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Abstract 
 
 A Marx generator is a well-known type of electrical 
circuit first described by Erwin Otto Marx in 1924.  It has 
been utilized in numerous applications in pulsed power 
with resistive or capacitive loads.  To-date the vast 
majority of research on Marx generators designed to drive 
capacitive loads relied on experimentation and circuit-
level modeling to guide their designs.  In this paper we 
describe how the problem of designing a Marx generator 
to drive a capacitive load is reduced to that of choosing a 
diagonal gain matrix  that places the eigenvalues of the 
closed-loop matrix  at specific locations.  Here 

 is the identity matrix and  characterizes the 
elements of the Marx generator and depends on the 
number of stages .  Due to the special structure of 
matrix , this formulation is a well-known problem in 
the area of feedback control and is referred to as the 
structured static state feedback problem.  While the 
problem is difficult to solve in general, due to the specific 
structures of matrices  and , various efficient 
numerical algorithms exist to find solutions in specific 
cases.  In a companion paper by Buchenauer [1] it is 
shown that if certain conditions hold, then setting the 
natural frequencies of the circuit to be harmonically 
related guarantees that all the energy is delivered to the 
load capacitor after a suitable delay.  A theorem 

formalizing this result is presented.  Earlier aspects of this 
research have been published in two theses [2,3].  
 
 

I.  State Space Realization  
 
 The circuit model for the Marx generator described in 
this work is shown in Fig. 1. The circuit components are 
intended of be lossless.  An external voltage source 
simultaneously charges capacitors .  
After charging these capacitors to the desired voltage (and 
hence accumulating the desired charge), the discharging 
process starts into the corresponding parasitic capacitors 
through their respective inductances and resistances. 
 We assume that the resistances are identical and that the 
energy storage capacitors are identical as well. By 
assuming that the current through the resistors is small 
compared to the current through the inductors, the 
discharging process for each stage can be approximated as 
shown in Fig. 2.  Antoun [2] proceeds to use circuit theory 
to redraw the Marx circuit (Fig. 1) as a connection of 
branches, where tree branches represent voltage sources 
(capacitors in our case) and links represent current 
sources (inductors in our case) and resistors (Fig. 3).  The 
direction of the arrows is along the voltage drop in the 
case of a voltage source, or along the current in the case 
of a current source. 

Figure 1. Network model of an -stage Marx generator driving a capacitive load.  
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Figure 2. The discharging process of a Marx generator’s 
jth stage. 

 
Figure 3.  Graph of an =2 stage Marx generator. 

 
 Having chosen the states to be voltages across 
capacitors and currents across inductors we follow two 
simple rules stated in [4]: 
 

1. Write KCL for every fundamental cut set (i.e., 
one tree branch and a number of links) in the 
network formed by each capacitor in the tree. 

2. Write KVL for every fundamental loop (i.e., one 
link and a number of tree branches) in the 
network formed by each inductor in the co-tree 
(complement of a tree). 

 
The details of this analysis may be found in [2]. 
 

II. Currents and Voltages for 1 and 2 Stage 
Networks 

 Francaviglia [3] followed up on the work of Antoun [2] 
and considered the simplified Marx generator circuit 
shown in Figs. 4,5.  In his analysis, for values of the 
circuit elements in Fig. 5 given by F, 

H, , , and 

V, the curves shown in Fig. 6 are obtained 
on the circuit corresponding to a one stage network, 
namely . 

 
   

 
Figure 4.  A simplified Marx generator circuit under consideration.

 

 
 
Figure 5. One stage of the Marx generator circuit 
shown in Fig. 4.  
 
 

 
 
Figure 6. Voltages and currents through the elements 
of the circuit shown in Fig. 5. 
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 When extended to a 2-stage network the curves 
shown in Fig. 7 are obtained. 

 

 
Figure 7. Voltages and currents through the elements 
of the 2-stage network. 
 
 The results plotted in Figs. 6 and 7 are qualitatively 
identical to the optimized results obtained by 
Buchenauer through PSPICE simulations [1]. 

 
III. Similarity to Feedback Control 

 
 Consider the following dynamic state-space 
equation: 
 
                (1) 
 
where  denotes the state of a certain physical 
system to be controlled by the input .  The two 
matrices  and  are time invariant so that equation 
(1) models a linear, time-invariant (LTI) system.  One 
classical problem in control theory is to select the input 

 so that the dynamics of the resulting  is 
driven into a certain desired state. 
 Depending on how the input  is calculated, 
there are generally two types of controls, both of which 
have been extensively studied and documented in the 
literature.  In state feedback control  is selected as 
a linear function of state  such that .                 
In this way the original system is changed to a closed-
loop dynamical system 
 
                (2)  
  
 The general goal in such a control scheme is to 
choose the gain matrix  so as to achieve stability or 
to speed up the response.  However, it turns out for the 
Marx network, the particular form of  (diagonal 

matrix) renders this a structured static state feedback 
control problem that is an open problem. 
 
III.A. Theorem 
 
 For the circuit shown in Fig. 4, define the following 
matrices , , and  of suitable dimensions: 
 

                  (3) 

 
 
where  denotes the identity matrix having 
dimensions . 
 Given any selection of  constants 
1= < <…< , if  the eigenvalues of  
are placed in , , …, , then the transfer 
function of the circuit from the initial conditions 

 ,  to the output  has its 

poles in . 

 
III.B. Remarks 
 
Normally based on , which is fixed, one would 

choose  for , namely all the 
natural frequencies are multiples of each other 
(following Buchenauer [1], where it is shown that 
under certain conditions, setting the natural frequencies 
of the circuit to be harmonically related guarantees that 
all the energy is delivered to the load capacitor after a 
suitable delay); however, alternative solutions would 
involve selecting e.g.  for . 
 
The “transfer function of the circuit” considered in the 
theorem is in fact the transfer function characterizing 
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the response from an initial condition (corresponding to 
the initial voltage configuration of the Marx generator) 
to an output (the voltage across the last capacitor) 
under zero input; this actually corresponds to 
considering the impulse response of the circuit where 
the input distribution matrix has exactly the same 
pattern of the considered initial condition (that is, all 
the elements acting on the stage capacitors equal to 1, 
and all the other elements equal to 0). Since this 
transfer matrix has exactly poles, but the 
whole state space model of the circuit is characterized 
by eigenvalues, it follows that some natural 
modes are either unobservable or unreachable from the 
considered input and output. Also, it is interesting to 
notice that the matrices  , , and  in (3) are not 
the matrices characterizing the state space realization of 
the whole circuit (in fact, the matrices in (3) correspond 
to a state of dimension ), but just a compact 
representation of the “useful” dynamics of the Marx 
generator (the part that the designer wants to assign). In 
fact,  ( ) only accounts for complex 
conjugate imaginary eigenvalues of the circuit (by 
keeping track of the modulus of pairs of 
eigenvalues), with the understanding that the above 
cited transfer function also contains two additional 
poles in 0; as mentioned above, the additional 

eigenvalues belong to an unobservable/unreachable 
part which is of no interest when the only concern is 
guaranteeing that the whole energy in the system is 
stored on the last capacitor at a given time. 
 
From the above formulae, it is evident that the solution 

is independent of  and linear in . 
 
The theorem also holds for generalizations of the 
circuit, as example, if in the last branch the values  
and  are replaced by  and ; it is currently 
under study to see whether similar transformations can 
also be performed in other branches of the circuit. 
 
 
III.C. Similarity to Other Problems 
 
 The matrix  may be thought of as a 
decentralized state feedback problem (i.e. an output 
feedback problem). One can also simply concentrate on 

, which corresponds to adding 1 to each 
eigenvalue. Finding  via numerical algorithms is 
computationally attractive (the resulting optimization 
problem is quasi-convex locally). 
 The problem may be transformed via the change of 
coordinate  into the problem of finding a 
diagonal  such that has the eigenvalues  

where . Since the matrix  is 

symmetric but the last element on its diagonal is not 
equal to 2, this is a nonstandard Jacobi inverse 
eigenvalue problem (JIEP), which appears in the “bead 
on a string” problem [5] (see Fig. 8).  The Jacobi 
matrix  describing Fig. 8 is given by Eq. (4) and is 
identical in form to the  matrix describing the Marx 
network. 
 

                      (4) 

 
 

 
 
Figure 8. Similarity of the analysis of the circuit in Fig. 
4 with the “bead on a string” problem in mechanics [5].   
 
 

IV. Conclusions and Future Work 
  
 The synthesis of an stage Marx generator was 
modeled mathematically and related to a standard (but 
difficult) structured state feedback problem in control 
theory.  Solutions to this problem are for now found 
numerically.  The formalism allows for more general 
solutions to the problem to be found.  Many aspects of 
the solutions identified to-date have been found to be in 
agreement with the solutions identified by Buchenauer 
[1] through PSPICE simulations. 
 Future work will focus on how to mathematically 
prove the existence of, then finding the parasitic 
capacitors to achieve perfect energy transfer for an 

stage Marx generator with a capacitive load. 
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