
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

8-31-2011

A framework for usage management
Pramod Jamkhedkar

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Jamkhedkar, Pramod. "A framework for usage management." (2011). https://digitalrepository.unm.edu/ece_etds/123

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/123?utm_source=digitalrepository.unm.edu%2Fece_etds%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

A Framework for Usage Management

by

Pramod Jamkhedkar

B.E., Computer Engineering, University of Mumbai, 2002
M.S., Computer Science, University of New Mexico, 2005

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2011

c�2011, Pramod Jamkhedkar

iii

Dedication

To my parents, for their continued support and inspiration.

iv

Acknowledgments
First and foremost I would like to thank my advisor, Prof. Gregory Heileman, for his
unwavering support, continued motivation, guidance and inspiration. Working and collab-
orating with him over the course of my doctoral studies has given me an opportunity learn
from not only his professional qualities, but also his personal character.

I would also like to thank Prof. Chaouki Abdallah, Prof. Nasir Ghani for their sup-
port and guidance during my doctoral studies. I would also like to thank them, and Prof.
Jedidiah Crandall for agreeing to be on the committee and reviewing this work. Addition-
ally, I also thank professors Sudharman Jayaweera and Deepak Kapoor for helping me in
the areas of their expertise.

Finally, I would like to thank my family and friends whose support and motivation has
helped me through the difficult times.

v

A Framework for Usage Management

by

Pramod Jamkhedkar

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2011

A Framework for Usage Management

by

Pramod Jamkhedkar

B.E., Computer Engineering, University of Mumbai, 2002
M.S., Computer Science, University of New Mexico, 2005

Ph.D., Engineering, University of New Mexico, 2011

Abstract

This thesis proposes a formal framework for usage management in distributed systems.

The principles of system design are applied in order to standardize certain features of the

framework, such as the operational semantics, and leave free of standards areas that neces-

sitate choice and innovation. The framework enables use of multiple policy languages, and

dynamic interpretation of usage policies in different computing environments. In addition,

the framework provides formal semantics to reason about interoperability of policies with

respect to computing environments. The use of this framework in different usage man-

agement scenarios is demonstrated including multi-level security, cloud computing and

digital rights management (DRM) systems. Furthermore, DRM is cast in a setting that

allows the modeling of a number of current approaches within a game theoretic setting.

Current strategies that attempt to influence the outcome of such games are analyzed, and

a new type of architectural infrastructure that makes novel use of a trust authority is con-

sidered in order to create a suitable environment for constructing DRM games that may

prove useful in the future.

vii

Contents

List of Figures xi

List of Tables xiv

Glossary xv

1 Introduction 1

2 Background 7

2.1 Access Control . 7

2.2 Digital Rights Management . 8

2.3 Scope of Usage Management . 9

2.4 Challenges in Usage Management . 11

3 Usage Management Framework 19

3.1 Meta-model . 20

3.2 Objects and Interfaces . 24

viii

Contents

3.2.1 Context Object . 24

3.2.2 Policy Object . 25

3.3 Deployment and Operation . 27

3.3.1 Setup Stage . 28

3.3.2 Working Stage . 29

3.4 Framework Analysis . 32

3.4.1 Interoperability Semantics . 32

3.4.2 Context and Policy Hierarchies 36

3.4.3 Dynamic Interpretation . 39

3.5 Mathematical Model . 42

3.5.1 Model Description . 43

3.5.2 Dynamic Interpretation . 53

3.5.3 Operational Semantics . 54

3.5.4 Interoperability Semantics . 56

4 DRM Game 58

4.1 The Baseline Game . 61

4.1.1 Perfect DRM . 63

4.1.2 Imperfect DRM . 65

4.2 Important Subgames . 68

4.3 Repeated Games . 74

ix

Contents

4.3.1 Content Spreading . 76

4.3.2 Customer Influence . 78

4.4 Conclusions . 79

5 Applications 81

5.1 Multi-level Security . 81

5.1.1 MLS Overview . 82

5.1.2 Context Modeling . 82

5.1.3 Policy Specification . 84

5.1.4 System Operation . 86

5.2 Cloud Computing . 87

5.2.1 Usage Management Requirements in Clouds 89

5.2.2 Overlaying Usage Management Framework on Cloud Infrastructure 92

6 Conclusions 99

7 Future Work 101

References 102

x

List of Figures

2.1 The primary elements in a usage management system. 10

2.2 The challenge of managing multiple policy languages in a distributed

system. 12

2.3 Policy management in closed systems 13

2.4 The approach where content moves across different computing environ-

ments, and each computing environment having a policy interpreter. . . . 14

3.1 The Metamodel for the Usage Management Framework 21

3.2 A context object . 25

3.3 A policy object . 26

3.4 Setup stage for usage management. 28

3.5 Working stage for usage management. 30

3.6 Multiple policy objects used on a single client system 34

3.7 Single policy object used on multiple client systems. 35

3.8 A hierarchy of policy types . 37

xi

List of Figures

3.9 A hierarchy of context types . 38

3.10 Dynamic interpretation of activities in terms of identifiable actions in the

computing domain.. 40

3.11 Operational semantics of the calculus. 55

4.1 (a) An abstract model of the baseline DRM game in extensive form,

along with two examples of its strategic form, (b) one in which πc(dl) ≥

πc(p, tp), and (c) the other in which πc(p, tp) ≥ πc(dl). 62

4.2 (a) A general model in extensive form of the post-content-acquisition

subgame that flows from the outcomes of the game shown in Figure 4.1a,

where node i can assume the values 1–3. (b) An example of this sub-

game in strategic form that models RIAA efforts, and (c) a model that

incorporates rewards. 69

4.3 The complete DRM constituent game that consists of the baseline content

acquisition subgame of Figure 4.1, followed by the post content acquisi-

tion subgames of Figure 4.2. 75

5.1 A multi-level security environment. 82

5.2 A multi-level security mashup policy server 87

5.3 Usage management in existing cloud environment. 90

5.4 Usage management in cloud. 91

5.5 A distributed cloud infrastructure consisting of multiple cloud services

and virtualization. 92

5.6 Persistence of policies across data aggregations. 93

xii

List of Figures

5.7 Cloud usage management operating with SLA QoS monitoring. 94

5.8 Setup phase usage management that include context and license generation. 95

5.9 Operation of usage management in cloud environment. 97

xiii

List of Tables

3.1 An example structure of context. 44

3.2 An example structure of context instance. 46

3.3 An example description of functions. 46

5.1 Context for multi-level security. 83

5.2 Resource table . 84

5.3 Resource-Policy table . 84

5.4 Policy table for mashups . 86

xiv

Glossary

Fk Set of functions used by an object k

Ik Set of functions provided by the interface of object k

pol Policy object

con,C Context object

umm Usage management mechanism

pol �c umm Policy pol is context compatible with usage management mechanism

umm

pol �p umm Usage management mechanism umm is policy compatible with policy pol

pol � umm Policy pol is interoperable with usage management mechanism umm

o2 � o1 Object o2 inherits object o1

cr Constraints

E Environment entity

S Subject entity

R Resource entitiy

xv

Glossary

iE, iS and iR Instances of entities E, S and R

p Property

Dp Domain set of a property p

Fp Set of functions provided by property p

fp Function provided by property p

iC |= crC Instance of context C satisfied constraint cr expressed over C

RA Set of restricted activities

f Function provided by property p

ε Policy usage expression over RA

av Activity

rv Restricted activity

Acv Set of activities

act Action

Act Set of Actions

iav Activity instance

iav ∝ rv Activity instanace iav satisfied restricted activity rv

P Set of permissions

O Set of obligations

xvi

Chapter 1

Introduction

Usage management is management of usage of resources (and data) across and within

computing environments. In the coming years, data and resources will be increasingly

used in innovative ways in open, distributed environments such as the Internet.

In most policy management systems deployed, use of resources (and data) has gener-

ally been restricted to closed computing environments that are managed by a single entity.

However, with the explosion of Web 2.0 applications on the Internet, these assumptions

no longer hold. Data is now increasingly used across loosely coupled distributed systems,

where data owners and data users are a part of separate computing environments. The

separation of resource owner and the owner of the computing environments within which

resources are consumed is more pronounced. Moreover, computing environments within

which resources are used are no longer fixed, and resources often move across multiple

computing environments. This has led to a tussle, where resource owners demand that

they hold the right to express the resource usage policy, rather than the owners of the

computing environments.

This trend is increasingly observed in usage management of commercial content, med-

ical information and financial data, military data, social data, etc. Piracy of digital con-

1

Chapter 1. Introduction

tent, such as movies and music, has been one of the most difficult problems to solve in

the recent years. For technological and commercial reasons, the computing community

has been unable to control the massive amount of piracy of commercial entertainment

content. Digital rights management (DRM) systems have always struggled with issues

including interoperability and enforcement of rights policies [35, 51]. The DRM prob-

lem is a business-to-consumer, where industries owning content have been worried about

violation of copyright by individual consumers.

The consumer-to-business side of this problem has been equally challenging in the

recent years. Private individuals and institutions employing computing services are getting

increasingly worried about the manner in which their data is handled by service providers.

For example, the use of private information by online mail and social networking services

service providers has been a matter of serious concern. Similarly, online personal health

resources management systems such as Google Health and Microsoft Health Vault, has

consumers worried about the privacy and use of their personal health information.

More recently, cloud computing solutions have gained increasing attention in their

ability to deliver computing services as the fifth utility. In cloud computing, applications,

systems software, and hardware are offered as utility services to consumers over the In-

ternet. In cloud computing, cloud users’ data reside in the cloud for a finite amount of

time, that these data are handled by multiple cloud services, and that data fractions may

be stored, processed, transformed, mashed, and routed across a geographically distributed

cloud infrastructure. These activities occur “behind-the-scenes”, within the cloud, while

giving cloud users an impression of a single virtual machine. In current cloud implemen-

tations, cloud users have very little control over the manner in which data are handled by

cloud providers, once they are pushed into the cloud. As consumers start aggressively

using cloud services, this limitation will become a matter of serious concern.

In all these situations, it is necessary that owners of data are able to express the terms of

usage of their data once they pass on their data to other users over the Internet. In order to

2

Chapter 1. Introduction

address this problem, it is necessary to identify the common set of characteristics that are

exhibited by all the above mentioned scenarios. The primary distinguishing characteristic

is that all these scenarios deal with “usage” of data rather than just access to data. In many

of these cases, data access is often implied, and the focus is on how a given user uses the

data after it has been handed over. The second characteristic is that data are used not within

the confines of a single system managed by a single entity, but rather it is used within a

distributed system-of-systems, where each sub-system may be independently managed by

a different entity. The third characteristic is that data owners has no a priori knowledge or

control over the system or systems within which their data may be used.

A solution to address these problems requires an open framework that enables three ca-

pabilities, namely, policy expression, interpretation and enforcement. First, the framework

must provide a mechanism that allows expression of different types of usage policies over

resources. Such a mechanism must allow users to express various usage semantics includ-

ing permissions, obligations, constraints, partial dependencies, authorizations, to name a

few. Second, since the data in usage management travels across a distributed system, it

must be possible to dynamically interpret a policy across different systems whose exact

characteristics may not be known a priori. Finally, it must provide mechanisms to ensure

that the data are used in accordance with the policy on the client system. The reason the

framework needs to be open is because usage management occurs over a distributed open

system such as the Internet, and it is therefore necessary to accommodate different types

of existing systems and policy languages.

Research in this area has largely followed independent paths in the areas of access con-

trol frameworks [12, 13], and digital rights management systems [46]. There have been

proposals to combine these two areas into a more comprehensive framework for usage

control [59]. Most of the current research in this area has been directed towards devel-

oping more expressive language by using either a different type of mathematical logic,

or a formalism with a greater reasoning capability [10, 11, 23, 36, 37, 64, 75]. Such

3

Chapter 1. Introduction

advancements, even though useful in closed systems cannot be effectively deployed in a

distributed system without a large overhead of deploying policy interpreters across the

different systems. Similarly, there are frameworks for policy management in distributed

systems, however they still require a pre-agreement on the characteristics of different con-

stituent systems and provide no means for addressing the issue of interoperability, dynamic

interpretation and accommodation for multiple policy languages [28].

To address the problem of interoperability two approaches have been followed, namely,

translation mechanisms and standardization. The solutions that have tried to address in-

teroperability by means of translations have often proposed translation mechanisms that

translate a given policy form one language to another [38, 62, 69]. Such translations are

infeasible, and difficult to carry out for most of the policy languages [51, 67]. Other ap-

proaches have led to the development of complex policy specification languages that have

tried to establish themselves as the universal standard [1, 2, 73, 76]. Such an approach

requires standardization of the complete policy language, which stifles innovation and

flexibility [38, 46, 47, 49]. The other disadvantages of adoption of a universal, highly

expressive policy language is that such languages are bloated and extremely difficult to

formalize and reason over [36, 37].

Enforcement of usage policies across a distributed framework has always been a big

challenge. This problem has mostly been approached by means of trusted computing plat-

forms that have tried to control user actions in order to ensure that usage is is accordance

to the policy. However, most of these approaches have either failed because of security

breaches, or the users have rejected these solutions as they have prevented users from ease

of use and fair use. Other successful solutions to enforcement have either been in closed

systems where system administrators have complete control over the hardware [6, 21], or

in case of solutions such as Apple’s Fairplay technology, where content owners own the

complete vertical chain from application to hardware. However, even such solutions have

faced resistance from users due to lack of interoperability.

4

Chapter 1. Introduction

In this thesis, an open interoperable framework for usage management in distributed

systems is proposed, along with game theoretic approaches that incentivize users to use

content in accordance with usage policies. In the proposed approach, the principles of

system design are applied to develop an open framework for usage management that sup-

ports interoperability. These principles have been used by researchers in Internet design,

to achieve a balance between interoperability and open, flexible architectures [7, 17, 25].

In order to achieve this goal, certain features of the framework such as the operational

semantics are standardized, and features that necessitate choice and innovation are left

free of standards. Similarly with respect to enforcement, existing scenarios for DRM are

modeled in game theoretic setting to reason about possible incentives that can be created

for users to use content respecting copyright.

The framework exhibits a set of features that address the problems encountered with

usage management of resources in distributed systems. First, the operational semantics of

the framework are independent of syntax and semantics of any particular type of policy

languages or logics that are currently used, or may be used in the future for policy spec-

ification. The framework provides a scaffolding upon which different policy languages

or logics can be used to express usage policies. This is achieved by creating a design

space where policy languages can be used or introduced to operate within the framework

without affecting the operational semantics of the framework. Second, the framework al-

lows policies to be interpreted dynamically in different systems. The framework tries to

achieve a maximum degree of independence between the process of policy expression and

interpretation of policies on client systems. This allows, on the one hand, for policies to

be expressed with minimal knowledge of client systems, and on the other hand it allows

client systems to interpret and enforce usage rules with minimal knowledge about policies.

Finally, the framework provides formal semantics for interoperability to reason whether

or not it is possible to interpret a usage policy within a client system. With these fea-

tures, the framework provides an open actionable platform upon which different types of

independent systems and policy languages can interoperate with minimal overhead.

5

Chapter 1. Introduction

To address the problem of policy enforcement in DRM content usage, DRM is cast in

a setting that allows to model a number of current approaches as games. The DRM game

is partitioned into two subgames, one that considers the game associated with content

acquisition, and a second that considers how a consumer uses the content, along with

a vendors response to this usage. Examples are provided in order to demonstrate how

these subgames correspond to real situations associated with content industries, and the

conditions under which Nash equilibria will exist. These subgames form the primary stage

of a repeated game that models a number of important long-term interactions between

consumers and vendors. Current strategies that attempt to influence the outcome of the

repeated game are analyzed, and a new type of architectural infrastructure is considered

that makes novel use of a trust authority in order to create a suitable environment for

constructing DRM games that may prove useful in the future.

The rest of the thesis structured as follows. Chapter 2 provides the background and the

motivation for the problem of usage management in distributed systems. This chapter in-

troduces the term usage management and challenges posed by usage management systems,

followed by the limitations of existing approaches to address these issues. In Chapter 3,

usage management framework described along with its constituent elements, the opera-

tion of the framework, along with formal semantics for interoperability. In Chapter 4, a

game theoretic approach to the problem of enforcement in to a class of usage manage-

ment systems is provided, in particular DRM systems for commercial content. Chapter 5

provides a set examples on how the framework would play a major role to enable usage

management in the areas of multi-level security and cloud computing. In Chapter 6 and

7 useful conclusions and future work necessary to make this framework more applicable

and acceptable in research and industry are discussed.

6

Chapter 2

Background

In this section the historical development of usage management is explained, followed

by the scope and constituent elements of usage management, tracing its origins to access

control and digital rights management . Following this, the challenges that result from the

evolving nature in which information is being used across systems are discussed. This is

followed by a discussion on how existing approaches are used in access control and DRM,

and how they have been unable to address the challenges in usage management.

2.1 Access Control

Access control mechanisms are systems that manage controlled access to resources. The

central idea behind access control is that access to a resource is granted depending upon

subject attributes, resource attributes, and system attributes. The central component of any

access control system, is an access control language (ACL) that is used to express rules

for granting access to different resources in the system.

Access control policies can be categorized into two types, namely, discretionary access

7

Chapter 2. Background

control (DAC) and mandatory access control (MAC) [41]. DAC policies are policies that

are specified by the owner of the resource, based on the users’ attributes. On the other hand

MAC policies are made by a central authority and apply to the whole system. A number

of access control models have been developed that allow different types of access control

in these two modes. The most successful ones being the role-based access control model

(RBAC), and the Bell and LaPadula model [12, 13]. The focus of access control models is

to capture the different types of relationships between and among a set of resources and a

set of users, and express access rules based on those relationships.

The use of an access control language or an access control framework within a system

includes a significant overhead. This typically includes overlaying the framework on the

system where it is to be deployed. it also includes a pre-agreement on the characteristics

and ontologies used to model the system. Access control mechanisms are generally tightly

coupled with the system in which they are deployed. Access control systems focus pri-

marily on the rules for granting access to different users within the system, and generally

do not deal with the problem of usage.

2.2 Digital Rights Management

Digital rights management (DRM) consists of mechanisms that manage controlled usage

of digital resources. The central idea behind DRM is that usage rules for a given resource

are specified for a particular user or group of users, and the use of the resource is subse-

quently managed for a finite period of time. Usage rules generally include a set of permis-

sions and obligations, along with rules specifying how the permissions may be exercised

over a period of time and under what circumstances. DRM also includes mechanisms such

as trusted computing that ensure the enforcement of rights on the user machines [6]. The

most well known, but unsuccessful, approaches to address this problem are IBM’s Crypto-

lope and Microsoft’s Palladium technologies [22, 26, 52]. In Chapter 4, a game theoretic

8

Chapter 2. Background

approach is proposed, in which instead of enforcement, users are incentivized to use con-

tent in accordance with usage policies [39, 78]. The central component of DRM systems

is a rights expression language (REL) that is used to express usage rules (or rights) in the

form of a license that is generated by a resource owner for a user or a group of users that

will use a resource.

Some of the earliest attempts at DRM RELs date back to 1980’s, and involve the

development a formal language for legal discourse [18, 55, 54]. At present, creative com-

mons, along with two XML-based RELs, namely, XrML and ODRL, are most commonly

used [77, 44]. Both XrML and ODRL have formed alliances with major players in the

industry and standards bodies. Semantics of these XML-based languages are informal. A

number of approaches using various types of formalisms and approaches have be used to

develop formal RELs. Gunter et al. [34] and Pucella et al. [64] have used trace-based se-

mantics to develop formal RELs. Other formalisms such as first-order logic and CafeOBJ

have been used to develop RELs [10, 23, 75]. Many researchers have attempted to provide

formal semantics for existing XML based RELs [36, 66, 37]. It is however a general agree-

ment that popular XML-based RELs are difficult to formalize in their entirety [36, 37, 49].

More recently, researchers have tried to expand the concept of DRM to propose con-

cepts including usage rights management and usage control. The idea of usage rights

management is developed along the lines of making users aware of how a resource is sup-

posed to be used [42]. A more formal framework, UCONABC encompassing usage rules

and access control is proposed by Park et al. [59].

2.3 Scope of Usage Management

Before discussing scope and components of usage management, it is important to note

the difference between ACLs and RELs. Even though the goals of these two types of

9

Chapter 2. Background

Access Control

Usage Rules

Usage Control

Content
Management

License
Management

Digital Rights
Management

Usage Management

Figure 2.1: The primary elements in a usage management system.

languages overlap, the focus of research in ACLs and RELs is significantly different. ACLs

focus on defining access rules in terms of relationships between set of resources and set

of users. In DRM systems, once a user obtains a license for a resource, access to that

resource is implicit, and what matters is how that resource is used from that point onwards.

Therefore, RELs focus on defining different types of usage rules for a given user (or group

of users) over a given resource (group of resources).

We introduce the concept of usage management that is built upon the term usage con-

trol introduced by Park et al. [59]. The usage control model, called UCONABC, is based on

Authorizations, oBligations and Conditions [59]. UCONABC combines access control and

permissions and obligations in a single model.

10

Chapter 2. Background

Usage management components, and their relation to one another is shown in Fig-

ure 2.1. Usage management is a combination of usage control and DRM. Usage control

is a combination of access control and usage rules. Digital rights management includes

content management, license management, specification of usage rules and a simplified

subset of access control. Content and license management include processes that manage

how content and license are bundled, encrypted and distributed or managed across multiple

clients. These processes include encryption mechanisms, trust management, trusted com-

puting platforms and other such management techniques. Many RELs, including XrML

and ODRL, have tried to incorporate these functionalities. Thus, usage management is

the collective set of processes and mechanisms that enables one to manage and control

how data are used within a system. This encompasses policy specification languages, li-

censing mechanisms, policy expression and reasoning mechanisms, policy enforcement

mechanisms, usage tracking, along with supporting authentication and encryption mecha-

nisms [59, 48].

Next, the challenges in implementing usage management systems, and the need for an

actionable framework for addressing the challenges are explained.

2.4 Challenges in Usage Management

Figure 2.2 shows a distributed system composed of multiple subsystems that are owned

and managed by different entities. This figure shows the problem of usage management of

resources in a distributed system. The cloud represents a distributed system composed of

individual subsystems. Each subsystem is different, with different characteristics, owned

and maintained with different entities. The content shown in the figure is accompanied by

a policy. In a generalized version of this setup, the resource can be either data, informa-

tion, content or a physical resource such as a computing resource, storing resource, or a

networking resource. A policy may be attached to resource either directly by embedding

11

Chapter 2. Background

System 1
Device 1

Device 2

System 2 Device 3

Content &
Policy (XrML)

Content &
Policy (ODRL)

Content &
Policy (UCON)

Figure 2.2: The challenge of managing multiple policy languages in a distributed system.

in the data, or they can be connected to each other indirectly via identification mechanisms

such as the Handle system [71].

In classical access control closed system, policies are tightly coupled with the environ-

ment with respect to which they are expressed, interpreted and enforced. The working of

such systems is shown in Figure 2.3. In this scenario policies are expressed with respect

to a pre-agreed computing environment. Hence, every policy expressed can be correctly

interpreted within the given computing environment by means of an interpreter, which is

a software running within the computing environment.

Unlike classical access control systems, information is increasingly used across highly

networked, distributed computing environments that are not a part of a single centrally

managed system. In addition, digital information is increasingly used in innovative ways

in which it is transformed, processed or merged with other information while being used

across computing environments. One such example is the mashup process where infor-

mation from two separate sources is merged to generate a new information source. This

necessitates usage management policies to be tightly coupled with the resource, rather than

the system. They are then interpreted and enforced as the resource moves across different

12

Chapter 2. Background

COMPUTING ENVIRONMENT

RESOURCE USERS

CREATOR

ENVIRONMENT OWNER AND
POLICY DESIGNER

creates

to define

use according to
policy

inserts

POLICY
LANGUAGE makes use of

POLICIES INTERPRETER

ENFORCEMENT
MECHANISM

are interpreted by

user information

policy interpretation

resource information

Figure 2.3: Policy management in closed systems

computing environments.

A logical approach to this problem is to build an interpreter for the policy language that

runs on the computing environment (or the client), and enforces the policy on the client.

This approach has been very successful for access control systems, because access control

policies are tightly coupled with computing environments whose nature is known a priori.

However, in usage management scenarios where resources move across environments that

are not known a priori, such an approach leads to a number of problems. To address

such a situation, each of the computing environments must incorporate an interpreter and

enforcement mechanism that is custom built for different policy languages. This situation

is shown in Figure 2.4. However, as shown in the figure, in the presence of multiple

policy languages, interoperability becomes a major problem. When the data moves to a

computing environment that runs an interpreter for a different policy language, the current

policy can no longer be interpreted.

If a given computing platform intends to be a part of multiple information ecosystems,

13

Chapter 2. Background

CREATOR

to define

POLICY
LANGUAGE

(XrML)
makes use of

RESOURCE XrML POLICY

creates

combines with

RESOURCE &
POLICY BUNDLE

XrML Interpreter XrML Interpreter

XrML COMPUTING
ENVIRONMENT 1

XrML COMPUTING
ENVIRONMENT 2

POLICY TRANSLATION
SERVICE (XrML to ODRL)

ODRL COMPUTING
ENVIRONMENT

ODRL Interpreter

insert

use

transfer

transfer
cannot
transfer

Figure 2.4: The approach where content moves across different computing environments,
and each computing environment having a policy interpreter.

it must support the policy languages used by each of these ecosystems. This means that

policy language interpreters for each of these policy languages need to be custom built for

that particular computing platform. Furthermore, any advances or changes that are made

in these policy languages will require corresponding updates in the interpreters used in all

computing platforms.

The second disadvantage is that even though a given computing platform may support

multiple information ecosystems, each of these information ecosystems still operate in

complete isolation from one another. Since different ecosystems use different policy lan-

guages, licenses expressed within one ecosystem cannot be interpreted in another ecosys-

tem. This prevents resources from moving freely across different ecosystems. To enable

14

Chapter 2. Background

free movement of data across different systems, it is necessary that interoperability among

multiple policy languages is supported.

A number of recent papers have provided interesting solutions addressing interoper-

ability at this level [3, 27, 51, 67, 69]. Major approaches have been used to address inter-

operability include translation mechanisms, architectural solutions and standardization.

Researchers have addressed the interoperability problem by developing translation

mechanisms between policy languages [38, 62, 69]. However, such translations are feasi-

ble only for simple policy languages or a small subset of complex policy languages, and

have been largely unsuccessful for practical purposes [51, 67].

The Coral and Marlin initiatives have provided architectural solutions to DRM inter-

operability [3, 27]. In the Coral approach, different licenses for different DRM systems

are generated from a common token in accordance with a common ecosystem [27]. In the

Marlin approach, licenses are expressed programmatically in the form of control objects

to prevent dependence on any one particular REL [3]. Both Coral and Marlin architectures

focus on the management of licenses across multiple systems.

In order to avoid the problem of interoperability, many policy languages have tried

to establish themselves as the universal standard [1, 73, 77]. There are several problems

with this approach. First, a policy language that is universal must be able to handle all

types of policy expressions. Policy languages that have tried to achieve this have become

highly complex and bulky [49]. A bulky, complex policy language creates problems of

choice, formalism, and translation. The problem of choice means that a complex standard

language forces every application to incorporate and support the complexity even though

the requirements of the application are modest. Some languages, such as XrML, have tried

to address this issue by means of extensions to a basic core language [8]. As the complexity

of a language increases, it becomes more difficult to formalize the language. This leads

to a situation where a language that is trying to establish itself as a universal standard

15

Chapter 2. Background

does not have any formal basis. Research has shown that it is not possible to formalize all

the features of XrML, which is an XML-based language [36, 37]. Another problem that

arises because of increased complexity of policy languages is the difficulty of translating

the language to some other language. More complex a given language the more difficult it

becomes to translate it to some other policy language [67]. The second problem that arises

because of standardization of a language is its adaptability in different environments. Since

the language is supposed to be a universal standard, to be used in all types of different

computing environments, the language must maintain a certain level of abstraction. It

is not possible for such languages to express policies that are too specific to a particular

environment type. This problem is usually solved by means of providing extensions to the

standard language that are customized for one particular type of environment [8, 76].

Due to lack of standards and interoperability, numerous formal logic-based rights ex-

pression languages have evolved. These languages use different types of mathematical

logics to express and reason over various types of usage semantics. At the same time,

XML-based languages such as XrML and ODRL have developed and continue to develop

independent of these formal languages, and have not been able to incorporate their expres-

sion and reasoning power. Hence, unlike access control languages, the formal logic-based

languages continue to remain outside the radar of industry alliances.

Hence, none of these languages are likely to become the defacto industry standard

in the future. Different information ecosystems will continue to use different policy lan-

guages according to the policy expression requirements. Such a fragmented use of policy

languages will remain the biggest obstacle to achieving usage management along with

unhindered flow of information across highly distributed computing environments. Exis-

tence of multiple policy languages in such scenarios pose two problems, namely, difficulty

supporting multiple languages and lack of interoperability.

The proposed framework provides an infrastructure that can accommodate existing

languages and support interoperability among these languages. The framework, unlike

16

Chapter 2. Background

Coral and Marlin architectures, provides a formal calculus to reason about the relationship

between a license, a computing environment, and interoperability between them. The

framework incorporates concepts such as programmable policies and common ecosystems

used by Coral [27] and Marlin [3] architectures respectively, and hierarchical composable

policies used by Ponder policy language [28]. The design of the framework is based on

the principles of design for choice, eloquently described by Clarke et al. with reference

to “tussles” in cyberspace [25]. They explain the importance of identify the locations

in the architecture where standards need to be introduced to enable interoperability, and

locations where they should not be applied to enable innovation and differentiation. The

design choices for the framework is based upon the following set of assumptions:

1. Information ecosystems will operate across highly networked, distributed, diverse

computing environments managed by independent entities.

2. Resources will move across these computing environments as well as different in-

formation ecosystems. We define information ecosystem to be the set of rules and

rights models that develop around particular content types (e.g., music, ebooks, soft-

ware etc.)

3. Multiple information ecosystems and computing environments will continue to use

different policy languages, depending on the types of rules and rights models re-

quired for expressing their respective policies.

4. No single policy language will be able address the policy expression requirements

of different information ecosystems. Policy languages will continue to change and

evolve using different logics to express various usage semantics.

These assumptions combined with the design for choice approach proposed by Clarke

et al., form the basis for the design of the usage management framework proposed in this

thesis.

17

Chapter 2. Background

In the next chapter the list of underlying principles, design and formal specification of

the framework along with formal semantics for interoperability are explained.

18

Chapter 3

Usage Management Framework

This chapter provides a detailed description of the usage management framework. First,

in Section 3.1, a meta-model that lays the foundation for the framework is introduced,

followed by the principles that drive the design of the framework. The meta-model is

based on two entities, namely policies and computing domains over which policies are

defined, along with the interaction between the two. It serves the purpose of providing an

abstraction for different types of policy languages that the framework intends to support.

Following this, Section 3.2 introduces the notion of executable policies and defines

the core elements of the framework. These elements include policy objects that express

usage rules, context objects that represent computing domains within which policies are

interpreted. Section 3.3 explains the deployment and operation of the usage management

framework. The process is divided into two stages, namely, the Setup stage and the Work-

ing stage. During the Setup stage, policy objects and context objects are generated from a

common ontology representing the computing domain. The Working stage represents the

interpretation and enforcement of a policy object within a client system.

Next, in Section 3.4, the features of the framework are analyzed, along with the ad-

vantages the framework offers in terms of flexibility, interoperability, and openness. Here,

19

Chapter 3. Usage Management Framework

three prominent features are introduced, namely, formal interoperability semantics, hier-

archical organization of policies and contexts, and dynamic interpretation, followed with

a discussion on the advantages offered by each of these features.

Finally, Section 3.5 provides a mathematical model that can be used to express policies

and model computing domains. It must be noted that the proposed mathematical model is

not a policy language. Rather, it is a scaffolding that provides a design space to introduce

different types of mathematical logics to generate different types of policy languages that

can be used within the framework. For the purpose of this thesis, a simple language for

expressing permissions and obligations is introduced along with a demonstration of how

such a language is used within the larger setting of the usage management framework.

3.1 Meta-model

The previous chapter explained the underlying assumptions of future information man-

agement systems, and motivated the need for an open interoperable usage management

framework and the goals such a framework must achieve. This section explains the un-

derlying meta-model of the framework, and the key principles and features that drive the

design of the framework in achieving the goals.

Figure 3.1 shows the meta-model underlying the proposed usage management frame-

work. The meta-model consists of policies and computing domain.

• Computing Domain: A computing domain represents the computing environment

with respect to which policies are expressed, interpreted and enforced. For example,

consider the event of opening of a file. In this case, the computing domain captures

information such as the properties of the agent who carried out the act, the properties

of the resource (a file in this case) over which the act was carried out, and the en-

vironmental circumstances including the time, date, location, etc., when the action

20

Chapter 3. Usage Management Framework

Computing
Domain

Policy and
Policy State

expression, interpretation
and enforcement

event notification, state update

Figure 3.1: The Metamodel for the Usage Management Framework

occurs.

• Policy and Policy State: A policy describes the usage rules that govern the manner

in which usage of content must be carried out within the computing domain. A pol-

icy may have many responsibilities, however, the primary responsibility of a policy

is to determine whether or not a set of actions can be allowed to occur within a com-

puting domain. A policy makes this decision based on three parameters, namely, the

type of actions carried out on the content, the current state of the policy (which may

record previous relevant actions that have been carried out), and the conditions of

the computing domain under which the actions are carried out.

Over the years, numerous policy languages have been proposed in the areas of access

control, usage control and DRM. Most of these languages fit the high-level meta-model

shown in Figure 3.1. Policy languages differentiate themselves from each other based on

the following two sets of characteristics, namely, 1) expression and reasoning semantics,

and 2) operational semantics and deployment mechanisms.

The expression and reasoning semantics of policy languages depend on the type math-

ematical formalism used to express the language. Access control languages and models

such as Bell and LaPadula [12, 13], focus on different types of access semantics and di-

vide the computing environment in subjects and object attributes. Similarly role based

21

Chapter 3. Usage Management Framework

access control models allow modeling of subjects based on different role structures and

their relationships, and grant access, authorizations and delegations based on these rela-

tionships [68]. Most of the policy languages have included entities such as subject, object

and computation platform for modeling computing domains [59]. Languages that deal

with DRM have a more complex structure in order include additional entities entities such

as licensor, rights holder, licensee, and other rights management terms [77, 44]. These lan-

guages also include semantics such as permissions, obligations, penalties, and payments

to name a few. The structure of the state is another aspect on the basis of which languages

differentiate themselves. Different models and policy languages follow different ways of

maintaining policy state. In the UCON model, state is maintained in terms of variables

that represent mutable subject and resource attributes [59]. In XrML, the same functional-

ity is achieved by means of a StatefulCondition extension, which maintains external state

variables that allow one to maintain the state of the license [76]. Logic-based RELs pro-

posed by Gunter et al. and Pucella et al., maintain policy state as a sequence of event

traces [34, 64].

The operational semantics of policy languages determine the manner in which con-

ditions are checked, policy state is updated and policy rules are validated. For example,

whether the environment conditions should be updated before or during policy validation

check? Similarly, should the state be updated before, during, or after the policy validation

is carried out? The order in which these actions are carried out by the system dictates the

operational characteristics of the model. The classification of different modes of opera-

tion in usage control is explained in the UCON model [59]. The deployment mechanisms

for policy languages reflect the manner in which the policy model or language is imple-

mented within the system. These include interpreter-based mechanisms, executable poli-

cies, server-client-based or web-based mechanisms. In interpreter based systems such as

XrML and ODRL, an interpreter for the policy language runs on the client system [2, 76].

In executable policies, policies are executable pieces of code that travel along with the

data across a system. Such an approach is followed by Ponder policy language, Mar-

22

Chapter 3. Usage Management Framework

lin and Coral [3, 27, 28]. The server-client deployment and the web-service deployment

follow the same mechanism where the client system queries the server for validation of

policies. One of the goals of the framework is to accommodate these different types of

policy languages, operation modes and deployment mechanisms

As shown in the Figure 3.1, there is a strong coupling between a policy and a com-

puting domain. Policies are expressed in terms of a computing domain, and policies are

interpreted and enforced within a computing domain. This means the process of policy ex-

pression requires knowledge of the domain with respect to which policies are expressed.

This knowledge includes the names of domain properties over which restrictions are ex-

pressed, the values over which the properties are defined, and the names of the identifiable

actions that need to be controlled in the computing domain. Similarly, the process of

policy interpretation and enforcement requires knowledge of policy syntax and semantics

in order for the policy to be appropriately interpreted and enforced within the computing

domain.

Such a tight coupling between policies and computing domains poses problems when

policies are to interpreted in multiple different computing domains in a distributed system.

The proposed usage management frameworks aims to enable policies to be expressed,

interpreted and enforced across multiple computing domains across a distributed system.

To enable this, the framework adheres to the following set of principles mentioned below:

1. A maximum degree of separation between policies and computing domains.

2. A mechanism to reason about interoperability of policies with respect to computing

domains.

3. Dynamic interpretation of policies across computing domains.

4. Accommodation of multiple policy languages within the framework.

23

Chapter 3. Usage Management Framework

Based on these principles, primary entities of the framework are described, followed

by the deployment and operational semantics.

3.2 Objects and Interfaces

In order to achieve a high degree of separation between policies and computing domains, in

the proposed framework both policies and computing domains are represented as objects.

A policy is represented by a policy object, and a computing domain is represented by a

context object.

3.2.1 Context Object

A context object is an instantiation of a context that captures the structure and the state

of a computing domain. A context is defined according to the structure of the computing

domain it represents. A context represents the entities within a computation domain, and

the relationships among these entities. For a given computation domain, each entity is

defined by a set of properties, and the context maintains the current values for each of

those properties. The primary goal of a context object is to capture the conditions under

which actions are carried out within a computation environment. A context maintains an

interface that includes the following functions:

1. Update and retrieve relationships among the entities.

2. Update, retrieve and compare the attribute values for a given entity.

A context object is constantly updated by the system with appropriate values using the

update interface. The interface of a context object depends on the type and complexity of

the computing domain it represents.

24

Chapter 3. Usage Management Framework

Context
Interface
1. Update
2. Retrieve
3. Query

SUBJECT
ID:

Role:
Project:

RESOURCE
ID:

Resolution:
Catogory:

COMPUTING PLATFORM
OS:

Security_Level:
Type:

Figure 3.2: A context object

Figure 3.2 shows a context object. It consists of three entities, namely, Subject, Re-

source and Computing Platform. Each of these entities has a set of properties as shown in

the figure. The context object maintains appropriate values for these properties and makes

them available for policy validation. These properties are queried, updated, and retrieved

by means of an interface provided by the context object.

3.2.2 Policy Object

A policy object is an executable object that has a behavior, a state, and an interface, as

shown in Figure 3.3. Policy objects are used within the framework by means of the in-

terface they expose to other systems. The concept of representing policy as an object

has been used in a number of previous approaches for managing policies in a distributed

environment [3, 27, 28].

The behavior of a policy object represents the policy rules that are expressed in a pro-

gram logic . Different types of policy objects can make use of different policy languages

25

Chapter 3. Usage Management Framework

Policy Interface
1. Query

2. State Update
3. Transform

Policy State

Policy Rules
Logic

Figure 3.3: A policy object

with varying policy expression capabilities. Various usage semantics, such as, permis-

sions, obligations, temporal dependencies, partial dependencies, and interleaving seman-

tics can be captured by different types of policy objects. The operation of the framework

is agnostic to the behavior of a policy object which is hidden from the other systems. This

means, that policy descriptions from different policy languages can be transformed into

policy objects, and still be used within the framework.

The state of a policy object captures the history of usage associated with the policy.

Every time usage associated with a policy object is performed within a computing domain,

policy object updates its state to record the history. As mentioned earlier, different policy

languages have different ways of maintaining policy state. The manner in which event

and usage histories are maintained within a policy object are hidden from the outside

world. Thus policy languages that maintain usage histories in different ways such as state

variables [59], or event traces [64], can be used within the framework to create policy

objects.

The interface provides gateway that allows client systems to query policy objects. It is

26

Chapter 3. Usage Management Framework

necessary for systems that make use of a policy object to know how to use the interface

provided by the policy object it intends to query. Depending on its type, a policy object

will expose an appropriate interface to other systems. The type of interface exposed by a

policy object will depend on the type of queries that the policy object can handle, which

in turn, depends on the type of policy language underlying the policy object. A powerful

underlying policy language will be able to support a richer interface, and simpler policy

language will support a simpler interface. The functions maintained by license object

interfaces can be categorized as follows:

1. Query interface: Query a license regarding decisions on usage.

2. License state interface: Update, retrieve or reset the state of a license.

3. License processing interface: Check compatibility with another license or merge a

license with another license.

The next section provides a description of the working of the usage management

framework, and how policy and context objects are used within the the framework.

3.3 Deployment and Operation

The working of the usage management framework is divided into two stages, namely, the

Setup stage and the Working stage. The Setup stage includes the process of creation of

a context object that corresponds to the underlying computing domain, and creation of a

policy object. The Working stage includes the process of policy interpretation and policy

enforcement within the computation domain.

27

Chapter 3. Usage Management Framework

Computing
Domain

 Ontology

Policy
Generator

Usage
Management
Mechanism

Policy
Object

Context
Object

uses
uses

createsspecify

SERVER SIDE CLIENT SIDE

 Policy
Specification

generate

Figure 3.4: Setup stage for usage management.

3.3.1 Setup Stage

The Setup stage involves the creation of a policy object and a context object as shown in

Figure 3.4. The policy object is generally created by the agent who defines the policy.

This entity may be the owner of the resource or the system administrator. In case of

a client-server system, a policy object may be created on the server side. A policy is

defined by means of a policy specification language or some kind of a user friendly policy

specification system. A policy generator transforms this policy into a policy object. In

case policies are resource specific, a policy object may be attached to a resource by means

of indirection using an identity resolution mechanism such as the Handle system [71].

The client system in which policies are to be interpreted and enforced creates a context

object that captures the structure of the computing domain of the client system. Usage

Management Mechanism (UMM) is a program running on the client system that acts as a

28

Chapter 3. Usage Management Framework

controller between context and policy objects. The working of the UMM is explained in

the next section.

A context object is generated from the computing domain ontology that is representa-

tive of the client system. An ontology defines a common vocabulary for agents or programs

that need to share information in a domain, and includes machine-interpretable definitions

of basic concepts in the domain and relations among them. The same ontology is used

by the policy specification mechanism to express policy constraints. A common ontology

is necessary for an agreement over the vocabulary and structure of computation domain.

The existence of a common ontology used for the creation of policy and context objects

the basis for interoperability support within the framework. For example, an authoriza-

tion policy expressed in terms of the context object shown in Figure 3.2 can be defined as

follows:

“The ‘view’ action on a Resource with SecurityClassification greater than ‘Secret’

can be carried out only by a Subject working on Project ‘Alpha’ assuming the Role of a

‘Manager’ on a ComputingPlatform having SecurityType equal to ‘Secure’

In this case, the context object maintains the current state of computing domain when

the view action is being carried out on a given resource. The next stage is the Working

stage where a policy is interpreted and enforced within a client system.

3.3.2 Working Stage

The working stage, shown in Figure 3.5, shows the interactions among relevant compo-

nents on a client system where policy is intended to be interpreted and enforced. At the

end of the Setup stage, policy object and context object are generated from a common

computing domain ontology that is representative of the client system.

UMM is the primary component of Working stage that coordinates the interactions

29

Chapter 3. Usage Management Framework

APPLICATION OPERATING
SYSTEM

USAGE MANAGEMENT
MECHANISM

Policy Object

action
request

allowed/
not allowed supply

system info
1

2

3

4

5

6

Context Object

7

update
context
object

query if
action allowed

allowed/
not allowed

query context

Figure 3.5: Working stage for usage management.

among all the other components. The UMM takes usage requests form applications and

returns an appropriate result or answer to the requesting application after querying the pol-

icy object. UMM generates and maintains a context object that stores the values of system

properties. It is also the responsibility of the UMM to obtain system values from the op-

erating system of the underlying platform and update the context object with appropriate

values corresponding to the present request. The application shown in the figure refers to

any application that indents to use the resource in question. The UMM provides a standard

interface for applications to query usage validity.

The information flow in a typical query for usage of a resource in system is as follows:

1. In this step, the application requests the UMM for a check on the validity of the

action being carried out on a given resource. In this step, the application provides

information to UMM regarding the properties of the resource, and that of the subject

or the agent who is performing the intended action on the resource.

30

Chapter 3. Usage Management Framework

2. In Step 2, the UMM collects the information from the operating system to determine

the conditions under which the action is intended to be carried out.

3. In Step 3, the UMM updates the state of the context object with information col-

lected from the operating system and the application. It is the responsibility of the

UMM to determine what type of information is necessary for updating the state of

the context object.

4. In Step 4, after updating the context object, the UMM queries the policy object

regarding the validity of the action requested by the application. In this step, the

UMM running on the client system must know a priori how to use the interface

provided by the policy object.

5. In Step 5, the policy object requests the context object with information necessary to

evaluate the policy. It must be noted here that the policy object must know a priori

how to call the functions provided by the interface of the context object. Accord-

ingly, the context object provides the policy object with the necessary information

to evaluate the policy.

6. In Step 6, the policy object evaluates the validity of action requested by the applica-

tion, and returns an appropriate value to the UMM.

7. In Step 7, the UMM notifies the application whether or not the requested action is

valid or invalid.

Next, analysis of the features of the framework, and how they help achieve the goals

of usage management systems mentioned earlier is discussed.

31

Chapter 3. Usage Management Framework

3.4 Framework Analysis

This section provides an analysis of the features of the framework including interoperabil-

ity, context and policy hierarchies and dynamic interpretation.

3.4.1 Interoperability Semantics

In traditional policy management systems, the syntax and semantics of policy languages is

tightly coupled with the system within which the policy is to be interpreted. This approach

generally requires an interpreter running on the client system that can interpret the policy.

In the proposed framework the goal is to achieve maximum degree of separation between

policies and computing domains.

The approach taken in this framework is to represent policies and computing domains

in terms of objects with standardized interfaces that hide the internal workings from the

other systems. Such a separation not only enables interoperability, it also allows the

framework to accommodate multiple policy languages and different types of computing

domains.

In order to analyze the interoperability characteristics of the framework, the interac-

tions that take place in the framework are first explained. In the proposed framework, a

UMM runs on every client system that provides a policy query interface to the higher-level

applications that use the concerned resources. In order to process these queries, the UMM

calls the functions provided by policy objects. Policy objects, in order to process usage

queries, call the functions provided by the context object interface. Context objects also

provide an interface to the UMM to update its state with the most recent values.

The interactions among the operating system, the UMM and the context object are

internal to the client system. These interactions and interfaces can be unique to every

client system. The interactions between a UMM and applications are also internal to

32

Chapter 3. Usage Management Framework

the client system, without affecting the operation of the framework. If the client system

intends to support multiple third party applications, then it is necessary that this interface

is standardized.

The important interfaces that determine the interoperability between policies and com-

puting domains are: 1) Interface provided by policy objects to UMMs on client systems,

and 2) Interface provided by context objects to policy objects.

UMM — Policy Object Interface. A UMM queries the validation of an action by

querying a policy object by invoking functions provided by the policy object interface.

Since the policy object is an executable program, the UMM need not understand the pol-

icy logic or the behavior of the policy object, and the manner in which it maintains its

internal state. However, in order to support multiple policy objects of different types, it

is necessary that the UMM knows a priori the set of functions provided by the interface

of a given policy object. Hence, in order to support interoperability between UMMs and

policy objects it is necessary the interface provided by policy objects is standardized. The

interface provided by a policy object determines the type of queries that the policy object

will support. As mentioned earlier, policy objects created from complex policy languages

will support a richer interface compared to policy objects created from simpler policy lan-

guages. Hence a standard interface for all types of policy objects will limit the flexibility

of the framework. To address this, policy objects are grouped in the form of a hierarchy as

explained in the next section.

Policy Object — Context Object Interface. A policy object queries context object

to obtain the current values of the properties of the computing domain. For a given policy

object to query context objects residing in different computing domains, it is necessary

that the interface provided by the different context objects standardized. This is one of

the reasons why both policy and context objects need to be generated from a common

computing domain ontology. Similar to policy objects, its is infeasible to expect all com-

puting domains, and subsequently all context objects, to be identical and share the same

33

Chapter 3. Usage Management Framework

XrML
Policy Object

Bell LaPadula
Policy Object

UCON
Policy Object

Client System

Usage
Management
Mechanism

Context
Object

Figure 3.6: Multiple policy objects used on a single client system

entities and properties. In order to address this issue, contexts are grouped in the form of

a hierarchy as explained in the next section.

Based on the above mentioned characteristics, it is possible to formally express inter-

operability between a policy and a UMM in terms of the interface and set of queries used

by UMM, policy object and context object. Formal semantics for interoperability enables

to determine on the fly whether or not a policy can be interpreted within a given computing

domain. Let,

• pol denote a policy object,

• umm denote a usage management mechanism,

• con denote a context object maintained by umm,

• Fumm denote the set of functions used by umm to query policy objects,

• Ipol denote the set of functions provided by the interface of the policy object pol,

34

Chapter 3. Usage Management Framework

Client System 1 Client System 2 Client System 3

Policy Object

Figure 3.7: Single policy object used on multiple client systems.

• Fpol denote the set of functions used by the policy object pol to query a context

objects, and

• Icon denote the set of functions provided by the interface of the context object pol

Based on these definitions, interoperability semantics are expressed in terms of con-

text compatibility and policy compatibility. These compatibilities are expressed between

policy objects and UMMs. Context compatibility between a policy object and a UMM

denotes the ability of the policy object to query the context object maintained by the

UMM. Context compatibility between pol and umm, denoted by pol �c umm, holds if

Fpol ⊆ Icon. Policy compatibility between a policy object and a UMM denotes the ability

of the UMM to query the policy object. Policy compatibility between pol and umm, de-

noted by pol �p umm, hold if Fumm ⊆ Ipol. We say pol is interoperable with umm, denoted

by pol � umm if and only if pol �c umm ∧ pol �p umm

Since the interactions take place only via interfaces, the semantics and logic of the

policy language used to create policy objects is hidden from the client system. This creates

a design space for accommodation of policy languages without affecting the operational

semantics of the framework. This allows the use of different policy languages to be used

35

Chapter 3. Usage Management Framework

to create policy objects that can be interpreted and enforced in the same client system as

shown in Figure 3.6. Similarly a single policy object can be interpreted and enforced in

different client systems as shown in Figure 3.7.

Next section explains how policies and contexts can be organized in a hierarchical

manner and how it is possible to reason about interoperability in terms of these hierarchical

relationships.

3.4.2 Context and Policy Hierarchies

Compatibility between the structure of context and policy objects is necessary for interop-

erability in this framework. One solution is to standardize the interfaces supported by both

policy and context objects. However, fixing these two entities will severely limit the flexi-

bility of the model. No single context can cover all different types of computing domains.

Similarly policy structure is a design space that is free for innovation and differentiation.

Complex policy languages making use of sophisticated logics will have greater capabil-

ities of expression and reasoning, and therefore it is necessary that they support a much

larger and richer interface.

To address this, policy and context type are grouped in a hierarchical manner via inher-

itance relationships as shown in Figures 3.8 and 3.9. The most abstract entities at the top

of the hierarchy will include features that are common to all entities. It must be noted that

the inheritance relationships are primarily based on the interface supported by different

policy and context types.

As shown in Figure 3.8, policy types are categorized in a hierarchical manner. The

RootPolicy has an interface that provides the core set of functions that are common to all

policies. This includes the function allowed?(), which all policy types must provide. Some

of the basic categorizations of policies is shown in Figure 3.8. A primary categorization

would be stateful and stateless policy types. A stateful policy type will require to pro-

36

Chapter 3. Usage Management Framework

allowed?()

Root Policy

update_state()
retrieve_state()

Stateful Policy Stateless Policy

Interleaving
Semantics

Permissions &
Obligations

Parallel
Semantics

Figure 3.8: A hierarchy of policy types

vide an interface for update, retrieve, and reset of the policy state. As mentioned earlier,

most policy languages allow state maintenance by means of state variable or event traces.

However it should be noted that the manner in which a policy object maintains its state is

hidden from UMMs. Stateful policies can be further categorized into the types of usage

semantics such as parallel actions, interleaving semantics and deontic semantics such as

permissions and obligations supported by the policy.

Similar to policy hierarchy, contexts can be categorized in a hierarchical manner as

shown in Figure 3.9. For example the top-level contexts will include properties such as

location, time, date etc., that are common to all contexts. Once these are defined, newer

contexts can be inherited from them to create a context hierarchy. Using this approach,

properties that are appropriate for different computing environments can be used to de-

velop different context types. For example, a generic context type network can be created,

and can be used to further develop different types of network contexts such as wired net-

work, wireless network, home network and sensor network, etc. that inherit the properties

of network context. Similarly, a generic context of type device can be constructed with

37

Chapter 3. Usage Management Framework

time
date
location

Root Context

Operating System
IP Address

Standalone Devices

Number of devices

Networks

Attributes

Wireless Network

Attributes

Wired Network

Figure 3.9: A hierarchy of context types

properties that are inherited by contexts representing different types of devices such as

hand held devices, laptops, smart phones, etc.

If the relationship among a group of policy types and context types respectively can

be established, then then it is possible to reason about interoperability based on these

relationships. Let,

1. Let umm1 maintain context con1, and use policy query functions denoted by set

Fumm1

2. Let umm2 maintain context con2, and use policy query functions denoted by set

Fumm2

3. Let con1 provide an interface Icon1 , and con2 provide an interface Icon2

4. Let policy type pol1 maintain policy interface Ipol1 and use context functions Fpol1 ,

and policy type pol2 maintain policy interface Ipol2 and use context functions Fpol2

38

Chapter 3. Usage Management Framework

We say that context con2 inherits context con1, denoted by, con2 � con1 ifIcon1 ⊆ Icon2 .

Similarly, policy pol2 inherits policy pol1, denoted by, pol2 � pol1 if Ipol1 ⊆ Ipol2

Based on the inheritance relationships, it is now possible to reason about interoperabil-

ity of policies with UMMs with following inferences,

1. (pol1 �p umm) ∧ (pol2 � pol1) =⇒ pol2 �p umm,

2. (pol �c umm1) ∧ (con2 � con1) =⇒ pol �c umm2,

3. (pol1 � umm) ∧ (pol2 � pol1) ∧ (Fpol2 ⊆ Fpol1) =⇒ pol2 � umm

4. (pol � umm1) ∧ (con2 � con1) ∧ (Fumm2 ⊆ Fumm1) =⇒ pol � umm2

Next, the notion of dynamic interpretation introduced that allows policies to be inter-

preted in different ways in different or same computing domains.

3.4.3 Dynamic Interpretation

As mentioned earlier, the one of the design goals of the proposed framework is to achieve

maximum degree of separation between policy definitions and the computing domains

within which policies are interpreted and enforced. This separation is essential in a dis-

tributed environment where policies are expressed with minimal prior knowledge of the

computing domains where they might be interpreted and enforced. One important aspect

of usage policies are the usage verbs used to define usage in policies. Different types of us-

ages can be expressed using verbs such as “play”, “view”, “print”, and “loan”, etc. When

a policy creator defines the usage policy, he/she uses this vocabulary to express the policy

terms. Each of these verbs has a specific interpretation depending upon the computing do-

main within which it is interpreted. The dynamic interpretation feature allows these verbs

to be interpreted dynamically depending on the computing domain within which a given

policy is interpreted.

39

Chapter 3. Usage Management Framework

SCENARIO 1 SCENARIO 2

av av

act2act1act1 act2

computing environments

SCENARIO 3 SCENARIO 4

avavav2av1

act1act2act1act

time

computing
environments

Figure 3.10: Dynamic interpretation of activities in terms of identifiable actions in the
computing domain..

In every computing domain, actions are carried out as discrete identifiable events.

These events are different for each computing environment, and may depend on the type

of computing platform, operating system, etc. Hence, every verb can be interpreted within

a computing environment in terms of either a single event or a sequence of such events.

From here on, the term “activity” is used for the verbs used in a policy, and the term action

is used for identifiable events in a computing domain.

The separation of the verbs used in licenses and their interpretation within computing

environments allows dynamic interpretation of policies. The interpretation of activities in

terms of identifiable actions within a given computing domain is carried out by means of

40

Chapter 3. Usage Management Framework

an interpretation map called Action Map. This interpretation map is independent of the

rest of the functioning of the framework. This design choice leads to powerful capabilities

that are not possible systems that rely on static interpretation.

Figure 3.10 shows the different ways in which activities in a policy can be dynamically

interpreted. Scenario 1 shows that the same activity in a given policy can be interpreted

differently in two different computing environments. For example, the activity play can

have one interpretation in an iPhone environment, and a different interpretation in a per-

sonal computer environment. Scenario 2 shows how a given activity can be interpreted as

multiple actions. For example an activity such as view can be interpreted as both openfile

and printfile action in a given computing domain. Scenario 3 depicts the situation where

two different activities are interpreted as the same action within a computing domain. For

example, a license expressing two activities, view and play can be interpreted to imply the

same action openfile in a given computing environment. Scenario 4 shows an interesting

use case where the interpretation of a changes depending on external factors such as time,

security threats, known attacks on the system, etc. External changes in computing envi-

ronments often require a change in the interpretation of a policy. For example, in case of a

security breach, it may be necessary to interpret a policy more strictly or the technological

changes in computing devices may require a policy to be interpreted in a different manner.

Dynamic interpretation is a powerful design feature. The fact that interpretation of a pol-

icy can be dynamically changed without affecting other parts is a distinguishing feature of

this framework. Thus enabling interpretation of policies modulated by external events is a

powerful design feature of this framework.

Next, a mathematical framework is introduced that can be used to model policies and

contexts. Based on this model, policy languages can be generated by incorporating differ-

ent types of mathematical logics.

41

Chapter 3. Usage Management Framework

3.5 Mathematical Model

In this section a formal model to structure policies and context is introduced. It must be

noted that the policy framework explained in the previous section is independent of the

mathematical model described here. This model simply provides one of the ways to struc-

ture usage policies. The model provides a design space created for usage semantics, where

different logics can be used to express different types of usage semantics. An overview of

the model is provided below.

A context object consists of three entities, namely, subject, resource and environment,

where each entity has a set of attributes. A policy object consists of a set of activities,

where each activity is wrapped in access rules expressed in terms of the attributes of sub-

ject, resource and environment. Access rules specify the circumstances (determined by the

values taken by subject, resource, and environment attributes) under which a particular ac-

tivity can be performed. An activity wrapped in access rules is called restricted activity. A

usage policy specifying usage rules, referred to as policy expression in the model descrip-

tion, is then defined over a set of restricted activities. A usage policy specifies semantics

such as permissions, obligations, partial ordering, interleaving semantics, count limits, and

other such usage rules. Usage policy semantics and validation are dependent only on the

policy state, and are therefore independent of the context object. An activity is permitted,

given that it satisfies both the usage policy and the access policy. In the proposed mode,

a first order language for access policy specification, and a simple usage policy language

is defined that capable of expressing only permissions and obligations is defined. Both

these choices are made only for the purpose of demonstrating the capabilities such a pol-

icy structure offers. Both these design spaces can be substituted with different types of

logics to create policy types with advanced expression and reasoning capabilities.

The proposed model provides two advantages, namely, separation of access and usage

rules, and formal semantics for interoperability. In the policy structure, a design space

42

Chapter 3. Usage Management Framework

created for access and usage rules. In currently used policy languages, these two aspects

of usage control specification are incorporated within a single policy language. However,

it is difficult to create a universal policy language that is able to express all types of usage

semantics, and also incorporate access rules. There does not exist a policy specification

language that is able to express all types of usage and access semantics.

The separation of these two aspects of a policy allows an independent choice of usage

semantics and access semantics to be used within a policy. Sophisticated access control

policies such as the one proposed by Halpern et al. [37] can be used in the design space

created for generation of restricted activities. There exist well-developed mathematical

logics such as deontic logic, linear temporal logic, dynamic logic, etc., that can to express

the usage semantics [43]. Policy languages have been developed to express usage seman-

tics using these logics [64, 65]. It is therefore possible to develop usage policy languages

or use existing ones with modifications in this design space. The ability to leverage the use

of existing languages for usage rules expression and access rules expression independent

of one another is an important advantage of the proposed model.

3.5.1 Model Description

This section describes the primary entities in the usage management model, namely, con-

text, policy and usage management mechanism. As mentioned earlier, a context defines

the computing domain within which usage management is carried out. A context mod-

els the computing environment within which usage management is carried out, agents or

subjects operating in the system, and resources within the system. A policy consists of

usage rules that determine in what manner the resources in the system must be used by the

agents. A usage management mechanism interprets policies and coordinates the commu-

nication between policy and context objects. Each of the entities are described in detail

below.

43

Chapter 3. Usage Management Framework

Table 3.1: An example structure of context.

Context
Entity Property (p) Domain (Dp) Functions (FDp)

Environment (E)
Date {01/01/0000, ..., 12/31/9999} {on, before, after, between}

Location {Set of all countries} {equals}
IPAddress {0.0.0.0, ..., 255.255.255.255} {equals, between}

Subject (S) SubjectID {000-00-0000, ..., 999-99-9999} {equals}
SecurityClearance {A, B, C, D, E, F} {equals, lesser, greater, between}

Resource (R) ResourceID {000-000,, 999-999} {equals}
SensitivityLevel {1, 2, 3, 4, 5, 6, 7} {equals, lesser, greater, between}

Context

A context is defined by the tuple C = �E, S ,R�, where E represents the set of system

environment properties, S represents the set of subject properties and R represents the set

of resource properties. Each property is a place holder for a set of values. The values taken

by a property p range over the elements in its unique respective domain Dp.

The sets E, S and R represent the type of environment, subject, and resource, respec-

tively, uniquely defined by the set of properties contained in each set. An instance of an

environment type E, denoted by iE, is defined by the tuple �p1 = k1, ..., pn = kn� , where

E = {p1, ..., pn} and ki ∈ Dpi . Subject and resource instances, denoted by iS and iR are

defined similarly. A context instance is defined by the tuple iC = �iE, iS , iR�, with the

corresponding context type C = �E, S ,R�

Every property p has a non-empty set of boolean functions or predicates defined over

the domain represented by the set Fp. The boolean functions allow to compare the values

of properties of the entities defined.

A constraint provides restrictions on the context within with usage is carried out. An

environment constraint provides restrictions on the properties of the computing environ-

ment; a subject constraint provides restrictions on the properties of the subject performing

the usage; and a resource constraint provides restrictions on the properties of the resource

which is being used.

44

Chapter 3. Usage Management Framework

A constraint is defined as a set of restrictions over a given context. Constraints for

a given property are expressed in terms of boolean functions defined for the domain of

the property. A constraint for a given context C = �E, S ,R� is defined by the set crC =

{crE, crS , crR}, where crE, crS and crR are the constraint for environment E, constraint for

subject S , and constraint for resource R respectively. Constraints crE, crS and crR are

defined as follows:

crE = �| f |¬crE |crE ∧ crE |crE ∨ crE,where, f ∈ Fp, p ∈ E,

crS = �| f |¬crS |crS ∧ crS |crS ∨ crS ,where, f ∈ Fp, p ∈ S , and

crR = �| f |¬crR|crR ∧ crR|crR ∨ crR,where, f ∈ Fp, p ∈ R.

A context instance, iC, satisfies a context constraint crC, denoted by iC |= crC, if and only

if iE |= crE ∧ iS |= crS ∧ iR |= crR, where,

iE |= crE i f crE evaluates to true under the values taken by iE

iS |= crS i f crS evaluates to true under the values taken by iS

iR |= crR i f crR evaluates to true under the values taken by iR

The context, context instance, and context constraint defined above provide the basis for

the structure of policy and usage management mechanism.

Example of a Context —

A sample of a context structure, for context C, in shown in Table 3.1, which shows the

properties of the set of Environment (E), Subject (S) and Resource (R), and their respective

domains. As shown in the table, every domain has a set of boolean functions. Table 3.2

shows the instance of the context, denoted by iC, defined in Table 3.1, where each of the

properties are assigned values from its respective domain.

45

Chapter 3. Usage Management Framework

Table 3.2: An example structure of context instance.

Context instance 1 (i1C)
Entity Property (p)

Environment instance (iE)
iDate = 04/05/2010
iLocation = France

iIPAddress = 127.0.0.1

Subject instance (iS) iSubjectID = 876-76-7896
iSecurityClearance = B

Resource instance (iR) iResoruceID = 789-455
iSensitivityLevel = 3

Context instance 2 (i2C)
Entity Property (p)

Environment instance (iE)
iDate = 01/21/2010
iLocation = USA

iIPAddress = 127.0.0.1

Subject instance (iS) iSubjectID = 876-76-7896
iSecurityClearance = F

Resource instance (iR) iResoruceID = 789-455
iSensitivityLevel = 3

Table 3.3: An example description of functions.

Boolean Function Description
E.Date.between(d1, d2, iDate) True if iDate lies between dates d1 and d2.
E.Location.equals(loc, iLocation) True if iLocation equals the location loc.
E.IPAddress.between(ip1, ip2, iIPAddress) True if iIPAddress lies between ip1 and ip2.
S .S ub jectID.equals(id, iS ub jectID) True if iS ub jectID equals id.
S .S ecurityClearance.greater(sc, iS ecurityClearance) True if iS ecurityClearance is greater than the value of sc.
R.ResourceID.equals(id, iResourceID) True if iResourceID equals the value of id.
R.S ensitivityLevel.between(sl1, sl2, iS ensitivityLevel) True if iS ensitivityLevel lies between sc1 and sc2.

The domain functions are shown in the last column of Table 3.1. Each function can

be used by the policy to express restrictions over the values of a given property. To

uniquely identify functions, the are represented in the form of Entity.Property.Function().

The function E.Date.between(01/01/2010, 31/01/2010, iDate), determines if the value of

iDate in the context iC lies between the dates 01/01/2010 and 31/01/2010. Some of the

functions from Table 3.1, and their intended meaning are described in Table 3.3.

Boolean functions are used to express constraints over a given context. For example

constraints for the usage of a given resource in terms of the context described in Table 3.1

can be expressed as follows:

46

Chapter 3. Usage Management Framework

“The usage must be carried out between January, 1, 2010 and January 31, 2010, only

in USA and Canada. The usage can be carried out only on a resource with sensitivity level

between 2 and 5. The usage must be carried out only by subjects with security clearance

greater than level A.”

A context constraint for the above mentioned policy is expressed as follows:

crC = �crE, crS , crR� , where, (3.1)

crE = E.Date.between(01/01/2010, 31/01/2010, iDate) ∧

(E.Location.equals(US A, iLocation)

∨E.Location.equals(Canada, iLocation)),

crS = S .S ecurityClearance.greater(A, iS ecurityClearance), and

crR = R.S ensitivityLevel.between(2, 5, iS ensitivityLevel).

From the examples shown in Table 3.2, it can be seen that i1C �|= crC, because the date and

location constraints are not satisfied. However, it can be seen that i2C |= crC

Policy

A policy, denoted by pol, is defined by the 3-tuple pol =
�
RA, ε,Ipol

�

1. RA defines the set of restricted activities in a policy.

2. ε defines the policy usage expression over RA.

3. The interface Ipol defines the set of functions supported by the policy pol.

We now explain each of these terms in detail.

47

Chapter 3. Usage Management Framework

Restricted Activity. As mentioned earlier, an activity is a policy abstraction for different

operations that may be carried out in a system. For example, verbs such as use, play, pay

and operate represent specific set of operations that are performed by agents in a given

system. Such verbs when used in a policy are called activities, denoted by av. An activity

may be accompanied by a set of constraints over the context within which the activity is

to be carried out. Activities accompanied with constraints are called restricted activities.

A restricted activity, rv, is defined by the tuple rv = �av, crC�, where av is an activity,

and crC is a context constraint. Restricted activities are the building blocks for specifying

usage policies.

An activity instance is an activity av that is being performed with respect to a context

instance iC, is denoted by iav = �av, iC�.

An activity instance iav = �av1, iC� conforms to a restricted activity rv = �av2, crC�,

denoted by iav ∝ rv, if and only if av1 = av2 and iC |= crC.

The conformance of a restricted activity can only be determined with respect to an

activity instance which contains complete information about state of the context when the

activity is being performed. This information must be provided to a policy by the usage

management mechanism.

Restricted Activity Example —

Consider a restricted activity rv = �view, crC�, where view is the activity and crC is the

constraint defined over context C by equation 1. The context C is described in Table 3.1.

We now define three activity instances, namely, iav1 = �view, i1C�, iav2 = �view, i2C�

and iav3 = �print, i2C�, where i1C and i2C are described in Table 3.2. The following

relationships hold:

• iav1 �∝ rv, since i1C �|= crC.

48

Chapter 3. Usage Management Framework

• iav2 ∝ rv, since i2C |= crC, and view == view.

• iav3 �∝ rv, because even though i2C |= crC, the activity defined in iav3 is print, and

that defined in rv is view.

Policy Expression and Policy Interface. A policy expression provides usage semantics

over a set of restricted activities. These may include permissions, obligations, parallel

actions, partial dependancies, interleaving semantics and count limit to name a few. For

the purpose of this discussion, a simple usage policy language that is capable of expressing

permissions and obligations is introduced. It must be however noted that policy expression

provides a design space where different types of languages capable of expressing and

reasoning about different types of usage semantics can be used. Hence it is possible to

replace this language by a different language capable of a greater expression power.

In this simple usage policy language, a user can specify the set of permissions P, the

set of obligations O, what set of obligations are associated with a given permission, and a

mechanism to record which of the obligations have been fulfilled. The set of permissions

and obligations are mutually exclusive to avoid cyclic dependancies. Mathematically, the

policy expression will include the following set of definitions:

1. Set of permissions P ⊆ RA,

2. Set of obligations O ⊆ RA, s.t. P ∩ O = φ,

3. Function fPO : P → 2O, returns the set of obligations associated with a permission.

4. Function fO → {true, f alse}, is set to true if the obligation is carried out, and is set

to f alse otherwise.

The final element in the policy definition is the policy interface Ipol. Policy interface

reflects the type of queries that a usage management mechanism or a user can ask a policy.

49

Chapter 3. Usage Management Framework

For the usage policy language described here, the policy interface Ipol may contain the

following functions.

1. allowed (av, iC) — determines whether or not a given activity performed under the

given context state can be carried out.

2. permissions() — returns the set of permissions.

3. obligations(rv) — returns the set of obligations for a given permission.

4. remaining obligations(rv) — returns the set of obligations for a given permission

that are not yet fulfilled.

5. update obligation(av, iC) — updates the state of the policy specifying that the

obligation is being fulfilled.

6. reset() — resets the license by setting all the obligation states to false.

The algorithms for the following functions are as follows:

allowed (iav = �av1, iC�)

1 constraint satisfied permissions = []

2 for all rv = �av, crC� ∈ P do

3 if (av == av1) ∧ (iav ∝ crC) then

4 add rv to constraint satisfied permissions

5 valid permissions = []

6 for all rv ∈ constraint satisfied permissions do

7 obligations = (fPO(rv))

8 if (for all ob ∈ obligations, fO(ob) == true) then

9 add rv to valid permissions

10 if valid permissions � empty then

50

Chapter 3. Usage Management Framework

11 return true

12 else

13 return false

The allowed algorithm works as follows. Lines 2-4 selects all restricted activities in the

set P that are satisfied by the context values in iC, and have the same activity as supplied

by the usage management mechanism. These are the set of permissions that satisfy the

constraints, and are stored in the array constraint satisfied permissions. Lines 6-8 checks

whether or not all the obligations for a given permission are satisfied. Permissions whose

obligations are satisfied are stored in the array valid permissions. Finally, if the array

valid permissions is not empty, the function returns true else returns false. The algorithms

permissions and obligations are self explanatory.

permissions ()

1 return P

obligations(rv)

1 return fOP(rv)

remaining obligations(rv)

1 rem obligations = []

2 for all ob ∈ fOP(rv) do

3 if fO(ob) == false then

4 add ob to rem obligations

5 return rem obligations

51

Chapter 3. Usage Management Framework

The remaining obligations algorithm works as follows. It takes as an input a permis-

sion in the form of a restricted activity. Lines 2-4 selects all obligations for that permission

whose values are set to false. and returns the set of these obligations.

update obligation(iav = �av1, iC�)

1 matching obligations = []

2 for all ob = �av, crC� ∈ O do

3 if (av == av1) ∧ (iav ∝ crC) then

4 add ob to matching obligations

5 for all ob ∈ matching obligations do

6 fO(ob) = true

The update obligations algorithm works as follows. In this algorithm, the umm pro-

vides an activity instance set iav = �av1, iC�. It tells what activity av1 is performed and

under what conditions iC. Lines 2-4 selects all obligations that match the description, and

sets values of those obligations to true on Line 6 indicating that these obligations are ful-

filled. The reset algorithm is self explanatory.

reset()

1 for all ob ∈ O do

2 fO(ob) = false

Usage Management Mechanism

As explained in Section 3.3, a usage management mechanism is an entity that operates

within a computing domain, and is responsible for interpreting and enforcing policies

within the computing domain. In this mathematical framework a UMM, denoted by umm,

is defined by the 3-tuple umm = �Fumm, Act, iC�, where,

52

Chapter 3. Usage Management Framework

1. Fumm defines the set of functions that the UMM uses to query policies. A policy

interface must support all the functions defined in the the set Fumm.

2. Act is the set of identifiable actions provided in the computing domain. The ac-

tions defined in the set Act are the actions that are performed by the users, and can

be uniquely identified within the computing environment. These actions are the

application-level or operating system-level commands that can be identified within

the computing environment. For example such actions can be “openfile”, writefile,

copyfile, etc. Activities defined in the license are mapped to these actions. This

mapping is described in Section 3.5.2.

3. iC is the context instance maintained by the usage management mechanism. When-

ever an action is requested within the computing environment, the UMM updates

the context instance iC to record the state of the context under which the action is to

be carried out.

The UMM on the computing platform is used by the higher level applications and the

security mechanisms. If the computing platform undergoes changes in technology, the sets

Iumm, Act and iC are changed accordingly.

3.5.2 Dynamic Interpretation

The activities or the verbs used in license expression are abstract terms, such as use, copy,

transfer, play, etc. It is possible to agree upon and fix the activities that will be used to

express licenses for a particular type of usage management ecosystem. On the other hand,

the computing environments deal with actions that are identifiable and closely relate to the

ones supported by operating systems. A usage management mechanism is agnostic to the

activities defined in a license, and a license is agnostic to the actions defined in the usage

management mechanism. An interpretation function is a map that maps the activities in a

53

Chapter 3. Usage Management Framework

license to the actions defined in the usage management mechanism. For the simplicity of

the discussion it is assumed that the map is one-to-one.

Formally, an interpretation function Int : Acv→ Act, where Act is the set of activities,

and Act is the set of actions. For example:

Acv = {view, trans f er,modi f y}, and

Act = {open f ile,write f ile, send f ile}, then

Int(view) = open f ile, Int(trans f er) = send f ile, and

Int(modi f y) = write f ile.

Next section describes the operational semantics for this framework similar to the ones

described in Section 3.3

3.5.3 Operational Semantics

The operational semantics of the calculus are shown in Figure 3.11. The entities shown in

the figure are similar to the ones discussed earlier, with the addition of the interpreter. A

typical usage management operation takes place as follows.

The process of policy interpretation and enforcement takes place in eight steps as

shown in the figure. In Step 1 the application requests the usage management mecha-

nism to determine whether a particular action (act) on a given resource by a given user

is valid or invalid. As a part of the request, the application provides all the information

about the user, the resource and the action that is to be performed. In Step 2 the usage

management mechanism obtains the current state of the computing environment from the

operating system. The type of information obtained by the usage management mechanism

depends on the manner in which the context is modeled. Such information may include,

current location, day, date, time, ip address, etc. In Step 3 the usage management mech-

54

Chapter 3. Usage Management Framework

APPLICATION OPERATING
SYSTEM

CONTEXT
INSTANCE (iC)

USAGE MANAGEMENT
MECHANISM

INTERPRETERPOLICY (pol)

user info
resource info
action = act

allowed/
not allowed

system info

update action
 (act)

activity
(acv)true/

false
allowed (iav)

1

2

3
4

5

6

query
context

7

8

Figure 3.11: Operational semantics of the calculus.

anism consults the interpreter for the activity (acv) that corresponds to the action (act)

requested by the application. The interpreter is a map as explained in the earlier section,

and provides the corresponding activity (acv). In step 4, the usage management mecha-

nism updates the context instance iC by using the current values of system parameters,

user information and resource information. This is followed by step 5, where the usage

management mechanism queries the policy whether or not the specified activity is valid.

In step 6 the policy queries the context instance iC regarding the system values and subject

and resource properties while the activity is to be performed. Based on these values, the

policy determines the validity of the action and provides an appropriate answer in Step

7. In Step 8, the usage management mechanism provides the result of the query to the

application.

In the next section the interoperability semantics of this model are defined.

55

Chapter 3. Usage Management Framework

3.5.4 Interoperability Semantics

The interoperability semantics and results explained in Section 3.4.1 hold for this mathe-

matical model for policies. However, given the well defined internal structure for context,

policies and UMM, it is possible to define these semantics in more detail. In Section 3.4,

the following definitions were introduced: Ipol,Fpol,Icon,Fumm. Based on these sets, in-

teroperability relationships between policies and UMMs are defined. Let a usage man-

agement system have a context con = �E, S ,R�, a policy pol =
�
RA, ε,Ipol

�
and a usage

management mechanism umm = �Fumm, Act, icon�. Based on these definitions, it is possi-

ble to calculate the values for Ipol,Fpol,Icon,Fumm as follows.

The values for Fumm and Ipol are provided in the definitions of umm and pol. Hence

policy compatibility definition Fumm ⊆ Ipol =⇒ pol �p umm, provided in Section 3.4.1,

holds.

Icon, the interface provided by context con is calculated as follows. Icon =
�

p Fp,

where p ∈ E ∪ S ∪ R, and Fp is the set of all functions provided by property p.1

The set Fpol is calculated as follows. Let the functions used in a given constraint be

denoted by fcr. Hence, for a given restricted activity rv = �av, {crE, crS , crR}�, the set of

functions used for restricted activity rv, denoted by, frv, is equal to fcrE ∪ fcrS ∪ fcrR . Thus,

the set of functions used by policy, pol =
�
RA, ε,Ipol

�
, is given by Fpol =

�
rv∈RA frv.

Based on these definitions of Fpol and Icon, the definition Fpol ⊆ Icon =⇒ pol �c umm,

provided in Section 3.4.1 holds.

Hierarchical relationships among contexts and policies can be similarly calculated

based on policy and context structures can be calculated. Given two policies pol1 =
�
RA1, ε1,Ipol1

�
and pol2 =

�
RA2, ε2,Ipol2

�
, policy pol2 inherits policy pol1, denoted by,

pol2 � pol1 if Ipol1 ⊆ Ipol2 . Similarly, given two contexts, con1 = �E1, S 1,R1�, and

con2 = �E2, S 2,R2�, con2 � con1 if E1 ⊆ E2 ∧ S 1 ⊆ S 2 ∧ R1 ⊆ R2. Based on these def-
1It is assumed here that properties do not share function names.

56

Chapter 3. Usage Management Framework

initions for inheritance, the interoperability results defined in Section 3.4.2 hold for this

mathematical model.

This chapter provided a detailed description of the proposed usage management frame-

work. First, a meta-model that provided the core for the framework was introduced. Fol-

lowing this, principles of system design were applied to develop a framework for usage

management that enables interoperability, provides formal semantics for interoperability

and reason about it. In this framework, focal points were identified where it is necessary

to apply standards, and areas that needed to be free of standards. The internal structure of

policies and contexts are left free of standards, so that they provide a design space to ac-

commodate different types of computing domains and policy languages. Whereas, policy

interface, context interface and operational semantics of the framework are standardized,

and provide the glue that holds the framework together. The framework is extensible that

allows creation of new policy types and context types structured by means of hierarchical

relationships.

57

Chapter 4

DRM Game

One of the biggest challenges in usage management is enforcement of usage policies on

client systems over which the resource owner has little or no control. This problem has

plays a critical role in DRM system to control piracy. Researchers have addressed this

problem by developing trusted computing solutions where user actions on resources is

controlled [6, 21]. However, the problem is that even if a small number of users are able

to break the security, the content in unprotected form can be made available everywhere

by means of content distribution networks and file sharing sites [35, 70]. Also trusted

computing solutions are usually seen by users as too draconian and have been consistently

rejected by users. Hence, the term “DRM” currently has a very negative connotation asso-

ciated with draconian restrictions on how legitimate users can make use of content. This

may be attributed to the fact that most DRM systems to date have in fact performed in

this way. For this reason, some have suggested that more apt names for DRM are “Dig-

ital Restrictions Management” or “Digital Restrictions Malware”[33], while others have

referred to the restrictions that exist in the Apple, Microsoft and Sony music platforms us-

ing a more colorful acronym [16]. In contrast, an open architectural framework for DRM

should be pursued, one that allows for DRM business models and practices vastly different

from what we have today, and strikes a more reasonable balance between content vendors

58

Chapter 4. DRM Game

and consumers. Numerous research efforts over the past few years have considered how

DRM systems might be organized in order to better support desirable properties such as

reusability, portability, standardization and interoperability [38, 46, 49, 63, 67, 69]. Fu-

ture DRM systems must involve flexibility in decision making, and the ability to negotiate

at all levels within the architecture [9, 15, 50]. In order for these and other changes to

occur, however, a number of fundamental changes must occur within the architectural in-

frastructure of these systems. In this chapter, one means of analyzing existing and future

DRM approaches is provided. The proposed approach, which makes use of game theory,

allows us to take into account the strategic situations that exist at the heart of most DRM

environments. With this approach in mind, a new architectural component, namely a trust

authority is introduced, that can be used to construct a different type of DRM environment.

More specifically, an environment in which it is possible to influence a consumer’s actions

more by rewards, and less by the punishments that vendors attempt to attach to file sharing.

This chapter starts by describing a simple baseline game in Section 4.1 that models the

strategies associated with the acquisition of content. This game captures the choices that

exist between a vendor and consumer for most forms of “entertainment” content. That is,

for this type of content, the consumer has the choice of either purchasing the content from

a vendor, or downloading it from a file sharing site. The vendor also has the choice of sup-

plying purchased content to the consumer with or without technical protection measures.

These measures are primarily copy protection technologies. It it interesting to note that it

is these technologies that many now simply refer to as “DRM”, even though the full scope

of DRM is much broader than copy protection. Indeed, when you investigate the colorful

acronyms for DRM described in the previous paragraph, it is invariably the case that the

complaints are actually with technical protection measures.

Once a baseline game for content acquisition in established in Section 4.1, it is de-

scribed how this game should be played in the case of perfect DRM (actually prefect

technical protection) and imperfect DRM. Specifically, the situations under which Nash

59

Chapter 4. DRM Game

equilibria will exist for both cases are investigated.

An important consideration that affects the utilities of both customers and vendors is

how a customer uses a piece of content once he has obtained it. Thus, content acquisi-

tion game developed in Section 4.1 is treated as a subgame, and an additional subgame is

developed in Section 4.2 in order to model these post content acquisition strategies. The

important consideration on the part of the consumer involves whether or not to share con-

tent, and for the vendor the responses that can be made to the consumer’s decision are

considered. Once again, investigations on how the conditions under which an equilibrium

condition can be established for this subgame are carried out.

Next, in Section 4.3, an additional level of reality to the subgames developed in the

previous sections is added. Specifically, it is considered, what happens if the overall game

is played repeatedly. In game theory, these repeated games aim to capture the logic be-

hind a long-term interaction among the players, in the case presented here, consumers and

vendors. In repeated games, short-term gains, long-term gains, strategies, rewards, pun-

ishments, and cooperation can be effectively studied along with their effects on achieving

equilibria mutually beneficial to all players. The primary goal of the theory of repeated

games is to isolate the strategies that support mutually desirable outcomes [58]. In Sec-

tion 4.3, two types of repeated games are considered, one that models the current approach

which is primarily focused on punishment, and the other that makes use of a trust authority

in an attempt to create a win-win situation for both players.

Others have considered the use of game theory in the context of DRM. Most notably,

the Secret Incentives-based Escrow System (SPIES) applies game theory to DRM systems

where content protection is of interest [53]. This system is intended for applications where

a secret must be protected for a limited time period and shared between two parties. The

SPIES system requires the content consumer to place an amount of money in an escrow

account, after which he receives access to a secret (or content). Anyone who has a copy

of the secret can send a commitment to their content to the escrow service. Once a time

60

Chapter 4. DRM Game

period has expired, anyone who has a copy of the content can receive a share of the money

from the escrow account. Thus, the incentive of the legitimate possessor is not to share

the secret or they will lose the security deposit. In order for this to work within a game

theory setting, SPIES also requires the incorporation of charitable organizations within

the framework. There is another system architecture that uses economic incentives to

motivate users to keep content within a subscription community [40]. This system also

makes use of an escrow authority, but in this case the escrow service pays users for sharing

content with authorized users. These payments are intended to motivate users to keep

content within a subscription community, but they will not have any influence on those

whose receive the content outside of the subscription community. The work presented

here differs in that it first attempts to use game theory to analyze existing DRM scenarios,

and then extends the resulting game in order to introduce an architectural refinement aimed

at building incentives into the DRM game.

4.1 The Baseline Game

A baseline version of the DRM game is depicted in Figure 4.1a. The players consist of

a vendor, V , selling a content object and a potential consumer, C, who may purchase

the content object. If the content object is available for downloading via an alternative

(presumably illegitimate) site, then the consumer has the choice of either paying for and

obtaining the content from the vendor’s site, p, or downloading it from an alternative site,

dl. Furthermore, when selling the content, the vendor has the choice of either providing

the content with or without technical protection measures, denoted tp and tp, respectively.

It is important to note that this game purposefully initiated with the consumer making

the first decision. This allows the consumer to signal an intention to purchase content,

and for the vendor to respond accordingly given any information that is available about

the consumer. Notice also that the game has three possible outcomes, labeled as nodes 1–

61

Chapter 4. DRM Game

C

V

p

dl

tp

tp

 2, 2p

dl

tp tpC
V

(a)

(,)πc (,)πvp tp , p tp 3, 1

 4, −1 4, −1

 5, 2p

dl

tp tpC
V

 6, 1

 4, −1 4, −1

(b)

(c)

(,)πc (,)πvp , p tptp

()πc ,dl ()πv dl

1

2

3

Figure 4.1: (a) An abstract model of the baseline DRM game in extensive form, along
with two examples of its strategic form, (b) one in which πc(dl) ≥ πc(p, tp), and (c) the
other in which πc(p, tp) ≥ πc(dl).

3 in the figure, and that the utilities the consumer and vendor receive for a particular

outcome are denoted using πc and πv, respectively. The three outcomes correspond to

(p, tp) at node 1, a consumer that pays for content delivered using technical protection by

the vendor; (p, tp) at node 2, a consumer that pays for content delivered without technical

protection; and (dl) at node 3, a consumer that downloads content without paying for it.

Apple’s iPod/iTunes/Fairplay arrangement or Microsoft’s Zune are examples of systems

that attempt to reach the outcome corresponding to node 1. Apple has also modified iTunes

in a way that allows it to reach node 2.1 There are numerous file sharing sites that allow

consumers to reach the outcome corresponding to node 3.

Although the game shown in Figure 4.1a is extremely simple, ignoring entities such as

content aggregators, content producers, secondary markets, etc., it serves to motivate the

reasons behind the current strategies used by DRM vendors, and also leads to more realistic

1Starting in May 2007, songs from the EMI Group distributed via Apple iTunes have been
delivered without FairPlay DRM. These files cost more, but also have a higher audio quality, with
an increase in bit-rate from 128 kbit/s to 256 kbit/s.

62

Chapter 4. DRM Game

DRM game scenarios that point to the need for new DRM architectural infrastructures. To

see why, consider the following two cases.

4.1.1 Perfect DRM

Let us start by making some general assumptions about the utilities associated with the

three outcomes in Figure 4.1a. If moral issues associated with file sharing are put aside,

and it is assumed that there is no difference between the content obtained from down-

loading or through purchase, then the consumer’s utilities will generally satisfy πc(dl) ≥

πc(p, tp) ≥ πc(p, tp). That is, C would prefer to obtain the content at no cost via down-

loading rather than purchasing it, and if purchasing the content, C prefers no technical

protection to technical protection.

Now, assume at time t = τ a content item is first made available from a vendor in

electronic form. At this point consumer C has no choice of downloading the content for

free. That is, since the download option is not available, the only decision on the part

of player C is whether or not to purchase the content. The game collapses to a very

simple situation that depends only on the utilities associated with purchasing the content

versus not purchasing it, and V may adjust the price of the content in order to influence

these utilities. If a price can be found where both C and V receive sufficient utility, a

sale may occur, depending upon one other factor. Specifically, the decision of whether

or not to use technical protection will also influence the players’ utilities. If the technical

protection measures associated with DRM are prefect, circumvention of these measures

is not possible. In this case, if the utility of C is not reduced too much by the technical

protection measures, a sale may still occur. Furthermore, if V does not offer the tp option,

subsequent plays of this game at times t > τ will be identical to the game played at time

t = τ. In this case, in every instance of the game going forward, the vendor is in complete

control, with the desirability of the content offered with technical protection, along with

63

Chapter 4. DRM Game

its price, being the only determining factors.

The only reason to bring this situation up is that it seems to correspond to what many

vendors were striving for in the early days of DRM. In those days, it was not uncommon

for suppliers of DRM solutions to make claims that their technology was “100% copy-

proof”. If these claims were indeed true, then the logical thing for V to do would be to use

such a DRM system in order to enforce the game described above. That is, if the choice

of tp meant that no copying could occur, then V should never choose tp, thereby ensuring

that the dl option would never become available to C in subsequent games. It seems that

many of the early adopters of DRM technologies were in fact striving for this ideal.

There are numerous reasons why perfect DRM is generally not possible. First, every

widely-used technical protection measure that has ever been built has also been circum-

vented in a manner that is easily transferable to others, and there is no reason to believe

that this situation will ever change.2 Second, in many cases the same content is offered

through multiple channels, one of which may be more susceptible to “misuse”. For in-

stance, in the case of music, CDs are generally not protected. Thus, even if online music

could be provided in the manner of the game described above, it would still be possible to

obtain the content via file sharing if the same music was released on CD. Using the popular

terminology, the former will be referred to as “cracking”, and the latter as “ripping”.

In actuality, C has a third choice, not shown in Figure 4.1a, of not purchasing the

content. We have not shown this choice because the focus of the remainder of the chapter

is on those factors that influence consumers’ decisions once they have already decided

to obtain a particular content object. Furthermore, after V’s decision regarding technical

protection, C may choose to download content. In the game, this situation is treated as if

C had initially decided to download the content. Since a game of perfect information is

assumed, this makes sense.

2In spite of this, it is still possible to find DRM vendors claiming to have infallible technical
protection technology.

64

Chapter 4. DRM Game

In summary, with this case the situation is quite simple, and the content vendor has a

clearly understood strategy for maximizing utility. It is assumed that many of the DRM

systems that have been created by those in the content industry to date have this model

as the underlying ideal. In other words, although most of these vendors recognize that

technical protection cannot be perfect, they strive for ever stronger technical protections,

as well as laws such as the DMCA [30] that criminalize the circumvention of technical

protections, in the hopes that some close approximation to this game can be achieved.

Below it is describe why this is likely a losing proposition in the long run.

4.1.2 Imperfect DRM

Now let us consider the case where DRM is not perfect, and content may “leak” through

the technical protections that are in place via cracking or enter into file sharing sites via

ripping. This game more realistically models the current situation with DRM systems.

The vendor’s preferences, under the assumption that technical protection measures will

reduce but not eliminate file sharing, are generally given by πv(p, tp) ≥ π(p, tp) ≥ πv(dl).

That is, they are diametrically opposed to those of C described previously. Specifically,

C prefers tp over tp, and may in fact be willing to pay more for the tp option, as in the

Apple/EMI model described previously. However, because future sales may be negatively

impacted by the tp option, particularly if it leads to large-scale file sharing, V generally

prefers tp over tp.

Let us consider a game that is played with the aforementioned preferences in mind,

along with the imperfect technical protection assumption. An example game in strategic

form is given in Figure 4.2b. This figure shows a payoff matrix that satisfies the prefer-

ences, where it is assumed the content is initially available from both a downloading site,

as well as from an online vendor. The first element in any pair shown in the matrix cor-

responds to C’s utility, and the second entry to V’s utility. For example, in Figure 4.1b, if

65

Chapter 4. DRM Game

the outcome of the game is (p, tp), then C’s utility would be 3, and V’s would be 1. Notice

that in the case of dl, V has a negative utility that corresponds to a loss of sales. Once

again, moral considerations are put aside, and the consumer has equal ease in obtaining

the content through either downloading or purchase, then no matter how player V sets the

price (assuming nonnegativity) he will not be able to make πc(dl) ≥ πc(p, tp). I.e., under

these conditions the consumer has no incentive to purchase the content, and will instead

download it.

The critical relationship in terms of establishing a Nash equilibrium is between πc(dl)

and πc(p, tp). If πc(dl) ≥ πc(p, tp), then a Nash equilibrium exists for the case of C

downloading rather than purchasing content, denoted by the dashed box in Figure 4.1b.

Specifically, once C plays the strategy dl, V’s strategy becomes irrelevant. Therefore, the

solution or equilibrium for the game will involve C downloading content, and as long as

the aforementioned preference relationship holds, no change in strategy by either C or V

can cause the game to move to a solution that is more profitable to either player. Thus, if a

vendor endeavors to create a situation of perfect DRM, but fails, consumers will be driven

towards downloading if the downloaded and purchased content are equally desirable to C.

The only way to move the game from the Nash equilibrium described above is to

create a situation where πc(p, tp) ≥ πc(dl). If this can be accomplished, then a Nash

equilibrium will be established for the (p, tp) outcome, which corresponds to C paying for

content delivered with technical protection. This situation is depicted in Figure 4.1c, and

no change in strategy by either C or V can cause the game to move to a solution that is

more profitable to either player. Notice that even though C would obtain a higher payoff

from the (p, tp) outcome, the solution of the game will not move there because the decision

between tp and tp is not C’s.

Thus, the issue becomes one of establishing business models and other policies that

can create a situation whereby πc(p, tp) ≥ πc(dl). We will also see that πc(p, tp) ≥ πc(dl)

may provide a suitable solution, if V’s utility can be made large enough. On the surface,

66

Chapter 4. DRM Game

since one strategy involves C receiving content for free, and the other involves C paying

for it, it seems that either of these preference relationship would be difficult to create.

There are, however, a number of ways to create situations whereby πc(p, tp) ≥ πc(dl) or

πc(p, tp) ≥ πc(dl). These must include strategies for lowering utility πc(dl), and this in fact

seems to be the primary focus of vendor activities. In particular, the two main ways of

reducing player C’s utility involve legal attacks and technological attacks.

With legal attacks, the goal is to prosecute illegal file sharing, and then widely publicize

any successes in this area. This, in effect, reduces πc(dl), but only for consumers who

believe they could be subject to similar prosecution. There are a variety of technological

attacks that can be deployed. One method, called poisoning involves modifying content

so as to make it less desirable to C [24]. E.g., this may involve adding high amplitude

white noise to a music file, or removing large chunks of scenes from a movie file. These

files are then uploaded to file sharing sites. Thus, by making it more difficult for C to

obtain “good” content, πc(dl) is effectively lowered. Another technological attack involves

inserting malware or forms of malicious software into the clients used for downloading.

All of the forms of attack described above are in widespread use. Simulations indicate that

poisoning is one of the most effective techniques for reducing πc(dl) [29]. These attacks

are ingenious in that they take the strength of peer-to-peer networks, namely their power-

law connectivity, and turn it against them. In other words, poisoned content can be made

to spread nearly as rapidly as good content in these environments.

It seems that less effort has been applied towards methods that increase the utilities as-

sociated with either πc(p, tp) or πc(p, tp). This can be accomplished by somehow adding

value to purchased content relative to downloaded content. E.g., the reliability and ease

with which content can be obtained from Apple’s iTunes certainly adds value to the con-

tent, and has contributed to the success of this system. In Section 4.3 another means of

achieving this result though the use of a trust authority is considered.

For either of the situations just described, there are in fact numerous additional deci-

67

Chapter 4. DRM Game

sions on the part of both the consumer C and the vendor V that must be made in order to

implement specific strategies. In the next section these are cast in a game-theoretic setting

that will allow them to be attached to the baseline game described in this section.

4.2 Important Subgames

We now describe three important subgames, g1–g3, that can be played starting from each of

the three outcomes identified in Figure 4.1a. That is, each of these subgames corresponds

to strategies that can be played post content acquisition. These subgames are concerned

with how C uses content, and how V responds to this. The first subgame, g1, corresponds

to the game played after content has been purchased with technical protection; the second

subgame, g2, corresponds to the game played after content has been purchased without

technical protection; and the third subgame, g3, corresponds to the game played after

content is obtained via file sharing.

In each subgame, since C has obtained the content, he now has a choice of either

sharing the content, strategy s, or not sharing it, strategy s, as shown in Figure 4.2. Next,

V has the decision of whether or not to take some actions based on this file sharing (or lack

thereof). These are denoted by a and a, respectively, in Figure 4.2. The types of actions

that can be taken will depend upon the subgame being played, and will be discussed in

more detail shortly.

In order to justify the importance of this model, let us point out how various nodes in

this game correspond to specific outcomes that currently exist in the marketplace. We will

also comment on how certain strategies that exist in this game have not yet been exploited.

Finally, it will described how the actions taken at the last step of the game by the vendor

may influence the utilities associated with various nodes that occur earlier in the game.

First, consider the outcome (1, s, a), which corresponds to a consumer paying for con-

68

Chapter 4. DRM Game

s

a
a

C

a
a

s

i

(, ,)πc ,i s a
.
.
.

(, ,)πv i s a

(, ,)πc ,i s a (, ,)πv i s a

 −100, −10

C
V

 3, −2

 1, 1 1, 1

(b)

(a)

s

s

aa

 −4, −1

C
V

 3, −2

 1, −1 4, −1

(c)

s

s

aa

V

Figure 4.2: (a) A general model in extensive form of the post-content-acquisition subgame
that flows from the outcomes of the game shown in Figure 4.1a, where node i can assume
the values 1–3. (b) An example of this subgame in strategic form that models RIAA
efforts, and (c) a model that incorporates rewards.

tent that is technically protected, then subsequently sharing this content, and finally, the

vendor taking some action. Since the content was supplied with technical protection, it

must be the case that it was cracked by C, and therefore, since provisions such as the

DMCA may apply, the action taken by V may be a legal attack.

Another situation to consider occurs with respect to the outcomes (3, s) and (3, s).

The former corresponds to what are commonly referred to as “freeloaders” or “leeches”,

consumers that download but do not share content. It is interesting to note that most file

sharing sites have constructed various mechanisms that penalize this outcome. Thus, they

are trying to create a situation whereby C’s utility is increased by following (3, s) rather

than (3, s). Nevertheless, historically a large percentage of downloading corresponds to

consumers that will follow the freeloading outcome [5]. It is also important to recognize

that to date, the Recording Industry Association of America (RIAA) has only prosecuted

those outcomes that involve sharing. That is, the main risk associated with the use of file

sharing sites involves sharing and not downloading, which may decrease the utility of the

69

Chapter 4. DRM Game

(3, s) outcome for some consumers, namely those that believe they could be subject to

RIAA actions.

Let us consider a concrete example of a vendor that is seeking to penalize file sharing

behavior that emanates from node 3, and where specific payoffs are provided to the play-

ers. This, for example, models the action that the RIAA has taken against file sharing on

college campuses [72]. In this case, if V takes action, the penalty applied is very severe,

e.g., college students were told that a typical settlement with the RIAA is $3,000. In Fig-

ure 4.2b, this is modeled as a payoff of −100 for C if V takes action, and 3 if V does not.

In general, since this is a severe penalty, it must be that case that πc(3, s, a) � πc(3, s, a);

however, the legal costs to V associated with pursuing this action are also much greater

than the loss associated with this one instance of file sharing. That is, it is expected that

πv(3, s, a) � πv(3, s, a). Thus, it is possible to think of this as the “nuclear option”, as it is

very effective when applied, but V is loathe to use it. Notice in Figure 4.2b that C receives

the highest payoff for sharing when no action is taken, and a smaller payoff for not sharing,

i.e., for freeloading. As discussed above, file sharing sites attempt to reward the former,

and penalize the latter. Finally, since the RIAA does not take action if file sharing does not

occur, the payoffs associated with those outcomes are 1 for both C and V .

Given the game shown in Figure 4.2b, two pure strategy Nash equilibria exist, one for

the case of not sharing when action is taken, and one for the case of sharing when no action

is taken. Thinking about these equilibria from the perspective of the extensive form game,

it can be seen that an action is taken by V only after the decision by C of whether or not to

share. Because C knows this, he can reason as follows: “If I play s, then it does not matter

to me what V plays; however, if I play s, then I know that V will play a. Therefore since

I receive a higher payoff in the latter situation, I will share the file”. What this means is

that only the Nash equilibrium at (s, a) is sequentially rational, and therefore it will end up

being the solution of the game.

The problem with the game in Figure 4.2b is that since it only involves pure strategies,

70

Chapter 4. DRM Game

C is certain about what action V will take. In order to make this game more realistic,

uncertainties are introduced in V’s actions through a lottery. That is, in the mixed strategy

case, V may select to play strategy a with some probability. To see how this affects the

play, let us assume that C plays s for sure, but that V plays a with probability q, and a with

probability 1 − q. In this case, the expected payoff to C is given by:

E[πc] = (−100q + 3(1 − q))

and it is possible to make E[πc] < 0 by choosing q > 4/103. In other words, if V takes

action only 4% of the time, he can make C’s expected utility negative.

We should not expect C to remain idle in the case that V is playing a mixed strategy.

Thus, let us consider the case when C plays a mixed strategy that involves sharing with

probability p. Assuming that V still only wishes to take action with probability q, what

level of penalty P should V apply in these cases in order to ensure that C’s expected utility

is negative? In this case

E[πc] = p
�
−(P + 3)q + 3

�
+ (1 − p).

Thus, if C shared content 50% of the time, and V wanted to keep his frequency of action

at 4%, then

E[πc] = 0.5 [−(P + 3)0.04 + 3] + 0.5

and now in order to ensure that E[πc] ≤ 0, a penalty of at least P = 97 must be applied

whenever action is taken, rather than P = 100 as it was in the case when C always chose s.

Thus, it can be seen that C playing a mixed strategy has very little effect on the game. It is

also easy to see that if V were able to increase the penalty to say P = 1, 000, then he would

only need to take action 0.4% of the time in order to make C’s expected utility negative.

Note, however, that there may be some maximum penalty that V is able to apply—this

would happen for example if the legal system sets a threshold on the amount that V can

penalize C. This appears to provide a good model for the behavior of the RIAA with

71

Chapter 4. DRM Game

regards to file sharing. That is, they rarely take action against file sharing, but when they

do, it is severe, and with as much publicity as possible.

Finally, consider a game in which V seeks to reward good behavior, rather than focus-

ing all of his attention on punishing bad behavior. Furthermore, this game attempts to take

fair use into account. Specifically, consider a game that emanates from node 2, when pur-

chased content has been supplied without technical protection. We assume that a certain

amount of file sharing will take place, but that this may take place within the bounds of fair

use. Determining acceptable fair use has always been a gray area, often requiring a judge’s

opinion to settle specific cases. One of the problems with DRM solutions to date is that

it does not allow for these gray areas [32]. Given this, consider the following scenario. A

musical artist uploads a song she has just produced, to an online music vending site with

which she has a contractual agreement. In addition, she provides the terms under which

she would like the song sold (or perhaps these are part of the previously established con-

tract). In this case, she specifies that she would like to offer the song, along with certain

bonus materials, to all members of the site that have established a given level of trust, at

a price this is specified as A. In addition, for those members of the site that have a lower

trust rating, she would like to offer the song alone at a higher price, call it B. In fact,

she may establish additional offerings depending upon the characteristics of the users she

would like to service. Indeed, for users that do not rise above a certain trust threshold, she

may deny the ability to purchase the content in digital form, or only allow for streaming

but not downloading rights. Users of this vendor’s site have the option of registering, and

the choice revealing certain information that will be used to establish their ID at the site.

Songs delivered to the users are fingerprinted with their ID, and a third party trust author-

ity monitors file sharing sites in order establish a trust measure for the user. For example,

the trust authority may classify a user as having low, medium, or high trust, depending

upon their file sharing habits.3 Furthermore, fair use doctrines can be incorporated into

3This is quite similar to how a credit agency establishes a credit rating for a person depending
upon their payment habits.

72

Chapter 4. DRM Game

this ranking. If an attempted transaction at the site meets the criteria established by the

artist, the song may be downloaded, and the user is free to play it on any device.

Notice that in the situation just described, there are no traditional DRM content re-

strictions. Once users have obtained content, they can use it however they wish, knowing

that the manner in which they use and share the content will have a direct bearing on

how they will be trusted in the future. Notice also that the essential component in this

DRM scenario, the trust authority, exists as part of the infrastructure, possibly as a mid-

dleware service. Finally, because of quantitative measures of trust, it becomes possible for

economists to relate behavior to price, and attempt to solve for the optimal values of A, B,

etc. A related work, in that it does not require new technology on the consumer side, ana-

lyzes the optimal design of flexibility in the presence of unlicensed distribution channels,

and in particular, how adding value to licensed content affects equilibrium policies [15]. It

is also interesting to note that researchers at Philips Research are working on consumer-

side hardware that modifies access according to user behavior [50]. This technology could

also make use of trust authority middleware.

It has been said that we should not expect DRM to ever be smart enough to distinguish

fair use from copyright infringement [32]. Note, however, that in the scenario described

above, DRM is not expected to do this. Rather, the DRM technology must only collect

information about how content is being used.4 This information can then be used, by a

judge for example, to determine if fair use doctrines have been violated, thereby putting

us back to a more balanced situation with respect to fair use that is similar to what existed

prior to the Internet.

In any event, let us cast the above situations that make use of a trust authority into the

game-theoretic setting of Figure 4.2a. Specifically, assume that according to the rating

4It is assumed that use of fingerprints embedded as watermarks in a manner similar to what
those in the cryptography community refer to as traitor tracing. This approach is susceptible to
collusion attacks [56], but just like other types of cryptography, it does not have to be perfect in
order to be useful.

73

Chapter 4. DRM Game

provided by the trust authority, V supplies a content object to C, and that the quality of

this content object (e.g., it resolution, the amount of bonus materials, etc.) is determined

by this rating. In this case, a reward is tied to the s action, as well as a punishment to the

s action. An example is shown in Figure 4.2c. In this example, the reward in the case

of the (s, a) strategy is not significantly different from the game of Figure 4.2b; however,

the punishment associated with the strategy (s, a) is far different. Specifically, in the case

of (s, a), the punishment is now much smaller, but so is the cost to V . This is due to the

fact that in this case, C is receiving lower-value content (a penalty not nearly as severe as

getting sued by the RIAA), and it costs V very little in order to pursue this action (certainly

far less than the legal fees associated with a law suit). Now, even if the cost of taking no

action remains the same, relative to the game in Figure 4.2b, the solution is far different.

Specifically, for the pure strategy case, a Nash equilibrium now exists for the strategy

(s, a), which corresponds to a win-win situation for both the consumer and vendor.

It is certainly possible for both players to play mixed strategies in this game as well,

but assume these are implemented so that they do not change the fundamental win-win

nature of this game. In this case, the more important question is how current decisions on

the part of both C and V will affect their utilities in the future. That is, with this game, if

C decides to share too much content, this will negatively impact his utility in the future,

and a similar situation arises if V does not provide sufficient rewards for good behavior.

The game shown in Figure 4.2c does not adequately capture this aspect unless the game is

repeated. This is the focus of the next section.

4.3 Repeated Games

Repeatedly playing the DRM game shown in Figure 4.3, opens up the possibility of chang-

ing the players’ future behaviors. That is, the notion of reciprocity is introduced into the

game, whereby one player’s decision at one point in time can affect the decision made by

74

Chapter 4. DRM Game

s

a
a

C

a
a

s
(, ,)πc ,i s a

.

.

.

(, ,)πv i s a

(, ,)πc ,i s a (, ,)πv i s a

V

C

V

p

dl

tp

tp

s

a
a

a
a

s

s

a

a

a

a
s

Figure 4.3: The complete DRM constituent game that consists of the baseline content
acquisition subgame of Figure 4.1, followed by the post content acquisition subgames of
Figure 4.2.

the other player at a future point in time. A player may be willing to sacrifice short-term

gains if he is convinced that by doing so he will be provided with a reciprocal reward in

the future. There are two important forms of reciprocity that can be studied with respect to

the DRM game, that of punishing “bad” behavior, and that of rewarding “good” behavior.

It seems that to date, vendors have focused primarily on the former. In this section an

infrastructure that would allow them to also exploit the latter is described.

First, however, it should be noted that it is possible to view good and bad behavior

from the perspective of either player. For instance, in the early days of electronic mu-

sic distribution, consumers punished vendors for offering high-priced music accompanied

with cumbersome technical protection. The punishment in this case was large-scale down-

loading. Vendors responded with punishments of their own—primarily the legal and tech-

nological attacks already described in Section 4.2. In addition, vendors have sought more

aggressive technical protection measures. Recently, for example, consumers have viewed

75

Chapter 4. DRM Game

a SONY BMG technical protection measure that ends up installing a root kit as bad behav-

ior, leading to a large amount of negative publicity for the vendor, and a subsequent recall

of media containing the technology. Indeed, these types of incidents are one of the primary

reasons behind the development of the negative view towards DRM that was discussed in

Section ??.

In order to create a repeated game out of the stage game shown in Figure 4.3, it is

assumed that at each terminal node in the constituent game, a new game is played with

that terminal node as the root. This leads to the next iteration of the repeated game. There

are two ways of thinking about this repeated game. By fixing the content object, and

applying a mixed strategy to C’s decisions, it is possible to model how a population of

customers might treat a single content object. In this case, each iteration of the constituent

game corresponds to the interactions between a single customer, whose average behavior

is captured by the mixed strategy, and the vendor. The other situation that can be modeled

involves fixing the customer, and allowing the content to vary at each stage of the game.

Each type of repeated game is explained below in more detail.

4.3.1 Content Spreading

For the repeated game in which the content is held constant, the game is focused on how

this content is acquired by each customer. In other words, how the content spreads among

the customers, via downloading and purchase, and how the vendor’s actions can influence

this spreading is analyzed. It is the goal of V to repeat the game in the upper part of

the Figure 4.3 constituent game tree as much as possible. That is, V would like to play

the subgames g1 and g2 as much as possible, as these result from sales; however, in both

of these subgames there is an s option that will directly affect the probability of dl in

subsequent games.

In order to bias these games towards g1, g2, and the s decision, V can play tp. An anal-

76

Chapter 4. DRM Game

ysis of this in the context of content acquisition was provided in Section 4.1. Now reality

is added as to how C will use this content, and what V’s response will be. One strategy

that resembles the RIAA’s actions involves V tolerating a certain amount of sharing, and

then taking legal action against C for a short period of time when this amount is exceeded,

followed again by a toleration of sharing. In the game theory literature, this strategy, where

a deviation from desired behavior is met with a punishment phase, after which all is for-

given, is called a forgiving trigger [31]. In reality, V does not know exactly how many

rounds of the game have been played, as V does not know with certainty how much file

sharing is taking place. Therefore, this parameter must be estimated from available data,

e.g., from observed file sharing or from measured popularity of a content object versus its

actual sales. Time also plays an important role in this repeated game, as vendors are usu-

ally more aggressive in protecting new releases, and consumers are also more interested

in acquiring them. This can be accounted for by applying a discount factor, 0 < δ ≤ 1, at

each stage of the game.

If it is assumed that V receives a profit of a from each play of the constituent game if

C chooses p, then after n stages of this game, where C always plays p, V would receive

a total discounted utility of an(δn+δ)
2 . Thus, If V monitors this utility, a punishment (legal

attack) corresponding to one time period can be triggered whenever some fraction α of the

expected utility for V is not met. If it is assumed that the penalty has a cost to V of −P,

then V’s utility for one no punishment/punishment cycle is

αan(δn + δ)
2

− P.

The folk theorems associated with infinitely repeated games tell us that a subgame perfect

equilibrium can be established for this behavior cycle only if the above quantity can be

made positive [58]. The difficulty in this approach is that V has little control over the first

term in the equation. It is easy to conceive of situations where the first term never exceeds

P, and the cost of taking legal action is never warranted.

There are a number of additional strategies that can be investigate with respect to this

77

Chapter 4. DRM Game

repeated game. For instance, it is more realistic to assume that V would also apply pun-

ishment in the form of technological attacks. Note that the trigger for a technological

attack can include either the amount of sharing and/or the lack of sales; a legal attack,

however, can only be applied in response to illicit sharing. We might also consider more

elaborate strategies that involve offering a mix of content with and without technical pro-

tection, along with triggers for determining when punishment should be applied. All of

these strategies, however, share the fundamental property that they mainly focus on pun-

ishment side of the equation in attempting to modify the future behavior of a population

of customers.

4.3.2 Customer Influence

The high-level strategy associated with the vendor’s actions in the previous repeated game

can be summarized as “no bad deed goes unpunished”. That is, the primary focus is on

finding ways to punish customers for bad behavior. We now consider the general strategies

that can be associated with the “no good deed goes unrewarded” approach. With current

DRM infrastructures, it is difficult to reward good behavior, making it less likely that this

type of behavior will be seen.

Consider again the constituent game shown in Figure 4.3, but now assume the customer

C is held constant on every iteration of the repeated game, and that the content is allowed

to vary. In this case, the actions taken by V can directly influence a particular customer. In

the repeated game of Section 4.3.1, legal action is also generally taken against individual

customers; however, the legal attack is actually meant to influence an entire population

of customers, primarily those not directly subjected to the legal action. In the current

game, it is considered how V can respond individually to each customer in the customer

population. As described in Section 4.2, this will be accomplished using a trust authority

that allows for the possibility of rewarding good behavior. In the end, we have a DRM

78

Chapter 4. DRM Game

environment that provides the vendor with strategies that are finer grained, allowing them

to create much greater distinctions between the customers they serve.

The folk theorems for infinitely repeated games tell us that it is possible to create an

equilibrium around any behavior cycle in the repeated game as long as each player’s payoff

within the cycle is strictly positive. In the repeated game of Section 4.3.1 this was difficult

to guarantee due to the large expense associated with punishment. In this case, however,

assuming that is possible to easily assign a trust rating to each customer, it becomes much

easier to create a desired equilibrium. Furthermore, the behavior cycles and associated

triggers can be much more sophisticated, depending upon how many customer categories

the vendor may want to differentiate between. Note that in the game of Section 4.3.1, V

only acted based upon two categories of customers, those that shared, and those that did

not.

Finally, it should be noted that the repeated game described in this section and in

Section 4.3.1 are not mutually exclusive. In reality, it makes sense for V to play some

combination of these games. For example, if C is playing one of subgames g1 or g2 shown

in Figure 4.3, then V has the opportunity to reward the play of s. If, however, C has played

s in any of subgames g1 – g3, then a punishment may be the most effective course of action

for influencing the play of later games.

4.4 Conclusions

In this chapter an increasingly detailed version of the DRM game is considered—a game

meant to model the strategies associated with various DRM approaches. This was broken

down into two subgames, one associated with content acquisition, and the second that

dealt with decisions post content acquisition. Subsequently, these two subgames were put

together in order to create a constituent game that was then repeated in order to model two

79

Chapter 4. DRM Game

important situations. The first considered an approach that is prevalent today, with a focus

on punishing file sharing. The difficulty of achieving an equilibrium in this game was

addressed. Next, an approach that involved rewarding customers for purchasing and not

sharing content was presented, along with a discussion of how much easier it would be to

establish an equilibrium in such a game. One of the prime components in this latter game

was a trust authority middleware infrastructure that was used in order to rate the behavior

of customers in this game, and reward them accordingly. The ability to implement such a

trust authority is by no means a solved problem. Ongoing research is considering how such

an infrastructure can be constructed while at the same time addressing security and privacy

concerns. In addition, future research should address more specific strategies associated

with the repeated games presented in this chapter.

80

Chapter 5

Applications

5.1 Multi-level Security

Multi-level security (MLS) environments implemented in security establishments have

focussed on access control systems to ensure that resources are accessed by subjects in

accordance to the access control policies expressed in terms of security clearances and

security classifications. However, recent developments in technologies that enable users

to easily collect, integrate and display data from different sources over the Internet, such

as Yahoo Pipes, has led to increased interest in enabling such features in MLS systems.

Secure mashups, or smashups, are an ideal case of usage management of resources

once they have been granted access to the user. Smashups lead to a number of interesting

use cases where not only the act of resource aggregation needs to be controlled, but new

content is generated that is governed by a combined set of rules that reflect the usage

rules of the constituent resources in the mashed content. In this application, the usage

management framework is overlaid on a MLS environment to enable mashups.

81

Chapter 5. Applications

Domain 1

Domain 3

Domain 2

Guard

Guard

Guard

Figure 5.1: A multi-level security environment.

5.1.1 MLS Overview

A multiple domain, distributed MLS system is shown in 5.1. It consists of multiple do-

mains, and each domain consists of users with multiple devices. The information or data

in the MLS is classified according to the classification levels, and personnel in the do-

mains are divided according to the security clearance levels. There are guards that operate

in between two domains that control the flow of information based on the MAC policies.

However, usage management that is considered here is resource specific, and focuses on

policies that are resource specific.

5.1.2 Context Modeling

The context for the MLS domain contains three entities, namely, Subject, Environment,

and Dynamic Environment. The properties of each of these entities, their values and func-

tions supported by the properties are shown in Table 5.1. The Environment entity captures

82

Chapter 5. Applications

Table 5.1: Context for multi-level security.

Multi-level Security Context
Entity Property Values Functions

Environment (E)
Domain {ABNet, EXNet, TELNet} Equality

OS {Windows, OSX, Linux, Andriod} Equality
Device {Blackberry, iPhone, Desktop, Laptop} Equality

Subject (S) Security Clearance {Top Secret, Secret, Confidential, Restricted} Comparable
Role {Alpha, Beta, Gamma, Delta} Equality

Project {Zen, Yuma, Om} Equality
Mashup Environment (ME) Basket 2S et o f Resources {in, not in}

the properties of the computing environment, the Subject entity captures properties of the

subjects in the system, and the Mashup Environment captures the properties of mashup.

While Environment and Subject entities are self explanatory, the Mashup Environment

needs explanation of the mashup process.

In the mashup process, a user is provided a list of resources that the user can access,

along with a mashup area, where the user can drag and combine resources of interest. The

Mashup Environment has the Basket property which maintains the list of all the resources

that the user has included in the mashup area.

There are three types of functions, namely, Equality, Comparable and Set. Equality

type provides functions == and �. Comparable type provides functions ==, � <, >, ≥,

≤ and between. The Set type functions are shown are provided to the Basket property.

The function in returns true if the supplied resource is is in the mashup basket. Similarly,

function not in returns true if the supplied resource is not in the mashup basket. The rest

of the functions are self explanatory.

Every resource in the system is identified with a unique identifier and security classi-

fication of the resource. Table 5.2 shows resource properties. Since policies are resource

specific, resource is not included as a part of the context.

83

Chapter 5. Applications

Table 5.2: Resource table

Resource ID Name Description Security Classification
1 Maps1 Low resolution maps Unclassified
2 Maps2 High resolution maps Restricted
3 Weather Weather data Unclassified
4 Routes Routes data Restricted
5 Troops Troops locations Secret
6 Weapons Weapons locations Secret
7 MilInt Military intelligence Top Secret
8 NavInt Navy intelligence Top Secret

Table 5.3: Resource-Policy table

Resource Domain OS Device Sec. Clear. Role Project Basket
Maps 1 All All All All All All All

Maps 2
ABNet All Desktop All Alpha Zen All
TELNet Laptop Beta Yuma

Gamma
Weather All All All All All All All

Routes
TELNet All All All Alpha Zen All
EXNet Beta Yuma

Gamma

Troops
ExNet OSX Desktop ≥ Secret Gamma Om not in

Linux Laptop Delta Yuma Weapons
iPhone

Weapons
ExNet OSX Desktop ≥ Secret Alpha Om not in

TELNet Linux Laptop Yuma Troops

MilInt ExNet OSX Desktop ≥ Top Secret Gamma Yuma not in
NavInt

MilInt ExNet OSX Desktop ≥ Top Secret Gamma Yuma not in
NavInt

5.1.3 Policy Specification

Each of the resources can now be associated with a usage policy for access and subsequent

mashup. In this discussion, a single policy example to show how the mashup rules work is

provided. The policies for mashup for all resources are shown in Table 5.3. The rule that

resources Troops and Weapons cannot be mashed together is conveyed in the last column

Basket entires for these resources respectively

The above mentioned policies can be expressed in terms of a domain specific language

(DSL) shown below. A DSL description is transformed into an executable policy object.

84

Chapter 5. Applications

For example, the expression of policy for the Weapons resource is described below.

// Define mashup activity.

a1 = activity (:mashup)

// Define constraints.

c1 = constraint do

((Domain == “EXNet”) ∨ (Domain == “TELNet”)) ∧

((OS == “OSX”) ∨ (OS == “Linux”)) ∧

((Device == “Desktop”) ∨ (Device == “Laptop”)) ∧

(Security Clearance ≥ “Secret”) ∧

(Role == “Gamma”) ∧

(Project == “Yuma”) ∧

(Basket not in “Troops”)

end

// Restrict mashup activity with the constraints.

ra1 = restrict a1 do

with c1

end

// Define permissions with restricted mashup activity.

weapons policy = policy ra1 do

policy evaluators :standard

constraint evaluators :predicate

permit ra1

end

85

Chapter 5. Applications

Table 5.4: Policy table for mashups

Resource Domain OS Device Sec. Clear. Role Project Basket

Troops & Routes
ExNet OSX Desktop ≥ Secret Gamma Yuma not in

Linux Laptop Weapons
iPhone

Weapons & Maps 2
TELNet OSX Desktop ≥ Secret Alpha Yuma not in

Linux Laptop Troops

During the mashup process, when two resources are mashed up to create a new re-

source, the policies of the individual resources are logically combined to create the policy

of the new resource. Table 5.4, shows policies for mashed up resources.

5.1.4 System Operation

The working of the mashup program is shown in Figure 5.2. The mashup program provides

a user with the list of resources that are available for mashup. The program refreshes the

list available for mashup whenever the user adds a resource in the mashup space (i.e.

the Basket). The list is generated by checking the policies of all the resources against

the policies of the resources currently in the mashup space. The check is performed by

requesting the policy server that maintains the resource tables and the respective policies

for each resource. The policy server can store policies in either their descriptive form

or as executable policy objects. The server provides a web interface to query for policy

validation. To validate a policy the mashup program provides the current values of the

context and the resource in question. The policy server validates the policy of the requested

resource against the context provided by the mashup program.

It must be noted that each domain in the MLS is can use its own policy language as long

as it conforms to the policy interface provided by the policy server. In this implementation,

86

Chapter 5. Applications

Policy Server

validate_policy()
register_resource()

register_policy()
merge_policies()

EXNet TELNet

validate_policy
(resource, context) validate_policy

(resource, context)

true/false true/false

Figure 5.2: A multi-level security mashup policy server

policies are connected to resources by means of a relational table in the policy database

on the server. However, another way to implement the mashup mechanism is that instead

of a policy server, each resource is embedded with the policy object, and travels with the

resource. This is a distributed implementation and can be implemented in situations where

a central point of failure can be disadvantageous.

5.2 Cloud Computing

In the recent years, cloud computing has managed to emerge as a computing platform that

allows computing services to be consumed as a utility by consumers. In cloud computing,

applications, systems software, and hardware are offered as utility services to consumers

over the Internet. In service-based architectures, service consumers need to be provided

with highly reliable services that meet their expectations. Service consumers indicate

these expectations in terms of QoS parameters that are expressed in the form of an SLA

negotiated with the service provider.

87

Chapter 5. Applications

In the realm of computing, there exist multiple service-based paradigms such as web-

services, cluster computing, grid computing and cloud computing [19]. Cloud computing

is set apart from the other forms of service-based computing paradigms by a collective

set of distinguishing characteristics such as market orientation, virtualization, dynamic

provisioning of resources and service composition via multiple service providers [20].

These characteristics imply that in cloud computing, cloud users’ data reside in the cloud

for a finite amount of time, that these data are handled by multiple cloud services, and that

data fractions may be stored, processed, transformed and routed across a geographically

distributed cloud infrastructure. These activities occur “behind-the-scenes”, within the

cloud, while giving cloud users an impression of a single virtual machine. In current

cloud implementations, cloud users have very little control over the manner in which data

are handled by cloud providers, once they are pushed into the cloud. As consumers start

aggressively using cloud services, this limitation will become a matter of serious concern.

The handling or use of cloud users’ data within the cloud by different services refers

to policies specifying the constraints under which different actions may be carried out on

the data. A cloud user may want to limit the manner in which data are stored, routed,

or processed, and specify the entities and processes that are authorized to carry out these

activities, and under what conditions. As an example, a government agency might want to

prevent its data from being stored in one particular country, or prevent routing of the data

via a particular set of networks it considers unreliable or insecure. Similarly, a financial

company might want to prevent its data from being processed by a particular cloud service,

or may want the data to be encrypted before being stored by an untrusted cloud storage

service. Usage policies typically consist of a range of semantics such as restrictions on

the manner in which data are used, temporal restrictions on usage, spatial or attribute-

based restrictions, permissions, obligations, penalties, count-based limits on usage, usage

tracking and reporting, and partial dependencies to name a few. Hence, as cloud services

become pervasive, cloud users will want to dictate the terms of usage for their data within

the cloud in a manner that is expressive enough to capture their concerns.

88

Chapter 5. Applications

Existing cloud infrastructures and SLA frameworks are ill-equipped to address the re-

quirements and challenges of usage management in distributed cloud systems. At present,

cloud providers enable usage management features via rudimentary techniques involving a

one-size-fits-all option, where cloud users have little or no say in expressing usage policies

over their data. For example, the Amazon S3 storage service allows a region-based facility

where data stored in one region are guaranteed not to leave that particular region [4]. Such

options are too coarse and simplistic to address cloud users’ concerns.

Existing service-based computing paradigms such as web services, clusters and grid

computing use well-established SLA frameworks that enable expression, interpretation,

monitoring, control and enforcement of SLA terms [57, 45, 74, 61]. However, the SLAs

supported by these frameworks focus on performance metrics such as availability, relia-

bility, bandwidth, response times, instructions per second, etc. [60]. Compared to this,

usage management requirements are different since cloud users potentially have a say in

every action taken on their data, throughout the lifetime of the data in the cloud, including

scenarios where the data are passed on to a third party provider.

Usage management requirements are significantly different from QoS-based metrics,

and present a new set challenges that are beyond the capabilities of the existing SLA frame-

works. It is therefore necessary to design a separate mechanism for usage management that

will enable persistent, automated management data usage control, while allowing seamless

flow of data in a distributed cloud infrastructure.

5.2.1 Usage Management Requirements in Clouds

Figure 5.3 shows a high-level model of the manner in which existing systems implement

usage management of user data. In this setup usage management policies are statically

defined in an SLA by allowing cloud users to choose from a set of options provided by

the cloud provider. The usage policy monitoring in existing cloud systems, in many in-

89

Chapter 5. Applications

Service
Level

Agreement

Cloud
Infrastructure

Data &
Application Policy

monitoring

Cloud User Cloud Provider

Figure 5.3: Usage management in existing cloud environment.

stances, is carried out by a person (e.g., a lawyer) as shown in Figure 5.3. Such a static

approach for handling usage policies presents numerous problems such as lack of fine

grained expression of policies, lack of reasoning of policies with respect to underlying

cloud infrastructure and under-utilization of resources.

In order to address these concerns, it is necessary that usage policies be managed by

means of a usage management framework that will operate over a distributed cloud infras-

tructure as shown in Figure 5.4. In this figure, a cloud user and a cloud provider negotiate a

usage policy and the price associated with the policy in an automated manner via software

agents. Existing negotiation frameworks such as the Java Agent Development Framework

and the FIPA negotiation protocols can be used for this purpose [14]. Next, the policy is

represented in a machine-readable and machine-actionable form. The policy is then inter-

preted and enforced over a distributed cloud infrastructure making use of existing trusted

computing platforms to provide a comprehensive usage management solution. Significant

business opportunities become available if these SLAs are easily customizable, allowing

90

Chapter 5. Applications

Machine Readable, Actionable SLA

Cloud Services

Trusted Computing
Platforms

Monitoring
Mechanisms

Authentication
Mechanisms

Access Control
Mechanisms

Storage Systems

Encryption
Mechanisms

Usage Management
Framework

Distributed Cloud Infrastructure

SLA negotiation

pricing

query

generateCloud User Cloud Provider

Figure 5.4: Usage management in cloud.

for price differentiation and yield management. The usage management framework can be

overlaid on the cloud infrastructure to achieve the following goals.

1. Fine-grained expression of usage policies that can be negotiated between cloud users

and cloud providers.

2. Seamless movement of data within the cloud and persistent enforcement of usage

policies across different services, at all levels of virtualization, along all data trans-

formations throughout the lifetime of data in the cloud.

3. Actionable policies that enable automated interpretation, reasoning, enforcement,

usage tracking and reporting vis-a-vis the underlying cloud infrastructure.

Next, a demonstration of how such a framework can be laid on cloud infrastructure

and the capabilities it enables in the cloud is provided.

91

Chapter 5. Applications

Node Controller

Cloud Service 1

Cloud Service 2
(Storage Cloud)

Cloud Service 3
(Compute Cloud)

User

Physical
Machines

Virtual
Machines

Figure 5.5: A distributed cloud infrastructure consisting of multiple cloud services and
virtualization.

5.2.2 Overlaying Usage Management Framework on Cloud Infras-

tructure

A distributed cloud environment presents a unique set of challenges for the development

of a framework that will enable usage management of data that are stored, routed and

processed by different services operating within the cloud environment. Figure 5.5 shows

the layout of a typical cloud computing environment. A distributed cloud environment

may consist of one or more cloud services that are owned by different entities. Services are

often composable, and available to users or other services via web-services technologies

such as REST and SOAP. The services provide virtualized resources to cloud users that

are provisioned on demand to meet the SLA terms that are negotiated between the cloud

provider and the user. Within a cloud service implementation, the set of virtual resources

are mapped onto a distributed infrastructure of physical resources as shown in Figure 5.5.

The allocation of resources for a VM is generally carried out by a controller. Allocation

92

Chapter 5. Applications

Data
Policy

Data
Policy

Cloud
Provider 1

Cloud
Provider

2
Data

Policy

Usage Management Framework

Common Cloud Ontology

conform conform

aggregation

Policy
Generator

Figure 5.6: Persistence of policies across data aggregations.

of resources is determined by the level of service requested by a user. For example, to

maintain a particular level or processing time, a controller will allocate more resources, as

the number of request load increases.

In order to incorporate usage management in cloud computing it is necessary that re-

sources or data that is inserted into the cloud is accompanied by usage policies specified

by data owners. As mentioned earlier, policy objects can either be embedded in the data

or policies can be stored on a policy server and attached to resources via indirection, as

explained in the MLS system.

Figure 5.6 shows the case when policies are embedded in the data. In this case, cloud

service 1 aggregates data from different sources and then passes it on to cloud service 2

for storage. In this case policy objects are embedded inside the data, and when policies

are aggregated, a combined policy is generated for the mashed up data.

Since cloud services are loosely distributed and maintain a certain level of indepen-

dence, using the proposed framework, each service provider can use its own policy lan-

93

Chapter 5. Applications

Distributed
Cloud

Infrastructure

Resource
Allocator
Control

SLA QoS
Parameters

Usage Policy

feedback

Figure 5.7: Cloud usage management operating with SLA QoS monitoring.

guage as long as it conforms to the cloud ontology and the policy interface. Each cloud

service will then have to implement a UMM at the controller level, where allocation of

resources takes place. The operation of a resource allocator control is shown in Figure 5.7.

Every resource allocator controller in a cloud service will allocate resources based on

two input parameters, namely, the SLA agreed between user and the service provider and

usage policy associated with the data for which cloud resources (networking, storage and

computing) are to be allocated. A resource allocator control will first consult the SLA, and

select a set of resources to be allocated for the data. Once the resources are selected, the

allocator will query the policy associated with the data to determine which of the resources

are valid to be allocated for the data in question. Hence, whenever data moves through the

system or is handled by processes, its handling and movement is controlled by the usage

policy that governs it.

The deployment of the usage management framework on cloud infrastructure operates

in two phases, similar to the ones described in Chapter 3. There is a Setup stage and a

Working Stage explained below.

94

Chapter 5. Applications

Common
Cloud

Ontology

Usage Management
Cloud Service

Policy Cloud Service 1
Context

Cloud Service 2
Context

Policy

generate
context generate

policy

register
policy

Figure 5.8: Setup phase usage management that include context and license generation.

Setup Phase

The underlying principle driving the design of proposed architecture is that policies are

evaluated within a context, and a context is separated form the syntax and semantics of

policy languages. A usage policy consists of restrictions over usage expressed in terms of

context properties. A context provides a formal representation of the cloud environment

within which a policy is interpreted. A context formally represents the entities within the

environment, the relations among the entities, properties of the cloud environment, and the

current state of the environment.

As an example, consider a context for a cloud service consisting of different data pro-

cessing sub-services (dps). A simplified context may consist of the following parameters:

{date, dps location, dps trust−level}, where date represents the global date, dps location

represents the location of the sub-service, and dps trust − level represents the trust level

of the sub-service ranging form 1-5. Usage policies for the data are then expressed as re-

95

Chapter 5. Applications

strictions over these parameters. For example, a rudimentary usage policy might state that

“ Data set X can be processed only by a dps located in the USA, with trust levels greater

than 4, and not beyond December 16th, 2013”.

Even though the example presented above is oversimplified, the point to note is that

every cloud service has a representative context whose state (values taken by the param-

eters in the context) is continually maintained with appropriate values. During the Setup

phase, shown in Figure 5.8, cloud services define and generate their own context from a

common cloud ontology that is shared among all cloud services. Depending the type and

nature of cloud services, services will share certain common context parameters such as

time, date and location, whereas differentiate in terms of other parameters. Usage policies

over users’ data set are generated using the common cloud ontology. It can be seen that all

the parameters, using which policy restrictions are described, must be well-defined in the

context of the cloud environment within which the policy is to interpreted.

In the proposed architecture, the policy languages used for expressing the policies are

not standardized. Different cloud services may use their choice policy languages depend-

ing on their expression and reasoning requirements. However, in order for policies to be

interpreted across different cloud environments, it is necessary that all policies make use

the terms defined in the common cloud ontology that is shared by all cloud services. The

manner in which policies are interpreted in the operational phase is explained next.

Working Phase

The Working phase consists of policy management, policy interpretation and validation via

a common usage management cloud service that is shared by different services within the

cloud. The operation of usage management cloud service is shown in Figure 5.9. Instead

of standardizing a common policy language for all cloud services, in the proposed architec-

ture, the usage management cloud service provides a standard web interface for managing

96

Chapter 5. Applications

Cloud Service 1
Context 1register policy()

delete policy()
....
....

validate policy()
merge policy()

retrieve policy()

Cloud Service 2
Context 2

 Interface

Usage Management Cloud Service

User 1

User 2

policy validate
(context 1)

policy validate
(context 2)

Policy Language 1
Reasoning Engine

Policy Language 2
Reasoning Engine

Figure 5.9: Operation of usage management in cloud environment.

policies. This standard interface allows policies to be registered, retrieved, attached to data

sets, deleted, validated, interpreted, reasoned, and merged with other policies by different

cloud services via an extensible web interface.

In the proposed system, usage policies are validated by cloud services in the following

manner. Cloud services query the usage management service for a particular action on

a particular data set by providing the context under which the action is intended to be

carried out. The usage management service then evaluates whether the policy and the

context are interoperable by comparing the terms. If the terms are consistent, then the

policy restrictions are evaluated with respect to the current state of the context provided.

If the restrictions are satisfied, the action is given a go ahead, otherwise it is denied. Every

policy maintains a state or history of the usage performed by different cloud services on the

data set. Such a history is commonly maintained in usage control and DRM languages to

enforce count limits or obligation semantics on certain actions over a data set. Data usage

histories can also be potentially used to validate data use with respect to policy terms, and

provide cloud users with usage tracking services for their data.

Cloud services can register policies expressed in different policy languages, however,

all the policies are queried by means of a standard web interface. This approach ensures

that the syntax and semantics of different policy languages is hidden from the cloud ser-

97

Chapter 5. Applications

vices that need to query usage policies. This precludes the need for every cloud service

provider to deploy an interpreter for different policy languages. In addition, a service

provider can introduce a new policy language for its operations, along side its previous

policies expressed in the old policy language in a seamless manner. Figure 5.9 shows how

multiple policy languages can operate behind a common, standardized web interface for

usage policy management.

98

Chapter 6

Conclusions

In this thesis a motivation is provided for the need for usage management solutions that

operate in open distributed environments. First, a meta-model was developed that can

be used as a reference for studying different usage management models. Following this,

principles of system design were applied to develop a framework for usage management

that enables interoperability. In this framework, focal points were identified where it is

necessary to apply standards, and areas that needed to be free of standards. The underly-

ing principles of the proposed model is the clear separation of policy expression, policy

interpretation and policy enforcement. Such a separation allows policies to be expressed

with minimal a priori knowledge of computing environments in which the policies will be

interpreted. Finally, a mathematical model was developed that provides a specific instance

of the proposed framework and provides formal semantics for interoperability and enables

dynamic interpretation of policies. It was further shown how policies and contexts can

be categorized in a hierarchical manner and reasoned over for interoperability. The work

also demonstrates how the framework can be overlaid on distributed systems including

multi-level security systems, cloud computing, and DRM systems.

99

Chapter 6. Conclusions

In distributed systems, such as DRM systems, resource owners have little or no control

over client systems, which makes enforcement of usage policies on such system extremely

difficult. In such scenarios it has been shown in this thesis that it is possible to model

current approaches within a game-theoretic setting. Furthermore, it is demonstrated that

the existence of a trust authority middleware infrastructure is necessary to influence the

behavior of customers to respect the copyright.

100

Chapter 7

Future Work

For the future work it is necessary to incorporate this model to enable added functionalities

such as mashups, that will allow merging of policies. This needs to be followed by the

development of a library of license languages using different types of logics with varying

capabilities that can be used within the model. Such a library can be used by license

provides to allow easy generation of licenses to average users that can be interpreted across

different environments. Finally, building upon the model to develop different types of

information ecosystems that can handle different types of resources and data including

medical data, commercial content, and financial data, will demonstrate further applications

of the proposed framework.

With respect to the DRM games, one of the prime components of these games is a trust

authority middleware infrastructure that is used in order to rate the behavior of customers

in this game, and reward them accordingly. The ability to implement such a trust authority

is by no means a solved problem. Future research must consider how such an infrastructure

can be constructed while at the same time ad- dressing security and privacy concerns.

In addition, future research should address more specific strategies associated with the

repeated games presented in this thesis.

101

References

[1] Enabler release definition for DRM V2.0. Technical report, Open Mobile Alliance,
2003.

[2] Open Digital Rights Language ODRL Version 2 Requirements. ODRL, Feb. 2005.

[3] Marlin architecture overview. Technical report, 2006.

[4] Amazon Web Services: Overview of Security Processes, Sep. 2008.

[5] Eytan Adar and Bernardo A. Huberman. Free riding on a Gnutella. First Monday,
5(10), Oct. 2000.

[6] Sadeghi Ahmad-Reza and Christian Stuble. Taming trusted platforms by operating
system design. Springer-Verlag, pages 286–302, 2004.

[7] Harald Alverstrand. The role of the standards process in shaping the internet. Pro-
ceeding of the IEEE, 92(9):1371–1374, 2004.

[8] Alapan Arnab and Andrew Hutchison. Extending ODRL to enable bi-directional
communication. In Proceedings of the Second International ODRL Workshop, Lis-
bon, Portugal, July 2005.

[9] Alapan Arnab and Andrew Hutchison. Fairer usage contracts for DRM. In Pro-
ceedings of the Fifth ACM Workshop on Digital Rights Management, pages 1–7,
Alexandria, VA, Nov. 2005.

[10] Alapan Arnab and Andrew Hutchison. Persistent Access Control: A Formal Model
for DRM. In DRM ’07: Proceedings of the 2007 ACM workshop on Digital Rights
Management, pages 41–53, New York, NY, USA, 2007. ACM.

[11] Adam Barth and John C. Mitchell. Managing digital rights using linear logic. In
LICS ’06: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer
Science, pages 127–136, Washington, DC, USA, 2006. IEEE Computer Society.

102

References

[12] D. Elliott Bell and Leonard J. La Padula. Secure Computer Systems: Mathematical
Foundations, MTR-2547, Vol. I. Technical report, The MITRE Corporation, Bed-
ford, MA, March 1, 1973. ESD-TR-73-278-I.

[13] D. Elliott Bell and Leonard J. La Padula. Secure Computer System: Unified Expo-
sition and Multics Interpretation, MTR-2997, Rev. 1. Technical report, The MITRE
Corporation, Bedford, MA, March 1976. ESD-TR-75-306.

[14] Fabio Bellifemmine, Agostino Poggi, and Giovanni Rimassa. JADE: A FIPA Com-
pliant Agent Framework. In Proceedings of the Practical Applications of Intelligent
Agents, pages 97–108, London, U.K., 1999.

[15] D. Bergemann, T. Eisenbach, J. Feigenbaum, and S. Shenker. Flexibility as an in-
strument in DRM systems. In Fourth Workshop on the Economics of Information
Security, Kennedy School of Government, Harvard University, June 2–3 2005.

[16] D. Berlind, Executive Editor. Content restriction annulment and protection (CRAP)
video.

[17] Marjory S. Blumenthal and David D. Clark. Rethinking the design of the Internet:
The end-to-end arguments vs. the brave new world. ACM Transactions on Internet
Technology, 1(1):70–109, Aug. 2001.

[18] A. J. Bonner. A prolog framework for reasoning about permissions and obligations,
with applications to contract law. Technical report, Rutgers University, 1988.

[19] Rajkumar Buyya. Market-Oriented Cloud Computing: Vision, Hype, and Reality of
Delivering Computing as the 5th Utility. In Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGRID ’09, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[20] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality
for Delivering Computing as the 5th Utility. Future Generation Computer Systems,
25(6):599–616, 2009.

[21] Philip L. Campbell, Lyndon G. Pierson, and Edward L. Witzke. Trusted objects.
Technical report, Sandia National Laboratories, 2000.

[22] Amy Carroll, Mario Juarez, Julia Polk, and Tony Leininger. Microsoft palladium: A
business overview. Technical report, Microsoft Content Security Business Unit, June
2002.

103

References

[23] Cheun Ngen Chong, Ricardo Corin, Sandro Etalle, Pieter Hartel, Willem Jonker, and
Yee Wei Law. LicenseScript: A novel digital rights language and its semantics. In
Third International Conference on the Web Delivery of Music, pages 122–129, Los
Alamitos, CA, Sept. 2003.

[24] N. Christin, A. Weigend, and J. Chuang. Content availability, pollution and poisoning
in file sharing peer-to-peer networks. In Proceedings of the 6th ACM Conference on
Electronic Commerce, pages 68–77, New York, NY, 2005.

[25] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. Tussle in
Cyberspace: Defining Tomorrow’s Internet. In SIGCOMM, pages 347–356, Pitts-
burg, Pennsylvania, USA, Aug. 2002.

[26] Tim Clark. IBM closes unit, 2002.

[27] Coral consortium whitepaper. Technical report, Feb. 2006.

[28] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The Ponder
Policy Specification Language. In Proceedings of the International Workshop on
Policies for Distributed Systems and Networks, POLICY ’01, pages 18–38, London,
UK, 2001. Springer-Verlag.

[29] D. Dhanekula, G. L. Heileman, and B. Horne. Content spreading in peer-to-peer
networks. In Proceedings of IADIS International Conference on e-Commerce 2005,
pages 85–92, Porto, Portugal, Dec. 15–17 2005.

[30] The Digital Millennium Copyright Act, H.R. 2281, United State Code, Pub. L. No.
105-304, 112 Stat. 2860, Oct. 28 1998.

[31] Prajit K. Dutta. Strategies and Games: Theory and Practice. MIT Press, Cambridge,
MA, 1999.

[32] E. W. Felton. A skeptical view of DRM and fair use. Communications of the ACM,
46(4):56–59, 2003.

[33] Free software foundation. some confusing or loaded words and phrases that are worth
avoiding. www.gnu.org/philosophy/words-to-avoid.html.

[34] Carl Gunter, Stephen Weeks, and Andrew Wright. Models and languages for digital
rights. In HICSS ’01: Proceedings of the 34th Annual Hawaii International Confer-
ence on System Sciences (HICSS-34)-Volume 9, page 9076, Washington, DC, USA,
2001. IEEE Computer Society.

104

References

[35] Stuart Haber, Bill Horne, Joe Pato, Thomas Sander, and Tarjan Robert Endre. If
piracy is the problem, is DRM the answer? Technical report, Trusted Systems Lab-
oratory, HP Laboratories Cambridge, 2003.

[36] Joseph Y. Halpern and Vicky Weissman. A Formal Foundation for XrML Licenses.
In Proceedings of the 17th IEEE Computer Security Foundations Workshop, pages
251–265, Asilomar, CA, June 2004.

[37] Joseph Y. Halpern and Vicky Weissman. A Formal Foundation for XrML. J. ACM,
55(1):1–42, 2008.

[38] Gregory L. Heileman and Pramod A. Jamkhedkar. DRM Interoperability Analysis
from the Perspective of a Layered Framework. In Proceedings of the Fifth ACM
Workshop on Digital Rights Management, pages 17–26, Alexandria, VA, Nov. 2005.

[39] Gregory L. Heileman, Pramod A. Jamkhedkar, Joud Khoury, and Curtis J. Hrncir.
DRM game. In Proceedings of the Seventh ACM Workshop on Digital Rights Man-
agement, pages 54–62, Alexandria, VA, Oct. 2007.

[40] B. Horne, B. Pinkas, and T. Sander. Escrow services and incentives in peer-to-peer
networks. In Proceedings of the 3rd ACM Conference on Electronic Commerce,
2001.

[41] Vincent Hu, David Ferraiolo, and Rick Kuhn. Assessment of Access Control Sys-
tems. Technical report, National Institute of Standards and Technology, Sep. 2006.

[42] Helge Hundacker, Daniel Pahler, and Rudiger Grimm. URM - usage rights manage-
ment. In Proceedings of the 7th International Workshop for Technical, Economic and
Legal Aspects of Business Models for Virtual Goods, pages 125–138, Nancy, France,
Sep. 2009.

[43] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reason-
ing about Systems. Cambridge University Press, Cambridge, England, 2000.

[44] Renato Iannella. Open digital rights language (ODRL), Version 0.5, Aug. 2000.

[45] IBM. Web Service Level Agreement (WSLA) Language Specification, Jan. 2003.

[46] Pramod A. Jamkhedkar and Gregory L. Heileman. DRM as a Layered System. In
Proceedings of the Fourth ACM Workshop on Digital Rights Management, pages
11–21, Washington, DC, Oct. 2004.

[47] Pramod A. Jamkhedkar and Gregory L. Heileman. Handbook of Research on Se-
cure Multimedia Distribution, chapter Rights Expression Languages. IGI Publishing,
2008.

105

References

[48] Pramod A. Jamkhedkar, Gregory L. Heileman, and Chris Lamb. An Interoperable
Usage Management Framework. In Proceedings of the Tenth ACM Workshop on
Digital Rights Management, Chicago, Oct. 2010.

[49] Pramod A. Jamkhedkar, Gregory L. Heileman, and Ivan Martinez-Ortiz. The Prob-
lem with Rights Expression Languages. In Proceedings of the Sixth ACM Workshop
on Digital Rights Management, pages 59–67, Alexandria, VA, Nov. 2006.

[50] S. Katzenbeisser, K. Kursawe, and J. Talstra. Graceful infringement reactions in
DRM systems. In Proceedings of the Sixth ACM Workshop on Digital Rights Man-
agement, pages 89–95, Alexandria, VA, Oct. 30 2006.

[51] Rob H. Koenen, Jack Lacy, Michael MacKay, and Steve Mitchell. The Long March
to Interoperable Digital Rights Management. Proceedings of the IEEE, 92(6):883–
897, 2004.

[52] Ulrich Kohl, Jeffrey Lotspiech, and Marc A. Kaplan. Safeguarding digital library
contents and users: Protecting documents rather than channels. D-Lib Magazine,
3(9), Sept. 1997.

[53] M. B. Margolin, M. K. Wright, and B. N. Levine. Analysis of incentives-based
secrets protection system. In Proceedings of the Fourth ACM Workshop on Digital
Rights Management, pages 22–30, Washington, DC, Oct. 2004.

[54] L. T. McCarty. A language for legal discourse I. basic features. In ICAIL ’89:
Proceedings of the 2nd international conference on Artificial intelligence and law,
pages 180–189, New York, NY, USA, 1989. ACM.

[55] D. L. McGuinness. Reasoning with permissions and obligations in contract law.
Technical report, Rutgers University, 1986.

[56] P. Moulin and R. Koetter. Data-hiding codes. Proceedings of the IEEE, 93(12):2083–
2126, Dec. 2005.

[57] Open Grid Forum. Web Services Agreement Specification, Mar. 2007.

[58] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[59] Jaehong Park and Ravi Sandhu. The UCONABC Usage Control Model. ACM Trans.
Inf. Syst. Secur., 7(1):128–174, 2004.

[60] Adrian Paschke and Elisabeth Schnappinger-Gerull. A Categorization Scheme for
SLA Metrics. In Proceedings of Multi-Conference Information Systems (MKWI06),
Feb. 2006.

106

References

[61] Pankesh Patel, Ajith Ranabahu, and Amit Sheth. Service Level Agreement in Cloud
Computing. In Proceedings of the Workshop on Best Practices in Cloud Computing:
Implementation and Operational Implications for the Cloud at ACM International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, Orlando, FL, Oct. 2009.

[62] Josep Polo, Jose Prados, and Jaime Delgado. Interoperability between ODRL and
MPEG-21 REL. In Proceedings of the first international ODRL workshop, Vienna,
Austria, Apr. 2004.

[63] Bogdan C. Popescu, Frank L. A. J. Kamperman, Burno Crispo, and Andrew S.
Tanenbaum. A DRM security architecture for home networks. In Proceedings of
the Fourth ACM Workshop on Digital Rights Management, pages 1–10, Washington,
DC, Oct. 2004.

[64] Riccardo Pucella and Vicky Weissman. A logic for reasoning about digital rights.
In Proceedings of the 15th IEEE Computer Security Foundations Workshop, pages
282–294, Nova Scotia, Canada, June 2002.

[65] Riccardo Pucella and Vicky Weissman. Reasoning about dynamic policies. In Pro-
ceedings FoSSaCS-7, Springer Lecture Notes in Computer Science 2987, pages 453–
467. Springer-Verlag, 2004.

[66] Riccardo Pucella and Vicky Weissman. A formal foundation for ODRL, Jan. 2006.

[67] Reihaneh Safavi-Naini, Nicholas Paul Sheppard, and Takeyuki Uehara. Im-
port/export in digital rights management. In Proceedings of the Fourth ACM Work-
shop on Digital Rights Management, pages 99–110, Washington, DC, Oct. 2004.

[68] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-
based Access Control Models. Computer, 29(2):38 –47, feb 1996.

[69] Andreas U. Schmidt, Omid Tafreschi, and Ruben Wolf. Interoperability challenges
for DRM systems. In IFIP/GI Workshop on Virtual Goods, Ilmenau, Germany, 2004.

[70] Bruce Schneier. The fallacy of trusted client software (cryptorhythms column). In-
formation Security Magazine, Aug. 2000.

[71] S. Sun, L. Lannom, and B. Boesch. The handle system overview. Technical report,
Corporation for National Research Initiatives, Nov. 2003.

[72] Eliot Van Buskirk. A poison pen from the RIAA. WIRED, Feb. 28 2007.
www.wired.com/politics/onlinerights/news/2007/02/72834.

107

References

[73] Xin Wang. MPEG-21 rights expression language: Enabling interoperable digital
rights management. IEEE Multimedia, 11(4):84–87, October/December 2004.

[74] World Wide Web Consortium. Web Services Policy 1.5 Framework, Sep. 2007.

[75] Jianwen Xiang, Dines Bjorner, and Kokichi Futatsugi. Formal digital license lan-
guage with OTS/CafeOBJ method. In Proceedings of the sixth ACS/IEEE Interna-
tional Conference on Computer Systems and Applications, Doha, Qatar, Apr. 2008.

[76] eXtensible Rights Markup Language (XrML) 2.0 Specification, November 2001.

[77] XrML 2.0 technical overview, version 1.0, March 2002.

[78] Zhiyong Zhang, Qingqi Pei, Jianfeng Ma, Lin Yang, and Kefeng Fan. Coopera-
tive and non-cooperative game-theoretic analyses of adoptions of security policies
for DRM. In Proceedings of the 6th Annual IEEE Consumer Communications and
Networking Conference, pages 1–5, Las Vegas, NV, Jan. 2009.

108

	University of New Mexico
	UNM Digital Repository
	8-31-2011

	A framework for usage management
	Pramod Jamkhedkar
	Recommended Citation

	tmp.1472502609.pdf.9mlkg

