University of New Mexico UNM Digital Repository

Electrical and Computer Engineering ETDs

Engineering ETDs

1-28-2015

Development of a Modern Computational Infrastructure Around University Curricula

Jarred Kozlick

Follow this and additional works at: https://digitalrepository.unm.edu/ece etds

Recommended Citation

 $Kozlick, Jarred. "Development of a Modern Computational Infrastructure Around University Curricula." (2015). \\ https://digitalrepository.unm.edu/ece_etds/143$

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Jarred M. Kozlick
Candidate
Electrical & Computer Engineering Department
This thesis is approved, and it is acceptable in quality and form for publication:
Approved by the Thesis Committee:
Dr. Gregory L. Heileman, Chairperson
Dr. Chaouki T. Abdallah
Dr. Terry Babbitt
Dr. Christopher Lamb

Development of a Modern Computational Infrastructure Around University Curricula

by

Jarred Kozlick

B.S., University of New Mexico 2012

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2014

©2014, Jarred Kozlick

Dedication

This thesis is dedicated to my wife Meghan, who has been an endless source of love and support.

Acknowledgments

I would like to thank my committee members, Prof. Gregory L. Heileman, Prof. Chaouki T. Abdallah, Dr. Terry Babbit and to Dr. Christopher Lamb. I would also like to extend special gratitude to Prof. Heileman for his advice and advocacy as my advisor. Much gratitude is also extended to Ahmad Slim, Elias Lopez, Michael Hickman, Kevin Warne, Wisam Quais Al Doroubi and the rest of the "Wild Weasels" with whom I worked to build the first version of this application.

Development of a Modern Computational Infrastructure Around University Curricula

by

Jarred Kozlick

B.S., University of New Mexico 2012

M.S., Computer Engineering, University of New Mexico, 2014

Abstract

This thesis investigates solutions required to construct a modern computational infrastructure around the delivery of student degree plans as a web service. The initial system consisted of a data store organized around an SQL relational database. In this thesis, subsequent new architectures are explored that allow student and institutional analytics to be seamlessly integrated into the application. The foundation of these new architectures involve data representation and storage, and several NoSQL options are explored for performing this task. Implementing the data stores with these technologies allowed the data to be stored in its native structure and greatly facilitates extensibility of the data model and the capability for analytics. This thesis describes some of the benefits of using NoSQL data stores in this domain, including increased ease of analyzing and processing data.

Contents

Li	st of	Figures	X
\mathbf{G}	lossa	ry	xii
1	Intr	roduction	1
2	h Level Design	3	
	2.1	Motivation	3
	2.2	Advantages	5
	2.3	Curriculum Description	8
		2.3.1 Organizational Description	8
		2.3.2 Requirements Description	13
3	Cur	rent Degree Plan Website	15
	3.1	Web Applications Framework	15
	3.2	Deployment	16

Contents

	3.3	Relational Database Management System										
	3.4	Data Model										
	3.5	Applic	cation Interface	19								
		3.5.1	Application Demand	21								
	3.6	Limita	ations of Initial Implementation	24								
		3.6.1	Prerequisite Representation	24								
		3.6.2	Additional Semester Years	26								
		3.6.3	Data Ingestion	28								
4	Nov	v Toch	nologies in Support of Modern Computational Infrastruc-									
4	ture		nologies in Support of Modern Computational Infrastruc-	30								
	4.1	NoSQ	L Technologies	30								
		4.1.1	Graph Database	34								
		4.1.2	Document Database	35								
5	Mo	donn C	Computational Infrastructure Design	37								
9	MO	uern C	omputational imrastructure Design	31								
	5.1	Newly	Designed Infrastructure	37								
		5.1.1	Graph Database	37								
		5.1.2	Document Database	41								
		5.1.3	Departmental Degree Plans	42								
		5.1.4	Custom Degree Plans	42								
		5.1.5	Other Stored Data	42								

Contents

	5.2	Advan	tages	43
		5.2.1	Graph Database	43
		5.2.2	Document Database	47
6	Fut	urewoi	rk/Conclusions	49
R	efere	nces		51
$\mathbf{A}_{]}$	ppen	dices		53
\mathbf{A}	Cou	ırse JS	ON Files	54
В	Cou	ırse Pa	arsing Scripts	73
\mathbf{C}	Dat	abase	Seed Files	82

List of Figures

2.1	Sample Degree Plan Spreadsheet	4
2.2	Description of Problem Domain	9
2.3	Requirements Breakdown	13
3.1	UNM Degree Plan Entity Relationship Diagram	18
3.2	UNM Degree Plan Landing Page	20
3.3	UNM Degree Plan Explore Page	21
3.4	UNM Degree Plan Graph View	22
3.5	Overview of Site Analytics	22
3.6	Top Ten Languages Requested	23
3.7	Degree Plans Geographic Locations	23
3.8	Degree Plans Site Usage	24
3.9	Ruby Prefix Equation Array	25
3.10	Prefix Equation Represented As A Tree	25
3.11	Binary Expression Tree Inserted Into Database	25

List of Figures

3.12	Entity Relationship Diagram With Year Entity Added	27
3.13	Example Prerequisite JSON obtained from IT	29
4.1	CAP Triangle	33
4.2	Example Cypher Query	35
4.3	Neo4j Administrative Dashboard Screenshot	35
5.1	University Relationships	38
5.2	Course Relationships	39
5.3	Sample of Degree Requirements Tree	40
5.4	University Relationships With Top Level Institution Node	44
5.5	Cypher Query to Find All Academic Programs at UNM	45
5.6	CHEM 121 Prerequisite Graph as described in UNM Catalog $\ .\ .\ .$	46
5.7	Reduced CHEM 121 Prerequisite Graph	47
6.1	Envisioned System	50

Glossary

ACID (Atomicity, Consistency, Isolation, Durability) A set of properties that ensures that relational database transactions execute properly.

BASE (Basically Available, Soft state, Eventual consistency) Database transactional model favored by NoSQL databases that allows system reliability.

Binary JSON Binary-encoded serialization of JSON-like documents.

CAP Theorem Theorem in computer science stating that a system can not provide consistency, availability, and partition tolerance simultaneously.

Cypher Declarative language used to query Neo4j graph data stores.

D3.js (Data Driven Documents or just D3) JavaScript library that uses digital data to drive creation dynamic interactive web based data visualizations.

Entity Relationship Diagram (ERD) Data model used to describe the data domain of an application, usually lending itself to be implemented in a relational database.

Git Open-source distributed version control system.

Hypertext Transfer Protocol (HTTP) Application protocol for distributed systems.

JavaScript Object Notation (JSON) Lightweight data-exchange language designed to be human readable.

Model View Controller (MVC) Software architectural pattern widely chosen for implementing user interfaces.

Glossary

MongoDB Document oriented-database that utilizes a dynamic schema and JSON-like storage model.

Neo4j Disk-based transactional persistence engine that stores data natively as graphs.

NoSQL Databases designed to meet requirements of web deployed applications; can be broadly described as non-relational, distributed, open-source and horizontally scalable.

Object Relational Mapper (ORM) Programing technique used to persist objectoriented code in a relational database.

Platform-as-a-Service (PaaS) Cloud computing platform that provides a solution stack to the developer, while alleviating the need to manage underlying hardware and software systems.

Relational Database Management System (RDBMS) Database management system that stores information in the form of related tables.

Ruby on Rails (Rails) Open source web applications framework written in Ruby. Single Table Inheritance (STI) Used to represent an inheritance hierarchy using a single table in a database that has columns for all the fields of the inherited classes.

Structured Query Language (SQL) Declarative programming language used to manage information stored in a relational database system.

Unified Modeling Language (UML) Modeling language that provides a standardized way of visualizing the data domain of a system.

Web Applications Framework Software framework that aims to alleviate overhead associated with web development by providing libraries for common tasks.

YAML Human-readable data serialization format.

Chapter 1

Introduction

At the University of New Mexico, in order for a student to be awarded a specific degree, he or she must satisfactorily complete a given set of courses. This statement sounds on its face both obvious and unusual. However, up until recently, if a degree seeker wished to know what the given set of courses for a degree were, it may have taken a bit of work to track these requirements down. As it stood, there was no centralized location for a student to find information on what courses were needed to complete a degree, or to compare the requirements of different degrees. The responsibility of creating the plans for the degrees and making them available lied solely with personnel in the university's many departments and was supported by the university's advising office via a standard spreadsheet template that departments were asked to use.

The first steps to resolve this problem were taken in August of 2013 when team members at the Electrical & Computer Engineering Department's Informatics Laboratory created and deployed the first version of a website that allowed students access to all of the degrees and their associated plans available at the University of New Mexico. This website allows anyone to view specific degree plans by college or

Chapter 1. Introduction

alphabetically, or to explore degree plans by interest areas. An option is given for the user to compare degree plans offered by description, admission requirements, and career opportunities.

Providing this information in a centralized, concise manner provided value to those already attending the university as well as potential students. While this in itself is a respectable goal, it would be beneficial for the university to use this system as the foundation to build a modern computational framework. This new architecture will allow the university to perform student tracking, student analytics, and institutional analytics related to specific programs.

Chapter 2

High Level Design

2.1 Motivation

One of the main reasons that the degree plans application was implemented was a lack of a standardized system that was available to perform such a function. Before the current system was deployed, it was generally the responsibilities of the department advisors to create a degree plan for their students. Degree plans that were created were generally saved as spreadsheets. Shown in Figure 2.1 is a sample of a spreadsheet that was used for advisement of a student pursuing a Computer Engineering B.S. in the Electrical and Computer Engineering Department.

The spreadsheet is divided into two parts. The first part of the spreadsheet is essentially a chart that describes the degree plan term by term. In this first part, the courses that a student should take each term are listed. For each course, the number of credit hours is indicated. It is also indicated if the course counts towards the university's core requirements, upper division, or lower division requirements. The second part of the spreadsheet provides information such as university core requirements, residency requirements, and career opportunities.

	No. 115	AJL of 1	ENGIN	VEER	ING							-		uter Engineering
			linor/2	- 4	- [Minor/2	7		ilian .	Year Road Map
ourse Subject and Title	Cr. Hrs. I	no Maior M		ore U	Min Grad	e Notes	Course Subject and Title	Cr. Hrs.	Major	nd Major	Core	UD	Min Grade	Notes
emester One:		and the second					Semester Two:						Į.	Direction of the Control of the Cont
GL 101 Composition 1	3	$\overline{}$		3	С		ENGL 102: Composition 2		3		3		C	
ATH 162: Calculus I	4	- 4		3	C		MATH 163: Calculus II		4	4	3 3		C	
E 101 Intro to ECE Dept	1	1_			C		PHYC 161: General Physics II	_	3	3	. 3		C	
E 131 Intro to Programming HYC 160 General Physics	- 3	- 3	-1	- 2	C	+	PHYC 161L: General Physics II Lab ECE 231: Intermediate Programming	- 9	1	1			C	F
ON 105 or 106: Macro or Micro Econ	3	-	\rightarrow	3	Č	+ -	Humanities	-	3	3	- 3	_	Č	
tal:	17	-	-	_	_		Total:	1	7		-		_	
eshman Advisement	an	ytime at	fter 10t	h wee	k - How t	use the Degree Audit	Sophomore Advisement		1	Enha	nce	d Degr	ee Aud	it skills
emester Three:			l i	*			Semester Four:			1			Î	
E 203: Circuit Analysis I	3	- 3			C		ECE 206L: EE Lab I		2	2			C	
E 238L: Comp Logic Design ATH 316: Diff Egs	4	- 4	\rightarrow	-	30		ECE 213: Circuit Analysis II Math Elective	_	3	3			C	
ience with Lab	4	4		-	C	+ -	MATH 264L: Calculus III	-1-	4	4			C	
IGL 219: Tech Writing	3		-	3	Ċ	1 1	ECE 330: Software Design		3	3			č	
tal	17						Total	1	5					
mester						Once Grades are in	Departmental Orientation							within first 6 weeks
emester Five:							Semester Six:							
E 321: Electronics I	4	4	\rightarrow	-	4C	+	ECE Track Elective	-	3	3	-		SC.	
ATH 327: Discrete Structures E 314: Signlas and Systems	3	- 3	-		30	+	ECE 331: Data Structure Algorithms ECE 344L: Microprocessors	-	4	4			NC NC	
E 337L: Intro Computer Arch Org	3	- 3	-	_	3€	+	ECE 340: Probabilistic Methods	_	3	3			ŠČ	
cond Language	3		\rightarrow	3	C		Social Science		3		- 3		C	
tal	16		=				Total	10	6					
sit Career Services							Apply for degree						8	After 4th week
emester Seven:		- 4		- 6	-	· F	Departmental Check in Semester Eight:							
E 419: Senior Design I	3	3		_	30		ECE 420: Senior Design II		3	3			C	
E Track Elective	3	- 1	_	_	3C	1	ECE 440: Computer Networks		1	3		1	č	
E 437L: Operating Systems	3	3			3C		Technical Elective		3	3			C	
chnical Elective	3	3			3C		Fine Arts		3		3		С	
chnical Elective	3	3			3C		Humanities	1	3		- 3		С	
enior Visit - Advisement	15					G.	Total Senior Visit Advisement	1	5					
The University of New Mexico	Core	Curric	ulum ((37 u	nits)		School of Engineering Minim	um Re	quire	ments				
Writing and Speaking: (3-9 units)	-	-						1000			-	-	-	
Mathematics: (3 units) Physical and Natural Sciences: (7 units)	-	-				_	 Total credit hours = varies among deg 300/400 level credit hours = 56* (Coul 	rees	2001-			- f D		ad I laces Oleskar Consider
Social and Behavioral Sciences: (7 units)	-	_				-	- Minimum credit hours = 56* (Cour - Minimum credit hours taught in A&S =		200 lei	vei math c	ourse	STOLD	III EUS a	nd Linear Algebra - 6 credits)
fumanities: (6 units)	-	-					Minimum cicus nouis taught in Ads -	- 50	_					
oreign Language: (non-English language;	3 units	(2												
ine Arts: (3 units)	-													
Iniversity Residence Requiren	nent						Minimum graduation GPA =	2 00				-		
. Minimum hours = 30							Keep in mind that minimum grades on	mad mar	are for	individual	COUL	sework	only St	udents must maintain a mini
o. Senior standing = 15 past 92							a 2.0 cumulative grade point average f							
							the individual courses do NOT meet the	cumum	lative n					
. In major = One half							For more information see the catalog a	t www.un	m.edu				2	
. In major = One half									-	_	-	-	-	
. In major = One half	_								-	_	-	-	-	
. In major = One half i. In minor = One quarter														
: In major = One half i. In minor = One quarter Career Opportunities and Path	ways	1					CompE Track Electives		_		-	_		
In major = One half In minor = One quarter Career Opportunities and Path	ıway	S					Hardware Emphasis							
. In major = One half . In minor = One quarter Career Opportunities and Path > >	ıway	5					Hardware Emphasis ECE 338 Intermediate Logic Des	ign						
In major = One half In minor = One quarter Career Opportunities and Path	ıways	5					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers	ign						
. In major = One half . In minor = One quarter Career Opportunities and Path > >	ıway:	S					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis							
In major = One half In minor = One quarter Areer Opportunities and Path >	nway:	5					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers							
In major = One half In minor = One quarter Areer Opportunities and Path >	ıway:	5					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis							
In major = One half In minor = One quarter areer Opportunities and Path > > > > > > > > > > > > >	ıway:	S					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering	stems						
In major = One half In minor = One quarter areer Opportunities and Path > > > > > > > > > > > > >	ıway:	S					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering CompE Technical Electiv	stems	dovale	anad in s	one	ultatio	n with	faculty advisor
. In major = One half . In minor = One quarter Career Opportunities and Path > > > >	ıway:	S					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering	stems	develo	oped in c	onsu	ultatio	n with	faculty advisor
. In major = One half . In minor = One quarter Career Opportunities and Path > > > >	ıway:	5					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering CompE Technical Electiv	stems	develo	oped in c	onsi	ultatio	n with	faculty advisor
. In major = One half . In minor = One quarter career Opportunities and Path	nway:	5					Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering CompE Technical Electiv	stems	develo	oped in c	onsu	ultatio	n with	faculty advisor
: In major - One half i. In minor - One quarter Career Opportunities and Path > > > > > > > > > > > > >	nway:						Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering CompE Technical Electiv	stems	develo	oped in c	onsi	ultatio	n with	faculty advisor
. In major - One half l. In minor - One quarter Career Opportunities and Path	nway:		Email:			Website:	Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering CompE Technical Electiv	stems	develo	oped in c	onsi	ultatio	n with	faculty advisor
. In major = One half . In minor = One quarter career Opportunities and Path > > > > > > > > > > > > >	nway:		ess@unn	n/edu		http://soemep.unm.edu	Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering CompE Technical Electiv	stems	develo	oped in c	onsu	ultatio	n with	faculty advisor
. In major — One half . In minor — One quarter Career Opportunities and Path > > > > > > > > > Contact Information General Engineering Advisor: \$55 algor Advisor:	nway		Email:	n.edu			Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering CompE Technical Electiv	stems	develo	oped in c	consu	ultatio	n with	faculty advisor
. In major = One half J. In minor = One quarter Career Opportunities and Path	nway:		ess@unn	n.edu Dece in	ım,edu	http://soemep.unm.edu	Hardware Emphasis ECE 338 Intermediate Logic Des ECE 438 Design of Computers Software Emphasis ECE 335 Integrated Software Sy ECE 435 Software Engineering CompE Technical Electiv	stems	develo	oped in c	consu	ultatio	n with	faculty advisor

Figure 2.1: Sample Degree Plan Spreadsheet

Although all of the degree plans are developed using a single template, there are still instances of data inconsistencies depending on how an individual within a department entered their data. The way that a course is represented could vary from plan to plan. The degree plan describing the Computer Engineering degree lists the number and title for each course. In contrast, the degree plan for Signed Language Interpreting lists only the number of the course.

There is also the issue of out of date information being entered into the degree plans. In the Computer Engineering plan, the student is instructed to take ECE 437L: Operating Systems in the seventh semester. However, this course no longer exists in the university course catalog, and instead is listed as ECE 437: Operating Systems; a slight difference, but one that could cause confusion. There are also instances when courses are represented in a degree plan with incomplete information. In the degree plan for Interdisciplinary University Studies, there is a course in the second semester listed as ENGL Composition 2. This incompleteness can once again be a source of confusion. With this course present in the first semester, it has the potential to bewilder first year students.

However, providing a central location for students to access degree information was not the only benefit. The Education Trust Higher Education Practice Guide describes five features common among high performing educational institutions [21]. One of the common areas is creating clear student pathways to success. Creating a centralized access point for degree plans offered at the university allows current and potential students to view what courses are necessary to take when.

The system as it currently exists and planned future implementations are designed in order to help satisfy many of the other features specified by Education Trust such as collecting data on student success and acting upon it, and not hesitating to "demand and require" of their student body. Every student at the university will be able to select one of the degree plans available within the system, or with the assistance of an advisor, make a custom degree plan. Advisors will then have a tool to ensure that a student stays on track in their given degree program and to advise their students accordingly.

2.2 Advantages

An online institution-wide degree plan application holds many advantages over the system of paper-based degree plans. These improvements benefit both the student

as well as the university.

Current Information. One of the areas where an online degree plan surpasses a paper plan is in the ability to always provide the user with the information that they need. As new requirements or courses are added, the degree plan that is available online is automatically updated with the latest information. This ensures that a potential student will always have access to the most current data available on a given degree plan within a department. Alternatively, if a student has been attending the university and has been admitted to a program against an older degree plan, that degree plan would still be readily available for that student to track progress.

Accessibility. With the application deployed "in the cloud," the degree plans can be accessed from any device that has a connection to the Internet. This allows potential students access to degree plans no matter their location. In addition to access, the degree plans can also be easily translated into different languages. This is a particularly useful feature for international students. Plug-ins are also widely available for web browsers such as Mozilla Firefox and Google Chrome, allowing the end user to select their language of choice.

Standardization. The web application allows the degree plans to be displayed to the student in a standardized manner. All of the data that comprises a specific degree plan is stored using a structured database, currently a relational database, but moving forward several NoSQL options are being considered. This essentially removes the way that a degree plan looks from the content that it contains. This, along with the wide accessibility of degree plans through the application, makes it easy to compare degree plans in a meaningful way, even if the degree plans exist in different departments. Performing these comparisons using paper-based degree plans would be significantly more difficult, particularly between departments.

Verification. Because all of the degree plans offered by the university are available in one central location, this makes it very straightforward for the degree plans to be reviewed for correctness, both automatically and manually. All degree plans at the University of New Mexico currently contain at least 120 credit hours, and no more than 18 credits can be taken in any semester without advisor approval. When a degree plan is constructed, it would be very easy for an automated system to perform these checks. An automated system that ensures that a degree plan satisfies the university core requirements, college or department core requirements, and any other requirements could also be constructed.

Analytics. One of the elements that has driven the development of this system is the ability to seamlessly integrate analytics. Introducing analytics into a cloud-deployed system is far easier than trying to produce the same results using a paper-based spreadsheet system. One basic piece of student-level analytics that is currently available in the deployed application is the ability to compare two degree plans, even across departments. Although it is feasible to perform this type of comparison using spreadsheets, it is far easier to accomplish a side-by-side comparison when both of the degree plans are hosted on the same site. Performing this comparison using spreadsheets would require a good deal of student time and "leg-work."

Using the deployed system, students will be able to compare how "on-track" they are within a given degree plan. While this would require integrating the degree plan system with existing student data, most likely data stored within the Student Data Mart maintained by the UNM Office of Institutional Analytics, this would be beneficial for both students and the university as a whole. If the number of students who are on track in a degree plan are known, the university would be able to more accurately make predictions on the number of courses that need to be offered on a semester-by-semester basis.

2.3 Curriculum Description

In order to gain a better understanding of the problem domain, the relationship of the contributing actors was analyzed. What at first seemed to be a straightforward problem domain quickly turned out to be more complex than anticipated. Many of the problems associated with issues such as representing prerequisites are present in the current implementation of the degree plan website, while many of these issues will be addressed in the subsequent versions.

2.3.1 Organizational Description

In order to create a degree plan, the manner in which the different entities at the University of New Mexico interact with one another needed to be analyzed. While the application being designed was focused mainly on degree plans, it was important to understand the other actors that exist in this space. In order to simplify this process, a Unified Modeling Language (UML) relationship diagram was created. The diagram can be viewed in Figure 2.2. This diagram is meant to provide a high level view as to how different entities relate to one another within the university as well as with other entities within the state of New Mexico.

This modeling is useful in capturing the important objects that exist within the domain of interest along with their relationships to one another. Such modeling is crucial in order to guarantee that the proper attributes are built into any system that is developed. It is also helpful in providing a framework for developers to better understand, build, and maintain the system.

The diagram in Figure 2.2 offers a generic high level view for any state institution of higher education in New Mexico. A generalized model of all of the institutions state wide was desired so that transfer agreements and articulations between state

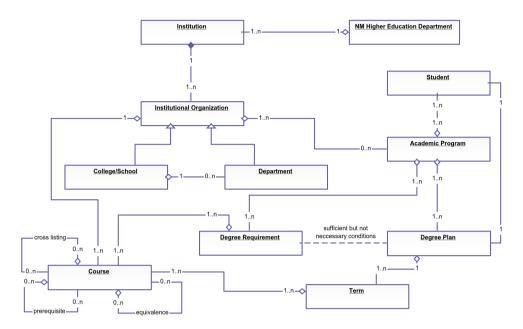


Figure 2.2: Description of Problem Domain

universities could be created. The model tries to be as descriptive as possible, while still retaining its generality. For example, the *organization* object within the model could stand for many different departmental divisions depending upon the university. The University of New Mexico organizes its divisions into schools or colleges, and then into departments. Central New Mexico Community College on the other hand, only uses schools as subdivisions of the institution. While this model may serve to describe any school in the state, any specific examples used in this thesis will generally involve the University of New Mexico.

What is apparent from the diagram is that all of the universities within the state are aggregated and overseen by the New Mexico Higher Education Department. This is very important in transferring coursework between universities, as the Higher Education Department defines the state general education core requirements and guarantees transfer of the courses between public institutions [5].

Outside of the State Higher Education Department is an *institution*, which is

composed of its lower level institutional organizations. An institutional organization can exist as any entity, such as a college or department. These objects are able to aggregate one another; this design was chosen in order to properly model the institutional hierarchy of a university. This way, organizations such as colleges or schools are able to accumulate and administer departments. Any organization can also have academic programs associated with it. This was an important decision because this allowed academic programs to be attached to any level of the institutional hierarchy.

A key object concerning the design of this system is the academic program. Within the UML diagram, an academic program class models any degree offered by a specific organization, be it a college, school, department, etc. An academic program is described fully by its set of degree requirements. A single degree requirement, which is described in more detail in the following section, is at its foundation a course or a collection of courses that a student must complete.

What a degree plan aims to do is to provide an ordered list of the courses a student must complete in order to be awarded a degree. An important constraint is that a degree plan must satisfy all of the degree requirements associated with a given academic program. Thus, if a student follows a given degree plan, they will satisfy the degree requirements and earn a degree. As shown in the diagram, a degree plan is split into terms. A term is the collection of all of the courses that a student must take, or at least possibly could take, within a given semester. Each academic program has one generalized degree plan, which students will be able to customize in order to create personalized degree plans.

Note in the UML diagram shown in Figure 2.2 the constraint that exists between the degree plan and the degree requirement. The courses outlined in the degree plan are sufficient to satisfy the degree requirements associated with the academic program that it is describing. However, there may exist other courses in the degree plan that are not enumerated degree requirements. This was important to build into

the system in order to build plans that contain prerequisites for required courses.

A good example of this situation exists in the Electrical & Computer Engineering Department. The lowest mathematics degree requirement necessary to obtain a bachelors degree in either electrical or computer engineering is Calculus I. However, it was discovered that a large percentage of students were entering the program at levels below this. In order to solve this problem, degree plans were created that included lower math courses to satisfy the prerequisites of Calculus I. While these lower courses were not necessary to be awarded an engineering degree, they were a necessary part of the degree plan for any student who did not meet the requirements for Calculus I.

A student also plays a key role in this system. A student can be anyone who is studying to receive a degree from a university. A student is able to belong to any number of academic programs. This is especially important at The University of New Mexico, where the majority of students are required to obtain a minor as well as a major. While the degree plan for a student should satisfy all requirements necessary to satisfy any major, minor or second major requirements, only one specific degree plan that allows the student to obtain his or her specific degree should be assigned to that student.

One of the more pivotal and complicated objects in this diagram is a *course*. Taking courses is the main way that a student interacts with a university, and courses are also what generally satisfy degree requirements. In Figure 2.2, it is shown that courses are also connected to one other in various ways. While a course can be offered by one department, it can have a *cross listing* in another department. For example, AFST 109, Introduction to Comparative Global and Ethnic Societies, is also offered as WMST 109, CCS 109, NATV 109, and SUST 109. This is an important relationship to capture; any cross-listed course can satisfy a requirement where any of the others are listed. Knowing which courses are cross-listed could also prevent a

student from taking two courses twice and accumulating excessive credits.

Another relationship that courses have among themselves is equivalence. This mainly occurs when one course is replaced by another equivalent course. One of the courses will generally cease to exist, but some students will still have the old course listed in their transcript. An example of this situation at the University of New Mexico occurred in the Fall 2014 semester. In this semester, the English department replaced ENGL 102 with ENGL 120. It is important that these two courses are recognized as being equivalent. If a student was working towards a degree consulted an earlier degree plan that listed ENGL 102, it is important that when the student takes ENGL 120, the requirement for ENGL 102 be recognized as being completed.

The last relationship, and probably the most common, that can occur between courses is the *prerequisite* relationship. This relationship defines which courses must be taken prior to enrolling is subsequent courses. Other variations of this relationship could be a *co-requisite*, a course that is required to be taken in the same semester as another course; or a *pre-or-co-requisite*, which can be taken in the same semester or at anytime before another course. These two relationships are left off of the UML diagram in Figure 2.2 for simplicity. It is important that these two relationships be represented so that when degree plans are created, the courses can be ordered properly among the semesters.

Not currently listed in this diagram is the notion of placement of a student. When a student is admitted into a university, the student will have doubtlessly taken some standardized admission test – be it the SAT, ACT, or some sort of institutional placement exam. These tests will allow the university to specify which courses a student will be able to start taking immediately regardless of prerequisites satisfied.

2.3.2 Requirements Description

Areas of the system that were considered to be more complex and requiring deeper analysis were the degree requirements and devising a way to represent how a student should satisfy them in order to be awarded a degree. One method to simplify this matter demands requirements be split into separate subtypes, and then aggregated to form a degree for a student. Figure 2.3 is a detailed UML diagram representing this system.

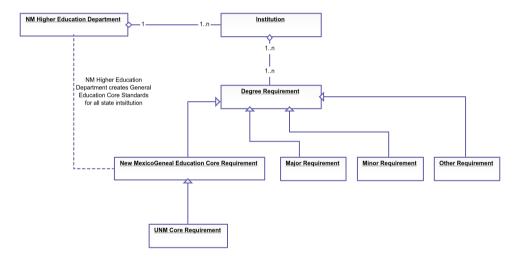


Figure 2.3: Requirements Breakdown

This diagram is basically a subset of the objects described in Figure 2.2. This diagram describes the different types of requirements that are available within the system as well as the way that the requirements are related between universities.

Requirements defined by a university within the state of New Mexico can be modeled as major, minor, New Mexico general education core, or simply other, and then aggregated accordingly. Predictably, a major requirement is one that fulfills courses for a student's declared major, while a minor requirement fulfills courses for a student's declared minor. The other requirement can be used to describe any number of departmental stipulations that are necessary to be awarded a degree. An

example of this situation would be the group requirements that are required by the Department of Arts and Sciences at the University of New Mexico.

One special set of requirements that needed to be satisfied were the New Mexico general education core requirements. These requirements, as shown in the diagram in Figure 2.3 are set by the state Higher Education Department. There are six areas that are required to be satisfied to be awarded a degree in a New Mexico public university, and these courses are guaranteed to transfer to any institution within the state. In addition, universities can themselves add core requirements specific to their own university. The University of New Mexico for example, adds a seventh core area, foreign language, that all of its students must complete in order to be awarded a degree.

It was necessary to split the requirements that are needed to satisfy a degree into separate requirements because of the flexibility needed to complete a degree plan in most departments. According to the UNM catalog, in Arts & Sciences alone there are 44 options from which to select a major, and 54 from which to select a minor. This implies that there are over 2000 ways in which a student could make a major/minor selection just within the Arts & Sciences Department.

Splitting the requirements into smaller sets allows requirements from different collections (e.g. major, minor, core) to be combined, and a resultant degree plan be generated for the student.

Chapter 3

Current Degree Plan Website

3.1 Web Applications Framework

The current degree plan website for the University of New Mexico can be found at degrees.unm.edu. The website was first deployed in July of 2013, and is currently the web site of record for degree plans at the University of New Mexico. Developed using a web applications framework, the site provides current and potential students as well as advisors and faculty one common repository for all of the degrees offered by the university

The website was built using a web applications framework that provided a set of core functionality such as an HTML templating system, data persistence model, and user session management [19]. The specific web applications framework that was used was Ruby on Rails (Rails), which is built on top of the Ruby programming language. Rails is an all inclusive framework designed to build database-backed web applications that conform to the model-view-controller (MVC) design pattern.

MVC splits the application into three separate layers, each with its own respon-

sibility. The *model* layer represents the application data model, and also connect to the back-end database. The *controller* layer receives incoming HTTP requests, and handles them accordingly. The *view* layer consists of Ruby-embedded HTML templates that provide the user an interface to the application [16]. Since the MVC framework was provided "out of the box" by Rails, this allowed developer time to be spent mainly on developing actual code for the application instead of devoting time solely to configuration. This allowed the development team to quickly develop and deploy the application.

Another component of the Rails framework that allows for agile development is ActiveRecord, the Object Relational Mapper (ORM) supplied by Rails. ActiveRecord maps database tables to classes, rows of database tables to objects of the associated class, and database columns to class attributes. A set of class-level methods are also supplied by the classes that correspond to table operations. ActiveRecord helps abate the amount of time a developer would have spent configuring the database, as well as dealing with the object-relational mismatch, leaving more time to develop business logic [15].

3.2 Deployment

Heroku was used for production-level deployment of the application. Heroku is a Platform as a Service (PaaS) cloud computing service managed by SalesForce that provides support for Rails. Heroku allowed the University of New Mexico degree plan application to be easily deployed and managed. Applications hosted on Heroku are deployed using Git, a distributed version control system. This was a good fit for the application since Git was already in use as the application source code management system. The application was also easily scaled up or down depending on the number of users of the site. Heroku provides enterprise-grade PostgreSQL-as-a-service

for deployed applications [8]. This influenced the choice of the relational database management system (RDBMS) for the application.

3.3 Relational Database Management System

3.4 Data Model

Although Rails does alleviate the complexity of configuring and interfacing with a database, some consideration still has to be focused on the overall database design. A useful tool to assist in this process is an Entity Relationship Diagram (ERD). Figure 3.1 shows the ERD for the degree plans application. The ERD is a very convenient way to visualize the structure of the database, and aids in its design and continual refinement.

This ERD serves a different purpose than that of the UML diagram. The UML diagram is used to model the domain of the problem, while the ERD is used to model the data from the perspective of linked tables of data. The ERD shows values that are available in each of the rows of the database. The primary keys are indicated by a yellow bullet, and are all integers. Each row of a table has a unique primary key. Foreign keys are indicated by a red bullet, which are used to track relationships among the database entries. All other attributes on the tables are either integers, represented by the field *INT*; strings, shown in the diagram as varchar(255); boolean; or large text blocks.

For a simple one-to-many relationship, it acceptable for the aggregated object to simply contain the primary key of the other object that is aggregating it. For example, a college has many departments, while a department can only belong to one college. In order to model a many-to-many cardinality, join tables which contain

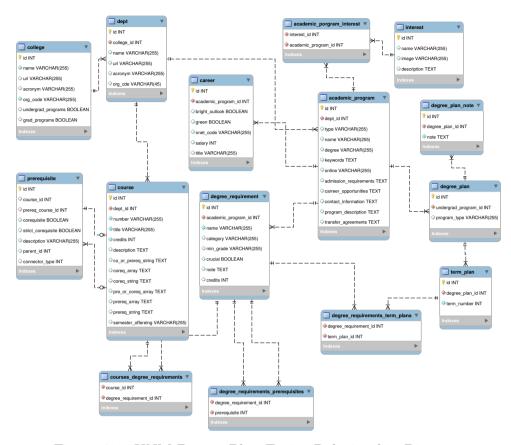


Figure 3.1: UNM Degree Plan Entity Relationship Diagram

pairs of primary keys of associated objects are required. Each type of object is then able to belong to more than one of the associated type of object and vice versa. For example, an interest area can cover many different academic programs, but an academic program in one interest are may also exist in several others.

The data model described by this ERD also employs a methodology known as Single Table Inheritance (STI) in order to differentiate amongst the different types of academic programs, e.g., undergraduate, graduate, and certificate [1]. The different academic programs are differentiated by a type column in the academic_program table that stores the name of the inheriting class. This technique was employed to capture the different actions associated with different types of academic programs. The primary difference between the academic programs is that only undergraduate

programs are able to have degree plans associated with them. While other academic programs such as graduate programs do have requirements, most are very flexible and are not easily coerced into a degree plan.

The database structure defined in this ERD is very similar to the object relations defined in the UML diagram in Figure 2.2 with some exceptions. The concept of a *student* is not yet present in this data model. This is due to the fact that this version of the application is meant to only to provide generalized degree plans for each department, not provide customizable degree plans at the level of a student. Also, entities for *interest* and *career* exist in the data model but not the UML diagram. An interest was added in order to allow application users to explore degree plans by areas of interest. A career entity was added in order to allow application users to view possible career options after being awarded a specific degree. The *degree plan note* was also added in order to allow a degree plan to be described with human readable text.

3.5 Application Interface

Significant effort went into the application interface that students or potential students use in order to access the degree plans website. An interface was designed to allow the user many different avenues in order to access degree plans. Considerations were made as to how different users would navigate the website, including students who were in search of a particular degree plan, those who wanted to search by a college, or those who wanted to search by an area of interest

The application landing page was designed to be as simple as possible, and was meant simply to direct users to the type of degree plan that they wanted, either undergraduate, graduate or professional, or associate and certificate programs. There is also an area where an individual can view the accreditation of the university. Figure

3.2 shows a screen capture of the landing page.

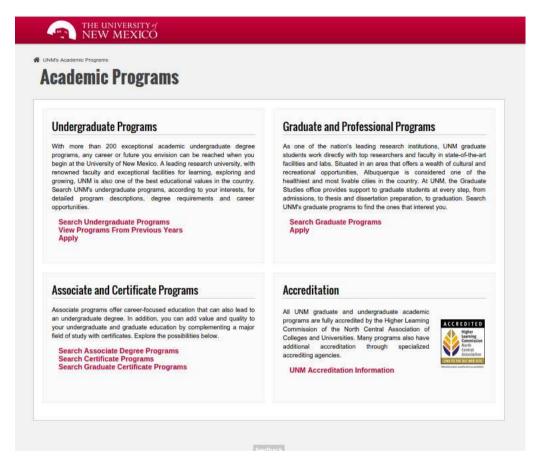


Figure 3.2: UNM Degree Plan Landing Page

Following any of the links labeled "Search", the user will be directed to an explore page, where the degree plans located on the website can be browsed in one of four ways: by college, interest, alphabetically, or keyword. No matter which link users follow, he or she will be presented with a simple list of the degree plans.

Once a degree plan is displayed, the user has the option of viewing a graph that shows that path through the selected degree plan. Figure 3.4 shows a screenshot of the graph for the Computer Engineering degree plan.

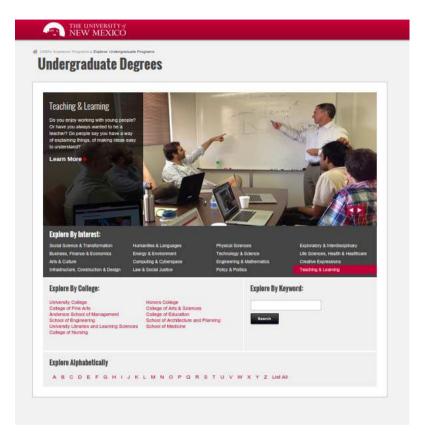


Figure 3.3: UNM Degree Plan Explore Page

3.5.1 Application Demand

The application has been equipped with Google Analytics, so that the number of users could be tracked, as well as how they flow through and interact with the website.

There has been much demand for the degree plans application. According to Google Analytics, the application has had 164,231 distinct Sessions initiated during the time in which the application was first launched on July 15, 2013. Out of the 164,231 sessions, 69.02% were new sessions. There were 113,377 distinct users, with 1,218,289 distinct page views. These users averaged a 4:35 session duration. A bounce rate of 20.84% was present. Figure 3.5 shows these results.

The most requested language was English, with over 95% of the sessions. Spanish,

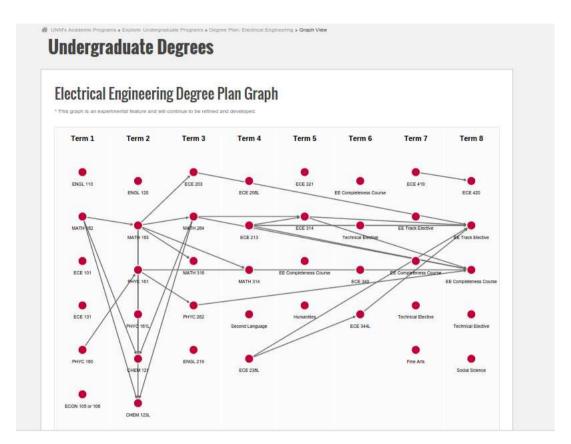


Figure 3.4: UNM Degree Plan Graph View

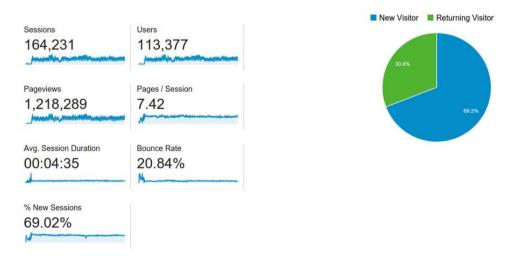


Figure 3.5: Overview of Site Analytics

Chinese, Arabic, Portuguese and French were also requested. This is shown in Figure 3.6

	Language	Sessions	% Sessions	
1.	en-us	156,611		95.36%
2.	es	1,326	0.81%	
3.	en	1,074	0.65%	
4.	zh-cn	858	0.52%	
5.	en-gb	813	0.50%	
6.	es-es	605	0.37%	
7 .	pt-br	338	0.21%	
8.	ar	286	0.17%	
9.	es-419	222	0.14%	
10.	fr	215	0.13%	

Figure 3.6: Top Ten Languages Requested

The site has also had users from the following countries described in Figure 3.7, with countries with darker shades of blue initiating more session. The United States had the most with 150,548.

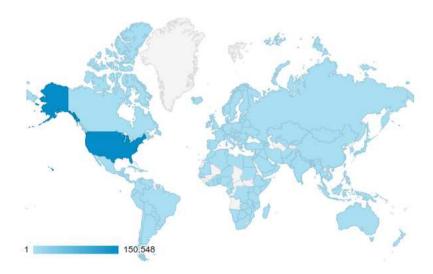


Figure 3.7: Degree Plans Geographic Locations

An interesting piece of information gleaned from the analytics is the cyclic request

nature of the site. The usage would spike in the beginning of the week, and then gradually drop off as the weekend approached. This behavior can be seen in the plot in Figure 3.8

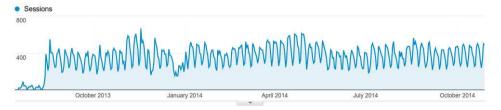


Figure 3.8: Degree Plans Site Usage

3.6 Limitations of Initial Implementation

Below, a description of some of the limitations associated with the implementation of the degree plans web service is described. In Chapter 5, a new design is described that was created to address many of these limitations.

3.6.1 Prerequisite Representation

One entity that was re-factored from the UML diagram and involved significant complexity is the *prerequisite* entity found in the data model in Figure 3.3. This entity was first devised in order to store the prerequisites for a given course. Each object of this type can either be a course, which would contain a foreign key that would point back to a course in the database; or a logical operator, determined by storing a 1 for "or" or a 2 for "and". The prerequisites for the courses were delivered as strings, so data transformations were required. First, the prerequisites were transformed into prefix notation, which allowed the data to be stored without any parentheses, represented by an array. A prefix equation could be easily represented by a binary

expression tree, which could be stored in the database by tracking the node's parent node through a *parent_id*.

Take for example the course MATH 162, with the prerequisite string MATH 123 and MATH 150. The prerequisite string converted into a prefix equation represented as an array in Ruby is shown in Figure 3.9.

```
1 ["*", "MATH 123", "MATH 150"]
```

Figure 3.9: Ruby Prefix Equation Array

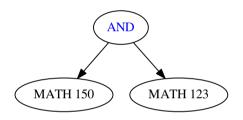


Figure 3.10: Prefix Equation Represented As A Tree

This prefix prerequisite array is then easily represented by a tree, as shown in Figure 3.10. This tree can be modeled in the database as shown by the abbreviated tables in Figure 3.11. Saving the prerequisites in prefix form allowed them to be more easily analyzed by a machine than if they were saved in infix form.

Prerequisites Table				Prerequisites Table		
id	course_id	parent_id	prereq_course_id	corequisite	strict_corequisite	connector_type
201	101	NULL	NULL	FALSE	FALSE	2
202	101	201	102	FALSE	FALSE	NULL
203	101	201	103	FALSE	FALSE	NULL

			Courses lable
	id	number	title
ſ	101	MATH 162	Calculus I
	102	MATH 123	Trigonometry
ſ	103	MATH 150	Pre-Calculus Mathematics
_			

Figure 3.11: Binary Expression Tree Inserted Into Database

The tree structure of Figure 3.10 can be found in the tables in Figure 3.11. The prerequisite with id of 201 corresponds to the AND root node of the tree. The prerequisite with id of 202 corresponds to the course MATH 123, while the prerequisite with id of 203 corresponds to the course MATH 150. The root node of the tree can be deduced from the database row entries as it will be the only entry with a $parent_id$ of NULL. From here, the tree is able to be traversed.

Although this scheme could be used to accurately store the prerequisites for a given course, this method was eventually replaced by a simpler method. Once a course is loaded into the database it is static, and does not regularly change. This lessens the need to normalize the prerequisite table. In order to prevent performing unnecessary joins at runtime, the prerequisite array shown in Figure 3.9 was simply stored as is in the database. Rails natively provides mechanisms to save an array to the database. This is accomplished by serializing the array in the YAML format whenever the array is saved, and reassembling it as an array whenever it is retrieved from storage.

3.6.2 Additional Semester Years

When adding new degrees into the application for the 2014-2015 calendar year, some difficulties were encountered. Creating an archive of previous years' academic programs, as well identifying the current degree plans in the system became necessary. In order to resolve this problem, a *year* table was added to the database. Figure 3.12 shows the updated data model.

Adding one entity to the diagram greatly increases the complexity as compared to the diagram in Figure 3.3. The year table aggregates colleges, departments, academic programs, courses, and degree plans. This allows each of these entities to be be searched by year, and then either displayed in the archive or the section of the

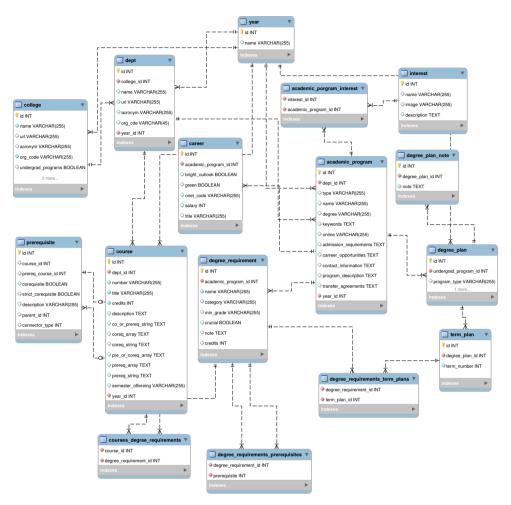


Figure 3.12: Entity Relationship Diagram With Year Entity Added

application that displays the most current degree plan.

While this worked as a solution, it also added some complexity to the database. There were issues of denormalization associated with all of the degree plans that were created. The year table essentially created two sets of all entities originally in the database. Thus, an entity such as a course could exist twice with exactly the same attributes, only tied to a different year. All queries start at the year table, and an entity should only be associated with other entities in the same year. This was to facilitate the site flow and enforce degree plan correctness.

Several join tables could be added to resolve this issue, but this is one of the issues that moving to a modern computational infrastructure can solve.

3.6.3 Data Ingestion

Uploading information to the degree plan website was somewhat complicated. All of the degree plans at the university were converted manually from spreadsheets to files that could be used to populate the database.

The University Information Technologies Office (IT) was able to provide information related to courses at the University of New Mexico as a large JavaScript Object Notation (JSON) file. There were issues concerning how the data was presented, in particular prerequisites. Several scripts needed to be written in order to convert the prerequisites into the format described above in Section 3.6.1. Figure 3.13 shows a representation of how the prerequisites were provided in the JSON file.

One of the issues associated with presenting the prerequisites in this manner is that logic is combined with the saved data. Each element from the prerequisite array can contain courses, parentheses, logical operators, or other prerequisite requirements such as placement exams. Once all of the elements are joined, what is formed is a string that describes the prerequisites. In this case the string would be:

(ACT Math minimum score 28 or SAT Mathematics minimum score 640 or MATH 150 or COMPASS - College Algebra minimum score 67) and (MATH 123 or COMPASS - Trigonometry minimum score 60) or (ACT Math minimum score 32 or SAT Mathematics minimum score 700)

While this is presented in a human readable form, this string was not very useful for analyzing the prerequisites of a course. One of the key problems associated with

```
"prerequisites": [
2
3
4
5
     {
6
7
8
      {
9
          "name": " or MATH 150"
10
11
          "name": " or COMPASS - College Algebra minimum score 67 )"
12
13
14
15
          "name": " and ( MATH 123"
16
17
18
           "name": " or COMPASS - Trigonometry minimum score 60 )"
19
20
     {
21
          "name": " or ( ACT Math minimum score 32"
22
23
24
25
26
```

Figure 3.13: Example Prerequisite JSON obtained from IT

the prerequisites delivered by IT was the issue of mixing operators such as "or", "and", "(", and ")" with the operands. Storing them as a prefix equation in an array allowed them to be represented without the use of parentheses. The prerequisites could then be easily parsed using a stack.

After many attempts to parse the actual prerequisite JSON array, it was found to be easier to simply use a regular expression to extract the prerequisites and corequisites out of the course description found in the JSON file. Many errors were found such as missing operators and parentheses not being correctly closed.

The prerequisites had to undergo additional parsing in order for them to be saved in the database in a useful form, such as that shown in Figure 3.9. This conversion occurred once, and then the resulting array was stored in the database.

Chapter 4

New Technologies in Support of Modern Computational Infrastructure

In order to upgrade the system to a modern computational system that facilitates more sophisticated analytics, many new technologies had to be integrated into the application. The new technologies that are used to construct the new application dealt mainly with data storage and visualization.

4.1 NoSQL Technologies

The main area of improvement in the degree plans application is how data will be stored. The data in the application is currently stored in a relational database. Other persistent data storage models were considered in order to enhance data storage abilities.

Chapter 4. New Technologies in Support of Modern Computational Infrastructure

NoSQL technology aims to solve many different problems associated with using relational databases in web applications. NoSQL databases represent a large swath of database technologies, and were developed in response to changing needs of the type of data being stored, how the data was accessed, as well as processing needs [12]. The advent of the NoSQL movement allowed developers to select the right database to manage their data, instead of being corralled into the relational "one size fits all" solution.

One of the major benefits that NoSQL databases bring to this project is the fact that they have dynamic schemata. In a relational database system, the schema of the table structure has to be well defined before any data is inserted. Using a NoSQL database, no assumptions about the data being stored need be made beforehand. This characteristic is extremely useful when dealing with datasets found in a university setting. Since not all aspects of the data will be known in advance, a dynamic schema provides an efficient way to deal with this issue.

NoSQL databases are generally described using the following four types. Keyvalue stores are the simplest NoSQL database. Every item in the database is stored as a key mapped to its value. Document stores are similar to a key-value store, but each value can be a complex data structure. Graph based stores persist data as node-edge pairs. Column based stores store common data as columns instead of rows, these stores are optimized for queries over large data sets [4].

The two types of NoSQL databases that were considered for design of the modern architecture were document and graph based-data stores. These two data stores most accurately represent the domain of the data represented by the university curriculum.

ACID versus BASE. Relational SQL and NoSQL databases have different guarantees on the integrity and availability of the data that they store. The two major transactional models used are either ACID or BASE. A play on words from the field

Chapter 4. New Technologies in Support of Modern Computational Infrastructure

of chemistry, these two systems do offer some parallel assurances on how data will be handled.

As a rule, relational databases support an ACID transactional model. ACID is a set of properties that guarantee reliable database transactions. This concept was initially defined by Jim Gray, but Andreas Reuter and Theo Härder were the ones who coined the term [7].

ACID is an acronym that stands for Atomicity, Consistency, Isolation, Durability. Atomicity represents the fact that the transaction that takes place must be all or nothing, if one part fails, it should all fail. Consistency guarantees that the database will remain in a valid state, no matter the transaction. Isolation implies that events must be synchronized, and hidden from other transactions that are running concurrently. Durability implies that once a transaction has taken place, the results will persist in the data store. The concern of a database employing an ACID transactional scheme is one of consistency.

BASE on the other hand concerns itself less with consistency and more with availability. BASE stands for Basically Available, Soft state, Eventual consistency. Whereas ACID has a pessimistic view on database consistency, BASE takes an optimistic approach and assumes that the database consistency will always contain a certain degree of flux. Allowing for some flux with the consistency of the database allows for a the system to be more partition resistant [13].

A factor to consider in describing what database transactional model to consider is the CAP Theorem introduced by Eric Brewer. Brewer first described this theorem in the context of a web application distributed over geographically distant servers. The concept however is general enough to describe individual databases in a distributed, cloud-based data storage system [6].

CAP is an acronym for Consistency, Availability, Partition tolerance. Consis-

tency is defined as the ability for each database server to return the correct response to a given request. Availability is even more core than consistency, and this guarantees that a response will be issued for a request. Partition tolerance actually refers more to the underlying infrastructure than to the actual database servers themselves. What this measures is the ability of the system to be located on many end nodes. If the servers are not able to communicate with one another, or communication is too slow, operations may not be able to be carried out. In visualizing the CAP theorem, a triangle such as the one in Figure 4.1 is used.

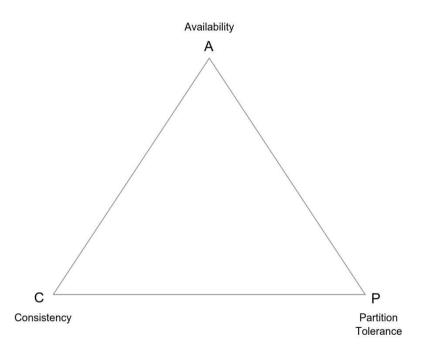


Figure 4.1: CAP Triangle

The CAP Theorem states that not all of the items (CAP) can be satisfied at one time, that there has to be a trade-off with one element. In the context of Figure 4.1, a system would exist between any two of the points of the triangle, and exhibit those two characteristics strongly. The third point is not necessarily non-existent in the system, but usually comes with a higher overhead or latency cost. For example, PostgreSQL is a RDBMS, so it follows the ACID transactional scheme. This places

it between the "C" and "A" points on the triangle, meaning that it is consistent as well as available. Partition tolerance can be achieved in a cloud-deployed relational database system using a two-phase commit system, where all partitioned databases have to agree that a transaction can take place before it is committed. There is obviously some overhead associated with coordinating communication among the databases.

4.1.1 Graph Database

The graph database engine selected to store the information associated with curriculum was Neo4j. One reason for selecting Neo4j was support of ACID transactions. Since this database would hold all of the courses and curriculum associated with the university, it was important that the there be some consistency in this data.

Another data management feature that was important to this selection was the flexible schema that Neo4j provides. No predefined schema is needed to create the database, and nodes can be related to other nodes by any relation type, which can be created dynamically.

Neo4j treats relations as first-level citizens, and thus are embraced as a core aspect of its data model. Relationships between nodes are readily available in a Neo4j, and no joins are necessary in order to expose those relationships. Since these relationships are stored directly in the database, accessing them becomes a constant time operation, and traversing the graph structure becomes a straightforward exercise [20].

Neo4j also has its own query language, cypher. Cypher queries are easily formed and are generally more human readable than SQL queries. Figure 4.2 contains a snippet of cypher code that will return the node representative of MATH 162 Calculus I.

Chapter 4. New Technologies in Support of Modern Computational Infrastructure

```
1 START root=node:courses_index(number = "MATH 162")
2 RETURN root
```

Figure 4.2: Example Cypher Query

Another important advantage of using this database is that it comes equipped with a web server that allows a user to perform queries using the standard HTTP Protocol. There are also a number of libraries similar to an ORM for an RDBMS that allow easy access to the HTTP Neo4j interface. The Ruby library, or "gem", that was used to connect to the cloud-deployed Neo4j database was Neography [3].

There is also a built-in administrative dashboard that comes standard with Neo4j. This administrative interface gives application developers a console to run cypher commands and a means to explore the contents of the graph visually. Figure 4.3 shows a screen-shot of the Neo4j administrative dashboard.

Figure 4.3: Neo4j Administrative Dashboard Screenshot

4.1.2 Document Database

The document database that was chosen for this system was MongoDB, which is an open source document database allowing for high performance and availability as well as automatic scaling [9].

While the graph database had been selected in order to store the data concerning the university structure and the degree requirements, MongoDB had been selected in order to store the degree plans for each student. The data model that MongoDB uses to store data was a major influence in this decision. MongoDB stores information in collections of documents as opposed to a relational database's tables with rows. Instead, MongoDB design encourages the use of embedded sub-documents [10]. This approach precludes the need to store data in separate tables and use join procedures to reassemble it.

MongoDB generally follows a BASE consistency model, and centers around being consistent and partition resistant. In order to maintain availability, replica sets employ automatic failover in order to provide availability. Replica set members contain the same data, but are otherwise independent. This allows a secondary replica set member to be promoted in the event of a primary member becoming unavailable [11].

MongoDB stores documents in Binary JavaScript Object Notation (BSON) format. BSON is lightweight with low spatial overhead, traversable by structure, and efficiently encoded and decoded. BSON is a basically a schema-less protocol buffer, which makes it very flexible but introduces some overhead in regards to space efficiency [2].

Chapter 5

Modern Computational Infrastructure Design

5.1 Newly Designed Infrastructure

5.1.1 Graph Database

A graph is simply a set of *nodes* and a set of *vertices* that connect them. Graphs accurately model the manner in which many entities exist in the real world [14], especially in the domain of a university. This is apparent with such relations as those between a college and its departments, or a course and its prerequisites.

One of the main components of the system is a Neo4j graph database that contains information on curriculum at the University of New Mexico. This database houses information pertaining to schools and colleges, departments, academic programs, and degree requirements. The database also contains all of the courses offered at the University of New Mexico, and all of the associated prerequisites and co-requisites. A graph-based persistent storage model was chosen due to its closeness to the domain

of the data represented. Courses and their prerequisites, colleges and their associated departments, are all very easily modeled as graphs.

As well as being a close match to the domain of the data, the graph database also has the advantage of being a schema-less persistent storage engine. As mentioned above, without a schema, new attributes can be added to any node or edge without any prior configuration. Also, any node type can be connected to any other node type using any type of edge, which itself may have attributes.

University Organizations. The colleges, departments, and academic programs naturally fit into a hierarchical tree structure. Figure 5.1 shows a representation of the School of Engineering and one of its associated departments and its two degrees offered.

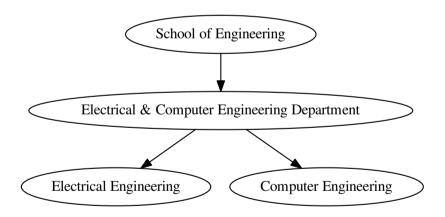


Figure 5.1: University Relationships

Given how the entities relate to one another, modeling them using a graph best fits their natural structure; storing them in Neo4j allows them to be persisted using their natural structure. These entities are not generally queried based on the data stored in the nodes, but rather how they relate to one another. For example, one query may

be to find all of the academic programs that are taught through a specific college. First, the college can be found by querying the *college* nodes using a predefined index, then all of the nodes that are related to the college node would be returned. In Figure 5.1, the query would start at *School of Engineering*, and the academic program nodes that would be returned would be *Electrical Engineering* and *Computer Engineering*.

Courses. The courses at the University of New Mexico also fit a graph data structure very well. The courses generally contain information that describes the course, such as course number, title, and description. There is also a notion of courses being able to relate to one another through prerequisite or co-requisite relationships. This is easily modeled using Neo4j by representing a course as a node with all of its defining attributes, and using edges to represent the relationships between the courses. Figure 5.2 demonstrates the relationships present between the courses MATH 162 Calculus I, MATH 163 Calculus II, PHYC 162 General Physics I, and PHYC 163L General Physics I Lab.

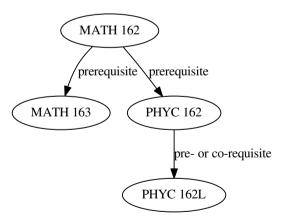


Figure 5.2: Course Relationships

Figure 5.2 shows two of the relationships that can exist between courses at the

University of New Mexico. MATH 162 is shown as a prerequisite for PHYC 162, while PHYC 162 must be taken in the same semester or before PHYC 162L. Neo4j's ability to place attributes not only on the nodes but also the relationships between them is leveraged here.

Degree Requirements. Degree requirements are also stored in the Neo4j database. Degree requirements are also stored as a tree in the graph database. In Figure 5.3, a small section of the tree stored in Neo4j that describes the degree requirements for the *Computer Engineering Degree* is shown.

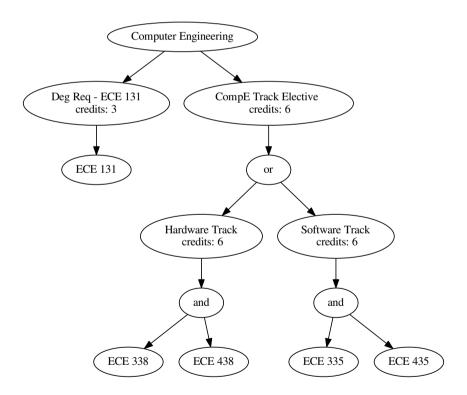


Figure 5.3: Sample of Degree Requirements Tree

In order to accurately represent the degree requirements of a program, many different graph constructs were considered. One of the main issues that was considered

was how departments described their degree requirements. Across all of the colleges and schools, there are two general ways in which degree requirements can be defined: a list of enumerated courses or a free selection of courses, possibly scoped by department or level

In order to create the degree requirements tree, special aggregation nodes were used. These aggregation nodes represented a single degree requirement, and were placed between the nodes representing an academic program (in this case Computer Engineering) and the courses that satisfy the specific requirement. The degree requirement nodes also contain information on how many credits are needed to satisfy the degree requirement. For example, the CompE Track Elective node in Figure 5.3 has a constraint of six credits. This implies that in order for this requirement to be satisfactorily satisfied, a sufficient number of credits must be taken from the courses that are children of the node in the graph.

5.1.2 Document Database

The second major data persistence component of the system is a document database. The document database provides a convenient manner which to store and deliver degree plans. In this application, the database of record for curriculum (e.g., colleges, departments, degree plans, courses, etc.) is the graph database. The document database is used to store both official degree plans created by departments, and those created by students with the aide of their advisors.

The information about curriculum at the University of New Mexico is relatively static and very seldom changes between semesters. Also, the data that is stored for each degree plan varies by college and department. These properties of the data stored in this database fit MongoDB's concepts of schema-free operation and BASE consistency model.

5.1.3 Departmental Degree Plans

The MongoDB database is used essentially as a large, longer persisting caching database that stores degree plans. The degree plans are constructed using the degree requirements that are stored in the Neo4j database. The degree requirements are retrieved from the graph database, and the user is able to order them into semesters. A degree plan describes the courses to be taken for each semester at the University of New Mexico.

These departmental degree plans are then serialized as BSON and stored in the document database as single documents. This makes retrieving and presenting degree plans to the user a very straightforward proposition. The degree plan can be pulled from the database in one piece, without the need for costly joins that would be associated with a relational data model. Also, since the data is already stored in JSON-like format, no conversion is required before the degree plan is able to be sent over any application interfaces.

5.1.4 Custom Degree Plans

This database can also be used to store custom degree plans for individual students. A student, with the aide of an advisor, would be able to retrieve the current departmental degree plan and then customize it to fit his or her needs. Then, whether or not a student has completed a course, or any notes specific to that student would be able to be stored in a custom degree plan for later retrieval.

5.1.5 Other Stored Data

In addition to storing the degree plans, the MongoDB database can also be utilized to store other information pertinent to curriculum at the University of New Mexico.

One piece of information that could be useful to store would be a document that describes the node-edge relationship of the graph that is used to show prerequisites for all of the courses within a degree plan.

The D3.js (D3) JavaScript library is used in the current application. D3 is a data visualization library used in order to generate the graph view of a degree plan. Being a JavaScript library, D3 requires data to be in JSON format in order for it to be rendered. Currently, the JSON used to render a graph must be created dynamically. Storing the data natively as a BSON document would free up resources from data conversion tasks at run-time.

5.2 Advantages

5.2.1 Graph Database

Flexibility. A main advantage of using the graph database is the ability to add attributes to the data model without having to bother with conforming to a schema. Take for instance the issue of adding an institution level entity to the diagram in Figure 5.1. Using a relational model would require the use of a join table, and there would also be the issue of what types of entities could be joined using that table. Unless some form of polymorphism was used, only entities represented by certain tables could be joined.

In Neo4j, a new node *University of New Mexico* would simply have to be added to the graph and a relationship between the new node and the node *School of Engineering* could be added. While the entities represented by the nodes could very well have a "type," Neo4j is agnostic on this fact, and can relate any two nodes regardless of type. Figure 5.4 shows a diagram of the graph with the added entity.

Chapter 5. Modern Computational Infrastructure Design

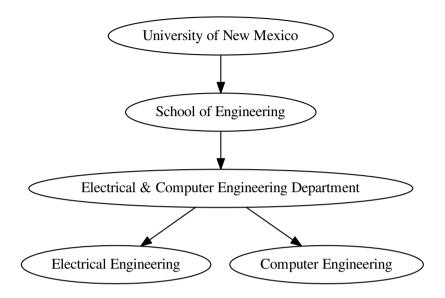


Figure 5.4: University Relationships With Top Level Institution Node

Using this method also leads to a more condensed search criteria, for example a search for all of the academic programs at a university. In order to perform this operation in a relational database, first a join of the given university and all of its departments would need to take place, and then all of the subsequent joins of the colleges to departments and departments to academic program would have to occur. However, this model would not always accurately model all universities in the state. At Central New Mexico Community College, colleges administer degree plans, departments do not even exist. There would have to be certain measures to handle this exception as well.

As stated above, Neo4j does not rely on joins to describe relationships, and accessing them becomes a simple task. In order to find all of the academic programs for a given university, the following cypher query in Figure 5.5 could be used. In this cypher query, -[*]- is used to denote any number or type of connections to

AcademicProgram from Institution.

```
MATCH (i:Institution { name:"University of New Mexico" })-[*]-(ap:AcademicProgram)
RETURN ap
```

Figure 5.5: Cypher Query to Find All Academic Programs at UNM

This script returns all nodes that are of type AcademicProgram that are any number of relationships away from the institution node University of New Mexico. Using this script, the academic programs for any university could be found no matter how many nodes exist between.

Prerequisite Simplification. Storing the university data natively in a graph also allowed the ability to easily find unnecessary prerequisites within a chain of courses. CHEM 121 General Chemistry with Lab has the following prerequisites according to the University of New Mexico catalog:

MATH 121 or MATH 123 or MATH 150 or MATH 162 or MATH 163 or MATH 180 or MATH 181 or MATH 264

Figure 5.6 is a graph representation of all of the courses mentioned above with prerequisite relationships denoted by edges of the graph. For the sake of prerequisite reduction, the "and" and "or" relationships described in the prerequisite chains can be ignored.

Figure 5.7 shows a diagram that illustrates the reduced graph for the prerequisites of CHEM 121. This graph is greatly simplified and shows that taking the course MATH 121 is sufficient to satisfy the prerequisites for CHEM 121.

In order to reduce the prerequisite set of CHEM 121 down to simply MATH 121, a transitive reduction algorithm was used. A transitive reduction of the directed graph G is G'. G' has the smallest number edges such that if a path exists between

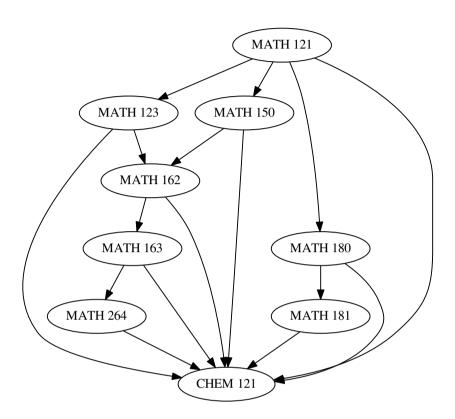


Figure 5.6: CHEM 121 Prerequisite Graph as described in UNM Catalog

two nodes in G, it will also exist in G' [18]. For the graph in Figure 5.6, this has the effect of removing redundant prerequisites. This greatly simplifies the graph of all of the courses at the University of New Mexico and facilitates description of cruciality of courses.

The cruciality of courses took into account two factors of the course. The first factor was the delay factor. A course with a high delay factor was on the critical path, and delays in taking them would delay the student taking courses in subsequent semesters. The second measure was blocking factor, in other words, how many courses could a student take if he or she completed another course. Once the cruciality of the courses are known, decisions can be made that aid students in flowing

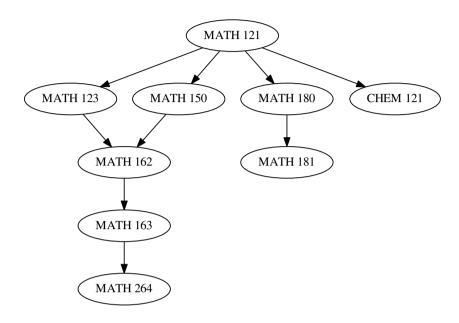


Figure 5.7: Reduced CHEM 121 Prerequisite Graph

through the curriculum [17].

5.2.2 Document Database

The manner in which the requirements are structured in the graph database also makes it hard to perform a 1-to-1 mapping of requirements to terms. Take for instance the "Technical Elective" requirement for Computer Engineering program. This requirement states that a student must take nine credit hours of courses in Electrical & Computer Engineering, Computer Science, Physics, or other engineering departments. Trying to find a way to map this requirement to a specific item in a term would be difficult, this single requirement would have to be spread out among several semesters.

Whenever a new degree plan is created and saved in the document database, it

can be checked against the requirements saved in the graph database in order to ensure that the courses outlined in the plan are sufficient to receive a degree.

Creation of degree plans is only performed at certain points in the year, meaning access to the database would be read-heavy. Once a degree plan is created by a student, they are generally used until he or she graduates. The degree plan may however be read thousands of times before a new degree plan is created. This allows the MongoDB database to act, at least in some way, as a long-term caching database.

As mentioned above, the MongoDB database could also be used in order to store custom degree plans for individual students. If a student wishes to create a custom degree plan, that plan could be stored within the MongoDB database. A departmental degree plan could serve as the template for this, or a set or sets of requirements could be loaded from the Neo4j database and used in order to create the custom plan.

Chapter 6

Futurework/Conclusions

The improvements described in this thesis to the currently deployed system will provide many benefits to both the university and the students it serves. Selecting a data store that best fits the data model of the problem domain is extremely beneficial. For example, modeling the courses as a graph and storing them natively in a Neo4j database allows operations to be performed that would have been difficult had the data been stored in another way. Storing the degree plans as documents in MongoDB also allows for faster access and flexibility in the type of data that can be stored.

One area that will require work in the future is a system that will load degree requirements from the graph database and allow a user to create degree plans. This system will also have to guarantee that a degree plan satisfies a set of degree requirements before it is allowed to be saved. This system that coordinates the two databases will be necessary for the cloud based graph-document data store system to function properly.

The system that is described in this paper is one part of a planned, larger system. Figure 6.1 shows the future vision for this project.

Chapter 6. Futurework/Conclusions

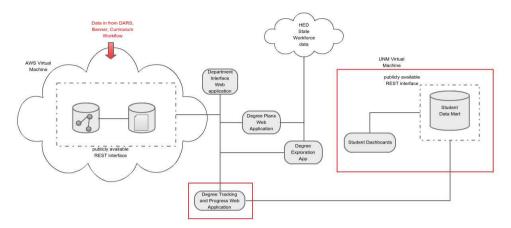


Figure 6.1: Envisioned System

This system is designed to integrate with other systems already at the University of New Mexico, both existing and in production. The cloud based graph-document data store system, located on the left side of the diagram, will serve to be the backbone of the analytics system that will be developed.

The system must also be able to integrate data from the University of New Mexico Office of Institutional Analytics Datamart. It is here that student data can be found, and used to compare with the degree plans of record stored in the cloud based graph-document data store system. This will allow a student's progress to be accurately measured.

References

- [1] Active record api. http://api.rubyonrails.org/classes/ActiveRecord/Base.html. Accessed: 2014-10-28.
- [2] Bson. http://bsonspec.org/, 2014. Accessed: 2014-10-21.
- [3] Max De Marzi. Neography on github. https://github.com/maxdemarzi/neography. Accessed: 2014-09-21.
- [4] Exploring the different types of nosql databases. http://www.3pillarglobal.com/insights/exploring-the-different-types-of-nosql-databases. Accessed: 2014-10-21.
- [5] General ed core course transfer curriculum. http://www.hed.state.nm.us/institutions/general-ed-core-course-transfer-curriculum.aspx. Accessed: 2014-10-01.
- [6] Seth Gilbert and Nancy Lynch. Perspectives on the CAP Theorem. *Computer*, 45(2):30–36, 2012.
- [7] Theo Häerder and Andreas Reuter. Principles of transaction-oriented database recovery. ACM Computing Surveys, 15(4):287–317, 1983.
- [8] Heroku dev center. https://devcenter.heroku.com/. Accessed: 2014-10-14.
- [9] Introduction to mongodb. http://docs.mongodb.org/manual/core/introduction/, 2014. Accessed: 2014-10-22.
- [10] Mongodb data modeling introduction. http://docs.mongodb.org/manual/core/data-modeling-introduction/, 2014. Accessed: 2014-10-21.
- [11] Mongodb replica set high availability. http://docs.mongodb.org/manual/core/replica-set-high-availability/, 2014. Accessed: 2014-10-21.

References

- [12] Nosql databases explained. http://www.mongodb.com/nosql-explained. Accessed: 2014-10-21.
- [13] D Pritchett. Base: An acid alternative. Queue, 2008.
- [14] Ian Robinson, Jim Webber, and Emil Eifrem. *Graph Databases*. O'Reilly Media, Inc., first edition, 2013.
- [15] Sam Ruby, Dave Thomas, and David Heinemeier Hansson. *Agile Web Development with Rails*. Pragmatic Programmers, LLC., fourth edition, 2012.
- [16] Ruby on rails api. http://api.rubyonrails.org/. Accessed: 2014-10-20.
- [17] Ahmad Slim, Jarred Kozlick, Gregory L. Heileman, and Chaouki T. Abdallah. The Complexity of University Curricula According to Course Cruciality. 2014 Eighth International Conference on Complex, Intelligent and Software Intensive Systems, pages 242–248, July 2014.
- [18] Transitive reduction. http://xlinux.nist.gov/dads//HTML/transitiveReduction.html. Accessed: 2014-10-14.
- [19] Web application framework. http://docforge.com/wiki/Web_application_framework. Accessed: 2014-10-21.
- [20] What is a graph database? http://neo4j.com/developer/graph-database/, 2014. Accessed: 2014-09-17.
- [21] Joseph Yeado, Kati Haycock, Rob Johnstone, and Priyadarshini Chaplot. Learning From High-Performing and Fast-Gaining Institutions. Technical report, Education Trust, 2014.

Appendices

\mathbf{A}	Course JSON Files	5 4
В	Course Parsing Scripts	72
\mathbf{C}	Database Seed Files	81

Appendix A

Course JSON Files

The following is an abbreviated section of the JSON files supplied by the University of New Mexico IT.

```
1
           "name": "ECE 101",
           "title": "Intro to Elect & Computer Eng",
4
           "credits": "1",
5
           "description ": "Insight into electrical engineering is gained through videos,
                hands-on experiments, use of computer software to learn basic problem-
                solving skills and a team-oriented design project.",
           "department ": "Electrical Computer Engr",
7
8
           "prerequisites": [],
            "corequisites": []
12
           "name": "ECE 131",
13
           "title": "Programming Fundamentals",
14
           "description ": "Fundamental programming concepts, including consideration of
15
                abstract machine models with emphasis on the memory hierarhy, basic
                programming constructs, functions, parameter passing, pointers and arrays,
                file I/O, bit-level operations and interfacing to external devices.",
           "department ": "Electrical Computer Engr",
16
            "prerequisites": [],
17
           "corequisites": []
18
19
20
           "name": "ECE 203",
           "title": "Circuit Analysis I",
           "credits": "3",
           "description ": "Basic elements and sources. Energy and power. Ohm's law and
                Kirchhoff's laws. Resistive networks, node and loop analysis. Network
                theorems. First-order and second-order circuits. Sinusoidal sources and
```

```
complex representations: impendance, phasors, complex power. Three-phase
                 circuits. Prerequisite: ECE 131 and MATH 163. Pre- or Corequisite: MATH
                316 and PHYC 161.",
            "department ": "Electrical Computer Engr",
25
26
            "prerequisites": [
27
               {
                    "name": "ECE 131"
28
29
                },
30
                {
                    "name": " and MATH 163"
31
32
                },
33
                {
                    "name": " and PHYC 161(May be Concurrent)"
                },
                {
37
                    "name": " and MATH 316(May be Concurrent)"
38
39
            ],
            "corequisites": [
40
               {
41
42
                    "name": "MATH 316"
43
                },
44
                {
45
                    "name": "PHYC 161"
46
47
48
       },
49
            "name": "ECE 206L",
50
            "title": "Instrumentation",
52
            "credits": "2",
            "description ": "Introduction to laboratory practices and the use of test
53
                 equipment. Measurements on basic electrical components, dc and ac circuits
                 using ohmmeters, voltmeters, ammeters and oscilloscopes. Circuit simulation.
                 Prerequisites: 203L and ENGL 102.",
            "department ": "Electrical Computer Engr",
54
55
            "prerequisites": [
56
                {
                    "name": "( ECE 203L"
57
58
                },
59
                {
                    "name": " or EECE 203L"
60
61
                },
62
                {
                    "name": " or ECE 203 )"
63
                },
65
                {
                    "name": " and ( \tt ENGL 102"
67
                },
68
                {
69
                    "name": " or ACT English minimum score 29"
70
                },
71
                {
72
                    "name": " or SAT Verbal minimum score 650 )"
73
                },
74
                {
75
                    "name": " or ENGL 102 Portfolio minimum score 1"
76
```

```
77
             "corequisites": []
78
79
         },
80
81
             "name": "ECE 213",
             "title": "Circuit Analysis II",
82
             "credits": "3",
83
             "description ": "General transient analysis of electrical circuits. Laplace
84
                 transform with applications to circuit analysis. State-space equations.
                 Fourier series analysis. The network function; convolution; frequency
                 response. Prerequisites: 203L and MATH 316. Corequisite: MATH 314.",
             "department ": "Electrical Computer Engr",
85
86
             "prerequisites": [
                 {
                     "name": "( ECE 203L"
                 },
90
                 {
91
                     "name": " or ECE 203"
92
                 },
93
                 {
                     "name": " or EECE 203L )"
94
95
                 },
96
                 {
97
                     "name": " and MATH 316"
98
                 }
99
             ],
100
             "corequisites": [
101
                {
                     "name": "MATH 314"
102
103
104
105
         },
106
107
             "name": "ECE 231",
             "title": "Intermediate Programming",
108
             "credits": "3",
109
             "description ": "Introducton to elementary data structures, program design and
110
                 computer-based solution of engineering problems. Topics include use of
                 pointers, stacks, queues, linked lists, trees, graphs, systems and device-
                 level programming and software design methodology. Prerequisite: ECE 131.",
111
             "department ": "Electrical Computer Engr",
             "prerequisites": [
112
113
                 {
114
                     "name": "ECE 131"
115
             ],
117
             "corequisites": []
118
        },
119
         {
120
            "name": "ECE 238L",
121
            "title": "Computer Logic Design",
122
             "credits": "4",
123
             "description ": "Binary number systems. Boolean algebra. Combinational,
                 sequential and register transfer logic. VHDL. Arithmetic/logic unit. Memories
                 , computer organization. Input-output. Microprocessors. Prerequisites: ECE
                 131.",
124
             "department ": "Electrical Computer Engr",
125
             "prerequisites": [
```

```
126
                     "name": "ECE 131"
127
128
129
130
             "corequisites": []
131
         },
132
             "name": "ECE 314",
133
             "title": "Signals and Systems",
134
             "credits": "3",
135
             "description ": "Continuous and discrete time signals and systems; time and
136
                 frequency domain analysis of LTI systems, Fourier series and transforms,
                 discrete time Fourier series/transform sampling theorem, block diagrams,
                 modulation/demodulation, filters. Prerequisites: 213 and MATH 264.",
137
             "department ": "Electrical Computer Engr",
138
             "prerequisites": [
139
                 {
                     "name": "ECE 213"
140
141
                 },
142
                 {
143
                     "name": " and MATH 264"
144
145
             ],
146
             "corequisites": []
147
         },
148
149
             "name": "ECE 321L",
             "title": "Electronics I",
150
             "credits": "4",
152
             "description ": "Introduction to diodes, bipolar and field-effect transistors.
                  Analysis and design of digital circuits, gates, flip-flops and memory
                  circuits. Circuits employing operational amplifiers. Analog to digital and
                  digital to analog converters. Prerequisite: 213.",
153
             "department ": "Electrical Computer Engr",
154
             "prerequisites": [
155
                 {
                     "name": "ECE 213"
156
157
158
             "corequisites": []
159
160
161
             "name": "ECE 322L",
162
163
             "title": "Electronics II",
             "credits": "4",
164
             "description ": "Analysis, design, and characterization of linear circuits
                 including operational amplifiers. Design of biasing and reference circuits,
                  multistage amplifiers, and feedback circuits. Prerequisite: 321L.",
             "department ": "Electrical Computer Engr",
167
             "prerequisites": [
168
                 {
                     "name": "ECE 321L"
169
170
171
             ],
172
             "corequisites": []
173
         },
174
         {
175
             "name": "ECE 330",
```

```
176
             "title": "Software Design",
177
             "credits": "3",
             "description ": "Design of software systems using modern modeling techniques.
178
                 Relationship between software design and process, with emphasis on UML and
                 its interface application code. Exposure to design patterns, software
                 frameworks, and software architectural paradigms. Prerequisite: 231.",
             "department ": "Electrical Computer Engr",
179
             "prerequisites": [
180
181
                 {
182
                     "name": "ECE 231"
183
                 },
184
                 {
                     "name": " or EECE 231L"
185
                 },
                 {
                     "name": " or ECE 231L"
189
190
             ],
191
             "corequisites": []
192
         },
193
194
             "name": "ECE 331",
             "title": "Data Structures & Algorithms",
195
             "credits": "3",
196
197
             "description ": "An introduction to data structures and algorithms. Topics
                 include asymptotic notation recurrence relations, sorting, hash tables, basic
                  priority queues, balanced search trees and basic graph representation and
                 search. Prerequisite: 231 and MATH 327. Corequisite: 340.",
             "department ": "Electrical Computer Engr",
199
             "prerequisites": [
200
                 {
201
                     "name": "ECE 231"
202
                 },
203
                 {
                     "name": " and MATH 327"
204
205
206
             "corequisites":
207
208
                {
                     "name": "ECE 340"
209
210
211
             ]
212
         },
213
         {
             "name": "ECE 335",
214
             "title": "Integrated Software Systems",
216
             "credits": "3",
217
             "description ": "Course considers design principles, implementation issues, and
                 performance evaluation of various software paradigms in an integrated
                 computing environment. Topics include performance measurement and evaluation,
                  program optimization for the underlying architecture, integration and
                 security for large-scale software systems.",
218
             "department ": "Electrical Computer Engr",
219
             "prerequisites": [
220
                {
221
                     "name": "ECE 330"
222
                 },
223
```

```
224
                     "name": " and ECE 337"
225
                 }
226
227
             "corequisites": []
228
229
             "name": "ECE 337",
230
             "title": "Computer Arch & Organization",
231
             "credits": "3",
232
233
             "description ": "Survey of various levels of computer architecture and design;
                 {\tt microprogramming\ and\ processor\ architecture\ ,\ assembly\ language\ programming\ ,}
                 operating system concepts and input/output via the operating system. Three
                 lectures, 1 hr. lab. Prerequisites: 231 and 238L. (Spring)",
234
             "department ": "Electrical Computer Engr",
235
             "prerequisites": [
236
                 {
237
                     "name": "( ECE 231"
238
                 },
230
                 {
                     "name": " or EECE 231L"
240
241
                 },
242
                 {
                     "name": " or ECE 231L )"
243
244
                 },
245
                 {
246
                     "name": " and ECE 238L"
247
248
             1.
             "corequisites": []
250
         },
251
252
             "name": "ECE 338",
253
             "title": "Intermediate Logic Design",
254
             "credits": "3",
             "description ": "Advanced combinational circuits; XOR and transmission gates;
255
                 computer-based optimization methods; RTL and HDL; introduction to computer
                  aided design; advanced sequential machines; asynchronous sequential machines;
                  timing issues; memory and memory interfacing; programmable logic devices;
                  and VLSI concepts. Prerequisite: 238L.",
             "department ": "Electrical Computer Engr",
256
257
             "prerequisites": [
258
                 {
259
                     "name": "ECE 238L"
260
261
             1,
             "corequisites": []
263
         },
264
         {
265
             "name": "ECE 340",
266
             "title": "Probabilistic Methods in Eng",
267
             "credits": "3",
             "description ": "Introduction to probability, random variables, random processes,
268
                  probability distribution/density functions, expectation correlation, power
                 spectrum, WSS processes, confidence internals, transmission through LIT
                  systems, applications of probability. Prerequisite: 314 and MATH 314.",
             "department ": "Electrical Computer Engr",
269
270
             "prerequisites": [
271
                 {
```

```
272
                     "name": "ECE 314"
273
                 },
274
                 {
                      "name": " and MATH 314"
275
276
277
             ],
278
             "corequisites": []
279
         },
280
         {
281
             "name": "ECE 341",
             "title": "Communication Systems",
282
             "credits": "3",
283
             "description ": "Amplitude/frequency modulation, pulse position/amplitude
284
                 modulation, probabilistic noise model, AWGN, Rice representation, figure of
                 merit, phase locked loops, digital modulation, introduction to multiple
                 access systems. Prerequisite: 314 and 340.",
285
             "department ": "Electrical Computer Engr",
286
             "prerequisites": [
287
                 {
                     "name": "ECE 314"
288
289
                 },
290
                 {
291
                     "name": " and ECE 340"
292
293
             ],
294
             "corequisites": []
295
         },
296
             "name": "ECE 344L",
             "title": "Microprocessors",
299
             "credits": "4",
300
             "description ": "Computers and Microprocessors: architecture, assembly language
                  programming, input/output and applications. Prerequisite: 206L and 238L and
                 321L. Three lectures, 3 hrs. lab. (Fall, Spring)",
             "department ": "Electrical Computer Engr",
301
302
             "prerequisites": [
303
                 {
                     "name": "ECE 206L"
304
305
                 },
306
                 {
307
                     "name": " and ECE 238L"
308
                 },
309
                 {
310
                     "name": " and ECE 321L"
311
             ],
             "corequisites": []
314
         },
315
         {
316
             "name": "ECE 345",
317
             "title": "Intro to Control Systems",
318
             "credits": "3",
319
             "description ": "Introduction to the feedback control problem. Plant modeling,
                 transfer function and state-space descriptions. Stability criteria. Nyquist
                  and root-locus design. Introduction to analytical design. Z\text{-transforms} and
                  digital control. Laboratory design project. Prerequisite: 314.", \,
320
             "department ": "Electrical Computer Engr",
321
             "prerequisites": [
```

```
322
                      "name": "ECE 314"
323
324
325
326
             "corequisites": []
327
         },
328
             "name": "ECE 360",
329
             "title": "Electromagnetic Fields & Waves",
330
             "credits": "3",
331
             description : "Maxwell s equations, plane wave propagation, waveguides and
332
                 transmission lines, transient pulse propagation and elementary dipole antenna
                  . Prerequisites: 213 and PHYC 161 and MATH 264.",
             "department ": "Electrical Computer Engr",
             "prerequisites": [
335
                 {
336
                      "name": "ECE 213"
337
                 },
338
                 {
                      "name": " and PHYC 161"
339
340
                 },
341
                 {
342
                      "name": " and MATH 264"
343
                 }
344
             ],
345
             "corequisites": []
346
         },
347
             "name": "ECE 371",
348
349
             "title": "Materials & Devices",
             "credits": "4",
350
351
             "description ": "Introduction to quantum mechanics, crystal structures,
                  insulators, metals, and semiconductor material properties, bipolar, field
                  effect and light emitting devices. Prerequisite: PHYC 262.",
             "department ": "Electrical Computer Engr",
352
353
             "prerequisites": [
354
                 {
                      "name": "PHYC 262"
355
356
357
358
             "corequisites": []
359
         },
360
361
             "name": "ECE 381",
             "title": " Intro to Power Systems",
362
             "credits": "3",
             "description ": "Provides in-depth look at various elements of power systems
                  including power generation, transformer action, transmission line modeling,
                  {\tt symmetrical \ components, \ pf \ correction, \ real/quadrature \ power \ calculations,}
                 load flow analysis and economic considerations in operating systems.
                  Prerequisite: 213.",
             "department ": "Electrical Computer Engr",
365
366
             "prerequisites": [
367
                 {
                      "name": "ECE 213"
368
369
370
             ],
371
             "corequisites": []
```

```
372
         },
373
374
             "name": "ECE 412",
             "title": "Intro to Computer Graphics",
375
             "credits": "3",
376
             "description ": "(Also offered as CS 412) Introduction to technical aspects of
377
                 raster algorithms in computer graphics. Foundational concepts of 2-D and 3-D
                  graphics as relate to real-time and offline techniques. Students develop a
                 video game as a final project to demonstrate the algorithms learned in class.
                   Prerequisite: 361L or ECE 331.",
             "department ": "Computer Science",
378
379
             "prerequisites": [
380
                 {
                     "name": "ECE 331"
                 },
                 {
384
                     "name": " or CS 361L"
385
386
             ],
             "corequisites": []
387
388
         },
389
             "name": "ECE 413",
390
391
             "title": "Intro to Ray Graphics",
392
             "credits": "3",
393
             "description ": "Topics include ray-geometry intersections, viewing, lenses,
                 local/global illumination, procedural textures/,models, spline curves and
                 surfaces, statistical integration for realistic image synthesis. Students
                 will write a raytracing renderer from scratch, exploring high performance
                  implementations and realistic rendering. Prerequisite: 331 or CS 361L.",
394
             "department ": "Electrical Computer Engr",
395
             "prerequisites": [
396
                 {
397
                     "name": "CS 361L"
398
399
                 {
400
                     "name": " or ECE 331"
401
402
403
             "corequisites": []
404
         },
405
406
             "name": "ECE 419",
407
             "title": "Senior Design I",
             "credits": "3",
408
             "description ": "Design methodology and development of professional project-
                 oriented skills including communication, team management, economics, and
                 engineering ethics. Working in teams, a proposal for a large design is
                 prepared in response to an industrial or in-house sponsor. Restriction: ECE
                 major, senior standing.",
410
             "department ": "Electrical Computer Engr",
411
             "prerequisites": [],
412
             "corequisites": []
413
         },
414
             "name": "ECE 420",
415
416
             "title": "Senior Design II",
417
             "credits": "3",
```

```
description ": "Continuation of 419. Students work in assigned teams to
418
                 implement proposal developed in 419. Prototypes are built and tested to
                 sponsor specifications, and oral and written reports made to the project
                 sponsor. Prerequisite: 419.",
             "department ": "Electrical Computer Engr",
419
420
             "prerequisites": [
421
                 {
                     "name": "ECE 419"
422
423
424
             1,
425
             "corequisites": []
426
         },
         {
             "name": "ECE 421",
             "title": "Analog Electronics",
429
             "credits": "3",
430
431
             "description ": "Design of advanced analog electronic circuits. BJT and MOSFET
                 operational amplifiers, current mirrors and output stages. Frequency response
                  and compensation. Noise. A/D and D/A converters. Prerequisite: 322L.",
             "department ": "Electrical Computer Engr",
432
433
             "prerequisites": [
434
                 {
435
                     "name": "ECE 3221."
436
437
             ],
             "corequisites": []
438
439
         },
440
             "name": "ECE 424",
             "title": "Digital VLSI Design",
442
443
             "credits": "3",
444
             "description ": "CMOS logic gates and circuits, transistor implementations,
                 applications to sequential circuits, {\tt VLSI} data path and controller design,
                 VLSI routing issues and architectures, RTL and VLSI impacts and applications
                 to microprocessor design. Prerequisites: 321L and 338.",
             "department ": "Electrical Computer Engr",
445
446
             "prerequisites": [
447
                 {
                     "name": "ECE 321L"
448
449
                 },
450
                 {
                     "name": " and ECE 338"
451
452
453
             1.
454
             "corequisites": []
         },
         {
457
             "name": "ECE 432",
458
             "title": "Intro to Parallel Processing",
459
             "credits": "3",
460
             "description ": "(Also offered as CS 442.) Machine taxonomy and introduction to
                 parallel programming. Performance issues, speed-up and efficiency.
                 Interconnection networks and embeddings. Parallel programming issues and
                 models: control parallel, data parallel and data flow. Programming
                 assignments on massively parallel machines. Prerequisites: (331 or CS 351L)
                 and (337 or CS 341L).",
461
             "department ": "Electrical Computer Engr",
462
             "prerequisites": [
```

```
463
                 {
                     "name": "( ECE 331"
464
465
466
                 {
                     "name": " or CS 351L )"
467
468
                 },
469
                 {
                     "name": " and ( ECE 337"
470
471
                 },
472
                 {
                     "name": " or CS 341L )"
473
474
             ],
             "corequisites": []
477
         },
478
479
             "name": "ECE 435",
             "title": "Software Engineering",
480
             "credits": "3",
481
482
             "description ": "Management and technical issues including business conduct and
                  ethics related to the design of large engineering projects. Student teams
                 will address the design, specification, implementation, testing and
                 documentation of a large hardware/software project. Prerequisites: 331 and
                 335.",
483
             "department ": "Electrical Computer Engr",
484
             "prerequisites": [
485
                 {
                     "name": "ECE 331"
486
487
                 },
488
                 {
489
                     "name": " and ECE 335"
490
491
492
             "corequisites": []
493
         },
494
495
             "name": "ECE 437",
             "title": "Computer Operating Systems",
496
             "credits": "3",
497
             "description ": "(Also offered as CS 481.) Fundamental principles of modern
498
                 operating systems design, with emphasis on concurrency and resource
                 management. Topics include processes, interprocess communication, semaphores,
                  monitors, message passing, input/output device, deadlocks memory management,
                  files system design. Prerequisites: (330 and 337) or CS 341L.",
             "department ": "Electrical Computer Engr",
             "prerequisites": [
                 {
502
                     "name": "( ECE 330"
503
                 },
504
                 {
505
                     "name": " and ECE 337 )"
506
                 },
507
                 {
508
                     "name": " or CS 341L"
509
                 }
510
             ],
511
             "corequisites": []
512
```

```
513
514
             "name": "ECE 438",
515
             "title": "Design of Computers",
             "credits": "3",
516
             "description ": "Computer architecture; design and implementation at HDL level;
517
                 ALU, exception handling and interrupts; addressing; memory; speed issues;
                 pipelining; microprogramming; introduction to distributed and parallel
                 processing; buses; bus protocols and bus masters. CAD project to include
                 written and oral presentations. Prerequisites: 337 and 338 and 344L.",
518
             "department ": "Electrical Computer Engr",
519
             "prerequisites": [
520
                 {
                     "name": "ECE 337"
521
                 },
                 {
                     "name": " and ECE 338"
525
526
                 {
527
                     "name": " and ECE 344L"
528
529
             ],
530
             "corequisites": []
531
         },
532
             "name": "ECE 439",
533
             "title": "Intr Digital Signal Processing",
534
535
             "credits": "3",
             "description ": "Bilateral Z transforms, region of convergence, review of
                 sampling theorem, aliasing, the discrete Fourier transform and properties,
                 analysis/design of FIR/IIR filters, FFT algorithms spectral analysis using
                 FFT. Prerequisite: 314.",
537
             "department ": "Electrical Computer Engr",
538
             "prerequisites": [
539
                 {
                     "name": "ECE 314"
540
541
542
543
             "corequisites": []
544
545
546
             "name": "ECE 440",
             "title": "Computer Networks",
547
             "credits": "3",
548
549
             "description ": "(Also offered as CS 485.) Theoretical and practical study of
                 computer networks, including network structures and architectures. Principles
                  of digital communications systems. Network topologies, protocols and
                 services. TCP/IP protocol suite. Point-to-point networks; broadcast networks;
                  local area networks; routing, error and flow control techniques.
                 Prerequisites: 330 and 337. Corequisite: 340.",
550
             "department ": "Electrical Computer Engr",
551
             "prerequisites": [],
552
             "corequisites": [
553
                {
554
                     "name": "ECE 340"
555
                 }
556
             ]
557
         },
558
```

```
559
             "name": "ECE 441",
560
             "title": "Communication Systems",
             "credits": "3",
561
             "description ": "Amplitude/frequency modulation, pulse position/amplitude
562
                 modulation, probabilistic noise model, AWGN, Rice representation, figure of
                 merit, phase locked loops, digital modulation, introduction to multiple
                 access systems. Prerequisites: 314 and 340.",
             "department ": "Electrical Computer Engr",
563
             "prerequisites": [
564
565
                {
566
                     "name": "ECE 314"
567
                 },
568
                 {
569
                     "name": " and ECE 340"
571
             1,
572
             "corequisites": []
573
         },
574
             "name": "ECE 442",
575
             "title": "Wireless Communication",
576
             "credits": "3",
577
             "description ": "The course is an introduction to cellular telephone systems and
578
                 wireless networks, drawing upon a diversity of electrical engineering areas.
                 Topics include cellular concepts, radio propagation, modulation methods and
                 multiple access techniques. Prerequisite: 314 and 360.",
579
             "department ": "Electrical Computer Engr",
580
             "prerequisites": [
                 {
582
                     "name": "ECE 314"
583
                 },
584
                 {
585
                     "name": " and ECE 360"
586
587
             "corequisites": []
588
589
590
             "name": "ECE 443",
591
             "title": "Hardware Design with VHDL",
592
             "credits": "3",
593
             description ": "The VHDL hardware description language is used for description
594
                 of digital systems at several levels of complexity, from the system level to
                 the gate level. Descriptions provide a mechanism for documentation, for
                 simulation and for synthesis. Prerequisite: 338.",
             "department ": "Electrical Computer Engr",
             "prerequisites": [
597
                 {
598
                     "name": "ECE 338"
599
600
601
             "corequisites": []
602
         },
603
604
             "name": "ECE 446",
             "title": "Feedback Control Systems",
605
606
             "credits": "3",
```

```
607
             description ": "Modeling of continuous and sampled-data control systems. State-
                 space representation. Sensitivity, stability and optimization of control
                  systems. Design of compensators in the frequency and time domains. Phase-
                 plane, describing function design for non-linear systems, and laboratory
                 design project. Prerequisite: 345.",
             "department ": "Electrical Computer Engr",
608
             "prerequisites": [
609
610
                 {
                     "name": "ECE 345"
611
612
613
             ],
614
             "corequisites": []
615
         }.
616
             "name": "ECE 448",
617
             "title": "Fuzzy Logic with Applications",
618
619
             "credits": "3",
620
             "description ": "(Also offered as CE 448.) Theory of fuzzy sets; foundations of
                 fuzzy logic. Fuzzy logic is shown to contain evidence, possibility and
                 probability logics; course emphasizes engineering applications; control,
                 pattern recognition, damage assessment, decisions; hardware/software
                 demonstrations. ",
             "department ": "Electrical Computer Engr",
621
622
             "prerequisites": [],
623
             "corequisites": []
624
         },
625
             "name": "ECE 456",
626
             "title": "Entrepreneurial Engineering",
627
             "credits": "3",
628
629
             "description ": "Review and application of necessary elements for successfully
                 launching technical businesses; focuses upon technology, manufacturing,
                 management, marketing, legal and financial aspects. Students work in groups
                 developing elements of new businesses and producing business plans.
                 Restriction: senior standing.",
             "department ": "Electrical Computer Engr",
630
631
             "prerequisites": [],
             "corequisites": []
632
633
         },
634
635
             "name": "ECE 460",
             "title": "Microwave Engineering",
636
             "credits": "3",
637
638
             "description ": "This lecture/laboratory course provides essential fundamentals
                 for rf, wireless and microwave engineering. Topics include: wave propagation
                 in cables, waveguides and free space; impedance matching, standing wave
                 ratios, Z- and S- parameters. Prerequisite: 360.",
639
             "department ": "Electrical Computer Engr",
640
             "prerequisites": [
641
                 {
642
                     "name": "ECE 360"
643
644
             ],
645
             "corequisites": []
646
         },
647
         {
648
             "name": "ECE 463",
649
             "title": "Advanced Optics I",
```

```
650
             "credits": "3",
             "description ": "(Also offered as PHYC 463.) Electromagnetic theory of
651
                 geometrical optics, Gaussian ray tracing and matrix methods, finite ray
                  tracing, aberrations, interference and diffraction. Prerequisite: PHYC 302.",
             "department ": "Electrical Computer Engr",
652
             "prerequisites": [
653
654
                 {
                     "name": "PHYC 463"
655
656
657
             1,
658
             "corequisites": []
659
         },
660
         {
661
             "name": "ECE 464",
             "title": "Laser Physics I",
662
663
             "credits": "3",
664
             "description ": "(Also offered as PHYC 464.) Resonator optics. Rate equations;
                 spontaneous and stimuated emission; gas, semiconductor and solid state lasers
                 , pulsed and mode-locked laser techniques. Prerequisite: 360 or PHYC 406.",
             "department ": "Electrical Computer Engr",
665
666
             "prerequisites": [
667
                {
                     "name": "ECE 360"
668
669
                 },
670
                 {
671
                     "name": " or PHYC 406"
672
673
             1,
             "corequisites": []
674
675
         },
676
677
             "name": "ECE 469",
678
             "title": "Antennas for Wireless Comm",
679
             "credits": "3",
             "description ": "Aspects of antenna theory and design; radiation from dipoles,
680
                 loops, apertures, microstrip antennas and antenna arrays. Prerequisite: 360."
             "department ": "Electrical Computer Engr",
681
682
             "prerequisites": [
683
                 {
684
                     "name": "ECE 360"
685
686
             1,
687
             "corequisites": []
688
         },
689
         {
             "name": "ECE 471",
691
             "title": "Materials & Devices II",
692
             "credits": "3",
693
             "description ": "An intermediate study of semiconductor materials, energy band
                 structure, p-n junctions, ideal and non-ideal effects in field effect and
                 bipolar transistors. Prerequisites: 360 and 371.",
             "department ": "Electrical Computer Engr",
694
695
             "prerequisites": [
696
                {
697
                     "name": "ECE 360"
698
                 },
699
```

```
700
                      "name": " and ECE 371"
701
                 }
702
703
             "corequisites": []
704
705
             "name": "ECE 474L",
706
             "title": "Microelectronics Processing I",
707
             "credits": "3",
708
             "description ": "(Also offered as NSMS 574L.) Materials science of semiconductors
709
                  , microelectronics technologies, device/circuit fabrication, parasitics and
                  packaging. Lab project features small group design/fabrication/testing of MOS
                  circuits.",
710
             "department ": "Electrical Computer Engr",
711
             "prerequisites": [],
712
             "corequisites": []
713
         },
714
715
             "name": "ECE 475",
             "title": "Optoelectronics",
716
             "credits": "3",
717
             "description ": "Basic electro-optics and opto-electronics, with engineering
718
                  applications. Interaction of light with matter. Introduction to optics of
                  \label{eq:dielectrics} \mbox{dielectrics, metals and crystals. Introductory descriptions of electro-optic,}
                  acousto-optic and magneto-optic effects and related devices. Light sources,
                  displays and detectors. Elementary theory and applications of lasers, optical
                  waveguides and fibers. Prerequisite: 371.",
             "department ": "Electrical Computer Engr",
719
             "prerequisites": [
721
                 {
722
                      "name": "ECE 371"
723
724
725
             "corequisites": []
726
         },
727
728
             "name": "ECE 482",
             "title": "Electric Drives & Transformers",
729
             "credits": "3",
730
             "description ": "Electromagnetic theory and mechanical considerations are
731
                  employed to develop models for and understanding of Transformers, Induction
                  Machines and Synchronous Machines. Additionally, DC Machines are discussed.
                  Prerequisite: 203 and 213.",
732
             "department ": "Electrical Computer Engr",
733
             "prerequisites": [
                 {
                      "name": "ECE 203"
736
                 },
737
                 {
738
                      "name": " and ECE 213"
739
740
             ],
741
             "corequisites": []
742
         },
743
             "name": "ECE 483",
744
745
             "title": "Power Electronics",
746
             "credits": "3",
```

```
747
             "description ": "Introduces modern power conversion techniques at a lower level,
                 dealing with basic structures of power converters and techniques of analyzing
                  converter circuits. Students learn to analyze and design suitable circuits
                 and subsystems for practical applications. Prerquisite: 321L and 371 and 381.
             "department ": "Electrical Computer Engr",
748
749
             "prerequisites": [
750
                {
                     "name": "ECE 321L"
751
752
                 }.
753
                 {
                     "name": " and ECE 371"
754
755
                 },
756
                 {
757
                     "name": " and ECE 381"
758
759
             ],
760
             "corequisites": []
761
         },
762
763
             "name": "ECE 484".
764
             "title": "Photovoltaics",
             "credits": "3",
765
766
             "description ": "Technical concepts of photovoltaics. Solar cell device level
                 operation, packaging, manufacturing, designing phovoltaic system for stand-
                 alone or grid-tied operation, some business-case analysis and some real-life
                 scenarios of applicability of these solutions. Prerequisite: 381 and MATH
                 121.",
767
             "department ": "Electrical Computer Engr",
768
             "prerequisites": [
769
                 {
770
                     "name": "ECE 381"
771
                 },
772
                 {
                     "name": " and MATH 121"
773
774
775
776
             "corequisites": []
777
778
779
             "name": "ECE 488",
             "title": "Future Energy Systems",
780
             "credits": "3",
781
             "description ": "A detailed study of current and emerging power and energy
                 systems and technologies. Including renewable energies, storage, Smart Grid
                 concepts, security for power infrastructure. Software modeling of power
                 systems and grids. Prerequisite: 381 and 482 and 483 and 484.",
783
             "department ": "Electrical Computer Engr",
784
             "prerequisites": [
785
                 {
786
                     "name": "ECE 381"
787
                 },
788
                 {
789
                     "name": " and ECE 482"
790
                 },
791
                 {
792
                     "name": " and ECE 483"
793
```

```
794
                     "name": " and ECE 484"
795
796
797
798
             "corequisites": []
799
         },
800
             "name": "ECE 490",
801
             "title": "Internship",
802
             "credits": "3",
803
804
             "description ": "Professional practice under the guidance of a practicing
                 engineer. Assignments include design or analysis of systems or hardware, or
                 computer programming. A preliminary proposal and periodic reports are
                 required. The engineer evaluates student s work; a faculty monitor assigns
                 grade. Restriction: ECE major, junior standing. (12 hours/week) (24 hours/
                 week in summer session). Offered on a CR/NC basis only.",
805
             "department ": "Electrical Computer Engr",
806
             "prerequisites": [],
             "corequisites": []
807
808
         },
809
810
             "name": "ECE 491",
             "title": "Undergrad Problems",
811
812
             "credits": "1 TO 6",
             "description ": "Registration for more than 3 hours requires permission of
813
                 department chairperson.",
814
             "department ": "Electrical Computer Engr",
             "prerequisites": [],
815
             "corequisites": []
817
         },
818
819
             "name": "ECE 493",
820
             "title": "Honors Seminar",
821
             "credits": "1 TO 3",
             "description ": "A special seminar open only to honors students. Registration
822
                 requires permission of department chairperson.",
             "department ": "Electrical Computer Engr",
823
             "prerequisites": [],
824
             "corequisites": []
825
826
         },
827
         {
828
             "name": "ECE 494",
             "title": "Honors Individual Study",
829
830
             "credits": "1 TO 6",
             "description ": "Open only to honors students. Registration requires permission
831
                 of the department chairperson and of the supervising professor.",
             "department ": "Electrical Computer Engr",
832
833
             "prerequisites": [],
834
             "corequisites": []
835
         },
836
         {
             "name": "ECE 495",
837
             "title": "Special Topics",
838
839
             "credits": "1 TO 4",
840
             "description ": "Restriction: ECE major, senior standing. ",
             "department ": "Electrical Computer Engr",
841
842
             "prerequisites": [],
843
             "corequisites": []
```

$Appendix \ A. \ \ Course \ JSON \ Files$

```
844 }
845 ]
```

Appendix B

Course Parsing Scripts

The following code was used to parse the JSON files in Appendix A into a seed file format that was able to be loaded into the database.

```
1 require 'open-uri'
   require 'json'
   require 'active_support/all'
   require_relative './parse_array.rb'
   weasel_depts = ["AFST", "AMST", "ANTH", "ARTH", "ASM", "AS_MULTI_COURSES", "BIOC", "BIOC"
          , "BIOL", "CCS", "CE", "CFA_MULTI_COURSES", "CHEM", "CHNE", "CJ", "COE_MULTI_COURSES"
          , "CS", "DANC", "DOS", "ECE", "ECON", "ELOL", "ENGL", "EPS", "ES", "FITE", "FLL", "
          GEOG", "HC", "HESS", "HIST", "HSC", "IFCE", "IFDM", "LAW", "LING", "LLSS", "MA", "
          MATH", "ME", "MEDL", "MIDS", "MUS", "NSMS", "NURS", "PHIL", "PHRM", "PHYC", "POLS",
          PSY", "RADS", "RELG", "SAAP", "SHS", "SOC", "SOE_MULTI_COURSES", "SPA", "SPANPORT",
          TED", "UC", "UL", "WMST"]
   course\_array = \{ "AFST" \Rightarrow [], "AMST" \Rightarrow [], "ANTH" \Rightarrow [], "ARTH" \Rightarrow [], "ASM" \Rightarrow [], "
           \texttt{AS\_MULTI\_COURSES"} \Rightarrow [] \;, \; \texttt{"BIOC"} \Rightarrow [] \;, \; \texttt{"BIOC"} \Rightarrow [] \;, \; \texttt{"BIOL"} \Rightarrow [] \;, \; \texttt{"CCS"} \Rightarrow [] \;, \; \texttt{"CE"} 
          => [], "CFA_MULTI_COURSES" => [], "CHEM" => [], "CHNE" => [], "CJ" => [],
          \texttt{COE\_MULTI\_COURSES"} \implies [] \;,\;\; \texttt{"CS"} \implies [] \;,\;\; \texttt{"DANC"} \implies [] \;,\;\; \texttt{"ECE"} \implies [] \;,\;\; \texttt{"ECD"}
          \Rightarrow [], "ELOL" \Rightarrow [], "ENGL" \Rightarrow [], "EPS" \Rightarrow [], "ES" \Rightarrow [], "FITE" \Rightarrow [], "FLL" \Rightarrow
          [], "GEOG" \Rightarrow [], "HC" \Rightarrow [], "HESS" \Rightarrow [], "HIST" \Rightarrow [], "HSC" \Rightarrow [], "IFCE" \Rightarrow [],
          "IFDM" \Rightarrow [], "LAW" \Rightarrow [], "LING" \Rightarrow [], "LLSS" \Rightarrow [], "MA" \Rightarrow [], "MATH" \Rightarrow [], "ME"
          \Rightarrow \ [] \ , \ "\text{MEDL"} \Rightarrow \ [] \ , \ "\text{MIDS"} \Rightarrow \ [] \ , \ "\text{NSMS"} \Rightarrow \ [] \ , \ "\text{NURS"} \Rightarrow \ [] \ , \ "\text{PHIL"}
          \Rightarrow [], "PHRM" \Rightarrow [], "PHYC" \Rightarrow [], "POLS" \Rightarrow [], "PSY" \Rightarrow [], "RADS" \Rightarrow [], "RELG" \Rightarrow
          [], "SAAP" => [], "SHS" => [], "SOC" => [], "SOE_MULTI_COURSES" => [], "SPA" => [],
          "SPANPORT" \implies [] \; , \; "TED" \implies [] \; , \; "UC" \implies [] \; , \; "UL" \implies [] \; , \; "WMST" \implies [] \; \}
   catalog_depts = {"*DM (MD) Program" => "HSC", "*Interdisciplinary: A.S." => "
          AS_MULTI_COURSES", "*Interdisciplinary: Education" => "COE_MULTI_COURSES", "*
          Interdisciplinary: Fine Arts" \Rightarrow "CFA_MULTI_COURSES", "*Interdisciplinary:Engineering
          " => "SOE_MULTI_COURSES", "AS American Studies" => "AMST", "AS Anthropology" => "ANTH
          ", "AS Biology" => "BIOL", "AS CHMS Program" => "CCS", "AS Economics" => "ECON", "AS
          Linguistics" \Rightarrow "LING", "African American Studies" \Rightarrow "AFST", "Air Force ROTC" \Rightarrow nil
          , "Anderson Schol Management ASM" => "ASM", "Art Art History" => "ARTH", "Biomedical
          Sci Grad Prg BSGP" \Rightarrow "HSC", "CE Professional Development" \Rightarrow nil, "Chemical Nuclear
```

```
Engineering" => "CHNE", "Chemistry" => "CHEM", "Civil Engineering Civil Engr" => "CE"
                 , "College of Nursing" => "NURS", "College of Pharmacy" => "PHRM", "Communication
                 Journalism" => "CJ", "Computer Science" => "CS", "Earth & Planetary Sciences" => "EPS
                 ", "Educ Leader Orgn Learning ELOL" => "ELOL", "Educational Specialties Ed Sp" => "ES
                 ", "Electrical Computer Engr" => "ECE", "Emergency Medicine" => "HSC", "English" => "
                 ENGL", "FCM Masters in Public Health" \Rightarrow "HSC", "FCM Physicians Assistand Pgm" \Rightarrow "
                 HSC", "Foreign Languages Literatures" => "FLL", "Geography" => "GEOG", "History" => "
                 HIST", "Individual Fam Comm Educ IFCE" => "IFCE", "International Programs Studies" =>
                  nil, "Landscape Architecture" => nil, "Lang Literacy Sociocultural LL" => "LLSS", "
                 LosAlamos Branch" => nil, "Mathematics Statistics" => "MATH", "Media Arts" => "MA", "
                 Military Science & Leadership" \Rightarrow nil, "Music" \Rightarrow "MUS", "NSMS Nano Science & Micro
                 Syst" => "NSMS", "Native American Studies" => "UC", "Naval Science" => nil, "Orgn
                 Learning Instruct Develop" => "ELOL", "Orthopaedics Physical Therapy" => "HSC", "
                 Pediatrics Occupational Ther" => nil, "Philosophy" => "PHIL", "Phys Perform Dev Phy
                 Perf Dev" => "HESS", "Physical Ed (Non-Professional)" => "HESS", "Physics Astronomy"
                 => "PHYC", "Political Science" => "POLS", "Provost Branch Campuses" => nil, "
                 Psychology" => "PSY", "Radiology" => "RADS", "Religious Studies Prgm" => "RELG", "SOE
                  Mechanical Engineering" => "ME", "SOM Clinical Departments" => "HSC", "SOM Pathology
                  Medical Lab Sci" => "MEDL", "School Architecture Planning" => "SAAP", "School of Law
                  Administration" => "LAW", "School of Public Admin" => "SPA", "Sociology" => "SOC", "
                 Spanish Portuguese" => "SPANPORT", "Speech & Hearing Sciences" => "HSC", "Surgery
                 Dental Services" => "HSC", "Teacher Education" => "TED", "Theatre & Dance" => "DANC",
                  "UC Administration" => \mathbf{nil}, "UC Advisement Center" => \mathbf{nil}, "UC Chicano Studies
                 Program" => nil, "UC Departments" => "UC", "UC Student Academic Choices" => "UC", "UC
                  Water Resources Program" => "UC", "UNM Honors Program" => "HC", "Univ Lbry Deans
                 Support " => nil, "Women Studies " => "WMST"}
 9
10
11
        file = File.open("eecs_catalog.json", "rb")
13
        json_string = file.read
14
15
        file.close
16
17
        parsed_json = JSON.parse(json_string)
18
19
        parsed_json.each do | pj |
20
          if catalog_depts[pj["department "]]
21
                course_name = pj["name"]
                course_title = pj["title"]
22
23
               #takes the highest amount of credit possible
24
                course_credits = pj["credits"].split.last.to_i
25
26
                #can be altered in the future
                #read raw course description
                course_description = pj["description "]
31
                #load co or prereq field
                temp\_string = course\_description.match(/[Pp]re[-]{0,1}\\s[Oo]?[Rr]?\\s?[Cc]o[-]{0,1}
32
                        requisite [s] {0,1}:\s[^\.]+\./).to_s
33
                [-]{0,1} requisite[s]{0,1}:/, "").strip
                course\_description = course\_description . \\ gsub (/[Pp] re[-] \{0,1\} \setminus s [Oo]?[Rr]? \setminus s?[Cc]oological \\ (Pp] re[-] \{0,1\} \setminus s[Oo]?[Rr]? \setminus s[Oo]?[Rr]? \setminus s?[Cc]oological \\ (Pp] re[-] \{0,1\} \setminus s[Oo]?[Rr]? \setminus
34
                        [\,-\,]\,\{\,0\,,1\,\}\,\,r\,e\,q\,u\,i\,s\,i\,t\,e\,\,[\,s\,]\,\{\,0\,,1\,\}\,:\,\,\,\,\,\,s\,\,[\,\,\hat{}\,\,\,\,\,\,\,\,\,]\,+\,\,\,\,\,\,\,\,,\,\,\,\,\,\,,\,\,\,\,,\,\,\,\,)\,\,.\,\,s\,t\,r\,i\,p
35
36
                #load prereq field
```

```
37
         temp\_string = course\_description.match(/[Pp]re[-]{0,1}\s?requisite[s]{0,1}:
               [^ \ \ ] + \ \ . \ / \ ) . to s
38
         course\_prereq\_string = temp\_string . gsub (/[Pp]re[-]{0,1}\space{2mm} string [s]{0,1}:/, "").
              strip
39
         course\_description = course\_description.gsub(/[Pp]re[-]{0,1}\xspace solution = [s]{0,1}:
               [^{\cdot} \setminus .] + \setminus ./, ^{\cdot}, ^{\cdot}).strip
40
41
         #load coreq field
         temp\_string = course\_description.match(/[Cc]o[-]?\s?requisite[s]?: [^\.]+\./).to\_s
42
         course\_coreq\_string = temp\_string.gsub (/[Cc]o[-]?\s?requisite[s]?:/, "").strip
43
         course\_description = course\_description.gsub(/[Cc]o[-]?\s?requisite[s]?: [^\.]+\./\,, \ \ , \ \ , \ \ , \ \ , \ \ , \ \ )
44
               ').strip
45
46
         #load which semesters courses are offered
47
         course_semester_offering = ""
         temp_string = course_description.match(/\(([Ss]ummer|[Ff]all|[Ss]pring){0,1},{0,1}
                \{0\,,1\} ([\,Ss\,]\,ummer\,|\,[\,Ff]\,all\,|\,[\,Ss\,]\,pring\,) \,\{0\,,1\}\,, \{0\,,1\} \\ \ \{0\,,1\} ([\,Ss\,]\,ummer\,|\,[\,Ff]\,all\,|\,[\,Ss\,]\,pring\,) 
               \{0,1\},\{0,1\},\{0,1\}\setminus)/) { |m|
49
            course_semester_offering += m.to_s
50
         course\_semester\_offering = course\_semester\_offering.gsub(`(`,`,`).gsub(`)`, \ ``,`)
51
         course\_description \ = \ course\_description \ . \ gsub \ (\ / \ (([Ss]ummer | [Ff] \ all \ | [Ss] \ pring))
52
                \{0\,,1\}\,,\{0\,,1\} \quad \{0\,,1\}\,([\,\mathrm{Ss}\,]\,\mathrm{ummer}\,|\,[\,\mathrm{Ff}]\,\,\mathrm{all}\,|\,[\,\mathrm{Ss}\,]\,\mathrm{pring}\,)\,\{0\,,1\}\,,\{0\,,1\} \quad \{0\,,1\}\,([\,\mathrm{Ss}\,]\,\mathrm{ummer}\,|\,[\,\mathrm{Ff}]\,\,\mathrm{all}\,
               |[Ss]pring) \{0,1\}, \{0,1\}, \{0,1\}, (0,1)\}. strip
53
54
55
56
         preregs_array = parse_array(course_prereg_string, course_name, match(/[A-Z]{2,4}/),
               course_name)
         coreqs\_array = parse\_array (course\_coreq\_string, course\_name.match(/[A-Z]{2,4}/),
               course_name)
         pre_or_coreqs_array = parse_array(course_co_or_prereq_string, course_name.match(/[A-Z
               [{2,4}/), course_name)
59
60
         # course_prereq_string = prereq_string(prereqs_array)
61
         # course_coreq_string = prereq_string(coreqs_array)
62
         # course_co_or_prereq_string = prereq_string(pre_or_coreqs_array)
63
64
         # prereqs_array = prereq_prefix_eqn(prereqs_array)
65
         # coreqs_array = prereq_prefix_eqn(coreqs_array)
66
         # pre_or_coreqs_array = prereq_prefix_eqn(pre_or_coreqs_array)
67
         #I DID THIS FIRST
68
         course_description_string = "\t\{\n\t\tnumber: \"#{course_name}\",\n\t\ttitle: \"#{
69
              course_title}\",\n\t\tcredits: #{course_credits},\n\t\tdescription: \"#{
               course_description}\",\n\t\tprereq_string: \"#{course_prereq_string}\",\n\t\
               tcoreq_string: \"#{course_coreq_string}\",\n\t\tco_or_prereq_string: \"#{
               course_co_or_prereq_string}\",\n\t\tsemester_offering: \"#{
               tcoreq_array: #{coreqs_array.to_s},\n\t\tpre_or_coreq_array: #{
               pre_or_coreqs_array.to_s}\n\t\},\n\n"
70
71
         \texttt{course\_array} \left[ \texttt{catalog\_depts} \left[ \texttt{pj} \left[ \texttt{"department "} \right] \right] \right] << \texttt{course\_description\_string}
72
       end
73
    end
74
75
    #all courses are loaded
    #make sure all courses are uniq and sorted
```

```
weasel_depts.each do | weasel |
78
      course_array [weasel].sort!
79
      course_array [weasel].uniq!
80
81
      unless course_array [weasel].empty?
       course_array[weasel].last.chomp!(",\n\n")
82
     end
83
84
    end
85
86
    puts "writing out courses"
87
    #write 'em out to file
    weasel_depts.each do | weasel |
89
     unless course_array [weasel].empty?
        File.open("./courses/#{weasel}courses.rb", 'w') do |f|
        File.open ("../Wild-Weasel/db/data/courses/\#\{weasel\}courses.rb", 'w') \ do \ |f|
          f.write "courses = Course.create([\n\n"
93
          course_array[weasel].each do |course|
94
            f.write(course)
95
          f.\ write ("\n\n]) \n\nDept.\ where (acronym: '#{weasel}').\ first.\ courses = Array.new(
96
               courses)")
97
       end
      end
98
99
    end
```

```
1
    require_relative './change_to_prefix.rb'
2
3
   def reduce_parens(prereq_array)
4
     infix_array = Array.new(prereq_array)
5
     current_operator = nil
6
7
     stack = Arrav.new
      last\_index = infix\_array.size - 1
8
9
      infix_array.each_with_index do |element, index |
10
11
12
        if is_open_paren? element
          stack.push index
13
14
15
        elsif is_operator? element
          current_operator = element
17
18
        elsif is_close_paren? element
19
          if (infix_array[index + 1] == current_operator and is_operand? infix_array[index +
20
            infix_array[stack.pop] = nil
21
            infix_array[index] = nil
22
          elsif index == last_index && is_close_paren?(element)
23
24
            if stack.pop == 0
              infix_array[index] = nil
25
26
              infix_array[0] = nil
            end
29
30
            stack.pop
31
32
```

```
33
         end
34
       end
35
       infix_array.delete(nil)
36
37
       infix_array.reverse!
38
39
       current\_operator = nil
       stack = Array.new
40
       last_index = infix_array.size - 1
41
42
43
       infix_array.each_with_index do | element, index |
44
          if is_close_paren? element
45
46
            stack.push index
47
          elsif is_operator? element
49
            current_operator = element
50
51
          elsif is_open_paren? element
            if (infix_array[index + 1] == current_operator and is_operand? infix_array[index +
52
               infix_array[stack.pop] = nil
53
              infix_array[index] = nil
54
55
56
57
              stack.pop
58
59
            end
60
62
63
       infix_array.delete(nil)
64
       infix_array.reverse!
65
    end
66
    def prereq_string(prereq_array)
67
     reduce_parens(prereq_array).join(" ").gsub("( ", "(").gsub(" )", ")")
68
69
    end
70
71
72
73
    def parse_array(string, current_dept, course_name)
74
       string = string.gsub(/[0-9]+-[0-9]+/, '').gsub(/s+/, '')
75
       string = string.gsub('IS-M', 'ISM').gsub(/\s+/, '')
76
77
78
       string = string.gsub(/\bMath\b/, 'MATH').gsub(/\s+/, ')
79
80
       #assume commas are an "and" condition
81
       string = string.gsub(',',', ' and ').gsub(/\s+/, '')
82
83
       #remove all special characters except for parenthesis
       {\tt string = string.gsub} \, (/[\hat{\ } A-Za-z0-9()\ ]/\,, \ , \ ,) \, . \, gsub \, (/\backslash\,s+/, \ , \ , \ ,)
84
85
86
       {\rm string} \; = \; {\rm string.gsub} \, (\, "\, (\, "\, ,\, \, "\, (\, \, "\, )\, .\, {\rm gsub} \, (\,/\, \backslash\, s\, +\,/\, ,\, \,\, ,\, \,\, ,\, )
87
88
       {\rm string} \; = \; {\rm string} \; . \; {\rm gsub} \; (\; "\; ) \; "\; , \; \; "\; \; ) \; "\; ) \; . \; {\rm gsub} \; (\; / \setminus \, s \; + \; / \; , \; \; \; , \; ) \; 
89
```

```
90
       #remove all capitalized words
91
       string = string.gsub(/\b[A-Z]{1}[a-z]\b/, '').gsub(/\s+/, '')
92
93
       #remove ACT
94
       string = string.gsub(/\bACT\s[0-9]?/, '').gsub(/\s+/, '')
95
       #remove ISM
96
97
       string = string.gsub(/\bISM\s[0-9]?/, , , ).gsub(/\s+/, , , )
98
99
      #remove SAT
100
       string = string.gsub(/\bSAT\s[0-9]?/, '').gsub(/\s+/, '')
101
102
       #remove stray 1 or 2 digit number
103
       string = string.gsub(/\b[0-9]{1,2}\b/, '').gsub(/\s+/, '')
104
105
       string = string.gsub(/\b[Oo][Rr]\b/, '+').gsub(/\b[Aa][Nn][Dd]\b/, '*')
106
107
       array = string.split
108
109
       array.delete_if{ | element |
        \textbf{not}(\texttt{element.match}(/[()*+]/)) \ \ \textbf{and} \ \ \textbf{not}(\texttt{element.match}(/[A-Z]\{2,4\}/)) \ \ \textbf{and} \ \ \textbf{not}(\texttt{element.})
110
              match(/[0-9]{3}[A-Za-z]?/))
111
112
113
       string = array.join(',')
114
       string = string.gsub("( )", ",")
115
       string = string.gsub(/([+*]+/)/, '')
116
       # puts string
117
       while string.match(/\([+*]+([A-Z]{2,4} [0-9]{3}[A-Za-z]?) [+*]+\)/)
118
119
         string.match(/([+*]+([A-Z]{2,4}[0-9]{3}[A-Za-z]?)[+*]+)){|m|}
120
           string.gsub!(string.match(/([+*]+([A-Z]{2,4}[0-9]{3}[A-Za-z]?)[+*]+))).to_s,
121
122
       end
123
124
       array = string.split
125
       while array.first == '+' or array.first == '*'
126
127
        arrav.shift
128
129
130
       while array.last == '+' or array.last == '*'
131
        array.pop
132
134
       final_array = Array.new
135
       last_element = ""
136
137
       array.each do | element |
138
        if element.match(/[A-Z]{2,4}/)
139
           last_element = element
140
         141
           if last_element.match(/[A-Z]{2,4}/)
142
               final_array << "#{last_element}_#{element}"</pre>
143
             else
144
               final_array << "#{current_dept}_#{element}"</pre>
145
             end
```

 $\frac{146}{147}$

```
final_array << element
148
        end
149
        last_element = element
150
      end
151
152
       i = 0
153
154
      loop_iteration = true
155
       last_element_op = false
156
157
       unless final_array.empty?
158
        while loop_iteration
           current_element_op = (final_array[i].match(/[+*]/) ? true : false)
161
           if current_element_op and last_element_op
162
            final_array.delete_at(i-1)
163
            i = 0
164
            last_element_op = false
165
166
            last_element_op = current_element_op
167
            i +=1
168
169
170
           loop_iteration = (i < final_array.size)
171
172
173
       end
175
       string = final_array.join(', ')
176
       string = string.gsub(/[*+]\s\(\s*\)/, '').gsub(/\s+/, '')
177
       temp_array = string.split(" ")
178
179
       final_array = Array.new
180
       temp_array.each do |element|
       final_array << element.gsub("_", " ")
181
182
      return prereq_prefix_eqn(final_array, course_name)
183
184
      # return Array.new(final_array)
185
    end
    def is_open_paren?(string)
 2
     string == '('
 3
    end
 5
    def is_close_paren?(string)
     string == ')'
 6
 7
    end
    def is_paren?(string)
 9
     string == '(' or string == ')'
 10
 11
    end
    def is_operator?(string)
      string == '+' or string == "or" or string == "Or" or string == "OR" or string == '*' or
            string == "and" or string == "And" or string == "AND"
 15
 16
```

```
def is_operator_or_paren?(string)
    is_paren?(string) or is_operator?(string)
19
20
21
   def is_operand?(string)
    not(is_operator_or_paren?(string))
23
24
   def to_symbolic_operator(string)
25
     if string == '+' or string == "or" or string == "Or" or string == "OR"
26
       return '+'
27
      elsif string == '*' or string == "and" or string == "And" or string == "AND"
28
       return '*'
32
   def prereq_prefix_eqn(prereq_array, course_name)
34
35
     static_array = Array.new(prereq_array)
     # DEBUG
36
37
     operator_stack = Array.new
38
39
      prefix_eqn = Array.new
40
     current_eqn = prereq_array.reverse
41
      current_eqn.each do |an_element|
42
43
        if is_operator?(an_element)
44
          operator_stack.push to_symbolic_operator(an_element)
45
        elsif is_close_paren?(an_element)
47
          operator_stack.push an_element
48
49
        elsif is_open_paren?(an_element)
50
51
          {\tt this\_operator} \, = \, {\tt operator\_stack.pop}
52
53
          while !is_close_paren?(this_operator)
           # DEBUG
54
            puts course_name
55
           # DEBUG
56
57
            prefix_eqn.push this_operator
            this_operator = operator_stack.pop
58
59
60
          end
61
63
64
          prefix_eqn.push an_element
66
        end
67
68
     end
69
70
        unless operator_stack.empty?
        prefix_eqn += operator_stack.reverse
71
72
        end
73
74
     prefix_eqn.reverse
```

```
75
     end
 76
 77
     Dir[File.dirname(__FILE__) + "/courses/**/*.rb"].each do | file|
 78
       puts file
 79
        # DEBUG
 80
       lines_of_file = []
 81
 82
        File.open(file, 'r').each do | line|
 83
 84
          if line.index "_array"
 85
            matched\_array = line.match(/\[(.+)\]/)
 86
 87
 88
             if matched_array
                prefix_array = prereq_prefix_eqn(matched_array[1].gsub("\"", "").split(',').each
                      { | e | e.strip!})
 90
 91
                lines\_of\_file << line.gsub\left(/\setminus [(.+)\setminus]/\,, \ prefix\_array.inspect\right)
             else
 92
 93
               \label{lines_of_file} \mbox{lines} \sim \mbox{file} << \mbox{line}
 94
            end
 95
          else
 96
 97
             lines_of_file << line
 98
          end
 99
100
101
        File.open(file, 'w') do |f|
102
          lines_of_file.each do |a_line|
104
            f.write a_line
105
          end
106
       \quad \mathbf{end} \quad
107
     end
```

Appendix C

Database Seed Files

Below is a sample of Rails seed file that is able to load all of the courses offered in Electrical & Computer Engineering

```
courses = Course.create([
3
       number: "ECE 101",
4
       title: "Intro to Elect & Computer Eng",
5
       description: "Insight into electrical engineering is gained through videos, hands-on
              experiments, use of computer software to learn basic problem-solving skills and
             a team-oriented design project.",
8
       prereq_string: "",
       coreq_string: "",
       co_or_prereq_string: "",
       semester_offering: "",
       prereq_array: [],
       coreq_array: [],
14
       pre_or_coreq_array: []
15
16
17
       number: "ECE 131",
18
       title: "Programming Fundamentals",
19
       credits: 3,
20
21
       description: "Fundamental programming concepts, including consideration of abstract
            machine models with emphasis on the memory hierachy, basic programming constructs
            , functions, parameter passing, pointers and arrays, file I/O, bit-level
            operations and interfacing to external devices.",
       prereq_string: "",
       coreq_string: "",
       co_or_prereq_string: "",
       semester_offering: "",
      prereq_array: [],
```

```
27
        coreq_array: [],
28
        pre_or_coreq_array: []
29
30
31
        number: "ECE 203",
32
        title: "Circuit Analysis I",
33
34
        credits: 3.
        description: "Basic elements and sources. Energy and power. Ohm's law and Kirchhoff
35
            's laws. Resistive networks, node and loop analysis. Network theorems. First-
            order and second-order circuits. Sinusoidal sources and complex representations:
              impendance, phasors, complex power. Three-phase circuits.",
        prereq_string: "ECE 131 and MATH 163.",
36
        coreq_string: "",
        co-or-prereq-string: "MATH 316 and PHYC 161.",
        semester_offering: "",
40
        prereq_array: ["*", "ECE 131", "MATH 163"],
41
       coreq_array: [],
        pre_or_coreq_array: ["*", "MATH 316", "PHYC 161"]
42
43
      },
44
45
       number: "ECE 206L",
46
47
        title: "Instrumentation",
48
        credits: 2.
49
        description: "Introduction to laboratory practices and the use of test equipment.
            Measurements on basic electrical components, dc and ac circuits using ohmmeters,
            voltmeters, ammeters and oscilloscopes. Circuit simulation.",
50
        prereq_string: "203L and ENGL 102.",
        coreq_string: "",
        co_or_prereq_string: "",
        semester_offering: "",
53
        prereq_array: ["*", "ECE 203L", "ENGL 102"],
54
55
        coreq_array: [],
56
        pre_or_coreq_array: []
57
58
59
       number: "ECE 213",
60
       title: "Circuit Analysis II",
61
62
        credits: 3.
        description: "General transient analysis of electrical circuits. Laplace transform
63
            with applications to circuit analysis. State-space equations. Fourier series
            analysis. The network function; convolution; frequency response.",
        prereq_string: "203L and MATH 316.",
        coreq_string: "MATH 314.",
65
        co_or_prereq_string: "",
67
        semester_offering: "",
        prereq_array: ["*", "ECE 203L", "MATH 316"],
        coreq_array: ["MATH 314"],
70
        pre_or_coreq_array: []
71
      },
72
73
74
       number: "ECE 231",
        title: "Intermediate Programming",
75
76
        credits: 3,
```

```
77
         description: "Introducton to elementary data structures, program design and computer-
             based solution of engineering problems. Topics include use of pointers, stacks,
             queues, linked lists, trees, graphs, systems and device-level programming and
             software design methodology.",
78
         prereq_string: "ECE 131.",
         coreq_string: "",
79
         co_or_prereq_string: "",
80
81
         semester_offering: "",
         prereq_array: ["ECE 131"],
82
         coreq_array: [],
83
84
         pre_or_coreq_array: []
85
86
       {
         number: "ECE 238L",
         title: "Computer Logic Design",
90
         credits: 4,
91
         description: "Binary number systems. Boolean algebra. Combinational, sequential and
             register transfer logic. VHDL. Arithmetic/logic unit. Memories, computer
             organization. Input-output. Microprocessors.",
         prereq_string: "ECE 131.",
92
         coreq_string: "",
93
94
         co_or_prereq_string: "",
         semester_offering: "",
95
96
         prereq_array: ["ECE 131"],
97
        coreq_array: [],
98
         pre_or_coreq_array: []
99
       },
100
101
102
         number: "ECE 314",
103
         title: "Signals and Systems",
104
         credits: 3,
105
         description: "Continuous and discrete time signals and systems; time and frequency
             domain analysis of LTI systems, Fourier series and transforms, discrete time
             Fourier series/transform sampling theorem, block diagrams, modulation/
             demodulation, filters.",
         \tt prereq\_string: "213 and MATH 264.",
106
         coreq_string: "",
107
         co_or_prereq_string: "",
108
         semester_offering: "",
109
         prereq_array: ["*", "ECE 213", "MATH 264"],
110
111
         coreq_array: [],
112
         pre_or_coreq_array: []
113
       },
114
115
116
        number: "ECE 321L",
117
        title: "Electronics I",
118
         credits: 4,
119
         {\tt description:} \ \texttt{"Introduction to diodes, bipolar and field-effect transistors. Analysis}
             and design of digital circuits, gates, flip-flops and memory circuits. Circuits
             employing operational amplifiers. Analog to digital and digital to analog
             converters.",
         prereq_string: "213.",
120
121
         coreq_string: "",
122
         co_or_prereq_string: "",
123
         semester_offering: "",
```

```
124
         prereq_array: ["ECE 213"],
125
         coreq_array: [],
126
         pre_or_coreq_array: []
127
128
129
         number: "ECE 322L",
130
         title: "Electronics II",
131
         credits: 4
132
133
         description: "Analysis, design, and characterization of linear circuits including
             operational amplifiers. Design of biasing and reference circuits, multistage
             amplifiers, and feedback circuits.",
         prereq_string: "321L.",
134
         coreq_string: "",
         co_or_prereq_string: "",
         semester_offering: "",
138
         prereq_array: ["ECE 321L"],
139
         coreq_array: [],
140
         pre_or_coreq_array: []
141
       },
142
143
         number: "ECE 330",
144
145
         title: "Software Design",
146
         credits: 3.
147
         description: "Design of software systems using modern modeling techniques.
             Relationship between software design and process, with emphasis on UML and its
             interface application code. Exposure to design patterns, software frameworks,
             and software architectural paradigms.",
         prereq_string: "231.",
148
149
         coreq_string: "",
150
         co_or_prereq_string: "",
151
         semester_offering: "",
152
         prereq_array: ["ECE 231"],
153
         coreq_array: [],
154
         pre_or_coreq_array: []
155
156
157
         number: "ECE 331".
158
         title: "Data Structures & Algorithms",
159
         credits: 3,
160
161
         description: "An introduction to data structures and algorithms. Topics include
             asymptotic notation recurrence relations, sorting, hash tables, basic priority
             queues, balanced search trees and basic graph representation and search.",
         prereq_string: "231 and MATH 327.",
         coreq_string: "340.",
163
164
         co_or_prereq_string: "",
         semester_offering: "",
         prereq_array: ["*", "ECE 231", "MATH 327"],
167
         coreq_array: ["ECE 340"],
168
         pre_or_coreq_array: []
169
       },
170
171
         number: "ECE 335",
172
173
         title: "Integrated Software Systems",
174
        credits: 3,
```

```
175
         description: "Course considers design principles, implementation issues, and
             performance evaluation of various software paradigms in an integrated computing
              environment. Topics include performance measurement and evaluation, program
             optimization for the underlying architecture, integration and security for large
              -scale software systems.",
         prereq_string: "",
176
         coreq_string: "",
177
178
         co_or_prereq_string: "",
         semester_offering: "",
179
180
         prereq_array: [],
181
         coreq_array: [],
182
         pre_or_coreq_array: []
183
184
185
         number: "ECE 337",
187
         title: "Computer Arch & Organization",
188
         credits: 3,
189
         description: "Survey of various levels of computer architecture and design;
             microprogramming and processor architecture, assembly language programming,
             operating system concepts and input/output via the operating system. Three
             lectures, 1 hr. lab.",
         prereq_string: "231 and 238L.",
190
191
         coreq_string: "",
192
         co_or_prereq_string: "",
193
         semester_offering: "Spring",
194
         prereq_array: ["*", "ECE 231", "ECE 238L"],
         coreq_array: [],
         pre_or_coreq_array: []
197
       },
198
199
200
         number: "ECE 338",
201
         title: "Intermediate Logic Design",
         credits: 3,
202
         description: "Advanced combinational circuits; XOR and transmission gates; computer-
203
             based optimization methods; RTL and HDL; introduction to computer aided design;
             advanced sequential machines; asynchronous sequential machines; timing issues;
             memory and memory interfacing; programmable logic devices; and VLSI concepts.",
         prereq_string: "238L.",
204
205
         coreq_string: "",
206
         co_or_prereq_string: "",
207
         semester_offering: "",
208
         prereq_array: ["ECE 238L"],
209
         coreq_array: [],
210
         pre_or_coreq_array: []
211
       },
212
213
214
         number: "ECE 340",
215
        title: "Probabilistic Methods in Eng",
216
         credits: 3.
217
         \mathbf{description}: \texttt{ "Introduction to probability, random variables, random processes,}
             probability distribution/density functions, expectation correlation, power
             spectrum, WSS processes, confidence internals, transmission through LIT systems,
             applications of probability.",
218
         prereq_string: "314 and MATH 314.",
219
         coreq_string: "",
```

```
220
         co_or_prereq_string: "",
221
         semester_offering: "",
         prereq_array: ["*", "ECE 314", "MATH 314"],
222
223
         coreq_array: [],
224
         pre_or_coreq_array: []
225
226
227
        number: "ECE 341",
228
229
        title: "Communication Systems",
230
         credits: 3,
231
         description: "Amplitude/frequency modulation, pulse position/amplitude modulation,
             probabilistic noise model, AWGN, Rice representation, figure of merit, phase
             locked loops, digital modulation, introduction to multiple access systems.",
         prereq_string: "314 and 340.",
232
233
         coreq_string: "",
234
         co_or_prereq_string: "",
235
         semester_offering: "",
         prereq_array: ["*", "ECE 314", "ECE 340"],
236
237
        coreq_array: [],
238
         pre_or_coreq_array: []
239
       },
240
241
242
        number: "ECE 344L",
243
         title: "Microprocessors",
244
         credits: 4,
         description: "Computers and Microprocessors: architecture, assembly language
             programming, input/output and applications. Three lectures, 3 hrs. lab.",
         prereq_string: "206L and 238L and 321L.",
246
247
         coreq_string: "",
248
         co_or_prereq_string: "",
249
         semester_offering: "Fall, Spring",
250
         prereq_array: ["*", "*", "ECE 206L", "ECE 238L", "ECE 321L"],
251
         coreq_array: [],
252
         pre_or_coreq_array: []
253
254
255
        number: "ECE 345".
256
         title: "Intro to Control Systems",
257
258
         credits: 3,
259
         description: "Introduction to the feedback control problem. Plant modeling, transfer
             function and state-space descriptions. Stability criteria. Nyquist and root-locus
              design. Introduction to analytical design. Z-transforms and digital control.
             Laboratory design project.",
         prereq_string: "314.",
261
         coreq_string: "",
262
         co_or_prereq_string: "",
263
         semester_offering: "",
264
         prereq_array: ["ECE 314"],
265
        coreq_array: [],
266
         \verb|pre-or-coreq-array: []|
267
       },
268
269
270
        number: "ECE 360",
271
        title: "Electromagnetic Fields & Waves",
```

```
272
         credits: 3,
         description: "Maxwell s equations, plane wave propagation, waveguides and
273
              transmission lines, transient pulse propagation and elementary dipole antenna.",
         prereq_string: "213 and PHYC 161 and MATH 264.",
274
275
         coreq_string: "",
276
         co_or_prereq_string: "",
         semester_offering: "",
277
         prereq_array: ["*", "*", "ECE 213", "PHYC 161", "MATH 264"],
278
         coreq_array: [],
279
280
         pre_or_coreq_array: []
281
282
283
         number: "ECE 371",
         title: "Materials & Devices",
285
         credits: 4,
286
287
         description: "Introduction to quantum mechanics, crystal structures, insulators,
             metals, and semiconductor material properties, bipolar, field effect and light
              emitting devices.",
         prereq_string: "PHYC 262.",
288
         coreq_string: "",
289
290
         co_or_prereq_string: "",
         semester_offering: "",
291
292
         prereq_array: ["PHYC 262"],
293
         coreq_array: [],
294
         pre_or_coreq_array: []
295
       },
296
         number: "ECE 381",
299
         title: " Intro to Power Systems",
300
         credits: 3,
301
         description: "Provides in-depth look at various elements of power systems including
              power generation, transformer action, transmission line modeling, symmetrical
              components, pf correction, real/quadrature power calculations, load flow analysis
              and economic considerations in operating systems.",
         prereq_string: "213.",
302
         coreq_string: "",
303
304
         co_or_prereq_string: "",
305
         semester_offering: "",
306
         prereq_array: ["ECE 213"],
307
         coreq_array: [],
308
         pre_or_coreq_array: []
309
       },
310
311
         number: "ECE 413",
312
313
         title: "Intro to Ray Graphics",
314
315
         description: "Topics include ray-geometry intersections, viewing, lenses, local/
              {\tt global \ illumination} \ , \ {\tt procedural \ textures/, models} \ , \ {\tt spline \ curves} \ \ {\tt and \ surfaces} \ ,
              statistical integration for realistic image synthesis. Students will write a
              raytracing renderer from scratch, exploring high performance implementations and
              realistic rendering.",
         prereq_string: "331 or CS 361L.",
316
317
         coreq_string: "",
318
         co_or_prereq_string: "",
         semester_offering: "",
319
```

```
320
         prereq_array: ["+", "ECE 331", "CS 361L"],
321
         coreq_array: [],
322
         pre_or_coreq_array: []
323
324
325
         number: "ECE 419",
326
         title: "Senior Design I",
327
328
         credits: 3
329
         description: "Design methodology and development of professional project-oriented
             skills including communication, team management, economics, and engineering
             ethics. Working in teams, a proposal for a large design is prepared in response
             to an industrial or in-house sponsor. Restriction: ECE major, senior standing.",
330
         prereq_string: "",
         coreq_string: "",
         co-or-prereq-string: "",
333
         semester_offering: "",
334
         prereq_array: [],
335
         coreq_array: [],
336
         pre_or_coreq_array: []
337
       },
338
339
340
         number: "ECE 420",
         title: "Senior Design II",
341
342
         credits: 3,
343
         description: "Continuation of 419. Students work in assigned teams to implement
             proposal developed in 419. Prototypes are built and tested to sponsor
             specifications, and oral and written reports made to the project sponsor.",
344
         prereq_string: "419.",
345
         coreq_string: "",
346
         co_or_prereq_string: "",
347
         semester_offering: "",
348
         prereq_array: ["ECE 419"],
349
         coreq_array: [],
350
         pre_or_coreq_array: []
351
352
353
         number: "ECE 421",
354
         title: "Analog Electronics",
355
356
         credits: 3,
         description: "Design of advanced analog electronic circuits. BJT and MOSFET
357
             operational amplifiers, current mirrors and output stages. Frequency response and
              compensation. Noise. A/D and D/A converters.",
         prereq_string: "322L.",
         coreq_string: "",
         co_or_prereq_string: "",
361
         semester_offering: "",
362
         prereq_array: ["ECE 322L"],
363
         coreq_array: [],
364
         pre_or_coreq_array: []
365
       },
366
367
         number: "ECE 424",
368
369
         title: "Digital VLSI Design",
        credits: 3,
370
```

```
371
         description: "CMOS logic gates and circuits, transistor implementations, applications
              to sequential circuits, VLSI data path and controller design, VLSI routing
              issues and architectures, RTL and VLSI impacts and applications to microprocessor
              design.",
         prereq_string: "321L and 338.",
372
         coreq_string: "",
373
         co_or_prereq_string: "",
374
375
         semester_offering: "",
         prereq_array: ["*", "ECE 321L", "ECE 338"],
376
377
         coreq_array: [],
378
         pre_or_coreq_array: []
379
      },
380
381
       {
         number: "ECE 432",
         title: "Intro to Parallel Processing",
384
         credits: 3,
385
         description: "(Also offered as CS 442.) Machine taxonomy and introduction to parallel
              \hbox{programming. Performance issues, speed-up and efficiency. Interconnection}
             networks and embeddings. Parallel programming issues and models: control parallel
             , data parallel and data flow. Programming assignments on massively parallel
             machines.".
         prereq_string: "(331 or CS 351L) and (337 or CS 341L).",
386
         coreq_string: "",
387
388
         co_or_prereq_string: "",
389
         semester_offering: "".
390
         prereq_array: ["*", "+", "ECE 331", "CS 351L", "+", "ECE 337", "CS 341L"],
         coreg_array: [].
         pre_or_coreq_array: []
393
       },
394
395
396
         number: "ECE 435",
397
         title: "Software Engineering",
         credits: 3,
398
         description: "Management and technical issues including business conduct and ethics
399
             related to the design of large engineering projects. Student teams will address
             the design, specification, implementation, testing and documentation of a large
             hardware/software project.",
         prereq_string: "331 and 335.",
400
401
         coreq_string: "",
402
         co_or_prereq_string: "",
403
         semester_offering: "",
404
         prereq_array: ["*", "ECE 331", "ECE 335"],
405
         coreq_array: [],
406
         pre_or_coreq_array: []
407
       },
408
409
410
         number: "ECE 437",
411
         title: "Computer Operating Systems",
412
         credits: 3.
413
         description: "(Also offered as CS 481.) Fundamental principles of modern operating
             systems design, with emphasis on concurrency and resource management. Topics
             include processes, interprocess communication, semaphores, monitors, message
             passing, input/output device, deadlocks memory management, files system design.",
414
         prereq_string: "(330 and 337) or CS 341L.",
415
         coreq_string: "",
```

```
416
         co_or_prereq_string: "",
417
         semester_offering: "",
         prereq_array: ["+", "*", "ECE 330", "ECE 337", "CS 341L"],
418
419
         coreq_array: [],
420
         pre_or_coreq_array: []
421
422
423
       {
        number: "ECE 438",
424
         title: "Design of Computers",
425
426
         credits: 3,
427
         description: "Computer architecture; design and implementation at HDL level; ALU,
             exception handling and interrupts; addressing; memory; speed issues; pipelining;
             microprogramming; introduction to distributed and parallel processing; buses; bus
              protocols and bus masters. CAD project to include written and oral presentations
             . " ,
428
         \tt prereq\_string: "337 and 338 and 344L.",
429
         coreq_string: "",
430
         co_or_prereq_string: "",
431
         semester_offering: "",
         {\tt prereq\_array: \ ["*", "*", "ECE 337", "ECE 338", "ECE 344L"]}\,,
432
433
        coreq_array: [],
434
         pre_or_coreq_array: []
435
       },
436
437
438
         number: "ECE 439",
439
         title: "Intr Digital Signal Processing",
         description: "Bilateral Z transforms, region of convergence, review of sampling
             theorem, aliasing, the discrete Fourier transform and properties, analysis/design
              of FIR/IIR filters, FFT algorithms spectral analysis using FFT.",
442
         prereq_string: "314.",
443
         coreq_string: "",
444
         co_or_prereq_string: "",
445
         semester_offering: "",
446
         prereq_array: ["ECE 314"],
447
        coreq_array: [],
448
         pre_or_coreq_array: []
449
       },
450
451
452
        number: "ECE 440",
453
        title: "Computer Networks",
454
        credits: 3,
         description: "(Also offered as CS 485.) Theoretical and practical study of computer
             networks, including network structures and architectures. Principles of digital
             communications systems. Network topologies, protocols and services. TCP/IP
             protocol suite. Point-to-point networks; broadcast networks; local area networks;
              routing, error and flow control techniques.",
456
         prereq_string: "330 and 337.",
457
         coreq_string: "340.",
458
         co-or-prereq-string: "",
         semester_offering: "",
459
         prereq_array: ["*", "ECE 330", "ECE 337"],
460
461
        coreq_array: ["ECE 340"],
462
         pre_or_coreq_array: []
463
```

```
464
465
466
         number: "ECE 441",
         title: "Communication Systems",
467
468
         credits: 3.
         description: "Amplitude/frequency modulation, pulse position/amplitude modulation,
469
             probabilistic noise model, AWGN, Rice representation, figure of merit, phase
             locked loops, digital modulation, introduction to multiple access systems.",
         prereq_string: "314 and 340.",
470
471
         coreq_string: "",
472
         co_or_prereq_string: "",
473
         semester_offering: "",
         prereq_array: ["*", "ECE 314", "ECE 340"],
474
         coreq_array: [],
476
         pre_or_coreq_array: []
477
       },
478
479
480
         number: "ECE 442",
         title: "Wireless Communication",
481
         credits: 3.
482
483
         description: "The course is an introduction to cellular telephone systems and
             wireless networks, drawing upon a diversity of electrical engineering areas.
             Topics include cellular concepts, radio propagation, modulation methods and
             multiple access techniques.",
484
         prereq_string: "314 and 360.",
485
         coreq_string: "",
486
         co_or_prereq_string: "",
         semester_offering: "",
         prereq_array: ["*", "ECE 314", "ECE 360"],
489
         coreq_array: [],
490
         pre_or_coreq_array: []
491
492
493
         number: "ECE 443",
494
         {\tt title: "Hardware Design with VHDL"}\,,
495
496
         credits: 3.
         description: "The VHDL hardware description language is used for description of
497
             digital systems at several levels of complexity, from the system level to the
             gate level. Descriptions provide a mechanism for documentation, for simulation
             and for synthesis.",
         prereq_string: "338.",
498
499
         coreq_string: "",
500
         co_or_prereq_string: "",
         semester_offering: "",
         prereq_array: ["ECE 338"],
         coreq_array: [],
504
         pre_or_coreq_array: []
505
       },
506
507
508
         number: "ECE 446",
509
         title: "Feedback Control Systems",
510
         credits: 3.
511
         description: "Modeling of continuous and sampled-data control systems. State-space
             representation. Sensitivity, stability and optimization of control systems.
             Design of compensators in the frequency and time domains. Phase-plane, describing
```

```
function design for non-linear systems, and laboratory design project.",
512
         prereq_string: "345.",
513
         coreq_string: "",
514
         co_or_prereq_string: "",
515
         semester_offering: ""
516
         prereq_array: ["ECE 345"],
         coreq_array: [],
517
518
         pre_or_coreq_array: []
519
520
521
522
         number: "ECE 448",
         title: "Fuzzy Logic with Applications",
523
         credits: 3,
         description: "(Also offered as CE 448.) Theory of fuzzy sets; foundations of fuzzy
              logic. Fuzzy logic is shown to contain evidence, possibility and probability
              {\tt logics; course \ emphasizes \ engineering \ applications; \ control, \ pattern \ recognition,}
              damage assessment, decisions; hardware/software demonstrations.",
526
         prereq_string: "",
         coreq_string: "",
527
528
         co_or_prereq_string: "",
         semester_offering: "",
529
530
         prereq_array: [],
531
         coreq_array: [],
532
         pre_or_coreq_array: []
533
       },
534
         number: "ECE 456",
537
         title: "Entrepreneurial Engineering",
538
539
         description: "Review and application of necessary elements for successfully launching
               technical businesses; focuses upon technology, manufacturing, management,
              marketing, legal and financial aspects. Students work in groups developing
              elements of new businesses and producing business plans. Restriction: senior
              standing.",
         prereq_string: "",
540
         coreq_string: "",
541
542
         co_or_prereq_string: "",
543
         semester_offering: "".
544
         prereq_array: [],
545
         coreq_array: [],
546
         pre_or_coreq_array: []
547
       },
548
         number: "ECE 460",
550
551
         title: "Microwave Engineering",
552
553
         description: "This lecture/laboratory course provides essential fundamentals for rf,
              wireless and microwave engineering. Topics include: wave propagation in cables,
              waveguides and free space; impedance matching, standing wave ratios, Z\text{-} and S\text{-}
              parameters.",
         prereq_string: "360.",
554
         coreq_string: "",
555
         \texttt{co\_or\_prereq\_string:} \ "",
556
557
         semester_offering: "",
         prereq_array: ["ECE 360"],
558
```

```
559
         coreq_array: [],
560
         pre_or_coreq_array: []
561
562
563
         number: "ECE 463",
564
         title: "Advanced Optics I",
565
566
         credits: 3,
         description: "(Also offered as PHYC 463.) Electromagnetic theory of geometrical
567
             optics, Gaussian ray tracing and matrix methods, finite ray tracing, aberrations,
              interference and diffraction.",
         prereq_string: "PHYC 302.",
568
         coreq_string: "",
569
570
         co_or_prereq_string: "",
         semester_offering: "",
         prereq_array: ["PHYC 302"],
573
         coreq_array: [],
574
         pre_or_coreq_array: []
575
576
577
578
         number: "ECE 464",
         title: "Laser Physics I",
579
         credits: 3.
580
         description: "(Also offered as PHYC 464.) Resonator optics. Rate equations;
581
             spontaneous and stimuated emission; gas, semiconductor and solid state lasers,
             pulsed and mode-locked laser techniques.",
582
         prereq_string: "360 or PHYC 406.",
583
         coreq_string: "",
         co_or_prereq_string: "",
         semester_offering: "",
         prereq_array: ["+", "ECE 360", "PHYC 406"],
587
         coreq_array: [],
588
         pre_or_coreq_array: []
589
590
591
        number: "ECE 469",
592
         title: "Antennas for Wireless Comm",
593
594
         credits: 3.
         description: "Aspects of antenna theory and design; radiation from dipoles, loops,
595
             apertures, microstrip antennas and antenna arrays.",
         prereq_string: "360.",
596
597
         coreq_string: "",
598
         co_or_prereq_string: "",
599
         semester_offering: "",
         prereq_array: ["ECE 360"],
601
         coreq_array: [],
602
         pre_or_coreq_array: []
603
       },
604
605
606
        number: "ECE 471",
607
        title: "Materials & Devices II",
         credits: 3.
608
         description: "An intermediate study of semiconductor materials, energy band structure
609
             , p-n junctions, ideal and non-ideal effects in field effect and bipolar
             transistors.",
```

```
610
         prereq_string: "360 and 371.",
611
         coreq_string: "",
612
         co_or_prereq_string: "",
613
         semester_offering: ""
         prereq_array: ["*", "ECE 360", "ECE 371"],
614
         coreq_array: [],
615
616
         pre_or_coreq_array: []
617
       },
618
619
       {
620
         number: "ECE 474L",
         title: "Microelectronics Processing I",
621
622
         credits: 3,
623
         description: "(Also offered as NSMS 574L.) Materials science of semiconductors,
              microelectronics technologies, device/circuit fabrication, parasitics and
              packaging. Lab project features small group design/fabrication/testing of MOS
              circuits.",
624
         prereq_string: "",
         coreq_string: "",
625
626
         co_or_prereq_string: "",
         semester_offering: "",
627
628
         prereq_array: [] ,
629
         coreq_array: [],
630
         pre_or_coreq_array: []
631
       },
632
633
         number: "ECE 475",
634
         title: "Optoelectronics",
636
         credits: 3,
637
         description: "Basic electro-optics and opto-electronics, with engineering
              applications. Interaction of light with matter. Introduction to optics of
              \label{eq:dielectrics} \mbox{dielectrics, metals and crystals. Introductory descriptions of electro-optic,}
              acousto-optic and magneto-optic effects and related devices. Light sources,
              displays and detectors. Elementary theory and applications of lasers, optical
              waveguides and fibers.",
638
         prereq_string: "371.",
         coreq_string: "",
639
640
         co_or_prereq_string: "",
         semester_offering: "",
641
642
         prereq_array: ["ECE 371"],
         coreq_array: [],
643
644
         pre_or_coreq_array: []
645
       },
646
647
         number: "ECE 482",
648
649
         title: "Electric Drives & Transformers",
650
651
         description: "Electromagnetic theory and mechanical considerations are employed to
             develop models for and understanding of Transformers, Induction Machines and
             Synchronous Machines. Additionally, DC Machines are discussed.",
652
         prereq_string: "203 and 213.",
         coreq_string: "",
653
654
         co_or_prereq_string: "",
         semester_offering: "",
655
656
         prereq_array: ["*", "ECE 203", "ECE 213"],
657
         coreq_array: [] ,
```

```
658
         pre_or_coreq_array: []
659
660
661
662
         number: "ECE 483",
         title: "Power Electronics",
663
         credits: 3,
664
         description: "Introduces modern power conversion techniques at a lower level, dealing
665
              with basic structures of power converters and techniques of analyzing converter
             circuits. Students learn to analyze and design suitable circuits and subsystems
             for practical applications. Prerquisite: 321L and 371 and 381.",
666
         prereq_string: "",
         coreq_string: "",
667
668
         co_or_prereq_string: "",
         semester_offering: "",
         prereq_array: [],
         coreq_array: [],
671
672
         pre_or_coreq_array: []
673
       },
674
675
676
         number: "ECE 484",
         title: "Photovoltaics",
677
678
         credits: 3.
679
         description: "Technical concepts of photovoltaics. Solar cell device level operation,
              packaging, manufacturing, designing phovoltaic system for stand-alone or grid-
             tied operation, some business-case analysis and some real-life scenarios of
             applicability of these solutions.",
680
         prereq_string: "381 and MATH 121.",
         coreq_string: "",
681
682
         co_or_prereq_string: "",
683
         semester_offering: "",
684
         prereq_array: ["*", "ECE 381", "MATH 121"],
685
         coreq_array: [],
686
         pre_or_coreq_array: []
687
688
689
         number: "ECE 488",
690
        title: "Future Energy Systems",
691
692
         credits: 3.
693
         description: "A detailed study of current and emerging power and energy systems and
             technologies. Including renewable energies, storage, Smart Grid concepts,
             security for power infrastructure. Software modeling of power systems and grids."
         prereq_string: "381 and 482 and 483 and 484.",
         coreq_string: "",
695
         co_or_prereq_string: "",
697
         semester_offering: "",
698
         prereq_array: ["*", "*", "*", "ECE 381", "ECE 482", "ECE 483", "ECE 484"],
699
         coreq_array: [],
700
         pre_or_coreq_array: []
701
       },
702
703
         number: "ECE 490",
704
705
         title: "Internship",
        credits: 3,
706
```

```
707
         description: "Professional practice under the guidance of a practicing engineer.
              Assignments include design or analysis of systems or hardware, or computer
              programming. A preliminary proposal and periodic reports are required. The
              engineer evaluates student s work; a faculty monitor assigns grade. Restriction:
              ECE major, junior standing. (12 hours/week) (24 hours/week in summer session).
              Offered on a CR/NC basis only.",
708
         prereq_string: "",
         coreq_string: "",
709
710
         co_or_prereq_string: "",
         semester_offering: "",
711
712
         prereq_array: [],
713
         coreq_array: [],
714
         pre_or_coreq_array: []
715
716
717
       {
718
         number: "ECE 491",
719
         title: "Undergrad Problems",
720
         credits: 6,
         description: "Registration for more than 3 hours requires permission of department
721
             chairperson.",
722
         prereq_string: "",
         coreq_string: "",
723
         co_or_prereq_string: "",
724
         semester_offering: "",
725
726
         prereq_array: [],
727
         coreq_array: [],
         pre_or_coreq_array: []
729
       }.
730
731
732
         number: "ECE 493",
733
         title: "Honors Seminar",
734
         credits: 3,
735
         description: "A special seminar open only to honors students. Registration requires
              permission of department chairperson.",
         prereq_string: "",
736
         coreq_string: "",
737
         co_or_prereq_string: "",
738
739
         semester_offering: "".
740
         prereq_array: [],
741
         coreq_array: [],
742
         pre_or_coreq_array: []
743
       },
744
         number: "ECE 494",
746
747
         title: "Honors Individual Study",
748
749
         description: "Open only to honors students. Registration requires permission of the
             department chairperson and of the supervising professor.",
750
         prereq_string: "",
         coreq_string: "",
751
752
         \texttt{co\_or\_prereq\_string:} \ "" \ ,
         semester_offering: "",
753
754
         prereq_array: [],
755
         coreq_array: [],
756
         pre_or_coreq_array: []
```

```
757
758
759
         number: "ECE 495",
760
761
         title: "Special Topics",
762
         credits: 4,
         {\tt description:} "Restriction: ECE major, senior standing.",
763
764
         prereq_string: "",
         coreq_string: "",
765
766
         co_or_prereq_string: "",
767
         semester_offering: "",
768
         prereq_array: [],
769
         coreq_array: [],
770
         pre_or_coreq_array: []
771
772
773
774
         number: "ECE 500",
775
         title: "Theory of Linear Systems",
         credits: 3,
776
         description: "State space representation of dynamical systems. Analysis and design of
777
               linear models in control systems and signal processing. Continuous, discrete and
               sampled representations. This course is fundamental for students in the system
              areas.",
         prereq_string: "",
778
         coreq_string: "",
779
780
         co_or_prereq_string: "",
781
         semester_offering: "",
         prereq_array: [],
         coreq_array: [],
784
         pre_or_coreq_array: []
785
       },
786
787
         number: "ECE 506",
788
         title: "Optimization Theory",
789
790
         credits: 3,
         description: "Introduction to the topic of optimization by the computer. Linear and
791
              nonlinear programming. The simplex method, Karmakar method, gradient, conjugate
              gradient and quasi-Newton methods, Fibonacci/Golden search, Quadratic and Cubic
              fitting methods, Penalty and Barrier methods.",
792
         prereq_string: "",
         coreq_string: "",
793
794
         co_or_prereq_string: "",
795
         semester_offering: "",
         prereq_array: [],
797
         coreq_array: [],
798
         pre_or_coreq_array: []
799
       },
800
801
802
         number: "ECE 510",
803
         title: "Medical Imaging",
         credits: 3,
804
         description: "This course will introduce the student to medical imaging modalities (e
805
              .g. MRI, Nuclear Imagine, Ultrasound) with an emphasis on a signals and systems
              {\tt approach.} \quad {\tt Topics \ include \ hardware, \ signal \ formation, \ image \ reconstruction, \ and}
              application.",
```

```
806
         prereq_string: "",
807
         coreq_string: "",
808
         co_or_prereq_string: "",
809
         semester_offering: "",
810
         prereq_array: [],
811
         coreq_array: [] ,
812
         pre_or_coreq_array: []
813
814
815
       {
        number: "ECE 511",
816
         title: "fMRI Analysis Methods",
817
818
         credits: 3,
819
         description: "This course will be an introduction to signal and image processing
             methods for functional magnetic resonance imaging (fMRI) of the brain.",
         prereq_string: "",
820
821
         coreq_string: "",
822
         co_or_prereq_string: "",
823
         semester_offering: "",
824
         prereq_array: [],
825
        coreq_array: [],
826
         pre_or_coreq_array: []
827
       },
828
829
830
         number: "ECE 512",
831
         title: "Advanced Image Synthesis",
         credits: 3,
         description: "Course covers image synthesis techniques from perspective of high-end
             scanline rendering including physically-based rendering algorithms. Topics:
             radiometry, stachastic ray tracing, variance reduction, photon mapping,
             reflection models, participating media, advanced algorithms for light transport."
834
         prereq_string: "",
835
         coreq_string: "",
         co_or_prereq_string: "",
836
837
         semester_offering: "",
838
         prereq_array: [] ,
839
         coreq_array: [],
840
         pre_or_coreq_array: []
841
       },
842
843
844
        number: "ECE 513",
         title: "Real-time Graphics",
845
         credits: 3,
846
         description: "Course covers advanced algorithms in real-time rendering and graphics
847
             hardware, bringing students up to speed with cutting edge real-time graphics.
             Topics: advanced GPU algorithms for graphics and non-graphics applications. Term
              project required.",
848
         prereq_string: "",
849
         coreq_string: "",
850
         co-or-prereq-string: "",
         semester_offering: "",
851
852
         prereq_array: [],
         coreq_array: [],
853
854
         pre_or_coreq_array: []
855
```

```
856
857
858
         number: "ECE 514",
         title: "Nonlinear Control",
859
860
         credits: 3,
         description: "Linearization of nonlinear systems. Phase-plane analysis. Lyapunov
861
              stability analysis. Hyperstability and Popov stability criterion. Adaptive
              control systems. Adaptive estimation. Stability of adaptive control systems,
              backstepping and nonlinear designs.",
862
         prereq_string: "500.",
         coreq_string: "",
863
864
         co-or-prereq-string: "",
865
         semester_offering: "",
866
         prereq_array: ["ECE 500"],
         coreq_array: [],
         pre_or_coreq_array: []
869
870
871
         number: "ECE 516",
872
         title: "Computer Vision",
873
874
         credits: 3.
         description: "(Also offered as CS 532.) Theory and practice of feature extraction,
875
              including edge, texture and shape measures. Picture segmentation; relaxation.
              Data structures for picture description. Matching and searching as models of
              association and knowledge learning. Formal models of picture languages.",
876
         prereq_string: "",
877
         coreq_string: "",
         co_or_prereq_string: "",
         semester_offering: "",
         prereq_array: [],
881
         coreq_array: [],
882
         pre_or_coreq_array: []
883
884
885
886
         number: "ECE 517",
         title: "Pattern Recognition",
887
888
         credits: 3,
         description: "(Also offered as CS 531) Decision functions and dichotomization;
889
              prototype classification and clustering; statistical classification and Bayes
              theory; trainable deterministic and statistical classifiers. Feature
              transformations and selection.",
890
         prereq_string: "",
         coreq_string: "",
891
892
         co_or_prereq_string: "",
         semester_offering: "",
         prereq_array: [],
895
         coreq_array: [],
896
         pre_or_coreq_array: []
897
       },
898
899
         number: "ECE 518",
900
         title: "Synthesis of Nanostructures",
901
902
         credits: 3.
903
         description: "(Also offered as CHNE, NSM 518.) Underlying physical and chemical
             principles \ (optics \ , \ organic \ and \ inorganic \ chemistry \ , \ colloid \ chemistry \ , \ surface
```

```
and materials science) for nanostructure formation using 'top-down' lithography (
              patterned optical exposure of photosensitive materials) and 'bottom-up' self-
              assembly. Labs will synthesize samples.",
         prereq_string: "510.",
904
         coreq_string: "",
905
         co_or_prereq_string: "",
906
         semester_offering: "Spring",
907
908
         prereq_array: ["ECE 510"],
         coreq_array: [],
909
910
         pre_or_coreq_array: []
911
912
913
914
         number: "ECE 519",
         title: "MEMS Transducer Devices & Tech",
915
916
         credits: 3,
917
         description: "(Also offered as NSMS 519, ME 419, ME 519.) Lectures and laboratory
              projects \ on \ physical \ theory \, , \ design \, , \ analysis \, , \ fabrication \, , \ and \ characterization
              of micro and nanosystems. Special attention given to scaling effects involved
              with operation of devices at nano and microscale. Restriction: senior standing.",
         prereq_string: "",
918
         coreq_string: "",
919
920
         co_or_prereq_string: "",
921
         semester_offering: "",
922
         prereq_array: [],
923
         coreq_array: [],
924
         pre_or_coreq_array: []
925
       },
926
927
928
         number: "ECE 520",
         title: "VLSI Design",
929
930
         credits: 3,
931
         description: "Advanced topics include: 1C technologies, CAD tools, gate arrays,
              standard cells and full custom designs. Design of memories, PLA, {
m I/O} and random
              logic circuit. Design for testability.",
932
         prereq_string: "",
         coreq_string: "",
933
         co_or_prereq_string: "",
934
935
         semester_offering: "".
936
         prereq_array: [],
937
         coreq_array: [],
938
         pre_or_coreq_array: []
939
       },
940
941
         number: "ECE 522",
942
943
         title: " Hrdwr Sftwr Codesign FPGA's",
944
945
         description: "This course provides an introduction to the design of electronic
             systems that incorporate both hardware and software components.",
946
         \texttt{prereq\_string: "433."}\;,
947
         coreq_string: "",
         co_or_prereq_string: "",
948
         semester_offering: "",
949
         prereq_array: ["ECE 433"],
950
951
         coreq_array: [],
952
         pre_or_coreq_array: []
```

```
953
       },
954
955
         number: "ECE 523",
956
         title: "Analog Electronics",
957
958
         credits: 3,
         description: "Design of advanced analog electronics circuits. BJT and MOSFET
959
              operational amplifiers, current mirrors and output stages. Frequency response and
               compensation. Noise. A/D and D/A converters.",
960
         prereq_string: "",
         coreq_string: "",
961
         co_or_prereq_string: "",
962
963
         semester_offering: "",
964
         prereq_array: [],
         coreq_array: [],
         pre_or_coreq_array: []
967
968
969
         number: "ECE 524",
970
         title: "Collaborative Interdisc Teach",
971
972
         credits: 3.
973
         description: "(Also offered as ANTH 624, BIOL 524, CS 524, STAT 524) Course designed
              to develop the methods content and assessment of effective interdisciplinary
              biological courses; Students will develop and teach an undergraduate
              interdisciplinary topics course. Topics vary. Restriction: permission of
              instructor.",
974
         prereq_string: "",
975
         coreq_string: "",
         co_or_prereq_string: "",
977
         semester_offering: "",
978
         prereq_array: [],
979
         coreq_array: [],
980
         pre_or_coreq_array: []
981
982
983
         number: "ECE 525",
984
         {\tt title: "Microelectronics Test Eng"}\,,
985
986
         credits: 3.
         description: "This course provides an introduction to hardware security and trust
987
              primitives and their application to secure and trustworthy hardware systems.",
988
         prereq_string: "",
989
         coreq_string: "",
990
         co_or_prereq_string: "",
991
         semester_offering: "",
         prereq_array: [],
         coreq_array: [],
994
         pre_or_coreq_array: []
995
       },
996
997
998
         number: "ECE 528",
         title: "Embedded Systems Architecture",
999
         credits: 3,
1000
         description: "Development and analysis of techniques and algorithms for use in
1001
              embedded processor systems. Application of tools implementing solutions to
              control and data applications involving standard processing paradigms and
```

```
programmable logic systems.",
1002
          prereq_string: "",
1003
          coreq_string: "",
1004
          co_or_prereq_string: "",
1005
          semester_offering: "",
1006
          prereq_array: [],
1007
          coreq_array: [],
1008
          pre_or_coreq_array: []
1009
1010
1011
1012
          number: "ECE 533",
          title: "Digital Image Processing",
1013
1014
          credits: 3,
1015
          description: "Fundamentals of 2D signals and systems. Introduction to
              multidimensional signal processing. Applications in digital image processing.
              Image formation, representation and display. Linear and nonlinear operators in
              multiple dimensions. Orthogonal transforms representation and display. Image
              analysis, enhancement, restoration and coding. Students will carry out image
              processing projects.",
          prereq_string: "",
1016
1017
          coreq_string: "",
1018
          co_or_prereq_string: "",
1019
          semester_offering: "",
1020
          prereq_array: [],
1021
          coreq_array: [],
1022
          pre_or_coreq_array: []
1023
        },
1024
1025
1026
          number: "ECE 534",
1027
          title: "Plasma Physics I",
1028
          credits: 3,
1029
          description: "(Also offered as ASTR, PHYC, CHNE 534.) Plasma parameters, adiabatic
              invariants, orbit theory, plasma oscillations, hydromagnetic waves, plasma
              transport, stability, kinetic theory, nonlinear effects, applications.",
1030
          prereq_string: "",
          coreq_string: "",
1031
          co_or_prereq_string: "",
1032
1033
          semester_offering: "".
1034
          prereq_array: [],
1035
          coreq_array: [],
1036
          pre_or_coreq_array: []
1037
        },
1038
1039
          number: "ECE 536",
1040
1041
          title: "Computer System Software",
1042
1043
          description: "Course considers design principles, implementation issues and
              performance evaluation of system software in advanced computing environments.
              Topics include resource allocation and scheduling, information service provider
              and manipulation, multithreading and concurrency, security for parallel and
              distributed systems.",
          prereq_string: "",
1044
1045
          coreq_string: "",
1046
          co_or_prereq_string: "",
1047
          semester_offering: "",
```

```
1048
          prereq_array: [],
1049
          coreq_array: [],
1050
          pre_or_coreq_array: []
1051
1052
1053
          number: "ECE 537",
1054
          title: "Foundations of Computing",
1055
1056
          credits: 3
1057
          description: "Computational aspects of engineering problems. Topics include machine
              models and computability, classification and performance analysis of algorithms,
              advanced data structures, approximation algorithms, introduction to complexity
              theory and complexity classes.",
1058
          prereq_string: "",
          coreq_string: "",
1059
1060
          co-or-prereq-string: "",
1061
          semester_offering: "",
1062
          prereq_array: [],
1063
          coreq_array: [],
1064
          pre_or_coreq_array: []
1065
        },
1066
1067
          number: "ECE 538",
1068
          title: "Advanced Computer Architecture",
1069
1070
          credits: 3,
1071
          description: "Course provides an in-depth analysis of computer architecture
              techniques. Topics include high speed computing techniques, memory systems,
              pipelining, vector machines, parallel processing, multiprocessor systems, high-
              level language machines and data flow computers.",
1072
          prereq_string: "",
1073
          coreq_string: "",
1074
          co_or_prereq_string: "",
1075
          semester_offering: "",
1076
          prereq_array: [],
1077
          coreq_array: [],
1078
          pre_or_coreq_array: []
1079
        },
1080
1081
1082
          number: "ECE 539",
1083
          title: "Digital Signal Processing I",
1084
          credits: 3,
1085
          description: "Hilbert spaces, orthogonal basis, generalized sampling theorem,
              multirate systems, filterbanks, quantization, structures for LTI systems, finite
              word-length effects, linear prediction, min/max phase systems, multiresolution
              signal analysis.",
1086
          prereq_string: "",
1087
          coreq_string: "",
1088
          co_or_prereq_string: "",
1089
          semester_offering: "",
1090
          prereq_array: [],
1091
          coreq_array: [],
1092
          pre_or_coreq_array: []
1093
        },
1094
1095
1096
         number: "ECE 540",
```

```
1097
          title: "Advanced Networking",
1098
          credits: 3,
1099
          description: "Research, design and implementation of high-performance computer
              networks and distributed systems. High speed networking technologies, multimedia
              networks, enterprise network security and management, client/server database
              applications, mobile communications and state-of-the-art internetworking
              solutions.".
1100
          prereq_string: "",
          coreq_string: "",
1101
1102
          co_or_prereq_string: "",
1103
          semester_offering: "",
1104
         prereq_array: [],
1105
         coreq_array: [],
1106
         pre_or_coreq_array: []
1107
1108
1109
1110
         number: "ECE 541",
1111
         title: "Probab and Stochastic Process",
1112
         credits: 3,
1113
          description: "Axiomatic probability theory, projection theorem for Hilbert spaces,
              conditioned expectations, modes of stochastic convergence, Markov chains, mean-
              square calculus, Wiener filtering, optimal signal estimation, prediction
              stationarity, ergodicity, transmission through linear and nonlinear systems,
              sampling.",
          prereq_string: "",
1114
1115
          coreq_string: "",
1116
          co_or_prereq_string: "",
1117
         semester_offering: "",
1118
          prereq_array: [],
1119
         coreq_array: [],
1120
          pre_or_coreq_array: []
1121
1122
1123
         number: "ECE 542",
1124
         title: "Digital Communication Theory",
1125
1126
         credits: 3.
          description: "Elements of information theory and source coding, digital modulation
1127
              techniques, signal space representation, optimal receivers for coherent/non-
              coherent detection in AWGN channels, error probability bounds, channel capacity,
              elements of block and convolutional coding, fading, equalization signal design.",
1128
          prereq_string: "541.",
1129
          coreq_string: "",
1130
         co_or_prereq_string: "",
1131
         semester_offering: "",
1132
         prereq_array: ["ECE 541"],
         coreq_array: [],
1134
         pre_or_coreq_array: []
1135
        },
1136
1137
1138
         number: "ECE 546",
         title: "Multivariable Control Theory",
1139
1140
         credits: 3.
1141
          description: "Hermite, Smith and Smith-McMillan canonic forms for polynomial and
              rational matrices. Coprime matrix-fraction representations for rational matrices.
               Bezout identity. Poles and zeros for multivariable systems. Matrix-fraction
```

```
approach to feedback system design. Optimal linear-quadratic-Gaussian (LQG)
               control. Multivariable Nyquist stability criteria.",
1142
          prereq_string: "500.",
1143
          coreq_string: "",
1144
          co_or_prereq_string: "",
1145
          semester_offering: ""
          prereq_array: ["ECE 500"],
1146
1147
          coreq_array: [],
1148
          pre_or_coreq_array: []
1149
        },
1150
1151
        {
1152
          number: "ECE 547",
1153
          title: "Neural Networks",
1154
          credits: 3,
          description: "(Also offered as CS 547.) A study of biological and artificial neuron
1155
              models, basic neural architectures and parallel and distributed processing. \!\!\!\!\!^{\mathrm{u}}
1156
          prereq_string: "",
1157
          coreq_string: "",
1158
          co_or_prereq_string: "",
          semester_offering: "",
1159
1160
          prereq_array: [] ,
1161
          coreq_array: [],
1162
          pre_or_coreq_array: []
1163
        },
1164
1165
1166
          number: "ECE 548",
1167
          title: "Fuzzy Logic with Applications",
1168
          credits: 3.
1169
          description: "(Also offered as CE 548.) Theory of fuzzy sets; foundations of fuzzy
               logic. Fuzzy logic is shown to contain evidence, possibility and probability
               {\tt logics; course \ emphasizes \ engineering \ applications; \ control, \ pattern \ recognition,}
               damage assessment, decisions; hardware/software demonstrations.",
1170
          prereq_string: "",
1171
          coreq_string: "",
          co_or_prereq_string: "",
1172
1173
          semester_offering: "",
1174
          prereq_array: [],
          coreq_array: [],
1175
1176
          pre_or_coreq_array: []
1177
        },
1178
1179
          number: "ECE 549",
1180
          title: "Inform Thry&Coding",
1181
1182
          credits: 3,
1183
          description: "An introduction to information theory. Fundamental concepts such as
              entropy, mutual information, and the asymptotic equipartition property are
               introduced. Additional topics include data compression, communication over noisy
              channels, algorithmic information theory, and applications.",
1184
          prereq_string: "340 or equivalent.",
1185
          coreq_string: "",
          co_or_prereq_string: "",
1186
          semester_offering: "",
1187
          prereq_array: ["ECE 340"],
1188
1189
          coreq_array: [],
1190
          pre_or_coreq_array: []
```

```
1191
1192
1193
1194
          number: "ECE 550",
1195
          title: "Soc & Eth Iss Nanotechnology",
1196
          credits: 3.
          description: "(Also offered as CHNE, NSMS 550.) In this course, students will examine
1197
               issues arising from this emerging technology, includ-ing those of privacy,
              health and safety, the environment, public perception and human enhancement.",
          prereq_string: "",
1198
          coreq_string: "",
1199
1200
          co_or_prereq_string: "",
1201
          semester_offering: "",
1202
          prereq_array: [],
1203
          coreq_array: [],
1204
          pre_or_coreq_array: []
1205
1206
1207
          number: "ECE 551",
1208
          title: "Problems",
1209
1210
          credits: 6,
          description: "",
1211
1212
          prereq_string: "",
1213
          coreq_string: "",
          co_or_prereq_string: "",
1214
1215
          semester_offering: "",
1216
          prereq_array: [],
1217
          coreq_array: [],
1218
          pre_or_coreq_array: []
1219
        },
1220
1221
1222
          number: "ECE 553L",
1223
          title: "Exp Techniques Plasma Physics",
1224
          credits: 3.
1225
          description: "Theory and practice of plasma generation and diagnostics, coordinated
              lectures and experiments, emphasis on simple methods of plasma production and
               selection of appropriate diagnostic techniques, applications to plasma processing
               and fusion.",
          prereq_string: "534.",
1226
          coreq_string: "",
1227
1228
          co_or_prereq_string: "",
1229
          semester_offering: "",
1230
          prereq_array: ["ECE 534"],
          coreq_array: [],
1232
          pre_or_coreq_array: []
1233
        },
1234
1235
1236
          number: "ECE 554",
1237
          title: "Advanced Optics II",
1238
          credits: 3,
1239
          {\tt description:} \ \texttt{"(Also offered as PHYC 554.)} \ \texttt{Diffractions theory, coherence theory,}
              coherent objects, and incoherent imaging, and polarization.",
          prereq_string: "",
1240
1241
          coreq_string: "",
1242
          co_or_prereq_string: "",
```

```
1243
          semester_offering: "",
1244
          prereq_array: [],
1245
          coreq_array: [],
1246
          pre_or_coreq_array: []
1247
1248
1249
          number: "ECE 555",
1250
          title: "Foundations of Engineering EM",
1251
1252
          credits: 3,
1253
          description: "Mathematical foundations for engineering electromagnetics: linear
              analysis and method of moments, complex analysis and Kramers-Kronig relations,
              Green's functions, spectral representation method and electromagnetic sources.",
1254
          prereq_string: "",
          coreq_string: "",
1255
          co-or-prereq-string: "",
1256
1257
          semester_offering: "",
1258
          prereq_array: [],
1259
          coreq_array: [],
1260
          pre_or_coreq_array: []
1261
        },
1262
1263
1264
          number: "ECE 556",
          title: "Entrepreneurial Engineering",
1265
1266
          credits: 3,
1267
          description: "(Also offered as ME 556.) Review and application of necessary elements
              for successfully launching technical businesses; focuses upon technology,
              manufacturing, management, marketing, legal and financial aspects. Students work
              in groups developing elements of new businesses and producing business plans.",
1268
          prereq_string: "",
1269
          coreq_string: "",
1270
          co_or_prereq_string: "",
1271
          semester_offering: "",
1272
          prereq_array: [],
1273
          coreq_array: [],
1274
          pre_or_coreq_array: []
1275
        },
1276
1277
1278
          number: "ECE 557",
1279
          title: "Pulsed Pwr & Char Partic Accel",
1280
          credits: 3,
1281
          description: "Principles of pulsed power circuits, components, systems and their
              relationship to charged particle acceleration and transport. Energy storage,
              voltage multiplication, pulse shaping, insulation and breakdown and switching.
              Single particle dynamics and accelerator configurations.",
1282
          prereq_string: "",
1283
          coreq_string: "",
1284
          co_or_prereq_string: "",
1285
          semester_offering: "",
1286
          prereq_array: [],
1287
          coreq_array: [],
1288
          pre_or_coreq_array: []
1289
        },
1290
1291
        number: "ECE 558",
1292
```

```
1293
          title: "Charged Partical Beams",
1294
          credits: 3,
1295
          description: "(Also offered as CHNE 546.) Overview of physics of particle beams and
               applications at high-current and high-energy. Topics include review of collective
               physics, beam emittance, space-charge forces, transport at high power levels,
               and application to high power microwave generation.",
          \tt prereq\_string: "557 and CHNE 545.",
1296
          coreq_string: "",
1297
1298
          co_or_prereq_string: "",
1299
          semester_offering: "",
          prereq_array: ["*", "ECE 557", "CHNE 545"],
1300
1301
          coreq_array: [],
1302
          pre_or_coreq_array: []
1303
        },
1304
1305
1306
          number: "ECE 559",
1307
          title: "Intern: Optical Science & Eng",
1308
          credits: 3,
          description: "(Also offered as PHYC 559.) Students do research and/or development
1309
               work at a participating industry or government laboratory in any area of optical
               science and engineering.",
1310
          prereq_string: "",
1311
          coreq_string: "",
1312
          co_or_prereq_string: "",
1313
          semester_offering: "".
1314
          prereq_array: [],
1315
          coreq_array: [],
1316
          pre_or_coreq_array: []
1317
        },
1318
1319
1320
          number: "ECE 560",
1321
          title: "Microwave Engineering",
          credits: 3,
1322
          description: "This lecture/laboratory course provides essential fundamentals for rf,
1323
               wireless and microwave engineering. Topics include: wave propagation in cables,
               waveguides and free space; impedance matching, standing wave ratios, Z\text{-} and S\text{-}
               parameters.",
1324
          prereq_string: "",
          coreq_string: "",
1325
          co_or_prereq_string: "",
1326
          semester_offering: "",
1327
1328
          prereq_array: [],
1329
          coreq_array: [],
1330
          pre_or_coreq_array: []
1331
        },
1332
1333
1334
          number: "ECE 561",
1335
          title: "Electrodynamics",
1336
          credits: 3.
1337
          {\tt description:} \ \texttt{"Maxwell's equations, electromagnetic interaction with materials, the}
               wave equation, plane wave propagation, wave reflection and transmission, vector
               potentials and radiation equations, electromagnetic field theorems, wave
               propagation \ in \ anisotropic \ media \ and \ metamaterials \, , \ period \ structures \, , \ dielectric
               slab waveguides.".
1338
          prereq_string: "555.",
```

```
1339
          coreq_string: "",
1340
          co_or_prereq_string: "",
1341
          semester_offering: ""
          prereq_array: ["ECE 555"],
1342
1343
          coreq_array: [],
1344
          pre_or_coreq_array: []
1345
1346
1347
          number: "ECE 562",
1348
1349
          title: "Electronics RF Design",
1350
          credits: 3,
1351
          description: "Course will cover rf design techniques using transmission lines, strip
              lines and solid state devices. It will include the design of filters and matching
               elements required for realizable high frequency design. Amplifiers, oscillators
              and phase lock loops are covered from a rf perspective.",
1352
          prereq_string: "",
1353
          coreq_string: "",
1354
          co_or_prereq_string: "",
1355
          semester_offering: "",
1356
          prereq_array: [],
1357
         coreq_array: [],
1358
          pre_or_coreq_array: []
1359
        },
1360
1361
1362
          number: "ECE 563",
1363
          title: "Comp Methods Electromagnetics",
1364
          credits: 3,
1365
          description: "Computational techniques for partial differential and integral
              equations: finite-difference, finite-element, method of moments. Applications
              include transmission lines, resonators, waveguides, integrated circuits, solid-
              state device modeling, electromagnetic scattering and antennas.",
1366
          prereq_string: "561.",
1367
          coreq_string: "",
1368
          co_or_prereq_string: "",
1369
          semester_offering: "",
1370
          prereq_array: ["ECE 561"],
1371
          coreq_array: [],
1372
          pre_or_coreq_array: []
1373
        },
1374
1375
1376
         number: "ECE 564",
          title: "Guided Wave Optics",
1377
1378
          credits: 3,
          description: "Optical propagation in free space, colored dielectrics, metals,
1379
              semiconductors, crystals, graded index media. Radiation and guided modes in
              complex structures. Input and output coupling, cross-coupling mode conversion.
              Directional couplers, modulators, sources and detectors.",
1380
          prereq_string: "",
1381
          coreq_string: "",
1382
          co-or-prereq-string: "",
          semester_offering: "",
1383
1384
          prereq_array: [],
          coreq_array: [],
1385
1386
          pre_or_coreq_array: []
1387
```

```
1388
1389
1390
         number: "ECE 565",
          title: "Optical Comm Components Subsys",
1391
1392
          credits: 3.
          description: "Optical waveguides, optical fiber attenuation and dispersion, power
1303
              launching and coupling of light, mechanical and fiber lifetime issues,
              photoreceivers, digital on-off keying, modulation methods, SNR and BER, QAM and M
              -QAM, modulation methods, SNR, and BER, intersymbol interference (impact on SNR),
               clock and data recovery issues, point-to-point digital links, optical amplifiers
               theory and design (SOA, EDFA, and SRA), simple WDM system concepts, WDM
              components.",
1394
          prereq_string: "",
1395
          coreq_string: "",
1396
          co_or_prereq_string: "",
          semester_offering: "",
1397
1398
          prereq_array: [],
1399
         coreq_array: [],
1400
          pre_or_coreq_array: []
1401
1402
1403
         number: "ECE 566",
1404
1405
         title: "Advanced Optical Networks",
1406
          credits: 3.
1407
          description: "External modulators WDM system design, other multiple access techniques
               design issues, analog transmission systems nonlinear processes in optical fibers
               and their impact on system performance, optical networks, photonic packet
              switching, coherent lightwave systems, basic principles for homodyne and
              heterodyne detection, noise reduction, relevant digital modulation formats: PSK,
              ASK, FSK, DPSK. Practical implementation, performance of synchronous and
              asynchronous heterodyne systems, phase noise, polarization mismatch.",
1408
          prereq_string: "565.",
1409
          coreq_string: "",
1410
          co_or_prereq_string: "",
1411
          semester_offering: "",
1412
          prereq_array: ["ECE 565"],
1413
         coreq_array: [],
1414
          pre_or_coreq_array: []
1415
        },
1416
1417
1418
         number: "ECE 569",
1419
         title: "Antennas for Wireless Comm",
1420
         credits: 3,
          description: "Aspects of antenna theory and design; radiation from dipoles, loops,
1421
              apertures, microstrip antennas and antenna arrays.",
1422
          prereq_string: "",
1423
          coreq_string: "",
1424
          co_or_prereq_string: "",
1425
          semester_offering: "",
1426
         prereq_array: [],
1427
         coreq_array: [],
1428
         pre_or_coreq_array: []
1429
        },
1430
1431
        number: "ECE 570",
1432
```

```
1433
          title: "Semicon Materials & Devices",
1434
          credits: 3.
1435
          description: "Theory and operation of optoelectronic semiconductor devices;
              semiconductor alloys, epitaxial growth, relevant semiconductor physics (
              recombination processes, heterojunctions, noise, impact ionization), analysis of
              the theory and practice of important OE semiconductor devices (LEDs, Lasers,
              Photodetectors, Solar Cells).",
          prereq_string: "471 or 572.",
1436
          coreq_string: "",
1437
1438
          co_or_prereq_string: "",
1439
          semester_offering: "",
          prereq_array: ["+", "ECE 471", "ECE 572"],
1440
1441
         coreq_array: [],
         pre_or_coreq_array: []
1443
1444
1445
1446
         number: "ECE 572",
1447
         title: "Physics of Semiconductors",
1448
         credits: 3,
1449
          {\tt description:} "(Also offered as NSMS 572.) Crystal properties, symmetry and
              imperfections. \ Energy \ bands \, , \ electron \ dynamics \, , \ effective \ mass \ tensor \, , \ concept
              and properties of holes. Equilibrium distributions, density of states, Fermi
              energy and transport proper-ties including Boltzmann s equation. Continuity
              equation, diffusion and drift of carriers.",
1450
          prereq_string: "471.",
1451
          coreq_string: "",
1452
          co_or_prereq_string: "",
          semester_offering: "",
          prereq_array: ["ECE 471"],
1455
          coreq_array: [],
1456
          pre_or_coreq_array: []
1457
1458
1459
          number: "ECE 574L",
1460
          title: "Microelectronics Processing I",
1461
1462
          credits: 3.
          description: "(Also offered as NSMS 574L.) Materials science of semiconductors,
1463
              microelectronics technologies, device/circuit fabrication, parasitics and
              packaging. Lab project features small group design/fabrication/testing of MOS
              circuits.",
          prereq_string: "",
1464
1465
          coreq_string: "",
1466
          co_or_prereq_string: "",
          semester_offering: "",
         prereq_array: [],
1469
         coreq_array: [],
1470
          pre_or_coreq_array: []
1471
        },
1472
1473
1474
         number: "ECE 576",
1475
         title: "Modern VLSI Devices",
1476
          credits: 3.
          description: "Review of the evolution of VLSI technology and basic device physics.
1477
              Detailed analysis of MOSFET devices, CMOS device design including device scaling
              concepts.",
```

```
1478
          prereq_string: "471 or 572.",
          coreq_string: "",
1479
1480
          co_or_prereq_string: "",
1481
          semester_offering: ""
          prereq_array: ["+", "ECE 471", "ECE 572"],
1482
          coreq_array: [],
1483
1484
          pre_or_coreq_array: []
1485
1486
1487
1488
         number: "ECE 577",
          title: "Fundmts of Semic Lasers & LEDs",
1489
1490
          credits: 3,
1491
          description: "Carrier generation and recombination, photon generation and loss in
              laser cavities, density of optical modes and blackbody radiation, radiative and
              non-radiative processes, optical gain, spontaneous and stimulated emission, Fermi
               s golden rule, gain and current relations, characterizing real diode lasers,
               dynamic effects, rate equation; small signal and large signal analysis, radiative
               intensity noise and linewidth.",
1492
          prereq_string: "572.",
          coreq_string: "",
1493
          co_or_prereq_string: "",
1494
1495
          semester_offering: "",
1496
          prereq_array: ["ECE 572"],
1497
         coreq_array: [],
1498
          pre_or_coreq_array: []
1499
        },
1500
1501
          number: "ECE 578",
1502
1503
          title: "Advanced Semiconductor Lasers",
1504
          credits: 3,
1505
          {\tt description:} \ {\tt "Scattering matrix theory, S and T matrices, gratings, DBR and DFB}
              lasers, perturbation and coupled-mode theory, photonic integrated circuits,
               tunable lasers, directional couplers.",
          prereq_string: "577.",
1506
          coreq_string: "",
1507
1508
          co_or_prereq_string: "",
1509
          semester_offering: "",
          prereq_array: ["ECE 577"],
1510
1511
          coreq_array: [],
1512
          pre_or_coreq_array: []
1513
        },
1514
1515
         number: "ECE 580",
1516
         title: "Advanced Plasma Physics",
1517
          credits: 3.
1519
          description: "(Also offered as PHYC 580, CHNE 580.)",
1520
          prereq_string: "534 or PHYC 534.",
1521
          coreq_string: "",
1522
          co_or_prereq_string: "",
1523
          semester_offering: "",
          {\tt prereq\_array: \ ["+", "ECE 534", "PHYC 534"]} \;,
1524
1525
         coreq_array: [],
1526
          pre_or_coreq_array: []
1527
       },
1528
```

```
1529
1530
          number: "ECE 581",
1531
          title: "Coll Nanocrystal Biomed Appl",
1532
          credits: 3,
1533
          description: "Intended for students planning careers combining engineering, materials
               science, and biomedical sciences. Covers synthesis, nanocrystals
              characterization, biofunctionalization, biomedical nanosensors, FRET-based
              nanosensing, molecular-level sensing/imaging, and applications in cell biology,
              cancer diagnostics and therapy, neuroscience, and drug delivery.",
          prereq_string: "",
1534
          coreq_string: "",
1535
          co_or_prereq_string: "",
1536
1537
         semester_offering: "",
1538
         prereq_array: [],
1539
         coreq_array: [],
         pre_or_coreq_array: []
1540
1541
1542
1543
         number: "ECE 582",
1544
         title: "Electric Drives & Transformers",
1545
1546
         credits: 3.
1547
          description: "Electromagnetic theory and mechanical considerations are employed to
              develop models for and understanding of Transformers, Induction Machines and
              Synchronous Machines. Additionally, DC Machines are discussed.",
1548
          prereq_string: "",
          coreq_string: "",
1549
1550
          co_or_prereq_string: "",
1551
          semester_offering: "",
          prereq_array: [],
1553
         coreq_array: [],
1554
          pre_or_coreq_array: []
1555
1556
1557
         number: "ECE 583",
1558
          title: "Power Electronics",
1559
1560
          credits: 3.
          description: "Introduces modern power conversion techniques at a lower level, dealing
1561
               with basic structures of power converters and techniques of analyzing converter
              circuits. Students learn to analyze and design suitable circuits and subsystems
              for practical applications.",
1562
          prereq_string: "",
1563
          coreq_string: "",
1564
          co_or_prereq_string: "",
1565
         semester_offering: "",
1566
         prereq_array: [],
1567
         coreq_array: [],
1568
         pre_or_coreq_array: []
1569
        },
1570
1571
1572
         number: "ECE 584",
         title: "Photovoltaics",
1573
         credits: 3.
1574
          description: "Technical concepts of photovoltaics. Solar cell device level operation,
1575
               packaging, manufacturing, designing phovoltaic system for stand-alone or grid-
              tied operation, some business-case analysis and some real-life scenarios of
```

```
applicability of these solutions.",
1576
          prereq_string: "",
1577
          coreq_string: "",
1578
          co_or_prereq_string: "",
1579
          semester_offering: "",
1580
          prereq_array: [],
          coreq_array: [],
1581
1582
          pre_or_coreq_array: []
1583
1584
1585
1586
          number: "ECE 585",
          title: "Modern Manufacturing Methods",
1587
1588
          credits: 3,
          description: "(Also offered as ME 585.) Study of business of manufacturing,
1589
              emphasizing modern approaches. Topics include: U.S. manufacturing dilemma; JIT,
              kanban, pull manufacturing, quality; modeling; design for production;
              manufacturing economics; management issues; DIM; case studies.",
1590
          prereq_string: "",
          coreq_string: "",
1591
          co_or_prereq_string: "",
1592
1593
          semester_offering: "",
1594
          prereq_array: [],
1595
          coreq_array: [],
1596
          pre_or_coreq_array: []
1597
        },
1598
1599
          number: "ECE 586",
1600
          title: "Design for Manufacturability",
1601
1602
1603
          description: "(Also offered as ME 586.) Introduction to methods of design for
              manufacturability (DFM). Emphasis is on teamwork and designing your customers
              needs. This is achieved through statistical methods and computer based systems.",
1604
          prereq_string: "",
1605
          coreq_string: "",
          co_or_prereq_string: "",
1606
1607
          semester_offering: "",
1608
          prereq_array: [],
1609
          coreq_array: [],
1610
          pre_or_coreq_array: []
1611
        },
1612
1613
          number: "ECE 588",
1614
         title: "Future Energy Systems",
1615
1616
          credits: 3,
1617
          description: "A detailed study of current and emerging power and energy systems and
              technologies. Including renewable energies, storage, Smart Grid concepts,
              security for power infrastructure. Software modeling of power systems and grids."
1618
          prereq_string: "",
1619
          coreq_string: "",
          co_or_prereq_string: "",
1620
          semester_offering: "",
1621
1622
          prereq_array: [],
1623
          coreq_array: [],
1624
          pre_or_coreq_array: []
```

```
1625
1626
1627
          number: "ECE 590",
1628
          title: "Graduate Seminar",
1629
1630
          credits: 1,
          {\tt description:~"Offered~on~a~CR/NC~basis~only."}\,,
1631
1632
          prereq_string: "",
          coreq_string: "",
1633
1634
          co_or_prereq_string: "",
1635
          semester_offering: "",
          prereq_array: [],
1636
1637
          coreq_array: [],
1638
          pre_or_coreq_array: []
1639
1640
1641
1642
          number: "ECE 591",
          title: "INCBN Seminar",
1643
          credits: 1,
1644
1645
          description: "Graduate seminar on Integrating Nanotechnology with Cell Biology and
               Neuroscience. Grades based on active participation, including oral presentation.
1646
          prereq_string: "",
          coreq_string: "",
1647
1648
          co_or_prereq_string: "",
1649
          semester_offering: "",
1650
          prereq_array: [],
1651
          coreq_array: [],
1652
          pre_or_coreq_array: []
1653
1654
1655
1656
          number: "ECE 594",
1657
          title: "Complex Systems Theory",
1658
          credits: 3,
1659
          description: "Advanced topics in complex systems including but not limited to
               biological systems social and technological networks, and complex dynamics.",
          prereq_string: "graduate standing.",
1660
          coreq_string: "",
1661
1662
          co_or_prereq_string: "",
1663
          semester_offering: "",
1664
          prereq_array: [],
1665
          coreq_array: [],
1666
          pre_or_coreq_array: []
1667
        },
1668
1669
1670
          number: "ECE 595",
1671
          title: "Special Topics",
1672
          credits: 4,
1673
          description: "",
1674
          \texttt{prereq\_string}: \ "" \ ,
1675
          \verb|coreq_string|: "" \;,
1676
          \texttt{co\_or\_prereq\_string}: ~"" \;,
          semester_offering: "",
1677
1678
          prereq_array: [],
1679
          coreq_array: [],
```

```
1680
          pre_or_coreq_array: []
1681
1682
1683
1684
          number: "ECE 599",
          title: "Masters Thesis",
1685
          credits: 6,
1686
          description: "Offered on a CR/NC basis only.",
1687
          prereq_string: "",
1688
1689
          coreq_string: "",
1690
          co-or-prereq-string: "",
1691
          semester_offering: "",
1692
          prereq_array: [],
1693
          coreq_array: [],
1694
          pre_or_coreq_array: []
1695
1696
1697
1698
          number: "ECE 620",
          title: "T: Interdis Bio and Biomed Sci",
1699
1700
          credits: 3,
1701
          description: "(Also offered as ANTH 620, BIOL 520, CS 520, STAT 520). Varying
               interdisciplinary topics taught by collaborative scientists from UNM, SFI, and
               LANL.",
1702
          prereq_string: "",
1703
          coreq_string: "",
1704
          co_or_prereq_string: "",
1705
          semester_offering: "",
1706
          prereq_array: [],
1707
          coreq_array: [],
1708
          pre_or_coreq_array: []
1709
        },
1710
1711
1712
          number: "ECE 633",
          title: "T: Image Processing",
1713
1714
          credits: 3,
          description: "Advanced topics including but not limited to computational,
1715
               mathematical, multi-scale, and spatial statistical methods for multi-dimensional
               signal processing, multi-spectral imagery, image and video processing.",
          prereq_string: "",
1716
1717
          coreq_string: "",
1718
          co_or_prereq_string: "",
1719
          semester_offering: "",
1720
          prereq_array: [],
          coreq_array: [],
1722
          pre_or_coreq_array: []
1723
        },
1724
1725
1726
          number: "ECE 637",
1727
          title: "Topics - Algorithms",
1728
          credits: 3,
1729
          \mathbf{description}: \texttt{ "Advanced topics including parallel and high-performance computing ,}
               multimedia, virtual reality, real-time systems and robotics, encryption and
               {\tt security} \;,\; {\tt information} \;\; {\tt technology} \;, \;\; {\tt applied} \;\; {\tt algorithmics} \;\; {\tt and} \;\; {\tt computational} \;\; {\tt science}
               algorithms and applications.",
1730
          prereq_string: "537.",
```

```
1731
          coreq_string: "",
1732
          co_or_prereq_string: "",
1733
          semester_offering: ""
          prereq_array: ["ECE 537"],
1734
1735
          coreq_array: [],
1736
          pre_or_coreq_array: []
1737
1738
1739
          number: "ECE 638",
1740
          title: "Topics - Architecture & Systems",
1741
1742
          credits: 3,
          description: "Advanced topics including advanced computer architecture, networks,
1743
              distributed computing, large-scale resource management, high-performance
              computing and grid-based computing.",
1744
          prereq_string: "538.",
1745
          coreq_string: "",
1746
          co_or_prereq_string: "",
1747
          semester_offering: "",
1748
          prereq_array: ["ECE 538"],
1749
         coreq_array: [],
1750
          pre_or_coreq_array: []
1751
        },
1752
1753
1754
          number: "ECE 642",
1755
          title: "Detection & Estimation Theory",
1756
          credits: 3,
1757
          description: "Hypothesis testing; Karhunen-Loeve representation; optimal detection of
               discrete - and continuous - time signals; ML, MMSE, and MAP estimation; sufficient
               statistics, estimation error bounds; Wiener and Kalman-Bucy filtering; detection/
               receivers for multiuser and multipath fading channels.",
1758
          prereq_string: "541.",
1759
          coreq_string: "",
1760
          co_or_prereq_string: "",
1761
          semester_offering: "",
1762
          prereq_array: ["ECE 541"],
1763
          coreq_array: [],
1764
          pre_or_coreq_array: []
1765
        },
1766
1767
1768
         number: "ECE 651",
1769
         title: "Problems",
1770
         credits: 6,
         description: "",
1771
1772
          prereq_string: "",
1773
          coreq_string: "",
1774
          co_or_prereq_string: "",
1775
          semester_offering: "",
1776
         prereq_array: [] ,
1777
         coreq_array: [],
1778
          \verb|pre-or-coreq-array: []|
1779
        },
1780
1781
1782
         number: "ECE 661",
1783
         title: "Topics - Electromagnetics",
```

```
credits: 3,
1784
          {\tt description:} "Topics include advanced antenna theory, electromagnetic scattering and
1785
               propagation, electromagnetic compatibility, low temperature plasma science,
               advanced plasma physics, and other subjects in applied electromagnetics.",
1786
          prereq_string: "561.",
          coreq_string: "",
1787
1788
          co_or_prereq_string: "",
          \verb|semester_offering: "",
1789
1790
          prereq_array: ["ECE 561"],
1791
          coreq_array: [],
1792
          pre_or_coreq_array: []
1793
1794
1795
1796
          number: "ECE 699",
1797
          title: "Dissertation",
1798
          credits: 12,
1799
          description: "Offered on a CR/NC basis only.",
1800
          prereq_string: "",
          coreq_string: "",
1801
1802
          \texttt{co\_or\_prereq\_string}: ~"" \;,
1803
          semester_offering: "",
1804
          prereq_array: [],
1805
          coreq_array: [] ,
1806
          pre_or_coreq_array: []
1807
1808
1809
1810
      Dept.where(acronym: 'ECE').first.courses = Array.new(courses)
```