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BOUNDING THE FREQUENCY RESPONSE FOR DIGITAL TRANSFER 
FUNCTIONS: RESULTS AND APPLICATIONS 

F. Pdrez-GonztileZ, D. Docampo. and C. Abdallaht 

BSP Group, Departamento de Tecnologias de las Comunicaciones, 
ETSI Telecomunicaci6n, Universidad de Vigo, 36200-VIGO, SPAIN 
t ICs Group, Department of Electrical and Computer Engineering 

University of New Mexico, Albuquerque, NM 87131, USA. 

ABSTRACT 
This paper introduces robust stability techniques for the 
mmputation of exact bounds for the frequency responat of 
FIR and IIR digital filters in which the I" norm of the 
coetlicients i boundd. 

1. INTRODUCTION 

In recent years there has been considerable research con- 
cerning the stability of uncertain systems, primarily ori- 
ented to control app&cations [I]. The potential of thew 
methods has not yet been a y  exploited in the Signal Pro- 
cesling area, although some well-known problems CM be 
"robustified" with the new tools. The aim of the present 
paper is to introduce these techniquer for the computation 
of exact bundo for the frequency response of +tal filters 
in which the I" norm of the codcients i bounded. This 
eetup i reawnable in a number of Merent mtuationr: when 
the coeflicicnts ate regarded as independent and parametric 
identification methodr are used, it is porible to bound the 
codticients using confhdence intervals. S i - t y p e  bounds 
are obtained in a linear prediction context when bootstrap 
methods are used to calculate the extremes [a]. When ret 
memberrhip identification methods are used, the resulting 
"feasible" set ie a polytope in the co&cients space [3], 
which can also be tackled with the methods that wil l  be 
p ropod .  Finally, the most notorious problem appears 
from the quantisation of the filter parameters, when finite 
wordlength introductx errore in digital filter design. 

The study of boundary implications in the analysis of 
the frequency responac of FIR and mL digital filters has 
been recently undertaken by Bose and Kim [4]. In their 
paper they show that the frequency raponre of an infinite 
family of linear-phase interval filters can be bounded by the 
frequency response of a Anite number of filters. Specifically, 
they consider an FIR filter with transfer function 

nl 

H ( z )  = h(k)z-' 
k=O 
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Instead of dgning fixed values to the coefficients h(k) ,  it 
is more realirtic to expect that 

with the " i s a t i o n  and maximisation taking place over 
the set of pomible Alter codlidente in (1). 

Bose and Kim'# paper imposes a severe hear-phase 
constraint on the m e r  rapolue, although it in widely rec- 
ognired that thin property does not hold in many practical 
filters. In the same paper, thin constraint i removed in 
an attempt to solve the problem for general IIR filters at 
the expense of overbounding the sclsociated frequency re- 
sponse. It i then of inter& to reformulate the problem, so 
that given the trandcr function 

with limilsr bounds as in (1) for a(k) and yk), we want to 
eliminate the conluPstivenem by calculating the following 
bounding functions 

Since the coeffiaenta sets have infinite members it might 
appear at first that the solution to the problem above can 
only be approximated. Neverthelere, in the present paper 
we will solve it by showing that it can be transformed in 
such a way that the required maximbation aad " i a a -  
tion are performed mer a finite number of discrete points, 
thus making it p d e  to compute-the exact eolution. Let 
B-(G)u), B+(f'"'', &Xd"), bL(Z'"), A-(@), At(."), 
di(dw),  ~ ~ ( e " )  drnote the " o m  and mdmum. of 
the magnitude and phase of respectively B(ej") and A(d"), 
defined as in (2),(3), we can immediately write 



The remaining of this paper is organised as follows. Sec- 
tion 2 contains a brief dircursion of the value set concept 
and its characterisation in the present setting. Section 3 
discuslea the ideas of finding the minimum and maximum 
of the phue,  while section 4 deals with bounding the mag- 
nitude. A numerical example is provided in section 6, and 
Merent applicationi of the p r o p d  methodology to signal 
processing problems are dimmed in section 6. Fmally, our 
conclusions and linei of future research are given iection 7. 

2. THE VALUE SET 

F'rom the discussion above, it becomes apparent that it is 
necermary to  calculate the extremal values of the magnitude 
and phase of both the numerator and denominator func- 
tions. Let us concentrate then on obtaining the uttremal 
values for the function B(ej") over the set of valid c o d -  
dents. It is customary to ddine bo(k) = [bt(k) + b-(k)]/2, 
A h  = [bt(k) - b-(k)]/2 and q(k )  = [b(k) - bo(k)]/Ah, 
k = 0, , nl. Then, the problem can be posed as find- 
ing the cxtrcmal values of magnitude and phase of 
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B(ej") = Bo(g") + q(k)Ahe-jhY (4) 
h=O 

constrained to 

(5) 

where Bo( t )  = 
The fundamental idea of the value let allows us to d v e  

the problem by reducing it to an optimiration in the com- 
plex plane. In order to  nee this, note that (4) is, for a fixed 
U, aimply a linear mrpphg from to C, so that the 
box in (5) (that contains all the feasible points) is trans- 
formed into a convex polygon in C. It is important to 
characterise this polygon, due to the role it plays in the 
solution. The stepi that lead to this geometrical character- 
isation are somewhat lengthy and may be found elsewhere 

Fmt, note that the polygon has opposite sides which 
are parallel (parpolygon) and have directions e-3h0, k = 
0,. -. I ni in the complex plane. The number of sida and 
vertices is at moat 2(n1+1) (since m q  of them are mapped 
inaide thepolygon). Nowdjinegi(P ' )  E C I i = 0 , . . - , 2 n 1 +  
1 such that gi(e'") = &e-Jhw for some i, k E (0, - - . , nl + 1) 
and that 

bo(k)z-h is a center polynomial. 

[11. 

0 5 Arg(go(ej")} 5 Arg(g1 (ei")} 5 - 
I Avg{gnl(dw)} 5 ... 5 Afg(~nl+r(ejw)} C 2 r  

Thin corresponds to reordering the terms e-j"" according 
to their argument principal value in [O, 2r), for a fired w E 
[O, 2 r ) .  Then, the  AI + 1) vertices of the polygon can be 
generated k = 1 , . . . , 2 n i  + 1 by 

nl 

Wo(ejw) = B0(d") - z g h ( 2 " ) A k  

Uh(ej") Uh-i(ej") 2gh-i(ejw)Ah-1 (0) 
h=O 

Considering the above, the 2(n1+ 1) edges of the frequency 
dependent polygon can be written M 

eh(Xh ,  e'") = Uh(eJ") + 2Xhgh(ejw)&, (7) 

with Ah E [0,1] and k = O , . . . ,  2n1 + 1. For a numerical 
example illustrating these concepts see Figure 1, in section 
5. 

3. BOUNDING THE PHASE 

Once the polygon is fully described, phase bounding be- 
comes quite simple. We have to distinguish two different 
Cares: 

1) The polygon includes the origin: There is at least 
one filter in B ( t )  with a aero on the unit circle and. there- 
fore, the phase.& not well-defined for this frequency.' More- 
over, the total spm of p h a w  wil l  be at least 2%. 

2)The polygon d o i  not include the origin: From the con- 
vexity of the polygon, it is easy to conclude that the maxi- 

~ . -  

mum and minimum of the ph& are always attained at two 
vertices of the polygon. We will restrict our study to this 
second case. Here, 

and a similu u p r e o n  holds for d i ( e j u ) ,  using the max- 
imum. b t e a d  of carrying the minimisation (mludmisa- 
tion) along the 2nl + 2 vertices, it b possible to use the 
following result: the vertices a t  which the minimum and 
maximum u e  e v e d  are thwe for which the function 
h ( w h ( d " ) g ; ( e ' " ) }  chMgC8 its k take 6UCCanive 
values modulo 2n1+ 2 starting from k = 0. 

Actudy, it can be shown that monitoring this function 
at the 2nl + 2 finite values is suitable for checking for the 
situation in which the polygon includes the origin (c- 1) 
Bincc then there is no change of sign at all. 

4. BOUNDING THE MAGNITUDE 

We have shown by means of the value set that B-(eJ") 
and Bt(ej"') are respectively the minimum and maximum 
distances from the origin to any point of the frequency de- 
pendent polygon. Due to the convexity of the polygon, it 
is immediate to ree that the maximum distance is always 
attained at a vertu,  so that 

Ah, the minimum distance is always attained at an edge 
of the polygon so that 

The case of the minimum distance is, at first sight, the 
most tricky, since it implies 2nl + 2 " i s a t i o n s  along 
onedimensional edges. However, we will show how this 
number can be greatly reduced. Fint, we have to rule out 
the case for which the minimum is not at an edge or vertex. 
Clearly, this happens only at thocre frequencies for which 
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the polygon includes the origin and, coneequently, the min- 
imum distance is 0. We have already developed a proce- 
dure for phasebbounding that is suitable for this purpose, 
so hereafter we will concentrate on the simplification of the 
" i s a t i o n  dong the edges. From (7) we can recognise 
the form of every edge M 

ek = U h  + 2XkgkL\k, E [o, 11 (11) 

where we have dropped the dependency on ej" for the sake 
of conciseness. Differentiating lekl' with respect to A h ,  and 
setting the result to sero, we obtain the expression for the 

that producea the minimum aa 

0.08 

0.05. 

0.04. 

0.M 

However, this value in only valid i f i k  E [0,1], otherwise, the 
+nimum for the particular edge is attained at a vertex. If 
?L < 0 then the minimum corresponds to = 0 and if 
Ah > 1 then the maximum corresponds to X k  = 1. Thb 
result shows that the edgeminimisation can be explicitly 
solved so that the overall minimization depends on at most 
a finite set of 2nl+2 points. When x k  E [0,1], we substitute 
(12) into the axpremion for lek[' to obtain the expression 
for the squared distance M 

- 

- 

In order to reduce further the number of computations, we 
can make use of the concepts of supporting and seprrat- 
ing lines. A straight line is a supporting line if it intereeds 
the polygon and one of the closed half planes that it gen- 
erates fully c o n t h  the polygon. A straight line is a sepo- 
rating line if one of the closed half planes that it generates 
fully contains the polygon and the complementary open half 
phne contains the origin. It should be clear that when the 
polygon doea not include the origin, all its edges belong to 
a supporting line. Moreover, any of these lines is either a 
separating line or not. Let us call the edges contained in 
a meparating supporting line SSE and those contained in a 
non-separating supporting line NSSE. 

The relevant result for our work is that the minimum is 
always attained at an SSE. Moreover,-it can be shown that 
there at mort one SSE for which A h  in (12) is in [0,1]. 
Therefore, the search can be reduced to the SSEs. Indeed, 
the vertices that bound the phase (see previous section) par- 
tition the set of edges into SSEs and NSSEa. Now, to look 
for the edge with the minimum of IB(eJ")l, simply check 
for the change of sign in Re{vk(ej")g;(ej")} for two con- 
secutive vertices. Then, use (12) to check if the minimum 
is at the segment. If so, the squared distance is obtained 
udng (13). If Xk < 0 then the minimum is achieved at 
Uh, so ~E-(eJ"')~' = Iuk(eju)(J. If ij, > 1 then the mini- 
mum is achieved at Uh+1, so lB-(ejw)l' = I u h + l ( . j " ) l ' .  If 
there is no change of sign in Re{vk(eJW)g;(eJW)} for any of 
the vertices defining an SSE, then the minimum will be at 
the extreme SSEs, i.e., those edges closest to the vertices 
bounding the phase. 

IBt(eju)l' can be computed by maximization along the 
NSSEs. In thin CMC, the simplest thing to do is to directly 
calculate max lUkl' along the vertices defining the NSSEs. 

5. NUMERICAL EXAMPLE 

Consider the following polynomial 

B ( z )  = bo +biz-' + baz-' + bsz-' + b4z-' 

where the following bounds for the coefficients are conaid- 
ered: 

bo E [0.99,1.01], bl E [-1.0414, -1.0214], 
h E [0.2169,0.2369], bs E [0.3934,0.4134], 
b4 E [-0.2020, -0.1820] 

This implies that B o ( t )  haa the form 

1 - 1.03142-' + 0.22692-' + 0.4034z-' - 0 . 1 9 2 0 ~ - ~  

and Ah = 0.01 for all k = 0, . . . , 4 .  We have used the pro- 
posed algorithm for computing the frequency response of 
every B(ej"), w = 2~1164, 1 = O , . . . ,  63 and used linear in- 
terpolation for plotting the magnitude and phsse. In figure 
1 we plot the value met in the complex plane for w = 2 ~ 5 1 6 4  
together with an approximation obtained by means of grid- 
ding of Ak to values {-0.01,0,0.01} for k = 0,. - - ,  4. It is 

o.''l 0.1 

0.mt 

0.3 0.32 0.34 0.36 0 3  0.28 
0." ' 

W )  

Figure 1: Value set for w = 2x5164. +: Points obtained 
with gridding 

worth noting that whenever there is a term with no powers 
of z-' (an independent term), the polygon will have a hor- 
isontal edge for every frequency, and for frequencies w = 0 
and w = T the polygon degenerates into a horisontal seg- 
ment. Figurea 2 and 3 r e p r e n t  the exact bounds obtained 
for the magnitude and the phase, respectively. 

6 .  APPLICATIONS 

The proposed solution allows to easily compute the fre- 
quency response for a set of transfer functions in an ex- 
act way, which can be very useful in a variety of situations 
where no exact information of the coeffiaenta of the system 
is available. One immediate use of ollr result is the compu- 
tation of the robwt periodog" in which it ir possible to 
take into account the existence of just an estimate of the 
autocorrelation sequence. Note that windowing of the data 
would basically change the sise of &, (see section 2). Of 
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7. CONCLUSIONS AND FUTURE WORK 

We have shown how the frequency response of discrete-time 
transfer functions with interval codficienh can be exactly 
calculated with a k p l e  and efficient algorithm that ex- 
ploits the concept of value set and usee elementary geome- 
try. Since the value set b frequency dependent, it M neces- 
sary to recompute it for each frequency, with no FFT-like 
algorithm presently available. Thin topic will be inveati- 
gated in the future. 

Since the computations depend on a set of vertices and 
edgecl of the resulting polygon, and since it ie possible to 
obtain an explicit minimisation for these edges, it turns out 
that the magnitude and phase bounding functions for all the 
fiequencier in [ 0 , 2 ~ )  can be computed by optimisation over 
a finite set of functions. Even though an I" norm approach 
hss been taken in this paper, it ia pomible to extend it 
without much difRculty for 1' and p (weighted) norms. 

- l o w  

46; 1 2 3 4 6 a 7 
ormg. 

Figure 2: Exact bounds for the magnitude 

9 1 

3' i I 
2 3 4 6 e 7 

0- 

Figure 3: Exact bounds for the phase 

course, it in possible to add some information about cor- 
rektion between different samples, which just changes the 
mapping from the codficient apace to the complex plane, 
but keeps the d b d o n  and algorithm valid. Moreover, the 
computational cost only incremes linearly with the number 
of puameters. 

Another important application appears in filter design, 
wbere this tool can be ased to study the effect of coefficient 
qu.ntkrtion meaaured in t e r m  of the error produced in 
the hqucncy rasponre. Thim allown us to cakulate a worst 
case value for every frequency, which M UeCM whenever 
the coefficients are not known (e.g., adaptive) and finite 
precision arithmetic is wed. 

Finally, we will mention the application of robust sta- 
bility, i.e., the rtability of polynomids with uncertain cc- 
efficients. In thio c a ~ ,  if @ ( E - ' )  denotes the center de- 
nominator polynomid, it M enough to  guarantee that this 
polynomial ia minimwpphw and that the magnitude re- 
sponse does not take the d u e  8-0 (we have provided rim- 
ple ways of doing thb). A similar approach wm taken in 
[SI to raalyr if a family of channel equalisera ikr digital 
communicrtionr met some dynamic specifications, indud- 
ing their udrtence. 

' 
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