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Abstract

In the search for vacuum solutions, with or without the cosmological constant Λ, of

the Einstein field equations for Petrov type N with twisting principal null directions,

the CR structures, which describe the parameter space for the geodesic congruence

tangent to such null vectors, provide a useful invariant approach. Work of Hill,

Lewandowski and Nurowski has laid a solid foundation for this, reducing the field

equations to a set of differential equations for two functions, one real, one complex, of

three variables. Under the assumption of the existence of one special Killing vector,

the infinite-dimensional classical symmetries of those equations are determined and

group-invariant solutions are considered. This results in a single ODE of the third

order which may easily be reduced to one of the second order. A one-parameter class

of power series solutions, g(w), of this second-order equation is realized, holomorphic

in a neighborhood of the origin and behaving asymptotically as a simple quadratic

function plus lower-order terms for large values of w, which constitutes new solutions

of the twisting type N problem. The solution found by Leroy, and also later by

Nurowski, is shown to be a special case in this class. Cartan’s method for determining

vi



local equivalence of CR manifolds is used to show that this class is indeed much

more general. Also for the general metrics determined by this second-order ODE,

two Killing vectors, including the one already assumed, can be found, both of which

are inherited from symmetries of the underlying CR structures.

In addition, for a special choice of a parameter, this ODE may be integrated once,

to provide a first-order Abel equation. It can also determine new solutions to the

field equations although no general solution has yet been found for it.
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Chapter 1

Introduction

1.1 Overview

The 1993 Nobel Prize was awarded to Russel A. Hulse and Joseph H. Taylor for

their 1974 discovery of the binary pulsar system PSR B1913+16, “a discovery that

has opened up new possibilities for the studies of gravitation” by providing the first,

and so far, still the only experimental evidence for gravitation radiations. Nowadays,

high accuracy laser interferometer experiments, such as LIGO and Virgo, have been

racing to a direct detection of the weak signals from gravitational waves, which is

likely to be achieved in a foreseeable near future.

On the theoretical side, due to the essential nonlinearity of general relativity,

the exact solutions have been playing an important role ever since the theory was

born. Discoveries and analyses of various specific solutions, which effectively make

the nonlinearity more tractable, have revealed most unforeseen features of the theory

(black holes, gravitational waves, cosmology, etc.). Especially, studies of special exact

solutions can provide useful guidance to approximative and numerical approaches,

promote further questions concerning more general situations, and verify or modify

1



Chapter 1. Introduction

conjectures (e.g., the cosmic censorship conjecture, the cosmic no-hair conjecture).

Moreover, previously known solutions may turn out to be asymptotic states of gen-

eral classes of models, hence becoming more interesting in physics (e.g., Robinson-

Trautman and Schwarzschild metrics). In fact, as J. Bičák once commented [1], “if

analyzed globally, almost any solutions can tell us something about the basic issues

in general relativity, like the nature of singularities, or cosmic censorship,” though

such analyses are often very complicated to carry out. Although a large number of

exact solutions have been discovered, relatively few exact solutions are known for

real physical situations. Among those without exact solutions are, for example, the

two-body problem and gravitational radiations from other realistic bounded sources.

Despite that non-twisting radiative solutions (e.g., pp-waves, Kundt solutions,

Robinson-Trautman solutions, all of Petrov type N) have been extensively studied

and are well-known, real physical situations, however, mostly generate gravitational

waves with principal null rays that have a nonzero twist (with decay rate 1/r2,

compared to field strength decay 1/r), e.g., those emitted from binary black hole

mergers [2] that are considered as key sources for gravitational wave detection. Hence

there has been great interest in the twisting problem that hopefully may lead to

more realistic radiative spacetimes. Nevertheless, finding a twisting vacuum solution,

especially of Petrov type N (with its prominence signified by the peeling theorem, cf.

Section 1.2), with or without the cosmological constant Λ, is one of the most difficult

in the theory of algebraically special solutions and has remained largely unsolved

for decades1. Besides that the field equations for twisting type N are strongly over-

determined, the difficulty also lies in that a nonzero twist itself is associated with

a certain non-integrability (in the sense of Frobenius), which causes, for instance,

a lack of 2-dimensional wavefronts (surfaces orthogonal to null congruences) in the

1In some sense, this prolonged stagnant situation without finding new solutions has
elevated doubts about the physical relevance of twisting type N vacuums [3, 4], the issue of
which nowadays is still somehow clouded by various inconclusive results from approximate
approaches.

2



Chapter 1. Introduction

spacetimes that are always seen in non-twisting solutions. So far, before our new

results published in early 2012 [5] which this dissertation shall discuss with more

details, there had been, despite great efforts, only two known twisting type N vacuum

solutions, i.e., that of Hauser (1974) [6, 7] with Λ = 0, and that of Leroy (1970) [8]

with Λ < 0, which in the limit of Λ → 0 degenerates to a flat solution rather than one

of type N. Many different approaches have been used to attempt the finding of more

solutions. With a requirement of one or more Killing vectors—not more than two

can be allowed when Λ = 0— the problem can be reduced to the solution of a single,

nonlinear ODE, which has been produced in several forms of various complexities

by different authors [9, 10, 11, 12]; nonetheless, this approach has produced no new

solutions. Looking at the problem as a reduction from complex-valued manifolds

via Plebański’s hyperheavenly equation [13] has produced no new solutions [14].

Therefore we were quite interested when we became aware of a different approach in

a recent paper by Pawe l Nurowski [15], looking for exact solutions of this type with

nonzero cosmological constant.

Many of Nurowski’s research articles use the fact that one can productively study

(4-dimensional) Lorentz geometries which admit a shearfree geodesic null congruence

of curves by viewing the 3-parameter space that picks out any particular curve in the

congruence, as a (3-dimensional) CR structure [16]. In [17], he and his collaborators

use the first CR function in such a structure to create a very appropriate choice of

coordinates for a twisting type N Einstein space2, and reduce the Einstein equations

to a set of nonlinear PDEs for a couple of functions of three variables. Then in

[15], he makes a clever ansatz depending only on a single variable and discovers a

particular twisting solution; unfortunately that solution turns out to be the same as

the one mentioned above and first found by Leroy, as he notes in a more recent paper

2We use the relatively common nomenclature “Einstein spaces” for solutions to the
Einstein equations with a source of either the pure vacuum or that vacuum with a nonzero
cosmological constant Λ.
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Chapter 1. Introduction

[18]. However, we were quite intrigued by the approach and have made efforts to

follow it through with the hopes of obtaining more general solutions of the equations

in Nurowski’s article.

A spacetime of type N allows one, and only one, congruence of twisting shearfree

null geodesics, referred to as the principal null direction (PND); this (3-parameter)

family of null geodesics allows the option to choose a single coordinate r along any

such geodesic, and to associate the other three degrees of freedom in the parameter

space as a model for a CR manifold. We first insist that our manifold admit a

Killing vector in the real direction in this (3-dimensional) CR manifold, so that the

remaining unknown functions depend only on the complex coordinates there, and

then calculate the (infinite-dimensional) classical symmetries for the system. This

allows us to derive a quite simple nonlinear third-order ODE which the invariant

solutions of the classical symmetries must satisfy. Because this equation does not

contain the independent variable explicitly, it can be immediately reduced to the

following second-order ODE, for g = g(w), with two slightly different forms that

differ by a constant:

g′′ = −(g′ + 2w)2

2g
− 2C

g
− 10

3
, C = 0 or 1. (1.1)

We are then able to show that the Leroy-Nurowski solution is indeed a special solu-

tion for this equation. At this point it is worthwhile to enter into the question as to

how one knows that the new solution of Nurowski does indeed describe locally3 the

same manifold as the solution found by Leroy. The method was originally created by

E. Cartan [19, 20, 21] to prove equivalencies of CR structures, without the need of ac-

tually determining an explicit transformation between the two sets of representatives

and coordinates on two CR manifolds. Instead, one determines the values of a set of

invariant quantities for a CR structure, the same for all equivalent such structures.

3All our considerations are local, both in the Lorentz-signature spacetime and in the
associated complex spaces we need to use.
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Chapter 1. Introduction

Therefore it is necessary to calculate the invariants for Leroy’s solution and compare

them with the ones already known to Nurowski for his solution, noting that they

are the same constants (see Section 8.1 for the explicit coordinate transformation

between these two solutions). We have therefore also calculated these invariants for

our class of solutions, which we find to be quite different in general.

For the case when the constant C in (1.1) is zero, an integral transformation may

be performed to reduce that equation further, to a first-order ODE of Abel type for

f = f(t):

f ′ =
4

t

(
t +

3

2

)(
t +

1

3

)
f 3 +

5

t

(
t +

2

5

)
f 2 +

1

2t
f, (1.2)

which, quite unfortunately, we have not been able to identify as any of the known

solvable types of Abel equations [22, 23]. Nonetheless, we believe that these two

equations so far are the simplest ODEs available that determine nontrivial twisting

type N Einstein spaces. Returning to the case when C = 1, our current examinations

suggest the possibility that the solutions of this equation might define a new class of

transcendental functions, which constitutes a major result of this work, establishing

a new set of solutions to the type N problem with Λ ̸= 0. The remainder of this work

will describe the process involved in this, and our reasons for stating that these are

indeed new solutions. In particular, we will present solutions to (1.1) in the forms

of power series and Puiseux series, both shown to be locally convergent. Although

prior to this time there were indeed only two known twisting type N Einstein spaces,

it is always worth remembering that the solution space for the problem is in fact

quite large. It has been shown by Sommers [24] that the full set of solutions for type

N is given by two complex functions of two real variables. Surely the requirement

of nonzero twist puts a very strong constraint on this, but it is expected that there

should be a large number of new analytic functions involved in the full solution of

the twisting type N problem.

The dissertation is organized as follows. For the rest of this chapter, we intro-

5



Chapter 1. Introduction

duce basic concepts and theorems associated with algebraically special spacetimes

that admit congruences of shearfree null geodesics (twisting or not). In Chapter 2, we

give a brief review of the fundamentals of CR geometry and its lifting to spacetimes,

as well as the derivation of the field equations for type N in this setting. Then we

make a detailed comparison with another version of the field equations to reveal the

invariant properties and advantages of using CR geometry. In addition, the Hauser

solution is given as the first example of solutions. Chapter 3 describes, in a nutshell,

classical symmetries of PDEs as an important technique for finding exact solutions.

Then in Chapter 4, assuming the existence of one special Killing vector, we apply this

technique to calculate the classical symmetries of a set of simplified field equations.

From the invariant solutions of these symmetries, the aforementioned second-order

and the first-order ODEs are derived. Moveover, we point out an important con-

nection between CR equivalency and the classical symmetries we have found. For

Chapter 5, we make our first attempt on solving those ODEs. Particularly for (1.1),

all conformally flat solutions are found and the Leroy-Nurowski solution is also re-

covered with its form extended to include a free function. With these solutions in

mind, in Chapter 6, we invoke the weak Painlevé test for those ODEs as a way to

estimate the chance of success in finding new solutions to them. The test suggests

the existence of Puiseux series solutions to (1.1), which are shown to be locally con-

vergent and different from the Leroy-Nurowski solution. In Chapter 7, we construct

for (1.1) a one-parameter series solution connecting a conformally flat solution and

the Leroy-Nurowski solution, which constitutes a new family of type N solutions. As

a supplement, in Chapter 8, Killing symmetries are discussed for the Leroy-Nurowski

solution and for general solutions determined by (1.1). All together, the dissertation

is largely based on our published paper of [5] with more background, details and new

results added.

For an extra comment, we would like to point out that three different kinds of

symmetries are discussed in this work. They are respectively symmetries of spacetime

6



Chapter 1. Introduction

metrics (Section 1.3), symmetries of CR structures (Section 2.3) and symmetries of

PDEs (Chapter 3). It should be clear from the names and context which symmetry

we refer to in a particular circumstance.

1.2 Geometry of Spacetimes and Petrov Types

In this section, we will introduce various concepts involved with spacetimes that

admit a congruence of shearfree null geodesics (twisting or not). Such spacetimes are

closely related to algebraically special spacetimes classified according to the Petrov

types, of which the type N is the most algebraically special one.

The approach to a 4-dimensional Lorentzian manifold M begins with the usual

form for a spacetime metric [25] (see p. 31) in terms of a complex null tetrad of

1-forms (θ1, θ2, θ3, θ4) and with the Lorentzian signature (+,+,+,−):

g = 2
(
θ1θ2 + θ3θ4

)
, gij =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , (1.3)

where θ2 is the complex conjugate of θ1, while θ3 and θ4 are real, and the product is

the usual symmetric tensor product of two 1-forms, e.g., θ1θ2 = 1
2
(θ1 ⊗ θ2 + θ2 ⊗ θ1).

Now we assume that the spacetime admits a congruence of a 3-parameter family of

curves that are tangent to a non-vanishing real null vector field k such that

g(k, k) = 0, θ3 = g(k, ·), ky θ1 = ky θ2 = 0.

With such a congruence, i.e., the null direction of k, fixed, one can only determine

7



Chapter 1. Introduction

the metric (1.3) up to the following Lorentz transformations [25] (see p. 33)

θ1
′
= eiφ

(
θ1 + B̄θ3

)
,

θ2
′
= e−iφ

(
θ2 + Bθ3

)
,

θ3
′
= Aθ3,

θ4
′
= A−1

(
θ4 −Bθ1 − B̄θ2 −BB̄θ3

)
.

(1.4)

with two real functions A ̸= 0, φ and a complex function B on M. This congruence

associated with k is called a congruence of shearfree and null geodesics if the tetrad

satisfies

dθ3 ∧ θ1 ∧ θ3 = 0,

dθ1 ∧ θ1 ∧ θ3 = 0,
(1.5)

the vanishing of which is invariant under the transformation (1.4), i.e., that (1.5)

together with (1.4) implies

dθ3
′ ∧ θ1

′ ∧ θ3
′
= 0,

dθ1
′ ∧ θ1

′ ∧ θ3
′
= 0.

Hence this is a property of the congruence. In addition, one can show that (1.5) is

equivalent to the condition [26]

Lkg = Θg + 2θ3ϑ, (1.6)

with a real function Θ, called the expansion, and a real 1-form ϑ on M. This

condition means that the conformal metric induced from g in the 2-dimensional

quotient space k⊥/k is preserved along the congruence.

Assuming that (1.5) holds, we can go further to define a real function Ω by

dθ3 ∧ θ3 = iΩ θ1 ∧ θ2 ∧ θ3,

which, by virtue of (1.4), implies

dθ3
′ ∧ θ3

′
= iAΩ θ1

′ ∧ θ2
′ ∧ θ3

′
.

8



Chapter 1. Introduction

Therefore the vanishing or not of Ω is also an invariant property of the congruence.

We say that a shearfree geodesic null congruence is twisting (rotating) if Ω ̸= 0, and

non-twisting if otherwise. For a geometric explanation, a congruence being twisting

means that the associated vector field k cannot be proportional to a gradient ∇f for

some real function f on M.

To study the Einstein equations, we first introduce the Cartan structure equations

for the metric (1.3):

dθi + Γi
j ∧ θj = 0,

dΓi
j + Γi

k ∧ Γk
j =

1

2
Ri

jklθ
k ∧ θl,

where Γi
j is the Levi-Civita connection 1-form, satisfying Γij = gikΓk

j = −Γji. From

these equations, one can determine the Riemann tensor Ri
jkl, and henceforth the

Ricci tensor Rij = Rk
ikj as well as the Ricci scalar R = Rijg

ij with gij the inverse

of gij. As conditions imposed on the Ricci tensor, we have the vacuum Einstein

equations

Rij = Λgij (1.7)

with the cosmological constant Λ zero or not. Spacetimes satisfying all ten individual

equations of (1.7) are called Einstein spaces.

With all these quantities in hands, the Weyl tensor, i.e., the traceless part of the

Riemann tensor, is given by

Cijkl = Rijkl + 1
6
R (gikglj − gilgkj) + 1

2
(gilRkj − gikRlj + gjkRli − gjlRki), (1.8)

which has the property of being invariant under conformal transformations of the

metric (1.3). Due to its symmetry properties, the Weyl tensor has only ten inde-

pendent components all of which can be fully determined by the five complex-valued

9



Chapter 1. Introduction

Weyl scalars Ψ0,1,2,3,4:

Ψ0 = C4141 = R4141,

Ψ1 = C4341 = 1
2
(R4341 + R1421),

Ψ2 = C4132 = R1423 − 1
6
(R12 + R34),

Ψ3 = C3432 = 1
2
(R3432 + R2312),

Ψ4 = C3232 = R3232,

Here we have used (1.8) to express the Weyl scalars in terms of the Riemann and

Ricci tensor components.

At a point of the spacetime M, if the Weyl tensor is nonzero, then there exist

at most four distinct null directions called the principal null directions (PNDs). All

possible multiplicities of PNDs constitute the Petrov-Penrose classification of space-

times [27], which can be enumerated by the five different partitions of the number 4,

denoted respectively by [1111], [112], [22], [13] and [4]. For example, if a spacetime

admits four distinct PNDs, i.e., the case [1111], then it is called algebraically general

or of Petrov type I; otherwise it is algebraically special. Particularly for our interest,

a type N spacetime (denoted by [4] above) has only one repeated PND of multiplic-

ity 4, which means that all four PNDs coincide. To determine the Petrov type of a

metric, one only needs to calculate the Weyl scalars in the null tetrad we are using:

Ψ0 = 0, Ψ1 ̸= 0 ⇐⇒ type I [1111] (k is a PND),

Ψ0 = Ψ1 = 0, Ψ2 ̸= 0 ⇐⇒ type II [112] or D [22],

Ψ0 = Ψ1 = Ψ2 = 0, Ψ3 ̸= 0 ⇐⇒ type III [13],

Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0, Ψ4 ̸= 0 ⇐⇒ type N [4],

Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0 ⇐⇒ type 0 (conformally flat).

Here for the type 0, the Weyl tensor vanishes, in which case the spacetime is con-

formally flat and does not single out any null direction. To summarize, the Penrose

10



Chapter 1. Introduction

diagram below signifies the successive growth in multiplicity of PNDs among different

Petrov types with arrows pointing towards more special cases.

I

↙ ↓

II −→ D

↙ ↓ ↙ ↓

III −→ N −→ 0

The importance of type N spacetimes is manifested from the peeling theorem

[28, 29] of gravitational radiations, which, roughly speaking, shows the following

asymptotic behaviours of the Weyl tensor C:

C =
N

r
+

III

r2
+

II + D

r3
+

I

r4
+ O

(
r−5
)
, (1.9)

as the affine parameter r → ∞ in a null direction when one observes a gravitational

field further and further away from the finite source. Here N , III, II, D and I refer

to tensorial quantities of respective Petrov types denoted by the symbols. Therefore

the general far field of gravitational radiations is of Petrov type N, which consists of

a single gravitational wave propagating in the direction of the unique PND.

Additionally, we can say more about shearfree null congruences as to their rela-

tions with algebraical special spacetimes:

Theorem 1.1. (Goldberg-Sachs [30]) Given that a spacetime satisfies the Einstein

equations Ric(g) = Λg, then the following conditions are equivalent to each other:

(i) The spacetime admits a congruence of shearfree null geodesics tangent to a

vector field k.

(ii) The spacetime is algebraically special, i.e., Ψ0 = Ψ1 = 0, with a multiple PND

tangent to k.

11
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1.3 Killing Symmetries

A symmetry or isometry is a transformation under which the form of the metric is

invariant. More specifically for infinitesimal transformations generated by a vector

field X, it requires that the Lie derivative of the metric tensor g in the direction of

X must vanish, i.e.,

LXg = 0, (1.10)

which is known as the Killing equation. Accordingly, a vector field X satisfying

the Killing equation is called a Killing vector. For a given spacetime, the existence

and number of Killing vectors, among other physical properties and interpretations,

do not rely on a particular coordinate representation. In addition, it is well-known

that in Lorentzian spacetimes, the maximum number of independent symmetries is

ten (including four translations, three rotations and three boosts), in which case

the spacetime has constant scalar curvature (Minkowski spacetime, (Anti-)de Sit-

ter spacetime). Most exact solutions, however, admit significantly lower number of

symmetries.

To study a new spacetime, one of the first steps for physical interpretation is to

identify its symmetries. In fact, as we will demonstrate later, in order to simplify

the field equations sufficiently for exact solutions to be obtained, one almost always

needs to assume the existence of certain symmetries in the beginning. Specifically, if

the metric components are all independent of one special coordinate (for our metric,

the coordinate u, see Section 4.1), a Killing vector can be immediately identified

as aligning in the direction of this special coordinate. However, other symmetries

may be much more difficult to find, due to the non-triviality of solving the Killing

equation without missing any useful solution.
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CR Structures and Reduced

Einstein Equations

2.1 CR Structures

CR (Cauchy-Riemann or complex-real) structures were first introduced into mathe-

matics by Poincaré and extensively studied by E. Cartan [19, 20]. They later appear

as the geometric structures of algebraically special spacetimes that admit a shearfree

null congruence. Good sources of background on these two geometric concepts may

be found, for instance, in the thesis of Nurowski [31], and also in the very detailed dis-

cussion of their use for Einstein spaces in his joint article with Hill and Lewandowski

[17]. Generally speaking, CR geometry is an invariant way of characterizing alge-

braically special spacetimes and reformulating associated field equations. In these

sections, we will describe how CR structures (especially, strictly pseudoconvex ones)

play such a role in relativity.

A CR manifold is a 3-dimensional real manifold M equipped with an equivalence

13



Chapter 2. CR Structures and Reduced Einstein Equations

class of pairs of 1-forms λ (real) and µ (complex) such that

λ ∧ µ ∧ µ̄ ̸= 0.

Another pair (λ′, µ′) is considered equivalent to (λ, µ), and therefore simply another

representative of the same class [(λ, µ)], iff there exist functions f ̸= 0 (real) and

h ̸= 0, g (complex) on M such that

λ′ = fλ, µ′ = hµ + gλ, µ̄′ = h̄µ̄ + ḡλ. (2.1)

As an alternative definition, for a non-vanishing complex vector field ∂ satisfying

∂yµ̄ = ∂yλ = 0,

the equivalence relation (2.1) allows precisely the following transformation:

∂ → 1

h
∂,

within the same CR structure.

Given a 3-dimensional CR manifold M , it is important to consider whether or

not M can be locally embedded as a hypersurface in C2. The question is related to

the following first-order linear PDE known as the tangential CR equation:

∂̄ζ = 0, (2.2)

or equivalently,

dζ ∧ λ ∧ µ = 0, (2.3)

for a complex-valued function ζ. The solution ζ is called a CR function. If the equa-

tion (2.2) locally admits two CR functions ζ and η that are functionally independent,

namely,

dζ ∧ dη ̸= 0, (2.4)

14
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then one can construct a local embedding of M into C2 as

M ∋ (x1, x2, x3) → (ζ(xi), η(xi)) ∈ C2

where xi are coordinates on M . In fact, the converse of the argument is also true

[31]. Hence a CR manifold is locally embeddable iff the equation (2.2) locally admits

two functionally independent CR functions. Nevertheless, a generic situation is that

(2.2) may have no local solutions other than trivial constants, even if the vector field

∂̄ is of differentiability class C∞ [32, 33].

From now on, we only consider CR structures that are strictly pseudoconvex

(non-degenerate), which are defined by the condition

λ ∧ dλ ̸= 0, (2.5)

or equivalently, that the vector fields ∂, ∂̄ and [∂, ∂̄] are linearly independent at each

point of M . Note that this definition is independent of the choice of representatives

from (2.1). In Section 2.5, we will see that the condition (2.5) implies the shearfree

null congruence being twisting in a spacetime.

2.2 Cartan Invariants

Given two CR structures with a great degree of freedom in choosing vastly different

representatives, one may ask if there can be a set of procedures to conveniently decide

whether or not they are in fact the same CR structure, merely represented differently.

The method was originally created by E. Cartan [19, 20, 21] to show equivalency of

CR structures, without the need of actually determining an explicit transformation

between representatives and coordinates on two manifolds. Instead, one calculates

the values of a complete set of invariant quantities, called the Cartan invariants, for

a CR structure, which must be the same for all equivalent such structures. Here we

describe how they are defined.
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Assuming that (2.5) holds, one can always make a suitable choice of 1-forms

(λ′, µ′) from the class [(λ, µ)] satisfying

λ′ ∧ dλ′ = iλ′ ∧ µ′ ∧ µ̄′ ̸= 0. (2.6)

This condition, which can be assumed without loss of generality, will restrict the

transformation (2.1) to the following (h ̸= 0, g complex and arbitrary):

Ω = hh̄λ′, Ω1 = h(µ′ + gλ′), (2.7)

such that the new pair (Ω,Ω1) are still in the class [(λ, µ)] and satisfy the condition

(2.6). From Ω and Ω1, we can construct 1-forms Ω2, Ω3 (complex), Ω4 (real) and

define a complex-valued function R through the following equations [19]:

dΩ = iΩ1 ∧ Ω̄1 +
(
Ω2 + Ω̄2

)
∧ Ω,

dΩ1 = Ω2 ∧ Ω1 + Ω3 ∧ Ω,

dΩ2 = 2iΩ1 ∧ Ω̄3 + iΩ̄1 ∧ Ω3 + Ω4 ∧ Ω,

dΩ3 = Ω4 ∧ Ω1 + Ω3 ∧ Ω̄2 + RΩ̄1 ∧ Ω.

(2.8)

Note that they all depend on the functions h and g. In particular, one can show that

the vanishing or not of R is invariant under the transformation (2.7). For R = 0,

there exists a unique CR structure which can always be represented by the canonical

form [19]

Ω = du− i

2
ζ̄dζ +

i

2
ζdζ̄ , Ω1 = dζ (2.9)

in a suitable coordinate chart (u, ζ, ζ̄). This is in fact the local CR structure of a

hyperquadric or a sphere S3 ⊂ C2 [21] (see p. 150). We will encounter this CR

structure (also known to physicists as related to the Robinson congruence [34]) in

the Hauser solution (see Section 2.7) of the twisting type N problem. For R ̸= 0,

by the transformation (2.7), we can always pick some h and g to achieve the special

“gauge”

R = 1. (2.10)
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Eventually, the choice of the functions h (up to a sign) and g (or, Ω and ±Ω1) will

become unique if one imposes, in addition to (2.10),

dΩ = iΩ1 ∧ Ω̄1.

Hence from these special h (with the sign fixed) and g, one can uniquely determine

the 1-forms Ω2, Ω3 and Ω4, which, together with Ω and Ω1, are called the Cartan

invariant forms. Finally, note that (Ω,Ω1, Ω̄1) forms a basis. Thus by expanding

these invariant forms as

Ω2 = αIΩ1 − ᾱIΩ̄1 + iβIΩ,

Ω3 = iγIΩ1 + θIΩ̄1 + ηIΩ,

Ω4 = − i

2
η̄IΩ1 +

i

2
ηIΩ̄1 + ζIΩ,

we define the six Cartain invariants (invariant functions) denoted respectively by

αI , θI , ηI (complex),

βI , γI , ζI (real).

Under additional assumptions on the 1-forms (λ′, µ′) in (2.7):

dµ′ = 0, dµ̄′ = 0,

dλ′ = iµ′ ∧ µ̄′ + (cµ′ + c̄µ̄′) ∧ λ′,
(2.11)

with a complex function c on M , Cartan found explicit expressions for the Cartan

invariant forms [19] (or [21], see pp. 123-127), based on which we have managed to

calculate the Cartan invariants as those listed in Appendix B. The above assumptions

will also be used in the CR formulation of the field equations in Section 2.5.
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2.3 Symmetries

A symmetry of a CR structure is a diffeomorphism that preserves the relation (2.1).

Specifically, a real vector field X on M is an infinitesimal symmetry iff

LXλ = aλ, LXµ = bµ + gλ

or equivalently,

[X, ∂] = −b∂, (2.12)

where a is a real function and b, g are complex functions.

The classification of infinitesimal symmetries of CR structures has been resolved

in [35]. Here we quote two theorems from it regarding the canonical forms of CR

structures with one or two infinitesimal symmetries.

Theorem 2.1. If a CR structure admits one infinitesimal symmetry then it is equiv-

alent to the following CR structure defined by

µ = dx + idy, λ = du + f(x, y)dx, ∂yf ̸= 0, (2.13)

in a real coordinate chart (u, x, y), with some real function f(x, y). The associated

symmetry is given by

X = ∂u.

Theorem 2.2. If a CR structure admits two infinitesimal symmetries then it is

equivalent to the following CR structure defined by

µ = dx + idy, λ = e−εxdu + f(y)dx, ∂yf ̸= 0, ε = 0 or 1, (2.14)

in a real coordinate chart (u, x, y), with some real function f(y). The associated

symmetries are given by

X1 = ∂u, X2 = εu∂u + ∂x, (2.15)
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such that

[X1, X2] = εX1.

These two types of CR structures will be very useful for our later discussions.

In some sense, the first theorem provides a motivation to the key assumption of the

u-independence that we make in Section 4.1. Our new class of type N metrics have

CR structures of the type described in the second theorem. Moreover, in Chapter

8, starting with the symmetries of (2.15), we will be able to make a quick guess

on the Killing vectors of our new type N metrics, and verify that they indeed lead

to true Killing vectors (an inheritability of symmetries). For further applications of

symmetries in other circumstances, we refer to [36].

2.4 Lifting CR Manifolds to Spacetimes

CR structures are naturally related to spacetimes admitting congruences of null

geodesics without shear. Such spacetimes are automatically algebraically special by

the Goldberg-Sachs theorem (Theorem 1.1), and have been studied by physicists

since the late 1950s with intentions of characterizing gravitational radiations.

Given a 3-dimensional CR manifold M with a representative (λ, µ) of its CR

structure (strictly pseudoconvex or not), we consider, on the Cartesian product M =

M × R, an entire class of metrics1 of the following:

g = 2P 2[µµ̄ + λ(dr + Wµ + W̄ µ̄ + Hλ)], (2.16)

where r is a coordinate along R and P ̸= 0, H (real) and W (complex) are arbitrary

functions on M. Note that the form of (2.16) is invariant under the change of

representatives (λ′, µ′) through (2.1), and thus is called the class of metrics adapted

1Here we keep using the same letters for pullbacks of λ and µ from M to M.
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to the CR structure [(λ, µ)]. In addition, the spacetime M possesses a congruence

of shearfree null geodesics along the direction of the vector field k = P−1∂r on M,

since one has

kyµ = kyλ = 0, g(k, k) = 0

and the condition (1.6) is satisfied. Here the congruence being shearfree implies that

the same CR structure in the 3-parameter leaf space transverse to k at each fixed

value of r is preserved along the congruence and can always be identified with M

[17].

The above procedure of lifting a CR structure to a Lorentizan spacetime also has

the following converse.

Theorem 2.3. ([17], see its Theorem 1.2 and references therein) Let (M, g) be

a 4-dimensional manifold equipped with a Lorentzian metric and foliated by a 3-

parameter congruence of shearfree null geodesics (twisting or not). Then M is locally

a Cartesian product M = M × R. The CR structure [(λ, µ)] on M is uniquely

determined by (M, g) and the shearfree null congruence on M.

In Section 4.4 and Chapter 7, we will rely heavily on this theorem to show that

the class of type N metrics we find indeed contains new metrics with distinct CR

structures, the fact of which otherwise would be much more difficult to prove.

2.5 Reduction of the Einstein Equations

Now combining the metric already defined in Section 1.2,

g = 2
(
θ1θ2 + θ3θ4

)
, (2.17)
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with the lifting (2.16), we pick the following null tetrad [17]:

θ1 = P µ, θ2 = P µ̄,

θ3 = P λ, θ4 = P
(
dr + Wµ + W̄ µ̄ + Hλ

)
,

(2.18)

such that r is an affine parameter along the shearfree null congruence and the asso-

ciated null vector field/PND k = P−1∂r (recall θ3 = g(k, ·)). Also, we assume that

the 1-forms (λ, µ) satisfy the same condition (2.11) used by Cartan,

λ ∧ µ ∧ µ̄ ̸= 0, µ = dζ, µ̄ = dζ̄ ,

dλ = iµ ∧ µ̄ + (cµ + c̄µ̄) ∧ λ,
(2.19)

where c is a complex-valued function on the CR manifold M . Here ζ is chosen to be

first non-constant CR function (∂̄ζ = 0) the existence of which is guaranteed by the

Einstein equations R22 = R24 = R44 = 0 [17] (see also [25] p. 417).

Referring back to (2.18), we can see that the condition θ3 ∧ dθ3 ̸= 0 for the

congruence to be twisting is satisfied since λ ∧ dλ ̸= 0 (cf. (2.5)) due to the last

equations of (2.19). In fact, the null congruence being twisting is equivalent to

the CR manifold being locally strictly pseudoconvex [17]. Furthermore, using the

closure of the same equation, one determines an important reality condition on the

derivatives of c:

∂c̄ = ∂̄c,

provided that a dual basis of vector fields is introduced, which, however, is not a

commutative basis:(
∂0, ∂, ∂̄

)
dual to (λ, µ, µ̄) ,[

∂, ∂̄
]

= −i∂0, [∂0, ∂] = c∂0,
[
∂0, ∂̄

]
= c̄∂0. (2.20)

At this point one has sufficient information to write down explicitly the Einstein

equations (1.7), as well as the Weyl scalars (by Theorem 1.1, Ψ0 = Ψ1 = 0 automat-

ically), all but Ψ4 required to vanish for type N. We quote from [17] and [15] which
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show that the results are the following:

P =
p

cos( r
2
)
, (⇐ R44 = 0) (2.21)

W = i a (1 + e−ir), (⇐ R2412 + R2434 = 0, R24 = R22 = 0) (2.22)

H = q eir + q̄ e−ir + h, (⇐ R12 + R34 = 2Λ, R13 = 0, Ψ2 = 0) (2.23)

where the functions a, q (complex) and h, p (real), all independent of r, satisfy

a = c + 2∂ log p, (2.24)

q =
2

3
Λp2 +

2∂p ∂̄p− p
(
∂∂̄p + ∂̄∂p

)
2p2

− i

2
∂0 log p− ∂̄c, (2.25)

h = 2Λp2 +
2∂p ∂̄p− p

(
∂∂̄p + ∂̄∂p

)
p2

− 2∂̄c. (2.26)

Given all the above, the functions a, c, h, p and q define a twisting type N Einstein

space, of the form given in (2.17-2.19) iff the unknown functions c and p satisfy the

following system of PDEs on M :

∂c̄ = ∂̄c (2.27)[
∂∂̄ + ∂̄∂ + c̄∂ + c∂̄ + 1

2
cc̄ + 3

4

(
∂c̄ + ∂̄c

)]
p = 2

3
Λp3, (⇐ R12 = R34, Ψ2 = 0)

(2.28)

R33 = 0,

Ψ3 = 0, (2.29)

as well as one inequality

Ψ4 ̸= 0, (2.30)

in order that the spacetime should not be conformally flat. In terms of those variables

already defined, the Ricci tensor component R33 and the Weyl scalars Ψ3 and Ψ4
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[17, 5] take on quite complicated-looking expressions

R33 =

[
8

p4
(∂ + 2c)

(
p2∂Ī

)
− 8Λ

(
4
3
Λp2 + 6

(
c̄∂ + c∂̄

)
log p

+ 12∂ log p ∂̄ log p + 3cc̄− ∂̄c− 2i∂0 log p
)]

cos4
(r

2

)
,

(2.31)

Ψ3 =

[
2i

p2
∂Ī − 4iΛ

(
2∂̄ log p + c̄

)]
eir/2 cos3

(r
2

)
, (2.32)

Ψ4 =

{
2i

p2
∂0Ī +

4

3
Λ
[(
∂̄ + c̄

)(
2∂̄ log p + c̄

)
+ 2

(
2∂̄ log p + c̄

)2]}
e−ir/2 cos3

(r
2

)
,

(2.33)

where the function I is defined by

I = ∂ (∂ log p + c) + (∂ log p + c)2 , (2.34)

and this calculated Ψ4 for Λ ̸= 0 has been simplified with the use of Ψ3 = 0. Despite

the frightening appearance of R33, the equations (2.28) and Ψ3 = 0 together do

imply the requirement R33 = 0. This tells us that within the established formalism

the twisting type N solutions to the Einstein equations automatically satisfy the

condition for an Einstein space, i.e., vacuum with or without a cosmological constant.

For Λ = 0, the statement is obviously true with ∂Ī = 0 (see also [25] p. 451) and

was used in [17] to prove the CR embeddability of twisting type N vacuums, without

cosmological constant. For Λ ̸= 0, one uses (2.28) to substitute the term 4
3
Λp2 in R33

and notices that the resulting expression is a linear combination of ∂Ψ3 and Ψ3. The

equation R33 = 0 is therefore superfluous for the type N problem, which facilitates

our calculation greatly.

For the actual solving of equations, it is important to understand the meaning of

the operator ∂ by introducing a real coordinate system (x, y, u) on M such that we

have

ζ = x + iy, ∂ζ = 1
2

(∂x − i∂y) ,

∂ = ∂ζ − L∂u, ∂0 = i(∂̄L− ∂L̄)∂u,
λ =

du + Ldζ + L̄dζ̄

i(∂̄L− ∂L̄)
, (2.35)
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with L = L(ζ, ζ̄, u) a complex-valued function [37] subject to

∂̄L− ∂L̄ ̸= 0, (2.36)

as required by the strict pseudo-convexity ([∂, ∂̄] ̸= 0). In addition, the function L

relates to the function c in the following way

c = −∂ ln(∂̄L− ∂L̄) − ∂uL. (2.37)

Hence generally, the system (2.27-2.29) are in fact PDEs for the unknown functions

L, L̄, and p. Note that the CR structure, which can be determined by L alone, is

not given beforehand for the field equations (2.27-2.29), and thus must be resolved

simultaneously with the unknown function p.

2.6 Comparison with Non-CR Formulations

With in hand the twisting type N metric form (2.17-2.37) formulated according to

CR geometry, it is important to know how it is different from other formalisms that

have been extensively used long before this new one was proposed. We here quote

(with a slight modification to the tetrad) from [25] (see p. 439-451) a most common

one of those pre-existing formalisms proposed by Kerr, Debney and Schild [38, 39, 40]

without including the cosmological constant Λ. The extension with Λ ̸= 0 can be

found in [36]. For simplicity, we only consider here Λ = 0. Also we follow closely the

notation of [25] with sub- or superscript s added to avoid confusion.

Theorem 2.4. A type N spacetime admits a geodesic, shearfree and twisting null

congruence and satisfies the Einstein equation Ric(g) = 0, iff the metric can be

written as

g = 2(ω1ω2 + ω3ω4), ω1 = − dζ

Psρ̄s
= ω̄2,

ω3 = du + Ldζ + L̄dζ̄ , ω4 = drs + Wsdζ + W̄sdζ̄ + Hsω
3,

(2.38)
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with metric components subject to

ρ−1
s = rs − iΣs,

2iΣs

P 2
s

= ∂̄L− ∂L̄ ̸= 0, (2.39)

Ws = −
(
ρ−1
s ∂uL + i∂Σs

)
, ∂ = ∂ζ − L∂u, (2.40)

Hs = −P 2
s Re

[
∂
(
∂̄ logPs − ∂uL̄

)]
− rs∂u logPs, (2.41)

such that the unknown functions L = L(ζ, ζ̄, u) (complex) and Ps = Ps(ζ, ζ̄, u) (real)

satisfy

Im ∂∂∂̄∂̄Vs = 0, Ps = ∂uVs, (2.42)

∂Is = 0, (2.43)

Ψs
4 = P 2

s ρs∂uIs ̸= 0, (2.44)

where the function Is is defined by

Is = ∂̄
(
∂̄ logPs − ∂uL̄

)
+
(
∂̄ logPs − ∂uL̄

)2
= P−1

s ∂u∂̄∂̄Vs. (2.45)

In this metric form, the coordinates (ζ, ζ̄, u) and the function L have been chosen

identically with those introduced in (2.35); hence, unlike other quantities, each is not

given a sub- or superscript s. In addition, the real coordinate rs, like its counterpart

r in (2.18), is also an affine parameter along the null congruence.

Even without taking a hard look, one can readily see some resemblance between

the metrics (2.38-2.45) and (2.17-2.37), for instance, in the expressions of ω3 and λ

both in terms of L. Taking Λ = 0 in (2.17-2.37), we can show that the two metrics

are equivalent to each other by the following transformation:

Ps =
2p

i(∂̄L− ∂L̄)
, (2.46)

rs =
2p2

i(∂̄L− ∂L̄)
tan
(r

2

)
, |r| < π, (2.47)
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with the inverse

p =
i

2
(∂̄L− ∂L̄)Ps, (2.48)

r = 2 arctan

(
2

i(∂̄L− ∂L̄)P 2
s

rs

)
. (2.49)

To verify this equivalency, first one substitutes (2.46) into the definition (2.45) of

the function Is, and compares the resulting expression with the function I given by

(2.34) with (2.37) plugged in, and thereby obtains an equality

Is = Ī ,

with both sides in terms of p and L. Therefore the conditions ∂Is = 0 and ∂uIs ̸=

0 is equivalent to ∂Ī = 0 and ∂0Ī ̸= 0 (or, respectively, Ψ3 = 0 and Ψ4 ̸= 0

with Λ = 0). By a similar argument, one can show that the equation (2.42) can

be transformed to (2.28) with Λ = 0 (preferably with the help of Maple), despite

their drastically different appearances. For the tetrad, a tedious but straightforward

calculation confirms that the metric components of (2.38) indeed match those of

(2.18) through (2.46) and (2.47). In particular, we have found

Ws + ∂rs =
p2

cos2( r
2
)
· W

i(∂̄L− ∂L̄)
,

Hs + ∂urs = − p2

cos2( r
2
)
· H

(∂̄L− ∂L̄)2
,

with (2.46) and (2.47) applied to the right hand sides. Lastly, one can reverse the

whole process by using the inverse transformation (2.48) and (2.49), hence proving

the equivalency of the two metric forms.

One usefulness of such a comparison is to acquire the coordinate freedom and

transformation properties of the new metric form (2.17-2.37) and the associated field

equations (2.27-2.29), the knowledge of which may help us to understand better their

invariant features. First, we start with the type N metric (2.38-2.45) which is known

to admit the following coordinate transformation [25] (see p. 442):

ζ ′ = f(ζ), u′ = F (ζ, ζ̄, u), ∂uF ̸= 0, (2.50)
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with f holomorphic and F a real-valued function. Correspondingly, the coordinate

rs and the functions L and Ps must change according to the following:

r′s =
rs
∂uF

, (2.51)

∂′ =
1

f ′∂, ∂′
u =

1

∂uF
∂u, (2.52)

L′ = − 1

f ′ (∂ζF − L∂uF ) = − 1

f ′∂F, ∂̄′L′ − ∂′L̄′ =
∂uF

f ′f̄ ′ (∂̄L− ∂L̄), (2.53)

P ′
s =

|f ′|
∂uF

Ps, V ′
s = |f ′|Vs. (2.54)

under which, as one may expect, the forms of the field equations (2.42) and (2.43) are

invariant for the new P ′
s and L′. Quite importantly, the coordinate freedom (2.50)

always allows one to pick a function F to obtain the special gauge Ps = 1, Vs = u

[38], under which the original field equations can be much simplified. Related to

this idea, the transformations (2.46) and (2.47) themselves can be simply viewed as

another special gauge.

Now we proceed to see what the coordinate freedom (2.50) brings about for the

type N metric (2.17-2.37) in the CR formalism. To begin with, we comment that the

new coordinate ζ ′ = f(ζ), as a CR function (∂̄f(ζ) = f ′∂̄ζ = 0), is not functionally

independent of ζ (cf. (2.4)). Hence no knowledge of a second CR function that is

functionally independent to ζ is involved here, which also means that one only needs

to consider a restricted form of the transformation (2.1) (also cf. (2.7)):

µ′ = hµ, λ′ = hh̄λ,

with h = f ′(ζ) in this particular case. Since the new basis (∂′
0, ∂

′, ∂̄′) must be dual

to (λ′, µ′, µ̄′), it immediately yields

∂′ =
1

f ′∂, ∂′
0 =

1

f ′f̄ ′∂0. (2.55)

which, by a quick check, are consistent with (2.52) and (2.53). However, unlike those

two relations, the deduction of (2.55) requires no explicit presence of the function L or

27



Chapter 2. CR Structures and Reduced Einstein Equations

its transformation (though (2.53) is still valid in the CR formalism since (ζ, ζ̄, u) and

L are identical in both metrics). This is in fact true for all our following derivations

of the transformation laws. To see how the function c transforms, we insist that the

same commutation relations (2.20) be observed for the new basis, i.e.,[
∂′, ∂̄′ ] = −i∂′

0, [∂′
0, ∂

′] = c′∂′
0,

[
∂′
0, ∂̄

′ ] = c̄′∂′
0,

from which we obtain

c′ =
1

f ′ c +
f ′′

(f ′)2
. (2.56)

Moreover, omitting details, we point out that the function p relates to p′ through

p′ =
1

|f ′|
p. (2.57)

As expected, under the above transformation laws, the field equations for the new

p′ and c′ can be shown taking on the same form of (2.27-2.29) with (∂0, ∂, ∂̄) simply

replaced by (∂′
0, ∂

′, ∂̄′).

It is worthwhile to comment that the adoption of the “coordinate-free” basis

(∂0, ∂, ∂̄) effectively hides away all presence of the function L, which accounts for the

noticeable feature that neither the function F (ζ, ζ̄, u) nor its derivatives appear in

(2.55-2.57). In fact, there is even no need for a coordinate u being chosen in order to

carry out all the derivations above, as long as the basis (∂0, ∂, ∂̄) is defined from its

dual (λ, µ, µ̄), which by themselves are more intrinsic geometric objects than their

coordinate representations.

Finally, the whole set of transformation laws are completed by a remarkable

invariance of the coordinate r, i.e.,

r′ = r, (2.58)

which is quite contrary to its counterpart (2.51). For a double-check, one may easily

verify that (2.57) and (2.58) are consistent with (2.54) and (2.51) via the transfor-

mation (2.46) and (2.47) and the relation (2.53) (with a bit more effort to see the
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consistency of (2.56) and (2.53) through (2.37)). Furthermore, we have

rs
Σs

=
r′s
Σs

′ = − tan
(r

2

)
, |r| < π, (2.59)

in which rsΣ
−1
s is known to be a gauge invariant [40]. Therefore we have proved the

following theorem.

Theorem 2.5. In the type N metric (2.17-2.37), the affine parameter r along the null

congruence is invariant under the coordinate transformation ζ ′ = f(ζ), u′ = F (ζ, ζ̄, u)

with ∂uF ̸= 0.

The theorem still holds as long as the Einstein equations (1.7) are satisfied without

further requirements on Petrov types. Since all explicit periodic dependence on r are

already solved for the metric (see (2.21-2.23)), it implies a circle bundle structure

S1 → M → M in the spacetime, based on which Hill and Nurowski conducted their

periodic universe argument [41] relating Penrose’s idea on a “pre-big-bang era”.

Remark. [42] The overall factor 1/ cos2( r
2
) (cf. (2.21)) of the metric (2.17-2.37) is

in fact associated with the Penrose conformal factor. From Penrose’s approach to

asymptotically simple/flat spacetimes, the metric (2.17-2.37) constitutes a conformal

compactification of the metric (2.38-2.45), with the conformal boundary attained at

r = ±π.

To conclude, we point out that the metric (2.17-2.37), like its counterpart, also

has a gauge freedom. For an example, if ∂0p ̸= 0, we can always choose a local

coordinate u such that

p = u =⇒ ∂p = −L,

thereby simplifying the field equations, just as the gauge Ps = 1, Vs = u [38] does,

as mentioned before.
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2.7 The Hauser Solution

For the twisting type N metric (2.38-2.45) with Λ = 0, only one class of exact

solutions, the Hauser solution [6, 7], has been found so far, which is given by [25]

(see p. 451)

L = 2i
(
ζ + ζ̄

)
, Ps =

(
ζ + ζ̄

)3/2
f(w), w =

u(
ζ + ζ̄

)2 , (2.60)

where f(w) is a solution of the hypergeometric differential equation

16(1 + w2)f ′′ + 3f = 0. (2.61)

Nevertheless, there have been arguments regarding that this solution is not asymp-

totically flat and hence does not describe gravitational radiations from a finite source

[43]. From a geometric point of view, a distinctive feature of the Hauser solution is

that its underlying CR structure is that of a hyperquadric, since

c = 0

as calculated from (2.60) and c = 0 implies R = 0 in (2.8) [19]. Furthermore, to

see the Hauser solution in the CR formalism (2.17-2.37), we note that the canonical

form (2.9) for a hyperquadric provides a rather simple choice for L, which, together

with c = 0, can significantly simplify the field equations (2.27-2.29) to a set of two

PDEs for a single unknown p. By studying the classical symmetries (see Chapter 3)

of the resulting PDEs, we have managed to find an equivalent form of (2.60):

L = − i

2
ζ̄ , c = 0, Λ = 0,

p =

(
ζ + ζ̄

2

)3/2

f(w), w =
4u + i(ζ2 − ζ̄2)

(ζ + ζ̄)2
,

(2.62)

where f(w) satisfies the same ODE (2.61) as before.
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Classical Symmetries of PDEs

3.1 Background

The Einstein equations are a system of highly nonlinear PDEs and thus very difficult

to solve in general. A most important technique for finding their special exact so-

lutions is to study the symmetry properties of those PDEs. The classical symmetry

theory for PDEs was established by Sophus Lie more than 100 years ago, based on

which he introduced the fundamental notions of Lie groups and Lie algebras. In

the 1960s, symmetry theory entered upon a new era, starting with the discovery of

completely integrable systems (KdV equation, nonlinear Schrödinger equations, etc.)

and the development of the inverse scattering method, and thereby generalizing Lie’s

original idea on classical point symmetries to the concept of higher symmetries.

Generally speaking, a symmetry of a system of differential equations is a (con-

tinuous or discrete) transformation of its “solution manifold” into itself, i.e., an

automorphism that takes one solution to another. For the classical symmetry, this

solution manifold is determined by the initial equations alone, while for the higher

symmetry, all differential consequences of the equations at hand, called the infinite
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prolongation, shall also be considered. Nonetheless, both types of symmetries share

the same computing scheme. Once calculated, a knowledge of symmetries of PDEs

can be used to reduce the order of the equations and/or the number of variables,

hence, with a better chance, leading to exact solutions. As a most astonishing feature,

all these symmetry methods are quite universal and, in principle, can be applied to

any types of differential equations, though the calculation may present a significant,

even formidable challenge.

All symmetries considered in the following are continuous and local, i.e., infinites-

imal symmetries. Thus we can talk about their Lie algebras instead of the actual

transformation groups. Our goal here is to lay out all ground work before we em-

bark on calculating the classical symmetries of a special case of the field equations

(2.27-2.29). All materials here are adapted and reorganized from [44].

3.2 Jet Manifolds

Consider a generic system of r (nonlinear) differential equations of order k with

n independent variables x = (x1, . . . , xn) and m dependent variables (unknowns)

u(x) = (u1, . . . , um),
F1(x,u,p) = 0,

· · ·

Fr(x,u,p) = 0,

(3.1)

where Fl’s are smooth functions and p denotes the set of all partial derivatives

pjσ =
∂|σ|uj

∂xσ
=

∂|σ|uj

∂xi1
1 · · · ∂xin

n

. (3.2)

with a multi-index σ = (i1, . . . , in) and |σ| = i1 + · · · + in ≤ k.

The basic idea of geometric studies of differential equations lies in treating the
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variables

x1, . . . , xn, u
1, . . . , um, pjσ, |σ| ≤ k,

as the coordinates of the so-called jet space Jk(n,m). Therefore the equations (3.1)

determine a surface E of codimension r in Jk(n,m). This surface E ⊂ Jk(n,m),

also known as the solution manifold, is the geometric object for which we define

symmetry transformations. To acknowledge the fact that pjσ’s correspond to partial

derivatives, we introduce the total derivative operator (or a vector field on Jk(n,m)

if truncated accordingly)

Di =
∂

∂xi

+
∞∑

|σ|=0

m∑
j=1

pjσ+1i

∂

∂pjσ
, pj(0,...,0) = uj, i = 1, . . . , n,

with respect to xi, where 1i = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th place and hence

pjσ+1i
=

∂

∂xi

(
∂|σ|uj

∂xσ

)
. (3.3)

To see that this operator contains information on differential relations between vari-

ables, we consider an n-dimensional surface in J0(n,m),
u1 = f 1(x1, . . . , xn),

· · ·

um = fm(x1, . . . , xn),

(3.4)

determined by some smooth vector function (f 1, . . . , fm). Then by repetitively ap-

plying the total derivative operators on both sides, we can lift (3.4) up to an n-

dimensional surface in Jk(n,m) given by

pjσ = Dσ(uj) =
∂|σ|f j

∂xσ
(x1, . . . , xn), j = 1, . . . ,m, |σ| ≤ k, (3.5)

which is consistent with (3.2). If this surface happens to lie in the solution manifold

E , we conclude that (3.4) is a solution to the system (3.1).
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Another important use of total derivative operators is to calculate the differential

consequences of the initial equations (3.1), for instance,

0 = Di(Fl(x,u,p)) =
∂Fl

∂xi

+
m∑
j=1

∂uj

∂xi

∂Fl

∂uj
+ · · · , (3.6)

justifying the name “total derivative”.

3.3 Defining Equations

From a geometric point of view, classical symmetries are diffeomorphisms of the so-

lution manifold E ⊂ Jk(n,m), preserving the differential relations between variables

as encoded in the (truncated) total derivative operators.

In an infinitesimal form, consider a Lie group of point transformations

x̃i = xi + εai(x,u) + O(ε2), i = 1, . . . , n,

ũj = uj + εbj(x,u) + O(ε2), j = 1, . . . ,m,
(3.7)

where ε is a group parameter. They correspond to a Lie algebra of infinitesimal

operators

X =
n∑

i=1

ai
∂

∂xi

+
m∑
j=1

bj
∂

∂uj
,

which is also a vector field on J0(n,m). In a similar manner as we lift the surface

(3.4) to a surface in Jk(n,m), there is a unique way to prolong the vector field X

to a vector field on Jk(n,m) such that all the differential relations mentioned before

are respected. Such a kth lifting of X, called a Lie field, is given by

X(k) =
n∑

i=1

ai
∂

∂xi

+
∑
|σ|≤k

m∑
j=1

bjσ
∂

∂pjσ
, bj(0,...,0) = bj,

where the coefficients bjσ are computed from the recursion relation

bjσ+1i
= Di(b

j
σ) −

n∑
s=1

pjσ+1l
Di(as), 0 ≤ |σ| ≤ k − 1,
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and hence are all uniquely determined by ai and bj. The point transformation (3.7)

with its Lie field X(k) will become a classical point symmetry of the system (3.1) iff

shifts along the trajectories generated by X(k) leave invariant the solution manifold

E , i.e., that X(k) is tangent to E :

X(k)(Fl)
∣∣
E = 0, l = 1, . . . , r,

with E = {(F1, . . . , Fr) = 0}, or equivalently, by removing the part of X(k) that is

already tangent to E due to (3.6),(
X(k) −

n∑
i=1

aiDi

)
(Fl)|E =

m∑
j=1

(
bj −

n∑
i=1

aip
j
i

)
∂Fl

∂uj

∣∣∣∣
E

+ · · · = 0. (3.8)

In practice, the above defining equation for classical symmetries can be more conve-

niently written as

∑
j,σ

∂Fl

∂pjσ
Dσ(φj)

∣∣∣∣∣
E

= 0, l = 1, . . . , r. (3.9)

where the vector function (φ1, ..., φm) with components given by

φj = bj −
n∑

i=1

aip
j
i (3.10)

is called the generating section of the Lie field. From (3.9), an over-determined

system of linear PDEs for ai(x,u) and bj(x,u) can be obtained, which may contain

hundreds or thousands of equations, depending on the complexity of (3.1). The

reduction and solving of these determining PDEs often require extensive algebraic

manipulations, with the possibility that non-trivial solutions may not even exist.

As an extra comment on (3.9), the higher symmetries, in fact, share the same

defining equation except that φj may have a dependence on variables pjσ from higher

jet spaces and that the solution manifold E shall be extended to its infinite prolon-

gation E∞ = {Dσ(Fl) = 0} ⊂ J∞(n,m), i.e., all differential consequences of the

equations (3.1).
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To conclude, we present a quick example of the Korteweg-de Vries equation

ut − 6uux + uxxx = 0. (3.11)

The generating functions for its classical symmetries are listed as follows

xux + 3tut + 2u, 6tux + 1, ux, ut. (3.12)

with infinitesimal generators respectively given by

2u
∂

∂u
− x

∂

∂x
− 3t

∂

∂t
, scale symmetry,

∂

∂u
− 6t

∂

∂x
, Galilean symmetry,

∂

∂x
, translation along x,

∂

∂t
, translation along t.

3.4 Invariant Solutions

Invariant solutions are special solutions that are invariant under certain symmetry

transformations. Specifically, they are the fixed points of the “flow” generated by

the Lie field (3.8):

X(k) −
n∑

i=1

aiDi =
m∑
j=1

φj ∂

∂uj
+ · · · =

∑
j,σ

Dσ(φj)
∂

∂pjσ
.

Hence if the generating section φj has been calculated, the invariant solutions are

subject to the over-determined, but compatible system

(φ1, . . . , φm) = 0,

F1 = 0,

· · ·

Fr = 0,

(3.13)
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that makes the above Lie field vanish. Note that each equation φj = 0 is simply a

first-order linear PDEs for the unknown uj alone. Thus they usually can be solved

first by the method of characteristics to obtain an ansatz of solutions for other

equations.
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Chapter 4

ODEs for Twisting Type N

Vacuums

4.1 Killing Vector in the u-Direction

Now we come back to the field equations. One major difficulty of fully solving the

system (2.27-2.29) is that unlike ordinary coordinate differentiations, the selected

(dual) basis for the tangent space is not commutative, and, even worse, the operator

∂ itself involves the unknown function c (or L, cf. (2.37)). When this dependence

on the coordinates (ζ, ζ̄, u) is written out explicitly with the functions L, L̄ and

p, the original PDEs will become formidably lengthy. Instead of facing this entire

conundrum, we have decided to circumvent it, at least in this work, by looking at the

special case that the unknowns p and c have no u-dependence, i.e., ∂0p = 0 = ∂0c.

Geometrically speaking, we insist that the spacetime admits a Killing vector in the

u-direction. Such an assumption simplifies the problem greatly in that one can treat

the operator ∂ the same as ∂ζ , when acting on either p or c. This is a generalization

of the assumption made by Nurowski [15], where it was simplified to just dependence
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on y, i.e, two Killing vectors assumed.

Theorem 4.1. (CR embeddability [35]) A CR structure (2.19) with c = c(ζ, ζ̄) is CR

embeddable. From this particular form of c, a u-independent form of the function L

can be constructed as

L(ζ, ζ̄) = − i
2

∫
α(ζ, ζ̄) dζ̄ (4.1)

with a real-valued function α ̸= 0 satisfying

∂ζα = −c α, ∂ζ̄α = −c̄ α. (4.2)

Associated to this L, the tangential CR equation ∂̄η = 0 yields a second CR function:

η = u + i
2

∫∫
α(ζ, ζ̄) dζdζ̄ . (4.3)

Proof. Because of the restraint ∂ζ c̄ = ∂ζ̄c, the system (4.2) is compatible and has a

real solution α ̸= 0. Hence one can directly check that (4.1) satisfies (2.37) and that

(4.3) satisfies the equation ∂̄η = (∂ζ̄ − L̄∂u)η = 0. Clearly, the CR functions η and

ζ are functionally independent, i.e., dζ ∧ dη ̸= 0. Therefore we acquire a second CR

function.

For a given function c = c(ζ, ζ̄), the equation (2.37), viewed as a PDE for L, may

give rise to multiple choices of the function L, hence various λ’s. However, such an

ambiguity only constitutes different representatives of the same CR structure. To

see this, one may look into the six Cartan invariants (details in Section 4.4) and

notice that they are all uniquely determined by the function c = c(ζ, ζ̄) (see, e.g.,

(4.21) and Appendix B), given that the function r defined in (4.21) does not vanish.

For CR structures with r = 0 (r ∝ R in (2.8) [19]), they are all locally equivalent

to a 3-dimensional hyperquadric inside C2. An alternative proof would be to show

that there always exists a coordinate transformation u → ũ(ζ, ζ̄, u) (∂ũ/∂u ̸= 0)

that takes a function L = L(ζ, ζ̄, u) satisfying (2.37) to the u-independent form
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(4.1). This can be confirmed by checking the compatibility of PDEs regarding such

an existence. In conclusion, the CR structure on M is uniquely determined once a

function c = c(ζ, ζ̄) is given.

The converse of the last statement above is, however, not true. In fact various

choices of the function c may correspond to the same CR structure. We will see

examples of this in Section 4.4. Relevant to this issue, our assumption of the function

c being u-independent is thus not a CR invariant property. A function c = c(ζ, ζ̄) may

acquire u-dependence through the transformation (2.1) that takes one representative

(λ, µ) of the CR structure to another.

Now we apply the assumption and the following notations

∂f → ∂ζf = f1, ∂̄f → ∂ζ̄f = f2, f = f0, (f = p, c and c̄ only)

and then rewrite the system (2.27-2.29) as

c̄1 = c2, (4.4)

2p12 + c̄0p1 + c0p2 + 1
2
c0c̄0p0 + 3

4
(c̄1 + c2)p0 = 2

3
Λp30, (4.5)

p0p122 − p1p22 + 2c̄0p0p12 − 2c̄0p1p2 + 2c̄1p0p2 + (c̄12 + 2c̄0c̄1)p
2
0 = 2Λ(2p2 + c̄0p0)p

3
0,

(4.6)

where the last equation arises from Ψ3 = 0. These are the PDEs we aim to solve.

Moreover, the Weyl scalar Ψ4 reads

Ψ4 =
4

3
Λ
[
2p0p22 + 6p22 + 10c̄0p0p2 + (c̄2 + 3c̄20)p

2
0

] e−ir/2

p20
cos3

(r
2

)
. (4.7)

4.2 Infinite-Dimensional Classical Symmetries

We follow the standard procedure described in Chapter 3 (see also [44]) to calculate

the classical symmetries of the system (4.4-4.6). Since (4.6) is generally complex,
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we have to include its complex conjugate as well in the calculation. Moreover, we

treat (4.4) as a constraint and encode it and its differential consequences directly

into the choice of intrinsic coordinates so that this equation no longer needs further

attention. This gives us three PDEs for three dependent variables p, c and c̄ which

depend on two independent variables ζ and ζ̄. The intrinsic coordinates within the

first four jet spaces that are relevant to the calculation are chosen as follows

p0, c0, c̄0,

p1, p2, c1, c̄1, c̄2,

p11, p22, c11, c̄22,

p111, p222, c111, c̄222.

The rest of the jet variables, such as p12, p122, c̄12(= c22) etc., can be expressed

in terms of the intrinsic coordinates through the PDEs and their differential conse-

quences.

With a considerable amount of manual work on the algebraic computer program

Maple, we have managed to find the classical symmetries with the generating section

given by

Ψ = −1
2
(∂ζA + ∂ζ̄Ā)p0 − Ap1 − Āp2,

Θ = ∂2
ζA− (∂ζA)c0 − Ac1 − Āc̄1,

Θ̄ = ∂2
ζ̄ Ā− (∂ζ̄Ā)c̄0 − Ac̄1 − Āc̄2,

where A = A(ζ) is an arbitrary function of ζ that is sufficiently differentiable. The

Lie bracket of two symmetries with, respectively, A1(ζ) and A2(ζ) yields a third

symmetry with a new A3(ζ) given by

A3 = [A1, A2] := A1∂ζA2 − A2∂ζA1.

Therefore, we indeed obtain an infinite-dimensional set of classical symmetries for the

system (4.4-4.6). In particular, they reduce to translational symmetries for nonzero

constant A, and scaling symmetries for A ∝ ζ.
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4.3 Invariant Solutions and Reductions to ODEs

Setting the generating section (Ψ,Θ, Θ̄) to zero (cf. Section 3.4), i.e.,

0 = −1
2
(∂ζA + ∂ζ̄Ā)p− A∂ζp− Ā∂ζ̄p,

0 = ∂2
ζA− (∂ζA)c− A∂ζc− Ā∂ζ̄c,

0 = ∂2
ζ̄ Ā− (∂ζ̄Ā)c̄− A∂ζ c̄− Ā∂ζ̄ c̄,

we aim to solve these linear first-order PDEs for p, c and c̄, so as to acquire an ansatz

for the field equations. According to the method of characteristics, for the equation

for p(ζ, ζ̄), we know that its characteristic curves must satisfy

dζ̄

Ā
=

dζ

A
=

dp

−1
2
(∂ζA + ∂ζ̄Ā)p

.

The first equality can be integrated as∫
1

Ā
dζ̄ −

∫
1

A
dζ = C, (4.8)

where C is an integration constant. For the second equality, one can rewrite it as

dp

p
= −

∂ζA + ∂ζ̄Ā

2A
dζ = −∂ζA

2A
dζ −

∂ζ̄Ā

2Ā
dζ̄ ,

where the first equality is used to substitute one dζ in order to make a perfect

derivative. Clearly, one can immediately integrate the resulting equation as follows:

d(log p) = d
(
−1

2
log(AĀ)

)
=⇒ p =

F (C)√
AĀ

,

where the arbitrary function F (C) acts as an integration constant. Then the final

general solution p is obtained by substituting C with (4.8) in the above expression.

Following the same procedure, one can solve the equations for c and c̄ as well.

Then taking into account the constraint ∂ζ c̄ = ∂ζ̄c and p being real-valued, we are

able to obtain a remarkable ansatz for the field equations:

p(ζ, ζ̄) =
F1(z)√
AĀ

, c(ζ, ζ̄) =
∂ζA + iF2(z) + C1

A
, c̄(ζ, ζ̄) =

∂ζ̄Ā− iF2(z) + C1

Ā
(4.9)
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with a new real argument (taking C = −iz in (4.8))

z = −i

(∫
1

A
dζ −

∫
1

Ā
dζ̄

)
= Im

∫
2

A
dζ. (4.10)

Here the constant C1 and the undetermined functions F1,2(z) are all real-valued. One

may easily verify these expressions by direct calculation.

Substituting the ansatz into (4.5) and (4.6) and noticing that all dependence on

A, Ā ̸= 0, except those in the argument z, can be factored out, we have a neat

reduction from the PDEs to a system of two ODEs for F1 and F2 only:

0 = −F ′′
1 + F2F

′
1 + 1

3
ΛF 3

1 − 1
4
(F 2

2 − 3F ′
2 + C2

1)F1,

0 = −H ′ + 2(F2 + iC1)H,

where in the the second ODE (derived from (4.6)), the function H(z) is defined by

H = F ′′
1 F1 − (F ′

1)
2 − ΛF 4

1 − F ′
2F

2
1 .

The above set of ODEs contains two separate cases for solutions. If C1 = 0, the

system reduces to

0 = −F ′′
1 + F2F

′
1 + 1

3
ΛF 3

1 − 1
4
(F 2

2 − 3F ′
2)F1,

0 = −H ′ + 2F2H,
(4.11)

which allows solutions with H ̸= 0, in addition to the obvious case H = 0. But

generally for C1 ̸= 0, since C1, F1,2 and H are all real-valued, the vanishing of the

imaginary part of the complex ODE for H requires H = 0, i.e., that we have

0 = −F ′′
1 + F2F

′
1 + 1

3
ΛF 3

1 − 1
4
(F 2

2 − 3F ′
2 + C2

1)F1,

0 = −F ′′
1 F1 + (F ′

1)
2 + ΛF 4

1 + F ′
2F

2
1 .

(4.12)

In the following discussion, we will focus on this second case (4.12) regardless of C1

being zero or not. An example of solutions with C1 = 0 and H ̸= 0 is given in

Appendix D, which is shown to have the hyperquadric CR structure.
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For the system (4.12), the satisfaction of the second ODE is given by introducing

a single new, real-valued function J = J(z) such that

F1 = ±
√
J ′, F2 =

J ′′

2J ′ − ΛJ. (4.13)

Then the first ODE simply becomes

J ′′′ =
(J ′′)2

2J ′ − 2ΛJJ ′′ − 10

3
Λ(J ′)2 − 2(Λ2J2 + C2

1)J ′. (4.14)

Since this ODE does not have the argument z appearing explicitly, we can lower the

order of the ODE through the standard transformation

J ′ = P (J) =⇒ J ′′ = PP ′ =⇒ J ′′′ = P (PP ′)′

and obtain an even simpler equation of the second-order

P ′′ = −(P ′ + 2ΛJ)2

2P
− 2C2

1

P
− 10

3
Λ. (4.15)

A solution P = P (J) to (4.15) can give rise to a solution J = J(z) to (4.14) at least

locally by inverting

z + C0 =

∫
1

P (J)
dJ (4.16)

with C0 constant. This solution will be physical if it also makes F1,2(z) real-valued

via (4.13), which requires that locally

P (J) > 0, J ′ > 0 and J real-valued. (4.17)

Therefore we are only interested in solutions for J(z) that are monotonically increas-

ing, or equivalently, positive P (J).

We can also consider the special case of (4.15) with C1 = 0 and Λ ̸= 0, i.e.,

P ′′ = −(P ′ + 2ΛJ)2

2P
− 10

3
Λ. (4.18)
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By introducing the following integral transformation

J =
1

Λ
exp

(∫
f(t) dt

)
, P (J) =

t

Λ
exp

(
2

∫
f(t) dt

)
,

of which the inverse has the form

t =
P

ΛJ2
, f(t) =

ΛJ2

JP ′ − 2P
,

we can further reduce (4.18) to an Abel ODE of the first kind [45], as already noted

in Section 1.1:

f ′ =
4

t

(
t +

3

2

)(
t +

1

3

)
f 3 +

5

t

(
t +

2

5

)
f 2 +

1

2t
f. (4.19)

Once the general solution f = f(t, C2) is acquired with a constant C2, we can find

the general solution P (J) of (4.18) by solving the following ODE

f

(
P

ΛJ2
, C2

)
=

ΛJ2

JP ′ − 2P
,

of which the solution is given by

P (J) = Z(J)J2, with 0 = − ln J +

∫ Z/Λ

f(t, C2) dt + C3. (4.20)

Simple as both (4.15) and (4.19) may appear, so far we have had no luck finding

their explicit general solutions. For more comments on (4.19) and Abel ODEs in

general, see Appendix A.

4.4 CR Equivalency as Classical Symmetry

To identify new twisting type N Einstein spaces obtained from (4.14), we will use

Theorem 2.3 as a natural way to classify metrics equipped with CR structures.

By definition, a type N spacetime at each point has a unique PND pointing in the

direction of the null congruence. In the case of vacuums (with or without Λ), this
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PND must be geodesic and shearfree [30]. Thus for every twisting type N Einstein

space, the shearfree null congruence is unique. Hence by Theorem 2.3, to confirm a

new twisting type N vacuum metric, it is sufficient to show that its CR structure is

distinct from the one of known metrics. This can be routinely done by computing

the six Cartan invariants (see Section 2.2), which are denoted respectively by

αI , θI , ηI (complex),

βI , γI , ζI (real).

Cartan showed that two local CR structures are equivalent iff their six CR invariants

(defined when r ̸= 0 in (4.21)) are identical, except possibly for a sign difference in

both αI and ηI [19]. With the assumption of u-independence, we can write down,

for instance, the simplest invariant computed from the 1-forms defined in (2.19):

αI(ζ, ζ̄) = −5r̄∂ζr + r∂ζ r̄ + 8crr̄

8ε
√
r̄ · 8
√

(rr̄)7
, ε = ±1,

r = 1
6

(
∂ζ̄ l̄ + 2c̄l̄

)
, l = −∂ζ∂ζ̄c− c∂ζ̄c.

(4.21)

Here the function r (r ∝ R in (2.8) [19]), following the notation of Cartan, is not

to be confused with the coordinate r along the null congruence. For our calculated

βI , γI , θI and ηI , see Appendix B. Note that this αI only relies on c(ζ, ζ̄), c̄ and their

derivatives, which is also the case for all the other Cartan invariants. We first point

out a remarkable feature of these invariants computed from the ansatz (4.9,4.10).

Theorem 4.2. Given the ansatz (4.9,4.10), all the following quantities are indepen-

dent of A(ζ) and Ā(ζ̄) except those in the argument z:

α2
I , η

2
I , αI η̄I , βI , γI , θI , ζI .

In another word, they are all functions of z only, e.g., βI(ζ, ζ̄) = βI(z).

Proof. Except for a lengthy but straightforward symbolic computation with Maple,

we are, at the moment, still not aware of any other more insightful way of proving
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this result. Here we only emphasize that the law
√
v
√
w =

√
vw is in general not true

in the complex domain; failing to notice this may cause an erroneous conclusion.

Remark. For a fixed z, the presence of the functions A and Ā in αI and ηI themselves

only affects their signs. More specifically, the only dependence on A and Ā takes the

following forms:

αI ∝
1

A(ζ)

√
A2(ζ)

F (z)
, ηI ∝

1

Ā(ζ̄)

√
Ā2(ζ̄)

F̄ (z)
,

F (z) = −F ′′′
2 + (F ′

2)
2 + 3F2F

′′
2 − 2F 2

2F
′
2 + 2C2

1F
′
2 + iC1(3F

′′
2 − 4F2F

′
2).

Hence the product αI η̄I is a function of z only. According to Cartan [19], this

sign situation is accounted for by a local CR diffeomorphism and therefore does not

generate a new CR structure. Hence, we have proved the following theorem.

Theorem 4.3. Locally, the CR structure (2.19) (as an equivalence class) determined

by the function c given in (4.9,4.10) is independent of the choice of the function

A(ζ) ̸= 0, once the form of F2(z) is fixed.

Altogether, the theorem tells us that locally the freedom of choosing various

A(ζ) ̸= 0 does not affect the CR structure of a type N metric of our concern. Hence,

for the simplicity of representing new metrics distinguished by CR structure, we can

just set A(ζ) = Ā(ζ̄) = 2 (see Section 9.1). In hindsight, the classical symmetries we

have obtained are nothing more than a particular manifestation of the underlying CR

equivalency. We believe this connection between the two may as well suggest a more

general concern if one aims to find, through the (classical or higher) symmetries,

additional exact solutions to the Einstein equations formulated with CR structures.

We will see later examples of solutions that have constant CR invariants, and

remarkably, one of them is the solution of Leroy-Nurowski. Nonetheless, this feature

is generally not true for other solutions.
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5.1 Conformally Flat Solutions

Before we try to solve (4.14) for type N solutions, it is useful to find out in advance

those conformally flat solutions satisfying Ψ4 = 0 which are automatically contained

in the general solution of (4.14). We insert the ansatz (4.9,4.10) into the expression

for Ψ4 given by (4.7), and re-normalize Ψ4 to pull out just a simple complex-valued

function of z:

K(z) := − 3Ā2F 2
1 eir/2

4Λ cos3
(
r
2

)Ψ4

= 2F1F
′′
1 + 6(F ′

1)
2 − 10(F2 + iC1)F1F

′
1 + (−F ′

2 + 3F 2
2 + 6iC1F2 − 3C2

1)F 2
1 .

(5.1)

We now apply (4.13) and use (4.14) to substitute for J ′′′, which gives us

K =
[
ΛJJ ′′ − 2

3
Λ(J ′)2 + 2(Λ2J2 − 2C2

1)J ′]+ i [−2C1 (J ′′ + 3ΛJJ ′)] , (5.2)

or in terms of P (J),

K = P
[
ΛJP ′ − 2

3
ΛP + 2Λ2J2 − 4C2

1

]
+ i [−2C1P (P ′ + 3ΛJ)] ,
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where we have put the real and imaginary parts in separate brackets. Replacing J ′′

with the help of (5.2) being zero, we can rewrite the equation (4.14) as

0 = 1
3
ΛK(J ′)2 − (2ΛKJ + K ′)(ΛJ − 2iC1)J

′ + 1
2
K2

which clearly has K = 0, i.e, all conformally flat solutions, as some of its solutions.

If P (J) is not restricted to the real domain, then solving the first-order ODE

K = 0 for P (J) leads to the following general solution

P (J) = −3

2
Λ

(
J2 +

4C2
1

Λ2

)
+ C2

(
J ± 2iC1

Λ

)2/3

. (5.3)

with a complex constant C2.

If, instead, we restrict P (J) to be real, a simultaneous vanishing of the real and

imaginary parts of K respectively yields the following set of two equations, provided

P ̸= 0,

0 = C1(P
′ + 3ΛJ),

P ′ =
2P

3J
− 2ΛJ +

4C2
1

ΛJ
,

both of which are consistent with (4.15). There are now two cases for solutions.

The case C1 ̸= 0 requires that both ODEs be satisfied, so that we have a unique

solution

P (J) = −3

2
ΛJ2 − 6C2

1

Λ
(5.4)

which, by solving J ′ = P (J), gives rise to

J =
2C1

Λ tan(3C1(z + C0))
. (5.5)

In the limit C1 → 0, the above solution becomes even simpler1:

J =
2

3Λ(z + C0)
. (5.6)

1Both (5.5) and (5.6) would be of particular importance for perturbation theory on type
N solutions near conformally flat ones.
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From (5.5), we have

F1 = ±
√

6C1

s sin(3C1(z + C0))
, F2 = − 5C1

tan(3C1(z + C0))
(5.7)

with negative-valued Λ = −s2. Note that it is only at this stage that the reality

condition on F1,2, i.e., J ′ > 0, requires Λ < 0, i.e, a negative cosmological constant.

An important remark that can be made is that the extended form of the Leroy-

Nurowski solution (see the next section) resembles this solution greatly, with simply

differences in the numerical coefficients.

For the other case when C1 = 0, we have

P (J) = −3
2
ΛJ2 + C2J

2/3. (5.8)

with a real constant C2. From (4.16), the solution J(z) is determined by∫
1

−3
2
ΛJ2 + C2J2/3

dJ = z + C0. (5.9)

Since J ′ > 0, we cannot have both Λ > 0 and C2 ≤ 0. Hence, we can discuss three

other sign possibilities, the details of which are put in Appendix C.

We note that the special solution (5.6) corresponding to C1 = C2 = 0 serves as

the single “point” where these two families of conformally flat solutions are joined

up.

Modulo possible sign differences in αI and ηI caused by square roots as already

discussed, the Cartan invariants for both (5.5) and (5.6), as calculated via (4.21) and

the equations for the other invariants, as presented in Appendix B, are given by

αI = −4i

ε
4

√
2

5
, βI =

41

2
√

10
, γI =

29

2
√

10
,

θI = 3i

√
2

5
, ηI = − i

ε
· 219/4

53/4
, ζI = −327

40
, ε = ±1.

(5.10)

Remarkably, they are all constant and do not depend on C1. Nonetheless, this is

not the case for the other conformally flat solutions obtained from (5.9) with C2 ̸= 0
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of which the Cartan invariants are generally functions of z and C2. For instance,

simplified by (5.8) and J ′ = P (J), the first Cartan invariant satisfies

α2
I(z, C2) = −16

√
2

5

(
3ΛJ4/3 + 2C2

3ΛJ4/3 − 2C2

)2

, (5.11)

where J = J(z) belongs to one of the three cases described in Appendix C.

Two conformally flat Einstein spaces may have non-equivalent CR structures.

This does not conflict with Theorem 2.3 because in a conformally flat spacetime, one

is free to make different choices from among the multiple shearfree null congruences

and therefore may have non-equivalent CR structures attached to them.

5.2 An Extended Form of the Leroy-Nurowski So-

lution

Now we can reveal, to a fuller extent, the exact twisting type N solution first discov-

ered by Leroy, and re-derived by Nurowski within the framework of CR geometry,

upon the latter of which our current work is mainly based. We hope that our deriva-

tion of this solution will make the process behind the previous discoveries appear

clearer.

Given Nurowski’s form of the solution (see [15] or (5.19)) and recasting it into

the form of the ansatz (4.9,4.10) and (4.13), we find the following special solution to

(4.15)

P (J) = −1

3
ΛJ2 − 3C2

1

4Λ
(5.12)

which gives rise to a solution to (4.14):

J =
3C1

2Λ tan(1
2
C1(z + C0))

. (5.13)
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In the limit C1 → 0, the above expression becomes even simpler:

J =
3

Λ(z + C0)
, (5.14)

which is quite similar to that of (5.6). Back to the case with C1 ̸= 0, using (4.13),

we have

F1 = ±
√

3C1

2s sin(1
2
C1(z + C0))

, F2 = − 2C1

tan(1
2
C1(z + C0))

(5.15)

with a negative Λ = −s2. Note that it is only at this stage that the reality condition

on F1 requires Λ < 0. In the end, our extended version of the Leroy-Nurowski

solution takes the form

p(ζ, ζ̄) = ± i
√

3C1

2s sinh
(
i
2
C1(z + C0)

)√
AĀ

, (5.16)

c(ζ, ζ̄) =
1

A

[
∂ζA +

2C1

tanh
(
i
2
C1(z + C0)

) + C1

]
, (5.17)

z = −i

(∫
1

A
dζ −

∫
1

Ā
dζ̄

)
. (5.18)

The flexibility of choosing the function A(ζ) and real constant C0,1 may perhaps

facilitate a possible future application of the solution. From this extended version,

one can obtain the original form of Nurowski [15] by setting

A(ζ) = C1ζ, Ā(ζ̄) = C1ζ̄ , C0 = 0,

and consequently,

p(ζ, ζ̄) = ± i
√

3

s(ζ − ζ̄)
, c(ζ, ζ̄) =

4

ζ − ζ̄
, Ψ4 =

14s2

3y2
e−ir/2 cos3

(r
2

)
. (5.19)

Note that all C1’s are canceled out in the above expressions. Hence another way of

obtaining (5.19) is by taking the limit C1 → 0 in (5.16) and (5.17) (cf. (5.14)) and

setting C0 = 0 and A(ζ) = 2.
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Modulo possible sign differences in αI and ηI caused by square roots as already

discussed, the Cartan invariants calculated from (5.13) and (5.14) are both given by

αI =
1

ε

√
1

2

√
3

5
, βI = −1

2

√
3

5
, γI =

1

2

√
3

5
,

θI = i

√
3

5
, ηI = −1

ε
· 23/2

31/4 · 53/4
, ζI = − 1

20
, ε = ±1.

(5.20)

Like (5.10), they are all constant and do not depend on C1.
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Painlevé Analysis

6.1 Weak Painlevé Tests

Now we have three ODEs, the equations (4.14) for J(z), (4.15) for P (J), and (4.19)

of the Abel type at hand that may be explored for new twisting type N solutions. A

particular, probably useful way to decide which one of these equations has a better

chance for finding a solution is given by the (weak) Painlevé test [46, 47, 48]. This

test reveals the nature of the movable singularities (poles, branch points, ...) of

the general solution of a nonlinear ODE. Failing the test means the occurrence of

certain undesirable movable singularities, e.g., infinitely branched singularities, that

relate to non-integrability [48] or even chaoticity, although it may still be possible to

find special solutions. Associated to the (weak) Painlevé test is the global property

called the (weak) Painlevé property. An ODE possesses the Painlevé property if the

general solution can be made single-valued (e.g., all movable singularities are poles).

Examples of such are all linear ODEs, the elliptic equation and, most noteworthy,

the six Painlevé equations. However, the weak Painlevé property only requires that

the general solution be at most finitely branched around any movable singularity.
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The tests themselves are by design sets of necessary conditions respectively for these

properties.

In this section, we will show that none of the three ODEs pass the Painlevé

test, and that (4.14) also fails the weak Painlevé test while the other two pass. To

begin, we detail the test procedures on (4.15). Then we briefly comment on the Abel

equation (4.19) and simply point out where the tests fail for (4.14) without dwelling

on details.

The equation (4.15) surely does not have the Painlevé property since the coef-

ficient of the (P ′)2 term clearly violates the necessary conditions for the Painlevé

property [46] (see p. 127). This is also confirmed by the test conclusion that (4.15)

has movable algebraic singularities.

Step 1 (Dominant behaviours). Assume the leading behaviour of a solution P (J)

to be

P ∼ u0χ
m, χ = J − J0, u0 ̸= 0, m ̸= 0,

with m not a positive integer. Substitute this form into (4.15) and select out all

possible lowest order terms as listed below

3
2
u2
0m
(
m− 2

3

)
χ2m−2, 2Λu0J0mχm−1, 2(Λ2J2

0 + C2
1).

Since m ̸= 1, we only have two possibilities. For m < 1, χ2m−2 is the lowest order

term and the vanishing of its coefficient requires

m =
2

3

given u0,m ̸= 0. For m > 1, the constant 2(Λ2J2
0 +C2

1) is the lowest order term, which

does not vanish in general, hence not interesting for the purpose. To summarize, we

obtain m = 2
3

with arbitrary u0 ̸= 0, i.e, we find that

P ∼ u0(J − J0)
2/3
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is the only detected dominant behaviour.

Step 2 (Resonance conditions [46] (see p. 87)). Having found the dominant

behaviour, now we consider the possibility to extend it to a Puiseux series expansion

P =
∞∑
j=0

uj(J − J0)
(j+2)/3.

This requires the determination of the locations (j + 2)/3, called Fuchs indices or

resonances, where arbitrary coefficients may enter the Puiseux series. Consider the

dominant terms

Ê(J, P ) = PP ′′ + 1
2
(P ′)2

of (4.15) that contribute to the leading behaviour χ2m−2 = χ−2/3. Then compute the

derivative

lim
ϵ→0

Ê(J, P + ϵV ) − Ê(J, P )

ϵ
= (P∂2

J + P ′∂J + P ′′)V.

The Fuchs indices satisfy the so-called indicial equation

lim
χ→0

χ−j−(2m−2)(P∂2
J + P ′∂J + P ′′)χj+m = u0(j + 1)j = 0.

Hence we obtain a fractional resonance at (j + 2)/3 = 2
3

with j = 0.

Step 3 (Compatibility conditions). At j = 0, we know, from the the first step, that

u0(̸= 0) is indeed an arbitrary coefficient. This completes the test. In conclusion,

(4.15) passes the weak Painlevé test.

Remark. Note that no pole is detected from the test above. The ODE for P 3

still involves a Puisuex series instead of a Laurent series since the cubing does not

eliminate all third roots of χ. According to [48], the presence of movable algebraic

singularities is not incompatible with integrability.
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The very design of the weak Painlevé test limits its usage only as necessary

conditions for the weak Painlevé property. The test can neither detect movable

(branched) essential singularities themselves nor exclude an accumulation of algebraic

singularities forming a movable essential one that may be severely branched. These

possibilities make a rigorous proof of the weak Painlevé property not at all a trivial

one, which by itself may deserve a specialized article to discuss. See examples in

[49, 50, 51].

According to Painlevé [52, 53], the only movable singularities of solutions to

the first-order ODE y′ = F (x, y) where F is rational in y with coefficients that

are algebraic functions of x, are poles and/or algebraic branch points. In addition,

the only nonlinear ODE in this class that has the Painlevé property is the Riccati

equation which (4.19) is certainly not. Hence the equation (4.19) automatically has

the weak Painlevé property, but not the Painlevé property, and it is free from movable

essential singularities.

The equation (4.14) admits two families of dominant behaviours (cf. (5.6) and

(5.14)):

J ∼ 2

3Λ(z − z0)
, Fuchs indices = −1,

4

3
,
7

3
;

J ∼ 3

Λ(z − z0)
, Fuchs indices = −1,−1 +

√
57

2
,−1 −

√
57

2
.

It fails the weak Painlevé test for having irrational resonances. This means that

(4.14) has an infinitely branched movable singularity, which is a strong indicator for

non-integrability [48].

Since our attempt of solving (4.19) has not been successful, we decided to focus on

(4.15) and explore some of its features that may facilitate constructing new solutions.
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Chapter 6. Painlevé Analysis

6.2 Puiseux Series Solutions

As indicated by the weak Painlevé test, the ODE (4.15) for P (J) possesses a formal

Puiseux series solution

P =
∞∑
k=0

uk(J − J0)
(k+2)/3

=u0(J − J0)
2/3 − 3ΛJ0(J − J0) −

9(Λ2J2
0 + 4C2

1)

20u0

(J − J0)
4/3

− 3ΛJ0(Λ
2J2

0 + 4C2
1)

5u2
0

(J − J0)
5/3

−
[

3

2
Λ +

27(109Λ2J2
0 + 36C2

1)(Λ2J2
0 + 4C2

1)

2800u3
0

]
(J − J0)

2 + · · · (6.1)

with two arbitrary complex constants u0 ̸= 0 and J0. In particular, this Puiseux

series solution contains a special case for J0 = ±2iC1/Λ (Λ ̸= 0) such that

P = u0

(
J ± 2iC1

Λ

)2/3

− 3

2
Λ

(
J2 +

4C2
1

Λ2

)
.

This finite expression coincides with the known solution (5.3) (setting u0 = C2).

Theorem 6.1. Given that u0 ̸= 0 and u0, J0 ∈ C, the ODE (4.15) admits a formal

Puiseux series solution (6.1) such that it converges in a neighborhood of J0.

Proof. The idea of the proof, following many standard proofs of the Painlevé prop-

erty, is to convert the Puiseux series into a power series solution of a regular initial

value problem (e.g., [49, 51]). First we define

Z = P 1/2(P ′ + 4ΛJ). (6.2)

Then differentiate it once with respect to J and substitute P ′′ using (4.15). Hence

we obtain

Z ′ =
2(ΛP − 3Λ2J2 − 3C2

1)

3P 1/2
. (6.3)
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Chapter 6. Painlevé Analysis

The system (6.2,6.3) is equivalent to the ODE (4.15). Now by introducing a new

variable U = P 1/2, we can transform the system into

dJ

dU
=

2U2

Z − 4ΛUJ
,

dZ

dU
= −4(3Λ2J2 − ΛU2 + 3C2

1)U

3(Z − 4ΛUJ)
.

(6.4)

which has a unique power series solution about U = 0

J = J0 +
2

3Z0

U3 + · · · ,

Z = Z0 −
2(Λ2J2

0 + C2
1)

Z0

U2 + · · · .
(6.5)

By the Cauchy existence and uniqueness theorem, both series have non-vanishing

radii of convergence. From the series (6.5), the corresponding solutions to (6.2,6.3)

then take the form

P =

[
3Z0

2
(J − J0)

]2/3
+

∞∑
k=1

uk(J − J0)
(k+2)/3,

Z = Z0 +
∞∑
k=0

vk(J − J0)
(k+2)/3.

with Z0 ̸= 0. This completes the proof.

The series (6.1) clearly contains type N solutions that are not equivalent to Leroy-

Nurowski’s since they all continuously deform to the conformally flat solution (5.8)

in the limit J0 → 0, C1 → 0. We already know that the latter has a non-constant

Cartan invariant αI given by (5.11).

59



Chapter 7

Constructing New Solutions

7.1 An Example of Power Series Solutions

For simplicity, assume that C1 = 0 in the ODE (4.14). Now consider the power series

solution of (4.14) satisfying the regular initial conditions J(0) = 0, J ′(0) = u0 > 0

and J ′′(0) = 0. A simple calculation gives us the first few terms of this series

J(z) =
∞∑
i=0

uiz
i+1 = u0z − 5

9
Λu2

0z
3 + 16

45
Λ2u3

0z
5 + · · · , (7.1)

which is an odd function of z. Moreover, this series solution, convergent in a neigh-

borhood of z = 0 according to the Cauchy existence and uniqueness theorem, is of

type N with a non-vanishing Weyl scalar Ψ4 ∝ K(z). Particularly,

K(0) = −2
3
Λu2

0 ̸= 0.

To see that the solution (7.1) is not equivalent to the Leroy-Nurowski solution, we

calculate the first Cartan invariant αI(z) via (4.21) which, in this case, is no longer

a constant. In particular, this series solution has

αI(0) = 0,
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Chapter 7. Constructing New Solutions

with αI(z) and also K(z) continuous at z = 0, while the values given in (5.20) are

always nonzero constants. This is sufficient to assert that the ODE (4.14) as well as

its reductions (4.15) and (4.19) indeed contain new twisting type N solutions.

7.2 One-Parameter Deformation from a Confor-

mally Flat Solution to the Leroy-Nurowski So-

lution

One feature that makes (4.15) preferable to the other two ODEs (4.14) and (4.19)

is that the conformally flat solution (5.4) and the extended Leroy-Nurowski solution

(5.12) are just simple quadratic functions, without poles in the complex plane, com-

pared to their counterparts (5.5) and (5.13). Also note that these quadratic solutions

with C1 = 0 do not correspond to any solution of the Abel equation (4.19) since the

form (4.20) with the non-constant function Z(J), excludes all quadratic functions

as solutions. These well-behaved quadratic solutions facilitate a study of the power

series solutions near them, which complements the Puiseux series solutions presented

in Section 6.2.

To simplify the notation, we apply the scaling transformation1 J = C1w/Λ,

P (J) = C2
1g(w)/Λ with Λ ̸= 0, C1 ̸= 0 such that (4.15) takes on the form already

noted as (1.1) with C = 1:

g′′ = −(g′ + 2w)2

2g
− 2

g
− 10

3
. (7.2)

We look for power series solutions for this equation corresponding to the regular

1Once having a solution g(w), one may choose a sign for Λ in order to have P (J) > 0.
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initial conditions g(0) = u0 ̸= 0, g′(0) = 0. The first few terms of this series read

g(w) =
∞∑
j=0

ujw
j

=u0 −
5
(
u0 + 3

5

)
3u0

w2 −
2
(
u0 + 3

4

)
(u0 + 6)

27u3
0

w4

−
76
(
u0 + 3

4

)
(u0 + 6)

(
u0 + 33

38

)
1215u5

0

w6 + · · · ,

(7.3)

where all odd order terms vanish. The remainder of the coefficients in the series can

be determined by a recursion relation which is valid beginning with u6:

0 = (2k+1)(k+1)u0u2k+2+
(
2k + 5

3

)
u2k+

k−1∑
l=0

(k+l+1)(l+1)u2l+2u2k−2l, k ≥ 2, (7.4)

while u2 and u4 can be easily read off from (7.3). It is clear that this relation allows

one to calculate the coefficients to whatever order desired. One can easily see that

the coefficient of w2k, namely u2k, is a kth-order polynomial, Pk(u0), divided by

u2k−1
0 ̸= 0. Remarkably, this infinite series reduces to simple quadratic functions in

two special cases. The reason for this is that for every value of k ≥ 2, the polynomial

Pk(u0) has the factors
(
u0 + 3

4

)
(u0+6), as can be seen in the few terms demonstrated

in (7.3) above and can easily be shown by induction. Hence for u0 = −3
4
, we retrieve

the Leroy-Nurowski solution (5.12), which in this notation is simply

gLN = −
(
1
3
w2 + 3

4

)
. (7.5)

As well, for u0 = −6, we retrieve a conformally flat solution (5.4), which has the

form

gCF = −
(
3
2
w2 + 6

)
. (7.6)

For all other values of u0 ̸= 0, the formal series solution (7.3) may then be viewed as a

generalization of these two known solutions, in terms of a power series with infinitely

many terms. It is interesting that in every one of these polynomials, Pk(u0), all
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coefficients are negative, so that the only possible real roots would be negative. Our

numerical calculations suggest that none are smaller than −6, and that there are no

other roots common to all these different polynomials.

The series (7.3) does define, in the complex domain, a function holomorphic in

some neighborhood of the origin as is shown by the following method of determining

a nonzero radius of convergence for it.

Theorem 7.1. Given the series (7.3) with the recursion relation (7.4) and a fixed

u0 ̸= 0, one has the following bound:

|u2j| ≤
CM2j

(2j)2
, j = 2, 3, · · · , (7.7)

provided that one can pick two constants C > 0 and M > 0 such that they satisfy∣∣∣∣∣2
(
u0 + 3

4

)
(u0 + 6)

27u3
0

∣∣∣∣∣ ≤ CM4

16
, (7.8)(

5

3
+

1

|u0|

)
9

4M2
+

(
π2

12
− 1

4

)
C ≤ |u0|. (7.9)

Proof. The induction begins with

|u4| ≤
CM4

16
.

which holds by the assumption (7.8). Now assume that for k ≥ 2 and j = 2, · · · , k,

the bound (7.7) is true. Then for k ≥ 3 and 1 ≤ l ≤ k−2, we can bound the product

u2l+2u2k−2l by

|u2l+2u2k−2l| ≤
C2M2k+2

(2l + 2)2(2k − 2l)2

≤ 2

[
(2k − 2l)2 + (2l + 2)2

(2k + 2)2

]
C2M2k+2

(2l + 2)2(2k − 2l)2

= 2

[
1

(2l + 2)2
+

1

(2k − 2l)2

]
C2M2k+2

(2k + 2)2
. (7.10)
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The second inequality above is due to (a2 + b2)/(a + b)2 ≥ 1
2
. Rearranging (7.4) and

using the triangular inequality together with (7.10), we obtain an upper bound for

|u2k+2|:

|u2k+2| ≤
(
2k + 5

3

)
|u2k| + (2k2 + k + 1)|u2u2k|
(2k + 1)(k + 1)|u0|

+

∑k−2
l=1 (k + l + 1)(l + 1)|u2l+2u2k−2l|

(2k + 1)(k + 1)|u0|

≤
(
2k + 5

3

)
+ (2k2 + k + 1)|u2|

(2k + 1)(k + 1)|u0|
· CM2k

(2k)2

+
S(k)

2(2k + 1)(k + 1)|u0|
· C

2M2k+2

(2k + 2)2
, k ≥ 2, (7.11)

where we define

S(k) =
k−2∑
l=1

(k + l + 1)(l + 1)

(l + 1)2
+

k−2∑
l=1

(k + l + 1)(l + 1)

(k − l)2
, k ≥ 3, and S(2) = 0

We can evaluate the first summation above in terms of the digamma function

k−2∑
l=1

(k + l + 1)(l + 1)

(l + 1)2
= kΨ(k) − (2 − γ)k ≤ kΨ(k)

where γ is Euler’s constant, which is approximately 0.57721 · · · . The second sum-

mation has the following bound

k−2∑
l=1

(k + l + 1)(l + 1)

(k − l)2
=

k−2∑
l=1

(2k − l)(k − l)

(l + 1)2

≤ 2k2

k−2∑
l=1

1

(l + 1)2
=

(
π2

3
− 2

)
k2 − 2k2Ψ(1, k) ≤

(
π2

3
− 2

)
k2.

Note that the trigamma function Ψ(1, k) ≥ 0 for all integers k ≥ 3 and that Ψ(1, k) ∼

k−1 for k → +∞. Combining these two bounds, for k ≥ 3, we obtain

S(k)

2(2k + 1)(k + 1)
≤ (π2/3 − 2) k2 + kΨ(k)

2(2k + 1)(k + 1)

≤ (π2/3 − 2) k2 + k2

4k2
=

π2

12
− 1

4
,
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where we use the fact that 0 ≤ Ψ(k) ≤ k for all integers k ≥ 3. In addition, the first

term in (7.11) is bounded by(
2k + 5

3

)
+ (2k2 + k + 1)|u2|

(2k + 1)(k + 1)|u0|
· CM2k

(2k)2
≤

(
2k + 5

3

)
+ (2k2 + k + 1)

(
5
3

+ 1
|u0|

)
(2k + 1)(k + 1)|u0|

· CM2k

(2k)2

≤ 1

|u0|

(
5

3
+

1

|u0|

)
(k + 1)2

k2M2
· CM2k+2

(2k + 2)2

≤ 1

|u0|

(
5

3
+

1

|u0|

)
9

4M2
· CM2k+2

(2k + 2)2
,

where the last inequality becomes an equality for k = 2. Altogether, we obtain for

k ≥ 2

|u2k+2| ≤
1

|u0|

[(
5

3
+

1

|u0|

)
9

4M2
+ δ2k

(
π2

12
− 1

4

)
C

]
CM2k+2

(2k + 2)2
≤ CM2k+2

(2k + 2)2
,

given the assumption (7.9). Here δjk is the Kronecker delta. This completes the

induction.

The existence of such an upper bound (7.7) on u2j guarantees a lower bound M−1

on the radius of convergence. For instance, if we take u0 = −2, which lies nicely in

the interval between −3
4

and −6, we can at least pick

C = 1
10
, M−1 = 3

5

satisfying both (7.8) and (7.9). The bound (7.7) is by no means optimal at every

u0 ̸= 0. In fact, our numerical integrations of (7.2) with u0 sampled between −6 and

−3
4

all indicate that in the real domain, the series solutions (7.3) with −6 < u0 < −3
4

are all well sandwiched between the parabolic curves of (7.5) and (7.6), and therefore

suggest an infinite radius of convergence on the real line. Moreover, by applying the

transformation w → 1
w

to (7.2) and studying the formal (Puiseux) series expansion

of the transformed ODE at the origin, we find the following asymptotic expansion2

2We also find another asymptotic expansion that has the first two leading terms identical
to (7.5), but also involves fractional powers of w in a complicated way, hence not presented
here.
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of (7.2) as w → ∞ (cf. (7.6)):

g ∼ −3
2
w2 − 6 + u4/3w

2/3 + O(w−1/3),

where u4/3 is an arbitrary constant. This asymptotic behaviour at infinity, consistent

with our numerical calculations, again suggests that we may significantly extend the

radius of convergence for (7.3) at least in the real domain.

An additional comment is that the Cartan invariant αI , computed from (7.3)

with −6 < u0 < −3
4
, is generally not constant, contrary to the special cases for those

values of u0 at the two endpoints of the interval of values for u0 being considered.

To see this, we can use the following series expansion of αI at w = 0 (ignoring the

overall sign difference):

αI [g(w)] = −4 · 21/433/4(7u2
0 + 21u0 + 9) |8u2

0 + 24u0 − 9|1/4

(−8u2
0 − 24u0 + 9)3/2

+
8i · 21/433/4(u0 + 6)(4u0 + 3)(44u3

0 + 162u2
0 − 27u0 − 135) |8u2

0 + 24u0 − 9|1/4

3u0(−8u2
0 − 24u0 + 9)5/2

w

+ · · · .

where the coefficient of w clearly vanishes at u0 = −6,−3
4

(likewise for coefficients

of higher-degree terms), but is generally nonzero for −6 < u0 < −3
4
.
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Killing Vectors

8.1 The Leroy-Nurowski Solution

The original metric found by Leroy [8] was constructed by assuming the existence

of a three-parameter group of Killing symmetries, instead of directly solving certain

field equations for type N which is how Nurowski discovered his version of the same

metric [15]. Here we quote from [25] (see p. 201) a form of the Leroy solution:

g =
t2 + 1

2kx2

(
dx2 + dy2

)
− 2

k

(
x2du− dy

3x

)[
dt +

2

x
(tdx + dy) +

t2 − 1

2

(
x2du− dy

3x

)]
,

(8.1)

with Λ = −3k < 0, which admits three Killing vectors

∂u, ∂y, x∂x + y∂y − 2u∂u.

One can immediately recognize the first two Killing vectors since no metric compo-

nents of (8.1) depend on the coordinate u or y.

By the following coordinate substitutions

x −→ y, y −→ x, u −→ −u

3
, t −→ tan

(r
2

)
,
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the metric (8.1) can be transformed to the form found by Nurowski [15]

g =
1

s2y2 cos2( r
2
)

[
3

2
(dx2 + dy2)

+ (dx + y3du)

(
ydr +

y3

3
cos rdu +

(
2 +

7

3
cos r

)
dx + 2 sin rdy

)] (8.2)

with Λ = −s2 < 0. Correspondingly, the three Killing vectors are given by

∂u, ∂x, x∂x + y∂y − 2u∂u. (8.3)

As one may have expected (from Theorem 2.3), these Killing symmetries, without

dependence on the coordinate r, are in fact also the symmetries of the underlying

CR structure (use (2.12) and ∂ = 1
2
(∂x− i∂y − y−3∂u) to verify), the three-parameter

group of which belongs to the Bianchi type VIh [35]. Indeed, we have the following

theorem stating this coincidence to be a general property.

Theorem 8.1. [54] For metrics in the class (2.16), the projection of a Killing vector

onto the CR manifold is a symmetry of the CR structure.

8.2 General Solutions Determined by ODEs

Theorem 8.1 suggests that to seek for Killing vectors, one may as well start with

symmetries of the CR structure, which by themselves are easier to find and have

been well classified [35]. Specifically for the metrics (2.17-2.37) with the ansatz (4.9,

4.10) and generally determined by the ODEs (4.11) or (4.12) (or (4.14), (4.15)), one

can, by setting A(ζ) = 2 (in this gauge, z = y) and without loss of generality, choose

the following representative for the underlying CR structure:

µ = dx + idz, λ =
eC1xdu− 2

[∫
exp

(∫
F2dz

)
dz
]

dx

exp
(∫

F2dz
) . (8.4)

Then by Theorem 2.2 (due to (2.1), a factor in λ is irrelevant), we immediately

acquire two symmetries

X1 = ∂u, X2 = ∂x − C1u∂u,
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with the commutation relation

[X1, X2] = −C1X1.

If we take these symmetries as our first guess, it is quite straightforward to verify

that the vector fields X1,2 (especially X2) satisfy the condition (1.10) (use the ex-

plicit metric form g in Section 9.1) and hence constitute true Killing vectors. This

interesting fact indicates a certain inheritability of symmetries from CR structures

to spacetimes, though this is not always true. For example, the Hauser solution has

only one Killing vector (and one homothetic vector) [55] despite that its hyperquadric

CR structure has the maximal eight symmetries.

To identify more symmetries of (8.4), one needs to know more about the function

F2, which may require solving associated ODEs. Relevantly, it still remains an open

problem regarding the maximum number (≥ 3) of Killing vectors that a twisting type

N vacuum with Λ ̸= 0 (not necessarily in the ansatz (4.9)) may have. For Λ = 0, we

indeed know that this maximum number is two [56, 57].
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Conclusions and Outlook

9.1 Conclusions

We have begun with the advantage of prior work done on the use of (3-dimensional)

CR manifolds to look for solutions of the Einstein field equations that correspond

to algebraically special Einstein spaces with twisting PNDs. A general solution of

those reduced field equations for the two functions of three variables would generate

all twisting solutions of Petrov type N. Of course we did not achieve this; however,

after the assumption of a single Killing vector in a particular direction, our ansatz

of invariant solutions obtained from the infinite-dimensional classical symmetries of

the field equations, allowed us to obtain a single ODE1, the solutions of which would

generate a family of twisting spacetimes of type N admitting at least two Killing

vectors. That ODE is either a rather simple, third-order nonlinear equation for J =

J(z) in which the independent variable z does not appear or, equivalently, an even

simpler, second-order nonlinear equation for g = g(w), where w is a dimensionless

1The ODE system (4.11) with C1 = 0 and H ̸= 0 is also very important, but we still
know very little about it. See Appendix D for an example of solutions that is unique to
(4.11) and not found in other ODEs.
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re-scaling of J and g is a re-scaling of J ′, which includes a nonzero value for Λ,

the cosmological constant. Within the same ansatz, we have also investigated all

the cases of solutions corresponding to conformally flat spacetimes to which type N

solutions may degenerate, helping us look for non-trivial cases.

We have studied this second-order equation at some length. In particular it

contains one parameter C1, which may always be re-scaled to the value +1 unless

it happens to be zero. In the case that it is zero, the equation can be reduced still

further to a first-order equation of Abel type. Following standard approaches to Abel

equations, we were unable to determine any method that we thought would generate

reasonable explicit type N solutions, although this is still an ongoing project of

considerable interest. However, when C1 is not zero we have considered various sorts

of solutions which it might have. We have shown that it does have solutions which are

holomorphic, in the complex plane in a neighborhood of the origin, and have found

an asymptotic behavior near the (real) infinity. In particular we have picked out

especially those solutions which are even functions of w and looked at power-series

solutions about the origin, both analytically and numerically via Maple programs.

We have determined a moderately-simple recursion relation for the coefficients of the

powers of w2 in the series solutions, which determines the coefficient u2k+2, of w2k+2

(k ≥ 2) in terms of all the previous coefficients, looking at all of them as determined

by the value of g(0) = u0. This series terminates quickly for just two particular

values of u0, in the form −a(u0)w
2 +u0, with a constant, different for the two values

of u0. The value u0 = −3
4

generates the previously-known Leroy-Nurowski solution,

while the other one u0 = −6 is unfortunately simply a conformally flat solution. To

ensure that these series solutions are distinct from the Leroy-Nurowski solution, we

have used the work of Cartan on the question of the equivalence of two CR manifolds,

which requires the equality of the set of six Cartan invariants. We have found that

any value of u0 between these two special values generates Cartan invariants that

are quite different from those at the endpoints of this interval, and therefore distinct

71



Chapter 9. Conclusions and Outlook

from those of the Leroy-Nurowski solution.

The solutions characterized by values of u0 between −6 and −3
4

have an asymp-

totic behavior, via a Puiseux series around the (real) infinity, that has the same form

−a(−6)w2 − 6 as the conformally flat solution aforementioned, but also lower-order

terms involving third-roots of w, which undoubtedly generate algebraic singularities

there. Numerical integrations via Maple agree with this behavior, showing negative

values of g(w) as needed and very simple structure for all real values of w. The same

numerical integrations do show singularities in the solutions for u0 > −3
4
. As well,

numerical calculations of the coefficients u2k+2, for several values of u0 ∈
(
−6,−3

4

)
(e.g., u0 = −301

400
) show that starting at a large enough k, they alternate in sign while

their absolute values are monotonically decreasing at rapid rates. We therefore pos-

tulate that these solutions are everywhere non-singular and well-behaved on the real

axis, and believe that they might define new well-behaved, transcendental functions

with algebraic singularities off the real w-axis. The proof of such a conjecture is

still being pursued; nonetheless, we feel that the numerical calculations justify the

belief that this is a sufficiently interesting result as to merit the attention of a wider

audience.

To conclude the discussion, we present here our new class of metrics which, with-

out loss of generality, may be considered by setting A(ζ) = 2 in the ansatz (4.9).

Although we present it here with the new real coordinate z introduced in (4.10), with

this choice of A(ζ) it is the same as the usual coordinate y used in (2.35). As well,

our studies with the equation for P (J), equivalently g(w), allow us to replace z by

its form in terms of J as determining the imaginary part of dζ, via dz = dJ/P (J),

namely,

ζ = x + iz = x + iz(J), dζ = dx + idz = dx +
i

P
dJ.

For simplicity of presentation, we show both forms below, with coordinates {x, z, u, r}
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and {x, J, u, r} respectively:

g =
J ′

2 cos2( r
2
)

[
dζdζ̄ + λ

(
dr + Wdζ + W̄dζ̄ + Hλ

)]
=

P

2 cos2( r
2
)

[
dζdζ̄ + λ

(
dr + Wdζ + W̄dζ̄ + Hλ

)]
with real-valued J = J(z), J ′ ≡ dJ/dz = P (J) > 0 and P ′ ≡ dP/dJ such that

W =
1

2

(
J ′′

2J ′ + ΛJ + iC1

)
(e−ir + 1) = 1

2

(
1
2
P ′ + ΛJ + iC1

)
(e−ir + 1),

H = −1
6
ΛJ ′ cos(r) = −1

6
ΛP cos(r),

where C1 is an arbitrary real parameter. The function L as in ∂ = ∂ζ − L∂u can be

chosen so as to be real-valued:

L = −e−C1x

∫
exp

(∫
F2dz

)
dz = −e−C1x

∫
1

P
exp

(∫
F2

P
dJ

)
dJ,

such that from (2.35),

λ =
eC1xdu− 2

[∫
exp

(∫
F2dz

)
dz
]

dx

exp
(∫

F2dz
)

=
eC1xdu− 2

[∫
P−1 exp

(∫
F2P

−1dJ
)

dJ
]

dx

exp
(∫

F2P−1dJ
) ,

where F2 is given by

F2 =
J ′′

2J ′ − ΛJ = 1
2
P ′ − ΛJ.

Meanwhile, the functions J(z) and P (J) respectively satisfy

J ′′′ =
(J ′′)2

2J ′ − 2ΛJJ ′′ − 10

3
Λ(J ′)2 − 2(Λ2J2 + C2

1)J ′,

P ′′ = −(P ′ + 2ΛJ)2

2P
− 2C2

1

P
− 10

3
Λ.

In particular, the original type N metric by Nurowski [15] corresponds to the case

C1 = 0, J = 3
Λz

and a proper choice of the integration constants in λ, for which the

expression (5.2), i.e., the Weyl scalar Ψ4, does not vanish.
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We can here note the philosophy that certain ODEs themselves may serve the

purpose of defining new transcendental functions; for instance, we recall the Painlevé

functions and the associated ODEs. Hence our situation with new type N solutions

being determined by a second-order nonlinear ODE is presumably not too different

from that of the Hauser solution (in terms of hypergeometric functions [6]) which

is determined by a second-order linear ODE, although it is true that there has

already been much more extensive studies made on the properties of hypergeometric

functions than have been made for newer functions defined by solutions of nonlinear

ODEs that may not even have the Painlevé property.

9.2 Outlook

We believe that in some sense, this work in fact raises more questions than it answers,

and therefore seems likely to generate future research on the subject. Here we list a

few of them in addition to those we already mentioned in previous sections. First,

an obvious direction is to construct explicit general solutions to the second-order

ODE (1.1) and the Abel equation (1.2). This may involve proving or disproving

the irreducibility (in terms of all known functions) and transcendence of the general

solutions, hence to confirm whether or not these ODEs themselves may define new

transcendental functions. Second, we still know very little about the formal Puiseux

series solution (6.1) with respect to the extent of its domain and other global proper-

ties. This class of solutions is important because they allow a positive cosmological

constant, which is more relevant to our current universe. Third, a complete classifi-

cation of the solutions determined by the ODEs (4.11) or (4.12) (or (4.14), (4.15)) is

surely of certain interest. It can help one to decide which parameters are really nec-

essary in the solutions. Above all, the true value of an exact solution to the Einstein

equations cannot be fully appreciated without appropriate physical interpretations
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regarding its asymptotic behaviors, symmetries, singularities, sources, extensions,

completeness, topology and stability, most of which we have barely touched upon in

this work. Moveover, since our new solutions describe gravitational waves that only

exist for a nonzero cosmological constant as the background/source (they become

flat when Λ = 0), we anticipate their possible future applications in cosmology (see,

e.g., [41]).
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The Abel ODE

The equation (4.19) actually does have the following special solution

fCF = − 3

4t + 6
. (A.1)

However, it can be shown to correspond to a conformally flat solution (5.8), and

hence is not interesting.

Unfortunately, we have had no luck so far in finding the general solution to

(4.19) or any other special solution other than (A.1). Since constructing the general

solution to the generic Abel ODE has remained an open problem for decades, the

general strategy of integration nowadays mainly lies in recognizing, within a suitable

class of transformations, the ODE in question as equivalent to a previously solved

equation. Such a procedure has been programmed into the current state-of-the-art

Maple code dsolve (or abelsol) [22, 23], which presumably covers all/most of the

integrable classes presented in Kamke’s book [58] and various other references (e.g.,

[59]). However, this code, as tested by us, does not recognize (4.19) as a known solved

type, e.g., the AIR class. Other attempts by us, such as the symmetry method, on

finding special solutions all have failed or just led to (A.1).
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So far we have not been able to find a similar reduction for the ODE (4.15) with

C1 ̸= 0, nor can we negate the possibility that (4.15) with C1 ̸= 0 may contain

different type N solutions other than the case with C1 = 0. In fact, the Cartan

invariants calculated with (4.14) generally do have a dependence on the constant

C1 even though this is not the case for all the conformally flat solutions and the

Leroy-Nurowski solution (see (5.10) and (5.20)).
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Cartan Invariants

Given c = c(ζ, ζ̄) and

r = 1
6

(
∂ζ̄ l̄ + 2c̄l̄

)
, l = −∂ζ∂ζ̄c− c∂ζ̄c, ε = ±1

taken from (4.21) where αI is presented, the next four Cartan invariants, when r ̸= 0,

read

βI(ζ, ζ̄) =
1

32(rr̄)9/4

[
3r̄2∂ζ̄r ∂ζr + 3r2∂ζ r̄ ∂ζ̄ r̄ − rr̄

(
∂ζ r̄ ∂ζ̄r

+ 7∂ζr ∂ζ̄ r̄ + 16c̄r̄∂ζr + 16cr∂ζ̄ r̄ − 8rr̄∂ζ̄c + 16cc̄rr̄
)]

,

γI(ζ, ζ̄) =
−1

32(rr̄)9/4

[
7r̄2∂ζ̄r ∂ζr + 7r2∂ζ̄ r̄ ∂ζ r̄ − rr̄

(
8r∂ζ∂ζ̄ r̄ + 8r̄∂ζ∂ζ̄r

+ ∂ζ r̄ ∂ζ̄r + ∂ζr ∂ζ̄ r̄ + 4cr̄∂ζ̄r + 4c̄r∂ζ r̄ + 4cr∂ζ̄ r̄ + 4c̄r̄∂ζr

+ 24rr̄∂ζ̄c + 16cc̄rr̄
)]

,

θI(ζ, ζ̄) =
−i

16r(rr̄)7/4

[
5r̄2(∂ζ̄r)2 + 5r2(∂ζ̄ r̄)2 − rr̄

(
4r∂2

ζ̄ r̄ + 4r̄∂2
ζ̄ r

− 2∂ζ̄r∂ζ̄ r̄ − 4c̄r̄∂ζ̄r − 4c̄r∂ζ̄ r̄ + 16rr̄∂ζ̄ c̄
)]

,
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ηI(ζ, ζ̄) =
−1

192εr1/2(rr̄)25/8

[
− 3r3∂ζ r̄ (∂ζ̄ r̄)2 − 3r̄3∂ζr (∂ζ̄r)2

+ rr̄
(
− 15r∂ζr (∂ζ̄ r̄)2 − 48c̄r2r̄∂ζ∂ζ̄ r̄ + 12rr̄∂ζr ∂

2
ζ̄ r̄ + 48r2r̄∂ζ̄ c̄ ∂ζ r̄

− 24r2r̄∂ζ̄c ∂ζ̄ r̄ − 15r̄∂ζ r̄ (∂ζ̄r)2 − 24rr̄2∂ζ̄c ∂ζ̄r − 60cr̄2(∂ζ̄r)2

+ 12r2∂ζ r̄ ∂
2
ζ̄ r̄ + 48cr2r̄∂2

ζ̄ r̄ + 12r̄2∂ζr ∂
2
ζ̄ r − 48c̄rr̄2∂ζ∂ζ̄r

− 64c̄r2r̄2∂ζ̄c− 60cr2(∂ζ̄ r̄)2 + 12rr̄∂ζ r̄ ∂
2
ζ̄ r + 48crr̄2∂2

ζ̄ r

− 12rr̄∂ζ̄ r̄ ∂ζ∂ζ̄r + 192cr2r̄2∂ζ̄ c̄ + 48rr̄2∂ζ̄ c̄ ∂ζr − 12r̄2∂ζ̄r ∂ζ∂ζ̄r

− 12rr̄∂ζ̄r ∂ζ∂ζ̄ r̄ − 12r2∂ζ̄ r̄ ∂ζ∂ζ̄ r̄ − 12c̄rr̄∂ζ r̄ ∂ζ̄r + 36c̄r2∂ζ r̄ ∂ζ̄ r̄

+ 6r∂ζ̄r ∂ζ r̄ ∂ζ̄ r̄ + 6r̄∂ζ̄r ∂ζr ∂ζ̄ r̄ − 12c̄rr̄∂ζr ∂ζ̄ r̄ + 36c̄r̄2∂ζr ∂ζ̄r

− 48cc̄rr̄2∂ζ̄r − 24crr̄∂ζ̄r ∂ζ̄ r̄ − 48cc̄r2r̄∂ζ̄ r̄ + 32r2r̄2∂2
ζ̄ c
)]

.

Due to the formidable length of ζI as also calculated with Maple (cf. Section 2.2) for

our studies, we will not present it here. All Cartan invariants are uniquely determined

by the function c = c(ζ, ζ̄).
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Conformally Flat Solutions

For a further integration of (5.9), we have the following three separate cases.

Case 1: Λ < 0, C2 > 0. We always have J ′ ≥ 0. Then the solution is determined

by

ln
G2 +

√
2GM + M2

G2 −
√

2GM + M2
+ 2 arctan

( √
2GM

M2 −G2

)
= −2

√
2M3(z + C0),

M = ±
(
−2C2Λ

1/3

3

)1/4

, G = (ΛJ)1/3.

In the real domain, the inverse function J = J(z) is well defined over z + C0 ∈(
− π√

2|M3| ,
π√

2|M3|

)
instead of the entire real line, and has singularities at z + C0 =

± π√
2|M3| .

Case 2: Λ < 0, C2 < 0. We need |J | ≥ (2C2/3Λ)3/4 for J ′ ≥ 0. The solution is

determined by

ln

∣∣∣∣M + G

M −G

∣∣∣∣+ 2 arctan

(
G

M

)
= 2M3(z + C0),

M = ±
(

2C2Λ
1/3

3

)1/4

, G = (ΛJ)1/3, |J | ≥
(

2C2

3Λ

)3/4

.
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In the real domain, the inverse function J = J(z) is well defined over z + C0 ∈(
−∞,− π

2|M3|

)
∪
(

π
2|M3| ,+∞

)
, and has singularities at z + C0 = ± π

2|M3| .

Case 3: Λ > 0, C2 > 0. We need |J | ≤ (2C2/3Λ)3/4 for J ′ ≥ 0. The solution is

determined by

ln

∣∣∣∣M + G

M −G

∣∣∣∣+ 2 arctan

(
G

M

)
= 2M3(z + C0),

M = ±
(

2C2Λ
1/3

3

)1/4

, G = (ΛJ)1/3, |J | ≤
(

2C2

3Λ

)3/4

.

In the real domain, the inverse function J = J(z) from the above is well defined over

the entire real line.
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Solutions with the Hyperquadric

CR Structure

As already mentioned in Section 2.7, the CR structure of the Hauser solution is of

a hyperquadric. Given the prominence of a hyperquadric as the most symmetric of

all CR structures, it is quite natural to look for solutions of (4.11) or (4.12) having

such a property, i.e., those also satisfying the condition

r = 0

with r given in (4.21) (r ∝ R in (2.8) [19]). Again by the classical symmetry method,

we are able to identify at least one such solution obtained from the system (4.11):

F1 = ±
√

6

2s(z + C0)
, F2 = − 2

z + C0

, H =
3

4s2(z + C0)4
,

with a negative Λ = −s2 and the function H ̸= 0. To verify that r vanishes, one can

use the following expression of r in terms of F2:

r =
1

6AĀ3

[
−F ′′′

2 + 3F2F
′′
2 + (F ′

2)
2 − 2F 2

2F
′
2

]
,

which is obtained from plugging (4.9) into (4.21). Unfortunately, the above solution

also makes Ψ4 vanish, hence only a conformally flat one. Note that none of the
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conformally flat solutions of (4.12) we found in Section 5.1 allows r = 0 identically

(cf. (5.11)), which indicates that the system (4.11) with H ̸= 0 contains solutions

that are unique to itself and therefore deserves special studies.

It is worthwhile to mention that the function c with F2 given above, for its

dependence on both ζ and ζ̄, cannot be transformed to c = 0 by the relation (2.56),

which is different from that of the Hauser solution (2.62). Therefore we know that

the condition r = 0 is indeed more general than c = 0 for finding more hyperquadric

solutions.
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