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Abstract 

This paper  introduces  algorithms to be  used  for 
finding  the  Cauchy  index  of  a  transfer  function and for 
solving  the  Diophantine  equation.  The  algorithms  are 
similar  to  the  Routh-Aurwitz  array in structure  and  are 
simple  to implement. The  first  algorithm  also  provides 
a  simple  check for the  presence  of  almost  common 
factors  between  two  polynomials,  and so is useful  as  a 
computationally  inexpensive  alternative  to  the 
Sylvester  determinant. It also  finds the almost  common 
factor, and so is potentially  useful  as an alternative 
to [ 8 ]  in  implementing  self-tuning  regulators for 
nonminimum-phase  systems [61. 

I. Introduction 

In  linear  system  theory,  the  Cauchy  index  of  a 
given  transfer  function  plays an important role. In 
particular, in model-order  reduction and identification 
problems,  the  structural  changes  can be monitored by 
finding  the  Cauchy  index at each  stage [l  ,4]. In I l l ,  
it is suggested  that  pole-zero  cancellations in the 
estimated  transfer  function  could be avoided (if the 
plant is prime) if the  estimates  are  initialized  to 
have  the  same  Cauchy  index  as  the plant. The  methods 
presented so far to  calculate  the  Cauchy  index  rely  on 
its definition or on  a  variation of it that  necessi- 
tates  the  evaluation  of  the  signatures  of  some  matrices 

It is known  that  problems  arise in a  self-tuning 
regulator  (STR)  when  the  identified  transfer  function 
has  pole-zero  cancellation. In [SI, a  switching 
procedure is given  that  guarantees  global  stability  of 
the  closed-loop system. The  procedure  requires  finding 
the  Sylvester  determinant (of an N x N matrix,  with N 
the  number  of  unknown  parameters)  to  detect  when near 
pole-zero  cancellation occurs. We  show that  a 
Routh-like  array  can  be used for this  purpose  with 
considerably  less  computational expense. The  array 
also  finds  the  nearly  common factor. 

Section  I11 of the paper deals  with  finding  the 
polynomial  solution P(s)  and Q(s)  to  the  scalar 
Diophantine  equation 

[3r41* 

A ( s ) P ( s )  + B(s)Q(s) = C(s) . (1.1) 

This  equation is important in its own  right and arises 
in many  regulation and adaptive  control  problems [61. 
Many  techniques  have  been  devised  to  solve  equation 
( l ) ,  such  as  the  one  described in [71. The  algorithm 
presented  here  will  yield  a  recursive  solution  to  (1) 
by implementing  a long division  procedure  that  uses  two 
Routh-like arrays. 

11. The Cauchy  Index Algorithm 

There is given a linear nth-order, time-invariant, 
single-input/single-output (SISO),  continuous-time 
system  described by the  transfer  function 
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a  sn + a s + * a -  
0 1 + an-ls + a n '  n- 1 

m m- 1 b s + bls + + bm-ls + bm , m < n . 
(2.2) 

The  Cauchy  Index of H(s) is defined  as  the  difference 
between  the  number  of  jumps  of H(s) from -- to +=a and 
the  number  of  jumps  from +- to -- as  the  argument s 
changes  from -a to +m. In  [2] , it was  shown  that  the 
Cauchy  index  can be found by constructing  a  Sturm  chain 
of  polynomials and counting  the  number of variations  of 
sign in the  chain at +=a and -=af that is 

Cauchy  Index of H(s) - I-mA(s) = V(--) - V(-1 
where  V(a) is the  number  of  variations  of  signs in the 
Sturm  chain at s = a. 

The  Sturm  chain  can  be  constructed  using  long 
division  as follows. 

Let 

. .  

A -  
(2.3) 

A r (9) = A(s) -1 

r o ( s )  B(SI 

Then using  the  Euclidean  algorithm,  one  gets 

ri(s) = ri+l(s)qi+2(s) + ri+2(s) ; i = -l,...,k-1 

where k is defined by rk+2 (s) = 0 so that 
(2.4) 

r (s) = rk+l (s)qk+2(s) . k 

The  chain r-l (s), r o ( s ) ,  -rl (s), ..., -rk+l(s)  is a 
Sturm  chain [2]. This  chain  can be alternatively 
constructed using a  Routh-Aurwitz-like  table  as 
follows. 

Let ai = bi , i = Orlr...,m 

aj = aj , j = Orl,...,n 
2 (2.5a) 

then  construct  Table 2.1, where for j = 3,...,n-m+l 

. ai+lao - a  a j-1 1 j-1 1 

1 a: = o i+l , i = 0 ,..., n-j+2 . (2.5b) 
a 

then 
a (n-m+k-2) a (n-m+k-1) (n-m+k-2) (n-m+k-1) 

n-m+k = o i+l i+l 0 
- a  

ai a (n-m+k-2) 
or 0 
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n-m+2 and j-(n-m) odd 
0,l , .. . ,n-j+2 

(2.7a) 

n-m+2 and j-(n-m) even 
O,l,...,n-j+2 

(2.7b) 
Next, consider  the  coefficients 

1 n-m+3  n-m+(2!L+l) 
ao' "0 , ..., a , ... (2.8) 

That is, all  first  column  elements (2.6) with  odd k. 
Let A 

N = # similar  signs for consecutive  elements 

A K = # sign  changes for consecutive  elements 

Then  we  have  the  following  method  of  determining  the 
Cauchy Index. 

Theorem 2.1 
I%H (5)  = N-K 

Proof: 
m 
I-,H(s) = V(-m) - V ( m )  as  described in 121. 

The  Sturm  chain is represented in our  table  as  those 
polynomials  with  leading  coefficients  given in (2.8). 
The  Sturm  chain  will  change  sign at -00 precisely  when 
two  consecutive  coefficients  (which  will  correspond  to 
two  polynomials of different  degree  parity, i.e., one 
has  an  odd  degree,  the  other an even  degree)  have  the 
same  sign,  that is, V ( - m )  = N. 

Similarly at +o two  consecutive  coefficients  of 
different  signs  will  cause  the  chain  to  havz  a  sign 
change, so that V(-) = K. Therefore, I-,H(s) = 
N-K. 0 

The  algorithm  presented  above  can  also be used to 
check for common or almost  common  factors,  which  we  now 
demonstrate. As  shown in [SI, one  can  detect  the 
presence  of  these  factors by finding  the  Sylvester 
determinant. Our algorithm,  however,  requires  less 
computation and has  been  found  to be more  sensitive. 

Lemma 2.2 

If A(s)  and  B(s)  have  some  roots  that  are  close 
together,  that is, almost  common  factors,  then  the  two 
polynomials  can  be  written  as 

A(s) = A1 (s)X(s) (2.10) 

B(s) = B1(s)[X(s) + AX(s)] (2.11) 

where  the  norm of AX(s) is small, with  the  norm  defined 
as  follows. 

If  X(S) = x s + ... + x s + x (2.12) 

then IX(s)l = V' x. + x: + ... + + x (2.13) 

a a- 1 + x l s  a- 1 a 
2  2 2 

a -  
Proof: - 

Assume  that so is a root of X(s) so that 

a 
X(S ) = 1 x.sa-i = 0 . 

O 

X(s) being  a  polynomial is continuous in s, that is: 
V 6 > 0 and Y s such  that IX(s) - X(?.,){ E Ix(s)I < 6 
there  exists E > 0 such  that I S  - sol < E, or equiva- 

lently V E > 0 such  that Is - sol > E, there  exists 6 
such  that IX(s) I > 6. Next  consider  X(s)  as  a  function 
of xi for i = O,l,...,!L and  let s '  be  fixed  such  that 
I s '  - sol > E, X ( s ' )  is continous  with  respect  to  each 
xi, that is: 

* 
Y x.  and V y > 0 such  that IX(s') - X*(s')l < y 

there  exists  a > 0 such  that Ixi - xil < a.V i = 
O,lr...,nr where i 

X*(S) = 1 xis . a a-i 

i=O 

In  particular, let y = 6/2r then IX(s') - X*(s')l < 
6 / 2 .  But IX(s')l > 6, therefore, IX*(s')l > 6/2 > 0, 
that is 9' is not a  zero  of X*(s). Therefore,  no  root 
of X*(s) can be found  outside  a  small  radius of the 
roots  of X(s). Therefqe, if the  coefficients  of  X(s) 
change  from  xi  to x. = xi + 6. where 16 I < ai,  the 
roots  of  X(s)  can  onlylmove  within  a c i r d e  of  radius 
< E. This  will  guarantee  that  the  roots of: 

X*(S) = X(s) + AX(s) 

and those  of X(s1 are  close  whenever lAX(s) I is small. 
Elence, when  A(s)  and  B(s)  have  almost  common  factors, 
we  can  write 

A(s) = A1(s)X(s) 

B(s)  B1(S) [X(s) + AX(S)] 

where AX(s) is a  polynomial  of  small norm. 

common  factors of two  polynomials. 

Theorem 2.3 

The  next  result  provides  the  test for almost 

If one  row in Table 2.1 has  a  norm  less  than y a 
small  positive  number,  then  A(s)  and  B(s)  have  an 
almost  common factor. 

Proof - 
The  Euclidean  division  algorithm is (2.4), where 

rk+l  is the G.C.D. of  A(s)  and B ( s ) .  Now  consider 
A = AIX, B = B1 (X + AX), that is, the  case  of  almost 
common factors. Then 

A = AIX = Bql + r ,  = B q X + B1qlAX + r l  1 1  
= BIXql + r; 

B = BIX + BIAX = r,q2 + r 2  = r;q2 - BlqlAXq2 + r 2  

B I X  = r;q2 + r 2  - B  q  q AX - B AX 1 1 2  1 

= riq2 + r 2  - (1 + q  q  )B AX 

= r;q2 + r; 

1 2 3  3 

1 2  1 

r' = r'q + r 

= r2q3 - q3(l + qlq2)BlAX + r = r2q3 + r; 

k+ 1 

i=3 
r;+l = rk+l - n qi(l + q1q2)B1AX . 
Suppose 

k+ 1 
qi(l + qlq2)BlAX( < Y . 
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where IX I denotes  the  norm 
(2.13),  Then 

so that 

Y 

< 

But 

where 

of  a  polynomial  defined by 

, k+l 

< Y 

11 lqil*I1 + q1q21*1B11 
k+ 1 

i=3 

Y 

II lqil*lB1l 
k+ 1 

i= 1 

IB1 I > 8 = max b1 and  lqil > X = max q A A i 
i j '  

which yields 

Therefore, if one  row in OUT table  has  a  norm  less 
than y ,  there  exists  an  almost  common  factor  between 
A ( s )  and  B(s). 

It should  be  noted  that, if any  row  has  a  small 
norm,  then  the  almost-common  factor  is  given by the 
polynomial  two KOWS above. 

III. The Diophantine  Equation  Algorithm 

A  modified  Routh-table  can  also  be  used  to  solve 

Given the  polynomials  A(s),  B(s)  described  in 
the  Diophantine  equation. 

Section I1 and a  polynomial 

the  Diophantine  equation is 

A(s)P(s) + B(S)Q(S) = C(S) - (3.2) 

The  object is  to  find  the  polynomials  P(S)  and Q(S). 
Let Y - ~  = A, Yo = B, then  the  divisions 

Yi = Yi+lXi+2 + Yi+2 i = -l,...,k-2  (3.3) 

define Xi+2 and Yi+2, and k is  defined  by  Yk+l = 0 so 
that 

'k-1 'kXk+1 ' (3.4) 

Yk is  the  highest  common  denominator  of  A  and B and 
there  exists  a  solution  to (3.2)  if  and only if C = 
Ckyk for  some  polynomial  Ck. 

Let Po = 1, P1 = -X1, Qo = 0 ,  and Q, = 1, and 
define Pj, Qj for j > 1 by 

'i+2 - 'i+lpi+1 
Qi+2 = Qi - 'i+2Qi+1 

(3.5a) 

i = O,l,...,k-2 . (3.5b) 

Then it  may  easily  be  shown  that  the  solution  to  (3.2) 
is  given  by 

P = CkPk , Q = CkQk . (3.6) 

These  machinations  may  be  implemented  in  a  modified 
Routh  algorithm.  The  algorithm  consists  of  two  tables. 

The first is identical to Table 2.1 and  generates  the 
Yi's  and Xi's. The Yi's are  the ri's of  the  previous 
section  and  the Xils are  given  as  follows: 

OK in OUK new  notation: 

x1 = 

x2 = 

x3 = 

xi = 

Let 

2  3  n+m+ 1 - a. n-m + 5 n-m-1 + ... + - O l S  
aO "0 aO 
I S  l S  

0 

1 n-m+4 

s+- n-m+3  n-m+3 
0 0 

0 0 
n-m+3  n-m+6 

:-m+5 s + n-m+ 5 
0 aO 

n-m+2i-3 a n-m+2i 

n-m+2i-l n-m+2i-l ' 
0 -- s +  O 

- x ,  (s) = xis + xi 
0 

1 2 

Pi@) = Pis + P3S2 + ... + pni 1 
i 

where ni is  the  degree  of  Pi(s).  Therefore,  we  arrive 
at  Table 3.1 which  generates  the  polynomials  pi.  This 
table  is  filled  in  as  follows. 

I .  .l 

XL i+l 

l 1  2 1   1 2   3 1   2 2  Pi pi-lxi  pi-lxi + pi-lxi  pi-lxi + pi-lxi ... 
Table 3.2 will  produce Pk as  its  last  entry,  therefore 

P = CkPk gives P . 
A  similar  procedure  will  give  Q  with  Qo = 0 and Q1 = 1. 

Conclusions 

Algorithms  for  finding  the  Cauchy  index  and 
solving  the  Diophantine  equation  were  introduced.  The 
algorithms  have  a  simple  structure  and  exploit  the 
common  aspect  of  the  two  problems,  which  is  the 
implementation  of  the  Euclidean  division.  The  first 
algorithm  also  gives  a  test  for  almost  common  factors 
of two  polynomials  which  is  simpler  than  previously 
given  tests. 

These  algorithms  should be useful in  identifica- 
tion  problems for one  can  check  for  structural  changes 
using  the  Cauchy  index  information,  and  in  control 
problems  for  one  can  solve  the  Diophantine  equation  and 
check  for  almost  common  factors.  The  ability  of  the 
first  algorithm  to  find  (not  just  detect)  almost  common 
factors  makes it potentially  useful  as  an  alternative 
to [ a ]  for  the  adaptive  control  of  nonminimum-phase 
systems. 
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s1 I 
so I a. 
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TABLE 2.1 

sm 1 a: a l   a 2 . . . a  
1 1  1 

m 

sn 1 a: 2 2  2 a l   a 2 . . . a  . . .  a 2 m 

sn-1 1 a: 3 3  3 a l   a 2 . . . . . a  n- 1 

sn-2 1 a: a l  4 

n-m+3 

-x n-s+3 3 
- - 0 

TABLE 3.1 

n-m+4 

n-mt3 
-- 0 

a 
0 

3 n+m+ 1 

- -  * - 0  -- aO aO 

1 1 
aO aO 

n-m+6 

n-m+5 
0 -- 
0 

2  3 2 .n-m+4 

n-mt3  n-m+3 1 .n-m+3 
aO 

aO 0 0 0  

a 

p2 
- a o + 2 . O  

I 

n-m+5 

0 

-x2 1 4 
p1  1 p: 

2 
x2 

P1 
2 

n-m+8 

n-m+7 
0 -- 
0 

TABLE 3.2 

P1 
3 

-x3 1 x: 2 
x3 

1 1  2 1   1 2  3 1  2 2   4 1   3 1  
PIX + P1X2  P1X2 + PIX2 PlX2 + P1X2 

7 - P2 2p * 
p2 -92 p2  p2 

2 
x4 

A20 
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