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Control in Computing Systems: Part I

José Marcio Luna & C.T. Abdallah

Abstract— This is the first part of a paper that provides an
overview of some applications of control theory to computing
systems. With the advent of cloud computing and more af-
fordable computing infrastructures, computing engineers are
looking for control theory to provide rigorous tools to analyze
and design computing systems and algorithms. On the other
hand, control systems have greatly benefited from the advent
of distributed and affordable computing infrastructure. In part
I we will focus on control applications at the data center level.

I. INTRODUCTION

Control theory has had a productive but limited relation-
ship with computing theory and systems. In recent years,
control is being used in problems such as managing power
consumption for data centers, smart grids, managing re-
sources in cloud computing applications, congestion control,
and networked control systems. The objective of this paper is
to review the interplay between computing and control. We
will review various application domains where control theory
has had an impact while also stressing a variety of control
concepts and technologies that may impact computing sys-
tems. Our intent is to highlight control problems and solu-
tions from single computer, multi-core processors and servers
all the way up to large data centers. Control techniques from
classical control designs (PID) to optimal control and model-
predictive and adaptive controls will also be highlighted.
Recent overview papers on the interaction of control and
computing are found in [1], [2]. Specific problems include
workload management [2], power and performance control
[3], resource allocation [4], [5], load balancing and manage-
ment [6], congestion control [7], digital rights management
[8], [9], etc. This paper is organized as follows. Section
II discusses controls applications at the data center level,
including workload management and power and performance
control. Throughout the paper, various control techniques are
illustrated. Section III contains our conclusions.

II. DATA CENTER LEVEL CONTROLS

In this section we discuss control at the data center
level. We assume that we have multiple computers working
together and sharing resources in order to carry out com-
putations. We focus on two of the current mainstream areas
of research namely, workload management and power and
performance [1].
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A. Workload Management

Data centers have become predominant in enterprise com-
puting. Services such as on-demand computing are crucial
for commercial users willing to take advantage of companies
with experience in data center administration e.g., Amazon,
HP, Microsoft, SalesForce, and Google [10]. Current motivat-
ing and leading initiatives such as the RESERVOIR frame-
work [11] have been working on different aspects to improve
cloud computing infrastructure. One of the objectives of
RESERVOIR is precisely the encouragement of solutions re-
lated to the automatic allocation and deployment of resources
depending on fluctuation on demands. Subscribing to com-
puting on-demand services reduces the costs of infrastructure
acquisition and support [10]. With the implementation of
shared virtualized infrastructure on multi-tier servers [12],
[13] a variety of enterprise computing services became possi-
ble. The data centers have become the physical manifestation
of cloud computing. Cloud computing allows users to use
large resources for storage and computational capabilities
[10], [14], [15]. Currently most of the services on demand are
available based on resource capacity rather than application
performance [15]. Guaranteeing application performance is
still a difficult task given the complexity involved in the
management of virtual machines. The time-varying nature of
the demands, the dependency of the applications on shared
resources, and the varying resource allocation complicates
the negotiation of SLAs to guarantee a Quality of service
(QoS) [16], [17]. In what follows of the section we will
present two approaches to the problem of guaranteeing QoS
in data centers.

1) Fluid Approximations and Optimal Control: A multi-
tier server system consists of a set of servers laid out in
series as shown in Fig 1 which is based on [13]. The k-
th server acts as a client for the (k + 1)-th server. Based
on [13] we have that for the k-th server on the series,
the incoming and outgoing throughput are represented by
T i
k and T o

k respectively. Furthermore, the admission control
generates a rejection throughput called T r

k , while the number
of concurrent connections, and the multi-programming level
(MPL) associated to the k-th server are denoted by Nk and
MPLk respectively. Finally, for the k-th server, let us denote
the processing time of a request as Sk and let us call λk
the probability that a request processed by the server k − 1
produces a request on server k. Following [13], we assume
the following for multi-tier server systems ,

• Assumption 1: Every request that arrives at tier k > 1,
can only originate from tier k − 1.
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Fig. 1. Multi-tier server system in series.

• Assumption 2: We say that a request is processed by
tier k > 1, when the tier sends a response to tier k− 1.

• Assumption 3: One or more requests in series, can be
generated at tier k + 1 from a request being processed
at tier k.

• Assumption 4: At any specific time t, at most one
request can be generated at tier k + 1 from a request
being processed at tier k.

• Assumption 5: If a client request is rejected at tier
k > 1 then the ”generating” request will be rejected at
tier k − 1 as well.

• Assumption 6: For all concurrent connections we have
that Ni ≥ Ni+1 for all i in the interval [1, n− 1].

The sever workload can be divided into workload amount
and workload mix. Workload amount corresponds to the
number of clients that try to access a server at the same time.
Workload mix deals with the distribution of the available
variety of interactions supplied by the clients e.g., read-only
request mix or read-write request mix. Based on [13] and
[18], the most common parameters used to measure the QoS
of the server systems are the latency ` and the abandon
rate α. Latency is the time the server needs to process a
request from the client. The abandon rate of a server is the
ratio between the rejected requests and the total number of
received requests. Another variable of interest is the cost
represented by w. The cost is related to the amount of
resources involved in a cluster based multi-tier application
and may be interpreted as the number of active machines
used to host the applications. Reference [13] proposes a fluid
approximation model to implement an admission control for
multi-tier server-systems in order to guarantee a given QoS
objective under high loads. Admission control consists of
setting an initial value for the MPLk of each server.

If the number of concurrent clients overtakes MPLk, the
k-th server rejects incoming requests. Note that in [13] multi-
ple visits of a request to a tier are not considered. Then, defin-
ing the model of the multi-tier server system we have that the
state vector of the system is given by (N1, N2, . . . , Nn)T ,
the external input is given by the incoming throughput of
the front-end server T i

1 and the control input is given by
the vector (MPL1,MPL2, . . . ,MPLn)T . Then, in [13] the
author comes up with the following dynamical model of the
number of concurrent connections on the server k,

Ṅk(t) = T i
k(t)−T o

k (t)−
n∑

i=k

T r
i (t), with k = 1, . . . , n. (1)

After considering the assumptions given above the author
propose the following recursive expression of T o

k ,

T o
k (t) = (1−λk+1)

(Nk(t)−Nk+1(t))

Sk
+λk+1T

o
k+1(t), (2)

where for the n-th server T o
n = Nn(T )

Sn
. Furthermore, the

rejection throughput of the server k is defined as,

T r
k =

{
0 if Nk < MPLk

T i
k otherwise

In [13] the processing time of a request on server k, namely
Sk(t) is considered linearly proportional to the number of
requests being processed by server k, then

Sk(t) =

{
ak(Nk(t)−Nk+1(t)) + bk for 1 ≤ k ≤ n− 1

anNn(t) + bn for k = n

As noted earlier the outputs of the system are the la-
tency ` and the abandon rate α. For this case, the aver-
age client request latency is considered, and is given by,
` =

∑n
k=1 Sk ·

∏k
j=1 λj , and the abandon rate defined as,

α = T r

T i
1
, where T r =

∑n
k=1 T

r
k . The controller input for

the admission control consists of finding the optimal input
vector MPL∗ = (MPL∗1, . . . ,MPL∗n) that minimizes T r

1

while maintaining the average latency under a determined
threshold Lmax. Notice that the system is assumed saturated
i.e. ∀k ∈ [1, n], Nk = MPLk, then, from (2) we get that,

T o
1 =

n∑
k=2

k−1∏
j=1

λj

 (1− λk)
MPLk−1 −MPLk

Sk−1

+

 n∏
j=1

λj

 MPLn

Sn
, (3)

Assuming that the system in steady state, we get from (1) that
the global rejection problem gives, T r = T i

1 − T o
1 , subject

to ` ≤ `max, with

Sk(t) =

{
ak(MPLk(t)−MPLk+1(t)) + bk k ≤ n− 1

anMPLn(t) + bn for k = n
.

Lastly the Karush-Kuhn-Tucker (KKT) necessary conditions
are used in [13] to find µ∗ such that,

∇MPLL(MPL∗ · µ∗) = 0, (4)
µ∗(` ·MPL∗ − `max) = 0, (5)

µ∗ ≥ 0, (6)

where L = T r + µ(`− `MAX) is the Lagrangian. Differen-
tiating the Lagrangian, the optimal control input MPL∗ with
µ∗ 6= 0 is found. In order to test the performance of the MPL
optimization strategy the author proposes a comparison with
three additional strategies namely,
• Strategy 1: Admission control for front-end server only

and MPL = (50, 50, 50).
• Strategy 2: Admission control at every tier and
MPL = (50, 40, 30).

• Strategy 3: Restrictive admission control at every tier
and MPL = (50, 30, 10).
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Fig. 2. A realization of a shared virtualized infrastructure.

The author then compares the results of the three strategies
above with the optimal MPL. Strategies 2 and 3 present less
latency but higher abandon rates as long as the number of
clients is relatively low. After a certain number of clients,
Strategy 2 results in the smallest abandon rate. Therefore,
the best methodology among strategies 1, 2 and 3 is the
implementation of admission control at each tier. The opti-
mal strategy MPL∗, performs the best when the workload
amount is high, both in terms of latency and abandon rate.
However, for light loads strategies 1 and 2 present better
performance since the calculations of the optimal MPL
assumes that the system is saturated.

2) Model Estimation and Optimal Control: Padala et.
al., present in [12] a tool called AutoControl, which is
composed of an online model estimator and a Multi-Input
Multi-Output (MIMO) resource allocation controller. The
main goal of this controller is to optimally allocate the
virtualized resources on a data center so that the system can
fulfill the required Service Level Objective (SLO). From Fig
2, based on [12], every tier of an application resides in a
virtual machine (VM) and a multi-tier application can run
on several nodes. AutoControl has been designed in a two-
layer distributed architecture. The first layer is composed
by a set of node controllers called NodeControllers and the
second layer is composed by a set of application controllers
called AppControllers. There is one NodeController for each
virtualized node and one AppController for each hosted
application.

Notice that the following assumptions are considered in
[12],

• Assumption 1: There is a separate service for capac-
ity planning to carry out the initial placement of the
applications among the nodes,

• Assumption 2: the same service takes care of admission
control for new applications,

• Assumption 3: the workload migration system works
at a time scale of minutes or longer.

The AppController is composed of a model estimator and
an optimizer. The model estimator uses an auto-regressive-
moving-average (ARMA) model to approximate the relation
between the resource allocation of the application a ∈ A ,
namely ua = {ua,r,t : r ∈ R, t ∈ Ta} and the normalized
performance for application a namely, ŷa = ya

ȳa
, where ya

and ȳa are the actual and the desired performance of the
application a respectively. The ARMA model proposed in

[12] is given by,

ŷa = a1(k)ŷa(k − 1) + a2(k)ŷa(k − 2)

+ b0
T (k)ua(k) + b1

T (k)ua(k − 1), (7)

ua,r,t is the actual allocation of the resource r ∈ R for the
application a ∈ A in tier t ∈ Ta. A is the set of all hosted
applications, R is the set of all resource types considered
and Ta is the set of all tiers associated to application a. The
parameters a1(k) and a2(k) and the parameter vectors b0(k)
and b1(k) are estimated through a recursive least square
algorithm. The optimizer searches for the required allocation
vector ūa that guarantees the performance target of the ap-
plication a while avoiding oscillations in resource allocation.
This may be achieved by minimizing the following cost
function,

Ja = (ŷa(k)− 1)
2

+ q‖ua − ua(k − 1)‖2. (8)

Note that the function Ja is minimized for ŷa(k) ≈ 1 leading
the application a to approach the desired performance. Fur-
thermore (8) is minimized if the difference ‖ua−ua(k−1)‖
becomes smaller i.e. when large changes in the resource
allocation during a sample period are avoided. The optimal
resource allocation strategy is therefore given by,

ūa(k) = (b0b0
T + qI)−1 ((1− a1ŷa(k − 1)

−a2ŷa(k − 2)− bT1 ua(k − 1))b0

+qua(k − 1)) ,

with I the identity matrix. Note that , ai, bi; i = 1, 2 are func-
tions of k. The second layer in Autocontrol consists of the
NodeController. This module takes the resource allocation
calculated by the AppController and, if the total requested
allocation is less than the available capacity of the system, it
assigns the resources as the AppController dictates. On the
other hand, when the total resource allocation is higher than
the available capacity we have contention. In such cases, a
new optimization problem is carried out in order to minimize
the error between the required application performance and
the actual one.

In an example proposed in [12], two nodes namely, n1

and n2 hosting applications 1 and 2 are considered, and
the shared resources are the CPU and disk. Then, from
application 1 we get the requests ū1,cpu,web and ū1,disk,web.
Similarly, from application 2 we get the requests ū2,cpu and
ū2,disk. Assuming that node n1 has enough capacity to fulfill
the request for only one of the available resources. Then,
modeling the shortage of the resources we get ∆u1,r,web =
ū1,r,web − u1,r,web and ∆u2,r = ū2,r − u2,r. This problem
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can be expressed as a constrained optimization problem,

min Jn1 = w1

(
∂ŷ1

∂u1,r,web
∆u1,r,web

)2

+w2

(
∂ŷ2

∂u2,r
∆u2,r

)2

, (9)

subject to
∆u1,r,web + ∆u2,r ≥ ū1,r,web + ū1,r,web + ū2,r − 1,

(10)
∆u1,r,web ≤ 0, (11)

∆u2,r ≤ 0. (12)

where the expression ∂ŷ1

∂u1,r,web
∆u1,r,web estimates the error

between the requested and actual performance of applica-
tion 1. Note the similar expression for error estimation of
application 2 in the second term in the right hand side of
(9). The condition in (10) reflects a capacity constraint that
when violated implies contention of one of the resources.
The conditions given by (11) and (12) guarantee that no
application can exceed its target performance at the detriment
of the other. The weights w1 and w2 determine the priority
of the applications and the lower the weight, the greater
the degradation. Some technical details of the computational
testbed where Autocontrol has been implemented are given
in [12]. Simulations were conducted with four media appli-
cations and one RUBiS application. The idea was to induce
reduced bottlenecks of the Disk or of the CPU and assess the
performance of Autocontrol compared with two state-of-the-
art techniques, namely, work-conserving and static allocation
modes [12]. Autocontrol stayed closer to the throughput
target even after a bottleneck was introduced.

B. Power and Performance

Based on references cited in [1], in large data centers
about 23-50% of the incomes should be invested on en-
ergy. Poussot-Vassal et al., assert in [19] that Information
Technology (IT) analysts predict that by 2012, up to 40%
of the technology budget of a company will be the cost
of energy. Furthermore, IT produces around 2% of global
CO2 emissions, an amount equivalent to the emissions of
global air traffic. Wang et. al., assert [20] that for every
1 W of power spent on the operation of servers, 0.5–1 W
of additional power are required for the cooling equipment.
These examples encourage the control community to put
some research effort on the study of power and performance
in web service systems.

In fact, control systems techniques have been recently
proved to be effective in power and performance control for
computing system applications [1], [16]. Research related
to the unified control of cooling resources and servers may
be found in [21], [22], [23], [24]. In what follows, we
review methodologies aimed not only to optimally manage
the power consumption but to also optimize the general
performance of data centers. In section II-B.1 we explore
a technique proposed by Fu et. al., to optimize power con-
sumption in data centers by using Linear Quadratic Control.

In section II-B.2 we review an optimal control analysis that
may be the first formal approach to the unified control for
power management, cooling, and workload management for
clusters of servers.

1) Linear Quadratic Regulator: A methodology to opti-
mize power consumption in clusters is proposed by Fu et
al., in [3] and [25]. Their approach is based on thermal
balancing rather than load balancing, since the thermal
dynamics of the processor are not only related to the load
but to the past history of processing as well. This approach
is called Control-Theoretic Thermal Balancing (CTB). A
feedback loop monitors the temperature and CPU utilization
of different servers in a cluster and redistributes the service
requests among the processors in the cluster so that the
temperature is balanced. The utilization is included in the
actual model because temperature variations are usually slow.
The proposed thermal model for processor Pri is given by,

dTi(t)

dt
= −ci,2(Ti(t)− T0) + ci,1Pi(t), (13)

where Ti is the temperature of the processor Pri , Pi is the
actual active power of the processor, ci,1, ci,2 are constants
which depend on the thermal features of the processor and
T0 is the ambient temperature. Defining the error variable
T ′i(t) = Ti(t)− T0 we have,

dT ′i (t)

dt
= −ci,2(T ′i (t)− T0) + ci,1Pi(t). (14)

Assuming that all the processors are homogeneous,
the authors propose the following model for the
whole system, Ṫ ′(t) = AT ′(t) + BP (t), where
T ′(t) = [T ′1(t), T ′2(t), . . . , T ′n(t)] and P (t) =
[P1(t), P2(t), . . . , Pn(t)] and A = diag{−c1,2, . . . ,−cn,2},
B = diag{c1,1, . . . , cn,1} Applying a bilinear transformation
to discretize the system it gives, T ′(k + 1) =

ΦT ′(k) + Γ′P (k) where Φ =
(
I + AW

2

) (
I − AW

2

)−1

and Γ′ =
(
I − AW

2

)−1
B
√
W and W is the length of

sampling interval. Up to this point we have not included
the dynamical model of the server cluster. Based on [25]
the authors consider that when a server is idle its power
decreases to a minimum value Psleep. Furthermore, the
average power of the processor Pri at the sampling time k
is P̄i(k). Finally, there is a set of running tasks, namely, Ji.
The estimated utilization of the i-th processor in the k-th
sampling may be approximated by the sum of the estimated
utilization of each task, Ui(k) =

∑
j∈Ji(k) uj . Then the

dynamical model for the average power gives,

P̄i(k) = Gi(Pa − Psleep)Ui(k) + Psleep, (15)

where Gi =
P̃a−Psleep

Pa−Psleep
, P̃a is the actual active power and Pa

is the estimated active power. Based on [3], approximating
the discrete power P (k) by the average power P̄ induces
an error that can be neglected. Defining T (k) = T ′(k) −
Γ′Psleep(Φ−I)−1 then we get the following thermal model,

T (k + 1) = ΦT (k) + ΓU(k), (16)

where Γ = G(Pa − Psleep)Γ′.
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We should therefore shoot for thermal balance while
reducing the control cost. The dynamics of the estimated
utilization may be defined as,

U(k + 1) = U(k) + ∆U(k). (17)

Then, expressing (15) in matrix form,(
T (k + 1)
U(k + 1)

)
=

(
Φ Γ
0 I

)(
T (k)
U(k)

)
+

(
0
I

)
∆U(k).

(18)
The LQ controller is given by,

∆U(k) = −
(
KT KU

)( T (k)
U(k)

)
, (19)

for the LQ cost function given by,

min
k→∞

∑
k

{(
T (k) U(k)

)
QUT

(
T (k)
U(k)

)
+ ∆UT (k)RUT ∆U(k)

}
, (20)

where

QUT =

(
L 0
0 λ

)T (
L 0
0 λ

)
, (21)

with RUT = ρI where ρ is a parameter that can be tuned to
achieve the balance between thermal balancing and control
cost. L is given by

L =


1− 1

n − 1
n · · · − 1

n
− 1

n 1− 1
n · · · − 1

n
...

. . . . . . − 1
n

− 1
n . . . . . . 1− 1

n

 , (22)

and λ determines the degree of thermal balancing (λ < 1) or
load balancing (λ > 1) in the controller. Remember that n
corresponds to the total number of processors. The authors
present some simulation results that show a comparative
performance of the CTB algorithms. Taking the parameter
values in Table I from the technical specifications given
for a Pentium IV processor they proceed to simulate the
system. The authors compare an open-loop controller, a
load balancing controller (LB) that tries to balance the CPU
utilization of the available processors, and a Heuristic Tem-
perature Balancing (HTB) algorithm that works under the
principle that changes on the temperature of the processor are
proportional to changes on the utilization of the processors.
The HTB controller does not take into account the thermal
dynamics of the system and does not take into consideration
the control cost. At t = 1000s the utilization is changed
randomly to a value in the interval [0.8, 1.2] with values of
ρ = 1, λ = 0.005 for CTB-UT and ρ = 1 for CTB-T.
Since LB and OPEN do not take into account the control
of temperature, the temperatures remain constant and are
not reduced while CTB-T, CTB-UT and HTB achieve good
temperature control. On the other hand, the HTB controller
uses more control effort than the CTB algorithms, since the
LQ controller considers the control cost while the HTB does
not.

TABLE I
SIMULATION PARAMETERS [3]

Parameter Value Description
Sampling Period (Ps) 4 s

Ambient Temperature (Ta) 45◦ C
Active Power (Pa) 51.9 W
Sleep Power (Pi) 13.3 W

Thermal Capacity (C) 295.7 J/K
Thermal Resistance (R) 0.1 K/W

c1 0.0034 K/J c1 = 1
C

c2 0.0338 s c2 = 1
RC

2) Optimal Control: Wang et. al., analyze in [20] the
challenges and opportunities of a unified approach for work-
load, power, and cooling management for data centers. They
formulate the problem as an optimal control problem to
minimize the power consumed by the IT components, as
well as to minimize the power of the facility components
denoted Pservers and Pcooling respectively. Furthermore, the
feedback system should satisfy the demand of resources
required by the application. Therefore, a threshold for re-
source utilization UtilRef is determined so that, as long as
the resource utilization Utilservers is under this threshold,
the performance of the application is guaranteed. Another
important parameter is the temperature of the server Tservers.
The authors propose an upper bound TRef which guarantees
the satisfactory operation of all components based on the
technical specifications of the server. Finally, the total power
consumption should be kept below a budget Pbudget.

Then, based on [20], the problem may be formulated as
the following constrained optimization problem,

min

∫ t

0

(Pcooling(τ) + Pservers(τ))dτ,

subject to
Utilservers(t) ≤ UtilRef (t), (23)
Tservers(t) ≤ TRef , (24)
Pcooling + Pservers ≤ Pbudget. (25)

A thermal blade enclosure is proposed as a simplified model
of the data center. The main objective is to minimize the
cooling power consumption and at the same time to keep
the temperature of the server in an operational range. The
authors propose the following thermal model for the blade
enclosure system,

C1
dTCPU,j

dt
=
C2

Rj
(Tamb,j − TCPU,j) +Q, (26)

where Tamb is the ambient temperature and TCPU is the
temperature of the CPU. Rj = C3

V̇
nR
j

+C4, for any blade j,
and corresponds to the thermal resistance between the tem-
perature of the CPU and the ambient temperature sensor.
Ck with k = 1, 2, 3, 4 are constants which depend on the
fluid, the properties of the material, the CPU package and
the circulating air itself. V̇j is the volumetric air flow rate
through blade j. Qj represents the heat transferred per unit
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of time between the ambient air and the CPU, which based
on [20] may be approximated by the power consumption
of the CPU PCPU . PCPU can be expressed in terms of
the utilization Utilj , PCPU = gCPU · Utilj + PCPU,idle

where PCPU,idle corresponds to the average minimum power
of the CPU and gCPU is a slope which incorporates the
effect of of the power status tunning. Note that even though
from (26) the temperature of the CPU is modeled as a
first-order linear function, variations in the fan speed due
to the workload active control make the system a time-
varying nonlinear system. Notice that the objective function
and constraints should be applied to different systems such as
server components, the servers themselves, groups of servers,
as well as the data center. Furthermore, the time constants
may range from milliseconds to possibly minutes, then the
following hierarchical controller to optimize the management
of the workload, power and cooling in the data center is
proposed in [20],
• Efficiency Controller (EC): This controller modifies

the P-states of the CPU to keep the CPU utilization
bounded within an interval. This controller operates
from sub-seconds to seconds.

• Fan Controller (FC): This one controls the fan
speeds in the blade enclosure to maintain the server
temperatures below a given threshold and optimizes
Pcooling. This controller operates from seconds to tens
of seconds.

• Local Power Capper (LPC): This controller works on
each CPU and tunes the P-states of the CPU to keep the
power consumption of the server bounded by a given
threshold. This controller operates from sub-seconds to
seconds.

• Group Power Capper (GPC): Setting a power thresh-
old for all servers, this controller along with the LPC
keep the power budget Pbudget bounded. This controller
runs at longer times than LPC.

• Global Controller (GC): This controller carries out
the migration of VM and turns servers on or off if
necessary to minimize the total power consumption and
fulfill all the constraints of the optimization problem.
This controller should be executed every 10 minutes or
even longer.

In order to guarantee the tracking of the utilization or of
the power budget the EC, LPC and GPC controllers are
integrated. A model predictive control (MPC) with three
steps look-ahead horizon is used to introduce feedback in
the FC. The following is the optimization problem for the
FC,

J = min
∑
i

PFi
+ w‖FS(k + 1)− FS(k)‖2,

subject to
TCPU,j(k + h) ≤ Tref , h = 1, 2, 3 for each blade j,

LBi ≤ FSi ≤ UBi for each fan i. (27)

where FSi(k) represents the fan speed at time k. LBi and
UBi are the lower and upper bounds for the fan speed.

Finally, w is a weight that determines how responsive is the
system to the fan speed changes.

Given the difficulty of the problem because of the several
metrics involved, the cost function in (27) can be modified by
adding a penalty term when the temperature rises above the
threshold and the constraints are relaxed for the FC. In the
case of the GC the problem is even more difficult, since the
controller tries to minimize the fan power consumption while
satisfying the constraints on temperature, performance and
budget. Simulated annealing is used to solve this problem.

The authors carried out simulations combining two dif-
ferent kinds of FC with two different kinds of GC. The two
kinds of FC are the zonal feedback controller, which controls
the fans in a single row of the blade enclosure depending on
the biggest difference between the temperature reference and
the actual temperature on the row. Model Predictive Control
(MPC) is the other option. GC uses simulated annealing in
both options but applies thermal aware GC to calculate the
minimal fan power necessary to keep the temperature under
the threshold by an optimization problem. In the other case
the minimal fan power was not estimated and that is called
non-thermal aware GC. The power budget was chosen to
be 2200W which is in the middle of the maximum and
minimum power consumption with no power capping. Every
combination of fan and global controllers namely C1, C2, C3
and C4 respectively have the following features,
• C1 Zonal feedback controller and non-thermal aware

GC.
• C2 MPC and non-thermal aware GC.
• C3 Zonal feedback controller and thermal aware GC.
• C4 MPC and thermal aware GC.

Then the authors showed that the mean power consumption
remained under the power budget in all cases, and that the
percentage of samples that exceeded the budget by 5% are
below 1%. It is shown in [20] that the thermal-aware GC
had the lowest performance loss, and that the fan power in
C2 is less than the fan power of C3 at lower temperatures
which means that the capacity utilization in C3 is better than
in C2 because of the thermal aware GC.

III. CONCLUSIONS

While the applications of control techniques to computing
systems have recently exploded, rigorous analysis of com-
puting systems using control theoretic approaches remains
limited. In this overview, we have attempted to illustrate how
model estimation, optimization, and control approaches that
have been developed by control theorists are finding their
way into the fast moving area of data center control. Due
to space limitations, more mature control applications such
as those for congestion control [7] and load balancing [6]
are not covered, but neither are more recent contributions of
game theoretic approaches to computing.
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