only be approximated. Nevertheless, in the present paper
we will solve it by showing that it can be transformed in
such a way that the required maximisation and minimisa-
tion are performed over a finite number of discrete points,
thus making it possible to compute the exact solution. Let
B(e), B¥ (&), $5(), 45(7), 4~(), A*(),
#2(?), #%(e’*) denote the minimum and maximum of
the magnitude and phase of respectively B(ei*)and A(e*),
defined as in (2),(3), we can immediately write

B()/A¥(e)
BH(e)/A()

B ()
HH()

il

i



$u(e”) = #p(*)~ ¢4()
#h() #5(e’) — $2()

The remaining of this paper is organised as follows. Sec-
tion 2 contains a brief discussion of the value set concept
and its characterisation in the present setting. Section 3
discusses the ideas of finding the minimum and maximum
of the phase, while gection 4 deals with bounding the mag-
nitude. A numerical example is provided in section 5, and
different applications of the proposed methodology to signal
processing problems are discussed in section 6. Finally, our
conclusions and lines of future research are given section 7.

2. THE VALUE SET

From the discussion above, it becomes apparent that it is
necessary to calculate the extremal values of the magnitude
and phase of both the numerator and denominator func-
tions. Let us concentrate then on obtaining the extremal
values for the function B(e’*) over the set of valid coeffi-
cients. It is customary to define b°(k) = [6 (k) + b~ (k)]/2,
Bu = [5¥(k) - b-(K))/2 and q(k) = [b(k) — ©°(R)}/An,

= 0,---,n;1. Then, the problem can be posed as find-
ing the extremal values of magnitude and phase of
ny
B(e™) = B(e™*) + Y a(k)Ane ™™ (4)
h=0

constrained to
Jmex f(k)| <1 )

where B°(2) =} 71, b°(k)z"' is a center polynomial.

The fundamental idea of the value set allows us to solve
the problem by reducing it to an optimisation in the com-
plex plane. In order to see this, note that (4) is, for a fixed
w, simply = linear mapping from R™*! to C, so that the
box in (5) (that contains all the feasible points) is trans-
formed into a convex polygon in C. It is important to
characterise this polygon, due to the role it plays in the
solution. The steps that lead to this geometrical character-
isation are somewhat lengthy and may be found elsewhere
(1].

First, note that the polygon has opposite sides which
are puallel (parpolygon) and have directions e, k =
0,---,n; in the complex plane. The number of ndel and
vertices is at most 2(n; +1) (since many of them a:e mtpped

mu

inside the polygon). Now define gi(e’*) € C,i=0,---,2n,+
1 such that g;(e’*) = e~/ for some i,k € {0 ,m +1}
and that

0 < Arg{go(e’)} < Arg{as ()} < -

< Arg{gn, ()} < -+ < Arg{gan, 41 (™)} < 27

This corresponds to reordering the terms e~#** according
to their argument principal value in [0, 2x), for a fixed w €
[0,2x). Then, the 2(n; + 1) vertices of the polygon can be

generated as A =1,---,2n; + 1 by
ny
w(e) = B°()- ) au(e)An
h=0
w(e™) = va(e™)+200-1()A0s (6)

Considering the above, the 2(n, + 1) edges of the frequency
dependent polygon can be written as

en(An, €)= va(e’) + 2Augn(e’)As, ("

with Ay € [0,1] and k = 0,---,25; + 1. For a numerical
example illustrating these concepts see Figure 1, in section
5.

3. BOUNDING THE PHASE

Once the polygon is fully described, phase bounding be-
comes quite simple. We have to distinguish two different
cases:

1) The polygon includes the origin: There is at least
one filter in B(z) with a sero on the unit circle and, there-
fore, the phase is not well-defined for this frequency. More-
over, the total spaa of phases will be at least 2x.

2)The polygon does not include the origin: From the con-
vexity of the polygon, 1t is easy to conclude that the maxi-
mum and minimum of the phase are always attained at two
vertices of the polygon. We will restrict our study to this
second case. Here,

é5 (e’ )_.

omin  arg{oa(’)} (8)
and a similar expression holds for ¢}(e’*), using the max-
imum. Instead of carrying the minimisation (maximisa-
tion) along the 2ny + 2 vertices, it is possible to use the
following result: the vertices at which the minimum and
maximum are achieved are those for which the function
Im{vx(e’“)ga(e’“)} changes its sign as k take successive
values modulo 2r; + 2 starting from k = 0.

Actually, it can be shown that monitoring this function
at the 2n; + 2 finite values is suitable for checking for the
situation in which the polygon includes the origin (case 1)
since then there is no change of sign at all.

4. BOUNDING THE MAGNITUDE

We have shown by means of the value set that B~ (e*)
and B*(e/) are respectively the minimum and maximum
distances from the origin to any point of the frequency de-
pendent polygon. Due to the convexxty of the polygon, it
is immediate to see that the maximum distance is always
attained at a vertex, so that
+7 dwy2 _ 2
B () =, max | ®
Also, the minimum distance is always attained at an edge
of the polygon so that
|B= ()" = omin  { min

Ing 4l Ay e[o 1]

lex(An, )7} (10)

The case of the minimum distance is, at first sight, the
most tricky, since it implies 2n; + 2 minimisations along
one-dimensional edges. However, we will show how this
number can be greatly reduced. First, we have to rule out
the case for which the minimum is not at an edge or vertex.
Clearly, this happens only at those frequencies for which
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the polygon includes the origin and, consequently, the min-
imum distance is 0. We have already developed a proce-
dure for phase-bounding that is suitable for this purpose,
s0 hereafter we will concentrate on the simplification of the
minimization along the edges. From (7) we can recognize
the form of every edge as

er = vn + 2AxgrlAx, Ax €[0,1] (11)

where we have dropped the dependency on ¢’“ for the sake
of conciseness. Differentiating |ex|® with respect to Ay, and
setting the result to sero, we obtain the expression for the
Ay that produces the minimum as

i, — _ Re{uagi}
A= 20, (12)

However, this value is only valid if A4 € [0, 1], otherwise, the
minimum for the putlculu edge is attained at a vertex. If
A. < 0 then the minimum corresponds to Ax = 0 and if
Ax > 1 then the maximum corresponds to Ay = 1. This
result shows that the edge-minimization can be explicitly
solved so that the overall minimization depends on at most
a finite set of 2n; +2 points. When Ay € [0, 1], we substitute
(12) into the expression for |ex|* to obtain the expression
for the squared distance as

[Im{oagi }I* (13)

In order to reduce further the number of computations, we
can make use of the concepts of supporting and separat-
ing lines. A straight line is a supporting line if it intersects
the polygon and one of the closed half planes that it gen-
erates fully contains the polygon. A straight line is a sepa-
rating line if one of the closed half planes that it generates
fully contains the polygon and the complementary open half
plane contains the origin. It should be clear that when the
polygon does not include the origin, all its edges belong to
a supporting line. Moreover, any of these lines is either a
separating line or not. Let us call the edges contained in
a separating supporting line SSE and those contained in a
non-separating supporting line NSSE.

The relevant result for our work is that the minimum is
a.lwnys attained at an SSE. Moreover, it can be shown that
there is at most one SSE for which Ay in (12) is in [0,1).
Therefore, the search can be reduced to the SSEs. Indeed,
the vertices that bound the phase (see previous section) par-
tition the set of edges into SSEs and NSSEs. Now, to look
for the edge with the minimum of IB(e’“)I' snnply check
for the change of sign in Re{vx(e’*)g}(e?*)} for two con-
secutive vertices. Then, use (12) to check if the minimum
is at the segment. If so, the squared distance is obtained
using (13). I Ay < 0 then the minimum is achieved at
vx, 80 |B(e7*)|? = |va(e™)|®. If Jx > 1 then the mini-
mum is achieved at va41, 50 |B~ (&) = |vapr (7). I
there is no change of sign in Re{m.(e"")y (e"")} for any of
the vertices defining an SSE, then the minimum will be at
the extreme SSEs, i.e., those edges closest to the vertices
bounding the phase.

| B*(e’*)|? can be computed by maximisation along the
NSSEs. In this case, the simplest thing to do is to directly
calculate max |vs|? along the vertices defining the NSSEs.

5. NUMERICAL EXAMPLE
Consider the following polynomial
B(z)=bg 4+ bz  +baz 2 + byz > + byz™*

where the following bounds for the coefficients are consid-
ered:

bo € [0.99,1.01], by € [—1.0414, —1.0214),
ba € [0.2169,0.2369],bs € [0.3934,0.4134],
by € [-0.2020, —0.1820]

This implies that B%(z) has the form
1-1.0314z7" 4 0.2269z7°% + 0.4034z™° — 0.1920z™*

and Ay = 0.01 for all k =0,---,4. We have used the pro-
posed algorithm for computmg the frequency response of
every B(e’”), w = 2x1/64, | = 0,---,63 and used linear in-
terpolation for plotting the mngmtude and phase. In figure
1 we plot the value set in the complex plane for w = 275/64
together with an approximation obtained by means of grid-
ding of Ay to values {—0.01,0,0.01} for k = 0,---,4. It is

L L L 2 ;
028 03 032 0.34 0.38 038

Figure 1: Value set for w = 2x5/64. +: Points obtained
with gridding

worth noting that whenever there is a2 term with no powers
of z7! (an independent term), the polygon will have a hor-
izontal edge for every frequency, and for frequencies w = 0
and w = «x the polygon degenerates into a horizontal seg-
ment. Figures 2 and 3 represent the exact bounds obtained
for the magnitude and the phase, respectively.

6. APPLICATIONS

The proposed solution allows to easily compute the fre-
quency response for a set of transfer functions in an ex-
act way, which can be very useful in a variety of situations
where no exact information of the coefficients of the system
is available. One immediate use of our result is the compu-
tation of the robust periodogram in which it is possible to
take into account the existence of just an estimate of the
autocorrelation sequence. Note that windowing of the data
would basically change the size of A (see section 2). Of
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Figure 2: Exact bounds for the magnitude

Figure 3: Exact bounds for the phase

course, it is possible to add some information about cor-
relation between different samples, which just changes the
mapping from the coefficient space to the complex plane,
but keeps the discussion and algorithm valid. Moreover, the
computational cost only increases linearly with the number
of parameters.

Another important application appears in filter design,
where this tool can be used to study the effect of coefficient
quantisation measured in terms of the error produced in
the frequency response. This allows us to calculate a worst
case value for every frequemcy, which is useful whenever
the coefficients are not known (e.g., adaptive) and finite
precision arithmetic is used.

Finally, we will mention the application of robust sta-
bility, i.e., the stability of polynomials with uncertain co-
efficients. In this case, if B°(z~') denotes the center de-
nominator polynomial, it is enough to guarantee that this
polynomial is minimum-phase and that the magnitude re-
sponse does not take the value xero (we have provided sim-
ple ways of doing this). A similar approach was taken in
[5] to unalyse if a family of channel equalisers for digital
communications met some dynamic specifications, includ-
ing their existence.

7. CONCLUSIONS AND FUTURE WORK

We have shown how the frequency response of discrete-time
transfer functions with interval coeficients can be exactly
calculated with a simple and efficient algorithm that ex-
ploits the concept of value set and uses elementary geome-
try. Since the value set is frequency dependent, it is neces-
sary to recompute it for each frequency, with no FFT-like
algorithm presently available. This topic will be investi-
gated in the future.

Since the computations depend on a set of vertices and
edges of the resulting polygon, and since it is possible to
obtain an explicit minimisation for these edges, it turns out
that the magnitude and phase bounding functions for all the
frequencies in [0, 27) can be computed by optimization over
e finite set of functions. Even though an I°*® norm approach
has been taken in this paper, it is possible to extend it
without much difficulty for I' and I* (weighted) norms.
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