
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

8-25-2016

Analysis of Performance and Power Aspects of
Hypervisors in Soft Real-Time Embedded Systems
John Guthrie

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Guthrie, John. "Analysis of Performance and Power Aspects of Hypervisors in Soft Real-Time Embedded Systems." (2016).
https://digitalrepository.unm.edu/ece_etds/108

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/108?utm_source=digitalrepository.unm.edu%2Fece_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i
 John Guthrie
 Candidate Electrical and Computer Engineering
 Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Dr. Gregory Heileman, Chairperson Dr. Chris Lamb Dr. Wennie Shu

ii

ANALYSIS OF PERFORMANCE AND POWER
ASPECTS OF HYPERVISORS IN SOFT REAL-TIME

EMBEDDED SYSTEMS

by

JOHN GUTHRIE
B.S., ELECTRICAL ENGINEERING, UNIVERSITY OF

CALIFORNIA DAVIS, 2013

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science
Computer Engineering

The University of New Mexico
Albuquerque, New Mexico

July, 2016

iii

DEDICATION

I would like to dedicate this thesis to my father, mother and my two brothers for

supporting me throughout my education and my life. Their encouragement enabled me to
reach farther than I would have dreamed of. My father especially stressed the importance
of higher education and this thesis is the result of his persuasion to keep at it.

I would also like to dedicate this to my fiancé, Helen Rickey, for supporting me

throughout graduate school and putting up with evenings of me busy with classes and this
thesis effort. Her encouragement and love helped me carry through one of the toughest
challenges of my life.

iv
ACKNOWLEDGEMENTS

I heartily acknowledge Dr. Gregory Heileman, my advisor and thesis chair, for
supporting me through my thesis experiments and the review of my experiments and
thesis. His guidance will help me throughout my professional career.

I also thank my committee members, Dr. Lamb and Dr. Shu, for their assistance
in this technical study and assistance in my professional development. An extra thanks
goes to Dr. Lamb for working personally with me to ensure that my technical
experiments and thesis were of professional quality.

Gratitude is extended to the Air Force Research Laboratory for the funding to
pursue the research and their professional guidance. Finally, I thank Mr. Calvin Roman,
whose support and professional guidance helped make this thesis a reality.

v
ANALYSIS OF PERFORMANCE AND POWER

ASPECTS OF HYPERVISORS IN SOFT REAL-TIME
EMBEDDED SYSTEMS

by

John Guthrie

B.S., Electrical Engineering, University of California Davis, 2013

M.S., Computer Engineering, University of New Mexico, 2016
ABSTRACT

The exponential growth of malware designed to attack soft real-time embedded
systems has necessitated solutions to secure these systems. Hypervisors are a solution,
but the overhead imposed by them needs to be quantitatively understood. Experiments
were conducted to quantify the overhead hypervisors impose on soft real-time embedded
systems. A soft real-time computer vision algorithm was executed, with average and
worst-case execution times measured as well as the average power consumption. These
experiments were conducted with two hypervisors and a control configuration. The
experiments showed that each hypervisor imposed differing amounts of overhead, with
one achieving near native performance and the other noticeably impacting the
performance of the system.

vi
TABLE OF CONTENTS

Chapter 1: Introduction ... 1
1.1 Introduction ... 1
1.2 Motivation .. 2
1.3 Thesis Outline ... 2

Chapter 2: Background .. 4
2.1 Real-time systems ... 4
2.2 Virtualization/Hypervisors ... 4

2.2.1 Type-1 (bare-metal) hypervisor .. 5
2.2.2 Type-2 (hosted) hypervisor .. 5

2.2.2.1 Example: A Bare-Metal Hypervisor Implementation ... 5
2.3 Virtualization Challenges and Implementation Schemes .. 6

2.3.1 Full Virtualization .. 7
2.3.2 Paravirtualization .. 8
2.3.3 Hardware Assisted Virtualization .. 9
2.3.4 Balancing Features and Security Hardness .. 10

Chapter 3: Review of Related Literature ... 11
Chapter 4: Methodology .. 17

4.1 Configuration of Software and Hardware ... 17
4.1.1 Hardware Specifications ... 18
4.1.2 Software Specifications .. 20

4.2 Procedure .. 22
Chapter 5: Results .. 25

5.1 Average execution time and average frames per second ... 25
5.1.1 Control Results.. 25
5.1.2 Docker Results .. 27
5.1.3 KVM Results .. 30

vii
5.2 Worst-case execution time and frames per second ... 34

5.2.1 Control Results.. 35
5.2.2 Docker Results .. 37
5.2.3 KVM Results .. 39

5.3 Average Power Consumption Results ... 43
Chapter 6: Discussion ... 48

6.1 Summary of Results .. 48
6.2 Discussion of the Results .. 49

6.2.1 Performance Metrics Discussion .. 49
6.2.2 Power Discussion .. 54

6.3 Limitations of the Experiments .. 55
6.4 Implications for Future Research .. 56
6.5 Conclusions .. 57

References .. 58

viii
LIST OF FIGURES

Figure 1: A bare-metal hypervisor implementation ... 6
Figure 2: The MinnowBoard Max development board used in the experiments 19
Figure 3: The peripherals used in the experiments, from left to right:C310 Logitech
webcam, Fujitsu hard drive, power meter, two USB root hubs ... 20
Figure 4: The software stack for each of the three tested configurations 22
Figure 5: Graph plotting average execution time for a given resolution using the
control configuration ... 27
Figure 6: Graph plotting average frames per second for a given resolution using the
control configuration ... 27
Figure 7: Graph plotting average execution time for a given resolution using the
Docker configuration .. 30
Figure 8: Graph plotting average frames per second for a given resolution using the
Docker configuration .. 30
Figure 9: Graph plotting average execution time for a given resolution using the KVM
configuration ... 33
Figure 10: Graph plotting average frames per second for a given resolution using the
KVM configuration .. 33
Figure 11: Average execution time for all three configurations .. 34
Figure 12: Average frames per second for all three configurations 34
Figure 13: Graph plotting worst-case execution time for a given resolution using the
control configuration ... 36
Figure 14: Graph plotting worst-case frames per second for a given resolution using
the control configuration .. 37
Figure 15: Graph plotting worst-case execution time for a given resolution using the
Docker configuration .. 39
Figure 16: Graph plotting worst-case frames per second for a given resolution using
the Docker configuration .. 39
Figure 17: Graph plotting worst-case execution time for a given resolution using the
KVM configuration .. 42
Figure 18: Graph plotting worst-case frames per second for a given resolution using
the KVM configuration ... 42
Figure 19: Worst-case execution time for all three configurations 43
Figure 20: Worst-case frames per second for all three configurations 43
Figure 21: Graph plotting average power consumption for a given resolution using
the KVM configuration ... 46
Figure 22: Graph plotting average power consumption for a given resolution using
the control configuration .. 46

ix
Figure 23: Graph plotting average power consumption for a given resolution using
the Docker configuration .. 47
Figure 24: Average power consumption for all three configurations 47

x
LIST OF TABLES

Table 1: The average execution time and average frames per second for a given
resolution using the control configuration .. 26
Table 2: The average execution time and average frames per second for a given
resolution using the Docker configuration .. 29
Table 3: The average execution time and average frames per second for a given
resolution using the KVM configuration ... 32
Table 4: The worst-case execution time and frames per second for a given resolution
using the control configuration .. 36
Table 5: The worst-case execution time and frames per second for a given resolution
using the Docker configuration .. 38
Table 6: The worst-case execution time and frames per second for a given resolution
using the KVM configuration ... 41
Table 7: The average power for a given resolution using the KVM, Docker, and control
configurations ... 45

1
Chapter 1

Introduction

1.1 Introduction
The embedded systems industry has grown exponentially in the last 20 years. The

application of embedded systems varies widely from the aerospace and automotive
industries to cellular phones and other mobile devices that consumers use on a daily
basis. The applications have been just as diverse, from providing pilots and drivers
information about the status of their systems to providing internet capabilities to
consumers away from their computers at home. In many cases, the functionality of these
systems is based on real-time capabilities in which algorithms must perform under a
specified time constraint. Failure to meet these real-time requirements can result in a
variety of adverse effects. One of the more mild consequences is degradation in the
performance of the embedded system. On the other end of the spectrum, failure to meet
real-time constraints can result in a catastrophic failure of the system. Meeting timing
constraints is a must for real-time systems.

 Complicating matters further is the reality that security threats to embedded
systems have become more commonplace, with the rate of “malware strains discovered
increas(ing) by 77 percent in 2014” (Chickowski). By exploiting security vulnerabilities,
attackers have become more skilled at conducting attacks ranging from Denial of Service
attacks to stealing data. This has driven the need to cyber-harden embedded systems,
often resulting in performance reductions due to the overhead imposed by security
solutions. This thesis focuses on one kind of security solution, the hypervisor. This
thesis will also focus what quantifiable effects hypervisors have on performance for real-

2
time embedded systems and if it is worthwhile to use hypervisors, which exchanges
overhead for application isolation, process segregation, and other security benefits.

1.2 Motivation
Quantifying the performance drawbacks of hypervisors is important because

knowing exactly what a hypervisor brings to an embedded system and what performance
overhead it imposes allows for the usage of trade studies to determine which software
environments may benefit from these virtualization schemes. Not all software
environments need to be protected; blind implementation of security schemes results in
unnecessary computing overhead. Careful analysis needs to be made to see which parts
of an embedded system are critical to the success of the embedded environment, whether
it is needed for critical operations or its compromise would result in a failure of the
embedded system’s functionality. By enabling this analysis, embedded systems can
succeed at protecting critical information in exchange for minimal overhead.

1.3 Thesis Outline
The rest of this thesis will be presented in the following manner. Chapter 2 will

present background information concerning real-time systems and virtualization and
hypervisors. Chapter 3 will present a review of related literature of how researchers are
improving hypervisors to support real-time capabilities. Chapter 4 will present the
methodology for conducting controlled experiments to characterize the performance
overhead imposed by hypervisors. The experiments will use a control set-up and two
different hypervisors to conduct the experiments. Chapter 5 will present the results of the

3
experiments. Finally, chapter 6 will be a discussion of the results, limitations of the
study, and how the study could be used for future research.

4
Chapter 2

Background

2.1 Real-time systems
A real-time system is a system “that functions within a time frame” that is

considered “immediate or current” (Rouse). The performance of the system is measured
by its ability to perform continuous operations, with certain actions occurring before a
pre-specified latency. This latency, known as the worst-case execution time (WCET),
determines whether the system is real-time or not. Real-time systems can be further
categorized into either soft real-time or hard real-time. With a soft real-time system, if
the execution time of an algorithm exceeds the WCET, the system is able to continue
operating. The system will suffer performance penalties, such as degraded operation, but
the system can continue to function. Hard real-time, on the other hand, will experience a
system failure if the WCET is not met. Steps must be taken to put the system back to
normal operation, such as a system reset.

2.2 Virtualization/Hypervisors
 The terms “hypervisor” and “virtualization” can refer to many different
implementations and schemes for abstracting software and services from the underlying
physical resources. In this thesis, we use the term “virtualization” to discuss the
technique or act of hardware/resource abstraction, while we use “hypervisor” to refer to a
product that supplies virtualization. Virtualization involves adding a software layer
somewhere above the firmware on the software stack. The hypervisor acts as a mediator
between the OS layer and the firmware layer. This allows multiple virtual environments,

5
called virtual machines (VMs), to share a hardware pool. Virtualization is used for a
variety of purposes, such as supporting multiple OSs on a single hardware host and
enhancing resilience through logical segregation and/or geographic separation.
Virtualization can be implemented using a type-1 or type-2 hypervisor.

2.2.1 Type-1 (bare-metal) hypervisor
A type-1 hypervisor has the virtualization layer reside below the operating

system. The hypervisor lies above the firmware layer and interacts with traffic coming
from the above software stack down to the hardware. Because of this, the hypervisor
runs in a “privileged” status and takes control of the hardware instead of the software
above it. If the hypervisor deems that an incoming hardware instruction is “privileged,”
meaning that the instruction would execute assuming it has exclusive access to the
hardware, the hypervisor will trap the instruction and execute the instruction instead,
allocating hardware resources to the caller as necessary (VMware Inc.).

2.2.2 Type-2 (hosted) hypervisor
A type-2 hypervisor executes similarly to a type-1 hypervisor, except that the

hypervisor runs above a host operating system layer instead of below it. To the host
operating system, the hypervisor looks like another application running on the system.
The hypervisor can then launch operating systems above it that have to go through the
hypervisor in order to access hardware resources (VMware Inc.).

2.2.2.1 Example: A Bare-Metal Hypervisor Implementation
 A Type 1 hypervisor implementation involves inserting the hypervisor between

the OS layer and the hardware layer. The OS and user applications are instantiated above
the hypervisor, providing isolation from the underlying hardware. As in normal

6
computing systems, the applications interact with the OS and with other applications.
However, instead of the OS being able to make direct calls to memory and the CPU,
hardware requests now flow to the hypervisor. This design ensures that the hypervisor
enforces proper behavior in the OS and the applications above the OS. In addition, if a
request acts contrary to protocol, the hypervisor can intervene and block the OS from
accessing the hardware. Figure 1 illustrates a bare-metal hypervisor implementation.

FIGURE 1: A BARE-METAL HYPERVISOR IMPLEMENTATION

2.3 Virtualization Challenges and Implementation Schemes
 With a virtualization layer, multiple OSs running in separate virtual machines
(VM) may run concurrently while the virtualization layer dynamically allocates hardware
resources to each VM. These VMs are logically segregated from other VMs in the

7
system. Virtualization can provide functional and security benefits to systems. With
virtualization, hardware resources can be allocated more efficiently to multiple VMs.
Unused hardware resources can be parsed to other VMs instead of being distributed
statically to VMs that have the potential to be wasted. However, this hardware resource
distribution comes with an overhead cost that impacts execution time of the system. This
is a critical cost that will become important when looking at real-time systems.
Virtualization’s main security benefits are achieved via isolation and abstraction.
Through isolation, exposure to other parts of the system is reduced, limiting the ability
for malware to maneuver in the system. Virtualization adds an additional layer of
abstraction, limiting direct access to the system’s hardware and in turn inhibiting
malware’s ease of influencing other components. On the other hand, introducing a new
layer poses the risk of increasing the attack surface of the system. The hypervisor needs
to be implemented so that only essential actions can occur in the operation of
hypervisors, reducing the hypervisor’s attack surface. Another problem with this
abstraction stems from the fact that OSs in these virtual machines assume that they have
exclusive access to hardware resources, which makes translating OS calls with the
virtualization layer in place a non-trivial task. To solve this problem, “full
virtualization,” “paravirtualization,” and “hardware assisted virtualization”
implementations have been used to successfully “virtualize” privileged instructions.

 2.3.1 Full Virtualization
 Full virtualization involves the virtualization layer translating virtual machine

privileged instructions to a new set of instructions that achieve the same effect in the
computer hardware. By doing this, the virtual machines are completely decoupled from

8
the hardware layer, with only the virtualization layer communicating with the hardware.
The OSs do not need to be modified in order to be placed in a virtual machine and have
no knowledge of virtual machines outside of its own. Full virtualization allows for a high
degree of isolation among virtual machines. Virtual machines are unaware of other guest
virtual machines, and the virtual machines are isolated from the hardware. Operating
systems are also highly portable. Because the hypervisor does all the virtualization,
operating systems can run normally and let the hypervisor trap sensitive instructions. On
the other hand, full virtualization creates overhead that may hinder the performance of the
system. Since extra work is necessary to virtualize sensitive instructions, the hypervisor
will need extra time to execute privileged instructions, possibly reducing performance. In
addition, the hypervisor will need to support various operating systems. If it needs to
support multiple operating systems, this will increase the cost of developing a hypervisor.

2.3.2 Paravirtualization
 Paravirtualization, on the other hand, enlists the help of the virtual machines in

translating calls to virtual instructions. The OS inside the virtual machine is modified so
that it replaces privileged instructions to calls that communicate directly with the
virtualization layer without need for translation. Because of these calls, the virtual
machine is aware of the virtualization layer and bears some of the workload in
virtualizing instructions. Paravirtualization allows for the easy modification of current
operating systems to work with the hypervisor. This allows for a short development time
for hypervisors that need to support multiple guest operating systems. In addition,
because the guest virtual machines assist in virtualizing privileged instructions, the
imposed overhead can be potentially small. This overhead will depend on how

9
paravirtualization is implemented and the workload of the embedded system. A possible
disadvantage to this virtualization scheme is that the modified operating systems are
aware of the hypervisor. This lowers isolation between the hypervisor and guest virtual
machines, which could be exploited by hackers to compromise the security of the
virtualization scheme. In addition, operating systems need to be modified to work in a
paravirtualization scheme. This means unmodified operating systems are not supported
as is, and maintainability issues are introduced to the operating systems due to modified
operating systems behaving differently than what is supported by operating system
suppliers.

 2.3.3 Hardware Assisted Virtualization
This technique incorporates the use of the hardware itself to create the

virtualization environment. The hardware is specifically designed to have the hardware
create a custom, privileged root mode where the hypervisor resides. This hypervisor can
operate below the operating system software level. With the help of the hardware,
privileged and sensitive instructions are automatically trapped to the hypervisor,
removing the need for a software-based solution (VMware Inc.). Hardware assisted
virtualization has the advantage of simplifying virtualization for software due to using
what is prebuilt in the hardware. This allows software to dedicate resources to other tasks
and let hardware handle the virtualization portion. On the other hand, it has the
disadvantage of being only available to newer hardware. Hardware must be specifically
designed to handle virtualization, which has only been commonly designed in hardware
for the last ten years. This results in hardware virtualization being incompatible with
legacy systems.

10
2.3.4 Balancing Features and Security Hardness

 When implementing virtualization, careful consideration needs to be made in the
complexity of the tool. Adding more software features that virtualization can support can
improve the functionality of the system, but at the cost of increasing the complexity and
attack surface area of the overall system. On the other hand, implementing virtualization
that is minimally sized for the system will limit system functions in its design, but will
reduce the attack surface area of the system. This enables the hypervisor to use a simpler
process in proving that the system is acting as it should be without malicious interference.
For security purposes, the virtualization implementation should only support what is
critical to the system so as to maximize the security benefits of virtualization.

11
Chapter 3

Review of Related Literature

This chapter summarizes a literature review of research done in virtualization and
hypervisors. Each paper will be summarized, with the main points relevant to this thesis
emphasized. The literature focused on ways to analyze the performance of hypervisors as
well as introducing new ways to implement virtualization schemes.

Hwang et al. (Hwang, Suh and Heo) explored putting the Xen bare-metal
hypervisor on a mobile phone environment. They modified the phone to enable Xen
3.0.2 to run on an ARM environment. They conducted their performance benchmark
using LMBENCH, which evaluated timing of basic system operations under differing
workloads. They also explored what happened when multiple virtual machines were
running at once. Finally, they did macro benchmarks by conducting common phone
operations, such as loading time and image saving time. The paper concluded that for
some micro benchmarks, there was some moderate overhead, while the macro operations
did not see much overhead difficulties.

Xi et al. (Xi, Wilson and Lu) presented RT-Xen, which they toted as “the first
hierarchical real-time scheduling for Xen”. The paper presented 4 new schedulers that
emulated real-time. The VCPUs were identified by budget, period and priority
parameters and bucketed them in a ReadyQueue, a RunQueue, and ReplenishQueue. The
paper then evaluated the performance of the schedulers by evaluating how many tasks
failed to finish in time depending on varying scheduling compared quantum and
compared how the overhead differed. This was measured in terms of scheduling latency
and context switching. The paper concluded that the Deferrable Server delivered better

12
soft real-time performance than the other server algorithms, while the Periodic Server
incurred high deadline miss ratios in overloaded situations.

Avanzini et al. (Avanzini, Valente and Faggioli) explored implementing a dual
OS on the Xen hypervisor, one being Linux and the other being ERIKA, a RTOS. The
idea was to have ERIKA handle the real-time, safety critical tasks while Linux handled
the bulk of the non-safety critical tasks. The paper outlined its implementation scheme
and ended the paper with a set of tests that will demo the end result at a later date.

Jing et al. (Jing, Guan and Yi) proposed a model for controlling shared memory
accesses using the Xen hypervisor. This will improve the timing predictability of real-
time applications. The monitoring process was implemented using the Performance
Monitoring unit in the processor to budget a set number of memory accesses. If it goes
over the budget, the PMU suspends the VM. The results showed that the execution time
was kept low and stable regardless of memory access behavior, while memory access
throttling stabilized the timing of the experiments but at the cost of average performance.

Yu et al. (Yu, Xia and Lin) explored modifications to the Credit Scheduler in the
Xen hypervisor. They noticed that real-time operations were not distinguished from
other operations, resulting in poor real-time performance. They tried to solve this by
adding in real-time priority so that it goes to the head of the queue and when the
processor goes into boost mode, real-time events jump to the front. In addition, they
incorporated guest balancing for multiple real-time guests. The results showed that their
enhancements improved the real-time performance of Xen by about 20%.

Cherkasova et al. (Ludmila Cherkasova) examined the three CPU schedulers in
Xen in terms of performance. The three schedulers were Borrowed Virtual Time, Simple

13
Earliest Deadline First, and Credit. They used XenMon to analyze SEDF, which showed
that Dom0 has a high overhead on I/O applications. They also conducted experiments
using Iperf and Disk tests. They also incorporated Allocation Error Test to see if CPU
resources were allocated correctly, which showed as much as 10% error. Through other
tests, they concluded that Credit is the best for global balancing.

Masmano et al. (M. Masmano) explored the capabilities of XtratuM, which they
described as a “bare hypervisor that uses paravirtualization”. They based their
performance evaluation on partition context switching time and measuring the cost of
hypercalls, which they measured in microseconds. They evaluated the performance
overhead imposed by XtratuM and concluded that the overhead was lower than 3% if the
slot duration was higher than 1 millisecond.

Habib (Habib, Virtualization with KVM) introduced KVM, a hypervisor that used
hardware-based virtualization to create virtual machines. It integrated hypervisor
capabilities into the Linux kernel. This allowed the virtualized environment to
incorporate work into the Linux kernel. It also used the QEMU emulator to provide a
user-space and incorporate its effective I/O model. KVM was relatively small because it
does not have to make its own kernel protocols, avoiding the complexity of Xen and
VMware. Results showed that KVM allowed native execution using the KVM kernel for
non-critical tasks while effectively isolating the other critical parts of the system.

Bruns et al. (Bruns, Traboulsi and Szczesny) investigated the performance of
implementing a real-time operating system (RTOS) with a hypervisor (L4/Fiasco). They
measured the performance by comparing system latencies with the RTOS without a
hypervisor installed. In addition, they looked at hardware interrupts and analyzed their

14
impacts on real-time requirements. Results found that the average execution time
increased between 30 to 50 percent when cache contention was imposed on the
hypervisor as well as a higher variation of execution times.

Zhang et al. (Zhang, Chen and Zuo) investigated using a Kernel-Based Virtual
Machine (KVM), which combined both Linux and VxWorks into a real-time operating
system (RTOS). This unique virtualization took advantage of common Linux resources,
but with added virtualization capabilities. The paper summarized their design and
commented on the real-time performance analysis the RTOS had on the base system.
They realized there were “harmful workloads,” so they used real-time tunings such as
prioritization and CPU shielding to lower down the latencies of these use cases. They
evaluated these experiments and displayed their results, which achieved sub millesecond
latency for harmful workloads.

Asberg et al. (Asberg, Forsberg and Nolte) proposed a type-2 hypervisor that did
not require kernels running above it to be modified. This allowed real-time scheduling to
be conducted. The paper proposed to have in the host kernel a RESCH core, so that it
could support real-time task support. Their preliminary testing showed lower overhead
than the KVM hypervisor and looked to conduct more experiments in the future.

Soltesz et al. (Soltesz, Pötzl and Fiuczynski) explained Container-based Operating
System Virtualization. This virtualization runs on top of a host kernel and efficiently
allocates host resources amongst “containers,” which are separate instances of the kernel.
This contrasts significantly from hypervisors because there only needs to be one host,
rather than have a host run the hypervisor and each VM below run their own separate
operating system and resources. The upside to this new technique is the fact that

15
significant amount of resources are saved due to saving on overhead. On the other hand,
it does not support multiple operating systems running on the machine and it still needs a
host kernel to run it, which remains exposed, since the containers run below the host
kernel.

Xavier et al. (Xavier, Neves and Rossi) explored using container-based
virtualization in high performance computing. They did a number of test comparing
containers to the Xen hypervisor. Their experiments showed that container-based
virtualization achieves performance close to native performance, while the Xen
environment has a considerable amount of overhead of 4.3%. However, the paper
admitted that this container-based virtualization shared a lot of common resources, hence
lowering the security of the entire system.

Masrur et al. (Masrur, Pfeuffer and Geier) proposed a technical approach to
designing a fixed-priority real-time scheduler for VMs in order to meet all real-time
deadlines. They determined that the period of the VMs was determined by the minimum
that needed to be scheduled on that VM. They also concluded from their experiments
that response time improved when only one task is running on a VM, but memory was
efficiently allocated when multiple tasks were running.

Lee et al. (Lee, Krishnakumar and Krishnan) explored improving the Credit
scheduler in the Xen hypervisor in order to improve real-time task performance. They
sought to improve it through introducing a laxity value given to all tasks. Low values
would indicate a soft real-time task while a high one indicated a non-real time task. In
addition, they introduced workload balancing by balancing CPU time amongst different
real-time tasks so that it was roughly equal among multiple processors. In addition, they

16
introduced an algorithm to maintain cache coherence. Their results illustrated that a
small laxity value improved real-time performance, while a large value had no effect on
the system. Cache coherence results showed that the voice quality increased significantly
compared to the baseline credit scheduler.

17
Chapter 4

 Methodology
This chapter will describe the process to configure and execute the experiments

that will quantify the performance and power consumption of virtualization schemes.
The first section of this chapter goes into detail the configuration of the hardware and
software. The second section details how the experiments themselves were executed and
recorded.
4.1 Configuration of Software and Hardware
 The experimental hardware and software was selected based on the following
characteristics. The system will be soft real-time, able to operate at limited capability if
deadlines are not met. The soft real-time system in question will be assumed to operate in
a varied physical environment, running on a limited source of power. It would operate
for long periods of time without easy access to maintenance resources, making hardware
and software reliability a must. In addition, it would have stringent space requirements
for the design of its system, motivating a need to choose a solution that gets the most
processing power in relation to its power and space requirements. The security
requirements of the system would depend on what kind of operations the system would
conduct. In summary, the emulated system will need to need to be reliable for long
periods of time, have soft real-time requirements for its operation, have flexible security
requirements depending on its usage, and have restrictive power and space requirements
with the goal to maximize the processing capability of the system while meeting these
space and power requirements. With the above system specifications in mind, the first

18
subsection will go into more detail the hardware specifications of the experiments, while
the second subsection will delve into the software specifications of the experiments.
4.1.1 Hardware Specifications

The hardware selected for the emulated system consists of the following parts.
The processing unit is a MinnowBoard MAX development board. Its CPU is an E3825
dual-core processing unit with 1.33 GHz of processing power each. Its GPU features
integrated Intel HD Graphics which can be displayed via interface with the micro HDMI
connector on the board. Each core has 1 GB of DDR3 RAM. Audio is also outputted
from the board via HDMI. The other I/O ports on the board are a micro SD port, 1
SATA2 port, 1 USB 3.0 port, 1 USB 2.0 port, 1 serial debug port, and an Ethernet port.
Other notable features include it being only 99x74mm, an operating temperature range of
0-70 degrees C, it needing to be powered with a 5 V DC source, and the capability to host
a Linux operating system. The development board is shown below in Figure 3.

19

FIGURE 2: THE MINNOWBOARD MAX DEVELOPMENT BOARD USED IN THE EXPERIMENTS
Other peripherals are connected to the MinnowBoard MAX development board.

2 USB root hubs are connected to the two USB ports in the board. In one of these root
hubs, a Fujitsu 250 GB hard drive is connected via a Super Top SATA bridge. In the
other root hub, a standard USB keyboard and mouse is attached. Finally, a C310
Logitech webcam is attached. The webcam can support resolutions ranging from
160x120 pixels to 1280x720 pixels. The peripherals to the development board are shown
below in Figure 4.

20

FIGURE 3: THE PERIPHERALS USED IN THE EXPERIMENTS, FROM LEFT TO RIGHT: C310
LOGITECH WEBCAM, FUJITSU HARD DRIVE, POWER METER, TWO USB ROOT HUBS

4.1.2 Software Specifications
The software specifications of the emulated system are broken up into three

separate implementations. They all share some common software but with differing
layers in their respective stacks. Common to each stack is the firmware layer, operating
system layer, and application layer. These layers will first be described then the
implementation of each software stack will be explained. The firmware layer is at the
bottom of each stack. It is unmodified and takes care of communication between
software and hardware. The operating system layer contains Ubuntu 14.04, a popular
Linux-based operating system. Ubuntu is installed with typical packages essential for its
functionality such as build-essential. In addition, packages necessary for the software in
the application layer above it are installed here. Ubuntu’s desktop environment is
replaced with XFDE, a light-weight desktop, in order to minimize the impact of desktop
functionality on the program. The application layer contains two pieces of software,

21
OpenCV and cvBlob. OpenCV is a library of functions geared toward executing real-
time computer vision. Its features range from image processing to motion tracking.
CvBlob is a program that executes real-time tracking of red objects using a webcam
connected to the board. It puts forward a hardware resource request to retrieve a captured
picture from the webcam, analyzes the image for a red object, draws a square around the
object if found, and displays the image on the screen. It will continue displaying a stream
of images dictated by the webcam’s framerate until the user terminates the program.
CvBlob heavily borrows from the functionality of OpenCV to complete its computing
tasks. This application was chosen due to the persistent privileged hardware requests the
application makes to the web camera, creating a workload that can stress implemented
hypervisors. With the common software in each software stack explained, the specific
ordering of each stack will be explained.

The software stacks of the control configuration, KVM configuration, and Docker
configuration differ in distinct ways. The control has the firmware layer at the bottom,
the operating system layer next, and lastly the application layer on top of its stack.
However, the KVM and Docker configuration have an additional layer in their stacks
called the virtualization layer. In this layer lies KVM or Docker, depending on the
configuration. KVM is a type-1 hypervisor which lies between the firmware layer and
the operating system layer. It executes hardware-assisted virtualization to initialize
virtual machines that contain operating system and application layers. On the other hand,
Docker is a lightweight type 2 hypervisor, implementing what is known as container-
based virtualization. It lies between the operating system and application layer. It
initializes light weight virtual machines called containers that contain a variety of

22
software, from applications to operating systems. Docker was chosen as a configuration
because it represents a lightweight type-2 hypervisor, while KVM was chosen to
represent a type-1 hypervisor. This will show the variance of overhead that is possible
when hypervisor solutions are considered. In summary, the KVM software stack is
ordered, from bottom to top, with the firmware layer, the virtualization layer containing
KVM, operating system layer and application layer, while the Docker software stack has
the firmware layer, operating system layer, the virtualization layer containing Docker,
and the application layer from bottom to top. Figure 5 provides an illustration of the
three software stacks.

FIGURE 4: THE SOFTWARE STACK FOR EACH OF THE THREE TESTED CONFIGURATIONS
4.2 Procedure
 The experiments were conducted using the control, KVM, and Docker
configurations. The environment was first set up by plugging the Ethernet cable, HDMI
cable, and USB peripherals into the development board. In particular, the webcam had
its own dedicated USB port for minimal interference, while the external drive, mouse and
keyboard were plugged into a root hub. The board was then powered on using the 5V

23
power supply. Further procedures were a function of which software configuration was
under test.

When KVM was being tested, the Virtual Machine Monitor would be launched
next. Once complete, the KVM virtual machine was initialized, which would launch its
own computing environment. When Docker was being tested, Docker would need to be
initialized. It would start an Ubuntu 14.04 container and finish setting up its own
computing environment. From here, each configuration would execute the following
instructions. The OpenCV library would be modified so that the webcam captured
frames at a particular resolution. This resolution was defined as height and width
variables in the library. These variables were restricted to the webcam’s supported
resolutions. Once the height and width variables were changed to the appropriate values,
the OpenCV library was rebuilt to reflect the new camera resolution. Once complete, the
red object tracking program was recompiled to link the OpenCV library to the program.
Finally, the cvBlob was executed.

The time was measured using a function called rdtsc, an Intel-specific hardware
call that returned the counter of the processor. This resulted in a highly accurate
measurement of the current time of the program in processing cycles. The counter was
recorded before a camera frame was processed and after the frame was processed and
displayed. Five hundred measurements were recorded for the pre-specified camera
resolution to accurately record the steady state of the video stream. The counter values
for the beginning and end of each frame processing were subtracted from each other to
get the difference, and this was divided by the core frequency of a single core to get the
total time of processing an image from the web camera in seconds. This is because the

24
object detection program executed serially, so it was allocated a single core for its
execution. Once the time was determined for each frame, the average of the samples was
calculated to determine the average execution time of processing and displaying one
frame from the web camera for a given frame resolution. The worst-case execution time
was found in the samples by looking for the maximum execution time value. The first 10
frames were thrown out due to the program being in the start-up phase. The average
frames per second value and worst-case frames per second value were calculated by
taking the multiplicative inverse of the average execution time and worst-case execution
time. This was done because the units of execution time are seconds per frame, so to get
frames per second the reciprocal of the execution time was calculated. The power
consumption of each configuration for a given resolution was measured using a Watt
meter. The power supply was plugged into the meter and the power consumption was
displayed in Watts to 100mW resolution. While the program was processing and
displaying frames in a steady state, the average power over 15 seconds of program
execution was recorded. The above steps for recording time and power metrics were
repeated for 17 frame resolutions and for the three experiment configurations for a total
of 25,551 samples. The frame resolutions tested were 160x120, 176x144, 320x176,
320x240, 352x288, 432x240, 544x288, 640x360, 640x480, 752x416, 800x448, 800x600,
864x480, 960x720, 1024x576, 1184x656, and 1280x720 pixels.

25
Chapter 5

Results
This chapter details results obtained from collecting data measuring average

execution time, average frames per second, worst-case execution time, worst-case frames
per second, as well as the average power consumption resulting from the control, Docker,
and KVM configurations.
5.1 Average execution time and average frames per second
 This subsection states the results of average execution time for each configuration
and the average frames per second. It will first list the results using the control
configuration, then the Docker configuration, and finally the KVM configuration.
5.1.1 Control Results

The results were collected with the program processing the frame with the pre-
specified resolution captured from the web camera. The data for the execution time was
plotted using the number of pixels processed as the x-axis and the average execution time
as the y-axis. The data for the frames per second was plotted using the number of pixels
processed as the x-axis and the average frames per second on the y-axis. The data
collected is displayed in Table 1 and the graphs illustrated in Figure 6 and Figure 7. The
data shows that when the resolution is 176x144 and below, the average execution time is
roughly constant at .0337 seconds, but then increases linearly as the number of pixels is
increased. The data also shows that when the resolution is 176x144 and below, the
average frames per second is roughly constant at 29.7 FPS, but then decreases inversely
as the number of pixels is increased.

26
Resolution (Width/Height) Number Pixels Average execution time(s) Average Frames per second

160/120 19200 0.03369689 29.67632918
176/144 25344 0.033739097 29.63920463
320/176 56320 0.046733162 21.3980813
320/240 76800 0.055633007 17.97494067
352/288 101376 0.06647477 15.04330139
432/240 103680 0.067207373 14.87931986
544/288 156672 0.088719267 11.27150881
640/360 230400 0.121937956 8.200891936
640/480 307200 0.154353826 6.478621398
752/416 312832 0.156423007 6.392921471
800/448 358400 0.176856959 5.654286977
800/600 480000 0.22880332 4.370565952
864/480 414720 0.201997386 4.950559113
960/720 691200 0.322712799 3.098730522

1024/576 589824 0.277576639 3.602608647
1184/656 776704 0.36317172 2.753518363
1280/720 921600 0.41673399 2.39961228

TABLE 1: THE AVERAGE EXECUTION TIME AND AVERAGE FRAMES PER SECOND FOR A GIVEN
RESOLUTION USING THE CONTROL CONFIGURATION

27

FIGURE 5: GRAPH PLOTTING AVERAGE EXECUTION TIME FOR A GIVEN RESOLUTION USING
THE CONTROL CONFIGURATION

FIGURE 6: GRAPH PLOTTING AVERAGE FRAMES PER SECOND FOR A GIVEN RESOLUTION USING

THE CONTROL CONFIGURATION

5.1.2 Docker Results

The results were collected with the program processing the frame with the pre-
specified resolution captured from the web camera. The data was plotted using the
number of pixels processed as the x-axis and the average execution time as the y-axis.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0 0.2 0.4 0.6 0.8 1

Time(s)

Number of Pixels (millions)

Average Execution Time, Control

0
5

10
15
20
25
30
35

0 0.2 0.4 0.6 0.8 1

Frames per second

Number of Pixels (millions)

Average Frames per Second, Control

28
The second set of data was plotted using the number of pixels processed as the x-axis and
the average frames per second on the y-axis. The data collected is displayed in Table 2
and the graphs illustrated in Figure 8 and Figure 9. The execution time data shows that
the average execution time increases linearly as the number of pixels is increased. The
frames per second data shows that the average frames per second decreased inversely as
the number of pixels is increased.

29
Resolution (Width/Height) Number Pixels Average execution time (s) Average frames per second

160/120 19200 0.033709 29.66568
176/144 25344 0.038589 25.91442
320/176 56320 0.039757 25.15281
320/240 76800 0.045748 21.85866
352/288 101376 0.055583 17.99127
432/240 103680 0.057194 17.4845
544/288 156672 0.08026 12.45958
640/360 230400 0.112671 8.875374
640/480 307200 0.146043 6.847285
752/416 312832 0.148222 6.74665
800/448 358400 0.168911 5.920281
800/600 480000 0.220982 4.52526
864/480 414720 0.192091 5.205856
960/720 691200 0.311483 3.210447

1024/576 589824 0.267246 3.741867
1184/656 776704 0.352752 2.834849
1280/720 921600 0.408609 2.447325

TABLE 2: THE AVERAGE EXECUTION TIME AND AVERAGE FRAMES PER SECOND FOR A GIVEN
RESOLUTION USING THE DOCKER CONFIGURATION

30

FIGURE 7: GRAPH PLOTTING AVERAGE EXECUTION TIME FOR A GIVEN RESOLUTION USING

THE DOCKER CONFIGURATION

FIGURE 8: GRAPH PLOTTING AVERAGE FRAMES PER SECOND FOR A GIVEN RESOLUTION

USING THE DOCKER CONFIGURATION
5.1.3 KVM Results
The results were collected with the program processing the frame with the pre-specified
resolution captured from the web camera. The data was plotted using the number of
pixels processed as the x-axis and the average execution time as the y-axis. The second
set of data was plotted using the number of pixels processed as the x-axis and the average

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0 0.2 0.4 0.6 0.8 1

Time (s)

Number of Pixels (millions)

Average Execution Time, Docker

0
5

10
15
20
25
30
35

0 0.2 0.4 0.6 0.8 1

Frames per second

Number of Pixels (millions)

Average Frames per Second, Docker

31
frames per second on the y-axis. The data collected is displayed in Table 3 and its graph
illustrated in Figure 10 and Figure 11. The execution time data shows that when the
resolution is 176x144 and below, the average execution time is roughly constant at .0417
seconds, but then increases linearly as the number of pixels is increased. The frames per
second data shows that when the resolution is 176x144 and below, the average frames per
second was roughly constant at 23.9 frames per second, but then decreased inversely as
the number of pixels was increased.

32
Resolution (Width/Height) Number of Pixels Average Execution Time (s) Average Frames per second

160/120 19200 0.041688 23.98757
176/144 25344 0.041965 23.82916
320/176 56320 0.059266 16.87309
320/240 76800 0.0673 14.85884
352/288 101376 0.0771 12.97017
432/240 103680 0.086679 11.53679
544/288 156672 0.143876 6.950446
640/360 230400 0.196286 5.094594
640/480 307200 0.218281 4.581249
752/416 312832 0.223956 4.46517
800/448 358400 0.2591 3.859507
800/600 480000 0.325151 3.075491
864/480 414720 0.30565 3.271715
960/720 691200 0.488825 2.045721

1024/576 589824 0.414864 2.410428
1184/656 776704 0.519967 1.923198
1280/720 921600 0.634971 1.574874

TABLE 3: THE AVERAGE EXECUTION TIME AND AVERAGE FRAMES PER SECOND FOR A GIVEN
RESOLUTION USING THE KVM CONFIGURATION

33

FIGURE 9: GRAPH PLOTTING AVERAGE EXECUTION TIME FOR A GIVEN RESOLUTION USING

THE KVM CONFIGURATION

FIGURE 10: GRAPH PLOTTING AVERAGE FRAMES PER SECOND FOR A GIVEN RESOLUTION
USING THE KVM CONFIGURATION

The average execution time and average frames per second graphs are consolidated in
Figure 12 and Figure 13.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.2 0.4 0.6 0.8 1

Time(s)

Number of Pixels (millions)

Average Execution Time, KVM

0
5

10
15
20
25
30

0 0.2 0.4 0.6 0.8 1

Frames per second

Number of Pixels (millions)

Average Frames per Second, KVM

34

FIGURE 11: AVERAGE EXECUTION TIME FOR ALL THREE CONFIGURATIONS

FIGURE 12: AVERAGE FRAMES PER SECOND FOR ALL THREE CONFIGURATIONS

5.2 Worst-case execution time and frames per second
 This subsection states the results of the measured worst-case execution time for
each configuration and the resulting frames per second. It will first list the results using

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.2 0.4 0.6 0.8 1

Time (s)

Number of Pixels (millions)

Average Execution Time

Control
KVM
Docker

0
5

10
15
20
25
30
35

0 0.2 0.4 0.6 0.8 1

Frames persecond

Number of Pixels (millions)

Average Frames per Second

Control
KVM
Docker

35
the control configuration, then the Docker configuration, and finally the KVM
configuration.
5.2.1 Control Results

The results were collected with the program processing the frame with the pre-
specified resolution captured from the web camera. The data for the execution time was
plotted using the number of pixels processed as the x-axis and the average execution time
as the y-axis. The data for the frames per second was plotted using the number of pixels
processed as the x-axis and the average frames per second on the y-axis. The data
collected is displayed in Table 4 and the graphs illustrated in Figure 12 and Figure 13.
The data shows that as the resolution increases, the worst-case execution time increases
linearly and the resulting frames per second decreases inversely.

36
Resolution (Width/Height) Number Pixels Worst-case execution time (s) Worst-case frames per second

160/120 19200 0.040972 24.40696
176/144 25344 0.042135 23.73344
320/176 56320 0.048494 20.62111
320/240 76800 0.068577 14.58215
352/288 101376 0.079682 12.54996
432/240 103680 0.088109 11.34964
544/288 156672 0.091912 10.87993
640/360 230400 0.135711 7.368582
640/480 307200 0.185371 5.394598
752/416 312832 0.176946 5.65144
800/448 358400 0.213617 4.681283
800/600 480000 0.261898 3.818279
864/480 414720 0.218917 4.56795
960/720 691200 0.342829 2.916907

1024/576 589824 0.284723 3.512189
1184/656 776704 0.463986 2.155237
1280/720 921600 0.527674 1.895111

TABLE 4: THE WORST-CASE EXECUTION TIME AND FRAMES PER SECOND FOR A GIVEN
RESOLUTION USING THE CONTROL CONFIGURATION

FIGURE 13: GRAPH PLOTTING WORST-CASE EXECUTION TIME FOR A GIVEN RESOLUTION

USING THE CONTROL CONFIGURATION

0
0.1
0.2
0.3
0.4
0.5
0.6

0 0.2 0.4 0.6 0.8 1

Time (s)

Number of Pixels (millions)

Worst-Case Execution Time, Control

37

FIGURE 14: GRAPH PLOTTING WORST-CASE FRAMES PER SECOND FOR A GIVEN RESOLUTION
USING THE CONTROL CONFIGURATION

5.2.2 Docker Results
The results were collected with the program processing the frame with the pre-

specified resolution captured from the web camera. The data for the execution time was
plotted using the number of pixels processed as the x-axis and the average execution time
as the y-axis. The data for the frames per second was plotted using the number of pixels
processed as the x-axis and the average frames per second on the y-axis. The data
collected is displayed in Table 5 and the graphs illustrated in Figure 14 and Figure 15.
The data shows that as the resolution increases, the worst-case execution time increases
linearly and the resulting frames per second decreases inversely.

0
5

10
15
20
25
30

0 0.2 0.4 0.6 0.8 1

Frames per second

Number of Pixels (millions)

Worst-Case Frames per Second, Control

38
Resolution (Width/Height) Number Pixels Worst-case Execution Time Worst-case Frames per Second

160/120 19200 0.044513 22.46535
176/144 25344 0.109603 9.123842
320/176 56320 0.04621 21.64032
320/240 76800 0.0488 20.49176
352/288 101376 0.086385 11.57606
432/240 103680 0.062398 16.0262
544/288 156672 0.167896 5.956074
640/360 230400 0.115319 8.671579
640/480 307200 0.152809 6.544118
752/416 312832 0.155746 6.420715
800/448 358400 0.182754 5.471848
800/600 480000 0.229165 4.363665
864/480 414720 0.201617 4.959896
960/720 691200 0.334239 2.991872

1024/576 589824 0.299616 3.337608
1184/656 776704 0.363382 2.751928
1280/720 921600 0.428831 2.331922

TABLE 5: THE WORST-CASE EXECUTION TIME AND FRAMES PER SECOND FOR A GIVEN
RESOLUTION USING THE DOCKER CONFIGURATION

39

FIGURE 15: GRAPH PLOTTING WORST-CASE EXECUTION TIME FOR A GIVEN RESOLUTION

USING THE DOCKER CONFIGURATION

FIGURE 16: GRAPH PLOTTING WORST-CASE FRAMES PER SECOND FOR A GIVEN RESOLUTION

USING THE DOCKER CONFIGURATION
5.2.3 KVM Results

The results were collected with the program processing the frame with the pre-
specified resolution captured from the web camera. The data for the execution time was
plotted using the number of pixels processed as the x-axis and the average execution time

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 0.2 0.4 0.6 0.8 1

Time (s)

Number of Pixels (millions)

Worst-Case Execution Time, Docker

0
5

10
15
20
25

0 0.2 0.4 0.6 0.8 1

Frames per second

Number of Pixels (millions)

Worst-Case Frames per Second, Docker

40
as the y-axis. The data for the frames per second was plotted using the number of pixels
processed as the x-axis and the average frames per second on the y-axis. The data
collected is displayed in Table 6 and the graphs illustrated in Figure 16 and Figure 17.
The data shows that as the resolution increases, the worst-case execution time increases
linearly and the resulting frames per second decreases inversely.

41
Resolution (Width/Height) Number of Pixels Worst-case Execution Time Worst-case Frames per Second

160/120 19200 0.102516 9.754597
176/144 25344 0.131045 7.630941
320/176 56320 0.446 2.242153
320/240 76800 0.367 2.724796
352/288 101376 0.534 1.872659
432/240 103680 0.204905 4.880317
544/288 156672 0.926605 1.079209
640/360 230400 0.802903 1.24548
640/480 307200 0.43555 2.29595
752/416 312832 0.48654 2.055332
800/448 358400 0.475937 2.101119
800/600 480000 0.553952 1.805211
864/480 414720 0.599279 1.668671
960/720 691200 0.751013 1.331534

1024/576 589824 0.669749 1.493097
1184/656 776704 0.962022 1.039478
1280/720 921600 1.020919 0.97951

TABLE 6: THE WORST-CASE EXECUTION TIME AND FRAMES PER SECOND FOR A GIVEN
RESOLUTION USING THE KVM CONFIGURATION

42

FIGURE 17: GRAPH PLOTTING WORST-CASE EXECUTION TIME FOR A GIVEN RESOLUTION

USING THE KVM CONFIGURATION

FIGURE 18: GRAPH PLOTTING WORST-CASE FRAMES PER SECOND FOR A GIVEN RESOLUTION

USING THE KVM CONFIGURATION
The worst-case execution time and worst-case frames per second graphs are consolidated
in Figure 20 and Figure 21.

0
0.2
0.4
0.6
0.8

1
1.2

0 0.2 0.4 0.6 0.8 1

Time (s)

Number of Pixels (millions)

Worst-Case Execution Time, KVM

0
2
4
6
8

10
12

0 0.2 0.4 0.6 0.8 1

Frames per second

Number of Pixels (millions)

Worst-Case Frames per Second, KVM

43

FIGURE 19: WORST-CASE EXECUTION TIME FOR ALL THREE CONFIGURATIONS

FIGURE 20: WORST-CASE FRAMES PER SECOND FOR ALL THREE CONFIGURATIONS
5.3 Average Power Consumption Results
 This subsection states the results of the measured average power consumption for
the KVM, Docker, and control configurations. The results were collected with the
program processing the frame with the pre-specified resolution captured from the web
camera. The data for the average power was plotted using the number of pixels
processed as the x-axis and the average power value as the y-axis. The data collected is

0
0.2
0.4
0.6
0.8

1
1.2

0 0.2 0.4 0.6 0.8 1

Time (s)

Number of Pixels (millions)

Worst-Case Execution Time

Control
KVM
Docker

0
5

10
15
20
25
30

0 0.2 0.4 0.6 0.8 1

Frames persecond

Number of Pixels (millions)

Worst-Case Frames per Second

Control
KVM
Docker

44
displayed in Table 7 and the graphs are illustrated in Figure 18, Figure 19, and Figure 20.
The data shows that for the KVM configuration, the power increases slightly as the
number of processed pixels increases, then remained roughly constant at 6.6 watts. For
the control configuration, the power decreased slightly as the number of pixels increased,
then remained roughly constant at 6.2 watts with some variation. For the Docker
configuration, the power increased slightly as the number of pixels increased, then
remained constant at roughly 6.1 watts with some variation.

45
Resolution (Width/Height) Number of Pixels Average power, KVM (W) Average power, Docker (W) Average power, control (W)

160/120 19200 6.3 5.9 6.5
176/144 25344 6.3 5.9 6.6
320/176 56320 6.4 6 6.5
320/240 76800 6.4 6.1 6.4
352/288 101376 6.4 6.2 6.4
432/240 103680 6.5 6.1 6.4
544/288 156672 6.4 6.2 6.4
640/360 230400 6.4 6.1 6.3
640/480 307200 6.5 6.1 6.3
752/416 312832 6.6 6 6.2
800/448 358400 6.6 6 6.1
800/600 480000 6.6 6 6.2
864/480 414720 6.6 6.3 6.2
960/720 691200 6.6 6.1 6.2

1024/576 589824 6.6 6.2 6.1
1184/656 776704 6.6 6.1 6.2
1280/720 921600 6.5 6.1 6.3

TABLE 7: THE AVERAGE POWER FOR A GIVEN RESOLUTION USING THE KVM, DOCKER, AND
CONTROL CONFIGURATIONS

46

FIGURE 21: GRAPH PLOTTING AVERAGE POWER CONSUMPTION FOR A GIVEN RESOLUTION

USING THE KVM CONFIGURATION

FIGURE 22: GRAPH PLOTTING AVERAGE POWER CONSUMPTION FOR A GIVEN RESOLUTION
USING THE CONTROL CONFIGURATION

6.2
6.3
6.4
6.5
6.6
6.7

0 0.2 0.4 0.6 0.8 1

Power(W)

Number of Pixels (millions)

Average Power Consumption, KVM

6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

0 0.2 0.4 0.6 0.8 1

Power(W)

Number of Pixels (millions)

Average Power Consumption, Control

47

FIGURE 23: GRAPH PLOTTING AVERAGE POWER CONSUMPTION FOR A GIVEN RESOLUTION

USING THE DOCKER CONFIGURATION
The average power graphs are consolidated in Figure 25.

FIGURE 24: AVERAGE POWER CONSUMPTION FOR ALL THREE CONFIGURATIONS

5.8
5.9

6
6.1
6.2
6.3
6.4

0 0.2 0.4 0.6 0.8 1

Power(W)

Number of Pixels (millions)

Average Power Consumption, Docker

5.8
6

6.2
6.4
6.6
6.8

0 0.2 0.4 0.6 0.8 1

Power(W)

Number of Pixels (millions)

Average Power Consumption

Control
KVM
Docker

48
Chapter 6

Discussion

This chapter analyzes the results and their implications for future research.
The methodology and results will first be summarized. Next the results will be
discussed. The limitations of the study will be noted and implications for future
research will be analyzed. Finally, concluding remarks will be made on the results
and analysis.

6.1 Summary of Results
The average execution time and the resulting frames per second were calculated

and plotted. The control data shows that when the resolution is 176x144 and below, the
average execution time is roughly constant at .0337 seconds, but then increases linearly
as the number of pixels is increased. The control data also shows that when the resolution
is 176x144 and below, the average frames per second is roughly constant at 29.7 FPS, but
then decreases inversely as the number of pixels is increased. The Docker execution time
data shows that the average execution time increases linearly as the number of pixels is
increased. The Docker frames per second data shows that the average frames per second
decreased inversely as the number of pixels is increased. The KVM execution time data
shows that when the resolution is 176x144 and below, the average execution time is
roughly constant at .0417 seconds, but then increases linearly as the number of pixels is
increased. The KVM frames per second data shows that when the resolution is 176x144
and below, the average frames per second was roughly constant at 23.9 frames per
second, but then decreased inversely as the number of pixels was increased.

49
The worst-case execution time and resulting frames per second were calculated

from the sampled data and plotted. The control data shows that as the resolution
increases, the worst-case execution time increases linearly and the resulting frames per
second decreases inversely. The Docker data shows that as the resolution increases, the
worst-case execution time increases linearly and the resulting frames per second
decreases inversely. The KVM data shows that as the resolution increases, the worst-case
execution time increases linearly and the resulting frames per second decreases inversely.

The data shows that for the KVM configuration, the power increases slightly as
the number of processed pixels increases, then remained roughly constant at 6.6 watts.
For the control configuration, the power decreased slightly as the number of pixels
increased, then remained roughly constant at 6.2 watts with some variation. For the
Docker configuration, the power increased slightly as the number of pixels increased,
then remained constant at roughly 6.1 watts with some variation.

6.2 Discussion of the Results
 This section discusses in detail the results of the experiments and the factors
involved in affecting the end results of the experiments. The first subsection will
discuss the average execution time and frames per second as well as worst-case
execution time and frames per second. The second subsection will discuss the
average power consumed.

6.2.1 Performance Metrics Discussion
The average execution time increased as the number of pixels per frame

increased across all three configurations. The rationale behind this is simple. With

50
more pixels to process per frame, the image processing algorithm takes longer to
process, increasing the time to go through one iteration of processing a frame. The
control and Docker configurations start at a max value of roughly 29.67 frames per
second, while the KVM configuration starts out at roughly 24 frames per second.
The control and Docker start at roughly 30 frames per second because that is the
maximum frames per second at which the webcam can capture frames. Since the
time to process a 160x120 image was less than the capture rate of the web camera,
the program had to wait until a new frame was captured by the web camera. This
allowed for optimal usage of the system, and this would be considered the real-time
requirements to complete the processing of one frame before another frame was
captured. With the KVM configuration and increasing resolution under the control
and Docker configurations, 30 frames per second was not achieved. KVM did not
achieve this with the tested resolutions because KVM is a type-1 hypervisor. The
program was forced to interface the web camera through the hypervisor layer in
addition to the operating system layer, creating additional overhead to process a
captured frame. This delay violated the real-time requirement of processing an
image before .033 seconds had elapsed, the necessary time needed to maintain 30
frames per second. The real-time requirement for the KVM, control, and Docker
configurations were repeatedly violated when the number of pixels processed
increased. As the data shows, 30 frames per second is a soft real-time requirement.
When the program is faced with violating the 30 frames per second requirement, it
chooses to continue processing the current frame instead of fetching a new frame
from the web camera. This results in the degraded performance of the displayed

51
video stream from the web camera at a sub-optimal frame rate. The Docker
configuration also appears to have a slightly better execution time and frames per
second than the control configuration. This deviation is due to the different steps
involved to interface with the web camera. With the control configuration, when it
makes a request to access the web camera, the application does not have permission
to directly access the web camera. Instead, it calls a trap instruction, which saves
the program on the kernel stack and raises the privilege level to kernel mode. The
trap is handled by the operating system and executes the privileged instruction.
Once complete, the operating system executes a return-from-trap instruction, which
restores the program from the kernel back to the user program and lowers the
privilege level back to user mode. The application then completes the trap
execution and continues onto the next instruction. This series of steps introduces
significant overhead when the control attempts to retrieve a frame from the web
camera. However, Docker bypasses all these steps. When Docker is initialized, USB
devices need to be defined in order for Docker containers to access them on their
own. Due to the way Docker works with the host operating system, all Docker
requests to the specified hardware are deemed to be in kernel mode by the
operating system, not user mode. This completely bypasses the previous steps of
saving the program to the kernel, going into kernel mode, executing the instruction,
saving the program back to the application, going back into user mode and
continuing execution. The time required to retrieve a frame from the web camera is
orders of magnitude faster with Docker than the control configuration. The
experiments showed that Docker reduces the time it takes to retrieve a frame from

52
the web camera by 0.007 to 0.012 seconds per frame compared to the control
configuration. This is evident when looking at the resulting execution times
between the Docker and control configurations. When this difference in frame
retrieval time is taken into account, the rest of the time it takes to process a frame
under the Docker configuration is nearly identical to the control configuration’s
execution time due to the slight overhead the Docker configuration introduces.

The worst-case execution time and resulting frames per second followed a
similar, though rougher, trend illustrated with the average execution time. As the
number of pixels processed increased, the worst-case execution time tended to
increase, displaying a positive correlation between the number of pixels processed
and the resulting worst-case execution time. This is logical, since more pixels would
impact the worst-cast execution time as well the average execution time. The
variance in data, however, can be attributed to a couple of factors. The first factor
was the absence of an isolated system running on the development board. Although
the system was implemented to emulate a dedicated frame processing system, other
essential functions originating from the operating system ran in the background.
The operating system could unexpectedly run when the program was processing a
frame due to its higher priority, severely impacting the execution time of a
particular frame. The second factor is the limited processing power available for
frame processing. Although there were two cores available to the program, only one
core was utilized due to the program running serially. The lack of parallelism
misses out on a possible optimization and quickly saturates the usage of one core,
exposing the possibility of overhead if another system procedure takes away the

53
core the program is working on for its own use due to it being higher priority. The
impact of these factors on the worst-case execution time can be observed from the
data. When the average frames per second is at its highest number, the overhead
imposed by losing the CPU for a period of time lowered the calculated frames per
second for that particular frame by 5 or 12 when compared to the average frames
per second. As the average execution time increased, however, operating system
overhead made less of an impact due to the overhead remaining relatively constant
due to the operating system’s needs remaining the same no matter what workload
was being executed. Looking more closely at each configuration, the KVM
configuration had overall higher worse case execution times compared to the other
two configurations due to its average execution times being higher due to the higher
overhead imposed by the KVM virtualization layer when interfacing between the
firmware and operating system layers. The control and Docker worst-case
execution times exhibited similar worst-case execution times, though there was
some variance due to the Docker configuration having privileged access to the web
camera and also due to the previously mentioned factor of the operating system
taking the CPU away from the program when a particular frame was processed due
to the operating system’s higher priority. In the end, the impact of one of these
worst-case execution times on the overall operation of the program was minimal
due to the localized nature of operating system calls and the soft real-time
requirements of the system. Although the operating system imposed overhead, it
did so on a tiny window of time. This resulted in only one frame being impacted by
operating system calls. In addition, the soft real-time requirements of the system

54
meant that the operating system overhead would only impact the frame currently
being processed and not the execution time of future frames. This is because, as
stated previously, when the real-time requirement is violated by the processing
time of a particular frame, the processing continues for the current frame until
complete. This is a subtle point to consider because in a system such as a hard real-
time system, violating the real-time requirements could result in severely degraded
performance or cause the system to fail. In this particular system, violations are
forgiven, resulting in a few frames in the collected samples being slowed down by
the CPU being taken away by the operating system while the vast majority of frames
being unaffected since the operating system calls only run in small intervals of time.

6.2.2 Power Discussion
Across all three configurations, the power consumption varied slightly. The

overall average across all average power data for the control was 6.311 watts, the
overall average across all average power data for the Docker configuration was
6.082 watts, and the overall average across all average power data for the KVM
configuration was 6.488 watts. Between the farthest data point and the
corresponding average, all average power data for the control fell within 4.76% of
its overall power average, all average power data for the Docker configuration fell
within 3.27% of its overall power average, and all average power data for the KVM
configuration fell within 3.08% of its overall power average. The power
consumption varied slightly with a varied workload, but not enough to be
considered significant. However, some factors can account for the variance in
power in a varied workload. The first factor is the usage of the CPU cores. Each core

55
will draw a certain amount of power depending on its usage. For the control and
Docker, one core was dedicated towards program execution while one core stayed
mostly idle, capping the power drawn once one core was fully utilized. For the KVM,
however, the system delegated the KVM virtualization overhead to the other core,
resulting in more power being drawn with both cores being kept busy. This was
why KVM on average consumes more power than the control and Docker. Another
factor is the time to get a frame from the web camera. With the Docker
configuration having an optimized hardware pass-through to the web camera, less
CPU resources were dedicated to getting access to the web camera and getting the
frame from the camera. This resulted in less power being drawn from the CPU,
resulting in the slight decrease in power seen when comparing the Docker and
control configurations. The last factor is the utilization of the GPU. The GPU drew
less power when it had to display less frames on the screen. This resulted in slightly
decreased power being drawn from the GPU as the frames per second decreased
with an increased workload. With all this in mind, the difference in power
consumption between Docker and KVM on average was only about 0.4 watts, with
the control being in the middle of this range. Docker is the best if power
consumption is a high priority, but the differences in power amongst all three
configurations is minimal.

6.3 Limitations of the Experiments
 There were various limitations that limited what could be performed in the
experiments. The web camera could only support 17 resolutions, limiting what
experimental data could be collected. The application program ran serially, leaving one

56
of the two cores mostly in idle mode for the control and Docker configurations. The
scarcity of available open-source free hypervisors limited what could be tested for each
software configuration. The limited amount of funds available limited testing to one
development board. Time constraints limited quantitative experiments to performance
and power metrics in one soft real-time embedded system.

6.4 Implications for Future Research
 These experiments provided a starting point for quantitatively analyzing the
performance of hypervisors in a soft real-time system. There are a number of different
ways that future research can build from this starting point. Future research can focus on
higher resolutions like ones associated with 1080p and 4K resolutions. As video streams
progress to higher resolutions, conducting experiments with these resolutions would
prove beneficial. Another focus point could be on parallel applications operating in
configurations involving virtualization. The interaction of parallel applications in a
virtualized setting could provide interesting experiments where one virtualized
application would be able to interact with multiple cores and see if there are tradeoffs to
this approach. The experiments could be extended to different hypervisors such as Xen
or VirtualBox. These experiments could provide more quantitative data on how the
experiments operate in different software configurations. Further researchers could also
conduct the experiments on different hardware. Such experiments could further quantify
how each software configuration would behave with weaker or more powerful hardware.
Finally, research could be conducted in quantifying the security benefits of virtualization
schemes. Such experiments could conduct classes of malware attacks that try to access
particular resources in the software or hardware and determine which groups of attacks

57
are mitigated with certain virtualization schemes. These proposed ideas would further
expand the data collected in the experiments presented in this thesis.

6.5 Conclusions
 This thesis conducted experiments to quantify the performance impacts
virtualization schemes have on a soft real-time embedded system. The experiments were
conducted with hardware chosen to emulate a power and performance-limited embedded
system with the desire to balance performance with security requirements. The best
configuration for this proposed system depends on the explicit security and performance
requirements for the system. If security is a high priority, the KVM configuration
provides the highest-tested security capabilities due to it being a type-1 hypervisor at the
cost of overhead that noticeably impacts the performance of the system. If performance
is a higher priority over security, the Docker configuration provides nearly identical
performance to the control configuration and provides isolation between the application
and operating system layers due to it being a container-based hypervisor. What is clear is
that completely unprotected real-time embedded systems are an increasingly risky option
for their users. With options like Docker that achieve almost identical performance to
non-virtualized systems, the designer gives up little in performance to implement some
level of cyber-protection in the system. As embedded malware increases in number, so
will the need to incorporate security measures into embedded systems to mitigate the
threat of malware. Hypervisors provide an attractive option within the trade-space in
which performance can be exchanged for enhanced protection against malware in soft
real-time embedded systems.

58
References

Andrew Zeliff, Cal Roman, Sam Allen. "State of Space Cyber, Midterm Report." 2014.
Asberg, M., et al. "Towards real-time scheduling of virtual machines without kernel

modifications ." Emerging Technologies & Factory Automation (ETFA), 2011
IEEE 16th Conference on . Toulouse: IEEE, 2011. 1 - 4 .

Avanzini, A., et al. "Integrating Linux and the real-time ERIKA OS through the Xen
hypervisor ." Industrial Embedded Systems (SIES), 2015 10th IEEE International
Symposium on . Siegen: IEEE, 2015. 1 - 7 .

Bruns, F., et al. "An Evaluation of Microkernel-Based Virtualization for Embedded Real-
Time Systems." Real-Time Systems (ECRTS), 2010 22nd Euromicro Conference
on. Brussels: IEEE, 2010. 57-65.

Chen, Huacai, et al. "Adaptive Audio-aware Scheduling in Xen Virtual Environment."
Computer Systems and Applications (AICCSA), 2010 IEEE/ACS International
Conference on . Hammamet: IEEE, 2010. 1-8.

Gupta, Diwaker, et al. "Enforcing Performance Isolation Across Virtual Machines in Xen."
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006. 342-362.

Habib, Irfan. "Virtualization with KVM." Linux Journal (2008): Article 8.
Hwang, Joo-Young, et al. "Xen on ARM: System Virtualization using Xen Hypervisor for

ARM-based Secure Mobile Phones." Consumer Communications and Networking
Conference. Las Vegas, NV: IEEE, 2008. 257-261.

Jablkowski, Boguslaw and Olaf Spinczyk. "CPS-Xen: A Virtual Execution Environment
for Cyber-Physical Applications." Jablkowski, Boguslaw and Olaf Spinczyk.
Architecture of Computing Systems – ARCS 2015 . Porto: Springer International
Publishing, 2015. 108-119.

Jing, Wei, Nan Guan and Wang Yi. "Performance isolation for real-time systems with Xen
hypervisor on multi-cores." Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2014 IEEE 20th International Conference on . Chongqing:
IEEE, 2014. 1-7.

Lee, Jaewoo, et al. "Realizing Compositional Scheduling through Virtualization ." Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2012 IEEE
18th . Beijing: IEEE, 2012. 13 - 22.

Lee, Jeong Gun, Kyung Woo Hur and Young Woong Ko. "Minimizing Scheduling Delay
for Multimedia in Xen Hypervisor." Communications in Computer and Information
Science. Springer Berlin Heidelberg, 2011. 96-108.

59
Lee, Min, et al. "Supporting soft real-time tasks in the xen hypervisor." Proceedings of the

6th ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments . New York: ACM, 2010. 97-108.

Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. "Comparison of the Three CPU
Schedulers in Xen." ACM SIGMETRICS Performance Evaluation Review 2007.

M. Masmano, I. Ripoll, and A. Crespo. "XtratuM: a Hypervisor for Safety Critical
Embedded Systems." Eleventh Real-Time Linux Workshop. Dresden, Germany:
Real-Time Linux Foundation Working Group, 2009. 263-272.

Masrur, Alejandro, et al. "Designing VM schedulers for embedded real-time applications."
CODES+ISSS '11 Proceedings of the seventh IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis . New York:
ACM, 2011. 29-38 .

Ongaro, Diego, Alan L. Cox and Scott Rixner. "Scheduling I/O in virtual machine
monitors." Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments . New York: ACM, 2008. 1-10.

Rouse, Margaret. Real-time application (RTA) definition. n.d. SearchUnified
Communications. December 2015.
<http://searchunifiedcommunications.techtarget.com/definition/real-time-
application-RTA>.

Soltesz, Stephen, et al. "Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors." EuroSys '07 Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems. New York: ACM,
2007. 275-287.

Vaughan-Nichols, S.J. "New Approach to Virtualization Is a Lightweight." Vaughan-
Nichols, S.J. Computer. IEEE, 2006. 12-14.

VMware Inc. "Understanding Full Virtualization, Paravirtualization, and Hardware
Assist." 2007. VMware. VMware Inc. 13 February 2015.
<http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf>.

Xavier, M.G., et al. "Container-Based Virtualization for High Performance Computing
Environments ." Parallel, Distributed and Network-Based Processing (PDP), 2013
21st Euromicro International Conference on . Belfast: IEEE, 2013. 233 - 240 .

Xi, Sisu, et al. "RT-Xen: Towards real-time hypervisor scheduling in Xen ." International
Conference on Embedded Software. Taipei: IEEE, 2011. 39-48.

60
Yu, Peijie, et al. "Real-time Enhancement for Xen Hypervisor ." Embedded and Ubiquitous

Computing (EUC), 2010 IEEE/IFIP 8th International Conference on. Hong Kong:
IEEE, 2010. 23 - 30 .

Zhang, Jun, et al. "Performance analysis towards a KVM-Based embedded real-time
virtualization architecture." Computer Sciences and Convergence Information
Technology (ICCIT), 2010 5th International Conference on . Seoul: IEEE, 2010.
421 - 426.

Zonghua Gu, Qingling Zhao. "A State-of-the-Art Survey on Real-Time Issues in
Embedded Systems Virtualization." Journal of Software Engineering and
Applications (2012): 277-290.

	University of New Mexico
	UNM Digital Repository
	8-25-2016

	Analysis of Performance and Power Aspects of Hypervisors in Soft Real-Time Embedded Systems
	John Guthrie
	Recommended Citation

	Microsoft Word - Thesis_1.0.2.docx

