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ABSTRACT 

The exponential growth of malware designed to attack soft real-time embedded 
systems has necessitated solutions to secure these systems. Hypervisors are a solution, 
but the overhead imposed by them needs to be quantitatively understood.  Experiments 
were conducted to quantify the overhead hypervisors impose on soft real-time embedded 
systems.  A soft real-time computer vision algorithm was executed, with average and 
worst-case execution times measured as well as the average power consumption.  These 
experiments were conducted with two hypervisors and a control configuration.  The 
experiments showed that each hypervisor imposed differing amounts of overhead, with 
one achieving near native performance and the other noticeably impacting the 
performance of the system.   
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Chapter 1 

Introduction 

1.1  Introduction 
The embedded systems industry has grown exponentially in the last 20 years.  The 

application of embedded systems varies widely from the aerospace and automotive 
industries to cellular phones and other mobile devices that consumers use on a daily 
basis.  The applications have been just as diverse, from providing pilots and drivers 
information about the status of their systems to providing internet capabilities to 
consumers away from their computers at home.  In many cases, the functionality of these 
systems is based on real-time capabilities in which algorithms must perform under a 
specified time constraint.  Failure to meet these real-time requirements can result in a 
variety of adverse effects.  One of the more mild consequences is degradation in the 
performance of the embedded system.  On the other end of the spectrum, failure to meet 
real-time constraints can result in a catastrophic failure of the system.  Meeting timing 
constraints is a must for real-time systems.   

 Complicating matters further is the reality that security threats to embedded 
systems have become more commonplace, with the rate of “malware strains discovered 
increas(ing) by 77 percent in 2014” (Chickowski).  By exploiting security vulnerabilities, 
attackers have become more skilled at conducting attacks ranging from Denial of Service 
attacks to stealing data.   This has driven the need to cyber-harden embedded systems, 
often resulting in performance reductions due to the overhead imposed by security 
solutions.  This thesis focuses on one kind of security solution, the hypervisor.    This 
thesis will also focus what quantifiable effects hypervisors have on performance for real-



2  
time embedded systems and if it is worthwhile to use hypervisors, which exchanges 
overhead for application isolation, process segregation, and other security benefits. 

1.2  Motivation 
Quantifying the performance drawbacks of hypervisors is important because 

knowing exactly what a hypervisor brings to an embedded system and what performance 
overhead it imposes allows for the usage of trade studies to determine which software 
environments may benefit from these virtualization schemes.  Not all software 
environments need to be protected; blind implementation of security schemes results in 
unnecessary computing overhead.  Careful analysis needs to be made to see which parts 
of an embedded system are critical to the success of the embedded environment, whether 
it is needed for critical operations or its compromise would result in a failure of the 
embedded system’s functionality.  By enabling this analysis, embedded systems can 
succeed at protecting critical information in exchange for minimal overhead. 

1.3  Thesis Outline 
The rest of this thesis will be presented in the following manner.  Chapter 2 will 

present background information concerning real-time systems and virtualization and 
hypervisors.  Chapter 3 will present a review of related literature of how researchers are 
improving hypervisors to support real-time capabilities.  Chapter 4 will present the 
methodology for conducting controlled experiments to characterize the performance 
overhead imposed by hypervisors.  The experiments will use a control set-up and two 
different hypervisors to conduct the experiments.  Chapter 5 will present the results of the 
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experiments.  Finally, chapter 6 will be a discussion of the results, limitations of the 
study, and how the study could be used for future research. 
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Chapter 2 

Background 

2.1  Real-time systems 
A real-time system is a system “that functions within a time frame” that is 

considered “immediate or current” (Rouse).  The performance of the system is measured 
by its ability to perform continuous operations, with certain actions occurring before a 
pre-specified latency.  This latency, known as the worst-case execution time (WCET), 
determines whether the system is real-time or not.  Real-time systems can be further 
categorized into either soft real-time or hard real-time.  With a soft real-time system, if 
the execution time of an algorithm exceeds the WCET, the system is able to continue 
operating.  The system will suffer performance penalties, such as degraded operation, but 
the system can continue to function.  Hard real-time, on the other hand, will experience a 
system failure if the WCET is not met.  Steps must be taken to put the system back to 
normal operation, such as a system reset. 

2.2  Virtualization/Hypervisors 
  The terms “hypervisor” and “virtualization” can refer to many different 
implementations and schemes for abstracting software and services from the underlying 
physical resources.   In this thesis, we use the term “virtualization” to discuss the 
technique or act of hardware/resource abstraction, while we use “hypervisor” to refer to a 
product that supplies virtualization.  Virtualization involves adding a software layer 
somewhere above the firmware on the software stack.  The hypervisor acts as a mediator 
between the OS layer and the firmware layer.  This allows multiple virtual environments, 



5  
called virtual machines (VMs), to share a hardware pool.  Virtualization is used for a 
variety of purposes, such as supporting multiple OSs on a single hardware host and 
enhancing resilience through logical segregation and/or geographic separation. 
Virtualization can be implemented using a type-1 or type-2 hypervisor. 

2.2.1 Type-1 (bare-metal) hypervisor 
A type-1 hypervisor has the virtualization layer reside below the operating 

system.  The hypervisor lies above the firmware layer and interacts with traffic coming 
from the above software stack down to the hardware.  Because of this, the hypervisor 
runs in a “privileged” status and takes control of the hardware instead of the software 
above it.  If the hypervisor deems that an incoming hardware instruction is “privileged,” 
meaning that the instruction would execute assuming it has exclusive access to the 
hardware, the hypervisor will trap the instruction and execute the instruction instead, 
allocating hardware resources to the caller as necessary (VMware Inc.). 

2.2.2 Type-2 (hosted) hypervisor 
A type-2 hypervisor executes similarly to a type-1 hypervisor, except that the 

hypervisor runs above a host operating system layer instead of below it.  To the host 
operating system, the hypervisor looks like another application running on the system.  
The hypervisor can then launch operating systems above it that have to go through the 
hypervisor in order to access hardware resources (VMware Inc.).   

2.2.2.1   Example: A Bare-Metal Hypervisor Implementation  
 A Type 1 hypervisor implementation involves inserting the hypervisor between 

the OS layer and the hardware layer.  The OS and user applications are instantiated above 
the hypervisor, providing isolation from the underlying hardware. As in normal 
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computing systems, the applications interact with the OS and with other applications.  
However, instead of the OS being able to make direct calls to memory and the CPU, 
hardware requests now flow to the hypervisor.  This design ensures that the hypervisor 
enforces proper behavior in the OS and the applications above the OS.  In addition, if a 
request acts contrary to protocol, the hypervisor can intervene and block the OS from 
accessing the hardware.  Figure 1 illustrates a bare-metal hypervisor implementation. 

 

FIGURE 1: A BARE-METAL HYPERVISOR IMPLEMENTATION 
 

2.3  Virtualization Challenges and Implementation Schemes  
 With a virtualization layer, multiple OSs running in separate virtual machines 
(VM) may run concurrently while the virtualization layer dynamically allocates hardware 
resources to each VM.  These VMs are logically segregated from other VMs in the 
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system.  Virtualization can provide functional and security benefits to systems.  With 
virtualization, hardware resources can be allocated more efficiently to multiple VMs.  
Unused hardware resources can be parsed to other VMs instead of being distributed 
statically to VMs that have the potential to be wasted.  However, this hardware resource 
distribution comes with an overhead cost that impacts execution time of the system.  This 
is a critical cost that will become important when looking at real-time systems.  
Virtualization’s main security benefits are achieved via isolation and abstraction.  
Through isolation, exposure to other parts of the system is reduced, limiting the ability 
for malware to maneuver in the system.  Virtualization adds an additional layer of 
abstraction, limiting direct access to the system’s hardware and in turn inhibiting 
malware’s ease of influencing other components. On the other hand, introducing a new 
layer poses the risk of increasing the attack surface of the system.  The hypervisor needs 
to be implemented so that only essential actions can occur in the operation of 
hypervisors, reducing the hypervisor’s attack surface.  Another problem with this 
abstraction stems from the fact that OSs in these virtual machines assume that they have 
exclusive access to hardware resources, which makes translating OS calls with the 
virtualization layer in place a non-trivial task.  To solve this problem, “full 
virtualization,” “paravirtualization,” and “hardware assisted virtualization” 
implementations have been used to successfully “virtualize” privileged instructions.   

 2.3.1 Full Virtualization  
  Full virtualization involves the virtualization layer translating virtual machine 

privileged instructions to a new set of instructions that achieve the same effect in the 
computer hardware.  By doing this, the virtual machines are completely decoupled from 
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the hardware layer, with only the virtualization layer communicating with the hardware.  
The OSs do not need to be modified in order to be placed in a virtual machine and have 
no knowledge of virtual machines outside of its own.  Full virtualization allows for a high 
degree of isolation among virtual machines.  Virtual machines are unaware of other guest 
virtual machines, and the virtual machines are isolated from the hardware.  Operating 
systems are also highly portable.  Because the hypervisor does all the virtualization, 
operating systems can run normally and let the hypervisor trap sensitive instructions.  On 
the other hand, full virtualization creates overhead that may hinder the performance of the 
system.  Since extra work is necessary to virtualize sensitive instructions, the hypervisor 
will need extra time to execute privileged instructions, possibly reducing performance.  In 
addition, the hypervisor will need to support various operating systems.  If it needs to 
support multiple operating systems, this will increase the cost of developing a hypervisor.  

2.3.2 Paravirtualization  
  Paravirtualization, on the other hand, enlists the help of the virtual machines in 

translating calls to virtual instructions.  The OS inside the virtual machine is modified so 
that it replaces privileged instructions to calls that communicate directly with the 
virtualization layer without need for translation.  Because of these calls, the virtual 
machine is aware of the virtualization layer and bears some of the workload in 
virtualizing instructions.  Paravirtualization allows for the easy modification of current 
operating systems to work with the hypervisor.  This allows for a short development time 
for hypervisors that need to support multiple guest operating systems.  In addition, 
because the guest virtual machines assist in virtualizing privileged instructions, the 
imposed overhead can be potentially small.  This overhead will depend on how 
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paravirtualization is implemented and the workload of the embedded system.  A possible 
disadvantage to this virtualization scheme is that the modified operating systems are 
aware of the hypervisor.  This lowers isolation between the hypervisor and guest virtual 
machines, which could be exploited by hackers to compromise the security of the 
virtualization scheme.  In addition, operating systems need to be modified to work in a 
paravirtualization scheme.  This means unmodified operating systems are not supported 
as is, and maintainability issues are introduced to the operating systems due to modified 
operating systems behaving differently than what is supported by operating system 
suppliers. 

 2.3.3  Hardware Assisted Virtualization 
This technique incorporates the use of the hardware itself to create the 

virtualization environment.  The hardware is specifically designed to have the hardware 
create a custom, privileged root mode where the hypervisor resides.  This hypervisor can 
operate below the operating system software level.  With the help of the hardware, 
privileged and sensitive instructions are automatically trapped to the hypervisor, 
removing the need for a software-based solution (VMware Inc.).  Hardware assisted 
virtualization has the advantage of simplifying virtualization for software due to using 
what is prebuilt in the hardware.  This allows software to dedicate resources to other tasks 
and let hardware handle the virtualization portion.  On the other hand, it has the 
disadvantage of being only available to newer hardware.  Hardware must be specifically 
designed to handle virtualization, which has only been commonly designed in hardware 
for the last ten years. This results in hardware virtualization being incompatible with 
legacy systems.  
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2.3.4  Balancing Features and Security Hardness 

  When implementing virtualization, careful consideration needs to be made in the 
complexity of the tool.  Adding more software features that virtualization can support can 
improve the functionality of the system, but at the cost of increasing the complexity and 
attack surface area of the overall system.  On the other hand, implementing virtualization 
that is minimally sized for the system will limit system functions in its design, but will 
reduce the attack surface area of the system.  This enables the hypervisor to use a simpler 
process in proving that the system is acting as it should be without malicious interference.  
For security purposes, the virtualization implementation should only support what is 
critical to the system so as to maximize the security benefits of virtualization. 
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Chapter 3 

Review of Related Literature 

This chapter summarizes a literature review of research done in virtualization and 
hypervisors.  Each paper will be summarized, with the main points relevant to this thesis 
emphasized.  The literature focused on ways to analyze the performance of hypervisors as 
well as introducing new ways to implement virtualization schemes.  

Hwang et al. (Hwang, Suh and Heo)  explored putting the Xen bare-metal 
hypervisor on a mobile phone environment.  They modified the phone to enable Xen 
3.0.2 to run on an ARM environment.  They conducted their performance benchmark 
using LMBENCH, which evaluated timing of basic system operations under differing 
workloads.  They also explored what happened when multiple virtual machines were 
running at once.  Finally, they did macro benchmarks by conducting common phone 
operations, such as loading time and image saving time.  The paper concluded that for 
some micro benchmarks, there was some moderate overhead, while the macro operations 
did not see much overhead difficulties. 

Xi et al. (Xi, Wilson and Lu) presented RT-Xen, which they toted as “the first 
hierarchical real-time scheduling for Xen”.  The paper presented 4 new schedulers that 
emulated real-time.  The VCPUs were identified by budget, period and priority 
parameters and bucketed them in a ReadyQueue, a RunQueue, and ReplenishQueue.  The 
paper then evaluated the performance of the schedulers by evaluating how many tasks 
failed to finish in time depending on varying scheduling compared quantum and 
compared how the overhead differed.  This was measured in terms of scheduling latency 
and context switching.  The paper concluded that the Deferrable Server delivered better 
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soft real-time performance than the other server algorithms, while the Periodic Server 
incurred high deadline miss ratios in overloaded situations. 

Avanzini et al. (Avanzini, Valente and Faggioli) explored implementing a dual 
OS on the Xen hypervisor, one being Linux and the other being ERIKA, a RTOS.  The 
idea was to have ERIKA handle the real-time, safety critical tasks while Linux handled 
the bulk of the non-safety critical tasks.  The paper outlined its implementation scheme 
and ended the paper with a set of tests that will demo the end result at a later date.   

Jing et al. (Jing, Guan and Yi) proposed a model for controlling shared memory 
accesses using the Xen hypervisor.  This will improve the timing predictability of real-
time applications.  The monitoring process was implemented using the Performance 
Monitoring unit in the processor to budget a set number of memory accesses.  If it goes 
over the budget, the PMU suspends the VM.  The results showed that the execution time 
was kept low and stable regardless of memory access behavior, while memory access 
throttling stabilized the timing of the experiments but at the cost of average performance.  

Yu et al. (Yu, Xia and Lin) explored modifications to the Credit Scheduler in the 
Xen hypervisor.  They noticed that real-time operations were not distinguished from 
other operations, resulting in poor real-time performance.  They tried to solve this by 
adding in real-time priority so that it goes to the head of the queue and when the 
processor goes into boost mode, real-time events jump to the front.  In addition, they 
incorporated guest balancing for multiple real-time guests.  The results showed that their 
enhancements improved the real-time performance of Xen by about 20%. 

Cherkasova et al. (Ludmila Cherkasova) examined the three CPU schedulers in 
Xen in terms of performance.  The three schedulers were Borrowed Virtual Time, Simple 
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Earliest Deadline First, and Credit.  They used XenMon to analyze SEDF, which showed 
that Dom0 has a high overhead on I/O applications.  They also conducted experiments 
using Iperf and Disk tests.  They also incorporated Allocation Error Test to see if CPU 
resources were allocated correctly, which showed as much as 10% error.  Through other 
tests, they concluded that Credit is the best for global balancing. 

Masmano et al. (M. Masmano) explored the capabilities of XtratuM, which they 
described as a “bare hypervisor that uses paravirtualization”.  They based their 
performance evaluation on partition context switching time and measuring the cost of 
hypercalls, which they measured in microseconds.  They evaluated the performance 
overhead imposed by XtratuM and concluded that the overhead was lower than 3% if the 
slot duration was higher than 1 millisecond. 

Habib (Habib, Virtualization with KVM) introduced KVM, a hypervisor that used 
hardware-based virtualization to create virtual machines.  It integrated hypervisor 
capabilities into the Linux kernel.  This allowed the virtualized environment to 
incorporate work into the Linux kernel.  It also used the QEMU emulator to provide a 
user-space and incorporate its effective I/O model.  KVM was relatively small because it 
does not have to make its own kernel protocols, avoiding the complexity of Xen and 
VMware.  Results showed that KVM allowed native execution using the KVM kernel for 
non-critical tasks while effectively isolating the other critical parts of the system. 

Bruns et al. (Bruns, Traboulsi and Szczesny) investigated the performance of 
implementing a real-time operating system (RTOS) with a hypervisor (L4/Fiasco).  They 
measured the performance by comparing system latencies with the RTOS without a 
hypervisor installed.  In addition, they looked at hardware interrupts and analyzed their 
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impacts on real-time requirements.  Results found that the average execution time 
increased between 30 to 50 percent when cache contention was imposed on the 
hypervisor as well as a higher variation of execution times.  

Zhang et al. (Zhang, Chen and Zuo) investigated using a Kernel-Based Virtual 
Machine (KVM), which combined both Linux and VxWorks into a real-time operating 
system (RTOS).  This unique virtualization took advantage of common Linux resources, 
but with added virtualization capabilities.  The paper summarized their design and 
commented on the real-time performance analysis the RTOS had on the base system.  
They realized there were “harmful workloads,” so they used real-time tunings such as 
prioritization and CPU shielding to lower down the latencies of these use cases.  They 
evaluated these experiments and displayed their results, which achieved sub millesecond 
latency for harmful workloads. 

Asberg et al. (Asberg, Forsberg and Nolte) proposed a type-2 hypervisor that did 
not require kernels running above it to be modified.  This allowed real-time scheduling to 
be conducted.  The paper proposed to have in the host kernel a RESCH core, so that it 
could support real-time task support.  Their preliminary testing showed lower overhead 
than the KVM hypervisor and looked to conduct more experiments in the future. 

Soltesz et al. (Soltesz, Pötzl and Fiuczynski) explained Container-based Operating 
System Virtualization.  This virtualization runs on top of a host kernel and efficiently 
allocates host resources amongst “containers,” which are separate instances of the kernel.  
This contrasts significantly from hypervisors because there only needs to be one host, 
rather than have a host run the hypervisor and each VM below run their own separate 
operating system and resources.  The upside to this new technique is the fact that 
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significant amount of resources are saved due to saving on overhead.  On the other hand, 
it does not support multiple operating systems running on the machine and it still needs a 
host kernel to run it, which remains exposed, since the containers run below the host 
kernel.   

Xavier et al. (Xavier, Neves and Rossi) explored using container-based 
virtualization in high performance computing.  They did a number of test comparing 
containers to the Xen hypervisor.  Their experiments showed that container-based 
virtualization achieves performance close to native performance, while the Xen 
environment has a considerable amount of overhead of 4.3%.  However, the paper 
admitted that this container-based virtualization shared a lot of common resources, hence 
lowering the security of the entire system. 

Masrur et al. (Masrur, Pfeuffer and Geier) proposed a technical approach to 
designing a fixed-priority real-time scheduler for VMs in order to meet all real-time 
deadlines.  They determined that the period of the VMs was determined by the minimum 
that needed to be scheduled on that VM.  They also concluded from their experiments 
that response time improved when only one task is running on a VM, but memory was 
efficiently allocated when multiple tasks were running. 

Lee et al. (Lee, Krishnakumar and Krishnan) explored improving the Credit 
scheduler in the Xen hypervisor in order to improve real-time task performance.  They 
sought to improve it through introducing a laxity value given to all tasks.  Low values 
would indicate a soft real-time task while a high one indicated a non-real time task.  In 
addition, they introduced workload balancing by balancing CPU time amongst different 
real-time tasks so that it was roughly equal among multiple processors.  In addition, they 
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introduced an algorithm to maintain cache coherence.  Their results illustrated that a 
small laxity value improved real-time performance, while a large value had no effect on 
the system.  Cache coherence results showed that the voice quality increased significantly 
compared to the baseline credit scheduler. 
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Chapter 4 

 Methodology 
This chapter will describe the process to configure and execute the experiments 

that will quantify the performance and power consumption of virtualization schemes.  
The first section of this chapter goes into detail the configuration of the hardware and 
software.  The second section details how the experiments themselves were executed and 
recorded.   
4.1  Configuration of Software and Hardware 
 The experimental hardware and software was selected based on the following 
characteristics.  The system will be soft real-time, able to operate at limited capability if 
deadlines are not met. The soft real-time system in question will be assumed to operate in 
a varied physical environment, running on a limited source of power.  It would operate 
for long periods of time without easy access to maintenance resources, making hardware 
and software reliability a must.  In addition, it would have stringent space requirements 
for the design of its system, motivating a need to choose a solution that gets the most 
processing power in relation to its power and space requirements.  The security 
requirements of the system would depend on what kind of operations the system would 
conduct.  In summary, the emulated system will need to need to be reliable for long 
periods of time, have soft real-time requirements for its operation, have flexible security 
requirements depending on its usage, and have restrictive power and space requirements 
with the goal to maximize the processing capability of the system while meeting these 
space and power requirements.  With the above system specifications in mind, the first 
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subsection will go into more detail the hardware specifications of the experiments, while 
the second subsection will delve into the software specifications of the experiments. 
4.1.1  Hardware  Specifications 

The hardware selected for the emulated system consists of the following parts.  
The processing unit is a MinnowBoard MAX development board.  Its CPU is an E3825 
dual-core processing unit with 1.33 GHz of processing power each.  Its GPU features 
integrated Intel HD Graphics which can be displayed via interface with the micro HDMI 
connector on the board.  Each core has 1 GB of DDR3 RAM.  Audio is also outputted 
from the board via HDMI.  The other I/O ports on the board are a micro SD port, 1 
SATA2 port, 1 USB 3.0 port, 1 USB 2.0 port, 1 serial debug port, and an Ethernet port.  
Other notable features include it being only 99x74mm, an operating temperature range of 
0-70 degrees C, it needing to be powered with a 5 V DC source, and the capability to host 
a Linux operating system.  The development board is shown below in Figure 3. 
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FIGURE 2: THE MINNOWBOARD MAX DEVELOPMENT BOARD USED IN THE EXPERIMENTS 
Other peripherals are connected to the MinnowBoard MAX development board.  

2 USB root hubs are connected to the two USB ports in the board.  In one of these root 
hubs, a Fujitsu 250 GB hard drive is connected via a Super Top SATA bridge.  In the 
other root hub, a standard USB keyboard and mouse is attached.  Finally, a C310 
Logitech webcam is attached.  The webcam can support resolutions ranging from 
160x120 pixels to 1280x720 pixels.  The peripherals to the development board are shown 
below in Figure 4. 
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FIGURE 3: THE PERIPHERALS USED IN THE EXPERIMENTS, FROM LEFT TO RIGHT: C310 
LOGITECH WEBCAM, FUJITSU HARD DRIVE, POWER METER, TWO USB ROOT HUBS 
 

4.1.2  Software  Specifications 
The software specifications of the emulated system are broken up into three 

separate implementations.  They all share some common software but with differing 
layers in their respective stacks.  Common to each stack is the firmware layer, operating 
system layer, and application layer.  These layers will first be described then the 
implementation of each software stack will be explained.  The firmware layer is at the 
bottom of each stack.  It is unmodified and takes care of communication between 
software and hardware.  The operating system layer contains Ubuntu 14.04, a popular 
Linux-based operating system.  Ubuntu is installed with typical packages essential for its 
functionality such as build-essential.  In addition, packages necessary for the software in 
the application layer above it are installed here.  Ubuntu’s desktop environment is 
replaced with XFDE, a light-weight desktop, in order to minimize the impact of desktop 
functionality on the program.  The application layer contains two pieces of software, 
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OpenCV and cvBlob.  OpenCV is a library of functions geared toward executing real-
time computer vision.  Its features range from image processing to motion tracking.  
CvBlob is a program that executes real-time tracking of red objects using a webcam 
connected to the board.  It puts forward a hardware resource request to retrieve a captured 
picture from the webcam, analyzes the image for a red object, draws a square around the 
object if found, and displays the image on the screen.  It will continue displaying a stream 
of images dictated by the webcam’s framerate until the user terminates the program.  
CvBlob heavily borrows from the functionality of OpenCV to complete its computing 
tasks.  This application was chosen due to the persistent privileged hardware requests the 
application makes to the web camera, creating a workload that can stress implemented 
hypervisors.  With the common software in each software stack explained, the specific 
ordering of each stack will be explained. 

The software stacks of the control configuration, KVM configuration, and Docker 
configuration differ in distinct ways.  The control has the firmware layer at the bottom, 
the operating system layer next, and lastly the application layer on top of its stack.  
However, the KVM and Docker configuration have an additional layer in their stacks 
called the virtualization layer.  In this layer lies KVM or Docker, depending on the 
configuration.  KVM is a type-1 hypervisor which lies between the firmware layer and 
the operating system layer.  It executes hardware-assisted virtualization to initialize 
virtual machines that contain operating system and application layers.  On the other hand, 
Docker is a lightweight type 2 hypervisor, implementing what is known as container-
based virtualization.  It lies between the operating system and application layer.  It 
initializes light weight virtual machines called containers that contain a variety of 
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software, from applications to operating systems.  Docker was chosen as a configuration 
because it represents a lightweight type-2 hypervisor, while KVM was chosen to 
represent a type-1 hypervisor.  This will show the variance of overhead that is possible 
when hypervisor solutions are considered.  In summary, the KVM software stack is 
ordered, from bottom to top, with the firmware layer, the virtualization layer containing 
KVM, operating system layer and application layer, while the Docker software stack has 
the firmware layer, operating system layer, the virtualization layer containing Docker, 
and the application layer from bottom to top.  Figure 5 provides an illustration of the 
three software stacks. 

 

FIGURE 4: THE SOFTWARE STACK FOR EACH OF THE THREE TESTED CONFIGURATIONS 
4.2  Procedure 
 The experiments were conducted using the control, KVM, and Docker 
configurations.  The environment was first set up by plugging the Ethernet cable, HDMI 
cable, and USB peripherals into the development board.  In particular, the webcam had 
its own dedicated USB port for minimal interference, while the external drive, mouse and 
keyboard were plugged into a root hub.  The board was then powered on using the 5V 
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power supply.  Further procedures were a function of which software configuration was 
under test.   

When KVM was being tested, the Virtual Machine Monitor would be launched 
next.  Once complete, the KVM virtual machine was initialized, which would launch its 
own computing environment.  When Docker was being tested, Docker would need to be 
initialized.  It would start an Ubuntu 14.04 container and finish setting up its own 
computing environment.  From here, each configuration would execute the following 
instructions.  The OpenCV library would be modified so that the webcam captured 
frames at a particular resolution.  This resolution was defined as height and width 
variables in the library.  These variables were restricted to the webcam’s supported 
resolutions.  Once the height and width variables were changed to the appropriate values, 
the OpenCV library was rebuilt to reflect the new camera resolution.  Once complete, the 
red object tracking program was recompiled to link the OpenCV library to the program.  
Finally, the cvBlob was executed.   

The time was measured using a function called rdtsc, an Intel-specific hardware 
call that returned the counter of the processor.  This resulted in a highly accurate 
measurement of the current time of the program in processing cycles.  The counter was 
recorded before a camera frame was processed and after the frame was processed and 
displayed.  Five hundred measurements were recorded for the pre-specified camera 
resolution to accurately record the steady state of the video stream.  The counter values 
for the beginning and end of each frame processing were subtracted from each other to 
get the difference, and this was divided by the core frequency of a single core to get the 
total time of processing an image from the web camera in seconds.  This is because the 
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object detection program executed serially, so it was allocated a single core for its 
execution.  Once the time was determined for each frame, the average of the samples was 
calculated to determine the average execution time of processing and displaying one 
frame from the web camera for a given frame resolution.  The worst-case execution time 
was found in the samples by looking for the maximum execution time value.  The first 10 
frames were thrown out due to the program being in the start-up phase.  The average 
frames per second value and worst-case frames per second value were calculated by 
taking the multiplicative inverse of the average execution time and worst-case execution 
time.  This was done because the units of execution time are seconds per frame, so to get 
frames per second the reciprocal of the execution time was calculated.  The power 
consumption of each configuration for a given resolution was measured using a Watt 
meter.  The power supply was plugged into the meter and the power consumption was 
displayed in Watts to 100mW resolution.  While the program was processing and 
displaying frames in a steady state, the average power over 15 seconds of program 
execution was recorded.  The above steps for recording time and power metrics were 
repeated for 17 frame resolutions and for the three experiment configurations for a total 
of 25,551 samples.  The frame resolutions tested were 160x120, 176x144, 320x176, 
320x240, 352x288, 432x240, 544x288, 640x360, 640x480, 752x416, 800x448, 800x600, 
864x480, 960x720, 1024x576, 1184x656, and 1280x720 pixels. 
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Chapter 5 

Results  
This chapter details results obtained from collecting data measuring average 

execution time, average frames per second, worst-case execution time, worst-case frames 
per second, as well as the average power consumption resulting from the control, Docker, 
and KVM configurations. 
5.1 Average execution time and average frames per second 
 This subsection states the results of average execution time for each configuration 
and the average frames per second.  It will first list the results using the control 
configuration, then the Docker configuration, and finally the KVM configuration. 
5.1.1 Control Results 

The results were collected with the program processing the frame with the pre-
specified resolution captured from the web camera.  The data for the execution time was 
plotted using the number of pixels processed as the x-axis and the average execution time 
as the y-axis.  The data for the frames per second was plotted using the number of pixels 
processed as the x-axis and the average frames per second on the y-axis.  The data 
collected is displayed in Table 1 and the graphs illustrated in Figure 6 and Figure 7.  The 
data shows that when the resolution is 176x144 and below, the average execution time is 
roughly constant at .0337 seconds, but then increases linearly as the number of pixels is 
increased. The data also shows that when the resolution is 176x144 and below, the 
average frames per second is roughly constant at 29.7 FPS, but then decreases inversely 
as the number of pixels is increased. 



26  
Resolution (Width/Height) Number Pixels Average execution time(s) Average Frames per second 

160/120 19200 0.03369689 29.67632918 
176/144 25344 0.033739097 29.63920463 
320/176 56320 0.046733162 21.3980813 
320/240 76800 0.055633007 17.97494067 
352/288 101376 0.06647477 15.04330139 
432/240 103680 0.067207373 14.87931986 
544/288 156672 0.088719267 11.27150881 
640/360 230400 0.121937956 8.200891936 
640/480 307200 0.154353826 6.478621398 
752/416 312832 0.156423007 6.392921471 
800/448 358400 0.176856959 5.654286977 
800/600 480000 0.22880332 4.370565952 
864/480 414720 0.201997386 4.950559113 
960/720 691200 0.322712799 3.098730522 

1024/576 589824 0.277576639 3.602608647 
1184/656 776704 0.36317172 2.753518363 
1280/720 921600 0.41673399 2.39961228 

TABLE 1:  THE AVERAGE EXECUTION TIME AND AVERAGE FRAMES PER SECOND FOR A GIVEN 
RESOLUTION USING THE CONTROL CONFIGURATION 
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FIGURE 5: GRAPH PLOTTING AVERAGE EXECUTION TIME FOR A GIVEN RESOLUTION USING 
THE CONTROL CONFIGURATION 

 
FIGURE 6: GRAPH PLOTTING AVERAGE FRAMES PER SECOND FOR A GIVEN RESOLUTION USING 

THE CONTROL CONFIGURATION 
 
5.1.2 Docker Results 

The results were collected with the program processing the frame with the pre-
specified resolution captured from the web camera.  The data was plotted using the 
number of pixels processed as the x-axis and the average execution time as the y-axis.  
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The second set of data was plotted using the number of pixels processed as the x-axis and 
the average frames per second on the y-axis.  The data collected is displayed in Table 2 
and the graphs illustrated in Figure 8 and Figure 9.  The execution time data shows that 
the average execution time increases linearly as the number of pixels is increased.  The 
frames per second data shows that the average frames per second decreased inversely as 
the number of pixels is increased. 
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Resolution (Width/Height) Number Pixels Average execution time (s) Average frames per second 

160/120 19200 0.033709 29.66568 
176/144 25344 0.038589 25.91442 
320/176 56320 0.039757 25.15281 
320/240 76800 0.045748 21.85866 
352/288 101376 0.055583 17.99127 
432/240 103680 0.057194 17.4845 
544/288 156672 0.08026 12.45958 
640/360 230400 0.112671 8.875374 
640/480 307200 0.146043 6.847285 
752/416 312832 0.148222 6.74665 
800/448 358400 0.168911 5.920281 
800/600 480000 0.220982 4.52526 
864/480 414720 0.192091 5.205856 
960/720 691200 0.311483 3.210447 

1024/576 589824 0.267246 3.741867 
1184/656 776704 0.352752 2.834849 
1280/720 921600 0.408609 2.447325 

TABLE 2: THE AVERAGE EXECUTION TIME AND AVERAGE FRAMES PER SECOND FOR A GIVEN 
RESOLUTION USING THE DOCKER CONFIGURATION 
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FIGURE 7: GRAPH PLOTTING AVERAGE EXECUTION TIME FOR A GIVEN RESOLUTION USING 

THE DOCKER CONFIGURATION 

 
FIGURE 8: GRAPH PLOTTING AVERAGE FRAMES PER SECOND FOR A GIVEN RESOLUTION 

USING THE DOCKER CONFIGURATION 
5.1.3 KVM Results 
The results were collected with the program processing the frame with the pre-specified 
resolution captured from the web camera.  The data was plotted using the number of 
pixels processed as the x-axis and the average execution time as the y-axis. The second 
set of data was plotted using the number of pixels processed as the x-axis and the average 
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frames per second on the y-axis.    The data collected is displayed in Table 3 and its graph 
illustrated in Figure 10 and Figure 11.  The execution time data shows that when the 
resolution is 176x144 and below, the average execution time is roughly constant at .0417 
seconds, but then increases linearly as the number of pixels is increased. The frames per 
second data shows that when the resolution is 176x144 and below, the average frames per 
second was roughly constant at 23.9 frames per second, but then decreased inversely as 
the number of pixels was increased. 
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Resolution (Width/Height) Number of Pixels Average Execution Time (s) Average Frames per second 

160/120 19200 0.041688 23.98757 
176/144 25344 0.041965 23.82916 
320/176 56320 0.059266 16.87309 
320/240 76800 0.0673 14.85884 
352/288 101376 0.0771 12.97017 
432/240 103680 0.086679 11.53679 
544/288 156672 0.143876 6.950446 
640/360 230400 0.196286 5.094594 
640/480 307200 0.218281 4.581249 
752/416 312832 0.223956 4.46517 
800/448 358400 0.2591 3.859507 
800/600 480000 0.325151 3.075491 
864/480 414720 0.30565 3.271715 
960/720 691200 0.488825 2.045721 

1024/576 589824 0.414864 2.410428 
1184/656 776704 0.519967 1.923198 
1280/720 921600 0.634971 1.574874 

TABLE 3: THE AVERAGE EXECUTION TIME AND AVERAGE FRAMES PER SECOND FOR A GIVEN 
RESOLUTION USING THE KVM CONFIGURATION 
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FIGURE 9: GRAPH PLOTTING AVERAGE EXECUTION TIME FOR A GIVEN RESOLUTION USING 

THE KVM CONFIGURATION 

 

FIGURE 10: GRAPH PLOTTING AVERAGE FRAMES PER SECOND FOR A GIVEN RESOLUTION 
USING THE KVM CONFIGURATION 

The average execution time and average frames per second graphs are consolidated in 
Figure 12 and Figure 13. 
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FIGURE 11: AVERAGE EXECUTION TIME FOR ALL THREE CONFIGURATIONS 

 

FIGURE 12: AVERAGE FRAMES PER SECOND FOR ALL THREE CONFIGURATIONS 
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the control configuration, then the Docker configuration, and finally the KVM 
configuration. 
5.2.1 Control Results 

The results were collected with the program processing the frame with the pre-
specified resolution captured from the web camera.  The data for the execution time was 
plotted using the number of pixels processed as the x-axis and the average execution time 
as the y-axis.  The data for the frames per second was plotted using the number of pixels 
processed as the x-axis and the average frames per second on the y-axis.  The data 
collected is displayed in Table 4 and the graphs illustrated in Figure 12 and Figure 13.  
The data shows that as the resolution increases, the worst-case execution time increases 
linearly and the resulting frames per second decreases inversely. 
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Resolution (Width/Height) Number Pixels Worst-case execution time (s) Worst-case frames per second 

160/120 19200 0.040972 24.40696 
176/144 25344 0.042135 23.73344 
320/176 56320 0.048494 20.62111 
320/240 76800 0.068577 14.58215 
352/288 101376 0.079682 12.54996 
432/240 103680 0.088109 11.34964 
544/288 156672 0.091912 10.87993 
640/360 230400 0.135711 7.368582 
640/480 307200 0.185371 5.394598 
752/416 312832 0.176946 5.65144 
800/448 358400 0.213617 4.681283 
800/600 480000 0.261898 3.818279 
864/480 414720 0.218917 4.56795 
960/720 691200 0.342829 2.916907 

1024/576 589824 0.284723 3.512189 
1184/656 776704 0.463986 2.155237 
1280/720 921600 0.527674 1.895111 

TABLE 4: THE WORST-CASE EXECUTION TIME AND FRAMES PER SECOND FOR A GIVEN 
RESOLUTION USING THE CONTROL CONFIGURATION 

 
FIGURE 13: GRAPH PLOTTING WORST-CASE EXECUTION TIME FOR A GIVEN RESOLUTION 

USING THE CONTROL CONFIGURATION 
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FIGURE 14: GRAPH PLOTTING WORST-CASE FRAMES PER SECOND FOR A GIVEN RESOLUTION 
USING THE CONTROL CONFIGURATION 

5.2.2 Docker Results 
The results were collected with the program processing the frame with the pre-

specified resolution captured from the web camera.  The data for the execution time was 
plotted using the number of pixels processed as the x-axis and the average execution time 
as the y-axis.  The data for the frames per second was plotted using the number of pixels 
processed as the x-axis and the average frames per second on the y-axis.  The data 
collected is displayed in Table 5 and the graphs illustrated in Figure 14 and Figure 15.  
The data shows that as the resolution increases, the worst-case execution time increases 
linearly and the resulting frames per second decreases inversely. 
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Resolution (Width/Height) Number Pixels Worst-case Execution Time Worst-case Frames per Second 

160/120 19200 0.044513 22.46535 
176/144 25344 0.109603 9.123842 
320/176 56320 0.04621 21.64032 
320/240 76800 0.0488 20.49176 
352/288 101376 0.086385 11.57606 
432/240 103680 0.062398 16.0262 
544/288 156672 0.167896 5.956074 
640/360 230400 0.115319 8.671579 
640/480 307200 0.152809 6.544118 
752/416 312832 0.155746 6.420715 
800/448 358400 0.182754 5.471848 
800/600 480000 0.229165 4.363665 
864/480 414720 0.201617 4.959896 
960/720 691200 0.334239 2.991872 

1024/576 589824 0.299616 3.337608 
1184/656 776704 0.363382 2.751928 
1280/720 921600 0.428831 2.331922 

TABLE 5: THE WORST-CASE EXECUTION TIME AND FRAMES PER SECOND FOR A GIVEN 
RESOLUTION USING THE DOCKER CONFIGURATION 
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FIGURE 15: GRAPH PLOTTING WORST-CASE EXECUTION TIME FOR A GIVEN RESOLUTION 

USING THE DOCKER CONFIGURATION 

 
FIGURE 16: GRAPH PLOTTING WORST-CASE FRAMES PER SECOND FOR A GIVEN RESOLUTION 

USING THE DOCKER CONFIGURATION 
5.2.3 KVM Results 

The results were collected with the program processing the frame with the pre-
specified resolution captured from the web camera.  The data for the execution time was 
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as the y-axis.  The data for the frames per second was plotted using the number of pixels 
processed as the x-axis and the average frames per second on the y-axis.  The data 
collected is displayed in Table 6 and the graphs illustrated in Figure 16 and Figure 17.  
The data shows that as the resolution increases, the worst-case execution time increases 
linearly and the resulting frames per second decreases inversely. 
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Resolution (Width/Height) Number of Pixels Worst-case Execution Time Worst-case Frames per Second 

160/120 19200 0.102516 9.754597 
176/144 25344 0.131045 7.630941 
320/176 56320 0.446 2.242153 
320/240 76800 0.367 2.724796 
352/288 101376 0.534 1.872659 
432/240 103680 0.204905 4.880317 
544/288 156672 0.926605 1.079209 
640/360 230400 0.802903 1.24548 
640/480 307200 0.43555 2.29595 
752/416 312832 0.48654 2.055332 
800/448 358400 0.475937 2.101119 
800/600 480000 0.553952 1.805211 
864/480 414720 0.599279 1.668671 
960/720 691200 0.751013 1.331534 

1024/576 589824 0.669749 1.493097 
1184/656 776704 0.962022 1.039478 
1280/720 921600 1.020919 0.97951 

TABLE 6: THE WORST-CASE EXECUTION TIME AND FRAMES PER SECOND FOR A GIVEN 
RESOLUTION USING THE KVM CONFIGURATION 
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FIGURE 17: GRAPH PLOTTING WORST-CASE EXECUTION TIME FOR A GIVEN RESOLUTION 

USING THE KVM CONFIGURATION 

 
FIGURE 18: GRAPH PLOTTING WORST-CASE FRAMES PER SECOND FOR A GIVEN RESOLUTION 

USING THE KVM CONFIGURATION 
The worst-case execution time and worst-case frames per second graphs are consolidated 
in Figure 20 and Figure 21. 
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FIGURE 19: WORST-CASE EXECUTION TIME FOR ALL THREE CONFIGURATIONS 

 

FIGURE 20: WORST-CASE FRAMES PER SECOND FOR ALL THREE CONFIGURATIONS 
5.3 Average Power Consumption Results  
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program processing the frame with the pre-specified resolution captured from the web 
camera.  The data for the average power was plotted using the number of pixels 
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displayed in Table 7 and the graphs are illustrated in Figure 18, Figure 19, and Figure 20.  
The data shows that for the KVM configuration, the power increases slightly as the 
number of processed pixels increases, then remained roughly constant at 6.6 watts.  For 
the control configuration, the power decreased slightly as the number of pixels increased, 
then remained roughly constant at 6.2 watts with some variation.  For the Docker 
configuration, the power increased slightly as the number of pixels increased, then 
remained constant at roughly 6.1 watts with some variation. 
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Resolution (Width/Height) Number of Pixels Average power, KVM (W) Average power, Docker (W) Average power, control (W) 

160/120 19200 6.3 5.9 6.5 
176/144 25344 6.3 5.9 6.6 
320/176 56320 6.4 6 6.5 
320/240 76800 6.4 6.1 6.4 
352/288 101376 6.4 6.2 6.4 
432/240 103680 6.5 6.1 6.4 
544/288 156672 6.4 6.2 6.4 
640/360 230400 6.4 6.1 6.3 
640/480 307200 6.5 6.1 6.3 
752/416 312832 6.6 6 6.2 
800/448 358400 6.6 6 6.1 
800/600 480000 6.6 6 6.2 
864/480 414720 6.6 6.3 6.2 
960/720 691200 6.6 6.1 6.2 

1024/576 589824 6.6 6.2 6.1 
1184/656 776704 6.6 6.1 6.2 
1280/720 921600 6.5 6.1 6.3 

TABLE 7: THE AVERAGE POWER FOR A GIVEN RESOLUTION USING THE KVM, DOCKER, AND 
CONTROL CONFIGURATIONS 
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FIGURE 21: GRAPH PLOTTING AVERAGE POWER CONSUMPTION FOR A GIVEN RESOLUTION 

USING THE KVM CONFIGURATION 

 

FIGURE 22: GRAPH PLOTTING AVERAGE POWER CONSUMPTION FOR A GIVEN RESOLUTION 
USING THE CONTROL CONFIGURATION 
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FIGURE 23: GRAPH PLOTTING AVERAGE POWER CONSUMPTION FOR A GIVEN RESOLUTION 

USING THE DOCKER CONFIGURATION 
The average power graphs are consolidated in Figure 25. 

 
FIGURE 24: AVERAGE POWER CONSUMPTION FOR ALL THREE CONFIGURATIONS 
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Chapter 6 

Discussion 

This chapter analyzes the results and their implications for future research.  
The methodology and results will first be summarized.  Next the results will be 
discussed.  The limitations of the study will be noted and implications for future 
research will be analyzed.  Finally, concluding remarks will be made on the results 
and analysis. 

6.1 Summary of Results 
The average execution time and the resulting frames per second were calculated 

and plotted.  The control data shows that when the resolution is 176x144 and below, the 
average execution time is roughly constant at .0337 seconds, but then increases linearly 
as the number of pixels is increased. The control data also shows that when the resolution 
is 176x144 and below, the average frames per second is roughly constant at 29.7 FPS, but 
then decreases inversely as the number of pixels is increased.  The Docker execution time 
data shows that the average execution time increases linearly as the number of pixels is 
increased.  The Docker frames per second data shows that the average frames per second 
decreased inversely as the number of pixels is increased.  The KVM execution time data 
shows that when the resolution is 176x144 and below, the average execution time is 
roughly constant at .0417 seconds, but then increases linearly as the number of pixels is 
increased.  The KVM frames per second data shows that when the resolution is 176x144 
and below, the average frames per second was roughly constant at 23.9 frames per 
second, but then decreased inversely as the number of pixels was increased. 
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The worst-case execution time and resulting frames per second were calculated 

from the sampled data and plotted.  The control data shows that as the resolution 
increases, the worst-case execution time increases linearly and the resulting frames per 
second decreases inversely.  The Docker data shows that as the resolution increases, the 
worst-case execution time increases linearly and the resulting frames per second 
decreases inversely.  The KVM data shows that as the resolution increases, the worst-case 
execution time increases linearly and the resulting frames per second decreases inversely. 

The data shows that for the KVM configuration, the power increases slightly as 
the number of processed pixels increases, then remained roughly constant at 6.6 watts.  
For the control configuration, the power decreased slightly as the number of pixels 
increased, then remained roughly constant at 6.2 watts with some variation.  For the 
Docker configuration, the power increased slightly as the number of pixels increased, 
then remained constant at roughly 6.1 watts with some variation. 

6.2 Discussion of the Results 
 This section discusses in detail the results of the experiments and the factors 
involved in affecting the end results of the experiments.  The first subsection will 
discuss the average execution time and frames per second as well as worst-case 
execution time and frames per second.  The second subsection will discuss the 
average power consumed. 

6.2.1 Performance Metrics Discussion 
The average execution time increased as the number of pixels per frame 

increased across all three configurations.  The rationale behind this is simple.  With 
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more pixels to process per frame, the image processing algorithm takes longer to 
process, increasing the time to go through one iteration of processing a frame.  The 
control and Docker configurations start at a max value of roughly 29.67 frames per 
second, while the KVM configuration starts out at roughly 24 frames per second.  
The control and Docker start at roughly 30 frames per second because that is the 
maximum frames per second at which the webcam can capture frames.  Since the 
time to process a 160x120 image was less than the capture rate of the web camera, 
the program had to wait until a new frame was captured by the web camera.  This 
allowed for optimal usage of the system, and this would be considered the real-time 
requirements to complete the processing of one frame before another frame was 
captured.  With the KVM configuration and increasing resolution under the control 
and Docker configurations, 30 frames per second was not achieved.  KVM did not 
achieve this with the tested resolutions because KVM is a type-1 hypervisor.  The 
program was forced to interface the web camera through the hypervisor layer in 
addition to the operating system layer, creating additional overhead to process a 
captured frame.  This delay violated the real-time requirement of processing an 
image before .033 seconds had elapsed, the necessary time needed to maintain 30 
frames per second.  The real-time requirement for the KVM, control, and Docker 
configurations were repeatedly violated when the number of pixels processed 
increased.  As the data shows, 30 frames per second is a soft real-time requirement.  
When the program is faced with violating the 30 frames per second requirement, it 
chooses to continue processing the current frame instead of fetching a new frame 
from the web camera.  This results in the degraded performance of the displayed 



51  
video stream from the web camera at a sub-optimal frame rate.  The Docker 
configuration also appears to have a slightly better execution time and frames per 
second than the control configuration.  This deviation is due to the different steps 
involved to interface with the web camera.  With the control configuration, when it 
makes a request to access the web camera, the application does not have permission 
to directly access the web camera.  Instead, it calls a trap instruction, which saves 
the program on the kernel stack and raises the privilege level to kernel mode.  The 
trap is handled by the operating system and executes the privileged instruction.  
Once complete, the operating system executes a return-from-trap instruction, which 
restores the program from the kernel back to the user program and lowers the 
privilege level back to user mode.  The application then completes the trap 
execution and continues onto the next instruction.  This series of steps introduces 
significant overhead when the control attempts to retrieve a frame from the web 
camera.  However, Docker bypasses all these steps.  When Docker is initialized, USB 
devices need to be defined in order for Docker containers to access them on their 
own.  Due to the way Docker works with the host operating system, all Docker 
requests to the specified hardware are deemed to be in kernel mode by the 
operating system, not user mode.  This completely bypasses the previous steps of 
saving the program to the kernel, going into kernel mode, executing the instruction, 
saving the program back to the application, going back into user mode and 
continuing execution.  The time required to retrieve a frame from the web camera is 
orders of magnitude faster with Docker than the control configuration.  The 
experiments showed that Docker reduces the time it takes to retrieve a frame from 
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the web camera by 0.007 to 0.012 seconds per frame compared to the control 
configuration.  This is evident when looking at the resulting execution times 
between the Docker and control configurations.  When this difference in frame 
retrieval time is taken into account, the rest of the time it takes to process a frame 
under the Docker configuration is nearly identical to the control configuration’s 
execution time due to the slight overhead the Docker configuration introduces. 

The worst-case execution time and resulting frames per second followed a 
similar, though rougher, trend illustrated with the average execution time.   As the 
number of pixels processed increased, the worst-case execution time tended to 
increase, displaying a positive correlation between the number of pixels processed 
and the resulting worst-case execution time.  This is logical, since more pixels would 
impact the worst-cast execution time as well the average execution time.  The 
variance in data, however, can be attributed to a couple of factors.  The first factor 
was the absence of an isolated system running on the development board.  Although 
the system was implemented to emulate a dedicated frame processing system, other 
essential functions originating from the operating system ran in the background.  
The operating system could unexpectedly run when the program was processing a 
frame due to its higher priority, severely impacting the execution time of a 
particular frame. The second factor is the limited processing power available for 
frame processing.  Although there were two cores available to the program, only one 
core was utilized due to the program running serially.  The lack of parallelism 
misses out on a possible optimization and quickly saturates the usage of one core, 
exposing the possibility of overhead if another system procedure takes away the 
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core the program is working on for its own use due to it being higher priority.  The 
impact of these factors on the worst-case execution time can be observed from the 
data.  When the average frames per second is at its highest number, the overhead 
imposed by losing the CPU for a period of time lowered the calculated frames per 
second for that particular frame by 5 or 12 when compared to the average frames 
per second.  As the average execution time increased, however, operating system 
overhead made less of an impact due to the overhead remaining relatively constant 
due to the operating system’s needs remaining the same no matter what workload 
was being executed.  Looking more closely at each configuration, the KVM 
configuration had overall higher worse case execution times compared to the other 
two configurations due to its average execution times being higher due to the higher 
overhead imposed by the KVM virtualization layer when interfacing between the 
firmware and operating system layers.  The control and Docker worst-case 
execution times exhibited similar worst-case execution times, though there was 
some variance due to the Docker configuration having privileged access to the web 
camera and also due to the previously mentioned factor of the operating system 
taking the CPU away from the program when a particular frame was processed due 
to the operating system’s higher priority.  In the end, the impact of one of these 
worst-case execution times on the overall operation of the program was minimal 
due to the localized nature of operating system calls and the soft real-time 
requirements of the system.  Although the operating system imposed overhead, it 
did so on a tiny window of time.  This resulted in only one frame being impacted by 
operating system calls.  In addition, the soft real-time requirements of the system 
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meant that the operating system overhead would only impact the frame currently 
being processed and not the execution time of future frames.  This is because, as 
stated previously, when the real-time requirement is violated by the processing 
time of a particular frame, the processing continues for the current frame until 
complete.  This is a subtle point to consider because in a system such as a hard real-
time system, violating the real-time requirements could result in severely degraded 
performance or cause the system to fail.  In this particular system, violations are 
forgiven, resulting in a few frames in the collected samples being slowed down by 
the CPU being taken away by the operating system while the vast majority of frames 
being unaffected since the operating system calls only run in small intervals of time. 

6.2.2 Power Discussion 
Across all three configurations, the power consumption varied slightly.  The 

overall average across all average power data for the control was 6.311 watts, the 
overall average across all average power data for the Docker configuration was 
6.082 watts, and the overall average across all average power data for the KVM 
configuration was 6.488 watts.  Between the farthest data point and the 
corresponding average, all average power data for the control fell within 4.76% of 
its overall power average, all average power data for the Docker configuration fell 
within 3.27% of its overall power average, and all average power data for the KVM 
configuration fell within 3.08% of its overall power average.  The power 
consumption varied slightly with a varied workload, but not enough to be 
considered significant.  However, some factors can account for the variance in 
power in a varied workload.  The first factor is the usage of the CPU cores.  Each core 
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will draw a certain amount of power depending on its usage.  For the control and 
Docker, one core was dedicated towards program execution while one core stayed 
mostly idle, capping the power drawn once one core was fully utilized.  For the KVM, 
however, the system delegated the KVM virtualization overhead to the other core, 
resulting in more power being drawn with both cores being kept busy.  This was 
why KVM on average consumes more power than the control and Docker.  Another 
factor is the time to get a frame from the web camera.  With the Docker 
configuration having an optimized hardware pass-through to the web camera, less 
CPU resources were dedicated to getting access to the web camera and getting the 
frame from the camera.  This resulted in less power being drawn from the CPU, 
resulting in the slight decrease in power seen when comparing the Docker and 
control configurations.  The last factor is the utilization of the GPU.  The GPU drew 
less power when it had to display less frames on the screen.  This resulted in slightly 
decreased power being drawn from the GPU as the frames per second decreased 
with an increased workload.  With all this in mind, the difference in power 
consumption between Docker and KVM on average was only about 0.4 watts, with 
the control being in the middle of this range.  Docker is the best if power 
consumption is a high priority, but the differences in power amongst all three 
configurations is minimal. 

6.3 Limitations of the Experiments 
 There were various limitations that limited what could be performed in the 
experiments.  The web camera could only support 17 resolutions, limiting what 
experimental data could be collected.  The application program ran serially, leaving one 
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of the two cores mostly in idle mode for the control and Docker configurations.  The 
scarcity of available open-source free hypervisors limited what could be tested for each 
software configuration.  The limited amount of funds available limited testing to one 
development board.  Time constraints limited quantitative experiments to performance 
and power metrics in one soft real-time embedded system.   

6.4 Implications for Future Research 
 These experiments provided a starting point for quantitatively analyzing the 
performance of hypervisors in a soft real-time system.  There are a number of different 
ways that future research can build from this starting point.  Future research can focus on 
higher resolutions like ones associated with 1080p and 4K resolutions.  As video streams 
progress to higher resolutions, conducting experiments with these resolutions would 
prove beneficial.  Another focus point could be on parallel applications operating in 
configurations involving virtualization.  The interaction of parallel applications in a 
virtualized setting could provide interesting experiments where one virtualized 
application would be able to interact with multiple cores and see if there are tradeoffs to 
this approach.  The experiments could be extended to different hypervisors such as Xen 
or VirtualBox.  These experiments could provide more quantitative data on how the 
experiments operate in different software configurations.  Further researchers could also 
conduct the experiments on different hardware.  Such experiments could further quantify 
how each software configuration would behave with weaker or more powerful hardware.  
Finally, research could be conducted in quantifying the security benefits of virtualization 
schemes.  Such experiments could conduct classes of malware attacks that try to access 
particular resources in the software or hardware and determine which groups of attacks 



57  
are mitigated with certain virtualization schemes.  These proposed ideas would further 
expand the data collected in the experiments presented in this thesis.  

6.5 Conclusions 
 This thesis conducted experiments to quantify the performance impacts 
virtualization schemes have on a soft real-time embedded system.  The experiments were 
conducted with hardware chosen to emulate a power and performance-limited embedded 
system with the desire to balance performance with security requirements.  The best 
configuration for this proposed system depends on the explicit security and performance 
requirements for the system.  If security is a high priority, the KVM configuration 
provides the highest-tested security capabilities due to it being a type-1 hypervisor at the 
cost of overhead that noticeably impacts the performance of the system.  If performance 
is a higher priority over security, the Docker configuration provides nearly identical 
performance to the control configuration and provides isolation between the application 
and operating system layers due to it being a container-based hypervisor.  What is clear is 
that completely unprotected real-time embedded systems are an increasingly risky option 
for their users.  With options like Docker that achieve almost identical performance to 
non-virtualized systems, the designer gives up little in performance to implement some 
level of cyber-protection in the system.  As embedded malware increases in number, so 
will the need to incorporate security measures into embedded systems to mitigate the 
threat of malware.  Hypervisors provide an attractive option within the trade-space in 
which performance can be exchanged for enhanced protection against malware in soft 
real-time embedded systems.   
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