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An Adaptive Coverage Control Algorithm for Deployment of

Nonholonomic Mobile Sensors

Jose-Marcio Luna, Rafael Fierro, Chaouki Abdallah and John Wood

Abstract— We show the Lyapunov stability and convergence
of an adaptive and decentralized coverage control for a team
of mobile sensors. This new approach assumes nonholonomic
sensors rather than the usual holonomic sensors found in
the literature. The kinematics of the unicycle model and a
nonlinear control law in polar coordinates are used in order
to prove the stability of the controller applied over a team of
mobile sensors. The convergence and feasibility of the coverage
control algorithm are verified through simulations in Matlab.
Furthermore, some experiments are carried out using a team
of four Pioneer 3-AT robots sensing a piecewise constant light

distribution function.

I. INTRODUCTION

Literature related to oil spills [1] and forest fires [2] shows

that some systems present motion dynamics that make them

more complicated to overcome without putting humans in

danger. Currently, the use of manned aerial vehicles for

firefighting requires skillful enough pilots to avoid crashing

in the attempt to put out a fire. Moreover, firefighters must

get a qualitative estimation of the fire dynamics almost by

direct observation. In another scenario, Cortez et al., exposed

in [3] that building radiation maps involving nuclear material

are still done using people for taking measurements close to

the radiated area.

Coverage controllers become promising with the latest

developments on wireless communications, material science,

new sensors and the constant improvement of computational

power. The possibilities to send small unmanned aerial,

terrestrial or underwater vehicles which coordinate actions

to sense and map an area of interest are increasing as the re-

search in decentralized algorithms and hardware progresses.

In the field of sensory coverage there are several problem

dependent approaches such as the one described by Choset

in [4], the strategy to build radiation maps presented by

Cortez et al., in [5] or the reconfigurable sensor array in a

gradient climbing mission explained by Ögren in [6]. Some

approaches use centroidal Voronoi Tessellations as the equi-

table partition policies dividing the workspace in sub-regions

explained by Pavone et al., [7]; the on-line task allocation

based on local information presented by Fu et al., [8] and the

local coverage optimization considering the sensory radius of

a team of agents formulated by Stergiopoulos et al., [9].

Based on [10], the coverage control problem is associated

to a cost function which determines a problem-dependent
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metric of the coverage performance. It is possible to imple-

ment a controller to determine the optimal placement of the

sensors in an environment. Lee et al., present in [11] an ap-

proach of coverage control with environmental sensing where

a team of robots should position themselves over an area such

that they concentrate themselves in the area with the greatest

amount of a chemical using an adaptive triangular mesh. In

[12] Schwager et al., propose an optimization criterion to

distribute a team of hovering robots with downward facing

cameras to obtain the best view of an environment. The

authors propose a metric based on the minimum information

per pixel in order to elaborate the cost function.

Because of the complexity found in the analysis of net-

works of dynamic systems, it is common to consider simple

dynamical models such as the single integrator [13], or the

double and higher order integrators [14]. Recently, Kwok

and Martinez in [15] have used a hybrid system approach

to attack the decentralized control problem described in [13]

using nonholonomic sensors. The authors model the problem

as a hybrid automaton with a set of states implementing some

motion behaviors in a team of unicycle agents with fixed and

variable forward velocity. The agents are assumed to have a

previous knowledge of the sampling space.

A. Contributions

Our work is motivated by the one presented by Schwager

et al., in [16] where the authors describe the development of

an adaptive coverage control for mobile sensor networks and

provide the stability analysis of the controller. The authors

assume that the mobile sensors do not have nonholonomic

constraints and that the estimated density function is static.

However, several real world vehicles such as aircrafts at

cruising attitude, sea vessels and skid-steered mobile robots

have nonholonomic constraints.

Calculations associated to Voronoi partitions and their

centers of mass may require a considerable computational

cost, but the analysis of this feature is out of the scope

of this paper. In this work, we use a Voronoi partition

approach given the availability of software libraries such as

Voro++ [17] for C++, some Matlab functions and well known

implementation techniques based on previous literature [3],

[7], [8].

The performance of the results given for holonomic mobile

sensors can be severely affected or even invalidated [15],

when they are adapted to nonholonomic mobile sensors.

In this specific scenario, the control law designed for a

holonomic vehicle given by the single integrator [3] does not

work for a nonholonomic vehicle defined by the unicycle
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vehicle. Our main goal in this work is to provide the

necessary mathematical background to use nonholonomic

mobile sensors along with the adaptive coverage control

presented in [16], and guarantee the stability of the system.

The paper is organized as follows: Section II shows the

mathematical background related to Voronoi partitions and

locational optimization and the adaptive coverage control

for holonomic sensor networks which inspired this work.

In Section III, we present our main theoretical result which

shows the stability of the adaptive coverage control for

nonholonomic sensor networks. Section IV shows simulation

results obtained by using Matlab. Section V illustrates the

experimental results obtained by using a team of four Pioneer

3-AT robots sensing a dynamic light distribution. Lastly,

Section VI summarizes the main conclusions and limitations

of our approach as well as future work to overcome those

limitations.

II. MATHEMATICAL BACKGROUND

Voronoi partitions are a typical feature of several biolog-

ical systems [18] and recently they have received special

attention for their application in disciplines such as cellular

biology, image compression, statistics and robotics among.

Before any further discussion, let us start with some neces-

sary definitions.

A. Voronoi Diagrams

We based the following definition on the one in [18]

Definition 1: Given an open set Q ⊆ R
N , the set {Vi}k

i=1

is called a Voronoi tesselation or diagram of Q if Vi∩Vj = ∅
for i 6= j and

⋃k
i=1 Vi = Q. Given a set of points {pi}

k
i=1

belonging to Q, the Voronoi region Vi corresponding to the

point pi is defined by

Vi = {x ∈ Q | ‖x − pi‖ < ‖x − pj‖

for i, j = 1, . . . , k, j 6= i} .

Where ‖ ·‖ denote the Euclidean norm on R
N . The points

{pi}
k
i=1 are called generator points, and Vi is the Voronoi

region associated to the generator point pi.

B. Locational Optimization

Based on [19], let Q ⊂ R
N be a convex polytope including

its interior. Assume a mapping φ(q) : Q 7→ R+ with q ∈ Q

called a distribution density function (or sensory function)

which represents a measurement of the probability of a

specific event on Q. The locational optimization function

is then defined as

HV (P ) =
n
∑

i=1

∫

Vi

f(‖q − pi‖)φ(q)dq, (1)

where P is the set of all the n generator points

{p1, . . . , pn} ∈ Q and Vi is the Voronoi partition of the

i-th robot.

Now, based on [13] we can adapt some physical concepts

namely, the mass MVi
, the first moment LVi

, the polar

moment of inertia JV,p and the centroid CVi
of a Voronoi

region Vi. Their definitions are given by the following

equations,

MVi
=

∫

Vi

φ(q)dq,

LVi
=

∫

Vi

qφ(q)dq,

JV,p =

∫

Vi

‖q − pi‖
2
φ(q)dq,

CVi
=

1

MVi

∫

Vi

qφ(q)dq. (2)

From [13], if we define f(‖q − pi‖) = ‖q − pi‖2 and

replace it in (1), after applying a partial derivative with

respect to pi we have that

∂HV (P )

∂pi

=

∫

Vi

∂

∂pi

f(‖q − pi‖)φ(q)dq

= 2MVi
(pi − CVi

). (3)

Therefore, all the Voronoi tessellations in Q where the

generator points are at the same time the centroids of

their Voronoi partitions minimize the locational optimization

function. These tessellations are usually called centroidal

Voronoi tessellations [18].

C. Adaptive Control for Holonomic Sensors

In [16] the authors propose an approach which guarantees

that the network of mobile agents minimizes the cost function

HV (P ) in (1). They assume that each agent measures the

sensory function without requiring a previous knowledge.

In order to deal with the lack of knowledge of the sampling

space they proposed a decentralized adaptive control based

on the following assumptions,

Assumption 1 (Matching Conditions): There exists a pa-

rameter vector a ∈ R
m
+ and a vector function K : Q 7→ R

m
+

such that

φ(q) = K(q)T a, (4)

where m ∈ N, and (·)T denotes transpose.

The parameter vector a is unknown by the agents but K(q)
is available to them.

Assumption 2 (Lower Bound): Given that a(j) is the j-th

element of the vector a and β ∈ R+ then

a(j) ≥ β ∀j = 1, . . . , m,

The reason for a lower bound for the parameter vector a(j)
is to avoid that K(q)T a = φ(q) = 0 leading to a zero in the

denominator of (2).

The sensory function estimated by the i-th agent is given

by φ̂i = K(q)T âi, where âi is the estimation of the parameter

vector a calculated by the agent i. Furthermore the parameter

error vector ãi is given by

ãi = âi − ai. (5)
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In [13] the mobile agents are considered holonomic vehi-

cles with first-order continuous dynamics, that is

ṗi = ui. (6)

The control law is defined as

ui = k(ĈVi
− pi), (7)

where ĈVi
is an estimate of the real centroid CVi

of the i-th

Voronoi region defined by

ĈVi
=

L̂Vi

M̂Vi

=

∫

Vi
qφ̂(q)dq

∫

Vi
φ̂(q)dq

.

Finally, the adaptation law is given by

˙̂ai = Γ( ˙̂aprei
− Iproji

˙̂aprei
), (8)

with

˙̂apre = −Fiâi − ξ(Λiâi − λi) − ζ
∑

j∈Ni

(âi − âj), (9)

where ξ, ζ ∈ R+ are scalar gains, Γ ∈ R
m×m is a diagonal

positive definite gain matrix. The variables Fi, Λi, and λi

are given by the following equations,

Fi =

[∫

Vi

K(q)(q − ĈVi
)T dq

]

ṗi (10)

Λi =

∫ t

0

w(τ)Ki(τ)Ki(τ)T dτ, (11)

λi =

∫ t

0

w(τ)Ki(τ)φi(τ)dτ. (12)

Given a set of indexed vertices Ve = {v1 . . . , vn} and

a set of edges E = {e1 . . . el}, where ei = {vj , vk} then

Ni = {j|{vi, vj} ∈ E} i.e., Ni contains the indexes of the

vertices which are neighbors of the vertices associated to the

Voronoi partition of the generator point i.

The matrix Iproji
(j) is defined as follows

Iproji
(j) =







0 for âi(j) > β,

0 for âi(j) = β and ˙̂aprei
≥ 0,

1 otherwise.

(13)

The index j denotes the j-th diagonal element of the

matrix Iproji
and the j-th element of the vector âi. This

matrix implements a projection law which prevents the

parameter vector âi from taking values less than or equal

to the lower bound β.

The function w(t) ∈ L1 is called a weighting function we

provide a detailed discussion in Section II-D.

Lastly, in [16] the authors state and prove the following

convergence theorem

Theorem 1 (Convergence Theorem): Under Assumptions

1 and 2, for the system of n agents with the dynamics given

by (6) and the control law in (7),

lim
t→∞

‖ĈVi
− pi‖ = 0, ∀i ∈ In,

lim
t→∞

K(pi(τ))T ãi = 0, ∀τ | w(τ) > 0 and ∀i ∈ In,

lim
t→∞

‖âi − âj‖ = 0, ∀i, j ∈ In,

with In = {1, . . . , n}.

D. Weighting Functions

The weighting function w(·) in (11) and (12) should

stimulate the parameter convergence of the adaptation law.

Based on [16], if we choose w(τ) as a square wave, the

integral given in (11) does not incorporate any other term

in the summation after some fixed time determined by the

decay time of the square wave. We can soften the elimination

of old terms in the integral using softer decays, e.g., an

exponential decay w(τ) = e−τ . If we specifically use the

function w(t, τ) = e−δ(t−τ) the integrals (11) and (12)

become first-order systems, introducing a forgetting factor δ

which allows the tracking of slow varying density functions.

III. ADAPTIVE CONTROL FOR NONHOLONOMIC

SENSORS

The stability analyzes of the controllers in [13] and [16]

have been conducted assuming holonomic kinematics, but

now we propose to formally extend the previous results to

nonholonomic vehicles.

A. Nonlinear Steering Control

In order to incorporate nonholonomic constrains in our

model, we propose to use the polar unicycle model kine-

matics equations [20] for a differential steering as a suitable

approach. The equations of motion for the i-th agent in the

team of robots are given as follows












ρ̇i

α̇i

θ̇i













=













−ui cosαi

−ωi + ui
sin αi

ρi

ui
sin αi

ρi













, (14)

where

αi = θi − φi, (15)

φ̇i = ωi.

where ui and ωi are the linear and angular speeds of the i-th

robot respectively.

After an extensive analysis of several controllers for

nonholonomic systems available in the literature, the control

algorithm described in [20] provided a suitable solution to

our multivehicle coordination problem.

As shown in Fig. 1 the position of the agent inside its

Voronoi cell is represented in polar coordinates where φi is

the heading angle of the vehicle, ρi represents the position

error between the agent and the centroid point and αi is the

angle between the principal axis of the robot and the vector

error ρi. Now, the control law [20] is given by,





ui

ωi



 =





(γ cosαi)ρi

kαi + γ cos αi sin αi

αi
(αi + hθi)



 , (16)

where k, γ and h are positive gains.

The control law in (16) allows the agent to reach asymp-

totically the point (0, 0, 0). Therefore if we carry out an axis

translation to set the centroid at the origin of the plane we

1252



i
θ

i
α

i
φ

i
ρ

X

Y

i
ω

i
u

iV
Ĉ
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Fig. 1. Unicycle model and variables in the goal frame {G}: Notice
the vectors and angles which determine our nonholonomic model in polar
coordinates.

can use this control law to drive the robots to their centroidal

Voronoi tessellation. For a detailed proof of the stability of

the steering control (see [20]).

B. Stability Analysis

The following is our extended convergence theorem for the

distributed and adaptive control for nonholonomic vehicles.

Theorem 2 (Extended Convergence Theorem): If

Assumptions 1 and 2, are satisfied we have for the

system of n nonholonomic agents with dynamics (14) and

control law (16),

lim
t→∞

K(pi(τ))T ãi = 0, ∀τ | w(τ) > 0 and ∀i ∈ In,

lim
t→∞

ρi, ‖αi‖, ‖θi‖ = 0, ∀i ∈ In,

lim
t→∞

‖âi − âj‖ = 0, ∀i, j ∈ In,

with In = {1, . . . , n}.

Proof: To carry out the stability analysis, we propose

the following Lyapunov function candidate

V = H +

n
∑

i=1

[

1

2
ãT

i Γ−1ãi +
1

2

(

α2
i + hθ2

i

)

]

. (17)

The matrix Γ is the same diagonal positive definite matrix

in (8), H is described by (1), and αi, θi and ρi are the state

variables in the dynamics in (14). Lastly, ãi is the parameter

estimation error given by (5).

Taking the time derivative of (17), we obtain

V̇ =

n
∑

i=1

[

∂H

∂pi

ṗi + ãT
i Γ−1 ˙̂ai + (αα̇i + hθiθ̇i)

]

. (18)

Now, replacing (3) in (18) we get

V̇ =
n
∑

i=1

[

MVi
(pi − CVi

)T ṗi + ãT
i Γ−1 ˙̂ai

+ (αα̇i + hθiθ̇i)
]

. (19)

Furthermore, we can show that

LVi
= MVi

ĈVi
+ M̃Vi

(ĈVi
− C̃Vi

) = MVi
CVi

, (20)

then replacing (20) in (19), and taking into account that

M̃Vi
C̃Vi

− M̃Vi
ĈVi

= ãi

∫

Vi

K(q)T (q − ĈVi
)dq,

as well as replacing the adaptation law given by (8)-(12) in

(19), the final expression for the derivative of the Lyapunov

function becomes

V̇ = −
n
∑

i=1

[

MVi
(ĈVi

− pi)
T ṗi

+ξ

∫ t

0

w(τ)(Ki(τ)T ãi)
2 dτ

+ãT
i ζ
∑

j∈Ni

(âi − âj) + ãT
i Iproj

˙̂aprei

−(αiα̇i + hθiθ̇i)
]

. (21)

The second, third and fourth terms in the summation in

(21) have already been proven to be positive semidefinite

[16], considering the negative sign before the summation.

Now, we are interested in proving that the first and fifth

terms are positive semidefinite as well.

Calculating ĈVi
− pi and based on Fig. 1, we can assert

that

ĈVi
− pi =

(

x2 − x1

y2 − y1

)

=

(

ρi cos θi

ρi sin θi

)

=

(

ρi cos(φi + αi)
ρi sin(φi + αi)

)

. (22)

Taking the first term MVi
(ĈVi

− pi)
T ṗi of (21) and

replacing ĈVi
− pi and ṗi by using the unicycle model in

(14) with the control law in (16) we have

MVi
(ĈVi

− pi)
T ṗi =

= MVi

(

ρi cos(φi + αi)
ρi sin(φi + αi)

)T (
(γ cosαi)ρi cosφi

(γ cosαi)ρi sin φi

)

,

= MVi
ρ2

i γ(cos2 φi cos2 αi + sin2 φi cos2)αi,

= MVi
ρ2

i γ cos2 αi.

(23)

Since the mass MVi
of the i-th Voronoi region and

the control gain γ are non-negative, the first term in the

summation of (21) is non-negative.

MVi
(ĈVi

− pi)
T ṗi = MVi

ρ2
i γ cos2 α ≥ 0.

Analyzing the fifth term in (21) we have that based on

[20], if we replace the polar kinematics in (14) and replace

the control law given by (16) in −(αiα̇i + hθiθ̇i) we get

−(αiα̇i + hθiθ̇i) = kα2
i ≥ 0,

and the fifth term −(αiα̇i + hθiθ̇i) in (21) is non-negative.

Since V is lower bounded, V̇ is negative semidefinite and

uniformly continuous in time, we conclude that V̇ → 0 as

t → ∞ by the Lyapunov-like lemma.

1253



From the Lyapunov function derivative in (21) it is easy to

see that all the limits converge to zero except the third one

limt→∞ ‖θi(t)‖. In [20] the author proved by the Lyapunov-

like lemma that α̇i → 0 as t → ∞ and this implies that

θi → 0 as well. Therefore the controller guarantees the

convergence of the state variables ρi, αi and θi to zero under

the goal frame {G} shown in Fig. 1.

Remark 1: Although the orientation of the robot with

repect to the global frame is a consequence of the nonlinear

steering control, it can be required to regulate the orientation

of the mobile sensor since a robot can have navigation

sensors such as a camera or laser range finder at the front

part.

Remark 2: From (14) and (16) we have singularities when

ρi = 0 or αi = 0. this singularities are an issue from the

theoretical point of view, but in a practical application they

can be addressed by forcing the car to stop when the car is

located within certain minimum distance ρi 6= 0 or minimum

angle αi 6= 0 such that the singularity is never reached.

C. Dynamic Density Function

We consider the case of estimating the parameters of a

time-varying density function φi(q, t) = K(q)T a(t) where

the j-th entry aj(t) (j = 1, 2, . . . , m) of a(t) is a piecewise

constant function aj(t) : R
m
+ 7→ R

m
+ and is right continuous.

It means that every entry of the function vector a(t) has a

finite number of discontinuities and takes on constant values

between two consecutive discontinuities. This is a reasonable

approximation if we consider slow-time varying systems.

Also, we assume that limt→∞ a(t) = ac where ac ∈ R
m
+

is a constant value i.e., the density function reaches a steady

state which is reasonable for many real-world phenomena

such as oil spills [1] and forest fires [2].

From now on, we will call switching time ts, the time when

each discontinuity happens, where s = 1, · · · , k, and k is the

total number of switching times before the density function

reaches its final value. This terminology was taken from

[21] given the partial similarity with the switching systems.

Moreover let us assume that the adaptation law rate and the

angular and linear speeds of the agents are fast enough to

follow the dynamics of the density function φ(q, t).
From (8) we know that every robot looks for the centroid

of its Voronoi cell while taking measurements of the distribu-

tion function on its trajectory. During this time, the tracking

error decreases but notice from Theorem 2 that the network

of robots converges to a near optimal coverage configuration.

Based on Theorem 2 this behavior does not necessarily imply

that the parameter estimation vector ã(t) → 0 as t → ∞.

Furthermore, since we are dealing with a piecewise con-

stant system, the time interval between two switching times

∆ts = ts − ts−1 is finite, in contrast with the infinite time

necessary to guarantee full parameter convergence.

IV. SIMULATIONS

For this simulation we used a population of 20 unicycle

models randomly distributed over a sample space Q defined

as a unit square. We implement the control law given in (16)

with γ = 3 and k = h = 1. The parameter values we used

in the adaptation law given by (8) and (9) are Γ = I64,

ξ = 1000, ζ = 1 and δ = 1. For the matrix Iproji
defined

by (13), we have β = 0.1. The simulation parameters were

calculated by extensive numerical simulations.

We divided the sampling space Q in a 8 × 8 grid where

the geometric center of every square cell corresponds to

the mean µi of a bidimensional Gaussian function. Using

a function similar to the one in [16] we have that the i-th

entry Ki of the vector function K(q)64×1 is calculated as,

Ki = e
−(q−µi)

2

2σ2
i , (24)

with σ2
i = 0.05.

For this simulation we use the team of robots to detect a

density function which behaves as an expanding circle. The

circle recreates a simplified behavior of a forest fire where

the higher temperatures are localized at the boundary of the

circle.

The dynamics of the expanding circle are modeled by the

following parametric equations,
(

x(t)
y(t)

)

= c1r(t)

(

cosφ

sinφ

)

+

(

c2

c3

)

,

with the radius r(t) defined by the differential equation,

ṙ(t) = −c4r(t) + c5,

with the constants r(0) ∈ R
+ and ci ∈ R+ for i = 1, 2 . . . 5.

In order to assign a height to the expanding circle, we take

m equidistant points at the boundary of the circle. Each point

determines the mean of a bidimensional gaussian function

with variance σ2
k = 0.05 which is sampled by the 8 × 8

grid defined above in Q. The heights of each one of the 64
samples determine the parameter vector a(t). In Fig. 2 we

show a simplified 1-dimensional version of this calculation

where the red dots labeled P1 and P2 are equivalent to the

m dots in the boundary of the circle. The gaussian functions

are indicated in red and assuming we discretized the space

in 8 bins we sample the gaussians so that we get the eight

parameters ai(t) with i = 1, 2 . . . 8 as shown in Fig. 2.

Since our approach covers just piecewise constant dynam-

ics we assume that the robots are taking measurements of the

density function at the discrete-time instants 0, 20, 40 and

100 s. This means that assuming a slow varying distribution

function the robots can reach their respective centroids and

rest until some problem dependent condition is fulfilled to

start taking measurements again.

1) Simulation Results in Matlab: In Fig. 3 we show the

averaged behavior of the parameter estimation error given by

K(pi(τ))T ãi(t) ∀τ |w(τ) > 0,

as well as the error distance ρi(t), the angle αi(t) and the

consensus error given by

‖âi(t) − âj(t)‖ ∀i, j ∈ In.

Notice that the switching times of the simulation are indi-

cated by the dashed vertical lines in green.
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Fig. 2. Method to create the parametric density function. The two red dots
at p1 and p2 determine the two gaussians which are sampled to determine
the parameters ai(t) for i = 1, 2 . . . 8.

Let us define

¯̃ai(t) =
1

n

(

n
∑

i=1

ãi(t)

)

∀t > 0, (25)

which is the averaged parameter error vector over all robots.

In Fig. 3 (a) we show the parameter estimation error

K(q)T ¯̃ai(t) averaged over the whole population of robots.

In a similar way let us define

ρ̄(t) =
1

n

(

n
∑

i=1

ρi(t)

)

∀t > 0, (26)

which is the averaged position error of all the robots in Q,

which is plotted in Fig. 3 (b).

Finally, for the consensus error let us define the quantity

ca as

ca =

n
∑

i=1

∥

∥

∥

∥

∥

∥

n
∑

j=1

(âi − âj)

∥

∥

∥

∥

∥

∥

2

, (27)

which shows the summation of the squared norm of the

vector
∑n

j=1(âi − âj) over the whole population of robots

and is plotted in Fig. 3 (d).

In the plots in Fig. 3 (a), (c) and (d) it is easy to note the

asymptotic convergence to zero after every switching time

ts, but in the case of αi this is difficult to see because the

approximation of the numerical integrals of the centroids

in (2) induces some noise in the trajectory of the robots.

Furthermore, notice that the transitions of αi from −π to π

look like spikes in the plot, however, the robots spend the

majority of the time oscillating around the angle αi = 0 as

the filtered red signal illustrates in Fig. 3 (b).

V. EXPERIMENTAL VERIFICATION

The experiments were carried out using a population of

four P3-AT robots, sensing a white light concentration in a

rectangular sampling space of 4.7 × 6.6 m. The sampling
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Fig. 3. Plots of the parameter estimation error K(q)T ¯̃ai(t), the error
distance ρ̄(t), the angle αi and the consensus error ca for the simulation.

space was divided into a 8 × 8 grid. The geometric center

of each rectangular division corresponds to the mean of a

bidimensional Gaussian function given by (24) with σ2
i = 0.7

m.

The adaptation law is a differential equation, which is

not suitable for real-time applications. Instead, we used the

following approximations of (9), (11) and (12), based on [22]

λi(t + 1) = λi(t) + K(pi(t))φi(t), (28)

Λi(t + 1) = Λi(t) + K(pi(t))K(pi(t))
T , (29)

âipre
= âi + ξ(Λiâi − λi) − ζ

∑

j∈Ni

(âi − âj),(30)

âi = max(âipre
, β). (31)

were used in order to carry out the adaptation law calculation

in real time. The parameter values we used in the approxima-

tion of the adaptation law given by (28) – (31) are ξ = 1000,

ζ = 1 and δ = 1. The matrix Iproji
defined by (13) now

is replaced by the max operation in (31) β = 0.1. The

experiment parameters were determined by trial and error.

The light concentration is dynamic under the assumptions

presented in Section III-C. There is one switching time ts
to switch between two different light sources at 108 s of

the experiment. The wheel encoders embedded in the robots

are used for relative robot positioning. A set of four Phidgets

light precision sensors [23] are set up at the top of the robots

and the network communication with the robots is carried out

using Player 3.0.0 [24] through a Linksys wireless router.

A. Experimental Results

In Fig. 4 (a) and (b) we show the behavior of the error

distance ρ̄(t) defined in (26), and the consensus error ca
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Fig. 4. Plots of the error distance ρ̄(t) and the consensus error ca for the
experiments.

given by (27). Notice the convergence of the signal in Fig. 4

(a) and (b) which are visibly affected by the noise of the real

measurements and the numeric approximation of the centroid

integrals. In order to make them clear, we plot the filtered

signal in red. Furthermore, the approximation of the adaptive

law given by (31) induces additional noise on the plots. More

details about the hardware implementation are available in

[25]. The reader can find videos about the simulation and

experimental results at http://controls.ece.unm.

edu/index.php/CDC_2010_Video.

VI. CONCLUSIONS

We have developed an adaptive controller for deployment

of nonholonomic sensor networks to carry out a coverage

and estimation of a parameterizable density function in a

convex sampling space. We provided a stability theorem

which states that the robots distribute themselves in an

optimal way over the density function solving the locational

optimization problem. The mobile sensors were modeled as

unicycle vehicles, and a nonlinear steering control law in

polar coordinates was used to drive them and guarantee

stability. Through simulations in Matlab, we verified our

theoretical results. Some experiments using a team of four

P3-AT robots explains the gap between theory and practice.

However, the theoretical results still work since the system

curves exhibit the convergence stated by Theorem 2. The

theoretical extension of the problem to a continuous time-

varying density function rather than piece-wise constant

function, as well as the reduction of the noise effect in the

experimental results, are part of our future research agenda.
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