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ABSTRACT 

 

 
This Thesis provides an analysis of the interaction of electromagnetic pulses with 
vibrating conducting and dielectric objects. Two-dimensional full-vector Maxwell’s 
equations finite-difference time-domain (FDTD) models are employed that 
include total-field scattered-field incident plane wave source conditions, a 
frequency domain near-to-far-field transformation, convolutional perfectly 
matched layer boundary conditions and an advanced surface boundary condition 
that accommodates the surface perturbations of the vibrating objects. Reflection 
and diffraction of incident plane waves are calculated for stationary and vibrating 
objects and the diffraction coefficient for vibrating right-angle corners are 
obtained. The work of this Thesis may have application to the interaction of radar 
pulses with buildings having characteristic vibration signatures.  
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Chapter 1 

Introduction 

 

1.1 Overview 
Technology for remotely (such as from an airplane) imaging not only spatial 

information of buildings and structures, but also simultaneously imaging their 

vibration signatures lends itself to a complex but important research project. 

Active structures such as buildings containing certain machinery or generators, 

as well as combustion-based vehicles, and active underground facilities, bear 

vital characteristic signatures about those activities. As many signatures from 

structures can be correlated to nuclear proliferation activities, reliably detecting 

vibration signals could greatly benefit anomaly detection missions at particular 

sights of interest. Fusing vibration and spatial information will add a new critical 

dimension to ordinary imagery. If materialized, the vibration information will be 

placed in a spatial context, adding robustness and accuracy to anomaly 

detection.   

However, fusing spatial and vibration information from different sensors requires 

co-registration, a challenging task that is often accompanied by inaccuracies that 

may compromise any nonproliferation missions. Presently, no single sensing 

platform exists that allows the simultaneous generation of imagery and a 

corresponding two-dimensional array of vibration spectrograms. Synthetic 

aperture radar (SAR) poses itself as a natural fit to this problem since (1) it has 

already been proven as a highly effective imaging technology, and (2) it is 
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inherently capable of sensing Doppler shifts in the electromagnetic (EM) returns 

from objects, thereby allowing the detection of vibrations.  

The work of this Thesis is in support of an overall goal of designing SAR imaging 

strategies that yield two-dimensional (spatial) maps of vibration frequencies 

(spectrograms) superimposed on ordinary SAR images. This process involves 

transmitting a series of probing EM pulses towards vibrating targets and 

developing post-processing algorithms that will unambiguously estimate the 

vibrations at each spot on the ground from the radar returns. 

Specifically, this Thesis contributes to the overall project by obtaining an 

improved understanding of the interaction of EM pulses with vibrating targets by 

utilizing the finite-difference time-domain (FDTD) method [1,2] to model EM wave 

interactions with vibrating conducting and dielectric objects. Two-dimensional (2-

D), Transverse Magnetic (TMz) FDTD models generated from scratch are 

employed. These models contain: (1) a Total-Field Scattered-Field (TFSF) 

incident plane wave formulation to simulate the nearly planar pulsed radar signal 

incident on structures from remote antennas located at any angle; (2) a 

Convolutional Perfectly Matched Layer (CPML) [3] boundary condition to prevent 

unwanted reflections from the outer grid boundaries; (3) a frequency-domain 

Near-to-Far-Field (NTFF) transformation to compute far-field data (as would be 

recorded by a remote receiving antenna) from the near-field FDTD-calculated 

electric and magnetic fields; and (4) an advanced surface boundary condition 

(SBC)  that simulates the boundary perturbations of structures [4,5].  
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1.2 Goals of This Thesis 
This Thesis focuses on the interaction of EM radar pulses with vibrating square 

targets having different material properties, as well as with the corners of specific 

targets. Using the above full-vector Maxwell’s equations FDTD models, the 

incident, reflected and diffracted EM waves are calculated for each target 

scenario. This includes calculation of the diffraction coefficient for the corners of 

both stationary and boundary-perturbed objects. Further, a methodology for 

obtaining the far-field Doppler component radar cross section (RCS) is 

presented.   

The immediate goal for the work of this Thesis is to attain an advanced 

comprehension of the interaction of EM radar pulses with vibrating targets in 

order to aid with the development of the SAR imaging strategies discussed in 

Section 1.1. As part of future work, as discussed in Chapter 6, the 2-D TM FDTD 

models of this Thesis will be expanded to three-dimensions (3-D) and utilized to 

replicate a realistic SAR imaging scenario. That is, modeled 3-D targets located 

on the ground will be excited by incident plane waves as would originate from an 

antenna positioned on a passing airplane, and the resulting Doppler spectrum 

will be obtained at various receiving angles. 

Aside from SAR imaging, the work presented herein may have application to 

other areas of research. For example, the modeling results may aid the 

development of improved detection techniques for improvised explosive devices 

(IEDs) via electromagnetic wave interactions with a mechanically vibrating Earth. 

This is made possible by the fact that targets (IEDs) in a background medium 

(Earth) are more easily detected when the Earth (with targets) are vibrating, a 
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fact that could possibly help save countless lives. Analogously, the detection of 

early-stage breast cancer might be improved via vibrations [6]. 
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Chapter 2 

Background 
 

2.1 Modeling Moving Objects in FDTD Grids 
Initially, researchers used a brute-force method to implement vibrations in their 

FDTD grids. For instance, in [7], Bircher et al. are interested in the rotor-blade 

modulation (RBM), which is an effect where the rotation of a helicopter’s rotor 

blade periodically interferes with the aircraft communication by distorting the 

signals. In an FDTD grid, they utilized “a quasi-stationary” [8] method to model 

the rotor blade movement. This approach is accomplished by considering each 

orientation of the rotor blades as one instant of time. The plane radiation patterns 

are calculated using separate FDTD simulations for each of the rotor 

orientations. Then at each observation angle they compute the motor modulation 

by subtracting the resulting maximum and minimum electric field for every rotor 

orientation. 

 

 

Several other articles introduce a boundary condition type method for modeling 

the effects of vibrations that includes rigorous calculations resulting in currents 

applied to the surface of the object [9-11]. However, the approach in [9] does not 

take into consideration arbitrary vibrations and the method in [10,11] does not 

pertain to objects with arbitrary geometry.  
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The authors of [10,11] realize the limitations of their method, as well as the 

limitations of the technique employed in [9]. Thus, they propose a time-varying 

sheet boundary condition (SBC), which is a more generalized version of the 

impedance boundary condition (IBC). The SBC is a boundary condition applied 

to the surface of an unperturbed object that represents any slight perturbation 

within or on the surface of the moving object. This boundary condition can be 

implemented for any arbitrary geometry and mode of vibration. 

For objects that are vibrated acoustically, there is often a significant (orders of 

magnitude) difference between the acoustic frequency and EM frequency.  Thus, 

the quasi-stationary (QS) approximation [8] is assumed for the SBC. The quasi-

stationary approximation assumes that the scattered field is estimated to be 

stationary (with respect to the moving object) at any time, and as the time varies 

so does the scattered field calculation. The QS is only accurate when the EM 

frequency is much larger than the vibration frequency and when “the object is not 

moving at relativistic speeds” [12].  

In a recent study [4], the SBC is applied to arbitrarily shaped objects in an FDTD 

grid to calculate the Doppler spectrum of the bistatic scattered field. In this 

Thesis, the methodology of the FDTD SBC [4] is employed to study the 

interaction of EM pulses with vibrating objects. Further details of the SBC and the 

implementation of the SBC are provided in the section 3.5.    

2.2 Calculation of Diffraction Coefficients 
In [13], Stratis et al. look at diffraction coefficients of conducting and dielectric 

wedges. Their work is motivated by the fact that classical theories such as the 
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uniform geometrical theory of diffraction solve diffraction coefficient problems for 

perfect electrical conducting (PEC) wedges, but there is no analytical solution of 

the diffraction coefficient for problems that have dielectric or imperfectly 

conducting wedges. As a result, they utilize the full-vector Maxwell’s equations 

FDTD method to numerically compute diffraction coefficients of dielectric and 

imperfectly conducting wedges. In this Thesis, this study is taken a step further 

and the FDTD method is employed to numerically calculate diffraction 

coefficients of dielectric and imperfectly conducting vibrating wedges.  
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Chapter 3 

FDTD Model Components 

 

3.1 Introduction of FDTD 
In a 1966 paper [1], K. S. Yee developed the basic FDTD space grid and time-

stepping algorithm by taking the following Maxwell’s equations and the equivalent 

set of finite difference equations 

0E
B

t
 

JH
D

t
 

HB  

ED  

 and put them into the following computational form   
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Taflove further developed Yee’s space grid and time-stepping algorithm and 

coined the term Finite-Deference Time-Domain and its corresponding acronym 

FDTD in a 1980 paper [14].  

The programming methods in this Thesis were aided by Taflove and Hagness’s 

textbook [2], which provides detailed explanations and programming details for 

FDTD. The basic 2-D TMz Maxwell’s equations utilized in the code are 

         →             

                                        

                            → 

                                            

Implementing central differencing and expanding these equations into the FDTD 

method yields 
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The H field update equations are first time stepped through, followed by the E 

field update equations. These equations are the basis of modeling the 

electromagnetic fields and wave propagation. 
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3.2 Introduction of TFSF 
The Total-Field/Scattered-Field (TFSF) technique generates an incident plane 

wave that may propagate in any angular direction in the FDTD grid. To formulate 

the TFSF, the following equations are assumed: 

Etotal = Einc + Escat                                 Htotal = Hinc + Hscat  

These equations state that the total fields are equal the sum of the incident fields 

plus the scattered fields. The Einc and the Hinc are the E and H fields of an 

incoming uninterrupted wave. Escat and Hscat are the E and H fields of a scattered 

wave due to the interaction of an incident wave with an object. To realize the 

TFSF, the total fields are modeled in region 1 as shown in the sample 2-D FDTD 

grid of Figure 1 and a zone of only scattered fields are modeled in region 2, 

which borders region 1.    

 

Figure 1: TFSF. A sample 2-D FDTD grid illustrating the two regions of modeled fields. Region 2, 

made up of scattered fields, surrounds region 1, which consists of total-fields. Courtesy of [6]. 
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There are several advantages of zoning the total fields in one region and the 

scattered fields into another region. The first advantage is that the interface 

between these two regions generates an arbitrary incident wave in region 1. The 

incident plane wave generated can be modeled with any time waveform, 

duration, incident angle and polarization angle. Another advantage is that the 

continuity that occurs at the interface comes naturally between a total-field region 

and a scattered-field region and the programming of this interface is 

straightforward. Also advantageous is the ability to accurately compute EM fields 

in deep hidden regions. Additionally, an absorbing boundary condition (ABC) can 

be applied to the outer edge of the scattered-field only region. An ABC reduces 

any outward waves to almost negligible values, which makes the grid appear 

infinite. This topic will be discussed in the next section. The last advantage is that 

the far-field radiation or bistatic scattering pattern can be obtained by putting a 

near-to-far-field transformation surface in region 2, where there are only 

scattered-fields. This will be further discussed in section 3.4.  

3.3 Introduction of Convolutional Perfectly Matched Layer (CPML) 
As mentioned previously, ABCs are implemented at the edge of an FDTD grid 

and terminate any unwanted reflections from the outer grid boundaries. Perfectly 

Matched Layer (PML) is a type of ABC, and it utilizes an outer-layer absorbing 

medium to reduce unwanted reflections. Figure 2 illustrates how the PML is 

introduced in an FDTD model. The PML is on the outer edges of this Figure, and 

it effectively introduces losses in each of the four directions of the grid. Once the 

wave, propagating in this case symmetrically outward, reaches the PML region 

the wave gets absorbed into the PML. 
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Convolutional PML [3] is a more recently developed and improved type of ABC, 

and it is the ABC implemented in this Thesis. CPML is the most accurate PML 

and is applicable for generalized material.  

 

Figure 2: The PML is on the outer edges of this Figure, and it effectively introduces losses in 

each of the four directions of the grid. Courtesy of [6]. 

 

3.4 Introduction of the Frequency-Domain Near-to-Far-Field (NTFF) 
Transformation 
The frequency-domain NTFF is computed by taking the transformation of the 

near-field data. The advantage of using this method is that the FDTD grid does 

not need to be extended out into the far-field in order to obtain far-field 

information. The 2-D TMz scattering or radiation geometry utilized to attain the 

NTFF in the phasor domain is shown in Figure 3. In this Figure, is a structure 

enclosed by contour Ca. Surrounding both of these is the infinite-radius circular 
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contour C∞. With the assumption that Ca and C∞ are connected, a continuous, 

closed contour is formed around the structure. 

 

Figure 3: 2-D TMz scattering or radiation geometry utilized to obtain the NTFF in the phasor 
domain. Courtesy of [6].  

 

The first step in obtaining the NTFF in the frequency domain is to take the 

Discrete Fourier Transform (DFT) of the FDTD computed electric and magnetic 

fields utilizing the geometry in Figure 3. Then, apply Green’s theorem to Ez(r) and 

G(r|r’)  
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With some math, this equation reduces to  

 

where r is an observation point, r’ is a source point and dC’ is a differential path 

along Ca and C∞. 

Next, taking the limiting expression of the analytical form of the Green function 

  

          →   2/1
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e
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doing some arithmetic and plugging the final limiting expression of the analytical 

form of the Green function into the reduced  equation gives the far-field 

expression 

 

Then, manipulating the above equation results in the standard form 

 

where  and  are the phasor tangential equivalent 

electric and magnetic currents at Ca. 
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3.5 Modeling Object Vibrations 

3.5.1 Introduction of the Sheet Boundary Condition (SBC) 

Modeling the actual vibration of the object via brute-force methods in the FDTD 

model is difficult due to the fine resolution required to resolve the object’s small 

vibration motion, the orders of magnitude difference between the scattering from 

the stationary object and the desired Doppler shifted scattered field component, 

and the large time scale difference between the electromagnetic signal and the 

object movement. 

The sheet boundary condition (SBC), as mentioned in section 2.1, addresses 

these issues by acquiring only a single discretization of the object not determined 

by the magnitude of the vibrations, separating the dominant unperturbed 

scattering from the Doppler component due to the object motion, and 

accommodating the two time scales, electromagnetic and acoustic, without 

increasing the required computational resources. The SBC is applied on the 

unperturbed object boundary, and it accounts for any object motion or boundary 

deformation normal to the surface. Tangential (shear) boundary motion has a 

much smaller effect on the Doppler component and is thus not considered.  

Specifically, the SBC analyzes the total scattered field, which is the combination 

of the electric fields scattered from the unperturbed object and the electric fields 

scattered from the vibrating object that contains some Doppler fields.  

 3.5.2 Formulation 

The radial displacement, u ( t), which may change cosinusoidally, can be taken 

into consideration when modeling vibration of an object 



17 

 

            

 

 

where n is the mode number, n is the mode amplitude, n is the mode phase, 

a is the acoustic frequency and  is the azimuthal angle. In this Thesis the 

cosinusoidal time dependence is suppressed due to choosing a specific mode of 

vibration that is associated with a particular boundary perturbation. Thus, the 

equation utilized for the boundary perturbation is 

 

In order to implement the SBC, two codes with the same parameters are created. 

In the first code, an incident plane wave source is employed and a stationary 

dielectric object is modeled within this grid. The electric fields along the boundary 

of the dielectric object are recorded versus time step. The second code is 

simulated with the only source being the currents along the boundary of the 

dielectric, which generate the Doppler component of the scattered field. The 

currents along the boundary for a dielectric object and TMz polarization are 

modeled with       

 

However, since the permeability in this study is 1, the above equation reduces to  

 

where ),( ir  is the boundary perturbation and E is where the recorded electric 

fields from the first code are implemented.   
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3.5.3 Validation Study 

In order to implement the SBC, two codes are created. The first code models a 

281 x 281 grid where dx=dy= 0.6 mm, dt = 1.39 ps and the number of time steps 

is 10,000. This grid contains the TFSF formulation, CPML boundary condition 

and the NTFF transformation. The source is a Gaussian modulating a sinusoid at 

5 GHz center frequency. A square cylinder with a width and length of 2.0 , a 

relative permittivity of 2 and a relative permeability of 1 is located in the middle of 

a free space FDTD grid. In this code, electric fields along the boundary of the 

unperturbed square cylinder are recorded versus time step.  

In the second code, the electric field outputs from code 1 are used as currents 

along the boundary of the square cylinder that serves as the source to generate 

the Doppler component of the scattered field. The equation for the currents is 

given by 

 

 

which is the equation utilized as the source in code 2.  

The specific boundary perturbation chosen for this validation study is mode 2 and 

implemented by the following equation 

 

The mode amplitude, , is 0.001  and  is computed by the angle around the 

cylinder. Figure 4 illustrates some of the mentioned parameters of the square 

dielectric. 
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Figure 4: A square cylinder with a width and length of 2.0 , a relative permittivity of 2 and an 

azimuthal angle denoted by  located in the middle of a free space FDTD grid. 

 

All of the parameters chosen are the same as the parameters used in [4] in order 

to compare the results obtained from [4] with the code for this Thesis. 

Section 3.5.4 below provides the results of the validation study. Using a side by 

side comparison, the results attained from the model in this Thesis and the 

results form [4] seem to have good agreement. However, a brute-force method is 

also applied in order to fully verify that the SBC in this code is providing accurate 

results. 

In order to carry out this brute-force technique, first, a set of two codes 

implementing the SBC simulate a square dielectric with a width and length of 

1.0 and a relative permittivity of 2, which is located in the center of a 281 x 281 

grid. The source is a Gaussian modulating a sinusoid with a center frequency of 

850 MHz and a Gaussian envelope of 1.3 ns duration (full width at half 

maximum). The number of time steps is 10,000, dx=dy= 3.53 mm, dt = 8.15 ps, 

2 = 2 o 1 = o 

2.0

r 
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the incident angle is 0o and the amplitude vibration is 7 mm in the horizontal 

direction, along the x-axis. From this code the RCS is computed.  

Second, a set of two codes without the SBC is set to have the same grid and 

object parameters as the above codes having the SBC. The only difference is 

that in this set of two codes there is an incident plane wave source and a 

stationary dielectric object in the center of the grid. The first simulation of this set 

of codes is run and the electric fields in the far-field are computed and recorded. 

Next, the left and right side of the object in this code are both moved outward 7 

mm, to represent the vibration movement. This code is run again with the new 

object modification, and the electric fields in the far-field in this simulation are 

subtracted from the electric fields in the far-fields from the previous simulation 

with the object in the initial position. The RCS of the difference of these electric 

fields is computed. Finally, the RCS obtained from the code with the SBC is 

compared to the RCS of the brute-force method, which is presented in the results 

section. Note, the grid cell resolution was set to o/100 for accuracy, and in order 

to finely resolve a 7 mm movement in the code without the SBC. 

3.5.4 Validation Study Results 

After simulating the same parameters for the square cylinder in [4], the results 

obtained for this Thesis appeared to match very well with the results from [4] with 

a simple side by side comparison. This is shown in Figures 5 and 6 below. 
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Figure 5: Results obtained from [1] for the RCS of a square cylinder with a width and length of 

2.0 , a relative permittivity of 2, an azimuthal angle denoted by and at an incident angle of 0
o
. 

Courtesy of [4]. 
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Figure 6: Results obtained from the code in this thesis for the RCS of a square cylinder with a 

width and length of 2.0 , a relative permittivity of 2, an azimuthal angle denoted by and at an 
incident angle of 0

o
. 
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Using the parameters in [4], the RCS for various incident angles of a plane wave 

impinging on a square dielectric are also analyzed. Three randomly chosen 

incident angles, 30 o (Figure 7), 60 o (Figure 8) and 90o (Figure 9) are displayed 

to show the various signatures that can be obtained. Considering the overall 

goals for the work of this Thesis discussed in Chapter 1, it is important to analyze 

and recognize signatures from various incident angles, since the incident plane 

wave originating from a moving aircraft will be coming in at various angles.  
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Figure 7: RCS of a square cylinder with a width and length of 2.0 , a relative permittivity of 2, an 

azimuthal angle denoted by and at an incident angle of 30
o
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Figure 8: RCS of a square cylinder with a width and length of 2.0 , a relative permittivity of 2, an 

azimuthal angle denoted by and at an incident angle of 60
o
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Figure 9: RCS of a square cylinder with a width and length of 2.0 , a relative permittivity of 2, an 

azimuthal angle denoted by and at an incident angle of 90
o
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Secondly, as mentioned in the previous Section, a brute-force modeling 

methodology was implemented in order to completely verify that the SBC is 

functioning correctly for the vibrations considered later in this Thesis. A 

comparison between the results of the RCS of the code with the SBC to the 

results of the RCS of the brute-force method is presented in Figure 10.  
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Figure 10: Comparison between the SBC vibrating at 7 mm and the brute-force method of 
physically moving an object 7 mm. 

 

3.6 Calculation of the Diffraction Coefficient 

3.6.1 Methodology 

In order to study diffraction coefficients, the authors in [13] implement time-

gating, which allows for the separation of the incident, reflected, near-edge 
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diffracted and far-edge diffracted waveforms. The purpose of utilizing this 

technique is such that only the diffracted fields from the intended edge may be 

extracted from the FDTD grid in a straightforward manner to calculate the 

diffracted impulse response, hnum( t).  

Taking the Fourier transform of the diffracted impulse response, Hnum( ) 

provides the variation of the diffracted field from a plane wave over a large 

frequency spectrum. The diffraction coefficient, Dnum, is then obtained by the 

following equation 

 

where ( ) is the observation point and r is the distance from the scattering edge 

to the observation point. 

 3.6.2 Validation Study 

In order to verify the methodology for obtaining the diffraction coefficients, the 

validation study as performed in [13] for the case of a PEC right-angle wedge is 

performed. The FDTD-calculated results are then compared to the analytical 

solutions obtained via the uniform geometrical theory of diffraction (UTD).  

The implemented 2-D TMz polarized model has a grid size of 1,656 x 1,656, 

which includes a PML of 10 grid cells on all four sides, with a square PEC of 800 

x 800. The bottom of the square PEC is located 728 grid cells from the bottom of 

the grid and the right side of the square PEC is located 728 grid cells from the 

right side of the grid. The source is a Gaussian modulating a sinusoid with a 

center frequency of 850 MHz and a Gaussian envelope of 1.3 ns duration (full 

width at half maximum). The number of time steps is 4,906, dx=dy= 8.82 mm and 
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dt is 20.38 ps. The incident angle is 80o and the observation point, denoted by 

Point F in Figure 11, is located slightly to the right of the square PEC at =6.3 

and  = 262.37 o, in the diffracted field only region. The edge yielding the 

diffracted waves considered in this study is located at the bottom-right of the 

square PEC (a 90o wedge angle), edge A. The distance from the scattering edge 

to the observation point is represented with  and the angle from the scattering 

edge to the observation point is denoted with . These parameters can be 

referenced in Figure 11. 

 

Figure 11: Parameters of the FDTD Grid that computes the Diffraction Coefficient at Point F. 

 

In order to obtain the diffraction coefficient, the Fourier transform is taken of the 

electric fields at the observation point, F, and normalized relative to the incident 

plane wave source 
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and utilizing the previously described Dnum equation, the diffraction coefficient is 

computed by 

 

Note that Point F is in the shadow scattering region, which is of practical interest 

for diffraction problems. 

To obtain the UTD analytical solution, the computer code provided in [15] is 

utilized. This computer code computes the diffraction coefficient using the 

equation 

 

where , n is the wedge factor which is 1.5 for a right 

angle wedge and F(X) is the Fresnel’s transition function computed by the 

asymptotic expressions for large and small arguments 

 

                                                                                                   (for X < 0.3) 

 

                                                                                                    (for X > 5.5). 
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3.6.3 Validation Study Results 

In Figures 12-15, visualizations that depict four snapshots of the behavior of the 

electric fields in the FDTD grid used for the validation study are provided. That is, 

the incoming plane wave at 800 is observed, as well as how the fields scatter and 

diffract once this plane wave interacts with the square PEC object, in particular 

around corner A of the PEC object, located in the upper left side of the grid. In 

these Figures, the black square superimposed on the image shows the location 

of the scatterer and A denotes the corner of interest. 

 

Figure 12: Snapshot at time step 1,000 of an incoming plane wave at 80
0
 propagating towards a 

square PEC object located at the upper left of the grid. 

 

A 

Scatterer 
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Figure 13: Snapshot at time step 1,300 of the scattering and diffracting of the electric fields once 

an incoming plane wave at 80
0
 interacts with a square PEC object located at the upper left of the 

grid, and in particular corner A of the PEC object.  

 

Figure 14: Snapshot at time step 1,700 of the scattering and diffracting of the electric fields once 

an incoming plane wave at 80
0
 interacts with a square PEC object located at the upper left of the 

grid, and in particular corner A of the PEC object.  
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Figure 15: Snapshot at time step 2,600 of the scattering and diffracting of the electric fields once 
an incoming plane wave at 80

0
 interacts with a square PEC object located at the upper left of the 

grid, and in particular corner A of the PEC object.  

 

As mentioned previously, UTD analytical solutions for the diffraction coefficient 

are obtained to verify the methodology for obtaining the diffraction coefficient in 

this Thesis. As displayed in Figure 16, there is very good agreement between 

both the results of the analytical solutions and the FDTD simulated results. 

Specifically, as shown in Figure 17, the relative error is less than 1% from ~50 

MHz to 1500 MHz.  These results demonstrate the good degree of accuracy of 

the FDTD code utilized to compute the diffraction coefficient. 

A 

Scatterer 
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Figure 16: Comparison between the Analytical Solution and the FDTD results for the diffraction 

coefficient for a PEC object at Point F(
o
)  
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Figure 17: Relative Error between the analytical and FDTD results of the diffraction coefficient. 
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Chapter 4 

Modeling Studies and Results 

In this Chapter, the methodologies verified in Chapter 3 for modeling vibrating 

objects (utilizing SBC) and for calculating diffraction coefficients are combined to 

yield calculations of diffraction coefficients of vibrating wedges. Obtaining such 

results via analytical analyses is not viable. Diffraction coefficients for stationary 

dielectric and lossy objects (also not feasible to obtain via analytical analyses) 

are also provided for comparison.  

The results herein are obtained by maintaining the same exact parameters and 

method for the PEC but changing the square PEC object to a vibrating lossless 

or lossy dielectric square object. The chosen conductivity and permittivity values 

are taken from [13]. The lossless dielectric is modeled with a relative permittivity 

of 2, 5 and 7 and the lossy dielectric is modeled with a fixed relative permittivity 

of 7 and conductivity of 10.  

Each of these values are simulated with the object vibrating vertically, along the 

y-axis, or horizontally, along the x-axis with an amplitude of 5 mm 

To include the finite conductivity in the vibrations, the following equation is 

utilized for the SBC   

 

Finally, note that for the chosen plane wave illumination angle (80 ) and for the 

dielectric object material parameters, the refracted wave from face AD of the 

wedge undergoes total internal reflection. 
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4.1 Diffraction Coefficients of Lossless Dielectric Wedges 
A similar visualization as in Figures 12-15 is repeated in Figures 18-21, but this 

time depicting the scattering and diffracting of the electric fields once an incoming 

plane wave at 800 interacts with corner A of a square lossless dielectric object 

with a relative permittivity of 7, located at the upper left of the grid. 

 

 
Figure 18: Snapshot at time step 1,000 of an incoming plane wave at 80

0
 propagating towards a 

square dielectric object located at the upper left of the grid. 
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Figure 19: Snapshot at time step 1,300 of the scattering and diffracting of the electric fields once 
an incoming plane wave at 80

0
 interacts with a square dielectric object located at the upper left of 

the grid, and in particular corner A of the dielectric object. 

 

 
Figure 20: Snapshot at time step 1,700 of the scattering and diffracting of the electric fields once 
an incoming plane wave at 80

0
 interacts with a square dielectric object located at the upper left of 

the grid, and in particular corner A of the dielectric object. 
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Figure 21: Snapshot at time step 2,600 of the scattering and diffracting of the electric fields once 
an incoming plane wave at 80

0
 interacts with a square dielectric object located at the upper left of 

the grid, and in particular corner A of the dielectric object. 

 

4.1.1 Stationary Dielectric Wedges 

Figure 22 shows the comparison between the diffraction coefficients of stationary 

lossless square dielectric objects having a relative permittivity of 2, 5 and 7.     
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Figure 22: Comparison between the diffraction coefficients for a lossless stationary square 
dielectric object with a relative permittivity of 2, 5 and 7. 

 

4.1.2 Vertically (along the y-axis) Vibrating Dielectric Wedges 

Analyzing the affects that a vibrating object has on the diffraction coefficient, the 

variation of the magnitude of the Doppler diffraction coefficients for lossless 

square dielectric objects vibrating vertically, along the y-axis, with a relative 

permittivity of 2, 5 and 7 are displayed in Figure 23.  
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Figure 23: Comparison between the Doppler diffraction coefficients for a lossless square 
dielectric object vibrating vertically, along the y-axis, with a relative permittivity of 2, 5 and 7. 

 

4.1.3 Horizontally (along the x-axis) Vibrating Dielectric Wedges 

To further understand the influence of the mode of vibration on the Doppler 

diffraction coefficient, a lossless square dielectric vibrating horizontally, along the 

x-axis, is implemented. The results of the Doppler diffraction coefficient are 

shown in Figure 24. 
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Figure 24: Comparison between the Doppler diffraction coefficients for a lossless square 
dielectric object vibrating horizontally, along the x-axis, with a relative permittivity of 2, 5 and 7. 

 

4.2 Diffraction Coefficients of Lossy Wedges 
 

4.2.1 Stationary Lossy Wedges 

A relationship between the diffraction coefficients of a stationary square dielectric 

object with losses, , and a fixed relative permittivity of 7 are shown in 

Figure 25.  
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Figure 25: Comparison between the diffraction coefficients for a lossy stationary square dielectric 
object with a fixed relative permittivity of 7 and a conductivity of 0 and 10. 

 

4.2.2 Vertically (along the y-axis) Vibrating Lossy Wedges 

The results of the Doppler diffraction coefficient for the lossy square dielectrics 

with a conductivity of 0 and 10 and a fixed relative permittivity of 7 vibrating 

vertically, along the y-axis, are displayed in Figure 26.  
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Figure 26: Comparison between the Doppler diffraction coefficients for a lossy square dielectric 
object vibrating vertically, along the y-axis, with a fixed relative permittivity of 7 and a conductivity 
of 0 and 10. 

 

4.2.3 Horizontally (along the x-axis) Vibrating Lossy Wedges 

For the case with the lossy square dielectric with a conductivity of 0 and 10 and a 

fixed relative permittivity of 7 vibrating horizontally, along the x-axis, the 

amplitude of the Doppler diffraction coefficients are compared in Figures 27.  
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Figure 27: Comparison between the Doppler diffraction coefficients for a lossy square dielectric 
object vibrating horizontally, along the x-axis, with a fixed relative permittivity of 7 and a 
conductivity of 0 and 10. 
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Chapter 5 

Conclusion 

In this Thesis, an FDTD code was developed that implements a TFSF incident 

plane wave formulation, CPML [3] boundary conditions, a frequency-domain 

NTFF transformation and an advanced SBC [4,5]. Thus, this code is capable of 

realizing a plane wave incident at various angles, computing remote fields at any 

angle, implementing a vibrating object and determining the diffraction coefficient 

from the corner of a stationary and vibrating object.  

The results from the FDTD modeling is utilized to better understand the RCS of 

vibrating objects at different modes and for various materials, which assists in the 

process of enhancing the knowledge of the interaction of EM pulses and vibrating 

targets in order to carry out the overall goal of designing SAR imaging strategies 

that yield two-dimensional (spatial) maps of vibration frequencies (spectrograms) 

superimposed on ordinary SAR images..  

Upon conducting several verification studies, diffraction coefficients for stationary 

and vibrating lossless and lossy dielectric objects were obtained. The results 

show that the magnitude of the Doppler diffraction coefficients of a vibrating 

object having a relative permittivity of 2, 5 or 7 and a conductivity of 10 is lower 

than the diffraction coefficient from the corresponding stationary object. Also, 

when comparing the Doppler diffraction coefficients of the object vibrating 

vertically versus horizontally, the object that is vibrating horizontally has a lower 

magnitude than the object vibrating vertically. 
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Although square objects and a right-angle wedges are considered in this Thesis, 

and straightforward one-dimensional vibrations are implemented, arbitrarily 

shaped and arbitrarily vibrating objects may be accounted for in the FDTD grid in 

a straightforward manner. Thus, the FDTD models constructed for this Thesis are 

very versatile and flexible so that they may be applied to a variety of realistic 

problems. 
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Chapter 6 

Future Work 

One of the next goals is to compare the results from the code in this Thesis to the 

results obtained from experiments in the laboratory. Also, obtaining results using 

a recently implemented time-domain NTFF for post processing is of great interest 

so that the received time-domain far-field waveforms may undergo advanced 

signal processing.   

Additionally, an aerial survey with a triangular trihedral target on the ground 

made of aluminum has already been implemented in the field. Thus, the next 

steps will be to extend this model to 3-D, model the specific triangular trihedral 

target made of aluminum along with its movement and obtain the backscattered 

signal to compare with the measured results.  

Extending the modeling to 3-D will greatly increase the practicality and 

applicability of this model. In the more long-term, an aerial survey giving the 

radar returns from actual, complex vibrating buildings will be carried out and the 

3-D FDTD code will be extended to study this more complex problem. 
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