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Abstract

In the current information booming era, image and video consumption is ubiquitous. The

associated image and video coding operations require significant computing resources for

both small-scale computing systems as well as over larger network systems. For different

scenarios, power, bitrate and image quality can impose significant time-varying constraints.

For example, mobile devices (e.g., phones, tablets, laptops, UAVs) come with significant con-

straints on energy and power. Similarly, computer networks provide time-varying bandwidth

that can depend on signal strength (e.g., wireless networks) or network traffic conditions.

Alternatively, the users can impose different constraints on image quality based on their

interests.

Traditional image and video coding systems have focused on rate-distortion optimization.

More recently, distortion measures (e.g., PSNR) are being replaced by more sophisticated

image quality metrics. However, these systems are based on fixed hardware configurations
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that provide limited options over power consumption. The use of dynamic partial reconfigu-

ration with Field Programmable Gate Arrays (FPGAs) provides an opportunity to effectively

control dynamic power consumption by jointly considering software-hardware configurations.

This dissertation extends traditional rate-distortion optimization to rate-quality-power/energy

optimization and demonstrates a wide variety of applications in both image and video com-

pression. In each application, a family of Pareto-optimal configurations are developed that

allow fine control in the rate-quality-power/energy optimization space. The term Dynam-

ically Reconfiguration Architecture Systems for Time-varying Image Constraints (DRAS-

TIC) is used to describe the derived systems. DRASTIC covers both software-only as well

as software-hardware configurations to achieve fine optimization over a set of general modes

that include: (i) maximum image quality, (ii) minimum dynamic power/energy, (iii) mini-

mum bitrate, and (iv) typical mode over a set of opposing constraints to guarantee satisfac-

tory performance. In joint software-hardware configurations, DRASTIC provides an effective

approach for dynamic power optimization. For software configurations, DRASTIC provides

an effective method for energy consumption optimization by controlling processing times.

The dissertation provides several applications. First, stochastic methods are given for

computing quantization tables that are optimal in the rate-quality space and demonstrated

on standard JPEG compression. Second, a DRASTIC implementation of the DCT is used

to demonstrate the effectiveness of the approach on motion JPEG. Third, a reconfigurable

deblocking filter system is investigated for use in the current H.264/AVC systems. Fourth,

the dissertation develops DRASTIC for all 35 intra-prediction modes as well as intra-encoding

for the emerging High Efficiency Video Coding standard (HEVC).

viii



Contents

List of Figures xiv

List of Tables xx

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 JPEG Compression Using Quantization Table Optimization Based on Per-

ceptual Quality 7

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 A Multi-Objective Optimization Formulation . . . . . . . . . . . . . . . . . . 9

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ix



Contents

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 DRASTIC DCT for MJPEG 19

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Dynamic Reconfiguration Based on Multi-objective Optimization . . 24

3.3.2 Rate-Distortion-Complexity Control . . . . . . . . . . . . . . . . . . . 25

3.3.3 DCT hardware implementations . . . . . . . . . . . . . . . . . . . . . 26

3.3.4 A separable implementation of the 2D DCT based on Chen’s algorithm 28

3.3.5 Video image quality assessment using SSIM . . . . . . . . . . . . . . 29

3.3.6 Quantization table specification using a quality factor . . . . . . . . . 30

3.4 A Dynamically Reconfigurable Architecture System for Time-Varying Image

Constraints (DRASTIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Constrained optimization formulation . . . . . . . . . . . . . . . . . . 30

3.4.2 Hardware design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3 Pareto Front and Constraint Satisfaction . . . . . . . . . . . . . . . . 34

3.4.4 Scalable Control of Reconfiguration Overhead . . . . . . . . . . . . . 35

3.4.5 Scalable DRASTIC Controller . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

x



Contents

3.5.1 Pareto-front estimation & comparisons to full 2D DCT implementations 37

3.5.2 DRASTIC mode implementation & comparison to optimized static

approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.3 DRASTIC Mode Transition Example . . . . . . . . . . . . . . . . . . 41

3.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 A Dynamically Reconfigurable Deblocking Filter for H.264/AVC Codec 51

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Deblocking Algorithm and Deblocking quality assessment . . . . . . . . . . . 54

4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 High Efficiency Video Coding (HEVC) 65

5.1 Background and Related work on HEVC . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Coding Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 DRASTIC for HEVC intra-prediction mode implementation 74

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Unified Reference Sample Indexing and Accessing . . . . . . . . . . . . . . . 76

xi



Contents

6.3.1 Unified reference sample indexing . . . . . . . . . . . . . . . . . . . . 76

6.3.2 Planar mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.3 DC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.4 Angular mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Methodology and Implementation . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.1 Pipeline Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.2 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.1 Unified Reference Sample Indexing Verification . . . . . . . . . . . . 83

6.5.2 Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 DRASTIC for HEVC intra-encoding at the Frame Level 87

7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 The configuration space: scalable block-compress for HEVC intra-encoding . 89

7.3.1 Rate-distortion-energy space results . . . . . . . . . . . . . . . . . . . 92

7.4 DRASTIC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.2 Initialize and Hold Control . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4.3 Prediction Model and Model Update . . . . . . . . . . . . . . . . . . 96

7.5 DRASTIC Implementation And Results . . . . . . . . . . . . . . . . . . . . 97

xii



Contents

7.5.1 Minimum Complexity Mode . . . . . . . . . . . . . . . . . . . . . . . 97

7.5.2 Minimum Rate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5.3 Maximum Quality Mode . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5.4 Typical Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Conclusion and Future Work 102

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

References 107

xiii



List of Figures

2.1 Simulated Annealing (SA) Optimization for computing a Rate-SSIM optimal

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Rate-SSIM comparisons for all methods for the Lena image at QF=95. The

circled points represent Pareto-optimal results. . . . . . . . . . . . . . . . . 15

2.3 Rate-SSIM comparisons for all methods for the Lena image for QF=90. The

circled points represent Pareto-optimal results. . . . . . . . . . . . . . . . . 16

2.4 Rate-SSIM comparisons for all methods for the Lena image at QF=85. The

circled points represent Pareto-optimal results. . . . . . . . . . . . . . . . . 17

3.1 Dynamically Reconfigurable Architecture System for Time varying Image

Constraints (DRASTIC) for motion JPEG. . . . . . . . . . . . . . . . . . . 22

3.2 Scalable data path for the 2D-DCT using ping-pong transpose memory. The

number of bits used at each stage are given in the figure. The input image

block is assumed to be of size 8 with signed, 8-bit integer values. The removal

of the highest frequency components is highlighted in red. . . . . . . . . . 32

xiv



List of Figures

3.3 Scalable Decompose filter implementation of the matrix-vector product given

in (3.4). Refer to Fig. 3.2 for how the decompose filter fits the DCT core. The

inputs Sij refer to the X(i)+X(j) sum of equation (3.3). The outputs corre-

spond to Y (0), Y (2), Y (4), Y (6) of (3.3). The datapath associated with the

highest frequency component is highlighted in red. Note how tracing back-

wards from each output, we can generate a scalable datapath that removes

the circuitry associated with each frequency component. . . . . . . . . . . 33

3.4 Implementation of the 1D filters shown in Fig. 3.2. Here, C0-C3 refer to the

DCT Kernel coefficients and X0-X3 refer to sums and differences computed

on the input data (see Fig. 3.2). . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Signed integer trimming of a-bit input x to an (a-b)-bit output by truncat-

ing the output towards zero (floor operation). This component is used to

control the bit-width in the optimization process. . . . . . . . . . . . . . . 34

3.6 General framework for DRASTIC mode implementation. . . . . . . . . . . 43

3.7 Resource allocation and estimated dynamic power consumption for 64 hard-

ware configurations based on bitwidth values: 2 ≤ WL ≤ 9 and zonal values:

1 ≤ Z ≤ 8. (a) Slice resources as a function of the zonal configuration and

bit width. (b) Dynamic power consumption as a function of zonal config-

uration and bit width. From the dynamic power results, it is clear that a

scalable set of DCT architectures has been achieved. . . . . . . . . . . . . 44

3.8 Pareto front estimation for the joint space of SSIM, bit rate, and dynamic

power consumption. The Pareto front is estimated using the UT LIVE image

database. Pareto optimal configurations are highlighted using red circles. . 44

3.9 DRASTIC reconfiguration results for switching between modes for the Fore-

man video. Here, the proposed reconfiguration settings are used (RecC=5,

RecP=1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv



List of Figures

3.10 DRASTIC mode transition example results. (a) Max img qual. mode

(n = 5): SSIM=0.95, Rate=1.36bps, DP=395mW which gives exceptional

image quality while meeting the high-profile constraints. (b) Typical mode

(n = 35): SSIM=0.84, Rate=0.51bps, DP=161mW which meets all of the

medium-profile constraints at a much lower bitrate. (c) Min rate mode

(n = 60): SSIM=0.79, Rate=0.31bps, DP=312mW which is right at the

boundary of the image quality and dynamic power constraints (medium-

profile) while using significantly less bitrate. (d) Min power mode (n = 85):

SSIM=0.69, Rate=0.18bps, DP=100mW which is at the boundary of the

image quality constraint for the low-profile, unable to further reduce power,

but still operating at a very low bitrate. . . . . . . . . . . . . . . . . . . . 48

3.11 DRASTIC mode performance. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 DRASTIC performance for the typical mode as a function of the reconfigu-

ration period RecP and the number of reconfigurations RecC. . . . . . . . . 50

4.1 Dynamically reconfigurable DCT architecture for H.264 encoder. . . . . . . 53

4.2 Deblocking filtering operation flow. Deblocking filtering is applied to the

shaded pixels shown in the lower figures. For further details, we refer to [1]. 54

4.3 Assignment of boundary strength BS. Here, MV refers to motion vector and

Diff. Ref. refers to a change in the reference frame. . . . . . . . . . . . . . . 55

4.4 Deblocking filter results for foreman video frame 2 where DBF works as

expected. In this example, we are using H.264/AVC JM 18.2 with QP = 42.

We demonstrate the results for: (a) original image, (b) BSKill = 0 gives

SSIM=0.8182, (c) BSKill = 1 gives SSIM=0.8155, (d) BSKill = 2 gives

SSIM=0.8145, (e) BSKill = 3 gives SSIM=0.8005, and (f) BSKill = 4

gives SSIM=0.7882. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xvi



List of Figures

4.5 Deblocking filter results for mobile video frame 11 where DBF can perform

worse than expected. In this example, we are using H.264/AVC JM 18.2

with QP = 42. We demonstrate the results for: (a) original image, (b)

BSKill = 0 gives SSIM=0.7203, (c) BSKill = 1 gives SSIM=0.7199, (d)

BSKill = 2 gives SSIM=0.7194, (e) BSKill = 3 gives SSIM=0.7358, and (f)

BSKill = 4 gives SSIM=0.7365. To see the effects of over-filtering, compare

the two ellipsoidal regions shown in (b) with the original image in (a), and

the rest of the sub-figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Deblocking filter implementation using a 4-stage pipeline. The diagram

shows the full-filter implementation (BSKill = 0). The other 4 modes are

implemented by simply removing logic from the full-filter. The pink regions

are implemented for weaker-edges (BS = 1, 2, 3). The green regions are im-

plemented for strong edges (BS = 4). In the bottom of the figure, we have

a FIFO implementation that is used for the case of no filtering (BS = 0). . 62

4.7 A two-stage pipeline implementation of the strong and weaker filter halves

(see Fig. 4.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 R-D performance with BSKill mode and opt. mode. Tested over 11 QCIF

videos, each video has 64 frames, with ”IPPPPPPP” GOP. . . . . . . . . . 64

4.9 Dynamic power as a function of BSKill and QP. Refer to Table 4.5. . . . . . 64

5.1 HEVC encoder diagram [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Example of a nested quad-tree structure (right part) for dividing a given

coding tree block (left part, in black) into prediction blocks (solid gray lines)

and transform blocks (dashed gray lines) of variable size. The order of parsing

the prediction blocks follows their labeling in alphabetical order [3]. . . . . 68

xvii



List of Figures

5.3 Modes for splitting a CB into PBs for inter prediction. For intra prediction,

only quad-tree spliting is allowed [2]. . . . . . . . . . . . . . . . . . . . . . . 69

5.4 The 35 intra-prediction modes using 33 directions [2]. . . . . . . . . . . . . 69

5.5 Transform matrix for HEVC standard. . . . . . . . . . . . . . . . . . . . . . 71

5.6 Coefficient scanning direction in HEVC. The intra mode implicitly selects

the 3 modes. The inter mode only uses the diagonal up-right mode. . . . . 72

6.1 Unified reference sample indexing for PU size of nT × nT . Here, 4nT + 1

reference pixels R are used to obtain nT × nT predicted samples P . The

prediction directions are shown for several prediction modes (2,10,18,26,34). 77

6.2 Datapath for the pipelined uni proc circuit using size = log2(nT ) − 2,

Pindex = y × nT + x, and mode ∈ [0, 34]. Parameter delay is used to

notify number of cycles for RAM operation between address assertion and

data to be ready. When using BRAM on virtex 5 FPGA, delay = 2. . . . . 79

6.3 Integrated system integration using pipelined uni proc circuit. . . . . . . . . 83

6.4 35 modes of intra prediciton for HEVC, for PU sizes from 4x4 to 32x32, with

random generated reference samples for each PU size. . . . . . . . . . . . . 84

7.1 Diagram for DRASTIC HEVC Intra Encoding System . . . . . . . . . . . . 90

7.2 The projection of the rate-distortion-energy space on the rate-distortion

space for the RaceHorses video. Here, bps refers to the number of bits-

per-sample. Note that all of the configurations are Pareto-optimal in the

sense that it takes more energy (time) to provide better rate-distortion per-

formance. The video frame is of size 432× 240. . . . . . . . . . . . . . . . . 93

xviii



List of Figures

7.3 The projection of the rate-distortion-energy space on the rate-complexity

space where complexity is measured in terms of the number of seconds per

sample (sps) and it is assumed to be proportional to the consumed energy

(from E = Pt). The space is Pareto-optimal in the 3-dimensional space in

that longer computation times increase the PSNR. . . . . . . . . . . . . . . 94

7.4 The projection of the rate-distortion-energy space on the distortion-complexity

space where complexity is assumed to be proportional to the consumed en-

ergy (from E = Pt). The space is Pareto-optimal in the 3-dimensional space. 95

7.5 Results based on initialize and hold. . . . . . . . . . . . . . . . . . . . . . . 96

7.6 Results from minimum complexity mode. . . . . . . . . . . . . . . . . . . . 98

7.7 Results for minimum rate mode. . . . . . . . . . . . . . . . . . . . . . . . . 99

7.8 Results for maximum quality mode. . . . . . . . . . . . . . . . . . . . . . . 100

7.9 Results for typical mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xix



List of Tables

2.1 Method 1 results for the Lena (512× 512) image. . . . . . . . . . . . . . . . 13

2.2 Method 2 results for the Lena (512× 512) image based on the low-frequency

exponential rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Method 3 results for the Lena (512×512) image based on discretized Gaussian

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Method 4 results for the Lena (512× 512) image based on the low-frequency

exponential rule and discretized Gaussian model. . . . . . . . . . . . . . . . 14

2.5 Method 5 results for the Lena (512×512) image based on the high-frequency

exponential rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Method 1 results for the LIVE database using leave one out validation on

the median QT (QF=95). Here, we report the average, and the percentile

results (min, 25th, 50th, 75th, max) on rate change. . . . . . . . . . . . . . 17

2.7 Method 2 results for the LIVE database using leave one out validation on

the median QT (QF=95). Here , we report the average, and the percentile

results (min, 25th, 50th, 75th, max) on rate change. . . . . . . . . . . . . . 18

xx



List of Tables

2.8 Method 5 results for the LIVE database using leave one out validation on

the median QT (QF=95). Here, we report the average, and the percentile

results (min, 25th, 50th, 75th, max) on rate change. . . . . . . . . . . . . . 18

3.1 Synthesized results for DCT Cores on XC5VLX110T−1FF1136. . . . . . . 45

3.2 DRASTIC constraint profiles. The constraints represent the bounds for (i)

image quality (Qmin), (ii) the bitrate (Bmax), (iii) and dynamic power (Pmax)

as described in section 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 DRASTIC mode savings over the use of the optimized maximum setting

for each mode for the 9 testing videos. Here, the savings are computed as

a percentage of the average performance metric. For example, for dynamic

power, the percentage savings computed using (Pmax−Pavg)/Pavg∗100 where

Pavg, Pmax are computed from the selected DRASTIC architectures. For dy-

namic power and bitrate constraints, higher percentages indicate higher sav-

ings. For image quality, lower percentages are preferred since they indicate

that the resulting videos will be of higher quality. The proposed reconfig-

uration (Prop. Rec.) refers to RecC=5, RecP=1 while full reconfiguration

refers to RecC=100, RecP=1. The proposed reconfiguration requires 5% of

the overhead of the full reconfiguration. Also, note that the savings are con-

servative since they assume an optimal pre-selection of the static architecture. 46

3.4 A comparison of FPGA implementations of 2D DCTs. Dynamic power re-

sults are estimated for the operating frequency. Given the small number

of cycles required by the proposed approach, it is clear that the proposed

method yields the most energy efficient approach. . . . . . . . . . . . . . . 50

4.1 Scalable DBF modes based on BSKill parameter setting. . . . . . . . . . . . 56

xxi



List of Tables

4.2 Average bitrate results for all 11 videos. GOP encoding is ”IPPPPPPP”. See

Table 4.3 for corresponding SSIM values. Opt refers to the optimal method

that is described in Section 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Average SSIM results for the setup described in Table 4.2. . . . . . . . . . . 58

4.4 Deblocking filter synthesis results. DBF was implemented on XC5VLX110T(Virtex

5) device. Clock frequency was constrained to 100 MHz. . . . . . . . . . . . 59

4.5 Power simulation results for Foreman video. Dynamic power is estimated

using XPower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Look up table for angle Amode parameters for angular prediction mode.

T (mode) = 32× tan(Amode), AT (mode) = 256× actan(Amode) . . . . . . . . 81

6.2 synthesis results on xc5vlx110t with speed grade -3 using Xilinx ISE 13.2 . 85

6.3 Total cycles to generate one prediction block and average cycles for one

prediction pixel, on decoder side, delay=2. . . . . . . . . . . . . . . . . . . 86

7.1 Depth control for CU and TU candidate sizes based on DepthConfig. . . . 92

7.2 Finer depth control for the CU, TU sizes using FinerDepthConfig. . . . . . 92

xxii



Chapter 1

Introduction

Digital image and video coding are computing intensive operations. Given the strong and

still growing demand for processing and communications of digital images and videos, there

is strong interest in the precise control of video communications, especially under certain

constraints. The development of a platform that can provide fine control on power, bitrate,

and image quality, we can lead to significant improvements in image and video processing and

communications applications (e.g., video conferencing, remote sensing, home surveillance,

web browsing).

Real-time constraints can come from many different sources. For example, video commu-

nication systems need to meet real-time constraints on available network bandwidth. This

requires that the video be adaptively compressed at different bitrates so as to allow for com-

munication within the available bandwidth. Energy constraints can be especially tight on

mobile devices. For example, a low power mode is needed when no recharge station is avail-

able. Furthermore, a user’s interest in video content determines minimum levels of desired

video quality.

The use of Dynamic Partial Reconfiguartion (DPR) allows FPGA devices to change

hardware configuration of different parts of the device without the need for a restart [4]. On
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an FPGA, we can use bitstreams to reconfigure the configurable logic blocks(CLBs), input-

output blocks(IOBs), block RAMs, clock resources, and also re-route signals. For Xilinx

FPGAs, the configuration memory is organized into one-bit wide frames, where each frame

can be written to and read from independendly. Thus, changing a small portion of the device

can be performed quickly using a small size bitstream that can be reconfigured in a short

time. For video processing applications, given the large amounts of data involved, small

configuration bitstreams do not impose significant overhead.

1.1 Motivation

Traditional RD [5] optimization in video coding can significantly benefit from a redesign

that incorporates power [6–8] or complexity [9–11] considerations, so as to extend battery

life for mobile devices. For software implementations, power consumption can be modeled as

a function of supply power and video coding mode (e.g., block search mode, frame-encoding

type, etc), or a memory access power model [8]. Also for software implementations, com-

plexity is usually measured as executing time or using a weighted sum of different com-

plexity measures, (e.g., based on time, memory access complexity, parallelization, etc [11]).

For hardware-software co-design, especially when using DPR [12], we can directly estimate

power based on specific hardware configuration. Furthermore, in this case, effective control

can be based on the use of Rate-Distortion-Power (RDP) optimization and constraints.

1.2 Thesis statement

This Ph.D. dissertation research will develop a DPR-based video processing architecture for

video communications applications. The architecture system will be evaluated in terms of its

ability to dynamically balance trade-offs among dynamic power/energy, bitrate, and image

reconstruction quality. In particular, the research will be focused on the development of a
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DCT implementation for JPEG/MJPEG compression, a Deblocking filter for H.264/AVC,

and intra-encoding modes for the emerging HEVC standard. The thesis provides a significant

advancement over the standard use of rate-distortion (RD) optimization by considering rate-

distortion/quality-power/energy (RDP) space optimization and control.

1.3 Contributions

The dissertation will demonstrate the use of real-time optimization of joint software-hardware

configurations for both still image and video compression. We use the term Dynamically

Reconfigurable Architectures for Time-varying Image Constraints (DRASTIC) to summarize

the developed architectures. A list of the main contributions of this dissertation includes:

• JPEG Image Compression Using Quantization Table Optimization Based

on Perceptual Image Quality Assessment:

A multi-objective stochastic optimization framework is presented for optimizing the

quantization table for rate-SSIM curves (extending RD curves). The results show

improved performance across a range of rates.

• DRASTIC DCT for Motion-JPEG:

The dissertation introduces a real-time hardware reconfiguration framework that can

be used to select and implement jointly-optimal (in the multi-objective sense) hard-

ware realizations and associated software parameters for meeting real-time constraints

for communications systems. Real-time constraints are grouped into four fundamental

modes based on (i) minimum dynamic power, (ii) minimum bitrate mode, (iii) max-

imum image quality mode, and (iv) a typical mode that attempts to balance among

multiple constraints. Real-time switching among the fundamental modes is demon-

strated on motion-JPEG. Overall, the proposed approach yields significant savings

over the use of comparable static architectures.
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• Reconfigurable Deblocking Filter for H.264/AVC

The dissertation introduces a scalable design approach that allows dynamic hardware

reconfiguration of different modes based on power (or hardware complexity), bitrate,

and image reconstruction quality. The modes are arranged hierarchically. A complex

mode includes all of the deblocking filtering options of simpler modes. This provides

scalable performance where the use of additional hardware resources (or power) result

in better rate- distortion performance. In the optimal mode, the mode with the best

reconstruction quality is selected for each video frame. The optimal mode provides an

upper bound (in the rate-distortion sense) to what can be achieved with the current

modes.

• DRASTIC for HEVC intra-prediction mode implementation:

The dissertation presents a unified hardware architecture for implementing all 35 intra-

prediction modes that include the planar mode, the DC mode, and all angular modes

for all prediction unit (PU) sizes ranging from 4 × 4 to 64 × 64 pixels. This includes

the use of a unified reference sample indexing scheme that avoids the need for sample

re-arrangement suggested in the HEVC reference design.

• DRASTIC for intra-encoding HEVC at the frame level:

A software-only implementation of DRASTIC for HEVC intra-encoding is demon-

strated for optimizing complexity-rate-distortion for different operating modes.

DRASTIC optimization involves dynamically reconfiguring parameters (e.g., the quan-

tization parameter, encoding configuration modes) in software for achieving fine opti-

mization control. The fine control achieved with the use of the DRASTIC modes is

shown to perform significantly better than the standard use of fixed profiles.

1.4 Dissertation Overview

The dissertation is organized into 8 chapters based on the contributions of the research:
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• Chapter 1: Introduction

This chapter provided the motivation, thesis statement, and a summary of the contri-

butions of the dissertation.

• Chapter 2: JPEG Image Compression Using Quantization Table Optimiza-

tion Based on Perceptual Image Quality Assessment: [13]

This chapter uses perceptual image quality assessment (SSIM) for quantization table

(QT) optimization for JPEG compression. This leads to the study of rate-SSIM curves

that replace the traditional use of rate-distortion curves based on the PSNR. The chap-

ter introduces the use of a multi-objective optimization framework for estimating the

best rate-SSIM curves. To estimate globally optimal quantization tables, a stochastic-

optimization algorithm based on Simulated Annealing is proposed and its variations

are studied.

• Chapter 3: DRASTIC DCT for MJPEG: [14], [15]

The basic DRASTIC optimization modes are introduced in this chapter and are demon-

strated on the use of DCT compression.

• Chapter 4: A Dynamically Reconfigurable Deblocking Filter for H.264/AVC

Codec

A scalable deblocking filter is introduced that is jointly optimal in terms of bitrate,

dynamic power, and image reconstruction quality.

• Chapter 5: High Efficiency Video Coding (HEVC):

The chapter provides a basic introduction to HEVC.

• Chapter 6: DRASTIC for HEVC intra-prediction mode implementation:

The chapter provides a description of how to implement the 35 intra-prediction modes

associated with HEVC.

• Chapter 7: DRASTIC for HEVC intra-encoding at the Frame Level:

This chapter focuses on the use of DRASTIC modes for HEVC intra encoding. The
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approach focuses on the development of scalable prediction modes.

• Chapter 8: Conclusion and Future Work:

The final chapter provides a summary of the dissertation, provides concluding remarks,

and a summary for future work in this area.

A list of the publications that have resulted from the Ph.D. dissertation are given in the

Appendix.
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Chapter 2

JPEG Compression Using

Quantization Table Optimization

Based on Perceptual Quality

2.1 Abstract

We consider the use of perceptual image quality assessment for quantization table (QT)

optimization for JPEG compres- sion. For evaluating performance, we consider the use of

the Structural Similarity Index (SSIM) for evaluating distortion in the compressed images.

This leads to the study of rate-SSIM curves that replace the traditional use of rate-distortion

curves based on the PSNR.

We introduce a multi-objective optimization framework for estimating the best rate-SSIM

curves. To estimate glob- ally optimal quantization tables, A stochastic-optimization al-

gorithm based on Simulated Annealing is proposed and its variations are studied.

We report results on all methods on the Lena image and results from selected methods on the

LIVE image quality as- sessment database. For the LIVE database, compared to the use of
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the standard JPEG quantization table at quality factor QF=95, QTs based on the training

set give average bitrate re- ductions of 11.68%, 7.7% and an increase of 2.4%, while the

SSIM quality changes from -0.11%,+0.05% and 0.12% respectively. In all cases, the results

indicate that all considered methods improved over the use of standard JPEG tables.

2.2 Introduction

There is strong interest in the optimization of image compression methods based on objective

methods for evaluating perceptual image quality. This renewed interest comes from the

realization that the PSNR is a very poor measure of perceptual image quality [16] [17]. Thus,

traditional rate-distortion curves based on PSNR cannot accurately reflect perceptually-

optimal image compression. Instead, we consider the replacement of the PSNR by the

Structural Similarity Index (SSIM) and the use of rate-SSIM curves for the evaluation of the

performance of image compression methods (see [18] for SSIM).

For development of a perception-motivated optimization method for still image compres-

sion, Discrete Cosine Transform (DCT) coefficient quantization tables has significant role on

the compression performance. In terms of applications, our current focus is on the use of

the optimal quantization tables with JPEG [19].Here, we note that despite the introduction

of the JPEG 2000 standard, JPEG remains the most common still image compression stan-

dard. However, it is important to note that our approach is very general and its extension

to application with JPEG 2000 or other image and video compression methods should be

straight-forward.

Some related work appears in [17]. In [17], the authors derived SSIM bounds as a function

of the quantization rate for fixed-rate uniform quantization of image DCT coefficients, for

high data rates. Here, we will consider rate-SSIM optimization for high SSIM index values.

The SSIM is used for the design of optimal linear equalizers in [16] and optimal linear

restoration in [20].
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The rest of the chapter is organized as follows. We present a multi-objective optimization

formulation in section 2.3. This is followed by the methodology in section 2.4. The results

are presented in section 2.5, and concluding remarks are given in section 2.6.

2.3 A Multi-Objective Optimization Formulation

We begin this section by a brief overview of the multi-objective optimization approach. We

then discuss a stochastic optimization approach for solving the generated equations. We

consider the multi-objective optimization problem defined by

min
Q

Rate (Q, I), max
Q

SSIM (Q, I) (2.1)

where I denotes the input image, Q = (Q1, . . . , Q64) defines the Discrete Cosine Transform

(DCT) quantization table parameters, Rate denotes the achieved bitrate in average bits per

sample, SSIM(.) refers to the SSIM index. Here, the quantization table elements are integers

with values from 1 to 255.

To solve (2.1), we need to find Pareto optimal points. Here, a solution is defined to be

Pareto optimal if no other feasible point can be found that has both a lower bitrate and a

higher SSIM index. The set of solutions generated by this approach generates the rate-SSIM

graph.

To estimate the Pareto optimal points, we consider a scalarization of (2.1), given by:

max
Q

SSIM (Q, I)− C1Rate(Q, I), C1 > 0 (2.2)

Where C1 denotes a scalar constant that provides for the relative weight between the con-

flicting objectives.

For initializing the optimization procedure, we will consider the standard JPEG quanti-

zation table defined in terms of the Quality Factor (QF) parameter. Thus, to generate the
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rate-SSIM graph, we will consider initializing the search at multiple values of the QF. Note

that for each value of the QF, we also have corresponding initial values for the SSIM and

Rate index. This approach also provides for a method for estimating the scalar quantization

parameter C1. We estimate C1 of (2.2) using central differencing:

C1 ≈
SQFi+1

− SQFi−1

RQFi+1
−RQFi−1

(2.3)

where (SQFi+1
, RQFi+1

) and (SQFi−1
, RQFi−1

) denote the initial SSIM and rate values for

QF = QFi+1, QFi−1 respectively. It is interesting to note that (2.3) represents a slightly

biased estimator since we expect the slope to increase as compared to standard JPEG.

Since the Quantization table is made up of integer values, we cannot consider Newton or

other continuous-variable optimization method. Furthermore, due to the complexity of the

search space, an integer programming approach will be intractable. Instead, we consider a

global optimization approach based on Simulated Annealing(SA) [21].

2.4 Methods

Simulated Annealing estimates the optimal value by forming a probability density function in

terms of the function to be optimized. A Markov Chain of possible quantization table (QT)

values is generated based on a transition probability defined between different QT values.

The key to speed up convergence is to define an appropriate transition probability that will

move the QT values closer to the optimal value in fewer iterations. Here, we will consider

four different methods and then derive the transition probabilities for the most promising

method.

In summary, we consider the following methods for generating the Markov Chain:

• Method 1: Uniformly choose the QT coefficient index i to modify. Then modify Qi by

+1 or −1 with equal probability.

10
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• Method 2: Use a low-frequency exponential rule to select the QT coefficient index i to

modify (low-frequencies selected more frequently). Then modify Qi by +1 or −1 with

equal probability.

• Method 3: Uniformly choose the QT coefficient index i to modify. Then modify Qi by

drawing a sample from a discrete Gaussian distribution with σ = 1.

• Method 4: Use a low-frequency exponential rule to select the QT coefficient index i to

modify. Then modify Qi by drawing a sample from a discrete Gaussian distribution

with σ = 1.

• Method 5:Use a high-frequency exponential rule to select the QT coefficient index i to

modify (high frequencies selected more frequently). Then modify Qi by +1 or −1 with

equal probability.

Method 1 is fairly straight-forward. Every possible neighbor is considered with equal prob-

ability, and the change between neighbors is with the smallest step. Methods 2, 4 and 5 use

an exponential rule for deciding which QT coefficient should be changed next. To explain

the exponential choice rule, let us consider the 8 × 8 DCT coefficient grid. We define the

exponential choice rule based on:

f(i, j) = D · exp [−c(i+ j)/15] , i, j ∈ [1, . . . , 8], (2.4)

Where D is an appropriate normalization constant so that the discretized probabilities add

up to 1. By abuse of notation, we thus select the (i, j)-th QT coefficient to modify based on

f(i, j). To return to the 1-D indices, simply map (i, j) to the 1-D index given by 8(i−1)+j.

Furthermore, we map the 1-D index k to (i, j) using j = k mod 8 and i = (k − j)/8 + 1.

We can use the exponential rule in (2.4) to encourage the selection of low-frequencies using

c positive (methods 2 and 4 in section 7.5 use c = 0.5), or for encouraging the selection of

high-frequencies using c negative,(method 5 in section 7.5 uses c = −0.5). In what follows,

we let fE(.) denote the one-dimensional exponential distribution.
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Method 3 allows for both small and larger changes in the QT coefficients based on a

discretized Gaussian distribution. Method 4 combines the exponential rule of method 2

with the Gaussian changes of method 3. Method 5 is the same as method 2 but uses an

exponential rule that verifies the selection of high-frequencies.

It can be shown that the use of the exponential rule in method 4 leads to the transition

probability given by

f(Q+, Q) =
i=64∑
i=1

NQ+
i
(µ = Qi, σ = 1) · δ(Q+

i = Qi) · fE(i)

where Q denotes the current QT state, Q+ denotes next state in the Markov Chain, NQ+
⟩

denotes the one-dimensional discrete Gaussian distribution for the i-th coefficient of Q+.

Also, δ(Q+
i = Qi) means that Q+ keeps all of the coefficients of Q except for the i-th

coefficient.

After generating the next state Q+ from Q, the Simulated Annealing algorithm will jump

to the next state with probability [21]:

min{1, exp(λ · (O+ −O))} (2.5)

where λ denotes a temperature parameter, O+ represents the optimization function given

by (2.2) evaluated at Q+, and O represents (2.2) evaluated at Q.

The entire algorithm is summarized in Fig. 1. To generate the entire rate-SSIM graph,

we need to run this algorithm for different values of the quality factor QF. For each value

of QF, we may generate several Pareto-optimal points that outperform the standard JPEG

QT.

2.5 Results

We present results for the Lena image and the LIVE image quality database [22,23]. We will

first use the Lena image to discuss the proposed methods. Then, we provide a summary of
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Figure 2.1: Simulated Annealing (SA) Optimization for computing a Rate-SSIM optimal
point.

Input: Image I, Quality Factor (QF), SA parameter C0.
Output: Optimal quantization table Q.
1: Initialize Q to the standard JPEG quantization table for the specified quality factor QF.

Compute the standard rate R0 based on the optimal Huffman tables. Set i = 1.
2: Compute multi-objective parameter C1 using Eq. (2.3).
3: Use method 1, 2, 3, 4, or 5 to select the next state Q+ from the current state Q.
4: Compute the optimal Huffman table based on Q+.
5: Compute the objective function O+ based on Eq. (2.2).
6: Set λ = C0 ∗ ln(1 + i), and decide whether to transition to Q+ based on the transition

probability defined by Eq. (2.5).
7: Set i = i+ 1 for the next iteration.
8: Repeat 3 to 7 until i reaches the maximum number of iterations MaxIterations

the performance on the LIVE image quality database on methods 1, 2 and 5 in Tables 2.6,

2.7 and 2.8.

As described in the Methods section, we consider five different methods. We have results

in Tables 1-5 from Methods 1-5 respectively. In all cases, we consider JPEG compression

for the Lena image for Quality factor values: QF = 85, 90, 95 to initialize the search.

Furthermore, we set the SA parameter at C0 = 5000 for a maximum of 600 iterations. The

final results are with the best object function evaluations during each iteration.

Table 2.1: Method 1 results for the Lena (512× 512) image.

QF Final Final Rate SSIM
rate SSIM change change

95 2.3717 0.9814 -2.00% 0.36%
90 1.5164 0.9621 -8.07% -0.02%
85 1.2133 0.9523 -6.76% -0.07%

In Figures 2.2, 2.3, 2.4, we present the Pareto-optimal fronts for all 5 methods. In Fig.

2.2, we have the Pareto-optimal results for QF=95. Note that method 1 moves orthogonal

to the original Rate-SSIM graph as intended. The rest of the methods either move above
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Table 2.2: Method 2 results for the Lena (512 × 512) image based on the low-frequency
exponential rule.

QF Final Final Rate SSIM
rate SSIM change change

95 2.3036 0.9804 -4.81% 0.25%
90 1.5138 0.9617 -8.23% -0.05%
85 1.1985 0.9524 -7.89% -0.06%

Table 2.3: Method 3 results for the Lena (512 × 512) image based on discretized Gaussian
model.

QF Final Final Rate SSIM
rate SSIM change change

95 2.1843 0.9766 -9.74% -0.13%
90 1.3341 0.9568 -19.12% -0.56%
85 1.0812 0.9478 -16.90% -0.55%

Table 2.4: Method 4 results for the Lena (512 × 512) image based on the low-frequency
exponential rule and discretized Gaussian model.

QF Final Final Rate SSIM
Rate SSIM change change

95 2.0840 0.9759 -13.89% -0.20%
90 1.3491 0.9575 -18.21% -0.49%
85 1.0975 0.9486 -15.66% -0.46%

Table 2.5: Method 5 results for the Lena (512 × 512) image based on the high-frequency
exponential rule.

QF Final Final Rate SSIM
Rate SSIM change change

95 2.6117 0.9824 7.92% 0.47%
90 1.6592 0.9626 0.59% 0.04%
85 1.3015 0.9531 0.02% 0.02%

or below method 1. This trend seems to also occur in Figures 2.3 and 2.4. In Fig. 2.4, it

is interesting to note that an entire, nearly-continuous Pareto front was generated from the

use of the 5 methods for QF = 85. Overall, we select Methods 1, 2 and 5 to run with the

LIVE database. Our choice is based on generating a diverse set of results as shown in Fig.2.
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In Fig. 2, it is clear that methods 2 and 5 seem to go into different optimization directions.

It is also interesting to note that method 2 favors low-frequency changes while method 5

favors high-frequency changes, while method 1 becomes the same as methods 2 and 5 for

c = 0. It is easy to see that Method 1 is much better than the orginal standard QT since

it produces a decrease in bitrate and an increase in the SSIM index. Method 2 can cause

significant bitrate reduction, but this comes at a slight decrease in the SSIM index. Method

5 can lead to an increase in the SSIM index at a slightly increases bitrate, The methods using

Gaussian models don’t show significant difference from the methods using the exponential

rule. Generally, by adjusting c in the exponential rule and C1 in (2.2), the methods behave

similarly. However, in all cases, the proposed methods yield improvements over the use of

standard JPEG QTs (e.g., see Figs. 2-4).
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Figure 2.2: Rate-SSIM comparisons for all methods for the Lena image at QF=95. The
circled points represent Pareto-optimal results.

We use the leave one out method to test methods 1, 2 and 5 on the LIVE database. Here,
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Figure 2.3: Rate-SSIM comparisons for all methods for the Lena image for QF=90. The
circled points represent Pareto-optimal results.

we use 28 images for training and the remaining one for testing. In training, we compute

the optimal quantization table for each one image and then take the median of all of them.

During testing, the median quantization table is used on the remaining image. The results

for methods 1, 2 and 5 are given in Tables 6 and 7 8 respectively.

From Table 6, it is clear that method 1 produced better results. The median quantization

tables gave a rate decrease as well as an SSIM improvement. On average, we have a rate

decrease of 7.7% and an SSIM increase of 0.06%. For method 2, we had an average rate

decrease of 11.68% at a slight SSIM decrease of 0.11% (see Table 7). Method 5 emphasizes

on SSIM improvement, with an average 0.12% increase of the SSIM, but also, the average

bitrate increase 2.4%.
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Figure 2.4: Rate-SSIM comparisons for all methods for the Lena image at QF=85. The
circled points represent Pareto-optimal results.

Table 2.6: Method 1 results for the LIVE database using leave one out validation on the
median QT (QF=95). Here, we report the average, and the percentile results (min, 25th,
50th, 75th, max) on rate change.

File Final Final Rate SSIM
Name Rate SSIM change change
Average -7.70% 0.06%
’parrots’ 1.5036 0.9817 -13.14% (min) -0.09%
’sailing3’ 2.1073 0.9802 -8.72% (25%) 0.06%
’sailing1’ 2.7234 0.9885 -7.22% (50%) 0.07%
’cemetry’ 3.3588 0.9910 -6.41% (75%) 0.11%
’building2’ 4.2494 0.9953 -5.43% (max) 0.08%

2.6 Conclusion

In this paper, we present a multi-objective optimization framework for JPEG image com-

pression based on perceptual image quality assessment. In particular, we consider the use
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Table 2.7: Method 2 results for the LIVE database using leave one out validation on the
median QT (QF=95). Here , we report the average, and the percentile results (min, 25th,
50th, 75th, max) on rate change.

File Final Final Rate SSIM
Name Rate SSIM change change
Average -11.68% -0.11%
’parrots’ 1.4204 0.9802 -17.95% (min) -0.24%

’womanhat’ 2.1189 0.9799 -13.54% (25%) -0.17%
’lighthouse2’ 2.4562 0.9805 -11.28% (50%) -0.14%
’woman’ 3.0394 0.9829 -9.70% (75%) -0.07%
’building2’ 4.1291 0.9942 -8.10% (max) -0.02%

Table 2.8: Method 5 results for the LIVE database using leave one out validation on the
median QT (QF=95). Here, we report the average, and the percentile results (min, 25th,
50th, 75th, max) on rate change.

File Final Final Rate SSIM
Name Rate SSIM change change
Average 2.40% 0.12%

’flowersonih35’ 3.8631 0.9963 1.64%(min) 0.05 %
’bikes’ 3.6631 0.9930 2.11%(25%) 0.10%
’rapids’ 3.3482 0.9886 2.40%(50%) 0.17%

’lighthouse’ 2.8465 0.984 2.62%(75%) 0.14%
’sailing2’ 2.2470 0.978 3.39%(max) 0.17%

of rate-SSIM graphs for replacing the traditional use of rate-distortion graphs based on

PSNR. As a particular example of this framework, we consider the optimization of the DCT

coefficient quantization table.

For high quality factors, as compared to the use of the standard JPEG quantization

tables, the optimized quantization tables form new rate SSIM curves that represent signif-

icant improvements. Our approach can also be extended to cover other image and video

compression standards.
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Chapter 3

DRASTIC DCT for MJPEG

3.1 Abstract

Video communications dominate bandwidth requirements in real-time communications sys-

tems. Yet, constraints on real-time communications can vary based on available bandwidth,

power, or the required level of image quality. This chapter introduces a real-time hardware

reconfiguration framework that can be used to select and implement jointly-optimal (in the

multi-objective sense) hardware realizations and associated software parameters for meeting

real-time constraints for communications systems. Beyond standard rate-distortion opti-

mization, the approach is demonstrated in jointly optimizing dynamic power consumption,

the quality of the reconstructed image, and the required bitrate. Real-time constraints are

grouped into four fundamental modes based on (i) minimum dynamic power, (ii) minimum

bitrate mode, (iii) maximum image quality mode, and (iv) a typical mode that attempts to

balance among multiple constraints.

Real-time switching among the fundamental modes is demonstrated on motion-JPEG. To

meet the real-time constraints, the system uses dynamic partial reconfiguration over a set of

2D DCT modules. The scalable 2D DCT modules compute lower magnitude DCT frequen-
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cies using zonal control at different bitwidths (2-9 bits). In addition to hardware control,

the system adjusts the quality factor (a software parameter) to generate a total of 1280

configurations that include 841 that are Pareto optimal. Beyond the fact that the proposed

proposed approach is scalable in dynamic-power, image quality, and bit rate, it also provides

full 2D DCT calculation that is at least as good or significantly better than any previously

published approach. A scalable, real-time controller is used for selecting an appropriate

configuration so as to meet time-varying constraints. The real-time controller is shown to

satisfy the constraints of the fundamental communications modes as well as to be able to

effectively switch configurations to follow mode changes. Overall, the proposed approach

yields significant savings over the use of comparable static architectures.

3.2 Introduction

The performance of video communication systems depends on balancing requirements asso-

ciated with the network, the user experience, and the video display device. For example, the

network imposes bandwidth constraints. On the other hand, users require sufficient levels of

video quality. For display on mobile devices, it is also important to conserve power. Often,

the constraints can lead to opposing requirements. For example, delivering higher video

quality requires higher levels of power and bandwidth. This paper describes a dynamically

reconfigurable system that allows the users to meet real-time constraints on image quality,

dynamic power consumption, and available bandwidth. More generally, the term Dynam-

ically Reconfigurable Architecture System for Time varying Image Constraints (DRASTIC)

is used to describe a video processing system that can meet real-time constraints through

dynamic reconfiguration.

Four fundamental communications modes can be used to summarize the requirements

for optimal performance subject to real-time constraints:
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• Minimum dynamic power mode: The goal is to minimize dynamic power subject

to available bandwidth and a minimum level of acceptable image quality. In this mode,

a mobile device can reduce it’s power requirements without sacrificing the user expe-

rience. Furthermore, in this mode, a mobile device can conserve energy and maximize

its operating time.

• Minimum bitrate mode: The goal is to minimize bitrate requirements subject to

a maximum level of dynamic power and a minimum level of acceptable image qual-

ity. Thus, the user can enjoy the compressed video without sacrificing video quality.

Furthermore, since the bitrate is minimized, the network can accommodate a large

number of users without sacrificing the service.

• Maximum image quality mode: The goal is to maximize image quality without ex-

ceeding the maximum available bandwidth or the maximum available dynamic power.

In this mode, the user will be able to examine the video at the maximum possible video

quality that can be delivered by all available bandwidth and computing power.

• Typical mode: In this mode, the goal is to optimize a weighted average of the required

dynamic power, bitrate, and image quality within constraints on all of them. Here, we

have a balanced approach that supports trade-offs between dynamic power, quality,

and bitrate.

Clearly, by selecting appropriate weights in the typical mode, we can achieve the performance

of the other three modes. Yet, we still focus on the different modes in order to emphasize

the user requirements for minimizing power, bitrate, or maximizing quality.

The video encoding system is demonstrated on motion JPEG (MJPEG). The focus on

motion JPEG is motivated from its relatively low complexity (e.g., see [24]) that make it

popular in low profile webcams, surveillance systems [25, 26] and emerging applications in

virtual network computing (VNC) [27]. Clearly though, the concepts that are introduced
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here can be applied to any video coding standard. In fact, the use of the Discrete Cosine

Transform (DCT) and quantization tables is shared by all video coding standards.

The basic system is shown in Fig. 4.1. The approach is demonstrated in the compression

of the Y-component of color video. Here, a joint software-hardware optimization system

uses a Dynamic Reconfiguration (DR) controller to select DCT hardware cores and quality

factor (QF) values to meet constraints in bitrate, image quality, and power. To solve the

optimization problem, the system relies on the use of feedback from the current bitrate, image

quality measured using the structural similarity index metric (SSIM), and pre-computed

dynamic-power consumed by an adaptive DCT IP core. A dynamic reconfiguration (DR)

controller compares the current bitrate, image quality, and power with the required levels to

determine if constraints are met. Depending on each optimization mode, a suitable DCT IP

core and quality-factor value is selected for the next video frame. Alternatively, the dynamic

reconfiguration overhead can be reduced by fixing the hardware configuration over a number

of video frames or until a maximum number of reconfigurations has been met.

RGB YCbCr

8x8 DC shifted block

DR

DCT

stored block in memory

Bitstream Quanti-

zation

Entropy

encoder

Zigzag Coe�. Ordering

DR

Controller

Coe�cient Bits 

& Zonal Mode

Quality  Factor

Quality

Rate

Power

Input

Frame

ConstraintsModes

Feed

Back

Figure 3.1: Dynamically Reconfigurable Architecture System for Time varying Image Con-
straints (DRASTIC) for motion JPEG.

The basic contributions of the paper are summarized as follows:
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• DRASTIC optimization modes for video communications: The paper introduces new

real-time optimization approaches that can be used to minimize dynamic power, maxi-

mize image quality, reduce bitrate, or provide balanced solutions for meeting real-time

video constraints. This approach extends traditional rate-distortion optimization ap-

proaches that do not consider dynamic energy or power constraints or the use of image

quality metrics (e.g., SSIM [18]).

• Scalable, Pareto-optimal DCT cores with quantization control: A scalable architecture

is used to generate a family of hardware cores that can be used to compute lower-

frequency subsets of the DCT frequencies using different bit-widths. The approach is

motivated by the observation that significant compression can be achieved through the

effective quantization of high-frequency components. Thus, in addition to the scalable

DCT cores, we investigate the use of different quality factors that control the DCT

quantization tables. This results in a joint software-hardware optimization approach.

Yet, not all generated configurations will necessarily be useful. We use a training set

to determine the hardware configurations that are Pareto optimal.

• Scalable dynamic reconfiguration controller based on feedback: A dynamic reconfigura-

tion controller is used for meeting real-time constraints through a joint optimization

of the software-hardware configuration. In real-time, the controller selects the active

DCT core and quality factor from a set of pre-computed, Pareto-optimal configura-

tions. After a selection is made, real-time feedback is used for adjusting the DCT core

and the quality factor. Dynamic reconfiguration overhead is controlled in a scalable

fashion by adjusting the number of video frames between configurations or the total

number of reconfigurations per 100 frames that can be used. In the case of unrealis-

tic constraints that cannot be met, the controller selects the best solution based on

reformulation of the problem using unconstrained optimization.

The rest of the paper is organized as follows. Related work background is given in

Section II. The proposed architecture is described in Section III. An implementation of the
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architecture is given in Section IV. Hardware testing of proposed architecture is given in

Section V. Concluding remarks and future work are given in Section VI.

3.3 Background and related work

3.3.1 Dynamic Reconfiguration Based on Multi-objective Opti-

mization

Some of the basic concepts behind the use of dynamic partial reconfiguration (DPR) for

meeting real-time constraints have been recently presented in [28]. In [28], the focus was on

the development of a video pixel processor that can be adapted to meet real-time constraints

in Power/Energy-Performance-Accuracy. Here, the focus is on the development of a dynam-

ically reconfigurable system that can meet communication constraints through the use of

joint software-hardware optimization that involves the Discrete Cosine Transform and the

quality factor. The paper also introduces a scalable controller for controlling the reconfigu-

ration overhead. Nevertheless, the current paper shares some of the theory with the work

presented in [28]. For completeness, a summary of this related background research will be

provided.

To satisfy multi-objective optimization constraints in hardware, there is a need to gen-

erate a family of hardware cores that sample different points in the multi-objective space.

The Pareto front is computed from the family of the generated hardware realizations. The

Pareto front represents the set of optimal configurations. To meet real-time constraints, a

dynamic reconfiguration controller selects a Pareto-optimal realization and implements it in

hardware using dynamic partial reconfiguration. In this paper, this basic dynamic reconfig-

uration controller is extended through the use of feedback and scalability so as to control

the reconfiguration overhead.
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To generate the Pareto-front for the current application, prior research focused on the

computation of DCTs that was reported in [29–31]. The basic idea here was to avoid the

computation of higher-frequency components by only computing the N ×N , N = 1, 2, . . . , 8

lower frequency components. In [29–31], the authors demonstrated the use of this adaptive

DCT in an MPEG2 system. Furthermore, some preliminary work related to the current

paper was reported in [14,15]. In this prior work, the examples were from applications using

still images without considering time-varying constraints in digital video. Beyond digital

video, the current paper provides a significant extension beyond this prior research that

includes the use of a scalable dynamic reconfiguration controller that uses feedback to meet

the time-varying constraints.

3.3.2 Rate-Distortion-Complexity Control

This section provides a summary of prior research focused on controlling computational

complexity for real-time video encoding. The section then describes the extensions provided

by the proposed research.

A relatively recent attempt to manage real-time computational complexity in video en-

coding has been described in [32]. In [32], in order to limit computational complexity, the

authors recommended dropping video frames while attempting to manage image quality.

Overall, this direct approach attempts to manage video quality losses by smoothing frame-

rates. As verified by subjective video quality measurements, the managed approach will

perform better than a reference encoder.

An approach related to the research presented in this paper has been recently intro-

duced in [6] and further developed in [7]. In [6], the authors were interested in Power-Rate-

Distortion (P-R-D) optimization for wireless video communication under energy constraints.

Here, the authors use dynamic voltage scaling (DVS) to control power consumption and

then investigate the rate-distortion performance under power control. The paper demon-
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strates how the system adjusts its complexity control to match the available energy supply

while maximizing the picture quality. In [7] the authors show that they can achieve up to

a 50 percent reduction in power consumption by adjusting the hardware configuration to

follow the non-stationary characteristics of the video. Some of the issues associated with

the attempt to use complexity-control with motion estimation have been the focus of more

recent research in medium-granularity complexity control (MGCC) reported in [11]. In [11],

the authors introduced a rate-complexity-distortion mode for a group of pictures (GOP) to

allocate complexity at the frame level.

As noted earlier, for low-energy devices that use MJPEG, motion estimation is avoided.

Furthermore, a scalable and parametrizable system based on the DCT and the quality factor,

such as the one developed here, can also be applied for motion-compensation of motion-

based video coding. Clearly-though, our optimization modes provide a general framework

for extending this prior research of minimizing energy to new modes that support maximizing

quality and minimizing bitrate while also allowing the user to switch among different modes.

The scalable DR controller also allows the user to control the reconfiguration overhead while

estimating performance at the frame level.

3.3.3 DCT hardware implementations

This section provides a review of 2D DCT implementations. The review focuses on the

complexity of each approach that suggests the need for a separable implementation that

allows scalability in the number of accuracy bits and the number of DCT frequencies to be

computed.

Let X8×8 represent an input image block after DC shift. Here, note that the DC shift

is implemented by subtracting 128 from the unsigned 8-bit input image. The DCT output

image is then represented as a 16-bit signed integer given by:
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Zu,v = CuCv

7∑
i=0

7∑
j=0

Xi,j cos

(
u(2i+ 1)π

16

)
cos

(
v(2j + 1)π

16

)
(3.1)

where:

Cu =

 1
2
√
2

for u = 0

1
2

for u > 0

DCT implementations can be classified into the following categories:

• Direct approaches: [33–39]: The 2D DCT is implemented using matrix-vector prod-

ucts. Direct methods based on Chen’s algorithm [40] are very effective and represent

a very popular choice.

• Distributed arithmetic (DA)-based designs [41–44]: The 2D DCT result is

computed bit by bit by considering the products of the DCT basis functions with

the input image block. DA-based designs are inherently bit-serial in nature and this

issue cannot be addressed effectively except for the special cases (see [41]). Given

the complexity and focus on bit-by-bit computation, DA-based approaches cannot be

easily adapted for of computing a limited number of DCT frequencies, as required for

DRASTIC.

• Systolic array (SA)-based designs [30, 45–47]: The DCT is computed using a

relatively-large array of processing elements (PEs) arranged in a systolic array pattern.

Unfortunately, SA implementations require significant resources and sophisticated I/O

control.

• CORDIC-based designs [48–50]: A CORDIC processor is used for computing the

cosine coefficients in the DCT. Similar to SA implementations, CORDIC implementa-

tions require significant resources.

• Algebraic Integer(AI)-based designs [51]: By mapping possibly irrational num-

bers to an array of integers, these methods can achieve high precision. However, good

precision requires significant resources.
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Compared to separable approaches, non-separable approaches require more resources

since the number of required FIR taps grows as N2 as opposed to N for the separable case.

Furthermore, for dynamic reconfiguration, it is clear that non-separable approaches require

considerable overhead since we will have store the architecture descriptions in memory. Thus,

in what follows, the paper will focus on a separable approach based on Chen’s algorithm [40].

3.3.4 A separable implementation of the 2D DCT based on Chen’s

algorithm

From (3.1), a separable implementation of the 2D DCT is given by Z = (MX)MT , where

Mi,j = Ci cos(
i(2j+1)π

16
). Here, (MX)MT is implemented by first transposing (MX) and then

applying M . Thus, a separable implementation is based on: Z = (M(MX)T )T .

To efficiently implement multiplication by M , let Di = cos(iπ/16)/2, and define a = D4,

b = D1, c = D2, d = D3, e = D5, f = D6, g = D7, which gives the following expression for

M :

M =



a a a a a a a a

b d e g −g −e −d −b

c f −f −c −c −f f c

d −g −b −e e b g −d

a −a −a a a −a −a a

e −b g d −d −g b −e

f −c c −f −f c −c f

g −e d −b b −d e −g



. (3.2)
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The output Y = MX is computed using
Y (0)

Y (2)

Y (4)

Y (6)

 =


a a a a

c f −f −c

a −a −a a

f −c c −f




X(0) +X(7)

X(1) +X(6)

X(2) +X(5)

X(3) +X(4)

 (3.3)

where the matrix multiplication is efficiently implemented using:
a a a a

c f −f −c

a −a −a a

f −c c −f

 =


a a 0 0

0 0 c f

a −a 0 0

0 0 f −c




1 0 0 1

0 1 1 0

1 0 0 −1

0 1 −1 0

 . (3.4)

Similarly, an efficient matrix decomposition can be used to implement the odd-indexed out-

put expressed as:
Y (1)

Y (3)

Y (5)

Y (7)

 =


b d e g

d −g −b −e

e −b g d

g −e d −b




X(0)−X(7)

X(1)−X(6)

X(2)−X(5)

X(3)−X(4)

 . (3.5)

To produce a frequency-scalable representation, begin with the lower-indexed DCT co-

efficients given by Y (0), Y (1), . . . , Y (n), where n ≤ 7. Then, in the implementation of

the DCT, the corresponding rows in (3.3) and (3.5) need to be implemented so as to com-

pute the required DCT coefficients. In the separable approach described here, the 2D DCT

coefficients are given by Xu,v 0 ≤ u, v ≤ n (see (3.1)).

3.3.5 Video image quality assessment using SSIM

Video image quality will be assessed using the Structural Similarity Index (SSIM) [18]. Here,

note that video quality assessment is still an open problem (e.g., see [52–55]). However, SSIM

provides a simple and effective method for assessing video image quality of individual frames.
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Assuming that x, y represent the original and reconstructed images, SSIM is given by:

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ (3.6)

which is expressed as the product of the luminance (l(x, y)), the contrast (c(x, y)), and

structure components (s(x, y)), and α, β, γ > 0 are set to the default value of 1.

3.3.6 Quantization table specification using a quality factor

The DCT quantization level will be controlled using the quality factor (QF). QF is given as

integer value that is constrained between 1 and 100. The DCT quantization table is then

given by:

Qij = Clip1,255

[
Q∗

ij · scale+ 50

100

]
clipped to stay within 1 and 255, Q∗

ij refers to the standard JPEG quantization table for

scale = 1 and the scale is given by:

scale =


5000/QF, for 1 ≤ QF < 50;

200− 2 ·QF, for 50 ≤ QF ≤ 99;

1, for QF = 100.

3.4 A Dynamically Reconfigurable Architecture Sys-

tem for Time-Varying Image Constraints (DRAS-

TIC)

3.4.1 Constrained optimization formulation

This section introduces a constrained optimization framework for defining DRASTIC modes.

The implementation of the framework uses joint software-hardware implementation.
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The optimization objectives are defined in terms of: (i) DP which denotes the dynamic

power consumed by the FPGA (see [28]), (ii) BPS which denotes the number of bits per

sample, and (iii) Q which denotes the image quality metric. In terms of the free parameters

that we can modify to achieve our objectives, let HW denote the different hardware con-

figurations, and let QF denote the quality factor used for controlling the quantization table

(software controlled). To formulate constraints on the objectives, let Qmin denote the min-

imum acceptable image quality level, Pmax denote the maximum dynamic power available,

and Qmin denote the minimum level of acceptable image quality.

The DRASTIC modes are then defined as constrained optimization problems using:

• minimum power mode (mode=0):

min
HW,QF

DP subj. to: (SSIM ≥ Qmin)& (BPS ≤ Bmax).

• minimum bitrate mode (mode=1):

min
HW,QF

BPS subj. to: (SSIM ≥ Qmin)& (DP ≤ Pmax).

• maximum image quality mode (mode=2):

min
HW,QF

−SSIM subj. to: (BPS ≤ Bmax)&(DP ≤ Pmax).

• typical mode (mode=3):

min
HW,QF

−α · SSIM + β · BPS + γ ·DP

subj. to:

(BPS ≤ Bmax)& (SSIM ≥ Qmin)& (DP ≤ Pmax).
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Figure 3.2: Scalable data path for the 2D-DCT using ping-pong transpose memory. The
number of bits used at each stage are given in the figure. The input image block is assumed
to be of size 8 with signed, 8-bit integer values. The removal of the highest frequency
components is highlighted in red.

3.4.2 Hardware design

A scalable and separable implementation of the DCT is shown in Fig. 3.2. A ping-pong

memory [38] implementation is used for efficient implementation of the transpose operation.

The Decompose filter shown in Fig. 3.2 is used to implement (3.4), (3.3) as shown in Fig.

3.3. The 1D filter used in implementing (3.5) is shown in Fig. 3.4.

The implementation in Fig. 3.2 represents a parallelized and pipilined implementation.

In terms of parallelism, we note that the column DCTs can be implemented in parallel,

followed by transposition in ping-pong memory, and then the row DCTs. Row operations

in (3.5) are carried out in parallel using 1D filters. The trim operations implement floor

operations by truncating the results towards zero as shown in Fig. 3.5. For each 1D DCT,

we have a 4-staged pipeline. The Ping-Pong transpose memory consists of two 8×8 transpose

memory arrays. In pipelined operation, a row DCT is computed in each cycle. Furthermore,

it takes 8 cycles to complete a 2D DCT.

The scalability required for effective multi-objective optimization is implemented using

zonal control [14, 29–31, 56], and output bit width control. As stated earlier, the basic idea

is to achieve perceptual scalability by keeping the lower frequency components while elimi-
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Figure 3.3: Scalable Decompose filter implementation of the matrix-vector product given in
(3.4). Refer to Fig. 3.2 for how the decompose filter fits the DCT core. The inputs Sij refer
to the X(i)+X(j) sum of equation (3.3). The outputs correspond to Y (0), Y (2), Y (4), Y (6)
of (3.3). The datapath associated with the highest frequency component is highlighted in
red. Note how tracing backwards from each output, we can generate a scalable datapath
that removes the circuitry associated with each frequency component.

nating the computation of higher frequency components. We implement 8-levels associated

with keeping the DCT lower-frequency subsets of the complete frequency set. We use Z0 to

Z7 to denote the different zones (levels) associate with the DCT computation. Similarly, for

bitwidth control, we keep the most significant bits [15, 57]. This is implemented adjusting

the word-length implementation of the DCT coefficients a to g in (3.2) using WL ∈ [2, 9].
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Figure 3.5: Signed integer trimming of a-bit input x to an (a-b)-bit output by truncating
the output towards zero (floor operation). This component is used to control the bit-width
in the optimization process.

3.4.3 Pareto Front and Constraint Satisfaction

The range of possible DCT hardware cores needs to be jointly considered with control of the

quantization table. For example, gains due to increasing the bit-width in the DCT cores may

be offset by a decrease in the Quality Factor (see section 3.3.6). The goal here is to eliminate

configurations that are not Pareto-optimal [28]. In other words, we eliminate configurations

for which we can find another configuration that delivers performance that is at-least as good

in all of the objectives (quality, power, bitrate), and performs better in at-least one of the

objectives [28]. The remaining configurations represent the Pareto-front that will be used in

further optimization.

In practice, the Pareto-front can be computed offline using a training set. For each

configuration, the average performance for each set of objectives will be used for determining

the Pareto-front.

We consider a direct implementation of DRASTIC modes by searching through the

Pareto-front. In this direct approach, we select the configuration that minimizes the op-

timization objective while satisfying the constraints. For example, in the maximum quality

mode, we would select the configuration that provides for the best (max) image quality while

not exceeding constrains on power and bitrate. As we shall describe next, we can reduce the

overhead by controlling the number and frequency of dynamic reconfigurations.
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3.4.4 Scalable Control of Reconfiguration Overhead

Unlike H.264 and H.265 video encoding, for our target MJPEG application, feedback can be

considered to be an expensive operation. Thus, we avoid the use of feedback and dynamic

partial configuration (DPR) while processing a single video frame. Instead, we propose the

use of periodic updates and a bound on the maximum number of reconfigurations. We

provide details below.

In what follows, let RecP denote the reconfiguration period that describes how often the

system reconfigures in terms of the number of frames. Also, let RecC denote the maximum

number of allowed reconfigurations for a specified duration of RecDur (from recconfiguration

duration) video frames. Here, RecC is used to control the total overhead associated with

dynamic reconfiguration for adapting to the DRASTIC mode. Alternatively, RecC could

have been set as a function of the reconfiguration period RecP. In this paper, we just use

RecDur frames for each mode, and assign a default value of 100 video frames. Thus, un-

less otherwise specified, we assume RecDur = 100 so that RecC can be interpreted as the

percentage of the number of fames for which the system is allowed to reconfigure. Since

dynamic reconfiguration is not allowed within a single video frame, all of the objectives are

also updated as a function of the number of processed video frames. The goal here is to

adjust the constraints set for each video frame so that the constraints are met on-average

over the processed frames.

To illustrate the basic idea for the bitrate constraint, let n denote the current video

frame, and recall that Bmax denotes the maximum number of bits per pixel that appear

in the DRASTIC mode. After processing the video frame, let BPSn denote the measured

number of bits per sample that were used in encoding the n-th frame. We then have that

the remaining bits that can be allocated (or deallocated) to future frames are given by

∆BPS,n = Bmax − BPSn. (3.7)

Assuming that we periodically reconfigure after RecP frames, we would then adjust the
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maximum bitrate allocated for the n-th frame Bmax,n using:

Bmax,n =

Bmax + ∆BPS,n/RecP, for (n− 1)%RecP = 0

Bmax,n−1, otherwise,
(3.8)

which allocates (or deallocates) the remaining bits over RecP frames. Thus, by adjusting the

number of bits per sample for each video frame, we expect that the constraints will be met

on average. Similarly, the approach can be applied for updating constraints on image quality

Qmin,n and dynamic power Pmax,n. Furthermore, the rule in (3.8) can be easily extended so that

it will only apply when the number of dynamic reconfiguration does not exceed a maximum

bound. Clearly, it is possible that the constraints cannot be met on the Pareto-front. In

this case, we reformulate the problem using unconstrained optimization so that the controller

will select a configuration that will be as close as possible to the desired constraints. For

example, for the typical mode, when all constraints are active, we select the configuration

that solves:

minHW,QF a(Bmax,n − BPSn)
2

+b(Pmax,n − DPn)
2

+c(Qmin,n − SSIMn)
2,

(3.9)

where the weights a, b, c can be set equal or adjusted to give emphasis to different constraints.

When a constraint is not active, its corresponding weight is set to zero. For example, for

the maximum quality mode, we will set c = 0. We select the weights so as to scale each

constraint violation by the user-specified range of bounds. For example, if Q1, Q2 represent

the minimum and maximum bounds on image quality, we set c to c = 1/(Q2−Q1)
2. We use

a similar approach for a and b.

3.4.5 Scalable DRASTIC Controller

The general framework for implementing a DRASTIC mode is given in Fig. 3.6. Switching

between DRASTIC modes requires that the code gets adapted to the new mode. On the
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other hand, we note that the Pareto front applies to all of the modes and only needs to

be computed once over the training data. The controller controls the overhead based on

maximum number of reconfigurations RecC per RecDur frames and the reconfiguration period

RecP.

Initially, a single video frame is processed in order to estimate the objectives based on the

initial configuration. The relevant constraint budgets are then updated and used to search

the Pareto front for the optimal configuration (see (3.8)). Failure to find a configuration that

satisfies the constraints will force a reformulation of the problem as an unconstrained opti-

mization problem. Once the optimal configuration has been found, it is used for processing

the remaining RecP− 1 frames of the current period. The procedure is then repeated for the

next set of RecP video frames.

3.5 Results

3.5.1 Pareto-front estimation & comparisons to full 2D DCT im-

plementations

To generate an estimate of the Pareto front, we use the LIVE image database as a training

set [23]. For each configuration, we generate the hardware core and estimate the required

bitrate, image quality, and dynamic power that is required for compressing each image. For

the dynamic power, we use Xilinx’s XPower tool to estimate power consumption on a Virtex-

5 device (Xilinx XC5VLX110T). Then, the Pareto-front is estimated based on the median

value of each configuration.

We generate hardware configurations by varying: (i) the software-based quality factor

QF = 5, 10, 15, . . . , 100 (20 settings), (ii) the DCT hardware to compute Zu,v for 0 ≤ u, v <

Z = 1 to 0 ≤ u, v < Z = 8 (8 settings), and (iii) the DCT coefficients implemented in
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hardware using word-length WL = 2, 3, 4, . . . , 9 (8 settings). Based on the different settings,

we have 20 × 8 × 8 = 1280 possible configurations from which only 841 were found to

be Pareto-optimal. The Pareto front is shown in Fig. 3.8. The Pareto front surface sets

fundamental limits on the implementation of DRASTIC mode constraints as will be discussed

in Section 3.5.2.

The resulting hardware configurations are summarized in Table 3.1 and the corresponding

estimated dynamic power is shown in Fig. 3.7. In order to visualize the scalability of the

proposed approach, we index the hardware configurations using Config = (Z−1)·8+WL−1.

Then, we plot the the required slices and dynamic power against Config in Fig. 3.7. From

Fig. 3.7(b), it is clear that the dynamic power is densely sampled in the configuration space.

Returning to the Pareto front results of Fig. 3.8, it is important to note the relatively dense

sampling achieved over the Pareto front for image quality levels associated with SSIM > 0.7.

This observation is important since reducing image quality below this level will produce

images of unacceptable quality (e.g., see Fig. 3.12(d)).

A comparison of the full DCT implementation against other FPGA implementations is

given in Table 3.4. As a result of the parallel and pipelined implementation, the proposed

DCT architecture achieves the highest throughput by only requiring 8 cycles to compute a

2D DCT. Yet, the implementation requires lower numbers of FPGA slices and consumes low

levels of dynamic power. In terms of dynamic power, we note the lower results due to Huang

et al. [29] were achieved using a much simpler architecture at a much lower frequency (41.79

MHz versus 100 MHz of the proposed approach), that requires a significantly higher number

of throughput cycles. In any case, the greatest advantage of the proposed approach is the

fact that it is scalable in dynamic-power, image quality, and bit-rate while providing full

DCT calculation that is at-least as good or better than any previously published approach.
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3.5.2 DRASTIC mode implementation & comparison to optimized

static approaches

This section provides specific definitions of the DRASTIC modes and explains how they can

be derived from the Pareto front. An effective setup for controlling the dynamic reconfig-

uration overhead that requires reconfiguration for only 5% of the video frames is discussed

afterwards. The section summarizes how the proposed approach can lead to significant sav-

ings over optimized static approaches. While training was performed on the UT LIVE image

database, the system was validated on an independent testing video database of 9 standard

videos: city, crew, football, foreman,hall monitor, harbor, mobile, mother and daughter and

soccer (see [58]).

In order to define realistic DRASTIC constraint profiles, we need to select profiles that

are compatible with the Pareto front (see Fig. 3.8). Given the wide applications of the UT

LIVE image quality databases, we expect that the values derived from them will be widely

applicable. In general, we can see that we can achieve higher values of image quality by

allocating higher bitrate and larger values of dynamic power. To understand this trend,

note that higher image quality results from the need to compute higher frequency compo-

nents and longer word-lengths that result in higher dynamic power. Furthermore, storing

the higher frequency components requires additional bits that raise the number of bits per

sample. Realistically, image quality bounds need to have SSIM values about 0.7 to maintain

a minimum level of acceptable image quality. This discussion leads to the low, medium, and

high profiles given in Table 3.2.

The efficient implementation of the DRASTIC modes requires that we determine optimal

parameters for RecC and RecP so as to minimize the reconfiguration overhead while still

providing acceptable performance. We investigate the trade-off between RecC and RecP by

considering all DRASTIC modes for (i) periodic update control using RecP=1, 5, 10, while

allowing the maximum number of reconfigurations per 100 frames using RecC=100, and (ii)
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initial adaptation control using RecC=5, 10, 100, while allowing the maximum number of

periodic updates by using RecP=1. The results are summarized in Figs. 3.11 and 3.12.

For the typical mode plots of Fig. 3.12, it is clear that the constraints are met for all

profiles. In other words, for most configurations, image quality remains above the minimum

levels, while dynamic power and required bit rates remain below the bounds. For all of the

other modes, only two of the three constraints are active, while the remaining constraint

becomes an objective to be optimized. For example, for the maximum image quality mode

demonstrated in Figs. 3.11(e), (f), it is clear that we have substantially higher image qual-

ity that the typical mode, which can push dynamic power consumption slightly above the

constraints. On average though, it is clear that most constraints are met for the non-typical

modes. Since the validation is independent of the training set, we can infer that the Pareto

front from the UT LIVE image database captured the constraints in more general settings.

The use of larger reconfiguration periods (larger RecP) tends to spread out the distribu-

tions of the objectives. With larger spreads, we also get an increase in constraint violations.

On the other hand, when reconfiguring after each frame (RecP=1), the number of recon-

figurations (RecC) does not seem to provide significant improvements for larger values (1

to 5 to 100). Thus, by allowing an early adaptation to the input video using RecP = 1,

and then limiting the number of dynamic reconfigurations (RecC = 5), we have an effective

control of the overhead while still producing distributions that are centered on the desired

constraints. At this setting, we only reconfigure at 5% of the input frames, providing a

significant reduction in the overhead.

To demonstrate the overall advantages of the proposed DRASTIC modes, we provide a

comparison against the use of static configurations in Table 3.3. For the static configuration,

we select the one with the maximum performance metric. For example, for the maximum

image quality mode, we select the configuration that gave the maximum image quality among

all video frames. Compared to the optimized static configuration, at only 5% reconfiguration

rate, we still get significant savings in dynamic power (25% to 37%), bit-rate (47% to 55%),
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while reducing image quality from the maximum mode by very low percentages (3% to 6%).

Full reconfiguration can provide additional savings for the non-typical modes.

3.5.3 DRASTIC Mode Transition Example

In this section, we provide an example of transitioning from one mode to another. The

example demonstrates the ability of the proposed approach to adapt the input video content.

We consider the following simple mode transition example over a video consisting of 100

frames:

• Max im. qual. mode with high-profile (n = 1, . . . , 25): Initially, the users will

want to review video contents to see if there is something interesting. So, we use a

maximum image quality for this initial mode.

• Typical mode with medium-profile (n = 26, . . . , 50): After adapting to the video,

the users will want to operate in a typical mode.

• Min rate with medium-profile (n = 51, . . . , 75): A transition to low-coverage areas

can stimulate a switch to a low bit-rate mode.

• Min power with low-profile (n = 76, . . . , 100): Reduced battery life can induce a

transition to the minimum power mode.

From the DRASTIC mode transitions of Fig. 3.9, it is clear that that the dynamic

reconfiguration works well. The basic idea of adjusting to the input video at the beginning

of the mode does allow the system to meet the constraints. Also, from the video images

of Fig. 3.12, we can see exceptional image quality for the maximum image quality mode

(3.12(a)), acceptable quality for the typical mode (3.12(b)), reduced quality for the minimum

rate mode (3.12(c)), that reduces to barely acceptable quality for the minimum power mode

(3.12(d)). In terms of dynamic power consumption, it is interesting to note that the typical
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mode with a medium-profile requires only slightly mode power than the minimum power

mode with a low-profile.

In real-life videos, we would expect the transitions to occur after several seconds. This

implies that the dynamic reconfiguration overhead can be further reduced from the 5% rate

demonstrated here to much lower rates. For example, this could be accomplished by using

5 reconfigurations to adjust to the input video and then maintaining the same profile over

several hundreds of frames.

3.6 Conclusion and future work

The paper has introduced DRASTIC modes to allow for fine optimization control for max-

imizing image quality, minimizing bitrate requirements, reducing dynamic power consump-

tion, or providing a typical mode that balances constraint requirements. An efficient and

scalable architecture based on the 2D DCT was used for implementing the DRASTIC modes.

From the results, it is clear that the use of DRASTIC can lead to significant power and bi-

trate savings over optimized static approaches. Furthermore, the dynamic reconfiguration

overhead can be minimized by reducing the reconfiguration rate (5% or less).

Future work will be focused on extending the DRASTIC approach to other video pro-

cessing and communications applications. Furthermore, future work will look at methods to

generate constraints dynamically based on video content.

42



Chapter 3. DRASTIC DCT for MJPEG

Figure 3.6: General framework for DRASTIC mode implementation.

Input: input video, DRASTIC mode with associated constraints, offline trained Pareto
front, reconfiguration period RecP, maximum allowed reconfigurations RecC per RecDur
frames.

Output: generated compressed video stream that implements the given DRASTIC mode.
1: Initialize counter for dyn. reconf.: RecCtr = 0.
2: Initialize counter for mode change: DurCtr = 0.
3: Initialize constraint budgets: ∆BPS,0 = ∆DP,0 = ∆Q,0 = 0.
4: Initialize frame index: n = 0.
5: while video communication holds do
6: if (RecCtr < RecC) then
7: Search Pareto front for opt. HW,QF
8: if no configuration satisfies constraints then
9: Solve unconstr. opt. prob. for opt. HW,QF

as given by eq. (3.9).
10: end if
11: Apply DPR with HW,QF to compress current frame.
12: Update constr. budgets as given by eqns (3.7) and (3.8).
13: end if
14: Compress the (n+ 1)-th to (n+ RecP− 1)-th frames

using the current configuration.
15: Update count RecCtr = RecCtr+ 1.
16: Update n = n+ RecP.
17: Update DurCtr = DurCtr+ RecP.
18: if DurCtr ≥ RecDur then
19: Reset the mode frame counter : DurCtr = 0.
20: Reset the reconf. counter : RecCtr = 0.
21: end if
22: end while
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Table 3.1: Synthesized results for DCT Cores on XC5VLX110T−1FF1136.

LUT Registers Slices max freq Power
WL Z (Mhz) (mW)
2 1 622(1%) 534(1%) 257(1%) 250.376 53.03
3 1 684(1%) 540(1%) 267(1%) 249.066 52.98
4 1 659(1%) 540(1%) 266(1%) 249.066 46.67
5 1 713(1%) 545(1%) 271(1%) 245.881 51.21
6 1 756(1%) 547(1%) 274(1%) 204.834 56.87
7 1 768(1%) 548(1%) 293(1%) 204.834 54.37
8 1 799(1%) 552(1%) 295(1%) 203.832 58.22
9 1 806(1%) 553(1%) 293(1%) 203.832 56.58
2 2 847(1%) 886(1%) 378(2%) 250.689 95.85
3 2 1074(1%) 954(1%) 439(2%) 249.066 100.28
4 2 1099(1%) 958(1%) 434(2%) 247.463 100.06
5 2 1314(1%) 988(1%) 467(2%) 209.293 101.09
6 2 1361(1%) 999(1%) 495(2%) 204.834 103.57
7 2 1403(2%) 1006(2%) 499(2%) 204.750 108.03
8 2 1556(2%) 1024(2%) 541(3%) 203.832 110.65
9 2 1662(2%) 1038(2%) 571(3%) 203.293 114.56
2 3 951(1%) 1137(1%) 470(2%) 250.689 135.65
3 3 1238(1%) 1211(1%) 526(3%) 249.066 147.82
4 3 1238(1%) 1215(1%) 543(3%) 247.463 148.92
5 3 1507(2%) 1250(2%) 601(3%) 209.293 159.57
6 3 1597(2%) 1263(2%) 603(3%) 204.834 161.17
7 3 1651(2%) 1271(2%) 639(3%) 204.750 160.50
8 3 1835(2%) 1293(2%) 661(3%) 203.832 167.79
9 3 1948(2%) 1308(2%) 706(4%) 203.293 172.91
2 4 1242(1%) 1454(1%) 613(3%) 250.689 199.83
3 4 1540(2%) 1548(2%) 661(3%) 249.066 215.33
4 4 1573(2%) 1555(2%) 677(3%) 247.463 222.61
5 4 1936(2%) 1599(2%) 756(4%) 207.684 230.89
6 4 2070(2%) 1619(2%) 786(4%) 203.998 238.55
7 4 2139(3%) 1632(3%) 804(4%) 203.832 239.61
8 4 2416(3%) 1672(3%) 870(5%) 203.832 247.22
9 4 2624(3%) 1699(3%) 908(5%) 202.143 262.42
2 5 1367(1%) 1701(1%) 688(3%) 250.689 288.24
3 5 1727(2%) 1832(2%) 759(4%) 205.170 302.56
4 5 1844(2%) 1849(2%) 798(4%) 202.593 311.60
5 5 2214(3%) 1899(3%) 863(4%) 160.668 325.87
6 5 2341(3%) 1917(3%) 872(5%) 160.668 324.05
7 5 2464(3%) 1941(3%) 919(5%) 158.078 334.35
8 5 2771(4%) 1989(4%) 1036(5%) 157.953 352.93
9 5 3040(4%) 2019(4%) 1074(6%) 156.519 366.55
2 6 1560(2%) 1983(2%) 782(4%) 250.689 362.18
3 6 1977(2%) 2146(2%) 879(5%) 205.170 390.94
4 6 2125(3%) 2166(3%) 905(5%) 202.593 394.71
5 6 2613(3%) 2248(3%) 994(5%) 160.668 409.80
6 6 2742(3%) 2277(3%) 1048(6%) 160.668 421.03
7 6 2880(4%) 2306(4%) 1101(6%) 158.078 432.90
8 6 3315(4%) 2363(4%) 1226(7%) 157.953 451.66
9 6 3659(5%) 2412(5%) 1295(7%) 156.519 470.98
2 7 1685(2%) 2230(2%) 892(5%) 250.689 478.08
3 7 2164(3%) 2430(3%) 990(5%) 205.170 517.46
4 7 2396(3%) 2460(3%) 1018(5%) 202.593 523.60
5 7 2891(4%) 2548(4%) 1165(6%) 160.668 545.27
6 7 3013(4%) 2575(4%) 1194(6%) 160.668 560.92
7 7 3205(4%) 2615(4%) 1260(7%) 158.078 575.57
8 7 3670(5%) 2680(5%) 1382(7%) 157.953 592.27
9 7 4075(5%) 2732(5%) 1471(8%) 156.519 610.75
2 8 1895(2%) 2510(2%) 1002(5%) 250.689 541.17
3 8 2431(3%) 2742(3%) 1101(6%) 205.170 577.46
4 8 2694(3%) 2775(3%) 1160(6%) 202.593 594.46
5 8 3338(4%) 2898(4%) 1295(7%) 160.668 609.64
6 8 3481(5%) 2934(5%) 1347(7%) 160.668 625.68
7 8 3686(5%) 2979(5%) 1430(8%) 158.078 634.09
8 8 4212(6%) 3046(6%) 1553(8%) 157.953 667.75
9 8 4716(6%) 3122(6%) 1686(9%) 156.519 682.88
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Table 3.2: DRASTIC constraint profiles. The constraints represent the bounds for (i) image
quality (Qmin), (ii) the bitrate (Bmax), (iii) and dynamic power (Pmax) as described in section
4.4.

DRASTIC Constraint
Constraints Profile

Low Medium High
Image Quality (SSIM) 0.7 0.8 0.9
Bitrate (bits per sample) 0.5 1.0 1.5
Power (mW) 200 300 400

Table 3.3: DRASTIC mode savings over the use of the optimized maximum setting for each
mode for the 9 testing videos. Here, the savings are computed as a percentage of the average
performance metric. For example, for dynamic power, the percentage savings computed
using (Pmax − Pavg)/Pavg ∗ 100 where Pavg, Pmax are computed from the selected DRASTIC
architectures. For dynamic power and bitrate constraints, higher percentages indicate higher
savings. For image quality, lower percentages are preferred since they indicate that the
resulting videos will be of higher quality. The proposed reconfiguration (Prop. Rec.) refers
to RecC=5, RecP=1 while full reconfiguration refers to RecC=100, RecP=1. The proposed
reconfiguration requires 5% of the overhead of the full reconfiguration. Also, note that the
savings are conservative since they assume an optimal pre-selection of the static architecture.

DRASTIC Mode
Constraints Profile

Low Medium High

Min Dyn. Pwr (Prop. Rec.) 37.3% 36.9% 25.3%
Min Dyn. Pwr (Full Rec.) 57.7% 38.3% 31.7%
Min Bitrate (Prop. Rec.) 51.2% 46.7% 55.1%
Min Bitrate (Full Rec.) 57.9% 63.4% 58.1%
Max Im. Qual. (Prop. Rec.) 6.1% 5.4% 3.0%
Max Im. Qual. (Full Rec.) 6.7% 4.5% 2.8%
Typical Mode (Dyn. Pwr, Prop. Rec.) 43.5% 37.9% 24.9%
Typical Mode (Dyn. Pwr, Full Rec.) 35.6% 35.4% 27.3%
Typical Mode (Bitr., Prop. Rec.) 34.7% 33.9% 62.2%
Typical Mode (Bitr., Full Rec.) 32.0% 32.7% 65.0%
Typical Mode (SSIM, Prop. Rec.) 8.3% 6.1% 2.4%
Typical Mode (SSIM, Full Rec.) 10.2% 6.5% 2.9%
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Figure 3.9: DRASTIC reconfiguration results for switching between modes for the Foreman
video. Here, the proposed reconfiguration settings are used (RecC=5, RecP=1).
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(a) Max. im. qual. mode (high prof.) (b) Typical mode (medium prof.).

(c) Min. rate mode (medium prof.) (d) Min. power mode (low prof.)

Figure 3.10: DRASTIC mode transition example results. (a) Max img qual. mode (n =
5): SSIM=0.95, Rate=1.36bps, DP=395mW which gives exceptional image quality while
meeting the high-profile constraints. (b) Typical mode (n = 35): SSIM=0.84, Rate=0.51bps,
DP=161mW which meets all of the medium-profile constraints at a much lower bitrate.
(c) Min rate mode (n = 60): SSIM=0.79, Rate=0.31bps, DP=312mW which is right at
the boundary of the image quality and dynamic power constraints (medium-profile) while
using significantly less bitrate. (d) Min power mode (n = 85): SSIM=0.69, Rate=0.18bps,
DP=100mW which is at the boundary of the image quality constraint for the low-profile,
unable to further reduce power, but still operating at a very low bitrate.
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(a) Minimum Power Mode, recC=100.
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(b) Minimum Power Mode, recP=1.
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(c) Minimum Rate Mode, recC=100.

0.6

0.7

0.8

0.9

RecC=5 10 100

S
S

IM

0.7

0.8

0.9

RecC=5 10 100

0.85

0.9

0.95

RecC=5 10 100

0

1

2

3

RecC=5 10 100

R
at

e

0.5

1

1.5

RecC=5 10 100
0

2

4

RecC=5 10 100

100

200

300

400

RecC=5 10 100
Low Profile

P
ow

er

200

400

600

RecC=5 10 100
Med. Profile

400

500

600

RecC=5 10 100
High Profile

(d) Minimum Rate Mode, recP=1.
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(e) Maximum Quality Mode, recC=100.
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(f) Maximum Quality Mode, recP=1.

Figure 3.11: DRASTIC mode performance.
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(a) Typical Mode, recC=100.
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(b) Typical Mode, recP=1.

Figure 3.12: DRASTIC performance for the typical mode as a function of the reconfiguration
period RecP and the number of reconfigurations RecC.

Table 3.4: A comparison of FPGA implementations of 2D DCTs. Dynamic power results
are estimated for the operating frequency. Given the small number of cycles required by
the proposed approach, it is clear that the proposed method yields the most energy efficient
approach.

Tumeo etc. Huang et al. Madanayake Sharma Yuebing Proposed
[59] [29] [51] [60] [15]

Arch. Structure Single 1D DCT + 8 PE + Two AI-DCT+ DA based Double 1D DCT+ Double 1D DCT+
ping pong TRAM TBuffer TRAM ping pong TRAM
TRAM

FPGA slices 2823 2944 (8 PEs) 2377-3618 1701 807-1657 257-1686
FPGA tech. Xilinx Xilinx Xilinx Xilinx Xilinx Xilinx

Virtex II Virtex 4 Virtex 6 Virtex II Virtex 5 Virtex 5
XC2VP30 XC4VSX35 XC6VLX240T XC2VP30 XC5VLX110T XC5VLX110T

Latency (cycles) 160 N/A N/A N/A 22 20
8 × 8 throughput (cycles) 64 25-102 N/A N/A 16 8
Dyn. Power (mW) N/A 24.03-26.27 897-1687 751 85.2-203.19 51-683
Max. Freq. (MHz) 107 N/A 123-308 45.17 200-275 157-251
Oper. Freq. (MHz) N/A 41.79 123-308 45.17 100 100
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Chapter 4

A Dynamically Reconfigurable

Deblocking Filter for H.264/AVC

Codec

4.1 Abstract

This paper introduces a dynamically reconfigurable implementation of deblocking filtering

for H.264/AVC coding. The basic idea is to use a scalable approach that allows dynamic

hardware reconfiguration of different modes based on power (or hardware complexity), bi-

trate, and image reconstruction quality.

The modes are arranged hierarchically. A complex mode includes all of the deblocking

filtering options of simpler modes. This provides scalable performance where the use of ad-

ditional hardware resources (or power) result in better rate-distiortion performance. Within

each mode, the deblocking filter is selected based on boundary strength so as to balance com-

putational complexity with performance improvement. An optimal mode approach is also

introduced. In the optimal mode, the mode with the best reconstruction quality is selected
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for each video frame. The optimal mode provides an upper bound (in the rate-distortion

sense) to what can be achieved with the current modes.

The deblocking filters are implemented on a Virtex-5 FPGA. The results are validated

over 11 commonly-used videos, where image quality is assessed using SSIM.

4.2 Introduction

The use of block transforms and quantization in modern video codecs can introduce signifi-

cant blocking artifacts. The removal of such artifacts requires the use of deblocking filtering

(DBF). Unfortunately, DBF comes with significant computational overhead due to the re-

quirement for adaptivity to different types of block edges. Adaptivity requires execution

of different code at different blocks and this can be a source of challenges for SIMD and

pipelined implementations. Furthermore, the use of small blocksizes creates a need for a

large number of memory accesses. Overall, execution time for DBF can account for a third

of the whole computation complexity of an H.264/AVC decoder [61].

In what follows, we provide a brief summary of different methods used for addressing the

computational complexity of DBF. In [62], the authors proposed implementing DBF as a co-

processor which can interface with a general purpose or a DSP processor. In [63], the authors

demonstrated an optimized SIMD implementation that delivered a speed up of 5.8 times.

In [64], the authors implemented DBF in a dynamically reconfigurable embedded system.

The authors studied the trade-offs of the use of different interconnection topologies and

register file sizes used in a reconfigurable array of processors. In [65], the authors proposed

the use of two DBF architectures. A high-performance, high-power DBF architecture was

implemented at the 4×4 block level. A low-performance, low-power mode was implemented

at the 16× 16 macroblock level. In [66,67], the authors developed parallel implementations

at the block edge level. They reported on 3 configurations for parallel processing 1,2 or 4

block edges at the same time. They also suggested the use of dynamic reconfiguration among
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Figure 4.1: Dynamically reconfigurable DCT architecture for H.264 encoder.

the 3 configurations based on motion activity and the quantization parameter.

A summary of the contributions of the current paper includes: (i) a set of scalable DBF

modes that balance trade-offs among image quality, bitrate, and dynamic power, (ii) a mode

control algorithm that provides improved R-D performance over the use of any individual

mode, and (iii) a rate-quality-power performance analysis of the DBF hardware modes. The

system diagram of the H.264/AVC encoder that implements the proposed DBF system is

shown in fig. 4.1. The basic blocks include intra/inter prediction, DCT transformation,

quantization, and entropy encoding. In the decoding loop, results of reconstructed frames

are input to the DBF module. We note that the Dynamically Reconfigurable (DR) controller

selects the DBF mode based on Dynamic Power and performance requirements (bitrate and

image quality).

The rest of the paper is organized as follows: The deblocking algorithm and related quality

assessment is discussed in section 6.3. The proposed design methodology is presented in

section 4.4. The results are discussed in section 7.5. Concluding remarks are given in section

4.6.
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Figure 4.2: Deblocking filtering operation flow. Deblocking filtering is applied to the shaded
pixels shown in the lower figures. For further details, we refer to [1].

4.3 Deblocking Algorithm and Deblocking quality as-

sessment

The basic deblocking filtering steps are shown in Fig. 4.2. Deblocking filtering is applied

at the Macroblock (MB) level, with vertical edges being filtered first, followed by horizontal

edges. At the MB level, Luma is filtered first, followed by chroma (Cb and Cr).

The DBF has 3 levels of adapativity:

• Slice: At the slice level, DBF depends on OffsetA and OffsetB to adjust the threshold

values given by α and β . Here, we are using default values as given in [1].

• Edge: Block edge level adaptivity depends on boundary strength (BS). BS takes
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Figure 4.3: Assignment of boundary strength BS. Here, MV refers to motion vector and
Diff. Ref. refers to a change in the reference frame.

values from 0 (no edge) to 4 (strong edge) that indicate the detected edge artifacts.

The method for setting BS is shown in Fig. 4.3.

• Sample: Sample level adaptivity select filtering functions and parameters based on

BS and sample values in the line of 8 pixels (horizontal or vertical) (see Fig. 4.2). To

avoid over-filtering real-edges, DBF is only applied when the pixel intensities remain

lower than the α, β parameters as given by:

|p0 − q0| < α and |p1 − p0| < β and |q1 − q0| < β. (4.1)

In terms of bitrate, [61] shows that the use of DBF can reduce bitrate requirements by 9%

at equivalent PSNR levels. In terms of DBF image quality assessment, instead of PSNR, we

also have metrics focused on edges. For example, block edges are assess by PSNR-B in [68].

Similarly, image quality focused on Canny-detected edges is assessed by Canny-Edge PSNR

in [69]. Alternatively, perceptual quality assessment can be assessed by SSIM [18]. For the

purposed of this paper, we will consider SSIM. We note that SSIM is described as a better
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alternative to PSNR in [68].

4.4 Methodology

We are interested in developing a scalable approach that adjusts DBF filtering based on the

boundary strength BS. We accomplish this by controlling how boundary strength determines

the level of filtering. The basic idea is to apply DBF for stronger boundaries while possibly

avoiding DBF for weaker edges. We provide 5 scalability levels represented by BSKill =

0, 1, . . . , 4. We refer to Table 4.1 for the description of how BSKill controls the level of DBF

filtering.

Table 4.1: Scalable DBF modes based on BSKill parameter setting.

BSKill DBF filtering
0 edge is filtered if BS > 0 (e.g., BS = 1, 2, 3, 4), (full filter)
1 edge is filtered if BS > 1 (e.g., BS = 2, 3, 4)
2 edge is filtered if BS > 2 (e.g., BS = 3, 4)
3 edge is filtered if BS > 3 (e.g., BS = 4)
4 edge is filtered if BS > 4, (No filter operation)

To see how this works, note that increasing the value of BSKill will reduce the amount

of filtering. Thus, small values of BSKill will provide more filtering that should result in

better visual quality. The basic idea is demonstrated in Fig.4.4. In this example, decreasing

BSKill does result in better visual quality. On the other hand, over-filtering can result in

degradation of image quality. This problem is demonstrated in Fig. 4.5.

We also consider a greedy optimization method for selecting the BSKill value at each

video frame based on the maximum image quality. The basic idea is to start with no-

filtering (BSKill = 4) and keep decreasing BSKill to the full-filtering mode (BSKill = 0). In

this scalable optimization approach, computational complexity is kept reasonable because
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lower-levels reuse results from higher-levels and only need to apply DBF to the affected block

edges (as opposed to the full image). In terms of computational-complexity, our approach is

significantly less demanding than the method described in [69].

We provide a pipelined implementation for each DBF filtering level as shown in Figs. 4.6

and 4.7. In our implementation, α, β are read using table lookup at stage 1. The threshold

conditions are implemented in the second stage (see definitions in the top of Fig. 4.6).

The rest of the DBF filtering is implemented in two halves as described in the captions

of Figs. 4.6 and 4.7. Similar to our implementation, [70, 71] provide a fixed-architecture

implementation. Here, we note that our implementation is scalable (also see caption of Fig.

4.6) and dynamically reconfigurable.

4.5 Results

The DBF was tested on 11 videos (15 fps) of the first 64 QCIF (144x176) frames (BUS, CITY,

CREW, FOOTBALL, FOREMAN, HARBOUR, MOBILE, SOCCER,MOTHER ANDDAUGH-

TER, HALL MONITOR, SILENT). Over all videos, we measure bitrate in bits per pixel,

image quality based on average SSIM, and dynamic DBF power. In addition to BSKill, we

also vary the quantization parameter QP from 38 to 44 (for lower bitrates).

The average bitrate and image quality results are summarized in Tables 4.2 and 4.3.

In terms of image quality, SSIM decreases with less filtering as shown in Table 4.3. The

decrease is more significant at higher quantization levels (top to bottom). Bitrate behaves

similarly. The rate-distortion performance is shown in Fig.4.8. From the R-D curve, we can

see that the optimal mode can out-performs all other modes. The worst results are given by

no-filtering (BSKill = 4). Also, full-filtering (BSKill = 0) is approximated by BSKill = 1.

The hardware synthesis results are summarized in Table 4.4. Dynamic power results are

shown in Table 4.5 and Fig. 4.9. For dynamic power estimation, we used the FOREMAN
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Table 4.2: Average bitrate results for all 11 videos. GOP encoding is ”IPPPPPPP”. See
Table 4.3 for corresponding SSIM values. Opt refers to the optimal method that is described
in Section 4.4.

Opt. BSKill BSKill BSKill BSKill BSKill
=0 =1 =2 =3 =4

QP=38 0.0998 0.0996 0.0997 0.1004 0.1009 0.1014
QP=39 0.0900 0.0897 0.0898 0.0904 0.0911 0.0917
QP=40 0.0780 0.0778 0.0779 0.0785 0.0792 0.0797
QP=41 0.0686 0.0683 0.0682 0.0688 0.0695 0.0700
QP=42 0.0601 0.0597 0.0599 0.0603 0.0610 0.0615
QP=43 0.0552 0.0549 0.0551 0.0553 0.0560 0.0565
QP=44 0.0476 0.0473 0.0475 0.0478 0.0484 0.0490

Table 4.3: Average SSIM results for the setup described in Table 4.2.

Opt. BSKill BSKill BSKill BSKill BSKill
=0 =1 =2 =3 =4

QP=38 0.8212 0.8193 0.8189 0.8180 0.8163 0.8135
QP=39 0.8037 0.8016 0.8014 0.8004 0.7980 0.7947
QP=40 0.7831 0.7803 0.7800 0.7792 0.7771 0.7733
QP=41 0.7581 0.7551 0.7549 0.7542 0.7513 0.7464
QP=42 0.7352 0.7314 0.7311 0.7307 0.7284 0.7221
QP=43 0.7170 0.7142 0.7135 0.7129 0.7098 0.7026
QP=44 0.6843 0.6811 0.6804 0.6803 0.6770 0.6687

video. Dynamic power is estimated by Xilinx’s XPower tool based on the reconstructed

FOREMAN frames (prior to DBF) together with the synthesized DBF netlist files. We

note the scalability of the dynamic power measurements demonstrated in Fig. 4.9. From

the results, it is clear that we can select a hardware implementation that can meet certain

dynamic power constraints on the DBF.
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Table 4.4: Deblocking filter synthesis results. DBF was implemented on
XC5VLX110T(Virtex 5) device. Clock frequency was constrained to 100 MHz.

BSKill BSKill BSKill BSKill BSKill
=0 =1 =2 =3 =4

Slice Registers 449 442 436 372 131
Slice LUTs 571 575 565 341 128
Slices 311 300 289 184 39
max.
freq.(Mhz) 126 126 126 169 529

Table 4.5: Power simulation results for Foreman video. Dynamic power is estimated using
XPower.

BSKill BSKill BSKill BSKill BSKill
=0 =1 =2 =3 =4

QP=38 159.0100 159.1900 156.6700 143.2400 122.8400
QP=39 157.9200 158.0900 155.5800 142.5900 122.8300
QP=40 156.1200 156.2900 153.8300 140.8300 120.5800
QP=41 156.3600 156.5300 154.0700 141.1600 121.7000
QP=42 156.3900 156.5700 154.1000 141.1300 121.5200
QP=43 152.5000 152.6900 150.2400 137.5400 116.4100
QP=44 144.7600 145.0000 142.6400 131.7400 108.8200

4.6 Conclusion

In this chapter, we described a scalable set of pipelined DBF implementations for dynamic

reconfiguration based on video frame performance metrics. Each DBF implementation was

tested on 11 standard videos for their performance in terms of bitrate, reconstruction image

quality, and dynamic power. We also introduced an optimal method that selects the DBF

implementation that provides the DBF with the best image quality. Future work could be

focused on the development of incorporating DBF into the emerging High-Efficiency Video

Coding (HEVC) standard.
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(a) Foreman: Frame2Original (b) Foreman:QP=42,BSKill=0

(c) Foreman:QP=42,BSKill=1 (d) Foreman:QP=42,BSKill=2

(e) Foreman:QP=42,BSKill=3 (f) Foreman:QP=42,BSKill=4

Figure 4.4: Deblocking filter results for foreman video frame 2 where DBF works as expected.
In this example, we are using H.264/AVC JM 18.2 with QP = 42. We demonstrate the
results for: (a) original image, (b) BSKill = 0 gives SSIM=0.8182, (c) BSKill = 1 gives
SSIM=0.8155, (d) BSKill = 2 gives SSIM=0.8145, (e) BSKill = 3 gives SSIM=0.8005,
and (f) BSKill = 4 gives SSIM=0.7882.
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(a) Mobile: Frame11Orginal (b) Mobile: QP=42,BSKill=0

(c) Mobile:QP=42,BSKill=1 (d) Mobile:QP=42,BSKill=2

(e) Mobile:QP=42,BSKill=3 (f) Mobile:QP=42,BSKill=4

Figure 4.5: Deblocking filter results for mobile video frame 11 where DBF can perform
worse than expected. In this example, we are using H.264/AVC JM 18.2 with QP = 42.
We demonstrate the results for: (a) original image, (b) BSKill = 0 gives SSIM=0.7203, (c)
BSKill = 1 gives SSIM=0.7199, (d) BSKill = 2 gives SSIM=0.7194, (e) BSKill = 3 gives
SSIM=0.7358, and (f) BSKill = 4 gives SSIM=0.7365. To see the effects of over-filtering,
compare the two ellipsoidal regions shown in (b) with the original image in (a), and the rest
of the sub-figures.

61



Chapter 4. A Dynamically Reconfigurable Deblocking Filter for H.264/AVC Codec

Memory read

address 

generation

Conditions:
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Figure 4.6: Deblocking filter implementation using a 4-stage pipeline. The diagram shows
the full-filter implementation (BSKill = 0). The other 4 modes are implemented by simply
removing logic from the full-filter. The pink regions are implemented for weaker-edges (BS =
1, 2, 3). The green regions are implemented for strong edges (BS = 4). In the bottom of the
figure, we have a FIFO implementation that is used for the case of no filtering (BS = 0).
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Chapter 5

High Efficiency Video Coding

(HEVC)

HEVC [2] is the emerging video compression standard that was finalized in 2013. HEVC

seeks to provide higher coding efficiency to support the growing propularity of HD video and

the higher video frame sizes of 2K (4K × 2K), 4K (8K × 4K). Subjective tests for WVGA

and HD video sequences suggest that HEVC encoders can achieve the same subjective video

quality as the H.264/MPEG-4 AVC (current standard) while reducing bitrate requirements

by approximately 50% [72].

HEVC builds upon the current video standard based on H.264/AVC. H.264/AVC was

initially developed during 1999-2003, and was further extended to support scalable video

coding (SVC) and multi-view video coding (MVC) during 2003-2009. In 2004, the ITU-

T Video Coding Experts Group (VCEG) began research on advances to be included in a

new video compression standard or enhancements to the H.264/MPEG-4 AVC standard.

In October 2004, various techniques for potential enhancement of the H.264/MPEG-4 AVC

standard were investigated. In Oct 2005, at the Nice (FR) meeting of VCEG, VCEG began

designating certain topics as ”Key Technical Areas” (KTA) for further investigation. A
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software codebase called the KTA codebase was established for evaluating such proposals

[73].The KTA software was based on the Joint Model (JM) reference software that was

developed by the MPEG & VCEG Joint Video Team for H.264/MPEG-4 AVC. Additional

technologies were integrated into the KTA software and tested in experiment evaluations

over the next four years [74]. A formal joint Call for Proposals(CfP) started by VCEG and

MPEG was issued in January 2010. Companies that are working on HEVC and have also

shown specific encoders and decoders include Qualcomm, Ericsson, Allegro DVT, Vanguard

Software Solutions(VSS), Rovi Corporation and ATEME.

5.1 Background and Related work on HEVC

HEVC uses a hybrid approach by including modes from previous video coding standards that

support both inter and intra prediction and transform coding to achieve high reconstruction

image quality at low bitrates. The video encoder diagram is shown in Fig. 5.1.

At the picture level, each picture is split into block-shaped regions where the original

block is termed the largest coding unit (LCU). The LCU can be subdivided into smaller

coding units (CUs).

Pictures are organized into groups of pictures (GOPs). The first picture of a video se-

quence or a GOP is coded using intra-picture prediction. Here, intra-prediction implies

implies that encoding is based on prediction within the picture itself, without referencing

other pictures. The remaining pictures of GOP can use inter and intra prediction. Here, for

inter-picture prediction, motion vectors (MV) are used to determine how blocks from a differ-

ent picture should be used to predict the current block (motion compensation (MC)). After

prediction, the residual data is transformed (integer transform), scaled, and quantized. The

quantized results are entropy encoded. Based on the quantized data, the encoder will recon-

struct the decoder so as to use the decoded picture(s) for further prediction. To reconstruct

the decoded picture, the encode applies inverse quantization and inverse transform. Loop
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filtering is applied to smooth out blocking artifacts induced by the block-wise processing.

The reconstructed frames are saved in the decoded picture buffer for future prediction.

Figure 5.1: HEVC encoder diagram [2].

5.1.1 Coding Tools

Block Structure

HEVC replaces macroblocks used in previous standards with a new coding scheme that

uses larger block structures of up to 64× 64 pixels and sub-partition schemes that support

variable-sized decompositions. The primary goal of this partitioning concept is to provide

a high degree of adaptability for both temporal and spatial prediction as well as for the

purpose of space-frequency representation of prediction residuals [3]. HEVC initially divides
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the picture into coding tree units (CTUs) which contain one luma coding tree block (CTB)

and two chroma CTBs. A CTB can be 64× 64, 32× 32, or 16× 16, with larger block sizes

usually resulting an increased coding efficiency. CTBs are then divided into coding units

(CUs). The arrangement of CUs within a CTB is known as a quad-tree since a subdivision

results in four smaller regions. CUs are then divided into prediction units (PUs) of either

intra-picture or inter-picture prediction type which can vary in size from 64×64 to 4×4. Here,

we note that prediction units coded using 2 reference blocks, known as bipredictive coding,

are limited to sizes of 8 × 4 or 4 × 8 so as to save on memory bandwidth. The prediction

residual is coded using transform units (TUs) which contain coefficients for spatial block

transform and quantization. A TU can be 32 × 32, 16 × 16, 8 × 8, or 4 × 4. An example

of quad-tree subdivision is shown in Fig. 5.2. Note that for inter prediction, the blocks use

asymmetric partitions as shown in fig.5.3. However, asymmetric partitions are not allowed

in intra-prediction.

Figure 5.2: Example of a nested quad-tree structure (right part) for dividing a given coding
tree block (left part, in black) into prediction blocks (solid gray lines) and transform blocks
(dashed gray lines) of variable size. The order of parsing the prediction blocks follows their
labeling in alphabetical order [3].
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Figure 5.3: Modes for splitting a CB into PBs for inter prediction. For intra prediction, only
quad-tree spliting is allowed [2].

Intra Picture Prediction

Direction prediction with 33 different directional orientations is defined for PU sizes from

4 × 4 up to 32 × 32. Besides the 33 modes for directional prediction, we also have planar

prediction and DC prediction. The 35 prediction modes are shown in Fig. 5.4.

Figure 5.4: The 35 intra-prediction modes using 33 directions [2].

Each predicted sample Px,y is obtained by projecting its location to the reference row of
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pixels and applying the selected prediction direction using interpolation to achieve 1/32-th

pixel accuracy. Linear interpolation between the two closest reference samples is achieved

using [75]:

Px,y = ((32− wy) ·Ri + wy ·Ri+1 + 16) >> 5 (5.1)

where Ri is the i
th reference sample on the reference row, Ri+1 is the next reference sample,

and wy is a weighting factor between the two reference samples corresponding to the projected

sub-pixel location in between Ri and Ri+1. The reference sample index i and the weighting

parameter wy are calculated based on the projection displacement d associated with the

selected prediction direction. Here, d depends on the tangent of the prediction direction in

units of 1/32-th of a sample and having a value from -32 to +32. The basic parameters are

determined using:

cy = (y · d) >> 5

wy = (y ∗ d)&31

i = x+ cy.

(5.2)

Transformation, scaling and quantization

The residual block in HEVC is partitioned into multiple square TBs. Possible TB sizes are

4×4, 8×8, 16×16 and 32×32. The standard defined the transform matrix for 32×32. Other

transform matrix sizes can be derived from the 32 × 32 matrix (see Fig. 5.6). To maintain

intermediate values within a 16-bit memory, a 7-bit right shift and a 16-bit clipping operation

is inserted after the first 1D DCT. Unlike H.264/AVC, the DCT transform matrix in HEVC

uses uniform scaling avoiding the use of frequency-specific scaling.

For TU size of 4×4, an alternative integer transform is used that is based on the discrete

70



Chapter 5. High Efficiency Video Coding (HEVC)

Figure 5.5: Transform matrix for HEVC standard.

sine transform (DST) as given by:

H =


29 55 74 84

74 74 0 −74

84 −29 −74 55

55 −84 74 −29

 . (5.3)

The DST for 4 × 4 TU size provides approximately 1% bit rate reduction in intra predic-

tive coding. Additional coding efficiency improvement for other sizes was not found to be

marginal.

HEVC applies essentially the same quantization scheme as in H.264/AVC. The Quanti-

zation parameter (QP) ranges from 0 to 51. The Quantization step size doubles when QP

increases by 6.
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Entropy Coding

HEVC abandons the use of Context Adaptive Variable Length Coding (CAVLC) and only

supports the use of Context Adaptive Binary Arithmetic Coding (CABAC). The CABAC

is essentially the same as for H.264/AVC. A summary of some minor changes are presented

next.

Coefficient scanning is performed in 4 × 4 sub-blocks for all TB sizes. Three coefficient

scanning methods are selected implicitly for coding the intra-coded transform coefficients of

4× 4 and 8× 8 TB sizes. For inter prediction modes, 4× 4 diagonal up-right scan is applied

to all sub-blocks of transform coefficients.

Figure 5.6: Coefficient scanning direction in HEVC. The intra mode implicitly selects the 3
modes. The inter mode only uses the diagonal up-right mode.

HEVC encodes the position of the last non-zero transform coefficient, a significance map,

sign bits and levels for the transform coefficients. The position of the last non-zero trans-

form coefficient in terms of the i-th and j-th coordinates are coded and compressed. The

significance map is derived for the non-zero coefficients related to a 4× 4 block.

In loop filters

In HEVC, two processing steps, the deblocking filter (DBF) followed by a sample adaptive

offset (SAO) operation are applied to the reconstructed samples before writing them into the
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decoded picture buffer in the decoder loop [2]. DBF is only applied to the samples located

at block boundaries while the SAO is applied adaptively to all samples that satisfy certain

conditions.

DBF is applied to all samples adjacent to PU or TU boundaries that do not fall on image

boundaries. HEVC only applies DBF on an 8 × 8 sample grid for both luma and chroma

samples.

SAO modifies the samples after the deblocking filter through a look-up table. It’s a

non-linear operation which allows additional minimization of the reconstruction error and

enhance edge sharpness. SAO has 3 modes: (i) a disabled mode, (ii) an edge mode, and (iii)

the band mode. In edge mode, each sample is offseted by values derived from the look-up

table to either enhance edge sharpness or reduce artifact edges. In band mode, the samples

in CTB are splitted into 32 bands by sample amplitude ranges. The sample values belonging

to four consecutive bands are modified by adding the values denoted as band offsets.
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Chapter 6

DRASTIC for HEVC intra-prediction

mode implementation

6.1 Abstract

The High Efficiency Video Coding (HEVC) standard can achieve significant improvements in

coding performance over H.264/AVC. To achieve significant coding improvements in intra-

predictive coding, HEVC relies on the use of an extended set of intra-prediction modes

and prediction block sizes. This chapter presents a unified hardware architecture for im-

plementing all 35 intra-prediction modes that include the planar mode, the DC mode, and

all angular modes for all prediction unit (PU) sizes ranging from 4 × 4 to 64 × 64pixels.

We propose the use of a unified reference sample indexing scheme that avoids the need for

sample re-arrangement suggested in the HEVC reference design. The hardware architec-

ture is implemented on a Xilinx Virtex 5 device (XC5VLX110T) for which we report power

measurements, resource utilization, and the average number of required cycles per pixel.
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6.2 Introduction

Among the most significant coding tools that improve over H.264/AVC, HEVC requires the

implementation of extended prediction modes that need to work for different prediction unit

(PU) sizes [2]. For intra-prediction, pre-decoded border pixels are used for predicting the

entire PU. Depending on the prediction mode, predicted blocks can be reconstructed with:

(i) the planar mode that uses bilinear interpolation. (ii) the DC mode that uses an average of

the above and left reference pixels, (iii) the angular modes that use linear interpolation based

on decoded pixels from the main-reference border or extrapolated reference pixels from the

side-reference border. Under general testing conditions, PU sizes can vary from the smallest

block of 4× 4 to the largest block of 64× 64. The goal of this paper is to provide a unifying

framework that implements all of the 35 modes for block sizes from 4 × 4 to 64 × 64 while

supporting parallelism in a pipelined architecture implementation.

To the best of our knowledge, current reported hardware implementations of the HEVC

intra prediction either do not support all the prediction modes or don’t support all the

block sizes. In [10], the authors describe an intra-prediction architecture restricted to the

angular modes on 4 × 4 blocks. The authors provide a flexible reference sample selection

approach to minimize memory accesses. A more complete implementation was recently

reported in [76]. In [76], the authors considered all except for the planar mode and gave

implementations for all PU sizes. Instead of the unified approach proposed in this paper,

the authors considered separate data paths for the horizontal and vertical data paths. To

deliver higher performance, multipliers were implemented using custom shifters and adders

that achieved a 500Mhz maximum operating frequency on IBM 65nm technology. In [77]

and [78], the authors implemented the HEVC intra-prediction modes on 4 × 4 and 8 × 8

PU sizes using pixel equality based computation reduction (PECR) to reduce the energy

consumption.

The motivation for this research comes from the need to provide an efficient implemen-
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tation for all modes using a single circuit. The proposed approach uses unified reference

sample indexing that avoids wasting cycles on re-arrangement or filling-in reference samples

to a new buffer. A pipelined approach combines components from several modes to reduce

the overall hardware footprint. Furthermore, the proposed pipelined circuit allows parallel

processing of the different prediction modes that facilitates rate-distortion optimization that

can be used to select an optimal mode for each block.

The rest of the chapter is organized as follows. In section 6.3, we describe the proposed

unified approach. In section III, we discuss the pipelined implementation and system inte-

gration. We provide verification and implementation results on Virtex 5 FPGA in section

IV. Concluding remarks are given in section V.

6.3 Unified Reference Sample Indexing and Accessing

HEVC intra prediction includes 33 angular direction modes (modes 2-34), an intra planar

mode (mode 0), and an intra DC mode (mode 1) [79]. In the reference design provided by

the standard draft and model software HM, intra prediction is implemented by re-arranging

the reference samples into a new reference buffer according to the mode and then do the

prediction. In the proposed approach, we will compute each prediction sample directly from

original reference sample buffer using a unified indexing scheme and thus avoid the use of an

intermediate buffer. The basic idea is that we can create a parallel and pipelined architecture

for our unified indexing approach. Several modes were allowed in the pipeline to be computed

at the same time for different stages without a lot of initial delay overhead.

6.3.1 Unified reference sample indexing

We set the reference samples as shown in Fig. 6.1. For each (x, y) sample in the predicted

block, we use a reference indexing equation (or equations) to map back to the reference
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sample(s) based on the prediction mode. For generality, we allow for different PU size

(nT × nT , nT=4,8,16,32,64), and map the left/left-bottom column and upper/upper-right

row reference samples to the input buffer as shown in Fig. 6.1. To accommodate for the

largest possible prediction unit, we allocate 257 bytes to the input buffer.

In what follows, let Py∗nT+x denotes the (x, y)-th prediction sample. We let Ri to index

samples from the 1D input/reference buffer along the four sides and the upper-left corner

pixel of the prediction block. Depending on the previous encoding/decoding conditions,

the top-right row and left-bottom column pixels can be generated by extrapolation from the

other two sides, and the 4nT+1 reference pixels will always exist. Thus, our unified indexing

approach computes Py∗nT+x using 1D indices from Ri.

nT

nT

nT

nT

2

18

34

0: planar

1: DC

0 nT-1 nT 2nT-1 2nT+1 3nT+1 4nT3nT

R

P

10

26

...

...

.........

...

...

...
...

...

...

...

uniform

index

Figure 6.1: Unified reference sample indexing for PU size of nT×nT . Here, 4nT+1 reference
pixels R are used to obtain nT × nT predicted samples P . The prediction directions are
shown for several prediction modes (2,10,18,26,34).
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6.3.2 Planar mode

In the planar mode, we use bilinear interpolation to generate Py∗nT+x using weighted-

averaging over the 4 reference samples as given by:

Py∗nT+x = ((nT − 1− x) ·R2nT−1−y

+(x+ 1) ·R3nT+1

+(nT − 1− y) ·R2nT+1+x

+(y + 1) ·RnT−1 + nT )

≫ (log2(nT ) + 1).

(6.1)

where x, y ∈ [0, nT − 1] to cover all of the prediction block pixels.

6.3.3 DC mode

In the DC mode, the DC value is computed based on the average of all of the reference pixels

except for corner pixels. Then, all of the internal pixels (x, y ∈ [2, nT − 1]) are given by:

dcV al = (
∑nT−1

x=0 R2nT+1+x +
∑nT−1

y=0 R2nT−1−y

+nT ) ≫ (log2(nT ) + 1)

Py∗nT+x = dcV al.

(6.2)

The first row and first column pixels use weighted averaging of the DC value and the nearest

neighbour as given by:

P0∗nT+0 = (R2nT−1 + 2 ∗ dcV al +R2nT+1 + 2) ≫ 2

P0∗nT+x = (R2nT+1+x + 3 ∗ dcV al + 2) ≫ 2

x ∈ [1, nT − 1]

Py∗nT+0 = (R2nT−1−y + 3 ∗ dcV al + 2) ≫ 2

y ∈ [1, nT − 1].

(6.3)
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Figure 6.2: Datapath for the pipelined uni proc circuit using size = log2(nT )−2, Pindex =
y×nT +x, and mode ∈ [0, 34]. Parameter delay is used to notify number of cycles for RAM
operation between address assertion and data to be ready. When using BRAM on virtex 5
FPGA, delay = 2.

6.3.4 Angular mode

In the angular modes, the predicted pixels use at most two reference samples depending

on the direction. Refer to Table 6.1 for the correspondence between the integer modes and

the prediction angle parameters. A lookup table is used for computing the trigonometric

parameters needed in the prediction. Directional modes are defined in terms of the predic-

tion angle Amode. Horizontal modes are defined for mode numbers 2 − 17. For prediction,

horizontal modes use main reference samples from the left column and side reference

samples from the top row. Vertical modes are defined for mode numbers 18-34. Similar to

horizontal modes, vertical modes use main reference samples from the top row and side

reference samples from the left column. Extrapolation is needed when the prediction angle

satisfies tan(Amode) < 0 (modes 16 − 25). The primary angular mode equation based on

weighted average is given by:

Py∗nT+x = ((32− w) ∗RtId0 + w ∗RtId1 + 16) ≫ 5

tId0 = 2 ∗ nT + off0

tId1 = 2 ∗ nT + off1.

(6.4)
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To compute the weighting factor w, we use:

itm =

 (x+ 1) ∗ T (mode) hor. mode

(y + 1) ∗ T (mode) ver. mode

c = itm ≫ 5

w = itm && 31.

(6.5)

For computing the indices tId0, tId1 of (6.4), we first compute the intermediate indices

index0, index1 using:

index0 =

 y + c hor. mode

x+ c ver. mode

index1 = index0 + 1

invA = abs(AT (mode)).

(6.6)

Then, we have the negative offsets given by:

neg off0 = (128 + abs(index0 + 1) ∗ invA) ≫ 8

neg off1 = (128 + abs(index1 + 1) ∗ invA) ≫ 8,
(6.7)

which can be used to compute off0, off1 using:

off0 =



neg off0; index0 <-1, hor. mode

−1− index0; index0 ≥-1, hor. mode

−neg off0; index0 <-1, ver. mode

1 + index0; index0 ≥-1, ver. mode

(6.8)

off1 =



neg off1; index1 <-1, hor. mode

−1− index1; index1 ≥-1, hor. mode

−neg off1; index1 <-1, ver. mode

1 + index1; index1 ≥-1, ver. mode.

(6.9)
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Table 6.1: Look up table for angle Amode parameters for angular prediction mode. T (mode) =
32× tan(Amode), AT (mode) = 256× actan(Amode)

mode 2 3 4 5 6 7 8
T (mode) 32 26 21 17 13 9 5
AT (mode) — — — — — — —

mode 9 10 11 12 13 14 15
T (mode) 2 0 -2 -5 -9 -13 -17
AT (mode) — — -4096 -1638 -910 -630 -482

mode 16 17 18 19 20 21 22
T (mode) -21 -26 -32 -26 -21 -17 -13
AT (mode) -390 -315 -256 -315 -390 -482 -630

mode 23 24 25 26 27 28 29
T (mode) -9 -5 -2 0 2 5 9
AT (mode) -910 -1638 -4096 — — — —

mode 30 31 32 33 34
T (mode) 13 17 21 26 32
AT (mode) — — — — —

6.4 Methodology and Implementation

6.4.1 Pipeline Organization

We unify all of the modes using a pipelined approach. The number of stages of the pipeline

will depend on the RAM type used to save the reference pixels. We provide the pipelined

architecture in Fig.6.2 and summarize the pipeline stages below:

Stage 1: Compute T (mode) and AT (mode) using the lookup table. Determine x and y

from 1D index Pindex.

Stage 2: Compute itm as given in eq.6.5.

Stage 3: Compute c and w as given in eq.6.5.

Generate index0 and index1 as given in eq.6.6.

Stage 4: Compute neg off0 and neg off1 as given in eq.6.7.

Stage 5: Compute addr0 = tId0 and addr1 = tId1 as given in eq. 6.4.
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In angular mode, compute off0 and off1

as given by eq. 6.8 and 6.9.

In DC or planar mode compute:

off0 = −1− y and off1 = 1 + x.

Stage(s) 6 : 5+ delay: Based on RAM type, we need:

One cycle (delay=1) for register-based RAM or

Two cycle delay (delay=2) for dual-port BRAM.

Stage 6+ delay: Use data0 = Raddr0 and data1 = Raddr1.

in the following computations.

For Planar or DC mode:

Select edge0, edge1 or dcV al based on the mode.

Select the weights for input pixels w0, w1, w2, w3.

Stage 7+ delay: Compute m(i) = w(i)×RtId(i), i ∈ [0− 3].

Stage 8+ delay: Compute predicted pixel Pdata out as:

Pdata out = (m0 +m1 +m2 +m3 + offset) ≫ shift.

6.4.2 System Integration

The integrated system is given in Fig. 6.3. The system consists of 4 components BRAM,

edge, DCval and uni proc circuit. The BRAM circuit is used to store the decoded reference

samples. The edge circuit is only used in planar mode for accessing RnT−1 and R3nT+1.

The DCval circuit is only used in the DC mode for computing dcV al. The uni proc circuit

implements the pipeline stages described in subsection 6.4.1. The integrated system uses a

finite state machine to control the 4 component circuits.
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Figure 6.3: Integrated system integration using pipelined uni proc circuit.

6.5 Results

6.5.1 Unified Reference Sample Indexing Verification

To verify the correctness of our unified indexing and accessing method, we generated the

predicted blocks for each PU size nT = 4, 8, 16, 32, 64 for randomly generated reference

samples. For each PU size and set of random reference samples, we confirm that the predicted

Blocks were identical to the ones produced by the reference software.

We provide examples for PU sizes from 4× 4 to 32× 32 in Fig.6.4. From the results, we

can see the fine directional selectivity of the HEVC standard.
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Figure 6.4: 35 modes of intra prediciton for HEVC, for PU sizes from 4x4 to 32x32, with
random generated reference samples for each PU size.

6.5.2 Synthesis Results

The proposed architecture was coded in VHDL and synthesized using Xilinx ISE 13.2 speed

grade -3 for the xc5vlx110t device. Synthesis results are shown in Table 6.2.

From the synthesis report, we have the maximum delay path is 4.887ns that gives a

maximum operating frequency is 204.61Mhz. For the planar mode, we have a setup latency

of delay cycles (defined in section 6.4.1) for the edge circuit. DC mode has setup latency

of 2nT − 1 + delay cycles due to the DCval circuit. All other modes have no additional
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Table 6.2: synthesis results on xc5vlx110t with speed grade -3 using Xilinx ISE 13.2

uni proc whole system FPGA
# of slice registers 562 684 69120
# of slice LUTs 467 690 69120
# of DSP48Es 7 7 64
# of BRAM 0 1 148

setup delays. After setup, the pipeline in uni proc is filled in and after 8 + delay cycles, the

pipelined is filled up and the first output pixel is computed. For the remaining pixels, we

need an additional nT × nT − 1 cycles since we output one pixel per cycle. For the encoder

to determine the best mode, it generates all 35 modes prediction results. Overall, it takes

3delay + 7 + 2nT + 35nT 2 cycles to generate all 35 · nT 2 output pixels. Thus, on average,

the setup delay is dominated by the number of output pixels 35 ·nT 2. Based on the encoded

mode, the decoder circuit will only need setup latency + 8+ delay + nT 2 cycles to compute

all nT 2 output pixels. For each mode and PU size, we summarize the operation cycles in

Table 6.3. At an operating frequency of 100Mhz, the fully realized system is simulated after

place and route, and gives a dynamic power cost of 50.48mW.

We also provide comparisons of our approach to previously published results. Com-

pared to [10], we provide more modes, PU sizes and higher operating frequency (204Mhz vs

150Mhz). In terms of resource usage, we are using less resources in Virtex 5 than the Virtex

6 resources reported in [77] and [78].
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Table 6.3: Total cycles to generate one prediction block and average cycles for one prediction
pixel, on decoder side, delay=2.

DC Plannar Angular
total avg. total avg. total avg.

4x4 35 2.19 28 1.75 26 1.63
8x8 91 1.42 76 1.19 74 1.16
16x16 299 1.17 268 1.05 266 1.04
32x32 1099 1.07 1036 1.01 1034 1.01
64x64 4235 1.03 4108 1.00 4106 1.00
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Chapter 7

DRASTIC for HEVC intra-encoding

at the Frame Level

7.1 Abstract

We introduce the use of a dynamically reconfigurable architecture system for time-varying

image constraints (DRASTIC) and consider applications in HEVC intra encoding. DRAS-

TIC provides a framework for jointly optimizing complexity-rate-distortion for different op-

erating modes. DRASTIC optimization involves dynamically reconfiguring parameters (e.g.,

the quantization parameter, encoding configuration modes) in software for achieving fine op-

timization control. The fine control achieved with the use of the DRASTIC modes is shown

to perform significantly better than the standard use of fixed profiles.
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7.2 Introduction

HEVC is improved video coding standard with tools such as recursive coding/transforms

units, complex intra prediction modes, and asymetric inter prediction unit division, etc. It

aims at 50% bit rate reduction for equal perceptual video quality [80]. However, the perfor-

mance comes with unbearable computing complexity as more computing and comparision

are executed. To reduce the inter encoding complexity, several configuration modes were

shown as in [81]. For intra encoding complexity, rough mode set(RMS, [82]), gradient based

intra prediction [14] and coding unit(CU) depth control [83] were proposed. Problem comes

when complexity is treated as a separate performance factor, you can’t achieve scalablility

in complexity with same RD performance.

In this chapter, we introduce a Dynamically Reconfigurable Architecture System for

Time-varying Image Constraints (DRASTIC) to describe a multi-objective optimization

framework for video compression that provides scalable and adaptive solutions that jointly

optimize computational-complexity, rate, and distortion. To formally define this framework,

let E denote the energy expended in the computation, Q denote an image quality metric,

R denote the rate measured in the number of bits per pixel, and C denote the control space

used for optimization. We have four design modes for DRASTIC:

• Minimum complexity mode: Used for conserving energy without sacrificing image

quality or requiring excessive bitrate. Here, based on Energy = Power · Time, we mini-

mize energy by minimizing time complexity. In this case, the family of optimal designs

solve:

min
C

T subject to (Q ≥ Qmin) & (R ≤ Rmax). (7.1)

• Minimum rate mode: Used to minimize bandwidth requirements as constrained by

the network, or to support multiple users, without sacrificing image quality or requiring
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excessive energy. In this case, we have:

min
C

B subject to (Q ≥ Qmin) & (T ≤ Tmax). (7.2)

• Maximum video quality mode: Used for providing the maximum possible image

quality subject to limited bandwidth and available energy:

max
C

Q subject to (T ≤ Tmax) & (R ≤ Rmax) (7.3)

• Typical mode: Used for balancing all objective requirements subject to limited band-

width, energy, and minimum image quality levels:

min
C

− α ·Q+ β · T + γ ·R

subject to (Q ≥ Qmax) & (T ≤ Tmax) & (R ≤ Rmin). (7.4)

The contributions of this paper include the introduction of a control space and controller

that provide scalable solutions in terms of encoding complexity, bitrate and quality for HEVC

intra encoding, and the realization of DRASTIC modes, with dynamic reconfiguration at the

frame level. The current paper is focused on implementing DRASTIC based on scalable block

compression for intra-encoding. This work complements earlier work on the use of DRASTIC

modes for the DCT presented in [84].

The paper is organized as follows. In section II, we introduce the configuration space C.

The implementation of DRASTIC controller and modes is detailed in section III. Concluding

remarks are given in section IV.

7.3 The configuration space: scalable block-compress

for HEVC intra-encoding

The basic framework for implementing DRASTIC HEVC intra-encoding is shown in Fig.

7.1. Following video encoding for each video frame, the DRASTIC controller is provided
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Figure 7.1: Diagram for DRASTIC HEVC Intra Encoding System

with: (i) Time taken to compress and encode of last frame. (ii) Rate achieved as bits per

sample for the encoding of last frame. (iii) Quality based on the PSNR between the original

and the encoded last frame. The goal of the DRASTIC controller is to use these objectives to

adapt HEVC’s intra-encoding configuration-performance model in order to provide optimal

parameters for the different DRASTIC modes. To make this possible, it is necessary to define

the configuration space C based on a scalable block-compress approach. This section details

the parameters associated with C. We begin with a summary of HEVC intra-prediction.

The HEVC intra-encoding implementation is based on the reference software HM11.0 given

in [85]. For luma prediction, the modes include the use of a rough mode set (RMS [82, 86],

8 modes for prediction units (PU) of sizes 4 × 4 and 8 × 8, and 3 modes for PU sizes of

16 × 16,32 × 32 and 64 × 64). The determination of the optimal luma mode is based on a

two-step approach. First, the rough mode set is determined as a set of possible candidate

modes that are assumed to include the optimal prediction mode. Fast computation of the

rough mode set is based on the estimation of distortion using the sum of absolute Hadmard

transform coefficients and the rate estimated based on the considered mode. Second, using

the RMS, the optimal luma prediction mode is determined by estimating distortion using the

mean-squared error in the reconstruction and rate estimated based on the use of the largest
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Transform Unit (TU). For chroma prediction, the optimal prediction mode is selected from

5 available modes [85] according to their RD performance, as was done in the second step for

the luma mode. Given the estimated, optimal luma and chroma CU modes, an exhaustive

subdivision process is applied based on RD performance to determine the TU split (see

Fig. 7.1). After TU spliting is applied, the resulting, quantized coefficients are entropy

encoded. The reconstructed, intra-encoded part is further used to encode next CTU. To

reduce reconstruction artifacts, a deblocking filter (DBF) and sample adaptive offset (SAO)

is applied before the intra picture is put into decoded picture buffer. For the current paper,

DBF and SAO are not used to enable fast intra-prediction performance. Here, note that DBF

and SAO should be considered for low bitrates where compression artifacts can be significant.

The DRASTIC controller is used for controlling how the coding tree units (CTU) is split

into the coding units(CU) and how the residuals were splited into the transform units (TU),

by replacing the above mentioned CU and TU subdivision process.

Recent bitrate, image quality (based on PSNR), and encoding time are used by the

DRASTIC controller to determine future control parameters for jointly optimizing rate-

distortion-energy performance. Here, note that jointly-optimal requires Pareto-optimality.

To provide Pareto-optimality, we consider an approach based on the quantization parameter

(QP varies from 0 to 51) and a custom configuration mode that determines the allowed CU

and TU sizes used in determining the optimal prediction mode. The custom configuration

mode is given by:

config = 5 ∗ DepthConfig+ FinerDepthConfig,

where DepthConfig = 0, . . . , 3, is used for selecting the possible sizes for CU and TU as

described in Table 7.1, and FinerDepthConfig = 0, . . . , 4, provides finer control over the

allowed CU and TU sizes as described in Table 7.2. The basic idea for DepthConfig is to

use nested configurations where larger configuration modes include all the options available

in lower modes, and thus are expected to provide reasonable configuration scalability grain.

For FinerDepthConfig, the nested configurations control the percentage of CTUs that is
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required to use the minimum CU and TU sizes.

Table 7.1: Depth control for CU and TU candidate sizes based on DepthConfig.

Allowed Luma Allowed Luma
DepthConfig CU size TU size
0 64,32 32
1 64,32,16 32,16
2 64,32,16,8 32,16,8
3 64,32,16,8,4 32,16,8,4

Table 7.2: Finer depth control for the CU, TU sizes using FinerDepthConfig.

Allowed Luma Allowed Luma
FinerDepthConfig CU size TU size
0 20% minimum size 20% minium size
1 40% minimum size 40% minimum size
2 60% minimum size 60% minimum size
3 80% minimum size 80% minimum size
4 100% minimum size 100% minimum size

7.3.1 Rate-distortion-energy space results

We will next provide results on the estimation of the rate-distortion-energy space and demon-

strate that our approach leads to Pareto-optimal results. The results are demonstrated on

the RaceHorses video [87] in Figures 7.2, 7.3 and 7.4. To generate the space, QP was varied

in the range of [0, 51) with a step of 3 and config takes on all of the values in 0, 1, 2, . . . , 19.

Furthermore, to estimate the space, we take the average of 6 video frames. The approach

generates 340 Pareto-optimal points where higher values of config generate better RD per-

formance at higher complexity (or energy consumption).
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Figure 7.2: The projection of the rate-distortion-energy space on the rate-distortion space
for the RaceHorses video. Here, bps refers to the number of bits-per-sample. Note that all
of the configurations are Pareto-optimal in the sense that it takes more energy (time) to
provide better rate-distortion performance. The video frame is of size 432× 240.

7.4 DRASTIC Control

7.4.1 Simulation Setup

To simulate time-varying constraints, we consider the transition from a low to a medium

to a high constraint profile. Transitions occur every 40 frames. The low constraint profile

uses lower values for PSNR, bitrate, and complexity. Then, the medium and high constraint

profiles are used to define the four DRASTIC modes described in the introduction. The

time-varying constraint profile evolution is shown in Fig. 7.5 plotted using red lines. For

the typical mode, all of the constraints are active. For all other DRASTIC modes, one of

the constraints, chosen from the PSNR, BPS, SPS is allowed to vary so as to: (i) maximize
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Figure 7.3: The projection of the rate-distortion-energy space on the rate-complexity space
where complexity is measured in terms of the number of seconds per sample (sps) and it is
assumed to be proportional to the consumed energy (from E = Pt). The space is Pareto-
optimal in the 3-dimensional space in that longer computation times increase the PSNR.

quality, (ii) minimize bitrate, or (iii) minimize computational complexity as detailed in the

introduction.

To provide baseline comparisons, we will compare the fine adaptation of DRASTIC with

a set of three fixed profiles. Furthermore, the basic profiles will be used for initializing

the search for the local, Pareto-optimal solution. The three fixed configuration profiles

are given by: (i) low-profile uses Config=4, QP=42 for the lowest-quality, minimum bi-

trate, and minimum complexity, (ii) medium-profile uses Config=11, QP=28, and (iii) high-

profile uses Config=18, QP=14 for the highest-quality, maximum bitrate, and maximum

complexity. The corresponding constraints that can be achieved are estimated using the av-

erage quality, bitrate, and time complexity based on the original configuration (Config, QP)
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Figure 7.4: The projection of the rate-distortion-energy space on the distortion-complexity
space where complexity is assumed to be proportional to the consumed energy (from E =
Pt). The space is Pareto-optimal in the 3-dimensional space.

and the three neighboring configurations given by: (Config+ 2, QP), (Config, QP− 2), and

(Config+ 2, QP− 4).

7.4.2 Initialize and Hold Control

A simple solution for controling the encoding system to meet initialized constraints is just

to initialize and hold. We change the profile constraints every 40 frames. The initialization

and hold policy is shown in fig.7.5, this method will create a smooth performance sequence,

we know that the performance will not change too much as long as there is no scene change.

Problem with initialization and hold control policy is that the control space is not used to

achieive optimized performance, also it can’t adapt to image contents, scene change will lead
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to performance ripple.

30
32
34
36
38
40

PS
NR

RaceHorsesC(832x480):Init and keep

0.0
1.8
3.6
5.4
7.2
9.0

SP
S(

e-
6)

0.0
0.4
0.8
1.2
1.6
2.0

BP
S

0
5

10
15
19

Co
nf

ig

0 20 40 60 80 100 120
Frame Index

0
10
20
30
40
50

QP

Figure 7.5: Results based on initialize and hold.

7.4.3 Prediction Model and Model Update

We model the local Pareto front using a linear model given by:

Q = a1 · QP+ b1 · Config+ c1

T = a2 · QP+ b2 · Config+ c2

R = a3/2
(QP−4)/6 + b3 · Config+ c3

(7.5)

where Q is measured by PSNR, T denotes the time required for processing a single pixel, and

R denotes the number of bits per sample. All of the coefficients in (7.5) can be estimated

by using the last three independent measurements. For example, to estimate a1, b1, c1 using
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a set of three measurements, we would simply use
a1

b1

c1

 =


QP1 Config1 1

QP2 Config2 1

QP3 Config3 1


−1 

Q1

Q2

Q3

 . (7.6)

Naturally, matrix inversion requires three independent measurements. The search-space

for moving from the current configuration (given by (Config, QP)) is restricted in the

neighborhood defined by [Config− 2, Config+ 2]× [QP− 5, QP+ 5]. We expect that the

selected configuration (Confign, QPn) will generate (Qn, Tn, Rn) accurately, based on the local

linear model. If the linear model provides predictions that miss the measured time-rate-

PSNR by more than 5%, (Config, QP) are adjusted by adding random offsets chosen from

[−1,+1] for both of them.

7.5 DRASTIC Implementation And Results

7.5.1 Minimum Complexity Mode

For each constraint-profile, the minimum complexity mode starts with the corresponding

profile (low, medium, or high) and uses the controller to determine the next configuration.

The basic idea is to determine the configuration that provides the minimum value of T within

the search space. In the case where the constraints cannot be satisfied, the basic approach

is to solve the unconstrained problem given by

min
Config, QP

α · Tn

Tmax

+ β · abs
(
Qn −Qmin

Qmin

)
+ γ · abs

(
Rn −Rmax

Rmax

)
(7.7)

with α = 1, β = 20 and γ = 20. As shown in Fig. 7.6, compared to the initialize and hold

mode, the minimum complexity mode requires far less times T , especially for the high-profile.
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Figure 7.6: Results from minimum complexity mode.

7.5.2 Minimum Rate Mode

The minimum rate mode looks for the configuration pair that minimizes the bitrate. In the

case that the constraints cannot be satisfied, the configuration that solves the unconstrained

problem given by

min
Config, QP

α · abs
(
Tn − Tmax

Tmax

)
+ β · abs

(
Qn −Qmin

Qmin

)
+ γ · Rn

Rmax

(7.8)

with α = 20, β = 20 and γ = 1, is chosen. As shown in Fig. 7.7, compared to the initialize

and hold mode, the minimum rate mode tends to require lower nitrates while satisfying the

quality and complexity constraints.

98



Chapter 7. DRASTIC for HEVC intra-encoding at the Frame Level

30
32
34
36
38
40

PS
NR

RaceHorsesC(832x480):Minimum Rate Mode

0.0
1.8
3.6
5.4
7.2
9.0

SP
S(
e-
6)

0.0
0.4
0.8
1.2
1.6
2.0

BP
S

0
5
10
15
19

Co
nf
ig

0 20 40 60 80 100 120
Frame Index

0
10
20
30
40
50

QP

Figure 7.7: Results for minimum rate mode.

7.5.3 Maximum Quality Mode

Similarly, for the maximum quality mode, in the case that the constraints are not satisfied,

the configuration that solves

min
Config, QP

α · abs
(
Tn − Tmax

Tmax

)
+ β · Qn

Qmin

+ γ · abs
(
Rn −Rmax

Rmax

)
(7.9)

with α = 20, β = −1 and γ = 20 is chosen instead. As demonstrated in Fig. 7.8, the

maximum quality mode maintains higher quality than the initialize and hold mode.
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Figure 7.8: Results for maximum quality mode.

7.5.4 Typical Mode

For the typical mode, failure to meet the constraints leads to problem of finding the config-

uration that solves

min
Config, QP

α · abs
(
Tn − Tmax

Tmax

)
+ β · abs

(
Qn −Qmin

Qmin

)
+ γ · abs

(
Rn −Rmax

Rmax

)
(7.10)

with α = 20, β = 20, and γ = 20. From the results in Fig. 7.9, compared to initialize and

hold, the typical mode provides a more consistent performance.
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Figure 7.9: Results for typical mode.
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Conclusion and Future Work

8.1 Conclusion

A framework for achieving optimal image and video compression performance in multiple ob-

jectives has been developed in the dissertation. The developed framework provides optimal

configurations that can meet time-varying constraints. The framework jointly considers opti-

mization over bitrate, reconstruction quality, and dynamic power / energy (or computational

complexity). In terms of optimization modes, effective approaches have been developed for:

1) minimum dynamic power / energy (or computational complexity), 2) minimum rate, 3)

maximum image quality, a 4) typical mode.

Instead of traditional RD optimization, the dissertation introduced a rate-quality opti-

mization approach that used stochastic optimization to compute optimal quantization tables.

This first approach was based on multi-pass compression that is possible for offline compres-

sion. For real-time video communication, multi-pass compression will introduce unacceptable

delays. Computational complexity is considered as a measurement that is directly related to

energy consumption for real-time implementations. Thus, DRASTIC is considered for both

software-hardware as well as software only configurations. The dissertation considered appli-
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cations in MJPEG, H.264/AVC, and H.265/HEVC by providing DRASTIC implementations

of the DCT, Deblocking filtering and intra-prediction respectively. Joint software-hardware

optimization uses hardware reconfiguration to control dynamic power while software-based

quantization control allows for an effective method for controlling bitrate (which is also af-

fected by the hardware configuration). For HEVC, intra-encoding modes are considered as

well the use of different CU depths.

For hardware dynamic partial reconfiguration, DRASTIC requires scalabiltiy to reduce

the reconfiguration overhead. A scalable reconfiguration controller has been developed and

implemented for MJPEG. For software-only configurations, DRASTIC uses more precise

feedback by modeling the encoding process and updating model parameters after each en-

coding unit to ensure precise estimation of encoding performance.

Currently, there are two journal papers that are directly associated with the dissertation.

First, the DRASTIC DCT implementation will be submitted as a full journal paper to

the IEEE Transactions on Circuits and Systems for Video Technology. Second, the HEVC

intra RD optimization based on the DRASTIC framework is expected to be completed and

submitted for publication before the end of the semester.

8.2 Future Work

In what follows, I provide a set of recommendations for future work:

• Hardware implementations need to consider power issues when significant computa-

tions involve heterogeneous environments that include both CPUs and reconfigurable

hardware components. The CPU will have less work to do and video processing can

be performed in effective hardware modules. DRASTIC can effective control dynamic

power allocation.

• DRASTIC needs to be extended to allow for finer control. The dissertation research
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was focused on dynamic reconfiguration at the frame level. Reconfiguration between

CTU or Macroblocks will lead to finer performance control which will in turn yield

to smooth transitions in image quality, bitrate, and computational complexity levels.

Smoother transitions are needed for minimizing the possibility that humans will detect

decoded video artifacts due to configuration mode changes. Furthermore, finer control

modes will provide for better DRASTIC reconfiguration control.

• DRASTIC needs to be extended to cover inter-mode coding. Inter-mode extensions

should consider the use of different video frame formats (e.g., P and B video frame

types). By considering different video frame types, inter-mode can yield significant

bitrate savings over intra-mode encoding.

• The design of effective configuration spaces for different video standards remains a

challenge. It will be interesting to investigate the use of several different DRASTIC

configuration spaces for different video coding standards. This research would first

analyze several different coding tools independently and then jointly to determine the

most effective configuration spaces.

• DRASTIC control requires accurate models for estimating bitrate, quality, and com-

plexity based on the selected configuration. More accurate models that use the config-

uration parameters to predict bitrate, quality, and complexity need to be considered

in future research. This research should also consider the development of better mech-

anisms for updating the models.
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Reconfigurable Systems Workshop, Albuquerque, Nov, 2010.

[2] Murray Victor, Llamocca Daniel, Yuebing Jiang, Lyke J., Pattichis, Marios S., Achramow-

icz S., and Avery K., “A Cell-based Architecture for Adaptive Wiring Panels: A First Ap-

proach,” 2011 Reinventing Space Conference, Los Angeles, May, 2011.

[3] Yuebing Jiang and Pattichis, M.S., ”JPEG image compression using quantization ta-

ble optimization based on perceptual image quality assessment,” 2011 Conference Record

of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR),

pp.225-229, 6-9 Nov. 2011.

[4] Yuebing Jiang and Pattichis, M., ”A dynamically reconfigurable DCT architecture

for maximum image quality subject to dynamic power and bitrate constraints,” 2012 IEEE
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April 2012.
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