
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-9-2010

Distributed, adaptive deployment for
nonholonomic mobile sensor networks : theory
and experiments
Jose Marcio Luna-Castaneda

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Luna-Castaneda, Jose Marcio. "Distributed, adaptive deployment for nonholonomic mobile sensor networks : theory and
experiments." (2010). https://digitalrepository.unm.edu/ece_etds/164

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/164?utm_source=digitalrepository.unm.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Distributed, Adaptive Deployment for
Nonholonomic Mobile Sensor Networks:

Theory and Experiments

by

José Marcio Luna-Castañeda

B.S., Electronics Engineering, Universidad Distrital

Francisco José de Caldas, 2004

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

November, 2009

c©2009, José Marcio Luna-Castañeda

iii

Dedication

A José, Aura, Claudia, Juan Diego y David, mi única familia.

A Roberta, el amor de mi vida.

A Mauricio, Sebastián, Javier y Marcela, amigos caros a mi corazón.

iv

Acknowledgments

I would like to thank Professor Rafael Fierro, my academic advisor, and Professor
John Wood for giving me the opportunity to work on this research, for all their
support and help, and for being part of my committee. I would also like to thank
Professor Chaouki Abdallah for his important suggestions, his support and time, and
for being part of my committee as well. Finally, I would like to thank Andres Cortez
and Francisco Rodriguez for their invaluable collaboration during the experimental
process of my research.

This work was supported by DOE URPR (University Research Program in Robotics)
grant DE-FG52-04NA25590 and by NSF grants ECCS CAREER # 0811347, IIS #
0812338, CNS # 0709329.

v

Distributed, Adaptive Deployment for
Nonholonomic Mobile Sensor Networks:

Theory and Experiments

by

José Marcio Luna-Castañeda

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

November, 2009

Distributed, Adaptive Deployment for
Nonholonomic Mobile Sensor Networks:

Theory and Experiments

by

José Marcio Luna-Castañeda

B.S., Electronics Engineering, Universidad Distrital

Francisco José de Caldas, 2004

M.S., Electrical Engineering, University of New Mexico, 2009

Abstract

In this work we show the Lyapunov stability and convergence of an adaptive and

decentralized coverage control for a team of mobile sensors. This new approach

assumes nonholonomic sensors rather than the usual holonomic sensors found in the

literature. The kinematics of the unicycle model and a nonlinear control law in polar

coordinates are used in order to prove the stability of the controller applied over a

team of mobile sensors.

This controller is adaptive, which means that the mobile sensors are able to esti-

mate and map a density function in the sampling space without a previous knowledge

of the environment. The controller is decentralized, which means that each mobile

sensor has its own estimate and computes its own control input based on local in-

formation. In order to guarantee the estimate convergence, the mobile sensors im-

vii

plement a consensus protocol in continuous time assuming a fixed network topology

and zero communication delays.

The convergence and feasibility of the coverage control algorithm are verified

through simulations in Matlab and Stage. The Matlab simulations consider only the

kinematics of the mobile sensors and the Stage simulations consider the dynamics

and the kinematics of the sensors. The Matlab simulations show successful results

since the sensor network carries out the coverage task and distributes itself over

the estimated density function. The adaptive law which is defined by a differential

equation must be approximated by a difference equation to be implementable in

Stage. The Stage simulations show positive results, however, the system is not able

to achieve an accurate estimation of the density function. In spite of that, the sensors

carry out the coverage task distributing themselves over the sampling space.

Furthermore, some experiments are carried out using a team of four Pioneer 3-

AT robots sensing a piecewise constant light distribution function. The experimental

results are satisfactory since the robots carry out the coverage task. However, the

accuracy of the estimation is affected by the approximation of the adaptation law by

difference equations, the number of robots and sensor sensitivity.

Based on the results of this research, the decentralized adaptive coverage control

for nonholonomic vehicles has been analyzed from a theoretical approach and val-

idated through simulation and experimentation with positive results. As a future

work we will investigate: (i) new techniques to improve the implementation of the

adaptive law in real time,(ii) the consideration of the dynamics of the mobile sen-

sors, and (iii) the stability and convergence of the adaptive law for continuous-time

variant density function.

viii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Coverage Control in Hazardous Environments 2

1.3 Contributions . 3

1.4 Organization of the Thesis . 3

2 Related Research 5

2.1 Sensor Networks . 6

2.2 Coverage Control . 7

2.3 Nonholonomic Multivehicle Control 9

2.4 Consensus Problems . 11

ix

Contents

3 Mathematical Preliminaries 13

3.1 Stability Analysis on Nonautonomous Systems 13

3.1.1 Nonautonomous Systems . 14

3.1.2 Stability Definitions for Nonautonomous Systems 14

3.1.3 Lyapunov Functions . 15

3.1.4 Barbalat’s and Lyapunov-like Lemma 16

3.2 Adaptive Control Fundamentals . 18

3.2.1 Model-Reference Adaptive Control 18

3.2.2 Self Tuning Controllers . 20

3.2.3 The Gradient Estimator . 21

3.3 Nonholonomic Mobile Robots . 23

3.3.1 The Unicycle Model . 25

3.4 Consensus Problem . 27

3.4.1 Consensus Problems on Graphs 27

4 Adaptive Algorithm for Holonomic Sensor Networks 30

4.1 Voronoi Diagrams . 31

4.2 Locational Optimization . 31

4.3 Adaptive Control for Holonomic Sensors 33

4.3.1 Weighting Functions . 36

x

Contents

5 Adaptive Control for Nonholonomic Sensors 37

5.1 Nonlinear Steering Control . 37

5.2 Stability Analysis . 39

5.3 Dynamic Density Function . 43

6 Simulation Tests 45

6.1 Simulation in Matlab . 46

6.1.1 Simulation Design in Matlab 46

6.1.2 Simulation Results in Matlab 48

6.2 Simulation in Stage . 50

6.2.1 Simulation Design in Stage . 50

6.2.2 Simulation Results in Stage 51

7 Experimental Verification 58

7.1 Experimental Design . 58

7.2 Experimental Results . 59

8 Multivehicle Testbed 63

8.1 The Pioneer 3 - AT Robots . 64

8.1.1 Sensor Suite . 66

8.1.2 Power Source . 74

8.2 The P3-AT Software Libraries . 75

xi

Contents

8.2.1 The Player/Stage/Gazebo Project 75

8.2.2 Hardware-Software Interaction 78

9 Conclusions and Discussion 81

A Complement of the Proof of Stability (Theorem 4) 83

References 85

xii

List of Figures

3.1 Model Reference Adaptive Control system. 19

3.2 Self-Tuning Control system. 21

3.3 A unicycle vehicle in the Cartesian plane with the indicated state

variables x, y and θ. 26

5.1 Unicycle model and variables in the goal frame {G}: Notice the

vectors and angles which determine our nonholonomic model in polar

coordinates. 39

5.2 Illustration of the nonlinear steering control over eight robots with

different initial positions. All the robots go to the position (0, 0, 0). . 40

6.1 Plots of the parameter estimation error K(q)T ¯̃ai(t), the error distance

ρ̄(t), the angle αi and the consensus error ca for the simulation in

Matlab. 53

xiii

List of Figures

6.2 Mean squared error of the parameter estimation vector âi averaged

over the whole population of robots and the real parameter vector a

for the simulation in Matlab. The blue line shows the response of the

system without changing the parameter estimation vector âi and the

red line illustrates the obtained improvement by applying the change

at every switching time ts. 54

6.3 Simulation in Matlab with a population of 20 nonholonomic robots

represented by the blue triangles over a dynamic density function

indicated by the multicolor ring-shape contour. The yellow color

of the contour means maximum density. This results correspond to

the simulation changing âi = β at every switching time ts. The Cyan

circles represent the estimated centroids ĈVi
of the i-th robot and the

green lines surrounding the robots form their Voronoi cells. Notice

the centroidal Voronoi tessellations in (b)–(d). 55

6.4 Plots of the error distance ρi averaged over the population of robots,

and the angle αi during the simulation in Stage. 56

6.5 The Stage environment with four P3-AT robots used during the sim-

ulation. The light distribution goes from A to B after 150 s. 57

6.6 Plots of the estimate density functions obtained by the team of robots

in the simulation environment in Stage. 57

7.1 Plots of the error distance ρ̄(t), the angle αi and the consensus error

ca for the experiments. 61

xiv

List of Figures

7.2 The picture in (a) shows a snapshot of an experiment with four P3

- AT robots sensing a light distribution at 107 s. The figure in (b)

shows the estimated density function averaged over the four robots

and the plot in (c) illustrates a top view done in Matlab with the

robot data. The picture in (d) shows the snapshot of the experiment

at 259 s. The figure in (e) shows the estimated density function

averaged over the four robots, and the plot in (f) illustrates a top

view done in Matlab based on the real data 62

8.1 The pictures illustrate the variety of robotic platforms available in

the Marhes lab at the University of New Mexico. 64

8.2 Accesories available for the P3-AT robots at the Marhes lab at the

University of New Mexico. 66

8.3 One of the four P3-AT robots available in the Marhes lab. Notice

the detailed pictures of three different kinds of sensors, namely, Phid-

gets light precision sensors (top), Phidgets magnetic sensors (middle)

and a Hokuyo UHG-08LX laser range finder (bottom), mounted on

a custom fixture attached to the robot. 67

8.4 A Phidgets USB interface I/O board with an attached light precision

sensor. Notice the USB port at the bottom of the image and the

digital input outputs at the right and left edges respectively. The

analog inputs are located at the top edge of the board where the

light sensor is connected. 68

8.5 The picture in (a) shows The SICK LMS 200 laser at the Marhes

lab at The University of New Mexico and the picture in (b) shows

the enclosure ProPak-V3 (lower left) and the antenna GPS-702-GG

(upper right) for the GPS system. 73

xv

List of Figures

8.6 The picture in (a) shows the front sonar array of a P3-AT robot and

the picture in (b) a 12VDC werker battery used in the P3-AT robots. 75

8.7 A Stage model of a P3-AT robot (in red) with a gripper and an LMS

200 laser exploring a virtual world with different kinds of objects,

including another P3-AT robots. 78

8.8 The pictures show the appearance of the real P3-AT and the Gazebo

model of a P3-AT. 79

8.9 The diagram illustrates the software-hardware interaction and the

software architecture of the robot. Notice that the services of Player

run locally in the P3-AT robots allowing a local or remote application

to access the sensors and actuators of the real or virtual robot. . . . 80

xvi

List of Tables

8.1 General specifications of the P3-AT robots. 65

8.2 General specifications of the Phidgets 1127 light precision sensor . . 69

8.3 General specifications of the Phidgets 1108 magnetic sensor 69

8.4 General specifications of the Hokuyo UHG-08LX laser 70

8.5 General specifications of the SICK LMS 200 laser 71

8.6 General specifications of the ProPak-V3 72

8.7 General specifications of GPS-702-GG 73

8.8 General specifications of the motion encoders of the P3-AT robots . 74

8.9 General specifications of the Werker Battery 74

xvii

Chapter 1

Introduction

1.1 Motivation

Some of the technological developments which started occurring during the industrial

revolution in the 19th century not only had a significant repercussion over lives of

people all around the world, but had a great impact over our natural environment.

Some accidents in the past, related to the nuclear and petroleum industries have left

dangerous waste in the planet. Oil spills and failures in nuclear plants have generated

negative consequences on ecosystems, sometimes creating irreparable damages.

Forest fires are a constant threat to our environment as well. Presently, we can

see how difficult it is to put out a large scale forest fire, even in developed countries,

where the process can take days. This is not only devastating for the animals and

vegetation trapped in the fire but it is also a risk for the life of the firefighters involved.

Since the accidents we mentioned above have been and are an actual imminent threat,

we should design a mechanism able to react in time to prevent critical damage.

The coverage control using mobile sensor networks is an option to overcome these

1

Chapter 1. Introduction

disasters. Such a tool is applicable to some other important cases such as recovery

operations, exploration, rescue missions, automatic surveillance, and geological stud-

ies. In several of the mentioned cases human lives can be in danger in a given scenario

where the sensors should be close to the area of interest (e.g., areas in presence of

contaminants or extreme weather). Therefore, if it is possible to substitute human

beings by mobile sensors to carry out a mission in a harmful environment, we are

reducing the risk of the people who participate in the process.

1.2 Coverage Control in Hazardous Environments

As mentioned in the motivation section, the exploration of hazardous environments

by human beings is a very difficult task that sometimes must be carried out by

forcing people to risk their lives. Literature related to oil spills [1] and forest fires

[2], [3] shows that some systems present motion dynamics that make them more

complicated to overcome without putting humans in danger.

With the actual resources for firefighting, the use of manned aerial vehicles re-

quires skillful enough pilots to avoid crashing in the attempt to put out a fire. More-

over, we do not posses efficient mechanisms to follow the evolution of the fire in real

time and the firefighters must get a qualitative estimation of the fire dynamics almost

by direct observation. In another scenario, Cortez et al., exposed in [4] that build-

ing radiation maps involving nuclear material is still done using people for taking

measurements close to the radiated area.

Coverage controllers become promising with the latest developments on wireless

communications, material science, new sensors and the constant improvement of

computational power. The possibilities to send small unmanned aerial, terrestrial or

underwater vehicles which coordinate actions to sense and map an area of interest

are increasing as the research in decentralized algorithms and hardware progresses.

2

Chapter 1. Introduction

1.3 Contributions

This work is motivated by the one presented by Schwager et al., in [5] where the

authors describe the development of an adaptive coverage control for mobile sensor

networks and provide the stability analysis of the controller. The authors assume

that the mobile sensors do not have nonholonomic constraints and that the estimated

density function is static.

However, several real world vehicles such as aircrafts at cruising attitude, sea

vessels and skid-steered mobile robots have nonholonomic constraints and several

phenomena cannot be considered static. The performance of the results given for

holonomic mobile sensors can be severely affected or even invalidated [6], when they

are adapted to nonholonomic mobile sensors.

Our main goal in this thesis is to provide the necessary mathematical background

to use nonholonomic mobile sensors along with the adaptive coverage control pre-

sented in [5], and guarantee the stability of the system. Furthermore, we will apply

our coverage control over dynamic density functions whose parameters are modeled

as piecewise constant functions. We will provide simulations to validate our theo-

retical conclusions. Finally, in order to study the behavior of the controller in a real

environment we will carry out some experiments of the controller using a team of

skid-steered mobile robots sensing a dynamic light distribution function.

1.4 Organization of the Thesis

The thesis is organized as follows: Chapter 2 provides a short overview with examples

and results related to sensor networks, coverage control, nonholonomic multivehicle

control and consensus algorithms which are areas directly related with our problem

formulation. Chapter 3 provides the necessary mathematical background in non-

3

Chapter 1. Introduction

linear control related to stability analysis of nonautonomus systems and presents

the basics of adaptive control and self-tuning systems. Furthermore we provide the

fundamentals of nonholonomic mobile robots and consensus problems. Chapter 4

describes the adaptive coverage control for holonomic sensor networks which in-

spired this work. The mathematical background related to Voronoi partitions and

locational optimization is presented. In Chapter 5 we present our main theoretical

result which shows the stability of the adaptive coverage control for nonholonomic

sensor networks. Chapter 6 shows simulation results obtained using Matlab and

Stage. Chapter 7 illustrates the experimental results obtained by using a team of

four Pioneer 3-AT robots sensing a dynamic light distribution. Chapter 8 provides

a technical description of the experimental testbed available at the Marhes lab at

the University of New Mexico. Lastly, Chapter 9 summarizes the main conclusions

and limitations of our approach as well as future work to overcome those limitations.

4

Chapter 2

Related Research

The problem of controlling networked robots has gained an increasing interest in

recent years because of the technological advances in networking and miniaturization

of electro-mechanical systems [7] which enabled the implementation of tools and

algorithms for sensing. Using a team of robots rather than a single robot allows

the exploration of novel solutions for problems like search and recovery operations,

manipulation in hazardous environments [7], exploration, rescue missions, automatic

surveillance [5], and geological and ecological studies such as the tracking of algae

bloom [8] and oil spills [1], among others.

Concepts such as network sensors, coverage control, consensus and nonholonomic

robots are common to several scenarios involving the control of networked robots

such as the work presented in this thesis. For that reason we review some recent

applications and results of those concepts in different contexts.

5

Chapter 2. Related Research

2.1 Sensor Networks

Sensor networks are groups of simple sensors that can be used to monitor, track

or survey an area of interest. Every sensor collects data and shares the information

with the others in the group. If the sensors have computational capabilities, they can

even process the data to carry out a determined mission. The sensor networks we are

interested in are dynamic [1], [7], [8], [9], [10]. Some of them can adapt themselves

to the environment [5], [11], [12] in such a way that the sensors can react to changes

in the environment and take advantage of their mobility to explore the new areas of

interest.

We consider convenient to illustrate some applications which are part of the state

of the art in the sensor networks field. Mostofi and Sen propose in [13] a compressive

sensing approach to build a map of spatial variations of certain parameter of inter-

est in its environment. The compressive sensing approach provides the theoretical

frame to guarantee that the nodes on the sensor network can reconstruct the spatial

variations with a considerably incomplete sensing of the area.

Based on the compressive sensing theory they present the foundations of a novel

non-invasive mapping technique which applies the Fourier slice theorem in order to

build a two-dimensional map of an indoor environment (e.g., a building, a store or

a house). The authors use mobile sensors organized in transmitter-receiver couples.

The receiver gets the data from a beam sent by the transmitter through the indoor

environment and samples the Fourier transform of the two-dimensional map. Af-

terwards, the agents can use the sparse representation of the signal in the partial

domain and the robots can solve the map cooperatively.

Hou and Slotine propose in [14] a dynamic region following formation control

for a swarm of robots, which is able to adjust a formation with a desired geometric

shape by choosing the right function to describe it. The system is scalable allowing a

6

Chapter 2. Related Research

number of robots to leave the formation or fail without affecting the general behavior

of the swarm. The communication between the agents is limited to the adjacent

neighbors and the robots do not require any identification or order for the formation

to work.

The system implements an adaptive control law and a parameter update law

which allow a provable convergence analysis of the system using the Lyapunov-like

lemma. The general formation is able to scale, rotate and displace. Some simulations

using a swarm of 100 robots contracting and expanding the formation in order to

pass through a door are shown. Different shapes of the region such as a circle, a

square, an ellipse and a ring are illustrated in the simulations as well.

We have presented two specific applications of sensor networks related to two

different disciplines namely, compressive sensing and flocking. The presented cases

are located in two different scenarios which show their usefulness and feasibility. In

what follows this section we present more recent sensor networks results in other

contexts.

2.2 Coverage Control

Based on [15], the coverage control problem involving sensor networks provides the

notion of quality of service of the sensing task. Having a cost function which deter-

mines a problem-dependent metric of the coverage performance we can implement

a controller to determine the optimal placement of the sensors in an environment.

The locational optimization problem [7], [16], which will be explained in detail in Sec-

tion 4.2, is one of the methodologies applied in coverage control. Other approaches

for sensing an unknown environment different than locational optimization are the

adaptive triangular mesh generation algorithm proposed by Lee et al., [11] and the

Bayesian sequential field estimation of Graham et al., [17].

7

Chapter 2. Related Research

We describe a couple of recent results in coverage control as an illustration not

only of the actual applications but of the potential future solutions it can provide.

Lee et al., present in [11] an approach of coverage control with environmental sensing.

Given a chemical spill the robots should position themselves over an area such that

they concentrate themselves in the area with the greatest amount of the chemical or

the most contaminated area.

The robots are initially distributed in an arbitrary way over the contaminated

area. They start calculating an adaptive triangular mesh where each robot pi chooses

the closest neighbor p1 to be the first triangular neighbor. Afterwards, the second

triangular neighbor p2 is chosen such that the distance d(pi, p2) + d(p2, p1) is mini-

mal. The control law forces the distribution of robots to form a mesh of equilateral

triangles whose sides length are inversely proportional to the contamination level in

the area below them. Then the triangular mesh algorithm concentrates more robots

in the more contaminated regions. Notice that with this algorithm no explicit com-

munication is needed if the robots are able to detect their neighbors’ location using

local sensor measurements.

In [18] Schwager et al., propose an optimization criterion to distribute a team of

hovering robots with downward facing cameras to obtain the best view of an environ-

ment. They propose a metric based on the minimum information per pixel in order

to elaborate a cost function. This cost function is minimized as the hovering robots

locate themselves in a three-dimensional space in such a way that the downward

facing cameras can completely cover a two-dimensional region of interest. Further-

more the authors prove the robots convergence to locally optimal positions using the

LaSalle’s invariance principle. They carried out some successful simulations and an

implementation using hummingbird quadrotors.

We have presented a couple of the most recent advances published in the area of

coverage control. Coverage control and sensor networks are found together very often

8

Chapter 2. Related Research

because the coverage control discipline makes more sense if the covered environment

is sensed to fulfill a goal. Now, let us discuss a little bit about the core of the research

results presented in this thesis namely, nonholonomic multivehicle applications.

2.3 Nonholonomic Multivehicle Control

Based on [6], Kwok and Martinez state that because of the complexity involved

in the analysis of dynamic systems interacting through a network, it is reasonable

to consider simple dynamical models such as the popular single integrator [7], [5],

[19], [20], or the double and higher order integrators [21], [22], [23]. However, the

performance of the existing results can be severely affected or even invalidated under

the nontrivial dynamics of nonholonomic systems whose instantaneous movements

are restricted.

In this section we present some recent results in the area of nonholonomic mul-

tivehicle control to illustrate the complexity involved in considering nonholonomic

constraints in some benchmark problems. Lan et al., propose in [24] a hybrid con-

troller to carry out a target tracking with a sensor network. The hybrid controller

has two main states: the first one takes the robots to a relatively close position of the

target, then the hybrid controller switches to a state where the robots start applying

a circular motion around the target in order to capture it. The sensor network is

composed by unicycle vehicles. The authors give a formal proof of the trajectory

convergence and set invariance of the system.

In [25], Wu and Jiang present a formation control, specifically a leader-follower

control for nonholonomic robots with one leader and several followers. The unicycle

model is used as well as a switching controller with two states. The first state is

activated when the follower is farther from a predefined threshold distance from the

leader and applies a non-linear control law to shorten the distance. The follower

9

Chapter 2. Related Research

creates a bidimensional cone which is expanding forwards to contain the leader,

whereas it is moving towards the leader. Once the follower reaches the desired

distance to the leader, the second state is activated and a finite-feedback controller

stabilizes the distance and orientation of the follower. They prove the stability of the

switching control and show some experimental results using a team of three Pioneer

3-AT (P3-AT) robots.

Oikonomopoulos et al., present in [26] a multiagent coordination algorithm aimed

to work with a special model of aircraft-like mobile agents. The proposed model is

an input-constrained hybrid automaton and is known not to be generally safe. They

proposed an algorithm based on workspace partitioning, shortest-path graph search

and collision detection in order to show the feasibility of the system and correct

the non-generally safe feature. Even though the algorithm is verified thorough some

simulations it is not fully formalized.

Recently, Kwok and Martinez in [6] have used a hybrid system approach to attack

the decentralized control problem described in [7] which is closely related to the

problem we are dealing with in this thesis. The authors model the problem as a

hybrid automaton with a series of states implementing some forward-left, forward-

right, hover-left and hover-right behaviors in a team of unicycle agents with fixed and

variable forward velocity. The agents are driven to the centroids of their respective

Voronoi partitions assuming a previous knowledge of the sampling space.

The main goal is to optimally position the sensor network over the sampling space

in the presence of a density function. The sensors can solve the facility problem

known as a locational optimization problem and concentrate more sensors in the

areas of interest and less sensors in the remaining areas. The authors assume that

the robots have a previous knowledge of the sampling space.

Although we explain the locational optimization problem in Section 4.2, it is

10

Chapter 2. Related Research

worthy to mention that this problem involves a cost function which is minimized

by a gradient-descent algorithm, therefore the robots optimize their location over

the density function as the algorithm converges. The authors present a convergence

analysis of the system based on the invariance principle for hybrid systems [27].

As the reader can notice from the four examples given above, the nonholonomic

multivehicle control requires a special treatment even for traditional problems that

have been apparently solved in the past, since the consideration of simple dynamics

can have destabilizing effects. Now, we introduce some related results on consensus

algorithms which as explained in Chapter 4 are used to acquire an agreement within

the group of agents involved in the multivehicle control problem.

2.4 Consensus Problems

Based on [9] in a consensus problem a group of nodes in a network topology tries to

reach an agreement of a quantity of interest. The nodes exchange information with

their neighbors and update their quantities iteratively using a consensus algorithm.

We usually find the consensus problem applied to mobile sensor networks in different

scenarios such as collective behavior of flocks and swarms, and formation control

[28]. In the case of formation control, the consensus algorithm implements a control

law which drives the robots to a position that fulfils the agreement requirement.

Now, we present a couple of recent results related to consensus algorithms applied

to formation control. Franceschelli et al.,, in [21] propose a methodology to solve the

consensus problem for multi-agent systems with kinematic constraints. Given a team

of agents with nonholonomic constraints and a set of states associated to each agent,

we have that the agents should reach a common value of the set of states. The agents

should consider network constraints and limitations in the information sharing. The

kinematics constraints considered for these problems are related to finite maximum

11

Chapter 2. Related Research

speed and finite maximum acceleration among other possibilities.

The network constraints are related to the graph of the network e.g., a connected

graph which implies that all the nodes are always connected to the network. The

authors solve the rendezvous problem taking all the agents to the centroid of the

network, so the agents should reach the consensus about the network centroid loca-

tion. The problem is solved in a decentralized fashion through a one-step horizon

optimization. They present successful simulations showing all the robots getting to

the rendezvous point after reaching the consensus.

Listmann et al., present in [29] a consensus for formation control using nonholo-

nomic constraints. But in contrast to some previous works [21] – [23], which assume

fully actuated robotic systems (e.g., the simple and double integrator kinematics

equations), the authors assume the kinematic equations of the unicycle model. Fur-

thermore the authors add an obstacle avoidance algorithm in order to improve the

performance of the controller.

A rendezvous algorithm is implemented to be solved using the consensus algo-

rithm and an artificial field is implemented in order to keep the robot formation while

traveling through the environment. A stability proof of the rendezvous controller is

carried out applying the LaSalle-Krasovskii invariance principle and some simulation

results are presented.

The former examples illustrate how the four main concepts namely sensor net-

works, coverage control, nonholonomic multivehicle control and consensus algorithms

involved in this research work in different scenarios. As we describe later in Section

5.2, we put all these concepts together in our mobile sensor network deployment

problem.

12

Chapter 3

Mathematical Preliminaries

In this chapter we provide some classic definitions, theorems and lemmas of nonlinear

control theory which are necessary tools to be used in the development of our main

theoretical ideas behind our decentralized, adaptive algorithm. The concepts of

nonlinear control presented in this chapter are mainly taken from [30] and [31] and

we do not provide the proofs of the theorems and lemmas since they are available in

the indicated references.

3.1 Stability Analysis on Nonautonomous Systems

In this section we provide the definition of nonautonomous systems. Afterwards, we

define several types of stability and then we introduce the definition of Lyapunov

functions, positive definite functions and decrescent functions. After that, we in-

troduce two important results namely, the Barbalat’s lemma and the Lyapunov-like

lemma.

13

Chapter 3. Mathematical Preliminaries

3.1.1 Nonautonomous Systems

Given the n×1 state vector x, the m×1 input vector u and the n×1 vector function

f we can construct a set of n nonlinear equations of the form

ẋ = f(x,u, t). (3.1)

The variable n is called the order of the system. A specific value of the state

vector x at a time t is called a point in the state-space. Since the state vector x

is varying with time, it determines some trajectories on the state-space called state

trajectories.

Another equation to consider is

y = h(x,u, t), (3.2)

which is called the output equation of the system and determines the state variables

that are of particular interest to our model. The equations (3.1) and (3.2) together

are usually called the state-space model of the system. Now, we provide the definition

of nonautonomous systems.

Definition 1. The nonlinear system given by (3.1) is nonautonomous if and only if

f depends explicitly on time. Otherwise the system in (3.1) is said to be autonomous.

3.1.2 Stability Definitions for Nonautonomous Systems

Let us start with the definition of equilibrium point. Afterwards, we provide some

stability definitions for nonautonomous systems.

Definition 2 (Equilibrium Point). A state xeq is said to be an equilibrium point if

once the state vector x(t) is equal to xeq it remains equal to xeq for all future time.

14

Chapter 3. Mathematical Preliminaries

Now, consider the nonautonomous system given by (3.1) where f : [0,∞)×Dx →

R
n is piecewise continuous in t and locally Lipschitz in x on [0,∞)×Dx, and Dx ⊂ R

n

is a domain containing the origin x = 0. Then we have the following definitions of

stability.

Definition 3. The equilibrium point x = 0 is stable at t = t0 if for any ǫ > 0, there

exists a positive scalar δ(ǫ, t0) such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ǫ ∀t ≥ t0.

Definition 4. The equilibrium point x = 0 is asymptotically stable at t = t0 if it is

stable and there exists a positive scalar δ(t0) such that

‖x(t0)‖ < δ(t0) ⇒ x(t) → 0 as t → ∞.

Definition 5. The equilibrium point x = 0 is globally asymptotically stable if

x(t) → 0 as t → ∞ for any x(t0).

3.1.3 Lyapunov Functions

Now, we define positive definite functions which allow us to define Lyapunov func-

tions.

Let x = 0 be an equilibrium point for (3.1) and Dx ⊂ R
n is a domain containing

the origin x = 0. Let V : Dx → R be a continuously differentiable function then we

have the following definitions.

Definition 6. The scalar continuous function V (x) is called locally positive definite

if V (0) = 0 and inside a ball B(0, r) we have that x 6= 0 ⇒ V (x) > 0.

Definition 7. The scalar continuous function V (x) is called globally positive definite

if V (0) = 0 and x 6= 0 ⇒ V (x) > 0 in the whole state space.

15

Chapter 3. Mathematical Preliminaries

Now, we give the definition of Lyapunov functions.

Definition 8. The function V (x) is said to be a Lyapunov function if it is positive

definite inside a ball B(0, r), has continuous partial derivatives and its time derivative

along any state trajectory of the system in (3.1) is negative semidefinite, i.e.,

V̇ (x) ≤ 0.

3.1.4 Barbalat’s and Lyapunov-like Lemma

Now, we state the definitions of decrescent functions, continuous functions and uni-

formly continuous functions in order to state the Barbalat’s lemma.

Definition 9. The scalar function V (x, t) is said to be decrescent if V (0, t) = 0, and

if there exists a time-invariant positive definite function V1(x) such that

V (x, t) ≤ V1(x)

i.e., the function V (x, t) is decrescent if it is dominated by an invariant positive

definite function.

From calculus we have that if a function f is lower bounded and decreasing

(ḟ ≤ 0), then limt→∞ f(t) exists and is finite. However if limt→∞ f(t) exists and

is finite then it does not imply that ḟ(t) → 0. As a counter-example we have

that the function f(t) = sin(log t) taken from [30] does not converge. However,

ḟ(t) = cos(log t)
t

→ 0 as t → ∞

Furthermore, if ḟ(t) → 0 does not imply that limt→∞ f(t) exists and is finite. As

a counter-example we have from [30] that the function f(t) = e−t sin(e2t) → 0 as

t → ∞ but ḟ(t) is unbounded.

Then, we can ask what the conditions are to guarantee that ḟ(t) → 0 given that

limt→∞ f(t) exists and is finite. The answer is given by an important result called

16

Chapter 3. Mathematical Preliminaries

Barbalat’s lemma. But before we state the Barbalat’s lemma, we need to give the

definitions of continuity and uniform continuity.

Definition 10. A function f(t) is continuous on [0,∞) if

∀ t1 ≥ 0, ∀ ǫ ≥ 0, ∃ δ(ǫ, t1) > 0, ∀ t ≥ 0, |t − t1| < δ ⇒ |f(t) − f(t1)| < ǫ.

Definition 11. A function f(t) is uniformly continuous on [0,∞) if

∀ ǫ ≥ 0, ∃ δ(ǫ) > 0, ∀ t1 ≥ 0, ∀t ≥ 0, |t − t1| < δ ⇒ |f(t) − f(t1)| < ǫ.

Now, we proceed to state the Barbalat’s lemma.

Lemma 1 (Barbalat’s lemma). If for the differentiable function f(t), limt→∞ f(t)

exists and is finite and ḟ is uniformly continuous, then ḟ(t) → 0 as t → ∞.

The Lyapunov-like lemma is a direct consequence of the Barbalat’s lemma,

Lemma 2 (Lyapunov-like lemma). If a scalar function V (x, t) satisfies the following

conditions:

• V (x, t) is lower bounded,

• V̇ (x, t) is negative semidefinite,

• V̇ (x, t) is uniformly continuous in time,

then V̇ (x, t) → 0 as t → ∞.

Now, we proceed to introduce another important tool related to this research

called adaptive control.

17

Chapter 3. Mathematical Preliminaries

3.2 Adaptive Control Fundamentals

In the nonlinear control scenario the systems are modeled according to specific pa-

rameter values. These parameters can be constant or be slowly varying uncertain

parameters. If the parameters start changing with some uncertainty the gains of the

controller should be adjusted in order to keep the stability of the system.

As an example of this slowly varying uncertainty we have the robot manipulators

[30] which should deal with objects of different sizes, weights and shapes. The gains

of the manipulator controller should be adjusted to guarantee the correct behavior

of the manipulator for every different object. Other examples are the autopilots

for controlling a ship and an aircraft. In both cases the weather conditions and

some other phenomena changing the behavior of the fluid (water or air) induce

uncertainty in the model parameter values. Those parameters should be estimated

by the controller in order to adjust the gain to keep the stability of the system.

Adaptive controllers are able to adjust the controller parameters on line using

special mechanisms. It is worthy to mention that the adaptive controller is assumed

to be fast enough to react to changes in the parameters of the plant. If the plant

is changing too fast to be tracked by the adaptive controller, the stability of the

system cannot be guaranteed. Based on [30] there are two main approaches namely,

Model-Reference Adaptive Control (MRAC) and Self Tuning Controllers (STC).

3.2.1 Model-Reference Adaptive Control

A general scheme proposed in [30] is given in Fig. 3.1. The plant is supposed to have

a known structure which means that we know the structure of the dynamic equation

of the system but we do not know some parameters in the equation which must be

estimated. The reference model is a dynamic equation which provides the desired

18

Chapter 3. Mathematical Preliminaries

Reference
Model

Controller Plant

Adaptation Law

m
y

y
e

u

â

-

+

+

-

r

Figure 3.1: Model Reference Adaptive Control system.

response of the plant; it should consider the physical constraints of the plant and

the performance specifications such as overshoot, rise time and frequency response

among others.

The controller makes reference to our control law but in this case, this controller

possesses adjustable parameters. Therefore we have a family of controllers rather

than a unique controller. This controller is assumed to have perfect tracking capacity

which means that if the parameters of the plant are known then the response of the

19

Chapter 3. Mathematical Preliminaries

system should coincide with the ideal one. If the parameters of the plant are not

known then the response of the plant approximates the response of the ideal one

asymptotically.

Lastly the adaptation law is the mechanism to adjust the parameters of the

controller based on the error between the ideal response and the actual response.

The main goal is to take the mentioned error to zero asymptotically.

3.2.2 Self Tuning Controllers

In contrast with MRAC, the STC does not use a reference model to approximate the

ideal response of the plant. As indicated in Fig. 3.2 the STC has three main blocks

namely, the plant, the controller and the adaptation law.

The system starts with some initial plant parameters1 â0 which are sent to the

controller. The controller calculates an input u to excite the plant. Simultaneously

the estimator takes the input u and the plant output y and calculates a new set of

estimated parameters â, which are sent again to the controller to start a new cycle.

Based on [30] the estimator should be capable of finding the set of parameters

that fits the input-output data from the plant. However, the estimation of the real

parameters can be guaranteed just under some persistently exciting condition, to be

explained later.

The gradient estimator is the simplest on line estimator among the most popular

prediction-error-based estimators namely, the standard least-squares estimator, and

the least squares with exponential forgetting described in [30].

1The initial parameters are not completely arbitrary since they should fulfill the con-
straints related to the specific plant.

20

Chapter 3. Mathematical Preliminaries

r
Controller Plant

Estimator

yu

â

-

+

Figure 3.2: Self-Tuning Control system.

3.2.3 The Gradient Estimator

The first step during a parameter estimation process is to determine the estimation

model to be used. The estimation model is basically the assumed mathematical

structure used to approximate the behavior of the estimated parameter. A useful

estimation model is the linear parameterization which is defined as follows

y(t) = W(t)a, (3.3)

21

Chapter 3. Mathematical Preliminaries

where the n × 1 vector y represents the “outputs” of the system, the m × 1 vector

a represents the plant parameters to be estimated and W is a signal matrix used to

model the system outputs. The vector y and the signal matrix W must be known

and the parameter vector a is unknown.

Assume that we have already an estimate â(t) of the parameter vector a(t) at

the time instant t. Then, the estimate of the system output will be

ŷ(t) = W(t)â, (3.4)

with ŷ(t) called the predicted output at time t.

The prediction error is the difference between the predicted output and the mea-

sured output and is given by

e = Wâ− Wa = Wã, (3.5)

where ã = ã − a is called the parameter estimation error.

In the gradient estimator the estimated parameters are updated in the converse

direction of the gradient of the squared prediction error, i.e.,

˙̂a = −γ
∂[eT e]

∂â
, (3.6)

where γ > 0 and is called the estimator gain.

From (3.5) we can rewrite (3.6) as

˙̂a = −γWTe

= −γWTWã, (3.7)

Lastly, proposing the Lyapunov function candidate

V = ãT ã, (3.8)

22

Chapter 3. Mathematical Preliminaries

and calculating its derivative we have that

V̇ = −2γãWTWã ≤ 0. (3.9)

And we found that based on the Lemma 2 (Lyapunov-like lemma) the gradient

estimator is always stable, and since the Lyapunov function is the squared parameter

error we conclude that the parameter error is always decreasing and we guarantee

that the product Wã → 0 as t → ∞. However, notice that ã not necessarily goes

to zero. In fact the convergence of the estimated parameters to the real parameters

depends on the excitation of the input signals and is usually called persistency of

excitation condition and is given by the following theorem.

Theorem 1 (Persistency of Excitation Condition). If the matrix W(t) fulfills the

persistency of excitation condition then there exist α > 0 and T > 0 such that
∫ t+T

t

WTW(r)dr ≥ αI (3.10)

then the parameter error vector ã converges exponentially to zero.

3.3 Nonholonomic Mobile Robots

Based on [32] we can consider a rigid mobile robot with an associated generalized

joint variable vector q = [q1, q2, · · · , qn]T ∈ Q ⊆ R
n moving in a workspace Ω. The

entries qi ∀i = 1, · · · , k of the vector q represent the state variables of the system

which are usually position and orientation variables. Robot motions are constrained

to a subset of the set of attainable positions, velocities and accelerations because

they are usually aimed to carry out tasks by interacting with different objects in

the environment. We can model a set of k independent motion constraints using

equations of the form

ai(q, q̇, t) = 0; ∀i = 1, 2, · · · , k, (3.11)

23

Chapter 3. Mathematical Preliminaries

so the space of attainable velocities q̇ ∈ Vq is reduced to a (n − k) dimensional

subspace without changing the dimension of the space Q [32].

If we group the independent constraints in a matrix as follows,

A(q, t) = [a1(q, q̇, t), a2(q, q̇, t), · · · , ak(q, q̇, t)]T , (3.12)

and A(q, t) = 0 then the matrix A(q, t) represents a set of holonomic or integrable

constraints. Otherwise, the constraints are called nonholonomic or nonintegrable.

As an example, a kinematically constrained robotic system such as a car-like

robot has to deal with nonholonomic constrains given by the impossibility of moving

sideways. Therefore, some tasks like the parallel parking of a vehicle in a parking

lot would be easier to carry out if car-like vehicles could move sideways, i.e., if they

where holonomic.

Different kinds of characterization of nonholonomic constraints besides the one

given in (3.12) are possible e.g., nonholonomic constraints related to the position of

the robot but not to the velocity ai(q, t) = 0 ∀i = 1, · · · , k, or the representation of

k obstacles in a workspace Ω by inequalities of the form,

ai(q, t) ≤ 0 ∀i = 1, · · · , k. (3.13)

We can associate nonholonomic constraints to robotic manipulators as well; how-

ever, for this particular research we limit the discussion to nonholonomic kinematic

constraints for mobile robots. Furthermore we assume that the k kinematic con-

straints are independent of time and can be expressed as,

A(q)q̇ = 0. (3.14)

Let us assume a mobile robot with k independent nonholonomic constraints de-

fined by (3.14). If we get a full rank matrix S(q) of size (n − k) × (n − k) which

24

Chapter 3. Mathematical Preliminaries

spans the null space of A(q), i.e.,

ST (q)AT (q) = 0, (3.15)

then we can find a vector ν ∈ R
n−k such that

q̇ = S(q)ν(t) ∀t, (3.16)

where the vector ν(t) is usually called the velocity vector. For several cases it is

defined as ν(t) = [v(t), ω(t)]T where v(t) and ω(t) are the linear and angular velocity

of the mobile robot.

The expression given in (3.16) represents the kinematic equation of the constraints

on q̇(t) in terms of the velocity vector ν(t). Now, we are ready to analyze the unicycle

model which is commonly found in the literature [32]–[33].

3.3.1 The Unicycle Model

In Fig. 3.3 we show the position variables related to the unicycle model. The simple

unicycle behavior is based on the fact that neglecting balancing concerns, the vehicle

can only move in a direction normal to the axis of the driving wheels. The vehicle

should satisfy the pure rolling condition given as follows [32],

ẏ cos θ − ẋ sin θ = 0, (3.17)

where ẋ = dx
dt

and ẏ = dy

dt
and θ is the heading angle of the robot as shown in Fig.

3.3.

From (3.15) we have that S(q) is given by,

S(q) =











cos(θ) 0

sin(θ) 0

0 1











(3.18)

25

Chapter 3. Mathematical Preliminaries

x

y
θ

Figure 3.3: A unicycle vehicle in the Cartesian plane with the indicated state vari-
ables x, y and θ.

Therefore (3.16) gives the following kinematic equation model of the simple uni-

cycle,











ẋ

ẏ

θ̇











=











cos(θ) 0

sin(θ) 0

0 1















v

w



 (3.19)

which are the equations we use to characterize our mobile sensors. Notice that we

are neglecting the forces and torques in this model, however, as shown in [32] it is

possible to incorporate the dynamics and that is part of our future research.

26

Chapter 3. Mathematical Preliminaries

3.4 Consensus Problem

In several sensor network applications the agents need to reach an agreement of a

certain quantity of interest [9]. This quantity can be related to the state variables

of every agent or not. The agents should be able to transmit their quantity of

interest to their neighbors through the network in order to get the agreement or

consensus. Furthermore the agents should implement a consensus protocol which

basically depends on the dynamics of the network.

For this particular case, we assume that the mobile sensor network has a fixed

topology and zero communication time delay. Moreover, as described before in Sec-

tion 3.3.1, the agents motion is modeled using continuous dynamics.

3.4.1 Consensus Problems on Graphs

Let us define the directed graph G = (V,E) of order n. The nodes are indicated by

the vector V = {v1, . . . , vn}, and the edges by E = {e1, . . . , el}, where ei = {vj, vk}.

Furthermore E ⊆ V × V and the adjacency matrix A(i, j) is defined as,

A(i, j) =







aij ≥ 0 for {vi, vj} ∈ E,

0 otherwise.

where aij = 1 indicates which vertices of the directed graph are adjacent to the jth

node. Notice that since the graph is directed A(i, j) 6= A(j, i).

The set of neighbors of node vi is defined as Ni = {vj ∈ V |(vi, vj) ∈ E}. The

out-degree of the node vi is defined as degout(vi) =
∑n

i=1 aij. Similarly the in-degree

of the node vi is degin(vi) =
∑n

i=1 aji.

Definition 12 (Balanced Graphs). A node vi of a directed graph G = (V,E) is

27

Chapter 3. Mathematical Preliminaries

balanced if and only if

degout(vi) = degin(vi). (3.20)

A graph G = (V,E) is balanced if and only if all its nodes are balanced i.e.,

∑

j

aij =
∑

j

aji, ∀i. (3.21)

In this work, we assume that our sensor network forms a balanced graph, there-

fore we can build the degree matrix of the graph G as diagn
i=1(|Ni|), where |Ni| =

degout(vi) = degin(vi).

The laplacian matrix is defined as L = diagn
i=1(|Ni|) − A. The row sums of the

laplacian matrix is zero, therefore the laplacian matrix has a zero eigenvalue with an

associated eigenvector 1 = {1, . . . , 1}T .

If any two nodes of a graph can be connected through a path following the

direction of the edges the graph is said to be a connected graph. We assume that our

network topology forms a connected graph therefore L1 = 1TL = 0. Then we have

that xTLx ≥ 0 ∀x, and xTLx = 0 implies x = 0 or x = 1c for some c ∈ R.

In [9] the authors propose the following linear consensus protocol for fixed network

topology and zero communication time delay,

ui =
∑

vj∈Ni

aij(xj − xi) (3.22)

with the state of the network evolving according to the following linear system,

ẋ(t) = −Lx(t), (3.23)

where L is the graph laplacian.

Finally, Olfati-Saber et al., state and prove the following theorem in [9],

28

Chapter 3. Mathematical Preliminaries

Theorem 2. Consider the network of integrator agents defined by (3.23) with a fixed

topology G(V,E) which is a strongly connected directed graph. Then the linear con-

sensus protocol given by globally asymptotically solves the average-consensus problem

if and only if 1TL = 0.

We do not provide the proof of this theorem, however, we exhort the reader to

review the Appendix A after reading Chapters 4 and 5 where we provide the proof

of the consensus convergence related to our particular case.

29

Chapter 4

Adaptive Algorithm for Holonomic

Sensor Networks

In this section we introduce some additional theoretical background involved in the

development of our adaptive and decentralized controller for nonholonomic robots.

We do not consider necessary to use the bold notation to differentiate vectors and

scalars in the following chapters as we did in Chapter 3.

As mentioned in the introduction, we are interested in employing dynamic sensor

networks to achieve an estimation of a density function which represents a concen-

tration of a measurable phenomenon. The sensory function can be considered static

(e.g., a stable methane concentration in a garbage dump) or dynamic (e.g., an oil

spill [1] or a forest fire [2]).

In some works as the ones presented in [34] and [35], we find applications that

involve Voronoi partitions. They are a typical feature of several biological systems

[36] and recently have received special attention by mathematicians for their applica-

tion in disciplines such as cellular biology, image compression, statistics and robotics

among others. Before any further discussion, let us start with some necessary defi-

30

Chapter 4. Adaptive Algorithm for Holonomic Sensor Networks

nitions.

4.1 Voronoi Diagrams

We based the following definition on the one in [36]

Definition 13. Given an open set Q ⊆ R
N , the set {Vi}k

i=1 is called a Voronoi

tessellation or diagram of Q if Vi ∩ Vj = ∅ for i 6= j and
⋃k

i=1 Vi = Q. Given a set of

points {pi}k
i=1 belonging to Q, the Voronoi region Vi corresponding to the point pi is

defined by

Vi = {x ∈ Q | ‖x − pi‖ < ‖x − pj‖

for i, j = 1, . . . , k, j 6= i} .

Where ‖ · ‖ denote the Euclidean norm on R
N . The points {pi}k

i=1 are called

generator points, and Vi is the Voronoi region associated to the generator point pi.

Although Voronoi diagrams can be defined using several distance functions such

as the geodesic distance described in [37]. For this particular problem we are using

Euclidean distance, and Q is considered a convex polytope in an N -dimensional

Euclidean space.

4.2 Locational Optimization

Based on [16], let Q ⊂ R
N be a convex polytope including its interior. Assume a

mapping φ(q) : Q 7→ R+ with q ∈ Q called a distribution density function (or sensory

31

Chapter 4. Adaptive Algorithm for Holonomic Sensor Networks

function) which represents a measurement of the probability of a specific event on

Q. The locational optimization function is then defined as

H(P) =

n
∑

i=1

∫

Vi

f(‖q − pi‖)φ(q)dq, (4.1)

where P is the set of all the n generator points {p1, . . . , pn} ∈ Q and Vi is the Voronoi

partition of the i-th robot.

Now, based on [7] we can adapt some physical concepts namely, the mass MVi
,

the first moment LVi
, the polar moment of inertia JV,p and the centroid CVi

of a

Voronoi region Vi. Their definitions are given by the following equations,

MVi
=

∫

Vi

φ(q)dq,

LVi
=

∫

Vi

qφ(q)dq,

JV,p =

∫

Vi

‖q − pi‖
2 φ(q)dq,

CVi
=

1

MVi

∫

Vi

qφ(q)dq. (4.2)

From [7], if we define f(‖q−pi‖) = ‖q−pi‖2 and replace it in (4.1), after applying

a partial derivative with respect to pi we have that

∂HV (P)

∂pi

=

∫

Vi

∂

∂pi

f(‖q − pi‖)φ(q)dq

= 2MVi
(pi − CVi

). (4.3)

Therefore, all the Voronoi tessellation in Q where the generator points are at the

same time the centroids of their Voronoi partitions minimize the locational optimiza-

tion function. These tessellations are usually called centroidal Voronoi tessellations

[36].

32

Chapter 4. Adaptive Algorithm for Holonomic Sensor Networks

4.3 Adaptive Control for Holonomic Sensors

In [5] the authors propose an approach which guarantees that the network of mobile

agents minimizes the cost function HV (P) in (4.1). They assume that each agent

measures the sensory function without requiring a previous knowledge.

In order to deal with the lack of knowledge of the sampling space they proposed

a decentralized adaptive control based on the following assumptions,

Assumption 1 (Matching Conditions). There exists a parameter vector a ∈ R
m
+ and

a vector function K : Q 7→ R
m
+ such that

φ(q) = K(q)T a, (4.4)

where m ∈ N, and (·)T denotes transpose.

The parameter vector a is unknown by the agents but K(q) is available to them.

Assumption 2 (Lower Bound). Given that a(j) is the j-th element of the vector a

and β ∈ R+ then

a(j) ≥ β ∀j = 1, . . . , m,

The reason for a lower bound for the parameter vector is to avoid that K(q)T a =

φ(q) = 0 leading to a zero in the denominator of (4.2).

The sensory function estimated by the i-th agent is given by φ̂i = K(q)T âi, where

âi is the estimation of the parameter vector a calculated by the agent i. Furthermore

the parameter error vector ãi is given by

ãi = âi − ai. (4.5)

33

Chapter 4. Adaptive Algorithm for Holonomic Sensor Networks

In [7] the mobile agents are considered holonomic vehicles with first-order con-

tinuous dynamics, that is

ṗi = ui, (4.6)

which is called a single integrator.

The control law is defined as

ui = k(ĈVi
− pi), (4.7)

where ĈVi
is an estimate of the real centroid CVi

of the i-th Voronoi region defined

by

ĈVi
=

L̂Vi

M̂Vi

=

∫

Vi
qφ̂(q)dq

∫

Vi
φ̂(q)dq

.

Finally, the adaptation law is given by

˙̂ai = Γ(˙̂aprei
− Iproji

˙̂aprei
), (4.8)

with

˙̂apre = −Fiâi − ξ(Λiâi − λi) − ζ
∑

j∈Ni

(âi − âj), (4.9)

where ξ, ζ ∈ R+ are scalar gains, Γ ∈ R
m×m is a diagonal positive definite gain

matrix. The variables Fi, Λi, and λi are given by the following equations,

Fi =

[
∫

Vi

K(q)(q − ĈVi
)T dq

]

ṗi (4.10)

Λi =

∫ t

0

w(τ)Ki(τ)Ki(τ)T dτ, (4.11)

λi =

∫ t

0

w(τ)Ki(τ)φi(τ)dτ. (4.12)

Given a set of indexed vertices Ve = {v1 . . . , vn} and a set of edges E = {e1 . . . el},

where ei = {vj, vk} then Ni = {j|{vi, vj} ∈ E} i.e., Ni contains the indexes of the

34

Chapter 4. Adaptive Algorithm for Holonomic Sensor Networks

vertices which are neighbors of the vertices associated to the Voronoi partition of the

generator point i.

The function w(t) ∈ L1 is called a weighting function. Since we are dealing with

dynamic density functions, we use a forgetting factor δ ∈ R which encourages the

parameter convergence. The weighting function w(t, τ) = e−δ(t−τ) gives more weight

to the latest measurements than to the older ones which is suitable to our particular

case. Based on [5] there can be other types of weighting functions as we discuss later

in Section 4.3.1.

The matrix Iproji
(j) is defined as follows

Iproji
(j) =



















0 for âi(j) > β,

0 for âi(j) = β and ˙̂aprei
≥ 0,

1 otherwise.

(4.13)

The index j denotes the j-th diagonal element of the matrix Iproji
and the j-th

element of the vector âi. This matrix implements a projection law which prevents

the parameter vector âi from taking values less than or equal to the lower bound β.

Lastly, in [5] the authors state and prove the following convergence theorem

Theorem 3 (Convergence Theorem). Under Assumption 1, for the system of n

agents with the dynamics given by (4.6) and the control law in (4.7),

lim
t→∞

‖ĈVi
− pi‖ = 0, ∀i ∈ In,

lim
t→∞

K(pi(τ))T ãi = 0, ∀τ | w(τ) > 0 and ∀i ∈ In,

lim
t→∞

‖âi − âj‖ = 0, ∀i, j ∈ In,

with In = {1, . . . , n}.

35

Chapter 4. Adaptive Algorithm for Holonomic Sensor Networks

4.3.1 Weighting Functions

There are several options to build the weighting function w(·) in (4.11) and (4.12) as

long as it encourages the parameter convergence of the adaptation law. Based on [5],

if we choose w(τ) as a square wave, the integral given in (4.11) does not incorporate

any other term in the summation after some fixed time determined by the decay time

of the square wave. We can soften the elimination of old terms in the integral using an

exponential decay w(τ) = e−τ or a decaying sigmoid w(τ) = 1/2(erf(c−τ)+1). If we

specifically use the function w(t, τ) = e−α(t−τ) the integrals (4.11) and (4.12) become

first-order systems, introducing a forgetting factor α which allows the tracking of

slow varying density functions.

36

Chapter 5

Adaptive Control for

Nonholonomic Sensors

The stability analyzes of the controllers in [7] and [5] have been conducted assuming

holonomic kinematics, but now we propose to formally extend the previous results

to nonholonomic vehicles.

5.1 Nonlinear Steering Control

Since several real world vehicles such as aircraft at cruising attitude, sea vessels and

skid-steered mobile robots can be modeled as nonholonomic vehicles, we propose to

use the unicycle model kinematics equations for a differential steering as a suitable

approach. The equations of motion for the i-th agent in the team of robots are given

as follows










ẋi

ẏi

φ̇i











=











ui cos φi

ui sin φi

ωi











, (5.1)

37

Chapter 5. Adaptive Control for Nonholonomic Sensors

where ui and ωi are the linear and angular speeds of the i-th robot respectively.

We need to choose an appropriate steering control for nonholonomic vehicles to

drive every robot to the centroid of its Voronoi region. For that purpose we use the

following kinematics equations given in [38]










ρ̇i

α̇i

θ̇i











=











−ui cos αi

−ωi + ui
sin αi

ρi

ui
sin αi

ρi











, (5.2)

where

αi = θi − φi, (5.3)

φ̇i = ωi.

As shown in Fig. 5.1 the position of the agent inside its Voronoi cell is represented

in polar coordinates where φi is the heading angle of the vehicle, ρi represents the

position error between the agent and the centroid point and αi is the angle between

the principal axis of the robot and the vector error ρi.

As in [38] we use the following control law,




ui

ωi



 =





(γ cos αi)ρi

kαi + γ cos αi sinαi

αi
(αi + hθi)



 , (5.4)

where k, γ and h are positive gains.

The control law in (5.4) allows the agent to reach asymptotically the point

(0, 0, 0). Therefore if we carry out an axis translation to set the centroid at the

origin of the plane we can use this control law to drive the robots to their centroidal

Voronoi tessellation. We do not include the proof of the stability of the steering

control in this section; however, it is developed as part of the stability analysis in

Section 5.2. In Fig. 5.2 we show eight robots with different starting positions and

initial heading angles φi = π/2 going to the point (0, 0, 0).

38

Chapter 5. Adaptive Control for Nonholonomic Sensors

i
θ

i
α

i
φ

i
ρ

X

Y

i
ω

i
u

iV
Ĉ

iV

jV

kV
lV

}{G

Figure 5.1: Unicycle model and variables in the goal frame {G}: Notice the vectors
and angles which determine our nonholonomic model in polar coordinates.

5.2 Stability Analysis

The following is our extended convergence theorem for the distributed and adaptive

control for nonholonomic vehicles.

Theorem 4 (Extended Convergence Theorem). If Assumptions 1 and 2, are satisfied

we have that for the system of n nonholonomic agents with dynamics (5.2) and control

law (5.4),

lim
t→∞

K(pi(τ))T ãi = 0, ∀τ | w(τ) > 0 and ∀i ∈ In,

lim
t→∞

ρi, ‖αi‖, ‖θi‖ = 0, ∀i ∈ In,

lim
t→∞

‖âi − âj‖ = 0, ∀i, j ∈ In,

39

Chapter 5. Adaptive Control for Nonholonomic Sensors

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Illustration of the nonlinear steering control over eight robots with dif-
ferent initial positions. All the robots go to the position (0, 0, 0).

with In = {1, . . . , n}.

Proof. To carry out the stability analysis we propose the following Lyapunov function

candidate

V = H +

n
∑

i=1

[

1

2
ãT

i Γ−1ãi +
1

2

(

α2
i + hθ2

i

)

]

. (5.5)

Notice that compared with the Lyapunov function proposed in [5], the expression

in (5.5) has the extra term 1
2
(α2

i + hθ2
i) related to the robot orientation (see Fig. 5.1).

The matrix Γ is the same diagonal positive definite matrix in (4.8), H is described

by (4.1), and αi, θi and ρi are the state variables in the dynamics in (5.2). Lastly, ãi

is the parameter estimation error given by (4.5).

40

Chapter 5. Adaptive Control for Nonholonomic Sensors

Taking the time derivative of (5.5), we obtain

V̇ =
n
∑

i=1

[

∂H

∂pi

ṗi + ãT
i Γ−1 ˙̂ai + (αα̇i + hθiθ̇i)

]

. (5.6)

Now, replacing (4.3) in (5.6) we get

V̇ =

n
∑

i=1

[

MVi
(pi − CVi

)T ṗi + ãT
i Γ−1 ˙̂ai + (αα̇i + hθiθ̇i)

]

. (5.7)

Furthermore, it is easy to show that

LVi
= MVi

ĈVi
+ M̃Vi

(ĈVi
− C̃Vi

) = MVi
CVi

, (5.8)

then replacing (5.8) in (5.7), we have

V̇ =

n
∑

i=1

[

−Mvi
(ĈVi

− pi)
T ṗi + (M̃Vi

C̃Vi
− M̃Vi

ĈVi
)ṗi

+ãT
i Γ−1 ˙̂ai + (αα̇i + hθiθ̇i)

]

. (5.9)

Taking into account that

M̃Vi
C̃Vi

− M̃Vi
ĈVi

= ãi

∫

Vi

K(q)T (q − ĈVi
)dq,

and replacing the adaptation law given by (4.8)-(4.12) in (5.9) the final expression

for the derivative of the Lyapunov function becomes

V̇ = −
n
∑

i=1

[

MVi
(ĈVi

− pi)
T ṗi + ξ

∫ t

0

w(τ)(Ki(τ)T ãi)
2 dτ

+ãT
i ζ
∑

j∈Ni

(âi − âj) + ãT
i Iproj

˙̂aprei
− (αiα̇i + hθiθ̇i)

]

. (5.10)

The second, third and fourth terms in the summation in (5.10) have already

been proven to be positive semidefinite [5], considering the negative sign before the

41

Chapter 5. Adaptive Control for Nonholonomic Sensors

summation (see Appendix A). Now, we are interested in proving that the first and

fifth terms are positive semidefinite as well.

Calculating ĈVi
− pi and based on Fig. 5.1, we can assert that

ĈVi
− pi =





x2 − x1

y2 − y1



 =





ρi cos θi

ρi sin θi



 =





ρi cos(φi + αi)

ρi sin(φi + αi)



 .

Taking the first term MVi
(ĈVi

− pi)
T ṗi of (5.10) and replacing ĈVi

− pi and ṗi by

using the unicycle model in (5.1) with the control law in (5.2) we have

MVi
(ĈVi

− pi)
T ṗi = MVi





ρi cos(φi + αi)

ρi sin(φi + αi)





T 



(γ cos αi)ρi cos φi

(γ cos αi)ρi sin φi



 ,

= MVi





ρi cos φi cos αi − sin φi sin αi

ρi sin φi cos αi + cos φi sin αi





T 



γρi cos αi cos φi

γρi cos αi sin φi



 ,

= MVi
ρ2

i γ(cos2 φi cos2 αi + sin2 φi cos2)αi,

= MVi
ρ2

i γ cos2 αi.

(5.11)

Since the mass MVi
of the i-th Voronoi region and the control gain γ are non-

negative, the first term in the summation of (5.10) is non-negative.

MVi
(ĈVi

− pi)
T ṗi = MVi

ρ2
i γ cos2 α ≥ 0.

Analyzing the fifth term in (5.10) namely, −(αiα̇i +hθiθ̇i) we have that replacing

the polar kinematics in (5.2) it gives based on [38],

−(α̇i + hθiθ̇i) = −

[

αi

(

−wi +
ui sin αi

ρi

)

+ hθi

ui sin αi

ρi

]

,

= −

[

αi

(

−wi +
(hθi + αi)

αi

ui sin αi

ρi

)]

. (5.12)

42

Chapter 5. Adaptive Control for Nonholonomic Sensors

Replacing the control law (5.4) in (5.12) we get

−(αiα̇i + hθiθ̇i) = kα2
i ≥ 0,

and the fifth term −(αiα̇i+hθiθ̇i) in (5.10) is non-negative. Since V is lower bounded,

V̇ is negative semidefinite and uniformly continuous in time we conclude that V̇ → 0

as t → ∞ by the Lyapunov-like lemma.

From the Lyapunov function derivative in (5.10) it is easy to see that all the

limits converge to zero except the third one limt→∞ ‖θi(t)‖. Differentiating (5.3) and

using the equations in (5.2) with the control law in (5.4) we have as in [38] that

α̇i = θ̇i − φ̇i,

α̇i = γ cos αi sin αi − kαi − γ
cos αi sin αi

αi

(αi + hθi),

α̇i = −γhθi

cos αi sin αi

αi

.

Since αi → 0 and θi → c as t → ∞, then we have that

lim
t→∞

α̇i = −γhc.

Since α̇i is a uniformly continuous function, lower bounded and negative semidef-

inite; therefore, by the Lyapunov-like lemma α̇i → 0 as t → ∞ and this implies

that θi → 0 as well. Therefore the controller guarantees the convergence of the state

variables ρi, αi and θi to zero under the goal frame {G} shown in Fig. 5.1.

5.3 Dynamic Density Function

We consider the case of estimating the parameters of a time-varying density function

φi(q, t) = K(q)T a(t) where the j-th entry aj(t) (j = 1, 2, . . . , m) of a(t) is a piecewise

43

Chapter 5. Adaptive Control for Nonholonomic Sensors

constant function aj(t) : R
m
+ 7→ R

m
+ and is right continuous. It means that every

entry of the function vector a(t) has a finite number of discontinuities and takes

on constant values between two consecutive discontinuities. This is a reasonable

approximation if we consider slow-time varying systems.

Also, we assume that limt→∞ a(t) = ac where ac ∈ R
m
+ is a constant value i.e.,

the density function reaches a steady state which is reasonable for many real-world

phenomena such as oil spills [1] and forest fires [2].

From now on, we will call switching time ts, the time when each discontinuity

happens, where s = 1, · · · , k, and k is the total number of switching times before the

density function reaches its final value. This terminology was taken from [39] given

the partial similarity with the switching systems.

Moreover let us assume that the adaptation law rate and the angular and linear

speeds of the agents are fast enough to follow the dynamics of the density function

φ(q, t).

From (4.8) we know that every robot looks for the centroid of its Voronoi cell

while taking measurements of the distribution function on its trajectory. During

this time, the tracking error decreases but notice from Theorem 4 that the network

of robots converges to a near optimal coverage configuration. Based on Theorem

5.2 this behavior does not necessarily imply that the parameter estimation vector

ã(t) → 0 as t → ∞.

Furthermore, since we are dealing with a piecewise constant system, the time

interval between two switching times ∆ts = ts − ts−1 is finite, in contrast with the

infinite time necessary to guarantee full parameter convergence.

44

Chapter 6

Simulation Tests

In this chapter we show simulation results in order to verify our convergence theorem

given by Theorem 4. The simulations were carried out using Matlab and Stage

(see Section 8.2.1). The reason why we implement the simulations in those two

different scenarios is that in Matlab we are able to use just the kinematic model of

the unicycle vehicle neglecting the dynamics equations. Therefore, using Matlab we

can get simulation results closer to our theoretical approach since we do not consider

speed constraints and forces that the real vehicle has to deal with. Furthermore, using

the Matlab ode45 solver we can implement the adaptation law given by (4.9) whose

numerical calculation in real time makes it unfeasible for a regular computer, however

it allows us to confirm that the adaptation law is estimating the right parameters

and that the variables indicated in Theorem 4 are convergent.

On the other hand, Stage has the kinematic and dynamic model of the four

wheel skid steer system of the P3-AT robot. Furthermore, Stage presents a relation

Simulation time
Real time

≈ 0.9 for our particular case, so the simulation is closer to the

real application. This implies that the implementation of the adaptation law based

on (4.9), which is a continuous differential equation, should be approximated by a

45

Chapter 6. Simulation Tests

difference equation in order to carry out the calculation in real time. Otherwise

an ODE solver requires a high computational cost. In this case the simulations in

Matlab and Stage are not redundant at all, and together allow us to make conclusions

about how the theoretical and practical implementations differ even though, they are

strongly related.

6.1 Simulation in Matlab

In this section we give a detailed description of the simulations carried out using

Matlab.

6.1.1 Simulation Design in Matlab

For this simulation we used a population of 20 unicycle models randomly distributed

over a sample space Q defined as a unit square. We implement the control law given

in (5.4) with γ = 3 and k = h = 1.

The parameter values we used in the adaptation law given by (4.8) and (4.9) are

Γ = I64, ξ = 1000, ζ = 1 and δ = 1. For the matrix Iproji
defined by (4.13), we have

β = 0.1.

We divided the sampling space Q in a 8 × 8 grid where the geometric center of

every square cell corresponds to the mean µi of a bidimensional Gaussian function.

Using a function similar to the one in [5] we have that the i-th entry Ki of the vector

function K(q)64×1 is calculated as,

Ki = e
−(q−µi)

2

2σ2
i , (6.1)

with σi = 0.05.

46

Chapter 6. Simulation Tests

For this simulation we decided to use the unicycle robots to detect a density

function which behaves as an expanding circle. The expanding circle recreates a

simplified behavior of a forest fire where the higher temperatures are localized at the

circumference of the circle.

The dynamics of the expanding circle are modeled by the following parametric

equations,





x(t)

y(t)



 =
1

3
r(t)





cos φ

sin φ



+





0.5

0.5



 ,

with the radius r(t) defined by the following differential equation,

ṙ(t) = −
5.7

100
r(t) + 1,

with r(0) = 1 − e−0.3.

We sample the circumference of the circle using the 64 squared cells which divide

the sample space Q as explained before. We assign to each of the k-th cells containing

a segment of the circumference a bidimensional Gaussian function defined by (6.1)

with σk = 0.05 and mean µk equal to the geometric center of the k-th cell. In this

way we assign a height to the expanding circle which is maximum at the points

located at the circumference of the circle.

Since our approach covers just piecewise constant dynamics we assume that the

robots are taking measurements of the density function at the discrete-time instants

0, 20, 40 and 100 s. This means that assuming a slow varying distribution function

the robots can reach their respective centroids and rest until some problem dependent

condition is fulfilled to start taking measurements again.

47

Chapter 6. Simulation Tests

6.1.2 Simulation Results in Matlab

In Fig. 6.1 (a)–(d) we show the averaged behavior of the parameter estimation error

given by

K(pi(τ))T ãi(t) ∀τ |w(τ) > 0,

as well as the error distance ρi(t), the angle αi(t) and the consensus error given by

‖âi(t) − âj(t)‖ ∀i, j ∈ In.

Notice that the switching times of the simulation are indicated by the dashed vertical

lines in green.

Let us define

¯̃ai(t) =
1

n

(

n
∑

i=1

ãi(t)

)

∀t > 0, (6.2)

which is the averaged parameter error vector over all robots. In Fig. 6.1 (a) we

show the parameter estimation error K(q)T ¯̃ai(t) averaged over the whole population

of robots. In a similar way let us define

ρ̄(t) =
1

n

(

n
∑

i=1

ρi(t)

)

∀t > 0, (6.3)

which is the averaged position error of all the robots in Q, which is plotted in Fig.

6.1 (b).

Notice that the angle αi(t) plotted in Fig. 6.1 (c) looks noisy. In order to make

it clear we just illustrate the angle corresponding to one robot selected randomly.

Finally, for the consensus error let us define the quantity ca as

ca =

n
∑

i=1

∥

∥

∥

∥

∥

n
∑

j=1

(âi − âj)

∥

∥

∥

∥

∥

2

, (6.4)

48

Chapter 6. Simulation Tests

which shows the summation of the squared norm of the vector
∑n

j=1(âi − âj) over

the whole population of robots and is plotted in Fig. 6.1 (d).

In the plots in Fig. 6.1 (a), (b) and (d) it is easy to note the asymptotic con-

vergence to zero after every switching time ts, but in the case of αi this is difficult

to see because the approximation of the numerical integrals of the centroids in (4.2)

induces some noise in the trajectory of the robots. Furthermore, notice that the

transitions of αi from −π to π look like spikes in the plot, however, the robots spend

the majority of the time oscillating around the angle αi = 0 as the filtered red signal

illustrates in Fig. 6.1 (c).

We calculate the mean square error between the vector a and the averaged pa-

rameter estimation error ¯̂a = 1
20

∑20
i=1 âi at every time instant t, and plot it using the

blue line in Fig. 6.2. Notice that in this case we are just relying on the robustness of

the adaptive control to follow changes in the parameters. Furthermore notice that

the parameter estimation error in Fig. 6.1 (a) goes asymptotically to zero as the

Theorem 4 states whereas the mean squared parameter error in Fig. 6.2 does not

since from the Lyapunov function it cannot be guaranteed by Theorem 1. A proof

of the additional richness condition to guarantee parameter convergence is given in

[5].

Based on the second term on the right side of (4.9), the gradient estimator is

excited by the difference between what the robot measures and what the robot

estimates. In order to increase that difference to excite the adaptation law, we can

change the parameter estimation vector âi at every switching time ts to guarantee

the maximum excitation of the control law in (5.4). This is an interesting problem

to be formalized but its solution is part of our future research.

Since we are assuming that the robots do not have information of the density

function φi(q, t) we set all the entries of the estimate parameter vector âi to β =

49

Chapter 6. Simulation Tests

0.1 (any value β > 0 from Assumption 2) for every robot at every switching time

ts. Then, the estimated density function is approximately uniform, exciting the

adaptation law (if there is not an uniform density function in Q) and improving the

parameter estimation error as shown by the red line in Fig. 6.2.

In Fig. 6.3 we present some snapshots of the robot distribution over the piecewise

dynamic density function at different times just before the switching time ts happens.

Notice the centroidal Voronoi tessellations shown in Fig. 6.3 (b) – (d).

6.2 Simulation in Stage

Now, we proceed with a detailed description of the simulation carried out using Stage

(see Section 8.2.1).

6.2.1 Simulation Design in Stage

The simulation was carried out using Stage 3.0.0 setting a population of four P3-AT

robots in the initial configuration shown in Fig. 6.5 (a). The white light distribution

function is modeled by (4.4) where the i-th entry Ki of the vector function K(q)

is given by (6.1) with σi = 0.7 m and µi being the geometric centroid of the i-th

squared cell of Q.

The adaptation law is a differential equation, although this continuous differential

equations provide solid theoretical results, they are difficult to implement in real-

world situations, where the arithmetic precision and computational power are limited.

50

Chapter 6. Simulation Tests

The following approximations of (4.9), (4.11) and (4.12) based on [40]

λi(t + 1) = λi(t) + K(pi(t))φi(t), (6.5)

Λi(t + 1) = Λi(t) + K(pi(t))K(pi(t))
T , (6.6)

âipre
= âi + ξ(Λiâi − λi) − ζ

∑

j∈Ni

(âi − âj), (6.7)

âi = max(âipre
, β). (6.8)

were used in order to carry out the adaptation law calculation in real time.

The parameter values we used in the approximation of the adaptation law given

by (6.5) – (6.8) are ξ = 1000, ζ = 1 and δ = 1. The matrix Iproji
defined by (4.13)

now is replaced by the max operation in (6.8) β = 0.1.

The piece-wise constant property of the density function is simulated by manip-

ulating the parameter vector a such that we have a Gaussian function in the yellow

area A indicated in Fig. 6.5 (a). After 150 s of simulation time we change the

distribution function such that we have a Gaussian function in the green area B.

6.2.2 Simulation Results in Stage

In Fig. 6.4 (a)–(c) we show the behavior of the error distance ρ̄(t) defined in (6.3),

the angle αi, and the consensus error ca given by (6.4). Notice that all these variables

present a different behavior compared with the Matlab simulation due to the con-

sideration of the dynamical model of the P3-AT robots. Another factor affecting the

behavior of the plots is the approximation by difference equations of the adaptation

law given by (6.5)–(6.8). However, the filtered versions indicated by the red lines

in the plots in Fig. 6.4 (a)–(c) show that the average behavior of ρ̄(t), αi and ca

remains close to zero after the switching time ts happens.

51

Chapter 6. Simulation Tests

Notice how in Fig. 6.4 (a) the mean estimated position error goes to zero and

after the switching time ts = 140 s the error increases because of the change of the

light distribution and start going to zero again according to Theorem 4. However this

approximation to zero does not seem to be asymptotic as in the Matlab simulation

case since as we mentioned before there is a mechanical model with additional forces

perturbing the behavior of the variables. The angle αi in Fig. 6.4 (b) is oscillating

around zero as the filtered signal in red indicates. Lastly, the consensus error ca in

Fig. 6.4 (c) goes quickly to values close to zero, at the beginning of the simulation

and during the switching time indicated by the green dashed vertical line.

In Fig. 6.5 (b) and (c) we illustrate some snapshots of the Stage simulation. The

robots reach their estimated centroidal Voronoi tessellation based on the first light

distribution in the position A. Afterwards, they distribute themselves in a second

centroidal Voronoi tessellation after the light has been displaced to the position B at

t = 108 s. in Fig. 6.6 (a) and (b) we can see the average estimated light distribution

obtained by the whole population of robots. Notice that given the approximation

of the adaptation law with the difference equations (6.5)-(6.8) the values of the

distribution function shown in Fig. 6.6 are not the true values and we do not include

units in the z axis. However, the peaks in the shown surfaces are well located in

correspondence to the simulated light distribution function.

52

Chapter 6. Simulation Tests

0 50 100 150
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

P
ar

am
et

er
 E

st
im

at
io

n
E

rr
or

Time (s)
0 50 100 150

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
E

st
. P

os
iti

on
 E

rr
or

 (
m

)
Time (s)

(a) (b)

0 50 100 150

-4

-2

0

2

4

Time (s)

A
ng

le
 E

rr
or

αα αα i

Angle Error
Filtered Angle Error
Averaged Angle Error

(r
ad

)

0 50 100 150
0

1

2

3

4

5

6
x 10

5

Time (s)

C
on

se
ns

us
 E

rr
or

(c) (d)

Figure 6.1: Plots of the parameter estimation error K(q)T ¯̃ai(t), the error distance
ρ̄(t), the angle αi and the consensus error ca for the simulation in Matlab.

53

Chapter 6. Simulation Tests

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

Time (s)

M
ea

n
S

qu
ar

ed
 P

ar
am

et
er

 E
rr

or

Varying Est. Parameters
Not Varying Est. Parameters

Figure 6.2: Mean squared error of the parameter estimation vector âi averaged over
the whole population of robots and the real parameter vector a for the simulation
in Matlab. The blue line shows the response of the system without changing the
parameter estimation vector âi and the red line illustrates the obtained improvement
by applying the change at every switching time ts.

54

Chapter 6. Simulation Tests

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x (m)

y (m)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x (m)

y (m)

(a) t = 0 s (b) t = 19 s

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x (m)

y (m)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x (m)

y (m)

(c) t = 39 s (d) t = 99 s

Figure 6.3: Simulation in Matlab with a population of 20 nonholonomic robots rep-
resented by the blue triangles over a dynamic density function indicated by the mul-
ticolor ring-shape contour. The yellow color of the contour means maximum density.
This results correspond to the simulation changing âi = β at every switching time
ts. The Cyan circles represent the estimated centroids ĈVi

of the i-th robot and the
green lines surrounding the robots form their Voronoi cells. Notice the centroidal
Voronoi tessellations in (b)–(d).

55

Chapter 6. Simulation Tests

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time (s)

M
ea

n
E

st
. P

os
iti

on
 E

rr
or

Position Error
Filtered Position Error

(m
)

0 50 100 150 200 250 300
-4

-2

0

2

4

6

Time (s)
A

ng
le

 E
rr

or

Angle Error
Filtered Angle Error
Averaged Angle Error(r

ad
)

(a) Estimated position error (b) Angle error αi

0 50 100 150 200 250 300
0

0.5

1

1.5

2
x 10

5

Time (s)

C
on

se
ns

us
 E

rr
or

Consensus Error
Averaged Consensus Error

(c) Consensus error

Figure 6.4: Plots of the error distance ρi averaged over the population of robots, and
the angle αi during the simulation in Stage.

56

Chapter 6. Simulation Tests

A

B

x (m)

y (m)

A

x (m)

y (m)

B

x (m)

y (m)

(a) t = 0 s (b) t = 140 s (c) t = 259 s

Figure 6.5: The Stage environment with four P3-AT robots used during the simula-
tion. The light distribution goes from A to B after 150 s.

−2
0

2 −2 0 2

0

2

4

6

8

x 10
7

Y (m)X (m)

−2

0

2 −2
0

2

0

5

10

15

x 10
9

Y (m)X (m)

(a) Estimated density function t = 140 s (b) Estimated density function t = 250 s

Figure 6.6: Plots of the estimate density functions obtained by the team of robots
in the simulation environment in Stage.

57

Chapter 7

Experimental Verification

This section describes the details of the experiments carried out using the multivehicle

testbed described in Chapter 8.

7.1 Experimental Design

The experiments were carried out using a population of four P3-AT robots like the

one shown in Fig. 8.3 (see Section 8.1 for a technical description), sensing a white

light concentration in a rectangular sampling space of 4.7 × 6.6 m. Similar to the

simulations, the sampling space was divided into a 8× 8 grid. The geometric center

of each rectangular division corresponds to the mean of a bidimensional Gaussian

function given by (6.1) with σi = 0.7 m. As in the Stage simulation, the parameter

values we used in the approximation of the adaptation law given by (6.5) – (6.8) are

ξ = 1000 and ζ = 1. The matrix Iproji
defined by (4.13) now is replaced by the max

operation in (6.8) with β = 0.1.

The light concentration is dynamic under the assumptions presented in Section

5.3. There is one switching time ts to switch between two different light sources at

58

Chapter 7. Experimental Verification

108 s of the experiment. The gyroscope and the wheel encoders embedded in the

robots are used for robot positioning. A set of four Phidgets light precision sensors

(see Section 8.1.1) are set up at the top of the robots and the network communication

with the robots is carried out using Player 3.0.0 (see Section 8.2.1) through a Linksys

wireless router.

The Voronoi partitions vertices are calculated using the library Voro++ version

0.3 [41] and the centroid integrals were approximated by Riemann summations dis-

cretizing the inside of the polygons in an 8 × 8 grid and adding the volumes of the

hexahedra corresponding to every division. The adaptation law was approximated

by the difference equations given in (6.5) – (6.8).

7.2 Experimental Results

In Fig. 7.1 (a)–(c) we show the behavior of the error distance ρ̄(t) defined in (6.3),

the angle αi, and the consensus error ca given by (6.4). Since we do not know the

real parameters to model the light distribution we cannot calculate ¯̃ai(t).

Notice the convergence of the signal in Fig. 7.1 (a) and (c) which are visibly

affected by the noise of the real measurements and the numeric approximation of the

centroid integrals. In order to make them clear we plot the filtered signal in red to

show convergence. Furthermore, the effect of the adaptive law approximation given

by (6.8) is evident in Fig. 7.1 (c), where the constant intervals correspond to the

moment when the robots are going to their Voronoi cell centroid. The discontinuous

edges of the signal represent the moment when the robots take a light measurement

and calculate the centroids again.

Also notice that compared with the simulation results in Fig. 6.1 (c), the behavior

of the angle αi does not look as clear in Fig 7.1 (b) because of the presence of the

59

Chapter 7. Experimental Verification

odometry errors and the mentioned noise. However, it is possible to see that again

the majority of the time the robots are oscillating around αi = 0.

In Fig. 7.2 (a) and (d) we illustrate some snapshots of the experiment. In Fig.

7.2 (b) and (e) we can see the averaged light distribution estimated by the robots.

Furthermore, in Fig. 7.2 (c) the top view based on the real data of the experiments

show how the robots reach their estimated centroidal Voronoi tessellation related

to the first light distribution. Afterwards they calculate a second centroidal Voronoi

tessellation shown in 7.2 (f) once the light has been abruptly displaced in the sampling

space at t = 108 s. Again, as in the Stage simulation the light distribution does not

have units in the z axis because the approximation of the adaptation law by difference

equations does not give the true distribution function values. However, the peaks of

the surface are well located according to the real light distribution.

60

Chapter 7. Experimental Verification

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
E

st
. P

os
iti

on
 E

rr
or

 (
m

)

Time (s)

Position Error
Filtered Position Error

0 50 100 150 200 250 300
-4

-2

0

2

4

6

A
ng

le
 E

rr
or

Time (s)

Angle Error
Filtered Angle Error
Averaged Angle Error(r

ad
)

(a) (b)

0 100 200 300
0

50

100

150

200

Time (s)

C
on

se
ns

us
 E

rr
or

Consensus Error
Filtered Consensus Error

(c)

Figure 7.1: Plots of the error distance ρ̄(t), the angle αi and the consensus error ca

for the experiments.

61

Chapter 7. Experimental Verification

-2
0

2
-2

0

20

1

2

x 10
10

Y (m)
X (m)

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

x (m)

y(m)

(a) (b) (c)

-2
0

2
-2

0
2

0

1

2

3

x 10
7

Y (m)
X (m) -2 -1 0 1 2

-3

-2

-1

0

1

2

3

x (m)

y (m)

(d) (e) (f)

Figure 7.2: The picture in (a) shows a snapshot of an experiment with four P3 - AT
robots sensing a light distribution at 107 s. The figure in (b) shows the estimated
density function averaged over the four robots and the plot in (c) illustrates a top
view done in Matlab with the robot data. The picture in (d) shows the snapshot
of the experiment at 259 s. The figure in (e) shows the estimated density function
averaged over the four robots, and the plot in (f) illustrates a top view done in
Matlab based on the real data

62

Chapter 8

Multivehicle Testbed

Our new multivehicle testbed in the Marhes lab expands on our original testbed

COMET [42] to include mechanisms that allow for environmental sensing. In this

way we enable the validation and verification of cooperative control algorithms that

depend on measurements of the environment.

The testbed can accommodate laser-based navigation and Global Positioning Sys-

tem (GPS) navigation, as well as gripper manipulation tasks. Although this work

concentrates on experiments involving the P3-AT robots, it is worthy to mention that

our testbed contains ten all terrain vehicles which are based on the Tamiya TXT-1

chassis, a Dragonflyer X-Pro quadrotor, and two AscTec Hummingbird quadrotors.

Furthermore, we have two Scorpion robots from Evolution Robotics. All the men-

tioned platforms are shown in Fig. 8.1.

The experimental testbed has its own dedicated IEEE 802.11 WLAN, which pro-

vides a low-latency network that is used by the robotic platforms for communication

through third party server/client applications such as Player/Stage [43] from the Uni-

versity of Southern California or the Advanced Robotics Interface for Applications

(ARIA) [44] from MobileRobots.

63

Chapter 8. Multivehicle Testbed

(a) A team of 10 TXT-1 robots (b) Two hummingbird quadrotor

(a) One Dragonflyer quadrotor (b) Two Scorpion robots

Figure 8.1: The pictures illustrate the variety of robotic platforms available in the
Marhes lab at the University of New Mexico.

8.1 The Pioneer 3 - AT Robots

The Pioneer 3 - AT robots (P3-AT) [45] are programmable intelligent platforms

equipped with the basic devices for navigation and sensing in the real world. They

are part of a large family of robots released in 1995 with the Pioneer 1 which continued

with the Pioneer AT, Pioneer 2-DX, the first of the family Pioneer 2, until the most

recent family the Pioneer 3 with the Pioneer 3-DX and P3-AT model.

The basic P3-AT robot is provided with high resolution motion encoders, re-

64

Chapter 8. Multivehicle Testbed

Table 8.1: General specifications of the P3-AT robots.

Length 50.1 cm
Width 49.3 cm
Height 27.7 cm
Weight 14 kg
Payload 40 kg
Translate speed max 0.7 m/s
Rotate Speed max 140◦/s

versible DC motors and the motor controllers, as well as the four-wheel skid steer

which carries out the balanced drive system of the robot. The power source con-

sists of up to three 12 VDC lead-acid batteries and the control of all sensors and

devices in the robot is carried out using a server/client application. The robots are

equipped with a radio ethernet board which allows the wireless communication with

the sensors and devices attached to the robots.

The P3-AT robot reaches speeds up to 0.7 m/s. Furthermore, it can carry a

payload of up to 40 kg and can climb a traversable slope of up to 40%. In Table 8.1

we show some mechanical features of the robot [43].

The main accessories for the P3-AT available in the Marhes lab are shown in

Fig. 8.2. As you can notice, some sensors such as the SICK laser and the GPS are

aimed to carry out outdoors experiments whereas some others such as the hokuyo

laser are oriented to indoors experiments.

A special aluminum plate and mounting system was created to interface the

environmental sensor suite. The plate and mounting system allows for multiple sensor

configurations as well as the ability to mount multiple accessories on each robotic

platform. Fig. 8.3 shows the custom built aluminum plate with four precision light

sensors and three magnetic sensors. Also shown is a Hokuyo UHG-08LX laser range

finder. The addition of the custom plate and mounting brackets allows for a quick

65

Chapter 8. Multivehicle Testbed

Robai Cyton Alpha
7D 1G

Bumblebee2
Camera Novatel

GPS-702GG
Propack-v3

Hokuyo UHG
Laser

Sick LMS 200
Laser

Phidgets USB
Interface

Robai Cyton Alpha
7D 1G

Figure 8.2: Accesories available for the P3-AT robots at the Marhes lab at the
University of New Mexico.

swapping of sensors and accessories to address a variety of experimental tests.

8.1.1 Sensor Suite

This section describes the different sensors available for use on the experimental

testbed at the Marhes lab.

66

Chapter 8. Multivehicle Testbed

Figure 8.3: One of the four P3-AT robots available in the Marhes lab. Notice the
detailed pictures of three different kinds of sensors, namely, Phidgets light precision
sensors (top), Phidgets magnetic sensors (middle) and a Hokuyo UHG-08LX laser
range finder (bottom), mounted on a custom fixture attached to the robot.

Phidgets Environmental Sensor Suite

The environmental sensor suite consists of a Phidgets USB interface I/O board [46]

capable of measuring eight digital and analog inputs, and capable of driving eight

digital outputs. The Phidgets I/O board can accommodate pressure, temperature,

humidity, light intensity, and magnetic field sensors among others. Furthermore, it

is equipped with a digital input hardware filter to eliminate false triggering at the

digital inputs. A detailed view of a Phidgets USB interface with an attached light

67

Chapter 8. Multivehicle Testbed

Figure 8.4: A Phidgets USB interface I/O board with an attached light precision
sensor. Notice the USB port at the bottom of the image and the digital input
outputs at the right and left edges respectively. The analog inputs are located at the
top edge of the board where the light sensor is connected.

precision sensor is shown in Fig 8.4.

Light Precision Sensors

The 1127 precision light sensor [47] is a 5 VDC device able to measure from 1 lx to

1000 lx with a typical accuracy of 95%. The formula to convert the sensor data to

luminosity units is

Luminosity (lx) = SensorValue

The main features of the device are given in Table 8.2, and a picture of the sensor

68

Chapter 8. Multivehicle Testbed

Table 8.2: General specifications of the Phidgets 1127 light precision sensor

Current consumption 2 mA
Bandwidth 50 Hz
Minimum Voltage 3.3 VDC
Maximum Voltage 5 VDC
Minimum light level 1 lx
Maximum light level 1000 lx
Error 5%

Table 8.3: General specifications of the Phidgets 1108 magnetic sensor

Current consumption 2 mA
Voltage output range 0.2 - 4.7 VDC
Device supply operating range 4.5 - 5.5 VDC
Typical error (@25◦C) ±0.5%
Sensitivity 1 G/SensorValue

is shown in Fig. 8.3 (b).

Magnetic Sensors

The 1108 magnetic sensor [48] is a temperature stable sensor with a sensitivity of 1

G/SensorValue. The formula to convert the sensor value to Gauss units is

Φ (G) = 500 − SensorValue.

We illustrate the main features of this sensor in Table 8.3. The sensor is shown

in Fig. 8.3 (c).

69

Chapter 8. Multivehicle Testbed

Table 8.4: General specifications of the Hokuyo UHG-08LX laser

Power source 12 VDC ±10%
Current consumption 0.3 A
Detection Range 0.03 ∼ 11 m (Accuracy not guaranteed beyond 8 m)
Accuracy 0.1 ∼ 1 m : ±30mm

1 ∼ 8 m : 3% of the distance
Resolution 1 mm
Scan Angle 270◦

Angular resolution 0.36◦

Scan time 67 ms/scan
Ambient light resistance Halogen/Mercury: 10000 lx or less

Florescent: 6000 lx or less
May cause measurement errors
under strong light e.g. sunlight.

Weight Approx 500 g
External dimensions 88 × 83 × 83 mm

UHG-08LX Laser

The Hokuyo UHG-08LX Laser [49] is an indoor range sensor which applies phase

difference to get its distance measurements, minimizing the effect of the color and

reflectance of the detected objects. The laser has a scan angle of 270◦ and a pitch

of 0.36◦. The maximum range of the sensor is 8 m with a divergence of 80 mm at

that distance. The main features of the laser are illustrated in Table 8.4. The laser

device is shown in Fig. 8.3 (d).

SICK LMS 200 Laser

As the UHG-08LX laser the SICK LMS 200 laser [50] is a non-contact measurement

system which works in two-dimensions. The laser emits a pulsed laser beam which

is reflected back if it reaches an object. The distance is calculated based on the time

taken by the beam to go back to the device since this time is proportional to the

70

Chapter 8. Multivehicle Testbed

Table 8.5: General specifications of the SICK LMS 200 laser

Power source 24 VDC ±15%
Current consumption current required max. 1.8 A
Operating ambient temperature 0 − 50◦C
Data interface RS232
Transfer rate 9.6/19.2/38.4/500 kbaud
Range max 80 m
Angular resolution 0.25◦/0.5◦/1◦ selectable
Response time 53 ms/26 ms/13 ms
System Error typ ±15 mm (mm mode), range 1 . . . 8 m

typ ±4 cm (cm mode), range 1 . . . 20 m
Weight approx. 4.5 kg
Dimensions 156 × 185 × 136.8 mm

distance between the laser and the object.

In contrast to the UHG-08LX Laser this device is optimized to be used out-

doors and implements an algorithm for fog correction, and for cutting raindrops and

snowflakes out.

The main technical features of the SICK LMS 200 laser are shown in Table 8.5.

The SICK LMS 200 is shown in Fig. 8.5(a)

Global Positioning System

A Global Positioning system (GPS) is available to be mounted in our testbed for

outdoor applications. It is composed of two parts namely, the enclosure and the

antenna respectively. The enclosure model we have is a ProPak-V3 [51] and the

antenna model is a GPS-702-GG [52].

The ProPak-V3 provides 72 channels, L1 and L2 GPS+GLONASS, a USB inter-

face and SPAN capabilities which links the ProPak-V3 to an IMU. This guarantees

71

Chapter 8. Multivehicle Testbed

Table 8.6: General specifications of the ProPak-V3

Power source 9 - 18 VDC
Power consumption 2.8 W
Antenna port power output 5 VDC max 100 mA
Communication ports 1 RS-232 (921,600 bps)

1 RS-232 (230,400 bps)
1 USB 1.1 (5 Mbps)

Operating temperature −40◦C − 75◦C
Horizontal position accuracy (RMS) Single point L1: 1.8 m

Single point L1/L2: 1.5 m
Data Rate 50 Hz
Time accuracy typ 20 ns
Dimensions 185 × 160 × 71 mm
Weight 1 kg

stability for position, velocity and attitude measurements even in periods when satel-

lite signals are blocked.

The GPS-702-GG antenna uses L1 and L2 frequencies and the signal reception

is combined GPS+GLONASS. Furthermore, the phase center is stable which means

that the phase center remains constant as the azimuth and elevation angle of satellites

change.

Both devices, the enclosure and the antenna are made of durable, waterproof

materials. Furthermore, they are vibration resistant.

The technical specifications of the ProPak-V3 and the GPS-702-GG are given in

Tables 8.6 and 8.7 and the devices are shown in Fig. 8.5(b).

72

Chapter 8. Multivehicle Testbed

Table 8.7: General specifications of GPS-702-GG

Power source 4.5 - 18 VDC
Power consumption 35 mA
Operating temperature −40◦C − 85◦C
3dB pass band L1: 1588.5 ± 2 MHz

L2: 1236 ± 18.3 MHz
LNA gain 29 dB
Propagation delay 5 ns (maximum)
Nominal impedance 50 Ω
Dimensions 185 mm diameter × 69 mm
Weight 500 g

Sonar Front Array

This low cost sensor is a classroom oriented tool to give the students experience with

obstacle detection sensors [45]. As shown in Fig. 8.6(a), the circular sensors at the

front of the robot forms an array of sonars, with 2 sonars on each side and 6 more

(a) (b)

Figure 8.5: The picture in (a) shows The SICK LMS 200 laser at the Marhes lab at
The University of New Mexico and the picture in (b) shows the enclosure ProPak-V3
(lower left) and the antenna GPS-702-GG (upper right) for the GPS system.

73

Chapter 8. Multivehicle Testbed

Table 8.8: General specifications of the motion encoders of the P3-AT robots

Counts/rev 34,000
Counts/mm 49
Counts/rotation 22,500

Table 8.9: General specifications of the Werker Battery

Charge 252 W-hrs
Run Time 2-3 hrs (with PC)
Run Time 4-6 hrs (without PC)
Recharge time 6 hrs/battery (std charger)
Recharge time 2.4 hrs/battery (hight speed charger)

forward covering interval angles of 20◦.

Motion Encoders

The P3-AT comes with 4 motion encoders [45] ready-to-use with the features shown

in Table 8.8,

8.1.2 Power Source

The P3 - AT robot can accommodate up to three [53] WKA12-7.5F batteries which

can store up to 252 W-hrs and provide 12 VDC. If the robot is equipped with good

condition batteries the average run time is around 2 to 3 hrs. The werker battery

used for our experiments is shown in Fig. 8.6(b).

Some features of the standard batteries are shown in Table 8.9.

74

Chapter 8. Multivehicle Testbed

(a) (b)

Figure 8.6: The picture in (a) shows the front sonar array of a P3-AT robot and the
picture in (b) a 12VDC werker battery used in the P3-AT robots.

8.2 The P3-AT Software Libraries

In this section we describe the software tools available in the Marhes lab, used to

access and control the different sensors and devices in the P3-AT robots.

8.2.1 The Player/Stage/Gazebo Project

The Player/Stage/Gazebo project is an open source development oriented to support

the research in robotics and sensor systems [43]. Player/Stage/Gazebo is available

for download at http://sourceforge.net/projects/playerstage/files/ under

the policies of the GNU General Public License. Any developer has access to the

codes in order to modify them, in that way new hardware drivers can be developed

and the old drivers can be improved.

The project involves three components namely Player, Stage and Gazebo. The

operating systems compatible with Player/Stage/Gazebo are Solaris, Linux and Mac

OSX. Recently, just the component Player v-3.0.0 has been ported to run on Windows

75

Chapter 8. Multivehicle Testbed

but any work has been done neither in Stage nor Gazebo yet.

Player

Player [43] is a network server aimed to control the robots and the sensors and

actuators attached to it thorough an IP network. A program running in the client

communicates to a Player server through a TCP socket. Player provides a network

interface for the sensors and actuators on the robot which allows the client program

to read data and send commands to the actuators in real time.

Player has a good variety of drivers which support several robot models, sensors

and actuators. Some developments in speech and pattern recognition software are

supported by Player as well. Furthermore, it is worth mentioning that simulators like

Stage and Gazebo are compatible with Player. A complete list of Player supported

devices can be found at http://playerstage.sourceforge.net/doc/Player-2.1.

0/player/supported_hardware.html.

Using Player, several clients can access the same robot at the same time which

makes it a good option for experimenting with multivehicle control and coordination

applications. The typical programming languages used for player are C++, Tcl, Java

and Python which support TCP sockets. Particularly in the Marhes lab we have

been working with C++.

Stage

Stage [54] is a two-dimensional simulator aimed to support research in multiagent

autonomous systems. It can simulate populations of sensors, robots, objects and

environments to be sensed and manipulated by the robots. It provides simplified

models of several devices in order to make the simulations computationally possible,

76

Chapter 8. Multivehicle Testbed

providing a good approach to the real experiment.

Stage is provided with several mechanicals and dynamical models which are real-

istic enough to try the algorithms out before implementing them in the real robots.

Using the Stage plug-in for player libstageplugin we can interface Player with Stage

in order to control a population of virtual robots in a virtual world thorough a TCP

socket.

In order to create a customized virtual world, Stage provides tools to identify

blueprints of a building from a common bitmap and allows you to add customized

bodies with dynamical and geometric parameters to be manipulated by the virtual

robots. Stage has an available model of the P3-AT robot which was used in our

simulations. A sampling of a P3-AT robot taking measurements of an obstacle using

a Stage model of the SICK LMS 200 laser is shown in Fig. 8.7.

Gazebo

Gazebo [55] is a three-dimensional simulator which provides virtual environments

composed of objects and blueprints that can be sensed and manipulated by virtual

robots. It is provided with dynamical models which simulate different forces such as

friction and gravity that are merely considered in a two-dimensional simulator such as

Stage. Furthermore, Gazebo can emulate collisions and even sensor measurements.

Gazebo interfaces with Player in order to implement the client applications in the

virtual environment. However, using the Gazebo libraries libgazebo the developers

are able to interface Gazebo with their own customized server/client applications.

Gazebo provides some tools to design customized models of new sensors, robots

or even objects using three-dimensional predefined geometric shapes and different

colors and textures. There is a predefined mechanical model of the P3-AT robot for

77

Chapter 8. Multivehicle Testbed

Figure 8.7: A Stage model of a P3-AT robot (in red) with a gripper and an LMS
200 laser exploring a virtual world with different kinds of objects, including another
P3-AT robots.

gazebo as the one shown in Fig. 8.8 (b). Notice the resemblance with the picture

shown in Fig. 8.8 (a).

8.2.2 Hardware-Software Interaction

After describing the main features of the hardware and software modules involved in

our multivehicle testbed we consider convenient to describe the interaction between

them. Based on Fig. 8.9 we See that the embedded computer in the P3-AT robot

accesses the sensors and actuators in the robot through several interfaces such as

the USB, FireWire or RS-232 ports. Using the P3-AT player libraries the computer

can communicate with each one of the sensors and actuators using the corresponding

78

Chapter 8. Multivehicle Testbed

(a) Real P3-AT (b) Virtual P3-AT

Figure 8.8: The pictures show the appearance of the real P3-AT and the Gazebo
model of a P3-AT.

drivers.

The embedded computer acts as a server and the client program can be running

locally or remotely, so that the client uses a TCP socket through a network which

most of the time is wireless as indicated in the diagram. A wired connection is

possible, however for the mobility of the robots it becomes cumbersome.

Notice that the client program can access the service from the embedded computer

in the robot or from one of the simulators we presented previously. Lastly, in the

Marhes lab all the P3-AT robots work with a reduced installation of Ubuntu linux

version 8.04 which is a stable version suitable for network applications.

79

Chapter 8. Multivehicle Testbed

Embedded Computer (Server)
Ubuntu Linux 8.04

Pioneer 3 – AT Libraries

Robot Control Software

Wi-Fi
802.11g

USB
FireWire
RS-232

Player Sensor Server

Simulators

Stage (Player - 2D)
Gazebo (Player - 3D)

Pioneer 3 – AT Robots

Camera
Hokuyo Laser

SICK LMS 200 Laser
Sonar Ring

Phidgets
Robotic Arm
Novatel GPS

Odometry

Client
High Level Control

(Remote)

Figure 8.9: The diagram illustrates the software-hardware interaction and the soft-
ware architecture of the robot. Notice that the services of Player run locally in
the P3-AT robots allowing a local or remote application to access the sensors and
actuators of the real or virtual robot.

80

Chapter 9

Conclusions and Discussion

In this thesis we have developed an adaptive controller for deployment of nonholo-

nomic sensor networks to carry out a coverage and estimation of a parameterizable

density function in a convex sampling space. We provided a stability theorem which

states that the robots distribute themselves in an optimal way over the density

function solving the locational optimization problem. The theorem guarantees the

convergence of the estimation of the density function parameters based on local

measurements of the mobile sensors. The mobile sensors were modeled as unicycle

vehicles and a nonlinear steering control law in polar coordinates was used to drive

them and guarantee stability.

Previous versions of this controller in the literature [56],[57] have shown that

this kind of controller can be useful in search and rescue missions, environmental

monitoring and automatic surveillance of buildings or towns. The main difference

with similar approaches in the literature is the inclusion of nonholonomic sensor

networks as well as the validation of the controller in dynamic density functions with

piece-wise constant parameter dynamics.

Through simulations in Stage and Matlab as well as some experimental testing

81

Chapter 9. Conclusions and Discussion

using a team of four P3-AT robots and the Player/Stage/Gazebo project we verified

our theoretical results. The experiments showed that the implementation of our

coverage controller is feasible and useful in practice.

The assumptions presented in the development of this thesis may or may not be

fulfilled in a real scenario. The sampling space is considered convex and the density

function is not only assumed to be parameterizable but the parameters should be

positive. The communication between the sensors and their neighbors is considered

perfect to allow the calculation of the Voronoi partitions and the transmition of

their measurements and positions thorough the network. During the experiments we

assumed that the odometry was perfect, but usually some error corrections method

should be applied.

Our future work is aimed to overcome the mentioned issues. Designing an ex-

tension for non-convex sampling spaces similar to the one in [37] and considering

obstacles would give us a more realistic approach. Considering possible communica-

tion failures in our mathematical model and applying odometry correction mecha-

nisms such as vision and Kalman filtering [58] would help us improve the robustness

and accuracy of the system. Furthermore, the development of a theoretical frame-

work for continuous time variant density functions rather than piece-wise constant

density functions is encouraging in order to spread the range of applications of our

controller. Finally, the study of mechanisms to fulfill the persistency of excitation

condition to guarantee the convergence of the parameter estimation vector âi to zero

would improve the estimation performance of the system.

82

Appendix A

Complement of the Proof of

Stability (Theorem 4)

Since the weighting function w(t) in the second term
∑n

i=1 γ
∫ t

0
w(τ)(Ki(τ)T ãi)

2 dτ in

(5.10) is designed to be non-negative (e.g., an exponential function) and is multiplied

by a quadratic expression, then the whole term is non-negative.

For the third term in (5.10)
∑n

i=1 ãT
i ζ
∑

j∈Ni
(âi − âj), and following the same

procedure as [57], we have that for a graph G = (V, E) with vertices V = {v1, . . . , vn}

and edges E = {e1, . . . , el}, ei = {vj, vk}, we can associate every agent to one vertex.

Now, we can define the neighborhood set of vertex vi as Ni = {j|vi, vj} ∈ E with

the adjacency matrix A of G defined as

A(i, j) = A(j, i) =







1 for {vi, vj} ∈ E,

0 otherwise.

Based on [57] we define the laplacian matrix as L = diagn
i=1(|Ni|) − A. For this

specific case the graph is connected, then L ≥ 0 with a unique eigenvalue in 0 and the

associated eigenvector 1 = {1, . . . , 1}. This means that L1 = 1T L = 0, xT Lx ≥ 0∀x,

83

Appendix A. Complement of the Proof of Stability (Theorem 4)

and xT Lx = 0 implies x = 0 or x = 1c for some c ∈ R.

Now, expressing the third term in (5.10) in terms of the laplacian we have

n
∑

i=1

ãT
i ζ
∑

j∈Ni

(âi − âj) = ζ

m
∑

j=1

b̃T
j L(t)b̂j , (A.1)

where bj = a(j)1, b̂j = [â1(j) . . . ân(j)]T and b̃j = b̂j − bj .

Then we have that bT
j L(t) = a(j)1T L = 0 and (A.1) becomes

ζ
m
∑

j=1

b̃T
j Lb̂j = ζ

m
∑

j=1

b̂T
j Lb̂j ≥ 0,

Since for the connected graph L(t) ≥ 0 ∀t ≥ 0 then the third term in (5.10) gives

n
∑

i=1

ãT
i ζ
∑

j∈Ni

(âi − âj) ≥ 0,

which is non-negative.

For the fourth term
∑n

i=1 ãT
i Iproj

˙̂aprei
in (5.10) we have that the j-th scalar term

in the summation is ãT
i (j)Iproj(j) ˙̂aprei

(j).

From (4.13) we have that if ãi(j) > amin or if ãi(j) = amin and ˙̂aprei
≥ 0 the

scalar term becomes 0. On the other hand if âi(j) < amin and ˙̂aprei
< 0 then

ãi(j) = âi(j) − a(j) ≤ 0 and from (4.13) Iproji
(j) = 1, then

ãT
i (j)Iproj(j) ˙̂aprei

(j) ≥ 0 ∀j = 1, . . . , n, (A.2)

and we conclude that the fourth term in (5.10) is non-negative.

84

References

[1] J. Clark and R. Fierro, “Mobile robotic sensors for perimeter detection and
tracking,” ISA Trans., vol. 45, pp. 3–13, 2007.

[2] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. Mclain, S. M. Li, and
R. Mehra, “Cooperative forest fire surveillance using a team of small unmanned
air vehicles,” International Journal of Systems Sciences, vol. 37, no. 6, pp. 351–
360, 2006.

[3] J. Mandel, J. D. Beezley, J. L. Coen, and M. Kim, “Data assimilation for wild-
land fires. ensemble kalman filters in coupled atmosphere-surface models,” IEEE
Control Systems Magazine, vol. 29, no. 3, pp. 47–65, 2009.

[4] R. A. Cortez, “Information-driven cooperative control for radiation map build-
ing,” M.S. Thesis, The University of New Mexico, 2007.

[5] M. Schwager, D. Rus, and J. J. E. Slotine, “Decentralized, adaptive control for
coverage with networked robots,” International Journal of Robotics Research,
vol. 28, no. 3, pp. 357–375, March 2009.

[6] A. Kwok and S. Mart́ınez, “Unicycle coverage control via hybrid modeling,”
IEEE Transactions on Automatic Control, submitted, 2008, revised 2009.

[7] J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo, “Coverage control for mobile
sensing networks,” IEEE Transactions on robotics and Automation, vol. 20, pp.
243–255, 2004.

[8] D. Marthaler and A. L. Bertozzi, “Tracking environmental level sets with au-
tonomous vehicles,” in Recent Developments in Cooperative Control and Opti-
mization, R. M. S. Butenko and e. P. M. Pardalos, Eds. Kluwer Academic
Publishers, 2003, pp. 317–330.

85

References

[9] R. Olfati-Saber and R. R. Murray, “Consensus problems in networks of agents
with switching topology and time-delays,” IEEE Transactions on Automatic
Control, vol. 49, pp. 1520–1533, 2004.

[10] S. Susca, S. Mart́ınez, and F. Bullo, “Monitoring environmental boundaries with
a robotic sensor network,” vol. 16, no. 2, pp. 288–296, 2008.

[11] G. Lee, N. Chong, and H. Christensen, “Adaptive triangular mesh generation
of self-configuring robot swarms,” in Proc. of the International Conference on
Robotics and Automation (ICRA 09), Kobe, Japan, May 2009, pp. 2737–2742.

[12] J. M. Luna, R. Fierro, C. T. Abdallah, and J. Wood, “Distributed, adaptive
algorithm for deployment of nonholonomic sensor networks,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA 2010), May 2010, sub-
mitted.

[13] Y. Mostofi and P. Sen, “Compressive cooperative sensing and mapping in mobile
networks,” in Proc. of the American Control Conference (ACC 09), St. Louis,
Missouri, Jun 10-12 2009, pp. 3397–3404.

[14] S. P. Hou and J. J. E. Slotine, “Dynamic region following formation control for
a swarm of robots,” in Proc. of the International Conference on Robotics and
Automation (ICRA 09), Kobe, Japan, May 12-17 2009, pp. 1929–1934.

[15] A. Deshpande, S. Poduri, D. Rus, and G. S. Sukhatme, “Distributed coverage
control for mobile sensors with location-dependent sensing models,” in Proc. of
the International Conference on Robotics and Automation (ICRA 09), Kobe,
Japan, May 2009, pp. 2344–2349.

[16] F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series, 2009, available at
http://www.coordinationbook.info.

[17] R. Graham and J. Cortés, “Distributed sampling of random fields with unknown
covariance,” in Proc. of the American Control Conference (ACC 09), St. Louis,
Missouri, Jun 10-12 2009, pp. 4543–4548.

[18] M. Schwager, B. J. Julian, and D. Rus, “Optimal coverage for multiple hovering
robots with downward facing cameras,” in Proc. of the International Conference
on Robotics and Automation (ICRA 09), Kobe, Japan, May 12-17 2009, pp.
3515–3522.

[19] L. Moreau, “Stability of multiagent systems with time-dependent communi-
cation links,” IEEE Transactions on Automatic Control, vol. 50, no. 2, pp.
169–182, 2005.

86

References

[20] W. Ren and E. M. Atkins, “Distributed multi-vehicle coordinated control via
local information exchange,” International Journal in Robust and Nonlinear
Control, vol. 17, pp. 1002–1033, 2007.

[21] M. Franceschelli, M. Egerstedt, A. Giua, and C. Mahulea, “Constrained invari-
ant motions for networked multi-agent systems,” in Proc. of the International
Conference on Robotics and Automation (ICRA 09), Kobe, Japan, May 12-17
2009, pp. 5749–5754.

[22] D. V. Dimarogonas and K. J. Kyriakopolous, “On the rendezvous problem
for multiple non-holonomic agents,” IEEE Transactions on Automatic Control,
vol. 52, no. 5, pp. 916–922, 2007.

[23] W. Dong and J. A. Farrel, “Cooperative control of multiple non-holonomic ve-
hicle,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1434–1448,
2008.

[24] Y. Lan, G. Yan, and Z. Lin, “A hybrid control approach to cooperative tar-
get tracking with multiple mobile robots,” in Proc. of the American Control
Conference (ACC 09), St. Louis, Missouri, Jun 10-12 2009, pp. 2624–2629.

[25] J. Wu and Z. Jiang, “On the switching control of multiple mobile robots for-
mation,” in Proc. of the International Conference on Robotics and Automation
(ICRA 09), Kobe, Japan, May 12-17 2009, pp. 2711–2716.

[26] A. Oikonomopoulos, S. G. Loizou, and K. J. Kyriakopoulos, “Coordination of
multiple non-holonomic agents with input constraints,” in Proc. of the Interna-
tional Conference on Robotics and Automation (ICRA 09), Kobe, Japan, May
12-17 2009, pp. 869–874.

[27] R. G. Sanfelice, R. Goebel, and A. R. Teel, “Results on convergence in hybrid
systems via detectability and invariance principle,” in Proc. of the American
Control Conference (ACC 09), 2005, pp. 551–556.

[28] R. Olfati-Saber and R. M. Murray, “Consensus and cooperation in networked
multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[29] K. D. Listmann, M. V. Masalawala, and J. Adamy, “Consensus for formation
control of nonholonomic mobile robots,” in Proc. of the International Conference
on Robotics and Automation (ICRA 09), Kobe, Japan, May 12-17 2009, pp.
3886–3891.

[30] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Upper Saddle River,
NJ 07458: Prentice Hall, 1991.

87

References

[31] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ 07458:
Prentice Hall, 2002.

[32] R. Fierro and F. L. Lewis, Encyclopedia of Electrical and Electronics Engineer-
ing. John Wiley & Sons Inc., 1999, ch. Robot Kinematics, pp. 559–571.

[33] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006, available at http://planning.cs.uiuc.edu/.

[34] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Equitable partitioning policies
for robotic networks,” in Proc. of the International Conference on Robotics and
Automation (ICRA 09), Kobe, Japan, May 2009, pp. 2356–2361.

[35] J. G. M. Fu, T. Bandyopadhyay, and M. H. A. Jr, “Local voronoi decomposition
for multi-agent task allocation,” in Proc. of the International Conference on
Robotics and Automation (ICRA 09), Kobe, Japan, May 12-17 2009, pp. 1935–
1940.

[36] Q. Du and M. Gunzburguer, “Centroidal voronoi tessellations: Aplications and
algorithms,” SIAM Review, vol. 41, pp. 637–676, 1999.

[37] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira, “Sensing
and coverage for a network of heterogeneous robots.” in CDC. IEEE, 2008, pp.
3947–3952.

[38] G. Casalino, M. Aicardi, A. Bicchi, and A. Balestrino, “Closed loop steering
and path following for unicycle-like vehicles: a simple lyapunov function based
approach,” IEEE Robotics and Automation Magazine, vol. 2, no. 1, pp. 27–35,
March 1995.

[39] D. Liberzon, Switching in Systems and Control, ser. Systems & Control: Foun-
dations & Applications, Birkhauser, Ed., June 2003.

[40] M. Schwager, J. McLurkin, J. J. E. Slotine, and D. Rus, “From theory to
practice: Distributed coverage control experiments with groups of robots,” in
Proceedings of the International Symposium on Experimental Robotics, Athens,
Greece, July 2008.

[41] “Voro++ documentation,” [online] Available: http://math.lbl.gov/voro++/
doc/, 2009.

[42] D. Cruz, J. McClintock, B. Perteet, O. Orqueda, Y. Cao, and R. Fierro, “Decen-
tralized cooperative control: A multivehicle platform for research in networked
embedded systems,” IEEE Control Systems Magazine, vol. 27, no. 3, pp. 58 –
78, June 2007.

88

References

[43] “The player robot device interface,” [online] Available: http://playerstage.
sourceforge.net/doc/Player-2.1.0/player/index.html, 2007.

[44] “Aria,” [online] Available: http://robots.mobilerobots.com/wiki/ARIA#
Documentation, 2007.

[45] “Pioneer 3 operations manual,” [online] Available: http://robots.mobilerobots.
com/docs/all docs/P3OpMan5.pdf, 2007.

[46] “Product manual. 1018 - phidgetinterfacekit 8/8/8,” [online] Available: http:
//www.phidgets.com/documentation/Phidgets/1018.pdf, 2007.

[47] “Product manual. 1127 - precision light sensor,” [online] Available: http://www.
phidgets.com/documentation/Phidgets/1127.pdf, 2007.

[48] “Product manual. 1108 - magnetic sensor,” [online] Available: http://www.
phidgets.com/documentation/Phidgets/1108.pdf, 2007.

[49] “Scanning laser range finder uhg-08lx specifications,” [online] Available: http:
//www.acroname.com/robotics/parts/R311-HOKUYO-LASER2s.pdf, 2007.

[50] “Lms200/211/221/291 laser measurement systems,” [online] Available: http:
//www.mysick.com/saqqara/get.aspx?id=IM0012759, 2006.

[51] “Enclosures. propack-v3,” [online] Available: http://www.novatel.com/
Documents/Papers/ProPakV3.pdf, 2009.

[52] “Antennas. gps-701-gg and gps-702-gg,” [online] Available: http://www.novatel.
com/Documents/Papers/GPS701 702GG.pdf, 2009.

[53] “Werker. wka12-7.5f. sealed lead acid absorbed glass mat. technical
specifications,” [online] Available: http://www.security1call.com/pdf folder/
WKA12-7%205F.pdf.

[54] “The stage robot simulator,” [online] Available: http://playerstage.sourceforge.
net/doc/Stage-3.2.1/, 2007.

[55] “Gazebo,” [online] Available: http://playerstage.sourceforge.net/doc/
Gazebo-manual-0.8.0-pre1-html/, 2007.

[56] M. Schwager, J. J. Slotine, and D. Rus, “Descentralized adaptive control for
coverage with networked robots,” in Proceedings of International Conference on
Robotics and Automation, Rome, April 2007.

[57] ——, “Consensus learning for distributed coverage control,” in Proceedings of In-
ternational Conference on Robotics and Automation, Pasadena, CA, May 2008.

89

References

[58] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor,
“A vision-based formation control framework,” IEEE Transactions in Robotics
and Automation, vol. 18, pp. 813–825, 2002.

90

	University of New Mexico
	UNM Digital Repository
	2-9-2010

	Distributed, adaptive deployment for nonholonomic mobile sensor networks : theory and experiments
	Jose Marcio Luna-Castaneda
	Recommended Citation

	signature page
	LunaThesis03

