
University of New Mexico
UNM Digital Repository
Electrical & Computer Engineering Faculty
Publications Engineering Publications

4-12-2012

An exponential open hashing function based on
dynamical systems theory
Chaouki T. Abdallah

Bradley J. Smith

Gregory L. Heileman

Follow this and additional works at: https://digitalrepository.unm.edu/ece_fsp

This Article is brought to you for free and open access by the Engineering Publications at UNM Digital Repository. It has been accepted for inclusion in
Electrical & Computer Engineering Faculty Publications by an authorized administrator of UNM Digital Repository. For more information, please
contact disc@unm.edu.

Recommended Citation
Abdallah, Chaouki T.; Bradley J. Smith; and Gregory L. Heileman. "An exponential open hashing function based on dynamical systems
theory." (2012). https://digitalrepository.unm.edu/ece_fsp/114

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_fsp/114?utm_source=digitalrepository.unm.edu%2Fece_fsp%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


An Exponential Open Hashing Function Based on

Dynamical Systems Theory

Bradley J� Smith� Gregory L� Heileman and Chaouki Abdallah

University of New Mexico� Albuquerque� New Mexico

In this paper an e�cient open addressing hash function called exponential hashing is developed
using concepts from dynamical systems theory and number theory� A comparison of exponential
hashing versus a widely�used double hash function is performed using an analysis based on Lya�
punov exponents and entropy� Proofs of optimal table parameter choices are provided for a number
of hash functions� We also demonstrate experimentally that exponential hashing nearly matches
the performance of an optimal double hash function for uniform data distributions� and performs
signi�cantly better for nonuniform data distributions� We show that exponential hashing exhibits
a higher integer Lyapunov exponent and entropy than double hashing for initial data probes�
which o�ers one explanation for its improved performance on nonuniform data distributions�

Categories and Subject Descriptors� E�	 
Data Structures�� tables� E�
 
Data Storage Rep�

resentation�� hash�table representations� H���� 
Information Storage and Retrieval�� Infor�
mation Storage and Retrieval

General Terms� Algorithms

Additional Key Words and Phrases� Chaos� dynamic dictionary ADT� dynamical systems theory�
exponential hashing� lyapunov exponent� number theory

�� INTRODUCTION

The hash table is a well�known data structure used to maintain dynamic dictio�
naries� A dynamic dictionary is de�ned as a collection of data items that can be
accessed according to the following operations�

��� Search�k� S�� Returns the data item with key k in dynamic dictionary S�

�	� Insert�x� S�� Adds data item x to dynamic dictionary S�

�
� Delete�k� S�� Removes the data item with key k from dynamic dictionary S�

Dynamic dictionaries are ubiquitous in computing applications� they are widely
used in databases� operating systems� compilers� and a range of business and sci�
enti�c applications� The hash table data structure consists of an array T whose
N slots are used to store the collection of data items� When implementing the
above operations� an index is computed from the key value using an ordinary hash

function h� which performs the mapping

h � U � f
� �� � � � � N � �g�

where U denotes the set of all possible key values �i�e�� the universe of keys�� Thus�
h�k� denotes the index� or hash value� computed by h when it is supplied with key
k � U � Furthermore� one says that k hashes to slot T �h�k�� in hash table T �

This research was supported by The Boeing Company under contract W��������
Authors� addresses� Department of Electrical � Computer Engineering� University of New Mexico�
Albuquerque� NM ��	�	�	���



� � Smith� Heileman� and Abdallah

Since jU j is generally much larger than N � h is unlikely to be a one�to�one map�
ping� In other words� it is very probable that for two keys ki and kj � where i �� j�
h�ki� � h�kj�� This situation� where two di�erent keys hash to the same slot� is
referred to as a collision� Since two items cannot be stored at the same slot in
a hash table� the Insert operation must resolve collisions by relocating an item in
such a way that it can be found by subsequent Search and Delete operations�
One method of resolving collisions� termed open addressing by Peterson 	
��
��

involves computing a sequence of hash slots rather than a single hash value� This
sequence is successively examined� or probed� until an empty hash table slot is found
in the case of an Insert operation� or the desired item is found in the case of Search
or Delete operations� In open addressing the ordinary hash function discussed above
is modi�ed so that it uses both a key� as well as a probe number when computing
a hash value� This additional information is used to construct the probe sequence�
That is� in open addressing� hash functions perform the mapping

H � U � f�� 
� � � � � N � 
g � f�� 
� � � � � N � 
g

and produce the probe sequence � H�k� ��� H�k� 
�� H�k� ��� � � � �� Because the hash
table containsN slots� there can be at most N unique elements in a probe sequence�
A full length probe sequence is de�ned to be a probe sequence that visits all N table
entries using only N probes�
Much of the existing research on hash table implementations of dynamic dictio�

naries is based on statistical analyses� typically focusing on average�case perfor�
mance and uniformly distributed data� The work presented here is distinguished
from much of the previous research on hashing in that we treat open address hash
functions as iterators� which allows us to employ tools from the �eld of nonlinear
dynamical systems�
The remainder of this paper is organized as follows� In Section �� a basic theoret�

ical analysis is given for two of the most popular open address hashing algorithms�
linear probing and double hashing� In the next section we introduce the Lyapunov
exponent� a method used to detect chaos� We then discuss the meaning of the
Lyapunov exponent in the integer domain� and its importance in analyzing prob�
ing behavior� In particular� after pointing out the relationship between good hash
functions and chaotic iterators� we develop a technique for measuring chaos in hash
functions� In this section we also consider the evaluation of hash functions using the
concept of entropy� The analysis of hashing from the dynamical systems perspec�
tive motivated the development of a new hash function called exponential hashing�
which we present in Section �� along with theoretical and empirical comparative
analyses with double hashing� Our experimentation� presented in Section �� shows
that exponential hashing performs nearly as well as double hashing for uniformly
distributed data� and performs substantially better than double hashing on nonuni�
formaly distributed data�

�� OPEN ADDRESSING TECHNIQUES

Knuth 	
�
�� notes that the desirable properties of an open address hash function
include�

�E�cient hash function evaluation time�



Exponential Hashing � �

�A long probe sequence to accommodate tables near capacity�

�Di�erent probe sequences for each data item to avoid primary and secondary
clustering� as de�ned below�

�Uniform distribution over the entire hash table for both the initial and subsequent
probes� This property is widely known as the uniform hashing property �Heileman
���	
�

A look at two common open addressing strategies� linear probing and double hash�
ing� lays the theoretical groundwork for our study of exponential hashing�

��� Linear Probing

Linear probing is easily analyzed from a theoretical point of view� and forms the
basis for the double hashing method described next� The linear probe function can
be written as�

H
k� i� � 
h
k� � ic� mod N� 
��

where k is the key� h
k� is an ordinary hash function that maps the key space to
an initial location in the table� i is the probe index� N is the table size� and c is a
constant� For the simplest case� with c � �� this hash function will simply probe
the sequential locations � h
k� mod N� 
h
k� � �� mod N� 
h
k� � �� mod N� � � � ��
For larger values of c� the function will probe table items at �xed distances of c
modulo N in the table� Analysis of the best choice for c to achieve a full length
probe sequence for a given table size is straightforward� Since the value h
k� is �xed
for a given key� substituting x� � h
k�� and letting xi � H
k� i� in equation 
��
yields

xi � x� � ic
modN�� 
��

Since both addition and subtraction are closed modulo N � these terms can be
rearranged to obtain

ic � xi � x�
modN��

From this is follows that a full length probe sequence is created if a unique value
of xi � x�
modN� is obtained for each value of i � �� �� � � � � N � �� This condition
is satis�ed if c has a unique multiplicative inverse modulo N � A basic result from
elementary number theory states that c has a unique multiplicative inverse modulo
N if and only if c and N are relatively prime� Therefore� an optimal strategy for
arbitrary table size N is to choose c relatively prime to N � which guarantees full
length probe sequences�
Simple empirical tests reveal the limitations of linear probing� For a given con�

stant c� all initial hash values x� � h
k� will produce the same probe sequence� This
problem is known as primary clustering� Linear probing also leads to secondary

clustering where for any two keys k� and k� with k� �� k� and h
k�� � h
k���
the sequences � H
k�� ��� H
k�� ��� � � � � and � H
k�� ��� H
k�� ��� � � � � will be
identical� Both types of clustering are obviously undesirable�

��� Double Hashing

Double hashing alleviates both the primary and secondary clustering problems in
linear probing by replacing the constant c with a second hash function h�
k�� Specif�



� � Smith� Heileman� and Abdallah

ically� the double hash function can be written as

H�k� i� � �h��k� � ih��k�� mod N� ���

where h��k� and h��k� are ordinary hash functions which return values in the range
�	� N � 
�� For a given key� these ordinary hash functions yield constants� Using
x� � h��k�� y� � h��k�� and xi � H�k� i� we can rewrite equation ��� as

xi � x� � iy��modN�� �
�

Notice that double hashing� as described in equation �
�� is the same as the linear
hashing� equation ���� except that the constant c has been replaced by the value y��
Therefore y� must always be relatively prime to N in order to guarantee full length
probe sequences� The second hash function should be chosen so that all values of
h��k� are relatively prime to N � The easiest way to assure this is to choose N as
a prime number so that any choice of y� � h��k� in the range �	� N � 
� will be
relatively prime to N �
The key advantage of double hashing over linear hashing is that y� is able to vary

with k� Indeed� Knuth �
���� points out that double hashing can provide a good
approximation to uniform hashing� and suggests using the double hash function in
equation �
� with pairs of primes N and N � �� such that

h��k� � k mod N ���

and

h��k� � k mod �N � ��� ���

�� CHAOTIC MEASURES AND DYNAMICAL SYSTEMS

The assertion that hash functions and chaotic iterators share some of the same
desired properties was put forth by Heileman et al� �
����� where it was suggested
that a chaotic iterator which exhibits sensitive dependence on initial conditions
might also perform well as a hash function� The authors introduced the notion
that hash functions can be transformed into chaotic iterators in the real domain�
allowing some measures from the �eld of nonlinear dynamics to be applied� This
was done by converting the hash functions to iterators in the continuous domain�
and then calculating the continuous Lyapunov exponent of the resulting iterator�
The results showed that the corresponding double hashing iterator had a positive
Lyapunov exponent in the real domain� indicating that this iterator has sensitive
dependence on initial conditions� Similar tests for linear probing indicated that it
had a zero Lyapunov exponent� or no sensitive dependence on initial conditions�
A general form for a dynamical system is given by the �rst order recurrence

relation

xn�� � f�xn�� x� � c� ���

where the constant c is the initial condition� and f � � � �� The function f

generally must be nonlinear to generate complex behavior� This simple system
is called an iterator� It is well�known that for some choices of even simple f in
equation ���� a system that exhibits extremely complex behavior can be obtained�
One such form of behavior is referred to as chaos� While a universally accepted
de�nition of chaos does not exists� it is generally agreed that one characteristic is



Exponential Hashing � �

sensitive dependence on initial conditions� coupled with bounded behavior �Peitgen
et al� ������

��� Lyapunov Exponent

A common technique used to measure sensitive dependence on initial conditions is
considered next� Qualitatively� an iterator is said to be sensitive to initial conditions
if the orbits that result from two initial conditions� which are arbitrarily close� are
distinctly di	erent� The technique most often used to detect this type of behavior
involves computing the Lyapunov exponent of system 
��� Over the real domain�
the Lyapunov exponent of system 
�� is de
ned as

�
x�� � lim
n��

�

n

nX
k��

ln jf �
xk���j� 
��

The exponent of equation 
�� represents the mean exponential rate of divergence
or contraction between two nearby orbits� Since f �
xk��� is di�cult to calculate
for most iterators� the Lyapunov exponent is usually expressed as

�
x�� � lim
n��

�
lim
���

�
�

n

nX
k��

ln

����Ek�
����
��

� 
��

where Ek � f
xk� � f
xk � �� and � � � � �� A positive Lyapunov exponent
indicates error growth� which means that the iterator being measured is sensitive
to initial conditions� A zero or negative Lyapunov exponent indicates either no
dependence on initial conditions� or a contractive iterator where small errors are
damped with each successive iteration�

��� Integer Lyapunov Exponent

We now consider evaluating the Lyapunov exponent over the integer domain ZN
where hashing occurs� Several features of equation 
�� must be changed to evaluate
the exponent over ZN � First� the limits can be evaluated only for a 
nite table size
N � and not as n � �� Second� the smallest error � which can be resolved for a
given x� is exactly one� Thus� the best we can do is choose Ek�� � � � �� thereby
eliminating the denominator in the sum of equation 
��� Taking these di	erences
into account� we can de
ne the integer Lyapunov exponent for a given number of
iterations m as

�
x��m� �
�

m

mX
k��

ln jEk j 
���

where

Ek � jf
xk�� f
xk���j� 
���

This integer Lyapunov exponent can be easily calculated for any integer iterator�
and is independent of the initial value x� for full length probe sequences� The
meaning of the exponent has also signi
cantly changed from that of the real do�
main Lyapunov exponent� in part because all 
nite 
eld iterators are necessarily
periodic� By de
nition� the integer Lyapunov exponent produces a positive value
for all non�trivial sequences� In fact� the only iterator which will produce a zero



� � Smith� Heileman� and Abdallah

Lyapunov exponent is the trivial iterator xi � xi��� Secondly� for some iterators�
the Lyapunov exponent may depend on the number of iterations evaluated� m� as
well as the table size N � This is due to the fact that the table size forms an upper
bound for the distance between any two values Ek� limiting the value of each term
in the summation� Empirically it was found that for most common hash functions�
the integer Lyapunov exponent is a function of table size when evaluated with
m � N iterations�
The integer Lyapunov exponent� however� does preserve one important character�

istic of the real Lyapunov exponent� it serves as a measure of the average distance
that very close values will be separated by an average iteration� This is important
when the input data distribution is nonuniform� because it is desirable to have sim�
ilar keys �i�e�� keys close in value� distributed in the hash table as widely as possible
after only an iteration or two�

��� Integer Lyapunov Evaluation

Our 	rst numerical experiments focused on the evaluation of Lyapunov exponents
for a variety of iterators and initial hash functions� including variations of linear
and quadratic probing� and double hashing� The results of these experiments were�
not surprisingly� inconclusive� The relationship between iterator and Lyapunov
exponent appeared to be a complex one� All commonly used hash iterators had
an integer Lyapunov exponent which depended on table size� yet in many cases
the exponent was not directly related to the actual performance of the function
for random key values� In some cases a higher integer Lyapunov exponent was
associated with a poorer performing hash function� It was concluded that the
evaluation of integer Lyapunov exponent alone was not a su
cient measure of hash
function performance�
An analytical evaluation of double hashing provides some insight� We can rewrite

equations ��� and ��� as

H�k� i� � 
�k mod N� � i�k mod �N � ���� mod N� ����

where N and N � � are prime numbers� As discussed in Section ���� this function
produces unique probe sequences for each unique value of k � N � and all probe
sequences will be of full length� An estimate of the integer Lyapunov exponent
can be determined analytically� If one starts with an initial key k� � N � �� one
can analytically perform the summation in equation ����� First� observe that the
expressions k mod N and k mod �N � �� are both equal to the original key k for
k � N � �� In this case� hash function ���� reduces to

H�k� i� � �k � ik� mod N� ����

Evaluating the individual terms of the sum for equation ���� yields

Ek� � jH�k�� i��H�k� � �� i�j

� j�k� � ik�� mod N � �k� � � � i�k� � ��� mod N j�

Clearly it is di
cult to bound this expression because of the modular reduction
operations� However� rough bounds can be established by noting that only when
H�k�� i� andH�k���� i� are in di�erent epochs moduloN will the di�erence between
the values be greater than �i � ��� Furthermore� for many values of i � N�� the



Exponential Hashing � �

distance Ek� will be substantially less than i because the distance is measured
modulo N � Overall� a very rough expected value for the integer error distance Ek�
is of order i for the i�th iteration of this hash function�

E���k��m�	 �



m

mX

i��

ln i �



m
ln i�

where E���k��m�	 denotes the expected value of the Lyapunov exponent for m
iterations� starting with key k�� This expectation is easily veri
ed empirically�
For example� for N � 
��� the measured Lyapunov exponent is ���� versus ����
predicted as an upper bound above� measured over the entire problem space� This
rough bound is su�cient for the analysis�
An important observation can be drawn from this analysis� Recall that the Lya�

punov exponent is a measure of sensitivity to initial conditions� It tells us how
quickly data initially close together will be distributed widely in the hash table�
From the analysis of the double hashing function� it can be seen that values that
start close in the table will di�er by no more than about

P
i
ln i slots in the table

after iteration i� This is a signi
cant result if one would like collisions resolved
after only a few probe iterations� Consider that even for large tables with high
load factors� the average number of probes rarely exceeds ��� Therefore data ele�
ments which are clustered initially will likely remain clustered for the 
rst several
iterations� This has signi
cant implications for the performance of double hashing
of nonuniformly distributed data� A hash function which distributes the data uni�
formly in the hash table from the very 
rst iteration more closely approximates the
uniform hashing property�
The problem described above is inherent because of the linearity modulo N of

the most popular choices for hash functions� Because of the linear relationship
modulo N between i and xi in double hashing �see equation ���� close key values
are separated little during the 
rst probe iterations� unless they happen to cross a
modulo N boundary� Correcting this problem requires either the use of nonlinear
hash functions modulo N for h��k� and h��k� or a nonlinear probe function modulo
N �

��� Entropy

While the Lyapunov exponent measures distance between subsequent iterations�
the information theory measure of entropy measures the information content of
the resulting distribution� Both can be used as indicators of overall hash function
performance� Entropy� as introduced by Shannon �
���	� is a useful measure of the
uncertainty of a data distribution� Speci
cally� suppose X is a random variable
which takes on a 
nite set of values according to a probability distribution ��X��
Then the entropy of this probability distribution is de
ned to be

H�X� � �
nX

i��

pi log� pi� �
��

Entropy can be used to measure the randomness of a 
nite sequence by measuring
the probability of occurrence of each element in the domain� and directly calculating
the entropy� The following theorem gives us a theoretical upper limit of the entropy



� � Smith� Heileman� and Abdallah

of any �nite set�

Theorem �� Suppose X is a random variable having probability distribution

p�� p�� � � � � pn� where pi � �� � � i � n� Then H�X� � log
�
n� with equality if

and only if pi � ��n� � � i � n�

Using this theorem	 the maximal entropy for a �nite domain of size n is given by

H�X� � log
�
n� ��
�

Since the theoretical maximal entropy can be so easily calculated	 and that level
of entropy occurs only when pi � ��n	 it is easy to determine how close a given
distribution is to uniformly distributed data� Entropy measures are frequently
applied to cryptographic output as well as random number generators to determine
how precisely the output duplicates random data� The same approach can be
applied to hash probe functions by measuring the entropy of a large number of
probe sequences� We will present the results of this e�ort in section 
�

�� THE EXPONENTIAL HASH FUNCTION

The Lyapunov measurements above led to the development of a new open address
hash function for use on nonuniformly distributed data� As we have discussed	
two alternatives exist	 either choose nonlinear functions modulo N for h��k� and
h��k�	 or create a nonlinear modulo N probe function� The problem with the
�rst approach is that the hash functions used in double hashing must be quickly
evaluated	 yet must also preserve uniform distribution of the hashed data in the
table space� It is di�cult to create a nonlinear modulo N function that meets
all three criterion� A good choice would appear to be h�k� � km mod N 	 where
the exponent m is chosen to be relatively prime to N � �	 and N is prime� This
function	 similar to that used in public key encryption	 appears to be a good choice
because it yields a permutation of the values 
� �� � � � � N � �	 it is nonlinear	 and it
uniformly distributes the data� However	 the evaluation of the integer exponent km

is much more expensive than the simple hash function h�k� � k mod N 	 requiring
a multiplication and division for each bit of m �Stinson ���
�� Clearly this would
be a poor choice in terms of performance relative to commonly used methods�
What is needed is a hash function that has a large Lyapunov exponent when

evaluated over the �rst few iterations	 rather than the entire range of N � This is
based on the fact that while double hashing has a nearly ideal Lyapunov exponent
when evaluated over the whole table	 its worst Lyapunov measure is over the �rst
few iterations� In addition	 the hash function should preserve all of the desirable
characteristics of double hashing	 including fast run time	 long probe sequences	 and
no primary or secondary clustering� The function can not be a linear function of
i	 or it would su�er from the same limitations as double hashing� The exponential
hash function we propose is

H�k� i� � h�k�i mod N� ����

where h�k� is a hash function returning integer values in the interval �
� N �� Equiv�
alently	 the exponential hash function can be expressed as the iterator

xi � xi
�
mod N� ����



Exponential Hashing � �

where N is prime� This function is similar to the RSA and ElGamal cryptosys�
tems �Stinson �����	 in that a 
nite 
eld exponent is used to create a nonlinear
permutation of values�

This probe sequence has the following characteristics� It can be computed ef�

ciently� Speci
cally	 the value xi is simply the previous value	 xi��	 times x�
modulo N � This calculation requires the same number of mathematical operations
as the linear and double hash functions we have described� The probe sequence
is nonlinear modulo N 	 so that small perturbations in the initial value x� become
large di�erences after only two iterations� Furthermore	 the probe sequence depends
entirely on the initial hash value x�	 which may lead to primary and secondary clus�
tering� Fortunately	 this can easily be remedied by adding a second hash function	
h�
k�	 as will be demonstrated shortly� Finally	 the probe sequence is not of length
N for all values of x�	 since only cases where x� is a generator for Z�

N will generate
the full domain�

��� Theoretical Performance

Some concepts from number theory will be introduced in order to analyze expo�
nential hashing� First	 the concept of a cyclic group must be introduced�

De�nition �� 
cyclic group	 generator� If a group G contains an element a such
that every element of G is of the form ak for some integer k	 then G is a cyclic
group	 and a is called a generator of G�

The group Z�

p consisting of the integers f� � � � pg and operator �	 which is normal
multiplication modulo p	 p prime	 forms a cyclic group� In addition we will use the
following de
nitions�

De�nition �� 
order� The number of unique elements in a group is called the
order of the group� The group Z�

p has order p� ��

De�nition �� 
subgroup� A subset H of a group G is a subgroup of G	 if H is
itself a group relative to the binary operation de
ned on G�

The performance of the exponential hash function will be analyzed using Lagrange�s
theorem	 along with a corresponding lemma	 which are given next�

Theorem �� �Lagrange� If G is a group of order N � then the order of every
subgroup of G is a divisor of N �

Lemma �� The number of generators for a cyclic group of order N is �
N� where
�
N� denotes the Euler function � the number of integers less than N which are
relatively prime to N �

Ideally	 all of the elements of Z�

p should be generators of the entire group� This
implies that every element can be generated starting with any element� This means
that every element leads to a full length probe sequence� Applying the above results
to exponential hashing	 it is readily apparent that Z�

p is a group of order p� � and
that the number of generators for the group is �
p � �� Unfortunately p must be
prime for Z�

p to be a cyclic group� which means that p�� must be an even number�
Therefore p� � must have as one of its factors the number �	 which leaves at most
only p�� elements of Z�

p as generators of the group�



�� � Smith� Heileman� and Abdallah

Next� apply Lagrange�s theorem to partially correct this de�ciency� Since Z�

p is
a group of order p � �� all subgroups H of Z�

p must have orders that are divisors
of p � �� However� carefully selecting p � � such that it is the product of � and
another prime number t will assure that all subgroups of Z�

p have order of either �
or t� In fact� if the prime t is chosen carefully so that p � �t	 � is also prime� all
elements in the group Z�

p will either be generators of the entire group� generators
of subgroups of order t� or generators of subgroups of order ��
Since the subgroup of order � is also cyclic� it has only one generator in Z�

p � It
is easy to see that the value x � 
p � �� is in fact the only element in Z�

p which
can generate a subgroup of order �� These results are summarized in the following
lemma� which follows directly from Lagrange�s theorem with the above choice for
p�

Lemma �� Given primes p and t� with p � � � �t� the group G � Z�

p contains

exactly t� � generators for the entire group G� t elements which are generators for

subgroups of order t� and one element which generates a subgroup of order ��

Therefore� the following conclusions can be derived for the exponential probe func�
tion in equation 
�
� by applying Lemma �� Half� t��� of the choices for x� will be
generators for Z�

p � and will create full length probe sequences� Exactly t of the val�
ues for x� will generate probe sequences of length t� Only one value� x� � p�� will
generate a poor probe length of �� This value can be avoided by choosing the initial
hash value as x� � 
k mod 
p � ��� 	 �� Di�erent initial values x� will generate
unique probe sequences in Z�

p � The primes t and p can be e�ciently generated with
p� � � �t using probabilistic primality testing� The prime number theorem states
that there are approximately log
N� prime numbers less than N � Therefore the
expectation is that one would have to explore at most log�
N� such pairs to �nd a
suitable table size probabilistically� This only needs to be done during initialization
of the table�
In summary� this exponential probe function has many desirable characteristics�

Except for the less than optimal probe length on half of the table elements� it has
many of the characteristics of double hashing�

��� Improvements to the Hash Function

Since the probe sequence generated by exponential hashing depends only on one
initial hash value x� � h�
k�� it su�ers from the same secondary clustering problem
as linear hashing� This can easily be corrected by adding a second hash function�

H
k� i� � �h�
k�
i 	 h�
k�� mod N 
���

where ideally h�
k� �� h�
k� for all k� This will assure that no two keys have
the same probe sequence� avoiding the primary and secondary clustering problem�
Each probe location can be calculated with a single multiplication� addition� and
modulo division� which compares favorably with double hashing which requires
two additions and a modulo division� Henceforth� we will use equation 
��� when
discussing exponential hashing�



Exponential Hashing � ��

��� Lyapunov Analysis

An integer Lyapunov analysis of exponential hashing yields promising results� This
hash function can be rewritten as

xi � �xi

� � y�� mod N� ����

where x� � h��k� and y� � h��k�� Applying the de	nition for the integer Lyapunov
exponent yields

Ek � jxi � xi��j

� j�xi� mod N�� �xi��� mod N�j�

It is di
cult to establish a tight bound on Ek� Since the exponential iteration is
a permutation of all members of the subgroup for which x� is a generator� on the
average xi� and xi��� will be evenly distributed in the group� Since all subgroups are
subsets of Z�

p � assuming a uniform distribution in ��� N ��
 will not be far from the
actual distribution� This implies an expected distance of approximately t between
subsequent probes in the hash table� This has been veri	ed experimentally with
measured average distance only slightly less than t in our experiments�
Comparing this to double hashing� one can clearly see that the exponential hash

function is better in the critical 	rst few probes� Recall that the double hash
function� equation ����� has an expected interprobe distance of approximately i for
the i�th iteration� while the exponential hash function has an interprobe distance
on average of t for each iteration� This means that for the 	rst m iterations of the
double hash function� the expected integer Lyapunov exponent is

E���x��m�
 �
�

m

mX

i��

ln i �
lnm�

m
� ����

while for the 	rst m iterations of the exponential hash function with table size p
and t � p��� the expected Lyapunov exponent is

E���x��m�
 �
mt

m
�

p

�
� ����

Clearly� for m � p the expression p�� is much larger than lnm�

m
� This means the

exponential hash function will separate clustered data much more quickly than the
double hash probe� In the next section this hypothesis is evaluated experimentally�

�� EXPERIMENTAL RESULTS

In order to test the above hypothesis� we implemented both double hashing and
exponential hashing� Table sizes were determined using the double prime criterion�
where N � p � �t � � is required for the exponential hash function� with p and t
both prime� The Miller�Rabin probabilistic primality test was used to determine
the next largest prime table size meeting this criterion given a target table size�
Based on the earlier analyses for both functions� this should produce optimal probe
lengths�
The experiments we performed are discussed in detail in the following subsections�

The complete source code for these experiments is available with the online version
of this paper� Using the C source code� all of the results presented here can easily



�� � Smith� Heileman� and Abdallah

Function Entropy

Theoretical ������

Random Num Gen ������

Double Hash ������

Exponential Hash �����	

Table I� Entropy comparison for random probe sequences�

be veri�ed� In addition� a java applet supplied with the online version provides
an interactive interface that allows comparison between the double and exponential
hash functions using the experiments we describe�

��� Entropy Experiments

Entropy measurements were taken experimentally using the double hash function�
equation ����� the exponential hash function� equation ��	�� as well as a uniform
random number generator as a control for comparison� The C source code for this
experiment is available in the EntropyTest�� function in the hash�c �le� Variations
can be tested by varying the table size� cluster size and position variables in this
function� For these measurements� a hash table of appropriate size was created
with a counter for each location in the table� In the case of the random number
generator� locations were picked at random from the table and the corresponding
counter incremented� For the two hash functions� successive probe locations were
selected and incremented using the probe function� After a �xed number of probes�
the entropy was calculated by dividing the count at each location by the total
number of probes to get a probability pi for each location� The entropy is then

H�X� 
 �

nX

i��

pi log� pi� ����

The initial test included a simple comparison of the probe functions� A total of
���� probes� each of length �� from random starting points against a table of size
��	
� The results are summarized in Table I� The theoretical maximal entropy for
this table size is calculated to be ������� All three of the functions tested are close
in measurement to the theoretical� con�rming that both the double hash and the
exponential hash functions create nearly uniform data distributions when given a
uniformly distributed probe starting point�
In a second entropy test� both hash functions were tested using a limited probe

starting interval� Speci�cally� a table again of size ��	
 was tested with ���� probes
sequences each of length ��� In this case� however� the starting location for the probe
sequences was limited to the �rst �� of the domain� This simulates a data cluster
located in the �rst �� of the data space� The results are presented in Table II�
As expected� the hash functions do not perform as well from a limited starting
point� For both hash functions� the entropy is signi�cantly lower than the random
or theoretical maximal entropy� Furthermore� the entropy for the exponential hash
function is signi�cantly higher than that of the double hash function� This re�ects
the exponential function�s higher Lyapunov exponent for initial probe sequences�
and the fact that the exponential function does a better job of uniformly distributing
probes during initial probe sequences� We will see that this di�erence is re�ected



Exponential Hashing � ��

Function Entropy

Theoretical ������

Random Num Gen ������

Double Hash �����

Exponential Hash �	�
��

Table II� Entropy comparison for clustered probe sequences�

in better exponential hash function performance on clustered data in the next set
of experiments�

��� Direct Hash Table Measurements

In this set of experiments� all trial runs involved creating two empty hash tables of
the same size� Source code for the �ve experiments presented here is available in
the hash�c �le� Elements chosen at random from the data distributions described
below were successively inserted into a hash table to achieve a load factor of ����
The measure of merit was the average number of probes required per element
inserted� For example� if k elements take a total of m probes� the average probes
per element is simply m�k� Samples of this measure were taken every �� of the
table load factor� from �� to ���� in order to determine the behavior as load factor
increased�
Five experiments are presented here� each compares the double hashing function

in equation �	
� with exponential hashing� equation �	��� The experiments are as
follows


�	� Uniform data distribution over the entire table size � To show that the expo�
nential and double hash functions have statistically equivalent performance for
uniformly distributed random initial probes�

�
� Clustered data distribution � To demonstrate improved performance of the
exponential hash function over the double hash function for tightly clustered
initial probes�

��� Variation of cluster size � To demonstrate the sensitivity of the exponential
hash function to the size of the initial probe cluster�

��� Variation of table size with �xed percentage initial probe cluster � To demon�
strate the sensitivity of the exponential hash function to the table size using a
�xed initial probe cluster size�

��� Variation of initial probe cluster location � To demonstrate the sensitivity of
the double hash function to the location of the initial probes�

��� Uniform Data Distribution

The control case for this analysis was a series of runs performed on a uniform initial
probe distribution with a �xed table size� Two tables of equal size were created
and �lled to ��� capacity� one using the double hash function and the other using
the exponential hash function� The test was repeated 	�� times using a di�erent
random number seed for each run to determine if any statistical di�erence in total
number of probes to �ll the table could be detected� A table size of ��
� was
used for these runs� The source code for this experiment is available in the Test	��



�� � Smith� Heileman� and Abdallah

Measure Double Exponential � Di�

Total Probes ������� ������� ���	


Avg Probes Per Run ����� ����� ���	


Std Deviation ����� ����� �����


Table III� Uniform data comparison�

function of the hash�c �le� One iteration of this experiment can be performed
interactively using the java applet by setting the data cluster size to ���� and
the table size to ����� A summary of the results is presented in Table III�
With ��� runs� no statistically signi�cant di	erence in performance could be

detected� The di	erence in total number of probes between the two functions is only
��
��� which is signi�cantly less than the ������ standard deviation as measured
between runs of the same hash function� This indicates that the exponential and
double hash functions are statistically equivalent for randomly chosen uniformly
distributed initial keys�

��� Clustered Data Distribution

The second experiment involved clustering the initial keys over a subinterval of
the total table size� in an attempt to simulate a dense key cluster� The dense
data cluster represents many real world data sets where data is far from evenly
distributed� A table size of p 
 ���� was chosen� and all of the data was chosen at
random from a single data cluster of approximately ��� elements from the beginning
of the data space� Samples of the average number of probes per data element were
taken for every �� of table size� up to a total table load of ���� The source code
used in this experiment is available in the Test��� function of the hash�c �le� This
experiment can be performed interactively using the java applet by setting the
data cluster size to ��� and the table size to ����� The results are summarized
in �gure �� Clearly the exponential hash function outperforms the double hash
function in these experiments�

��� Variation of Cluster Size

This experiment was similar to the previous one� but in this case the cluster size
was varied from �� to ��� of the overall table size� Again� identical tables were
created and populated using both the double hash function and the exponential
hash function� Data was taken at random from a cluster of size varying from �� to
��� of the table size� and the average number of probes per element inserted was
sampled for each table to reach ��� capacity� A table size of ���
 elements was
used for all experiments� The source code used in this experiment is available in the
Test��� function of the hash�c �le� This experiment can be performed interactively
using the java applet by repeatedly running with cluster sizes between �� and
��� and a table size of ����� The results� summarized in Figure � show that the
exponential hash function uses far fewer probes than the double hash function�
Furthermore� the relative advantage seems to be larger for more tightly clustered
data�



Exponential Hashing � ��

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Table load factor(%)

Av
er

ag
e 

pr
ob

es
 p

er
 ta

bl
e 

en
try

Average probe length vs Table Load Factor

Double Hash

Exponential Hash

Fig� �� Average number of probes versus table load factor for the double and exponential hash

functions�

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 105

Cluster size as % of table size

To
ta

l p
ro

be
s

Total Probes vs Cluster Size

Double Hash

Exponential Hash

Fig� �� Total probes versus cluster size at ��� table load�



�� � Smith� Heileman� and Abdallah

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4

5

6
x 105

Table size

To
ta

l p
ro

be
s

Total probes vs Table Size

Double Hash

Exponential Hash

Fig� �� Total probes versus table size at ��� table load�

��� Variation of Table Size

The next experiment varied the table size in order to determine if it had any e�ect
on the relative performance of the two hash functions� Hash tables were created
with between roughly ���� entries up to roughly ��� ��� entries� and �lled to 	�

capacity using the double and exponential hash functions� The results of this
experiment are summarized in Figure �� The source code used in this experiment
is available in the Test�
� function of the hash�c �le� This experiment can be
performed interactively using the java applet by adjusting the table size repeatedly
to compare performance� The exponential hash function performed better for all
table sizes� and table size appeared to have little e�ect on the relative outcome�

��� Variation of Cluster Location

For the �nal experiment� the location of the cluster in the hash table was varied
to determine its e�ect on hash function performance� A cluster of size equal to
�
 of the table size was used for this experiment� and its location was varied
from the �rst �
 to the last �
 of the table in �
 increments� A table size of
���� was used� and the total number of probes required to �ll the table to 	�

of capacity was repeatedly determined for each cluster location� The source code
used in this experiment is available in the Test�
� function of the hash�c �le� This
experiment can be performed interactively using the java applet by adjusting the
cluster location performance to view the changes in performance as cluster position
is moved� The results are summarized in Figure ��
Surprisingly� the double hashing function showed a periodic dependence on clus�

ter location� Data clusters located at the beginning� middle or end of the table led
to the largest number of probes� while clusters in between these locations showed



Exponential Hashing � ��

0 10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10
x 104

Cluster Location

To
ta

l p
ro

be
s

Total probes vs Cluster Location

Double Hash

Exponential Hash

Fig� �� Total probes versus initial probe cluster location at ��� table load�

a much better behavior� The exponential hash function showed much more con�
sistent behavior� with a statistically �at response to cluster location� The reason
for the double hash dependence on cluster location has not been fully explored�
and is a topic for future research� The shape and periodicity of the curve does�
however� seem to indicate some kind of harmonic behavior� Our current theory is
that the ih��k� term in the double hash function may lead to poor performance if
the value h��k� is the divisor of a number close to the table size p for small values of
i� Preliminary results using other functions for h��k� and h��k� indicate that they
too have some cluster locations which lead to poor performance� suggesting that
this problem may be inherent in double hashing� In any case� these results con�rm
that the exponential hash function is a better choice for clustered data� since its
performance is consistent for all cluster locations�

�� CONCLUSIONS

The results presented here indicate a new relationship between chaos theory and
open address hash function performance� Results indicate that the proposed expo�
nential hash function outperforms double hashing for some clustered data distri�
butions� and performs as well for uniform data distributions� These results were
con�rmed using Lyapunov and entropy analyses� as well as actual measured per�
formance� A number of avenues for future research are open� It is likely that
other measures from nonlinear systems theory can be applied to hash functions�
and may also provide additional indicators of hash function performance� possibly
leading to further improvements in the exponential open hash function presented
here� Furthermore� it may be possible to apply chaotic measures to other hash func�
tion applications� such as cryptographic signature veri�cation� to detect undesirable
hash function characteristics�



�� � Smith� Heileman� and Abdallah

REFERENCES

Heileman� G� L� ����� Data Structures� Algorithms and Object�oriented Programming�

McGraw�Hill� New York� NY�

Heileman� G� L�� Abdallah� C�� Hush� D� R�� and Baglio� S� ����� Chaotic probe strategies

in open address hashing� In Proceedings of International Symposium on Nonlinear Theory

and its Applications� pp� ��	�
��		�

Knuth� D� E� ����� The Art of Computer Programming� Volume �� Addison�Wesley Publishing

Co�

Peitgen� H��O�� J�urgens� H�� and Saupe� D� ����� Chaos and Fractals� New Frontiers of

Science� Springer�Verlag� New York�

Peterson� W� W� ��
�� Addressing for random access storage� IBM Journal of Research and

Development �� �� ���
����

Shannon� C� E� ���	� A mathematical theory of communication� Bell Systems Technical Jour�

nal ��� ���
����

Stinson� D� ���
� Cryptography Theory and Practice� CRC Press� Boca Raton� FL�


	University of New Mexico
	UNM Digital Repository
	4-12-2012

	An exponential open hashing function based on dynamical systems theory
	Chaouki T. Abdallah
	Bradley J. Smith
	Gregory L. Heileman
	Recommended Citation


	10.1.1.55.9223[1].pdf

