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A Learning Algorithm for Applying Cohen’s Models to System
Identification®

James W. Howse Chaouki T. Abdallah Gregory L. Heileman

Department of Electrical and Computer Engineering
University of New Mexico
Albuquerque, NM 87131

Abstract

In this paper we extend the models discussed by Cohen (1992) by introducing an input term. This
allows the resulting models to be utilized for system identification tasks. We prove that this model is
stable in the sense that a bounded input leads to a bounded state when a minor restriction is imposed
on the Lyapunov function. By employing this stability result, we are able to find a learning algorithm
which guarantees convergence to a set of parameters for which the error between the model trajectories
and the desired trajectories vanishes.

1 Introduction

In this paper we present a straightforward extension of the models introduced by Cohen (1992). Specifically
we introduce an additional term to allow for an external input. This allows these models to be utilized
for system identification tasks. By imposing a minor restriction on the Lyapunov functions constructed
in Cohen (1992), we prove that this extended model is stable in the sense that a bounded input leads to
a bounded state. Using this stability result and the proper model parametrization, we are able to find a
learning algorithm which converges to a set of parameters which minimize the training error. Specifically the
algorithm guarantees that the error between the between the model trajectories and the desired trajectories
vanishes. Our learning procedure is related to one discussed in Narendra and Annaswamy (1989) for use in
linear system identification. This learning procedure can also be used for associative memory applications,
by setting the external inputs to zero. This allows some parameters of Cohen’s memory models to be
learned from examples rather than being programmed in advance.

This paper is organized as follows. In Section 2 the decomposition of dynamics into a component normal
to some surface and a set of components tangent to the same surface is discussed. The learning algorithm
and some theorems about its behavior are given in Section 3. In Section 4 the results of some computer
simulations are presented. The proofs for all of the theorems are given in the Appendix.

2 Model Form

First some terminology will be defined. For a system of n first order ordinary differential equations, the
phase space of the system is the n-dimensional space of all state components. A solution trajectory is
a curve in phase space described by the differential equations for one specific starting point. At every
point on a trajectory there exists a tangent vector. The space of all such tangent vectors for all possible
solution trajectories constitutes the vector field for this system of differential equations. The operation
|z|| denotes the p-norm (|z1|P + |z2|P + - - - + |zn|P)? of the n-dimensional vector & for some p such that
1 < p < 00, and where | - | is the absolute value. For the purposes of the theorems any p-norm may be
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chosen. In the simulations p = 2 has been chosen, so that the norm is the Euclidean distance. A potential
function V (z) is any scalar valued function of the system states & = [z1, T2, . .., 2|t which is at least twice
continuously differentiable (i.e. V(x) € C™ : r > 2). The operation ! denotes the transpose of the vector
x. If there are n components in the system state, the function V(x), when plotted with respect all of the
state components, defines a surface in an (n + 1)-dimensional space, which is called the graph of V(x).

The models considered in this paper all have the general form
z=—-P(x)V.V(x) + Q(x) VV (x) + h(ul(t)), (1)

where P(z) is a matrix function which is symmetric (i.e., PT = P) and positive definite at every point
x, Q(x) is a matrix function which is skew-symmetric (i.e., Qt = —Q) at every point x, and where
ViV (x) = [g—zvl, %7 e %]T. The function u(t) is a time-varying input, and h(-) is a possibly nonlinear
transformation of the input. For this model the number and location of equilibria is determined by the
function V (), while the manner in which the equilibria are approached is determined by the matrices P(x)
and Q(x). When h(u(t)) = 0, the critical points of V() are the only equilibria of this system. If the graph
of the potential function V() is (@ bounded below (i.e., V(z) > M V x € R™, where M is a constant),
@ radially unbounded (i.e., lim|jz|_,00 V() — 00) , and @ has only a finite number of isolated critical
points (i.e., in some neighborhood of every point where V.V (x) = 0 there are no other points where the
gradient vanishes), then for h(u(t)) = 0 the system in Equation (1) satisfies the conditions of Theorem 10
in Cohen (1992). Therefore the system will converge to one of the critical points of V' (x) for all initial
conditions. The systems in Equation (1) are a non-autonomous special case of the gradient-like systems
presented in Franks (1982). This means that they are not able to represent arbitrary dynamics. Note that
if the second term on the right hand side of Equation (1) is replaced by the term Y 1, Q;(z) Vo H;(z),
where H;(x) are in general different potential functions, then the resulting system can describe arbitrary
dynamics. Specifically, Mendes and Duarte (1981) show that any vector field f on a manifold M can be
locally decomposed into the sum of one gradient system and (n — 1) Hamiltonian systems, where n is the
local dimension of the manifold.

3 The Learning Rule

In this section we introduce a learning rule for the systems in Equation (1). If it is assumed that the locations
of the equilibria are known, then a potential function which has these critical points can be constructed
using either of the two methods discussed in Cohen (1992). The problem of system identification is thereby
reduced to the problem of parameterizing the matrices P(x) and Q(z) and finding the parameter values
which cause this model to best emulate the actual system. If the elements P(x) and Q(x) are correctly
chosen, then a learning rule can be designed which makes the model dynamics converge to that of the
actual system.

Specifically, choose each element of these matrices to have the form

n -1 n -1
Prs = Z Zgrsij "9]' (xz) and Qrs = Z Z )\rsij Qj(xi)a (2)
i=1 j=0 i=1 j=0

where {99 (z;), %1 (z;), - .., H-1(z;)} and {go(x;), 01(x;), ..., 01-1(x;)} are a set of 1 orthogonal polynomials
which depend on the state x;. There is a set of such polynomials for every state z;, i = 1,2,...,n. The
constants &rs; and Apg; determine the contribution of the jth polynomial which depends on the ith state
to the value of P, and @, respectively. In this case the dynamics in Equation (1) become

n -1

&= {8 [9;(z:) VaV (@)] + Aij [0j(2:) VoV (@)]} + T gu(t)) = f(z,€, X, 0,1) 3)

i=1 j=0

where E;; and A;; are the (n x n) matrices of all values &5;; and Aps;; respectively, which have the same
value of ¢ and j. This system has m inputs, which may explicitly depend on time, that are represented by



the m-element vector function w(t). The m-element vector function g(-) is a smooth, possibly nonlinear,
transformation of the input function. The matrix Y is an (n x m) parameter matrix which determines
how much of input s € {1,...,m} effects state » € {1,...,n}. So the dynamics depend on the system
states  and all of the parameters & = [&.4i;]T : 7,8, = 1,...,m, 5 =0,...,1—1, A = [Ng5]t i mys,0 =
L,...,n, j=0,...;1—-land v =[v.5)f :r=1,...,n, s=1,....,m.

The dynamics given by Equation (3) are a model of the actual system dynamics. Using this model and
samples of the actual system states, an estimator for the states of the actual system can be designed. The
dynamics of this state estimator are

z=R,(&—z)+ f(z,€\v,t) (4)

where x is a sample of the actual system states. The term R is a matrix of real constants whose eigenvalues
must all be negative. This means that & is an estimate of the actual system states which depends on the
form of the model f(x,&, A, v,t). The goal is to find a set of parameters €, A and v which cause the error
(£ — x) to vanish. The dynamics of a parameter estimator which accomplishes this are

-

ij = Ry (

8>

—a) [0;(z)) Vo V(@) Vi=1,...0mn, j=0,...,1-1
)VoV(@)]' Vi=1,...,n, j=0,...,1—1 (5)

>

ij = Ry (& — ) [0j(;
T =-R,(&—z) [gu®)]

where R, is a matrix of real constants which is symmetric and positive definite. Note that the term
(& — @) [9;(2;) VoV (z)]! is the outer product of n-dimensional vectors, hence the result is an (n x n)
matrix. Likewise the terms (& — ) [oj(z;) V&V (z)]! and (& — ) [g(u(t))]T are also outer products. The
following theorem shows that the system of differential equations defined by Equations (3), (4) and (5)
converge to a set of parameters such that the error (Z — x) between the estimated and target trajectories
vanishes.

Theorem 3.1. Given the model system

Kk
=) A;fi(x)+ Bg(u(t)) 6)
i=1
where A; € R™™ and B € R™*™ are unknown matrices, and f, : R* - R™, f, € C* and g : R™ — R™,

g € C! are known functions such that ||u(t)|| < U for some U > 0 implies ||x(t)|| < 8, for some 8, > 0
(i.e., bounded inputs imply bounded solutions). Choose a state estimator of the form

k
& =R, (i—w)+ZAi fi(x) + B g(u(t) (7)

where Ry € R™*™ is a matriz whose eigenvalues must all be in the left half plane, and A; and B are the
estimates of the actual parameters. Choose parameter estimators of the form

Ai=-R,(@-z)(fi@) vi=1,..x

; ©)
A R t

B =-R, (& —z) (g(u(t)))
where R, € R™™ s the matriz which is a solution of the equation R, Rs + R R, = —Qq,. The matrix
Qo € R™™ must be symmetric and positive definite. For these choices of state and parameter estimators
lim;_,oo (& — ) = 0 for all initial conditions. Furthermore, this remains true if any of the elements of A;
or B are set to 0, or if any of these matrices are restricted to being symmetric or skew-symmetric.

The proof of this theorem is quite standard and appears in Howse (1995). Notice that (& — ) (-)! denotes
an outer product. Note that convergence of the parameter estimates to the actual parameter values is not
guaranteed by this theorem. Since Equations (3), (4), and (5) are in the form of Equations (6), (7), and



(8) respectively, Theorem 3.1 implies that the parameter estimates produced by Equation (5) cause the
state estimates in Equation (4) to converge to the actual state values.

Theorem 3.1 is based on the assumption that the state vector in Equation (6) is bounded if the input u(t)
is bounded (i.e., BIBS stability). If f,(-) and g(-) are linear functions, the resulting linear system is BIBS
stable if it is asymptotically stable when u(t) = 0, as shown by Willems (1970). However, it was shown
by Varaiya and Liu (1966) that asymptotic stability of the zero input case alone does not guarantee BIBS
stability for nonlinear systems. This means that in order to determine the boundedness of the solutions
x(t) of Equation (3), a non-autonomous nonlinear system must be considered. In general this can be quite
difficult, but for systems of this form, results in LaSalle and Lefschetz (1961) can be used to prove the
following theorem.

Theorem 3.2. Given the dynamical system
& =—-P(z) VoV(z) + Q@) Vo V() + h(u(t)), 9)

where V : R* = R, V € C? is the potential function, h : R™ - R*, he C', andu: R = R™, u € C!
is a time varying input function. The matriz function P : R* — R™™ P c C' is symmetric positive
definite, and Q : R™ — R"Y™ Q € C! is skew-symmetric. Furthermore, V(x) > 0 for all x, and there
exists an Fy, > 0, such that for ||z|| > Fy, [|VaV (2)|| > Ky for some K, > 0 (i.e., the length of ViV (x)
has a non-zero lower bound). Also there exists a U > 0 such that ||u(t)|| < U. If all of the above conditions
are satisfied, then there exists 8, > 0 such that corresponding to each solution x(t) of Equation (9) there
is a T > 0 with the property that ||x(t)|| < 8y for all t > T (i.e., the solutions x(t) of Equation (9) are
ultimately bounded).

The proof of this theorem appears in the Appendix. Note that the system has n states and m inputs,
where m and n may differ. This theorem states that if there is a region outside which the length of V.V (x)
has a non-zero lower bound, then all solutions to Equation (9) are ultimately bounded provided that the
norm of the input signal ||u(t)|| is bounded. It turns out that X, depends on U, the upper bound on
|lu(t)|| (see the proof). So if the system is to accommodate arbitrarily large inputs, there must be a region
lz]] > Fr in which ||V.V (z)]| is strictly increasing (i.e., ||z1] > [|z2|| = |[V2V (21| > [|[VV (x2)]]).
If this is the case, then for any X,, and hence any U, there exists a region ||| > F, > F,, in which
IVeV(x)|| > Ky. The condition |V, V (x)|| > K, implies that V(x) > K,||z| which means that V(x)
is radially unbounded, but not necessarily convex or even increasing. It is not obvious what condition
on V(x) implies ||VzV(x)| > X,, for instance V(z) > K,|z| # ||[V=V(x)]| > K.. An interesting
converse to this theorem can also be proven. If V(x) is continuous, lower bounded, and has some region
llz|| > F, where ||V V (x)|| > K,, then there exists some region (or possibly regions) ||z —C|| < F; wherein
|V2V ()| < K; for some F;,%; > 0. In this region it can be shown that V(z) is always positive, hence
this region is unstable and the system will eventually leave it. Therefore the solutions of Equation (9)
have both an ultimate upper bound and an ultimate lower bound, so for ¢t > T, §; < ||z(¢)|| < 8, for some
Sy > 8 > 0.

As previously stated, Theorem 3.1 does not guarantee the convergence of the parameter estimates to the
actual parameter values. This issue has been widely addressed in the adaptive identification and control
literature, as discussed in Narendra and Annaswamy (1987). It was determined that if the signals within
the adaptive system possessed certain properties, then the origin of the system was globally uniformly
asymptotically stable. This guarantees the convergence of the parameter estimates. Signals with these
properties are said to be persistently exciting by Narendra and Annaswamy (1987). Intuitively, persistent
excitation means that the input is rich enough to excite all the modes of the system being considered. For
linear systems persistent excitation becomes a condition on the input signal alone, since a linear system
can not generate frequency modes. For a nonlinear system the condition must be on both the input signal
and the internal signals of the system, since nonlinear systems can generate new frequency modes. Using
results from Morgan and Narendra (1977) the following theorem can be proven for the identification system
defined by Equations (6), (7) and (8).

Theorem 3.3. Given the model system

k
&= A;Fi(x) VsV (2) + Bg(u(t), (10)



where F; : RY - R, d < n (i.e., F;(-) may be a function of some subset of the elements in the state
vector x), F; € Ct. Let all A; € R™™™ be either symmetric positive definite or skew-symmetric and let
Equatwn (10) satisfy all of the conditions in Theorems 3.1 and 3.2. Define the error functions e = & — x,

&, =A;— A;, and ¥ = B — B. From Equations (7) and (8) the state and parameter error dynamics are

K
e=2—-c=Rse+ Z‘I%' Fi(z) VoV (z) + ¥ g(u(t)),

=1
$;= A — A; = -Rye [Fi(z) VoV (@),
¥ =B -B=-R,egul),

Let ||[au(t)|| <D for some D > 0, and let there exist positive constants to, T, and € such that for every unit
vector w € R*™

t+T
%/t H{[}-l )+ Fo(x(7)) + - + Fu(x(1))] VaV((r))! g(U(T))f} w|| dr >e YV t>tg. (12)

Then the equilibrium point e = 0, ®; = O, ¥ = O is globally uniformly asymptotically stable.

The proof of this theorem follows almost immediately from Theorem 4 in Morgan and Narendra (1977).
Note that Equation (11) is non-autonomous due to the input term. Also, the choice of parameter error
dynamics is dictated by the fact that the actual parameters A; and B are assumed to be unknown constants.
This theorem gives a condition on the internal signals and inputs of the system in Equation (11) which
guarantee convergence of the parameter estimates to their actual values. The intuitive meaning of this
condition is far from obvious. In part it means that there is a time interval T over which the vector
{[>Xk,Fi(z)] VuV(x) g(u(t))} points in all directions with sufficient length as t takes on values in the
interval. Notice that in Equation (3) the form of F;(z) is wj(z;), 7 =0,1,...,1—-1,4=1,2,...,n where
w;(-) is the jth member of a set of 1 orthogonal polynomials, and z; € {z1,22,...,2n}.

4 Simulation Results

Now an example is presented in which the parameters of the model in Equation (3) are learned, using the
training rule in Equations (4) and (5), on one input signal and then are tested on a different input signal.
The actual system has three equilibrium points, two stable points located at (1,3) and (3,5), and a saddle
point located at (2 — ?, 4+ @) In this example the dynamics of both the actual system and the model
are given by

A v
(:i‘1> (Al + Ao x5 + Az 23 0 > Ox1 4 ( 0 —{Ar+ Asz1 + Ao 372}) o1 + (Alo) (13)
= — u,
T2 0 As+ Aszi + Asz3 ) | OV A7 + Asz1 + Ao 2 0 v 0
6$2 8322
where u is a time varying input. For the actual system the parameter values were A; = Ay = —4,

A2 = ./45 = —2, Ag = AG = —1, .A7 = 1, .Ag = 3, Ag = 5, and AIO = 1. In the model the 10
elements A; are treated as the unknown parameters which must be learned. Note that the first matrix
function is positive definite if the parameters A;—Ag are all positive valued. The second matrix function
is skew-symmetric for all values of A7—Ag. For this particular system V.V (x) is

oV

oz, 576 z5 — 5379.45 x4+ + 19742.3 23 — 35767.5 22 + 31999.2 21 — 24z x2 + 47 x5 — 11239.5 (14)
ov —122} + 4721 + z2 — 38

6.’1:2

It is relatively easy to show that for this example, ||V V (x)|| is eventually strictly increasing as illustrated
in Figure 1. The function is actually increasing in the X-shaped trough seen in the figure, but at a much



Figure 1: The graph of the norm of the gradient ||VoV (x)|| for the system defined in Equation (14).

slower rate than in the surrounding areas. This means that for any bounded input, the system defined
by Equations (13) and (14) satisfies the conditions in Theorem 3.2 and therefore has ultimately bounded
solutions. The two input signals used for training and testing were uy () = 10000 (sin 1000 ¢ + sin 2 1000¢)
and wus(t) = 5000 sin 1000¢. The phase space responses of the actual system to the inputs u; and us are
shown by the solid curves in Figures 4(b) and 4(a) respectively. Note that both of these inputs produce a
periodic attractor in the phase space of Equation (13).

In order to evaluate the effectiveness of the learning algorithm the Euclidean distance between the actual
and learned state and parameter values was computed and plotted versus time. The results are shown in
Figure 2. Figure 2(a) shows these statistics when training with input u;, while Figure 2(b) shows the same

{[Az|l, [[AA]l} {I[Az|l, [[AA] }
17.5
15
15
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10 _‘ //—\‘\—-‘ N
10 \ S N e X
= N \ RN
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] e 5
P T 2.5
450100 150 200 250 300 ¢ 50100 150 200 250 300 t

(a) (b)
Figure 2: (a) The state and parameter errors for training using input signal u;. The solid curve is the
Euclidean distance (i.e., v/>.2_;%; — z; ) between the state estimates and the actual states as
a function of time. The dashed curve shows the distance (i.e., v/>.;2;.A; — A; ) between the

estimated and actual parameter values versus time.
(b) The state and parameter errors for training using input signal us.

statistics for input u2. The solid curves are the Euclidean distance between the learned and actual system
states, and the dashed curves are the distance between the learned and actual parameter values. These
statistics have two noteworthy features. First, the error between the learned and desired states quickly
converges to very small values, regardless of how well the actual parameters are learned. This result was
guaranteed by Theorem 3.1. Second, the minimum error between the learned and desired parameters is
much lower when the system is trained with input u;. Specifically the minimum parameter error for input
uy is 1.65, while for input us it is 6.47. Intuitively this is because input u; excites more frequency modes
of the system than input us. Notice that the parameter error curve in Figure 2(a) appears to be eventually
monotonically decreasing. So it seems reasonable to conclude that for input u; the parameter estimates
eventually converge to the actual parameter values. The same conclusion also seems to justified for input
us since the envelope of the parameter error curve in Figure 2(b) decreases with time. These observations
illustrate the relationship between parameter convergence and persistent excitation that was addressed in
Theorem 3.3. Recall that in a nonlinear system the frequency modes excited by a given input do not
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Figure 3: (a) The power spectral density versus frequency of the state z1(t) when Equation (13) is driven
by input u1(t) . The dashed lines represent the two frequencies present in the input.
(b) The power spectral density of z1(¢t) for input uz(¢). The dashed line represents the one
frequency present in the input.

depend solely on the input because the system can generate frequencies not present in the input. These
conclusions are further supported by the plots of the power spectrum of state z; (t) for each input, shown in
Figure 3. Figure 3(a) shows the power spectrum for input wu; (¢), while Figure 3(b) shows it for input us(t).
The dashed lines show the frequencies present in the input signal. Note that the DC peak in both power
spectra is due to the fact that neither of the periodic structures generated by these inputs is centered at
the origin. These plots have two features of note. First, input u; clearly excites more system modes than
input uwe. This partially explains why the parameter convergence for u; is better than for us, as shown
in Figure 2. Second, both inputs excite modes in the system which are at frequencies not present in the
input. This is a result of the nonlinearities in Equation (13). The large number of spectral components
supports the conclusion that for this particular system both u; and wuy are persistently exciting.

The quality of the learned parameters can be qualitatively judged by comparing the phase plots using the
learned and actual parameters for each input, as shown in Figure 4. In Figure 4(a) the system was trained

(a) (b)

Figure 4: (a) A phase plot of the system response when trained with input u1 and tested with input wua.
The solid line is the response to the test input using the actual parameters. The dotted line is
the system response using the learned parameters.

(b) A phase plot of the system response when trained with input u» and tested with input u;.

using input u; and tested with input ue, while in Figure 4(b) the situation was reversed. The solid curves
are the system response using the actual parameter values, and the dashed curves are the response using



the final values of the learned parameters. The Euclidean distance between the target and test trajectories
in Figure 4(a) is in the range (0,0.64) with a mean distance of 0.21 and a standard deviation of 0.14. The
distance between the the target and test trajectories in Figure 4(b) is in the range (0,4.53) with a mean
distance of 0.98 and a standard deviation of 1.35. Qualitatively, both sets of learned parameters give an
accurate response for non-training inputs. Note that even when the error between the learned and actual
parameters is large, the periodic attractor resulting from the learned parameters appears to have the same
“shape” as that for the actual parameters.

5 Conclusion

In this paper we present an extension to the models of Cohen (1992) which allows them to be used for
system identification. By imposing a minor restriction on the potential function in Equation (1) we are
able to prove that these systems are bounded-input bounded-state stable. We then use this stability result
to develop a convergent learning algorithm for the model parameters. This algorithm is guaranteed to
converge to a set of parameter values for which the error between the learned and desired trajectories
vanishes. We also present a condition for the persistent excitation of the inputs and the system states.

The first two terms on the right hand side of Equation (1) can be combined by letting M (x) = —P(x) +
Q(x). An alternate way to construct systems which satisfy Theorem 10 in Cohen (1992) is to construct
the matrix M (x) such that the first row is always along —V,V () and all rows are mutually orthogonal.
One way to construct this matrix is to find —V,V(x) at each point &, and then use Gram-Schmidt
orthogonalization to find the remaining rows. However, it would be far more elegant to find a global
construction that could be performed a priori. A significant unanswered question about the models in
Equation (1) is how large a subset of dynamical systems they can approximate. If V(x) is constructed
using either of the two techniques presented in Cohen (1992), then it is shown in that paper that the
resulting systems can not even describe all gradient systems. Even if V' (x) is arbitrary, the results in our
paper do not allow all gradient systems to be learned because only the transient behavior represented by
the matrix functions P(z) and Q(z) is being modeled. Clearly, in order to model the behavior of a general
system, the long term behavior represented by the potential function V(x) must also be learned from
data. Since finding asymptotically stable structures in data is usually straightforward, learning V' (x) from
data may appear fairly trivial at first glance. However, unstable structures can have a significant impact
on the system dynamics, and these are in general very difficult to locate. We are currently investigating
constructive algorithms to synthesize the potential function V' (z). This would lead to a two-stage learning
procedure in which the algorithm presented here is used to learn the transient behavior (i.e., P(x) and
Q(x)), and the long term behavior (i.e., V(x)) is learned by a different procedure.
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Appendix: Proofs

Proof of Theorem 3.2
The following lemma, which is proved in the reference, is used in the proof of this theorem.
Lemma A.1 (LaSalle and Lefschetz (1961)). Let V(x) be a scalar function which for all  has continuous

first partial derivatives with the property that lim|q) e V() — 0. IfV(:L') < —e < 0 for all © outside some closed
and bounded set M, then the solutions of & = f(x,t) are ultimately bounded.

Proof. Since h(-) is continuous, ||u(t)|| < U = ||h(w(t))|| < U. It is given that ||VV (2)|| > K. Choose K, to be

ﬂ2 + 4 Apin €

U+
> Ky =
19V 2 % T

where € is a positive constant and A, is the smallest eigenvalue of P(x) in the region where ||| > F,. Since P
is symmetric positive definite, the smallest eigenvalue Apir, is real and positive.

S Amin [[VVIE = IVV] U —e>0
It is given that ||k]| < U = —|/h|| > -U

2 Amin [[VVIF = IVVIHIRI = € 2 Amin [VVIP = [VV]| U —€ >0
By the Cauchy-Schwarz inequality | VV|| ||k| > |[VV T h|

2 Amin [[VVI? = [VVT B| = € > Anin [VV]* = [VV]|[|B]] - €,
where | - | is the absolute value. For the absolute value [VVTh| > VVTh

Amin [VVI2=VVTh —e> Anin |[VVI? = [VVT | — €
Since Amin is the smallest eigenvalue of the matrix P(x)

SVVIPYUYV —VUVTh —e> Anin VVIVV = VVT R —e >0

= -VVIPVWV4+VVIh< -

The quantity on the left side of the inequality is precisely V(x) for Equation (9). Therefore ||VaV (z)| > Ko =
V(z) < —e¢ for all z such that ||z|| > F,.

It is well known from real analysis that [||VV| dx > || [ VV dz|.

/||VV||d:l: > ‘/VVda: > H/iKu dx

= ||V + || > 1K z]|




By Minkowski’s inequality ||[V|| + [lc|]| > ||V + ]|,
SAVIE+lell 2 MV + ell > K ||

Since V' > 0 and since V' and c are scalars
S V> K| = el

Hence ||V V()| > Ku = V(2) > Ky ||2|| = lim||z|-0 V() = co. Note that the converse of this implication is
not true. Using these two results, it follows immediately from Lemma A.1 that the solutions x(t) of Equation (9)
are ultimately bounded. ¢
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