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Application of Finite-Time Stability Concepts to

the Control of ATM Networks

F. Amato∗, M. Ariola†, C. T. Abdallah‡, C. Cosentino§

March 21, 2003

Extended Abstract

1 Introduction

When dealing with the stability of a system, a distinction should be made
between classical Lyapunov Stability and Finite-Time Stability (FTS) (or Short-
Time Stability). The concept of Lyapunov Asymptotic Stability is largely known
to the control community; on the other hand a system is said to be finite-time
stable if, once we fix a time-interval, its state does not exceeds some bounds
during this time-interval. Often asymptotic stability is enough for practical
applications, but there are some cases where large values of the state are not
acceptable, for instance in the presence of saturations. In these cases, we need
to check that these unacceptable values are not attained by the state; for these
purposes FTS could be used.

Some early results on FTS can be found in [9], [12] and [8]; more recently
the concept of FTS has been revisited in the light of recent results coming from
Linear Matrix Inequalities (LMIs) theory, which has allowed to find less conser-
vative conditions guaranteeing FTS and finite time stabilization of uncertain,
linear continuous-time systems (see [3]).

In this note we consider the problem of applying some sufficient conditions
for finite time stabilization to design the control algorithm of an ATM network
described via a discrete-time system.

The extended abstract is organized as follows: in Section 2 we provide a
sufficient condition for finite time stabilization of a discrete time system; in
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Section 3 we detail the model of an ATM network; finally in Section 4 some
concluding remarks and plans for the final version of the paper are given.

2 FTS of Discrete Time Linear Systems

Let us consider the following linear system

x(k + 1) = Ax(k) + Bu(k) (1)

where A ∈ Rn×n and B ∈ Rn×m.
Given system (1), we consider the static state feedback controller

u(k) = Kx(k) , (2)

where K ∈ Rm×n. The aim of this paper is to find a sufficient condition guar-
anteeing that the state of system given by the interconnection of system (1)
with the controller (2) is bounded over a finite-time interval. The general idea
of finite-time stability concerns the boundedness of the state of a system over a
finite time interval for given initial conditions; this concept can be formalized
through the following definition, which is an extension to discrete-time systems
of the one given in [9].

Definition 1 (Finite-time stability) The linear system

x(k + 1) = Ax(k) k ∈ N0

is said to be finite-time stable with respect to the given triplet (δ, ε, N), with
N ∈ N, if

‖x(0)‖ ≤ δ ⇒ ‖x(k)‖ < ε ∀k ∈ {1, . . . , N}
4

The following result, whose proof can be found in [3], is a sufficient condition
which guarantees that the interconnection of system (1) with the controller (2)

x(k + 1) = (A + BK)x(k) (3)

is finite-time stable with respect to a given triplet (δ, ε, N).

Theorem 1 System (3) is finite-time stable with respect to (δ, ε,N) if there
exist a positive definite matrix Q, a matrix L and a scalar γ ≥ 1 such that

(
γQ (AQ + BL)T

AQ + BL Q

)
> 0 (4a)

cond(Q) <
1

γN

ε2

δ2
. (4b)

In this case the controller K is given by K = LQ−1.

In some cases the system equation (1) is subject to an unknown disturbance
w(k). A more general version of Theorem 1, accounting for the presence of
disturbances, will be provided in the final version of the paper.

2



3 The Model of the ATM Network

The transmission of multimedia traffic on the broadband integrated service dig-
ital networks (B-ISDN) has created the need for new transport technologies
such as Asynchronous Transfer Mode (ATM). Briefly, because of the variability
of the multimedia traffic, ATM networks seek to guarantee an end-to-end qual-
ity of service (QoS) by dividing the varying types of traffic (voice, data, etc.)
into short, fixed-size cells (53 bytes each) whose transmission delay may be pre-
dicted and controlled. ATM is thus a Virtual Circuit (VC) technology which
combines advantages of circuit-switching (all intermediate switches are alerted
of the transmission requirements, and a connecting circuit is established) and
packet-switching (many circuits can share the network resources). In order for
the various VC’s to share network resources, flow and congestion control algo-
rithms need to be designed and implemented. The congestion control problem
is solved by regulating the input traffic rate. In addition, because of its inherent
flexibility, ATM traffic may be served under one of the following service classes:
1) The constant bit rate (CBR) class: it accommodates traffic that must be
received at a guaranteed bit rate, such as telephone conversations, video confer-
encing, and television. 2) The variable bit rate (VBR): it accommodates bursty
traffic such as industrial control, multimedia e-mail, and interactive compressed
video. 3) The available bit rate (ABR): it is a best-effort class for applications
such as file transfer or e-mail. Thus, no service guarantees (transfer delay) are
required, but the source of data packets controls its data rate, using a feedback
signal provided by switches downstream which measure the congestion of the
network. Due to the presence of this feedback, many classical and advanced
control theory concepts have been suggested to deal with the congestion control
problem in the ATM/ABR case [4, 11]. 4) The unspecified bit rate (UBR): it
uses any leftover capacity to accomodate applications such as e-mail.

Note that the CBR and VBR service categories, a traffic contract is negoti-
ated at the initial stage of the VC setup, and maintained for the duration of the
connection. This contract will guarantee the following QoS parameters: 1) Min-
imum cell rate (MCR), 2) Peak cell rate (PCR), 3) cell delay variation (CDV),
4) maximum cell transfer delay (maxCTD), and 5) cell loss ratio (CLR). This
then forces CBR and VBR sources to keep their rate constant regardless of the
congestion status of the network. The ABR sources on the other hand, are only
required to guarantee an MCR and an PCR, and thus can adjust their rates to
accomodate the level available after all CBR and VBR traffic has been accom-
modated. In order to avoid congestion, the ATM Forum adopted a rate-based
ABR control algorithm as opposed to a credit approach whereby the number of
incoming cells as opposed to their rate is controlled [7]. This paper will then
concentrate on the ABR service category since ABR sources are the ones to
adjust their rates using explicit network feedback. In the original ATM forum
specification, an ATM/ABR source is required to send one cell called a resource
management (RM) cell for every 32 data cells. Switches along the path from
the source to the destination then write into the RM cell their required data
rate to avoid congestion. The destination switch then has information about
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the minimum rate required by all switches along the VC which is then relayed
back to the ATM/ABR source as a feedback signal which serves to adjust its
own data rate.

The earliest control algorithms for ABR consisted of setting a binary digit
in the RM cell by any switch along the VC when its queue level exceeds a
certain threshold [4]. This was then shown to cause oscillations in the closed-
loop system. Other controllers were then suggested by various authors [6], to
address this problem. Most of these controllers are either complex or did not
guarantee the closed-loop stability (in a sense defined later).

In addition, one of the limiting factors of these earlier proposed controllers
was that the ABR bandwidth needed to be known in the implementation of the
control algorithm. This however poses a problem in multimedia applications
where the ABR bandwidth is bursty and is effectively the remaining available
bandwidth after the CBR and VBR traffic have been accommodated. In [11] this
particular issue was dealt with using a Smith predictor which then considered
the available ABR bandwidth as an unknown disturbance. While this controller
had many desirable properties, it only guaranteed stability in an appropriately
defined sense but had no optimality guarantees. In addition, the delays encoun-
tered along with the number of ABR sources were assumed known, although
the earlier tech report [7] did not require the delays to be exactly known. In
[10], robust controllers were designed when both the number of ABR sources
and the delays were uncertain.

In this paper, we consider a discrete-time model for an ATM/ABR switch
and source which was presented in [6] and attempt to control the system using
some extensions of the results on Finite-Time Control originally presented in
[3].

As in [6] and [1], we consider the closed-loop discrete-time system:

Q(k + 1) = sat{0,B}(Q(k) + λ(k − df )− µ(k)) (5)

R(k + 1) = sat{0,C}(R(k)−
J∑

j=0

αj(Q(k − j)−Q0)−
L∑

l=0

βkR(k − l)) (6)

where R denotes the explicit rate (ER) computed by a switch for a given V C
and Q denotes the buffer occupancy of this V C at the switch. Furthermore,
λ(k) and µ(k) are the rate at the ABR source and the service rate at the switch
during the interval [k, k + 1]. df is the forward delay from the source to the
switch and the saturation level B represents the buffer size. The saturation level
C is the maximum ER. Q0 is the desired buffer occupancy. The ABR source is
greedy if the source’s rate λ(k− df ) is equal to R(k + 1− d), where d = df + db

is the round trip delay (db is the feedback delay from the switch back to the
source). By sat{A1,A2}(ν) we denote the scalar saturation function defined as:

sat{A1,A2}(ν) =





A1 if ν < A1

ν if A1 ≤ ν ≤ A2

A2 if ν > A2

(7)
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In (5)-(6), the numbers J , L and the parameters αj , βk have to be found
such that closed-loop stability and some performances are attained [5].

In [5], the author showed that when considering the linearized model of
system (5)-(6) it is sufficient to consider J = 1 and L = d in order to completely
place the closed-loop poles. Hence, we consider (5)-(6) with J = 1, L = d but
without removing the saturation functions as done in [6]. Moreover we suppose
that λ(k − df ) is equal to R(k + 1− d).

Let us now define both extended state and disturbance vectors

X(k) =




Q(k)
Q(k − 1)
R(k)
R(k − 1)
...
R(k + 1− d)
R(k − d)




∈ Rd+3 ; W (k) =
[

µ(k)
Q0

]
∈ R2 (8)

and define the following matrices

A =




0 0 ... ... 0 0 0
1 0 ... ... 0 0 0
0 0 0 0 ... ... 0
0 0 1 0 ... ... 0
... ... ...

. . . ... ...
...

... ... ... ...
. . . ...

...
0 ... ... ... ... 1 0




; B1 =




1 0
0 0
0 1
0 0
...

...
...

...
0 0




; B2 =
[ −1 0

0 α0 + α1

]

G =
[

1 0 ... ... 0 1 0
−α0 −α1 1− β0 −β1 ... ... −βd

]
=

[
H
K

]

(9)
Hence, from (8) and (9), the system under consideration reads:

X(k + 1) = (A+ B1G)X(k) + B1B2W (k) + B1Ψ(X(k),W (k)) (10)

with

Ψ(X(k),W (k)) = sat{0,B},{0,C}(GX(k) +B2W (k))− (GX(k) +B2W (k)) (11)

where

sat{0,B},{0,C}(ν) =
[

sat{0,B}(ν(1))
sat{0,C}(ν(2))

]
(12)

Considering the nonlinear system (10), the problem we aim to solve through-
out this paper may be summarized as follows.

Problem 1 Determine a matrix K, a set of admissible initial conditions S0

and a set of admissible disturbances D0 such that:

1. The closed-loop matrix A+ B1G is asymptotically stable.
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2. The closed-loop trajectories remain bounded for any X(0) ∈ S0 and any
admissible disturbance W (k) ∈ D0, ∀n.

3. The steady state buffer occupancy is equal to the desired threshold Q0.

It is important to note that the satisfaction of point 3 in Problem 1 forces
us to study the existence of possible equilibrium points corresponding to the
case W (k) = We where We is a constant value. It is easy to check that an
equilibrium point Xe for system (10) satisfies

Re(k − l) = Re(k − l + 1) = Re = µe(k) = µe, l = 0, 1, ..., d (13)

Qe(k) = Qe(k − 1) = Qe = Q0 (14)

d∑

l=0

βlRe =
d∑

l=0

βlµe = 0 . (15)

Since, in general µe is not equal to 0, condition (15) implies that

d∑

l=0

βl = 0 (16)

The satisfaction of this equality implies that βd is computed from the last d
entries. In other words, one can write:

βd = −
d−1∑

l=0

βl (17)

As a consequence of (17), we have that the vector K in (9) can be written
as

K =

[
−α0 −α1 1− β0 −β1 ... ...

d−1∑

k=0

βk

]
(18)

The above observations lead us to an alternative representation of model (5)-
(6) and therefore of model (10). At this aim, consider the following vectors

Y (k) =




Q(k)−Q0

Q(k − 1)−Q0

R(k)− µe

R(k − 1)− µe

...
R(k − d)− µe



∈ Rd+3 and ν(k) = µ(k)− µe ∈ R (19)
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which correspond to a change of variables around the equilibrium point Xe, and
define the matrix

B3 =




−1
0
0
0
...
0



∈ Rd+3 (20)

¿From (19) and (20), the closed-loop system under consideration reads:

Y (k + 1) = (A+ B1G)Y (k) + B3ν(k) + B1Ψ(Y (k), ν(k)) (21)

with

Ψ(Y (k), ν(k)) = sat{−Q0,B−Q0},{−µe,C−µe}

(
GY (k) +

[ −1
0

]
µ(k)

)

−
(
GY (k) +

[ −1
0

]
µ(k)

)

where the saturation is defined similarly to (12).

4 Control Design via FTS Theory

In order to solve Problem 1 we will make use of the change of variables that leads
the system in the form (21), “centered” around the equilibrium point. Then we
will guarantee that the system operates in linear regime, i.e. the saturation never
occurs, by imposing that the arguments of the saturation functions never exceed
the limits. This is accomplished using the concept of Finite-Time Stability
defined in Section 2.

In the final version of the paper we will show how Theorem 1 can be applied
to our case, giving a solution to Problem 1. Some simulation results will be also
included.
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