University of New Mexico

UNM Digital Repository

Electrical & Computer Engineering Faculty

Publications Engineering Publications

4-12-2012

An exponential open hashing function based on
dynamical systems theory

Chaouki T. Abdallah

Bradley J. Smith

Gregory L. Heileman

Follow this and additional works at: https://digitalrepositoryunm.edu/ece fsp

Recommended Citation

Abdallah, Chaouki T.; Bradley J. Smith; and Gregory L. Heileman. "An exponential open hashing function based on dynamical systems
theory." (2012). https://digitalrepositoryunm.edu/ece fsp/114

This Article is brought to you for free and open access by the Engineering Publications at UNM Digital Repository. It has been accepted for inclusion in
Electrical & Computer Engineering Faculty Publications by an authorized administrator of UNM Digital Repository. For more information, please

contact disc@unm.edu.

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp/114?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

An Exponential Open Hashing Function Based on
Dynamical Systems Theory

Bradley J. Smith, Gregory L. Heileman and Chaouki Abdallah
University of New Mexico, Albuquerque, New Mexico

In this paper an efficient open addressing hash function called exponential hashing is developed
using concepts from dynamical systems theory and number theory. A comparison of exponential
hashing versus a widely-used double hash function is performed using an analysis based on Lya-
punov exponents and entropy. Proofs of optimal table parameter choices are provided for a number
of hash functions. We also demonstrate experimentally that exponential hashing nearly matches
the performance of an optimal double hash function for uniform data distributions, and performs
significantly better for nonuniform data distributions. We show that exponential hashing exhibits
a higher integer Lyapunov exponent and entropy than double hashing for initial data probes,
which offers one explanation for its improved performance on nonuniform data distributions.

Categories and Subject Descriptors: E.1 [Data Structures]: tables; E.2 [Data Storage Rep-

resentation|: hash-table representations; H.3.3 [Information Storage and Retrieval]: Infor-
mation Storage and Retrieval

General Terms: Algorithms

Additional Key Words and Phrases: Chaos, dynamic dictionary ADT, dynamical systems theory,
exponential hashing, lyapunov exponent, number theory

1. INTRODUCTION

The hash table is a well-known data structure used to maintain dynamic dictio-
naries. A dynamic dictionary is defined as a collection of data items that can be
accessed according to the following operations:

(1) Search(k,S). Returns the data item with key k in dynamic dictionary S.
(2) Insert(z,S). Adds data item z to dynamic dictionary S.
(3) Delete(k,S). Removes the data item with key & from dynamic dictionary S.

Dynamic dictionaries are ubiquitous in computing applications; they are widely
used in databases, operating systems, compilers, and a range of business and sci-
entific applications. The hash table data structure consists of an array 7" whose
N slots are used to store the collection of data items. When implementing the
above operations, an index is computed from the key value using an ordinary hash
function h, which performs the mapping

h:U—{0,1,...,N — 1},

where U denotes the set of all possible key values (i.e., the universe of keys). Thus,
h(k) denotes the index, or hash value, computed by h when it is supplied with key
k € U. Furthermore, one says that k hashes to slot T[h(k)] in hash table T.

This research was supported by The Boeing Company under contract W-300445.
Authors’ addresses: Department of Electrical & Computer Engineering, University of New Mexico,
Albuquerque, NM 87131-1356

2 . Smith, Heileman, and Abdallah

Since |U| is generally much larger than N, h is unlikely to be a one-to-one map-
ping. In other words, it is very probable that for two keys k; and k;, where ¢ # j,
h(k;) = h(k;). This situation, where two different keys hash to the same slot, is
referred to as a collision. Since two items cannot be stored at the same slot in
a hash table, the Insert operation must resolve collisions by relocating an item in
such a way that it can be found by subsequent Search and Delete operations.

One method of resolving collisions, termed open addressing by Peterson [1957],
involves computing a sequence of hash slots rather than a single hash value. This
sequence is successively examined, or probed, until an empty hash table slot is found
in the case of an Insert operation, or the desired item is found in the case of Search
or Delete operations. In open addressing the ordinary hash function discussed above
is modified so that it uses both a key, as well as a probe number when computing
a hash value. This additional information is used to construct the probe sequence.
That is, in open addressing, hash functions perform the mapping

H:Ux{0,1,...,N-1} - {0,1,...,N — 1}

and produce the probe sequence < H(k,0), H(k,1), H(k,2), ... >. Because the hash
table contains N slots, there can be at most /N unique elements in a probe sequence.
A full length probe sequence is defined to be a probe sequence that visits all IV table
entries using only N probes.

Much of the existing research on hash table implementations of dynamic dictio-
naries is based on statistical analyses, typically focusing on average-case perfor-
mance and uniformly distributed data. The work presented here is distinguished
from much of the previous research on hashing in that we treat open address hash
functions as iterators; which allows us to employ tools from the field of nonlinear
dynamical systems.

The remainder of this paper is organized as follows. In Section 2, a basic theoret-
ical analysis is given for two of the most popular open address hashing algorithms,
linear probing and double hashing. In the next section we introduce the Lyapunov
exponent, a method used to detect chaos. We then discuss the meaning of the
Lyapunov exponent in the integer domain, and its importance in analyzing prob-
ing behavior. In particular, after pointing out the relationship between good hash
functions and chaotic iterators, we develop a technique for measuring chaos in hash
functions. In this section we also consider the evaluation of hash functions using the
concept of entropy. The analysis of hashing from the dynamical systems perspec-
tive motivated the development of a new hash function called exponential hashing,
which we present in Section 4, along with theoretical and empirical comparative
analyses with double hashing. Our experimentation, presented in Section 5, shows
that exponential hashing performs nearly as well as double hashing for uniformly
distributed data, and performs substantially better than double hashing on nonuni-
formaly distributed data.

2. OPEN ADDRESSING TECHNIQUES

Knuth [1973] notes that the desirable properties of an open address hash function
include:

—Efficient hash function evaluation time.

Exponential Hashing : 3

—A long probe sequence to accommodate tables near capacity.

Different probe sequences for each data item to avoid primary and secondary
clustering, as defined below.
—Uniform distribution over the entire hash table for both the initial and subsequent

probes. This property is widely known as the uniform hashing property [Heileman
1996].

A look at two common open addressing strategies, linear probing and double hash-
ing, lays the theoretical groundwork for our study of exponential hashing.

2.1 Linear Probing

Linear probing is easily analyzed from a theoretical point of view, and forms the
basis for the double hashing method described next. The linear probe function can
be written as:

H(k,i) = (h(k) + ic) mod N, (1)

where k is the key, h(k) is an ordinary hash function that maps the key space to
an initial location in the table, 7 is the probe index, IV is the table size, and ¢ is a
constant. For the simplest case, with ¢ = 1, this hash function will simply probe
the sequential locations < h(k) mod N, (h(k) + 1) mod N, (h(k) +2) mod N,... >.
For larger values of ¢, the function will probe table items at fixed distances of ¢
modulo N in the table. Analysis of the best choice for ¢ to achieve a full length
probe sequence for a given table size is straightforward. Since the value h(k) is fixed
for a given key, substituting zo = h(k), and letting x; = H(k,i) in equation (1)
yields

x; = xo + ic(modN). (2)

Since both addition and subtraction are closed modulo N, these terms can be
rearranged to obtain

ic = x; — xo(modN).

From this is follows that a full length probe sequence is created if a unique value
of x; — xg(modN) is obtained for each value of i = 0,1,..., N — 1. This condition
is satisfied if ¢ has a unique multiplicative inverse modulo N. A basic result from
elementary number theory states that ¢ has a unique multiplicative inverse modulo
N if and only if ¢ and N are relatively prime. Therefore, an optimal strategy for
arbitrary table size IV is to choose ¢ relatively prime to NV, which guarantees full
length probe sequences.

Simple empirical tests reveal the limitations of linear probing. For a given con-
stant ¢, all initial hash values xy = h(k) will produce the same probe sequence. This
problem is known as primary clustering. Linear probing also leads to secondary
clustering where for any two keys ki and ko with ky # ko and h(ky) = h(kz),
the sequences < H(ky,1), H(k1,2),... > and < H(ks,1),H(k2,2),... > will be

3

identical. Both types of clustering are obviously undesirable.

2.2 Double Hashing

Double hashing alleviates both the primary and secondary clustering problems in
linear probing by replacing the constant ¢ with a second hash function hs (k). Specif-

4 . Smith, Heileman, and Abdallah

ically, the double hash function can be written as
H(k,i) = (hy (k) + iha(k)) mod N, (3)

Where hi(k) and hs(k) are ordinary hash functions which return values in the range
[0,]. For a given key, these ordinary hash functions yield constants. Using
o = hl(k) Yo = ha(k), and x; = H(k,i) we can rewrite equation (3) as

x; = xg + iyo(modN). (4)

Notice that double hashing, as described in equation (4), is the same as the linear
hashing, equation (2), except that the constant ¢ has been replaced by the value yq.
Therefore yg must always be relatively prime to N in order to guarantee full length
probe sequences. The second hash function should be chosen so that all values of
ho(k) are relatively prime to N. The easiest way to assure this is to choose N as
a prime number so that any choice of yg = ho(k) in the range [0, N — 1] will be
relatively prime to N.

The key advantage of double hashing over linear hashing is that yq is able to vary
with k. Indeed, Knuth [1973] points out that double hashing can provide a good
approximation to uniform hashing, and suggests using the double hash function in
equation (4) with pairs of primes N and N — 2, such that

hi(k) = k mod N (5)
and

ho(k) = k mod (N — 2). (6)

3. CHAOTIC MEASURES AND DYNAMICAL SYSTEMS

The assertion that hash functions and chaotic iterators share some of the same
desired properties was put forth by Heileman et al. [1993], where it was suggested
that a chaotic iterator which exhibits sensitive dependence on initial conditions
might also perform well as a hash function. The authors introduced the notion
that hash functions can be transformed into chaotic iterators in the real domain,
allowing some measures from the field of nonlinear dynamics to be applied. This
was done by converting the hash functions to iterators in the continuous domain,
and then calculating the continuous Lyapunov exponent of the resulting iterator.
The results showed that the corresponding double hashing iterator had a positive
Lyapunov exponent in the real domain, indicating that this iterator has sensitive
dependence on initial conditions. Similar tests for linear probing indicated that it
had a zero Lyapunov exponent, or no sensitive dependence on initial conditions.

A general form for a dynamical system is given by the first order recurrence
relation

Tn+1 = f(Tn), Lo =€, (7)

where the constant ¢ is the initial condition, and f : — R. The function f
generally must be nonlinear to generate complex behavior. This simple system
is called an iterator. It is well-known that for some choices of even simple f in
equation (7), a system that exhibits extremely complex behavior can be obtained.
One such form of behavior is referred to as chaos. While a universally accepted
definition of chaos does not exists, it is generally agreed that one characteristic is

Exponential Hashing : 5

sensitive dependence on initial conditions, coupled with bounded behavior [Peitgen
et al. 1992].

3.1 Lyapunov Exponent

A common technique used to measure sensitive dependence on initial conditions is
considered next. Qualitatively, an iterator is said to be sensitive to initial conditions
if the orbits that result from two initial conditions, which are arbitrarily close, are
distinctly different. The technique most often used to detect this type of behavior
involves computing the Lyapunov exponent of system (7). Over the real domain,
the Lyapunov exponent of system (7) is defined as

Meo) = Tim S (1)l ®)
k=1

The exponent of equation (8) represents the mean exponential rate of divergence
or contraction between two nearby orbits. Since f'(xp_1) is difficult to calculate
for most iterators, the Lyapunov exponent is usually expressed as

sl (E) o
k=1

where Ey, = f(xy) — f(zr +€) and 0 < € < 1. A positive Lyapunov exponent
indicates error growth, which means that the iterator being measured is sensitive
to initial conditions. A zero or negative Lyapunov exponent indicates either no
dependence on initial conditions, or a contractive iterator where small errors are
damped with each successive iteration.

Ej,
€

3.2 Integer Lyapunov Exponent

We now consider evaluating the Lyapunov exponent over the integer domain Zyn
where hashing occurs. Several features of equation (8) must be changed to evaluate
the exponent over Z . First, the limits can be evaluated only for a finite table size
N, and not as n — oc. Second, the smallest error ¢ which can be resolved for a
given zq is exactly one. Thus, the best we can do is choose E;_; = € = 1, thereby
eliminating the denominator in the sum of equation (9). Taking these differences
into account, we can define the integer Lyapunov exponent for a given number of
iterations m as

Ao, m) = %Zlnu@” (10)
k=1
where
By = |f(xr) — f(@rs1)]. (11)

This integer Lyapunov exponent can be easily calculated for any integer iterator,
and is independent of the initial value zg for full length probe sequences. The
meaning of the exponent has also significantly changed from that of the real do-
main Lyapunov exponent, in part because all finite field iterators are necessarily
periodic. By definition, the integer Lyapunov exponent produces a positive value
for all non-trivial sequences. In fact, the only iterator which will produce a zero

6 . Smith, Heileman, and Abdallah

Lyapunov exponent is the trivial iterator z; = x; 1. Secondly, for some iterators,
the Lyapunov exponent may depend on the number of iterations evaluated, m, as
well as the table size N. This is due to the fact that the table size forms an upper
bound for the distance between any two values Ej, limiting the value of each term
in the summation. Empirically it was found that for most common hash functions,
the integer Lyapunov exponent is a function of table size when evaluated with
m = N iterations.

The integer Lyapunov exponent, however, does preserve one important character-
istic of the real Lyapunov exponent; it serves as a measure of the average distance
that very close values will be separated by an average iteration. This is important
when the input data distribution is nonuniform, because it is desirable to have sim-
ilar keys (i.e., keys close in value) distributed in the hash table as widely as possible
after only an iteration or two.

3.3 Integer Lyapunov Evaluation

Our first numerical experiments focused on the evaluation of Lyapunov exponents
for a variety of iterators and initial hash functions, including variations of linear
and quadratic probing, and double hashing. The results of these experiments were,
not surprisingly, inconclusive. The relationship between iterator and Lyapunov
exponent appeared to be a complex one. All commonly used hash iterators had
an integer Lyapunov exponent which depended on table size, yet in many cases
the exponent was not directly related to the actual performance of the function
for random key values. In some cases a higher integer Lyapunov exponent was
associated with a poorer performing hash function. It was concluded that the
evaluation of integer Lyapunov exponent alone was not a sufficient measure of hash
function performance.

An analytical evaluation of double hashing provides some insight. We can rewrite
equations (5) and (6) as

H(k,i) = [(k mod N) +i(k mod (N — 2))] mod N, (12)

where N and N — 2 are prime numbers. As discussed in Section 2.2, this function
produces unique probe sequences for each unique value of k& < N, and all probe
sequences will be of full length. An estimate of the integer Lyapunov exponent
can be determined analytically. If one starts with an initial key ky < N — 3, one
can analytically perform the summation in equation (10). First, observe that the
expressions k mod N and k£ mod (N — 2) are both equal to the original key k for
k < N — 3. In this case, hash function (12) reduces to

H(k,i) = (k + ik) mod N. (13)
Evaluating the individual terms of the sum for equation (10) yields
Ey, = |H(ko,i) — H(ko +1,1)]

Clearly it is difficult to bound this expression because of the modular reduction
operations. However, rough bounds can be established by noting that only when
H(ko,i) and H (ko+1,14) are in different epochs modulo N will the difference between
the values be greater than (i + 2). Furthermore, for many values of i > N/2 the

Exponential Hashing : 7

distance Ej, will be substantially less than ¢ because the distance is measured
modulo N. Overall, a very rough expected value for the integer error distance Ej,
is of order i for the i-th iteration of this hash function:

E[A(k Ly Ini L In 4!
[A(ko,m)] < ml_zl ni=—Ini
where E[A(ko,m)] denotes the expected value of the Lyapunov exponent for m
iterations, starting with key ko. This expectation is easily verified empirically.
For example, for N = 1823 the measured Lyapunov exponent is 6.00 versus 6.50
predicted as an upper bound above, measured over the entire problem space. This
rough bound is sufficient for the analysis.

An important observation can be drawn from this analysis. Recall that the Lya-
punov exponent is a measure of sensitivity to initial conditions. It tells us how
quickly data initially close together will be distributed widely in the hash table.
From the analysis of the double hashing function, it can be seen that values that
start close in the table will differ by no more than about)", Ini slots in the table
after iteration ¢. This is a significant result if one would like collisions resolved
after only a few probe iterations. Consider that even for large tables with high
load factors, the average number of probes rarely exceeds 30. Therefore data ele-
ments which are clustered initially will likely remain clustered for the first several
iterations. This has significant implications for the performance of double hashing
of nonuniformly distributed data. A hash function which distributes the data uni-
formly in the hash table from the very first iteration more closely approximates the
uniform hashing property.

The problem described above is inherent because of the linearity modulo N of
the most popular choices for hash functions. Because of the linear relationship
modulo N between i and z; in double hashing (see equation (4)) close key values
are separated little during the first probe iterations, unless they happen to cross a
modulo NV boundary. Correcting this problem requires either the use of nonlinear
hash functions modulo N for h, (k) and ho (k) or a nonlinear probe function modulo
N.

3.4 Entropy

While the Lyapunov exponent measures distance between subsequent iterations,
the information theory measure of entropy measures the information content of
the resulting distribution. Both can be used as indicators of overall hash function
performance. Entropy, as introduced by Shannon [1948], is a useful measure of the
uncertainty of a data distribution. Specifically, suppose X is a random variable
which takes on a finite set of values according to a probability distribution p(X).
Then the entropy of this probability distribution is defined to be

n
H(X) =~ pilogy pi. (14)
i=1
Entropy can be used to measure the randomness of a finite sequence by measuring

the probability of occurrence of each element in the domain, and directly calculating
the entropy. The following theorem gives us a theoretical upper limit of the entropy

8 . Smith, Heileman, and Abdallah

of any finite set.

THEOREM 1. Suppose X is a random wvariable having probability distribution
DP1,D2, -, Pn, where p; > 0,1 < i < n. Then H(X) < log,n, with equality if
and only if p; = 1/n,1 <i < n.

Using this theorem, the maximal entropy for a finite domain of size n is given by
H(X) =log, n. (15)

Since the theoretical maximal entropy can be so easily calculated, and that level
of entropy occurs only when p; = 1/n, it is easy to determine how close a given
distribution is to uniformly distributed data. Entropy measures are frequently
applied to cryptographic output as well as random number generators to determine
how precisely the output duplicates random data. The same approach can be
applied to hash probe functions by measuring the entropy of a large number of
probe sequences. We will present the results of this effort in section 5.

4. THE EXPONENTIAL HASH FUNCTION

The Lyapunov measurements above led to the development of a new open address
hash function for use on nonuniformly distributed data. As we have discussed,
two alternatives exist, either choose nonlinear functions modulo N for h; (k) and
ha(k), or create a nonlinear modulo N probe function. The problem with the
first approach is that the hash functions used in double hashing must be quickly
evaluated, yet must also preserve uniform distribution of the hashed data in the
table space. It is difficult to create a nonlinear modulo N function that meets
all three criterion. A good choice would appear to be h(k) = k™ mod N, where
the exponent m is chosen to be relatively prime to N — 1, and N is prime. This
function, similar to that used in public key encryption, appears to be a good choice
because it yields a permutation of the values 2,3,..., N — 1, it is nonlinear, and it
uniformly distributes the data. However, the evaluation of the integer exponent k™
is much more expensive than the simple hash function h(k) = k mod N, requiring
a multiplication and division for each bit of m [Stinson 1995]. Clearly this would
be a poor choice in terms of performance relative to commonly used methods.

What is needed is a hash function that has a large Lyapunov exponent when
evaluated over the first few iterations, rather than the entire range of N. This is
based on the fact that while double hashing has a nearly ideal Lyapunov exponent
when evaluated over the whole table, its worst Lyapunov measure is over the first
few iterations. In addition, the hash function should preserve all of the desirable
characteristics of double hashing, including fast run time, long probe sequences, and
no primary or secondary clustering. The function can not be a linear function of
i, or it would suffer from the same limitations as double hashing. The exponential
hash function we propose is

H(k,i) = h(k)" mod N, (16)

where h(k) is a hash function returning integer values in the interval [2, N]. Equiv-
alently, the exponential hash function can be expressed as the iterator

z; = x5 mod N, (17)

Exponential Hashing : 9

where N is prime. This function is similar to the RSA and ElGamal cryptosys-
tems [Stinson 1995], in that a finite field exponent is used to create a nonlinear
permutation of values.

This probe sequence has the following characteristics: It can be computed ef-
ficiently. Specifically, the value z; is simply the previous value, z;_1, times
modulo N. This calculation requires the same number of mathematical operations
as the linear and double hash functions we have described. The probe sequence
is nonlinear modulo N, so that small perturbations in the initial value zq become
large differences after only two iterations. Furthermore, the probe sequence depends
entirely on the initial hash value xq, which may lead to primary and secondary clus-
tering. Fortunately, this can easily be remedied by adding a second hash function,
h2(k), as will be demonstrated shortly. Finally, the probe sequence is not of length
N for all values of z, since only cases where z, is a generator for Z5, will generate
the full domain.

4.1 Theoretical Performance

Some concepts from number theory will be introduced in order to analyze expo-
nential hashing. First, the concept of a cyclic group must be introduced.

Definition 1. (cyclic group, generator) If a group G contains an element a such
that every element of G is of the form a* for some integer k, then G is a cyclic
group, and a is called a generator of G.

The group Z; consisting of the integers {1...p} and operator %, which is normal
multiplication modulo p, p prime, forms a cyclic group. In addition we will use the
following definitions:

Definition 2. (order) The number of unique elements in a group is called the
order of the group. The group Z, has order p — 1.

Definition 3. (subgroup) A subset H of a group G is a subgroup of G, if H is
itself a group relative to the binary operation defined on G.

The performance of the exponential hash function will be analyzed using Lagrange’s
theorem, along with a corresponding lemma, which are given next.

THEOREM 2. (Lagrange) If G is a group of order N, then the order of every
subgroup of G is a divisor of N.

LEMMA 1. The number of generators for a cyclic group of order N is ¢(N) where
O(N) denotes the Fuler function — the number of integers less than N which are
relatively prime to N.

Ideally, all of the elements of Z; should be generators of the entire group. This
implies that every element can be generated starting with any element. This means
that every element leads to a full length probe sequence. Applying the above results
to exponential hashing, it is readily apparent that Z7 is a group of order p — 1 and
that the number of generators for the group is ¢(p — 1) Unfortunately p must be
prime for Z7 to be a cyclic group; which means that p —1 must be an even number.
Therefore p — 1 must have as one of its factors the number 2, which leaves at most
only p/2 elements of Z7 as generators of the group.

10 . Smith, Heileman, and Abdallah

Next, apply Lagrange’s theorem to partially correct this deficiency. Since Z is
a group of order p — 1, all subgroups H of Z; must have orders that are divisors
of p — 1. However, carefully selecting p — 1 such that it is the product of 2 and
another prime number ¢ will assure that all subgroups of Z have order of either 2
or t. In fact, if the prime ¢ is chosen carefully so that p = 2t 4+ 1 is also prime, all
elements in the group Z7 will either be generators of the entire group, generators
of subgroups of order ¢, or generators of subgroups of order 2.

Since the subgroup of order 2 is also cyclic, it has only one generator in Z7. It
is easy to see that the value x = (p — 1) is in fact the only element in Z,; which
can generate a subgroup of order 2. These results are summarized in the following
lemma, which follows directly from Lagrange’s theorem with the above choice for

p.

LEMMA 2. Guwen primes p and t, with p — 1 = 2t, the group G = Z contains
exactly t — 1 generators for the entire group G, t elements which are generators for
subgroups of order t, and one element which generates a subgroup of order 2.

Therefore, the following conclusions can be derived for the exponential probe func-
tion in equation (17) by applying Lemma 2: Half, ¢ — 1, of the choices for zy will be
generators for Z7, and will create full length probe sequences. Exactly ¢ of the val-
ues for zy will generate probe sequences of length ¢. Only one value, zyp = p—1 will
generate a poor probe length of 2. This value can be avoided by choosing the initial
hash value as zyp = (kmod (p — 2)) + 1. Different initial values zo will generate
unique probe sequences in Z,. The primes ¢ and p can be efficiently generated with
p — 1 = 2t using probabilistic primality testing. The prime number theorem states
that there are approximately log(/N) prime numbers less than N. Therefore the
expectation is that one would have to explore at most logQ(N) such pairs to find a
suitable table size probabilistically. This only needs to be done during initialization
of the table.

In summary, this exponential probe function has many desirable characteristics.
Except for the less than optimal probe length on half of the table elements, it has
many of the characteristics of double hashing.

4.2 Improvements to the Hash Function

Since the probe sequence generated by exponential hashing depends only on one
initial hash value xq = hy(k), it suffers from the same secondary clustering problem
as linear hashing. This can easily be corrected by adding a second hash function:

H(k,i) = [hi(k)" + ha(k)] mod N (18)

where ideally hi(k) # ho(k) for all k. This will assure that no two keys have
the same probe sequence, avoiding the primary and secondary clustering problem.
Each probe location can be calculated with a single multiplication, addition, and
modulo division, which compares favorably with double hashing which requires
two additions and a modulo division. Henceforth, we will use equation (18) when
discussing exponential hashing.

Exponential Hashing : 11

4.3 Lyapunov Analysis

An integer Lyapunov analysis of exponential hashing yields promising results. This
hash function can be rewritten as

z; = (zh + yo) mod N, (19)

where z¢g = hi (k) and yg = ha(k). Applying the definition for the integer Lyapunov
exponent yields

By = |z — 31|
((xf mod N) — (x5 mod N)|.

It is difficult to establish a tight bound on Ej. Since the exponential iteration is
a permutation of all members of the subgroup for which z(is a generator, on the
average r§ and CUé+1 will be evenly distributed in the group. Since all subgroups are
subsets of Z}, assuming a uniform distribution in [1, N — 1] will not be far from the
actual distribution. This implies an expected distance of approximately ¢ between
subsequent probes in the hash table. This has been verified experimentally with
measured average distance only slightly less than ¢ in our experiments.
Comparing this to double hashing, one can clearly see that the exponential hash
function is better in the critical first few probes. Recall that the double hash
function, equation (12), has an expected interprobe distance of approximately i for
the i-th iteration, while the exponential hash function has an interprobe distance
on average of ¢t for each iteration. This means that for the first m iterations of the

double hash function, the expected integer Lyapunov exponent is

_Inm!

1 m
E[X(xo, < — Ini = , 20
Aeosm] < D lni =27 (20)
while for the first m iterations of the exponential hash function with table size p
and t = p/2, the expected Lyapunov exponent is
mt
E[Mao,m)] ~ " ~ g. (21)

In m!
m

Clearly, for m < p the expression p/2 is much larger than . This means the
exponential hash function will separate clustered data much more quickly than the
double hash probe. In the next section this hypothesis is evaluated experimentally.

5. EXPERIMENTAL RESULTS

In order to test the above hypothesis, we implemented both double hashing and
exponential hashing. Table sizes were determined using the double prime criterion,
where N = p = 2t + 1 is required for the exponential hash function, with p and ¢
both prime. The Miller-Rabin probabilistic primality test was used to determine
the next largest prime table size meeting this criterion given a target table size.
Based on the earlier analyses for both functions, this should produce optimal probe
lengths.

The experiments we performed are discussed in detail in the following subsections.
The complete source code for these experiments is available with the online version
of this paper. Using the C source code, all of the results presented here can easily

12 . Smith, Heileman, and Abdallah

Function Entropy
Theoretical 12.313
Random Num Gen 12.234
Double Hash 12.238
Exponential Hash 12.179

Table I. Entropy comparison for random probe sequences.

be verified. In addition, a java applet supplied with the online version provides
an interactive interface that allows comparison between the double and exponential
hash functions using the experiments we describe.

5.1 Entropy Experiments

Entropy measurements were taken experimentally using the double hash function,
equation (12), the exponential hash function, equation (18), as well as a uniform
random number generator as a control for comparison. The C source code for this
experiment is available in the EntropyTest() function in the hash.c file. Variations
can be tested by varying the table size, cluster size and position variables in this
function. For these measurements, a hash table of appropriate size was created
with a counter for each location in the table. In the case of the random number
generator, locations were picked at random from the table and the corresponding
counter incremented. For the two hash functions, successive probe locations were
selected and incremented using the probe function. After a fixed number of probes,
the entropy was calculated by dividing the count at each location by the total
number of probes to get a probability p; for each location. The entropy is then

H(X) =~ pilogpi. (22)
i=1

The initial test included a simple comparison of the probe functions. A total of
5000 probes, each of length 10 from random starting points against a table of size
5087. The results are summarized in Table I. The theoretical maximal entropy for
this table size is calculated to be 12.313. All three of the functions tested are close
in measurement to the theoretical, confirming that both the double hash and the
exponential hash functions create nearly uniform data distributions when given a
uniformly distributed probe starting point.

In a second entropy test, both hash functions were tested using a limited probe
starting interval. Specifically, a table again of size 5087 was tested with 5000 probes
sequences each of length 10. In this case, however, the starting location for the probe
sequences was limited to the first 5% of the domain. This simulates a data cluster
located in the first 5% of the data space. The results are presented in Table II.
As expected, the hash functions do not perform as well from a limited starting
point. For both hash functions, the entropy is significantly lower than the random
or theoretical maximal entropy. Furthermore, the entropy for the exponential hash
function is significantly higher than that of the double hash function. This reflects
the exponential function’s higher Lyapunov exponent for initial probe sequences,
and the fact that the exponential function does a better job of uniformly distributing
probes during initial probe sequences. We will see that this difference is reflected

Exponential Hashing : 13

Function Entropy
Theoretical 12.313
Random Num Gen 12.234
Double Hash 9.996
Exponential Hash 10.728

Table II. Entropy comparison for clustered probe sequences.

in better exponential hash function performance on clustered data in the next set
of experiments.

5.2 Direct Hash Table Measurements

In this set of experiments, all trial runs involved creating two empty hash tables of
the same size. Source code for the five experiments presented here is available in
the hash.c file. Elements chosen at random from the data distributions described
below were successively inserted into a hash table to achieve a load factor of 95%.
The measure of merit was the average number of probes required per element
inserted. For example, if k elements take a total of m probes, the average probes
per element is simply m/k. Samples of this measure were taken every 5% of the
table load factor, from 5% to 95%, in order to determine the behavior as load factor
increased.

Five experiments are presented here, each compares the double hashing function
in equation (12) with exponential hashing, equation (18). The experiments are as
follows:

(1) Uniform data distribution over the entire table size ~ To show that the expo-
nential and double hash functions have statistically equivalent, performance for
uniformly distributed random initial probes.

(2) Clustered data distribution — To demonstrate improved performance of the
exponential hash function over the double hash function for tightly clustered
initial probes.

(3) Variation of cluster size ~ To demonstrate the sensitivity of the exponential
hash function to the size of the initial probe cluster.

(4) Variation of table size with fixed percentage initial probe cluster ~ To demon-
strate the sensitivity of the exponential hash function to the table size using a
fixed initial probe cluster size.

(5) Variation of initial probe cluster location — To demonstrate the sensitivity of
the double hash function to the location of the initial probes.

5.3 Uniform Data Distribution

The control case for this analysis was a series of runs performed on a uniform initial
probe distribution with a fixed table size. Two tables of equal size were created
and filled to 95% capacity, one using the double hash function and the other using
the exponential hash function. The test was repeated 100 times using a different
random number seed for each run to determine if any statistical difference in total
number of probes to fill the table could be detected. A table size of 3023 was
used for these runs. The source code for this experiment is available in the Test1()

14 . Smith, Heileman, and Abdallah

Measure Double | Ezxponential % Diff
Total Probes 1028281 1010148 1.76%
Avg Probes Per Run 10282 10101 1.76%
Std Deviation 305.0 257.7 | 15.51%

Table ITI. Uniform data comparison.

function of the hash.c file. One iteration of this experiment can be performed
interactively using the java applet by setting the data cluster size to 100% and
the table size to 3000. A summary of the results is presented in Table III.

With 100 runs, no statistically significant difference in performance could be
detected. The difference in total number of probes between the two functions is only
1.76%, which is significantly less than the 15.51% standard deviation as measured
between runs of the same hash function. This indicates that the exponential and
double hash functions are statistically equivalent for randomly chosen uniformly
distributed initial keys.

5.4 Clustered Data Distribution

The second experiment involved clustering the initial keys over a subinterval of
the total table size, in an attempt to simulate a dense key cluster. The dense
data cluster represents many real world data sets where data is far from evenly
distributed. A table size of p = 3023 was chosen, and all of the data was chosen at
random from a single data cluster of approximately 300 elements from the beginning
of the data space. Samples of the average number of probes per data element were
taken for every 5% of table size, up to a total table load of 95%. The source code
used in this experiment is available in the Test2() function of the hash.c file. This
experiment can be performed interactively using the java applet by setting the
data cluster size to 10% and the table size to 3000. The results are summarized
in figure 1. Clearly the exponential hash function outperforms the double hash
function in these experiments.

5.5 Variation of Cluster Size

This experiment was similar to the previous one, but in this case the cluster size
was varied from 2% to 20% of the overall table size. Again, identical tables were
created and populated using both the double hash function and the exponential
hash function. Data was taken at random from a cluster of size varying from 2% to
20% of the table size, and the average number of probes per element inserted was
sampled for each table to reach 95% capacity. A table size of 2027 elements was
used for all experiments. The source code used in this experiment is available in the
Test3() function of the hash.c file. This experiment can be performed interactively
using the java applet by repeatedly running with cluster sizes between 2% and
20% and a table size of 2000. The results, summarized in Figure 2 show that the
exponential hash function uses far fewer probes than the double hash function.
Furthermore, the relative advantage seems to be larger for more tightly clustered
data.

Exponential Hashing : 15

Average probe length vs Table Load Factor
30 T T T T

251

N
o
T

Double Hash

Average probes per table entry
S &
T T

Exponential Hash

L L L
0 10 20 30 40 50 60 70 80 90 100
Table load factor(%)

Fig. 1: Average number of probes versus table load factor for the double and exponential hash
functions.

5 Total Probes vs Cluster Size
2 T T T T

Total probes

Double Hash

o
@
T

0.6

0.4

0.2

Exponential Hash

0 L L L L L L
2 4 6 8 10 12 14 16 18 20

Cluster size as % of table size

Fig. 2. Total probes versus cluster size at 95% table load.

16 . Smith, Heileman, and Abdallah

. % 10° Total probes vs Table Size
T T T

Total probes
w
T

N
T

Double Hash

Exponential Hash

! ! ! !

0 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000
Table size

Fig. 3. Total probes versus table size at 95% table load.

5.6 Variation of Table Size

The next experiment varied the table size in order to determine if it had any effect
on the relative performance of the two hash functions. Hash tables were created
with between roughly 1000 entries up to roughly 15,000 entries, and filled to 95%
capacity using the double and exponential hash functions. The results of this
experiment are summarized in Figure 3. The source code used in this experiment
is available in the Test4() function of the hash.c file. This experiment can be
performed interactively using the java applet by adjusting the table size repeatedly
to compare performance. The exponential hash function performed better for all
table sizes, and table size appeared to have little effect on the relative outcome.

5.7 Variation of Cluster Location

For the final experiment, the location of the cluster in the hash table was varied
to determine its effect on hash function performance. A cluster of size equal to
5% of the table size was used for this experiment, and its location was varied
from the first 5% to the last 5% of the table in 5% increments. A table size of
2027 was used, and the total number of probes required to fill the table to 95%
of capacity was repeatedly determined for each cluster location. The source code
used in this experiment is available in the Test5() function of the hash.c file. This
experiment can be performed interactively using the java applet by adjusting the
cluster location performance to view the changes in performance as cluster position
is moved. The results are summarized in Figure 4.

Surprisingly, the double hashing function showed a periodic dependence on clus-
ter location. Data clusters located at the beginning, middle or end of the table led
to the largest number of probes, while clusters in between these locations showed

Exponential Hashing : 17

x 10* Total probes vs Cluster Location
10 T T T T T

Total probes

Double Hash bl

!

! ! !

1 1
0 10 20 30 40 50 60 70 80 90 100
Cluster Location

Fig. 4. Total probes versus initial probe cluster location at 95% table load.

a much better behavior. The exponential hash function showed much more con-
sistent behavior, with a statistically flat response to cluster location. The reason
for the double hash dependence on cluster location has not been fully explored,
and is a topic for future research. The shape and periodicity of the curve does,
however, seem to indicate some kind of harmonic behavior. Our current theory is
that the iho(k) term in the double hash function may lead to poor performance if
the value ho (k) is the divisor of a number close to the table size p for small values of
i. Preliminary results using other functions for h; (k) and ho(k) indicate that they
too have some cluster locations which lead to poor performance, suggesting that
this problem may be inherent in double hashing. In any case, these results confirm
that the exponential hash function is a better choice for clustered data, since its
performance is consistent for all cluster locations.

6. CONCLUSIONS

The results presented here indicate a new relationship between chaos theory and
open address hash function performance. Results indicate that the proposed expo-
nential hash function outperforms double hashing for some clustered data distri-
butions, and performs as well for uniform data distributions. These results were
confirmed using Lyapunov and entropy analyses, as well as actual measured per-
formance. A number of avenues for future research are open. It is likely that
other measures from nonlinear systems theory can be applied to hash functions,
and may also provide additional indicators of hash function performance, possibly
leading to further improvements in the exponential open hash function presented
here. Furthermore, it may be possible to apply chaotic measures to other hash func-
tion applications, such as cryptographic signature verification, to detect undesirable
hash function characteristics.

18 . Smith, Heileman, and Abdallah

REFERENCES

HEILEMAN, G. L. 1996. Data Structures, Algorithms and Object-oriented Programming.
McGraw-Hill, New York, NY.

HEILEMAN, G. L., ABpDALLAH, C., HUsH, D. R., AND BAGLIO, S. 1993. Chaotic probe strategies
in open address hashing. In Proceedings of International Symposium on Nonlinear Theory
and its Applications, pp. 1183 1188.

Knuth, D. E. 1973. The Art of Computer Programming, Volume 3. Addison-Wesley Publishing
Co.

PEITGEN, H.-O., JURGENS, H., AND SAUPE, D. 1992. Chaos and Fractals: New Frontiers of
Science. Springer-Verlag, New York.

PETERSON, W. W. 1957. Addressing for random access storage. IBM Journal of Research and
Development 1, 2, 130-146.

SHANNON, C. E. 1948. A mathematical theory of communication. Bell Systems Technical Jour-
nal 27, 379-423.

STiNsON, D. 1995. Cryptography Theory and Practice. CRC Press, Boca Raton, FL.

	University of New Mexico
	UNM Digital Repository
	4-12-2012

	An exponential open hashing function based on dynamical systems theory
	Chaouki T. Abdallah
	Bradley J. Smith
	Gregory L. Heileman
	Recommended Citation

	10.1.1.55.9223[1].pdf

