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ABSTRACT 

Prenatal energy balance and postnatal psychosocial experiences have been linked 

by separate literatures to maturational timing, adult body composition (e.g., height, 

skeletal muscle mass), and life-long differences in metabolic physiology. This 

dissertation examines the potential influences of prenatal energy balance and postnatal 

psychosocial experiences in simultaneous analyses designed to test whether they exert 

additive or interacting influences on adult body composition (chapters 2 and 4), 

metabolic physiology (chapter 3), and age at menarche (chapter 4) among samples of 

U.S. men and women. Evolutionary models that address human developmental plasticity 

are explored as possible explanations for the observed relationships. 
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1	  

Chapter	  1: Introduction	  
Small birth size, independent of gestational age or proximate cause, has been 

employed as an indicator of growth-limiting energy balance during fetal development 

(Barker, 1995). Differences in birth size have been linked to differences in female 

maturational tempo (Cooper et al., 1996; Ibanez et al., 2000, 2006; Morris et al., 2010; 

Ong et al., 2009; Ruder et al., 2010; Sloboda et al., 2007) and to life-long disparities in 

metabolic physiology (Barker, 1993; Hales and Barker, 1992; Hovi et al., 2007; Martyn 

and Greenwald, 1997; Osler et al., 2009; Yajnik et al., 2003) and body composition. In 

terms of body composition, these differences include deficits in muscle mass and height 

(Hediger et al., 1998; Kahn et al., 2000; Kuh et al., 2002; Sayer et al., 2004, 2008). This 

body of research suggests that prenatal experiences influence human developmental 

plasticity. Existing hypotheses attempting to explain these links have relied on 

evolutionarily adaptive as well as non-adaptive frameworks often with little empirical 

support. This dissertation aims to provide empirical tests of adaptive explanations for the 

observed links between birth size and the later-life outcomes listed above.  

Because birth size may be linked to sociocultural factors that also influence 

qualities of the postnatal developmental environment (e.g., maternal socioeconomic 

status), a fundamental challenge to this type of human developmental plasticity research 

is isolating prenatal from postnatal effects and assessing, in cases when both effects are 

found, if they represent independent or interacting exposures. Regarding the outcomes 

examined by this dissertation, strong postnatal effects have been documented in the 

prediction of maturational timing (Belsky et al., 1991; Chisholm, 1993; Sheppard and 
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Sear, 2011; Wise et al., 2009), body composition (Euser et al., 2005; Kuh et al., 2002; 

Sachdev et al., 2005), and metabolic physiology (Cohen et al., 2007; Lemelin et al., 2009; 

Winkleby et al., 2007). In order to properly examine potential relationships between birth 

size and these outcomes, the models developed in this dissertation statistically control for 

postnatal experiences that have been linked, by previous research, to the outcomes of 

interest. Simultaneously examining birth size and postnatal factors in combined analyses, 

this dissertation examines not only whether they exert independent or interacting effects, 

but also allows comparison of their relative magnitudes of influence on the biological 

outcomes of interest.  

Evolutionary	  Explanations	  for	  Human	  Developmental	  Plasticity	  

Life	  History	  Theory	  
Life History Theory posits a causal relationship linking environmental conditions 

to fitness-optimizing resource allocation decisions. The resources of interest to organisms 

include energy and, especially when future reproductive opportunities are uncertain, time. 

At every time-point across the life cycle, organisms invest whatever energy they 

currently possess into the discrete fitness-enhancing functions of maintenance and 

survival, growth, or reproduction. The cumulative impact of these allocation decisions 

summed across a lifetime is reflected in adult body size, the timing of reproductive 

maturation, the frequency of reproduction, longevity, and, of ultimate interest to 

evolutionary ecologists, the number of surviving offspring produced. Life History Theory 

provides a predictive framework for understanding variation in individual investment 

preferences, as reflected in these plastic life-history characteristics and events (body size, 

age at reproductive maturation, etc.), based on the expected fitness returns to investment 
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in competing priorities (survival, growth, reproduction) within the varying environments 

experienced by individuals. 

Invoking Life History Theory, this dissertation proposes that developmental 

environments shape the investment preferences of growing youth and that these 

preferences explain observed variations in age at menarche, adult body composition 

(specifically height and skeletal muscle mass), and aspects of adult metabolic physiology. 

In all chapters, this dissertation tests the Life History-derived hypothesis that growth and 

maintenance are devalued within environments marred by health and survival hazards (in 

which expected reproductive lifespan may be reduced). The expected fitness returns to 

growth and maintenance are discounted within dangerous environments by the 

probability of dying prior to achieving said benefits. In these environments growth is 

predicted to cease earlier in life, allowing accelerated maturation and earlier 

reproduction. Earlier reproduction may improve the chances of successfully reproducing 

prior to death. This dissertation proposes that earlier cessation of growth should correlate 

with earlier age at menarche and reduced adult body size. By the same logic, adults (who 

have ceased growing) living in dangerous environments may reduce energetic 

investments in maintenance so that more energy may be invested in current reproductive 

effort. This dissertation proposes that reductions in maintenance costs should be 

observable as reduced caloric requirements in adults. 

Fetal	  Programming	  Models	  
Fetal programming models suggest that prenatal conditions, particularly fetal 

energy balance, initiate developmental trajectories that track into adulthood and can 

explain observed phenotypic variations. A variety of fetal programming models are 
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addressed in this dissertation in attempts to explain observed variation in adult body size, 

metabolic physiology, and age at menarche. 

Chapter 2 invokes a fetal programming model to predict permanent deficits in 

muscle mass among people who experienced energetic scarcity in utero. Limiting the 

development of muscle tissues in utero may be an adaptive fetal response to tightened 

energetic constraints if limited energy is preferentially re-allocated to other tissue types 

that provide a higher expected fitness return than muscle tissue.  

Chapter 3 tests predictions derived from the Predictive Adaptive Response (PAR) 

fetal programming model as proposed by Gluckman and Hanson (2004, 2006). The PAR 

model suggests that fetal energetic scarcity induces life-long adjustments in metabolic 

physiology that serve the sole adaptive purpose of improving metabolic homeostasis 

during adulthood (Gluckman et al., 2007). 

Chapter 4 attempts to test the idea that fetal energy balance influences female 

maturational timing reflected in age at menarche. Previous research has linked small birth 

size, an indicator of prenatal energetic scarcity, to earlier ages at menarche (Cooper et al., 

1996; Ibanez et al., 2000, 2006; Morris et al., 2010; Ong et al., 2009; Ruder et al., 2010; 

Sloboda et al., 2007). Since women who achieved menarche at younger ages are shorter 

as adults (Georgiadis et al., 1997; Okasha et al. 2001; Onland-Moret et al., 2005; Sear et 

al. 2004), chapter 4 attempts to test whether fetal energy balance influences female adult 

stature independent of its impact of maturational timing. 

Outline	  
This dissertation is organized into sections that describe tests of the adaptive 

hypotheses outlined above. Chapter two addresses the downstream influences of 
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developmental events on adult muscle mass, a component of body composition 

previously linked to birth weight. In an attempt to test the Predictive Adaptive Response 

model, chapter three examines adult metabolic sensitivity to negative energy balance in 

light of birth size while simultaneously controlling for life history-informed confounders. 

Chapter four characterizes the impacts of birth weight and childhood psychosocial 

experiences on age at menarche in a contemporary cohort of U.S. girls from NHANES 

2007-2010. Then chapter four examines whether these same developmental experiences 

exert additional influences on women’s height independent of their impact on age at 

menarche. Each chapter contains suggestions for improved study design and future 

research directions. A summary and synthesized conclusions are presented in chapter 

five. 
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Chapter	  2: Psychosocial	  stress,	  rather	  than	  birth	  weight,	  limits	  the	  
development	  of	  human	  muscle	  mass	  	  

Introduction	  
Small birth size has been repeatedly linked to reduced skeletal muscle mass, an 

association that has been observed in both sexes and at every life stage from infancy 

through post-reproductive adulthood (Hediger et al., 1998; Kahn et al., 2000; Kuh et al., 

2002; Sayer et al., 2004, 2008). The early appearance of this association and its 

persistence throughout the life course suggest that experiences prior to birth influence the 

development and growth trajectory of skeletal muscle tissues (Baker et al., 2010; 

Cameron & Demerath, 2002). Because birth size is considered an indication of fetal 

energy balance (Barker, 1995), it has been proposed that energetic scarcity in utero may 

interrupt normal muscle development during a critical window beyond which unrealized 

growth potential can never fully recover (Barker, 1995; Cameron & Demerath, 2002). 

Limited data generated from fetal autopsy (Stickland, 1981) and studies documenting 

postnatal muscle growth subsequent to small birth size (Baker et al., 2010; Sachdev et al., 

2005; Sayer et al., 2004) support this idea. Human muscle development appears to follow 

the general mammalian trajectory according to which cell differentiation—including 

myofiber number, type, and bodily distribution—is largely fixed before birth (Bee, 2004; 

Jensen et al., 2007; Stickland, 1981). Thus, observed relationships between prenatal 

growth restriction and downstream reductions in muscle mass may reflect a general 

mammalian pattern rather than a specifically human adaptive relationship (Rehfeldt & 

Kuhn, 2006; Zhu et al., 2004). 

While previous research linking early-life development to later musculature has 

often emphasized the impact of prenatal experience, there are a number of reasons to 
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suspect that postnatal growth plays an important role in the development of adult muscle 

mass as well. Weight gains in infancy and childhood have been linked to adult lean mass 

independent of birth size (Euser et al., 2005; Forsén et al., 2000; Kuh et al., 2002; 

Sachdev et al., 2005), suggesting that early postnatal muscle growth tracks into 

adulthood. While the number of skeletal muscle cells does not appreciably increase after 

birth (Appell et al., 1988; Kelley, 1996; Sjöström, et al., 1991) (except possibly under 

specific training regimes that are unlikely to occur naturally [Folland & Williams, 2007; 

Gonyea et al., 1986]), existing cells elongate and the total volume of each cell increases 

during periods of developmental hypertrophy (Jackowski et al., 2009; MacIntosh et al., 

2006). Muscle growth is patterned after skeletal maturation in both boys and girls such 

that childhood represents a period of slow and steady accumulation of muscle volume 

followed by peak muscle growth velocity during adolescence (Jackowski et al., 2009; 

Webber & Barr, 2012; Xu et al., 2009). In adolescent boys, gonadal testosterone 

facilitates additional muscle gain such that muscle mass surpasses that of girls by Tanner 

Stage III and continues growing into early adulthood (Neu et al., 2002; Rogol et al., 

2002). Assuming each myofiber has a limited size capacity, prenatally-fixed muscle cell 

number may limit total achievable muscle mass while conditions during periods of 

developmental hypertrophy may influence the body’s “set point” of muscularity.  

Separated in time, prenatal impacts on hyperplasia (increased cell number) and postnatal 

impacts on hypertrophy (increased cell size) may represent independent predictors of 

downstream muscle mass. At least one published study suggests that periods of prenatal 

and childhood energetic scarcity reflect non-interacting exposures capable of 

independently shaping anatomical development (Bogin & Baker, 2012) and other 
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research suggests that downstream physiological trade-offs may originate in utero (Baker 

et. al., 2010). However, at present, it remains unclear if and how prenatal and childhood 

nutrition might interact during the development of adult muscle mass. 

In addition to the impacts of energy balance on muscle development, early-life 

cues that reduce a child’s expectation of viable reproductive lifespan (i.e., health and 

longevity) may, by inducing a strategy that de-emphasizes ‘growth and maintenance’ in 

favor of other life-history objectives (Stearns, 1992), attenuate periods of muscle 

accumulation and reduce achieved adult muscle mass. Childhood psychosocial stress has 

been proposed as a signal of elevated local morbidity and mortality that may accelerate 

maturation and profoundly shift developmental trajectories (Coall & Chisholm, 2010; 

Coall et al., 2012; Nettle et al., 2011). Because achieved adult body size (kg) is the 

product of growth rate (kg/time) and the duration of growth (time), childhood stressors 

that inform maturational timing may reduce adult body size by accelerating maturation 

(reducing the duration of growth). Consistent with this hypothesis, epidemiological 

research suggests that adverse childhood experiences like abuse, removal of a parent 

from the home, and witnessing violence correspond to elevated local mortality rates 

(Adler et al., 1993; Chen et al., 2002), earlier reproductive senescence among women 

(Geronimus, 1987, 1992), and quantifiable reductions in lifespan (Brown et al., 2009; 

Felitti et al., 1998), providing a link between childhood psychosocial stress and 

reductions in viable reproductive lifespan. Elevated childhood adversity also predicts 

earlier ages at menarche (Belsky et al., 1991; Chisholm, 1993; Draper & Harpending, 

1982) and first reproduction (Davis & Werre, 2007; Nettle et al., 2011; Sheppard & Sear 

2011), suggesting a link between adversity and maturational timing. It is plausible that 
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stressful childhood experiences trigger earlier maturation at a smaller body size, reducing 

investments in skeletal muscle mass, perhaps in a manner independent of pre- and post-

natal nutritional experiences (Bogin & Baker, 2012).  

In response to a growth-limiting energy balance or an energy allocation paradigm 

that de-values ‘growth and maintenance’ in favor of competing fitness priorities, muscle 

tissue may be uniquely expendable. Muscle tissue is metabolically-active such that any 

reduction in muscle mass reduces basal energy requirements (Tzankoff & Norris, 1977). 

Each kilogram of skeletal muscle contributes approximately 13 kcals/day to the resting 

energy expenditure of adults (Elia, 1992). Thus, limiting energetic investment in muscle 

development reduces both the cost of growing the tissue and the daily costs required to 

maintain the tissue. A similar liberation of energy could only be achieved by limiting the 

development of other metabolically-active tissues (i.e., organs) (Galleghar et al., 1998). If 

the fitness benefit to the development of any of these tissues exceeds the fitness benefit to 

energetic investment in muscle development, individuals whose early-life physiology 

limited muscle growth due to such a ‘priority rule’ would be favored by selection (Zera & 

Harshman, 2001). One proposed beneficiary of sacrificed muscle development is the 

brain (Baker et al., 2010; Barker, 1993; Rudolph, 1984). Another proposed beneficiary is 

immune function, which could dramatically impact fitness by improving infant 

survivorship (Kuzawa, 1998; Kuzawa et al., 2007).  

Based on this body of previous research, the current study investigates three 

avenues by which adult muscle mass might be modulated. First, birth weight is included 

as an indicator of prenatal nutrition (Barker, 1995) that may impact adult muscle mass by 

constraining myofiber hyperplasia in utero. Second, relative leg length (“RLL,” [height – 
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sitting height]/height x 100 as defined by Frisancho et al. [2001]) is used as an indicator 

of childhood nutrition (Wadsworth et al., 2002). The majority of childhood growth in 

stature occurs in the legs (Bogin, 1999; Leitch, 1951; Scammon, 1930) such that nearly 

80% of adult leg length is achieved by age 10 (Tardieu, 2010). Because adult relative leg 

length is sensitive to disruptions in energy balance during infancy and childhood (Li et 

al., 2007; Wadsworth et al., 2002), RLL is increasingly used in epidemiological research 

as an indication of energy stability from birth to puberty (Bogin & Baker, 2012; Bogin & 

Varela-Silva, 2010). Adults with shorter RLLs presumably suffered nutritional 

constraints during pre-pubertal development. Because leg growth and pre-pubertal 

muscle hypertrophy overlap, it is reasonable to suspect that short RLL may correlate with 

reduced adult muscle mass, potentially capturing a relationship between growth-limiting 

childhood nutritional conditions and muscle mass development. Third, I assess the impact 

of adverse childhood psychosocial experiences on adult muscle mass by linking muscle 

mass to the results of a survey designed to capture the level of psychosocial adversity 

participants experienced during development. Assuming perceived stressful events 

inform energy allocation decisions that affect achieved adult body size, it is possible that 

the level of exposure to adverse childhood events might negatively correlate with adult 

body size and underlying components of adult body size including skeletal muscle mass. 

Methods	  

Conceptual	  Model	  
During fetal life and early childhood, energetic scarcity constrains the energy 

budget available for investment in muscle development and other fitness-enhancing 

functions (e.g., growth of other tissue types including the brain, maintenance, survival 
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functions including immunity). Early-life energetic scarcity may, by itself, induce 

allocation decisions that favor ‘not muscle’ fitness-enhancing functions at the expense of 

muscle development. Any reduction in energy allocated to muscle development is made 

available for investment in competing priorities (Zera & Harshman, 2001). If the 

expected fitness benefit to investment in any of these competing priorities exceeds the 

expected fitness benefit to energetic investment in muscle development, individuals 

whose early-life physiology allowed economization of energy in this way would be 

favored by selection.  

Childhood psychosocial stress that foreshadows reduced reproductive lifespan 

may limit investments in ‘growth and maintenance’ independent of energy balance 

(Sibley & Calow, 1986; Stearns, 1992; van Noordwijk & de Jong, 1986). This may 

reduce achieved adult body size specifically via components of body size that are both 

energetically-expensive to maintain and “expendable.” As explained above, muscle tissue 

fits this profile because it is metabolically-active and may be expendable if the fitness 

benefit to any competing priority exceeds the fitness benefit to investment in muscle 

development.  

I propose that small birth size reflects fetal energetic scarcity (indifferent to 

causes related to placentation, maternal energetics, or the fetus’ ability to conduct cellular 

respiration). In line with much empirical research, fetal energetic scarcity is proposed to 

constrain fetal skeletal muscle development in such a way that reduces observed skeletal 

muscle mass later in life (Hediger et al., 1998; Kahn et al., 2000; Kuh et al., 2002; Sayer 

et al., 2004, 2008). Disruptions in energy balance throughout infancy and childhood are 

proposed to constrain the accumulation of muscle mass further—potentially independent 
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of fetal experience (Euser et al., 2005; Forsén et al., 2000; Kuh et al., 2002; Sachdev et 

al., 2005), which would appear as additive effects on observed adult muscle mass. 

Subject	  Recruitment	  
The data for this study were collected as part of a larger exercise physiology 

research project. Subjects were recruited from the Albuquerque Metro Area by print and 

internet advertisements (e.g., craigslist, newspaper classifieds). Subjects included healthy 

men and women ages 18-38 who had access to accurate birth records (e.g., through a 

living mother). Subjects were weight-stable within the year preceding participation and 

had no history of diabetes or disorders of the heart, lungs, or kidneys. Female subjects 

were not currently pregnant or breastfeeding. Due to research questions not presented 

here, exclusion criteria included use of drugs known to alter metabolism (e.g., Adderall, 

nicotine) (PDR, 2008), except thyroid hormone therapies which were allowed so long as 

dosage had not changed within the 6 months preceding participation. Two subjects 

reported current thyroid therapy, both of whom were women being treated for 

hypothyroidism. Because hypothyroidism can be associated with muscle atrophy (Argov 

et al., 1988; Khaleeli et al., 1983), separate analyses were run including and excluding 

these two subjects. Subjects born under 6 lbs (~2700 g) were over-recruited in order to 

increase the number of lower birth weight subjects. This study was approved by the 

Human Research Review Committee at the University of New Mexico Health Sciences 

Center (HRPO #10-338). 

Variables	  
All measurements were taken by the author (Workman) who completed training 

programs in nutrition assessment and exercise physiology laboratory methods at the 
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University of New Mexico (Department of Health, Exercise and Sports Science). Skeletal 

muscle mass was estimated from height and upper-arm muscle area using the sex-specific 

equations developed by Heymsfield et al. (1982). Mid-upper arm circumference and 

triceps skinfold were measured at the mid-point between acromion and olecranon 

processes (shoulder and elbow) of the subject’s dominant arm using non-stretch tape 

(Mabis, Waukegan, IL). To minimize observation error, the average circumference and 

median skinfold values (to nearest mm) of 3-4 repeated measures were used for analyses. 

Weight (to the nearest 1/10th kg) was measured in minimal clothing, shoes off using the 

same digital scale for every subject (Seca, Chino, CA).      

‘Relative leg length’ (RLL), as defined by Frisancho et al. (2001; [(Height - 

Sitting Height)/Height]*100), was used to indicate energy balance throughout infancy 

and childhood. Measurements of a subject’s height and sitting height (to nearest mm) 

were recorded using the same wall-mounted stadiometer (Seca, Chino, CA). To reduce 

observation error, all heights were taken without shoes after aligning the subject’s eyes 

and ears on a plane parallel to the floor. In keeping with previously published methods, 

subjects were defined as ‘short RLL’ if their RLL fell below the sample mean (Frisancho, 

2007). The mean RLL of the sample was of 46.75%. 

Birth weight (to the nearest g) was used to indicate fetal energy balance. Subjects 

were asked to contact their mother or to reference a birth record in order to accurately 

report their own birth weights. Subjects recorded their birth weights on a questionnaire 

and during follow up, were asked how they learned the information. Of the 50 subjects, 3 

reported consulting an heirloom baby book, 1 consulted a family bible, 1 consulted an 

embroidered heirloom baby blanket, 1 consulted her maternal grandmother, and 44 
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reported consulting their mothers. The accuracy and reliability of maternally recalled 

birth weight is high in western societies regardless of maternal age, educational or 

socioeconomic status (Adegboye and Heitmann, 2008; Catov et al., 2006; Goffin et al., 

2000). The accuracy of birth weight in other records is unknown. Subjects were defined 

as ‘small at birth’ if born under the mean birth weight of the sample. The mean birth 

weight of the sample was 3088g (6 lb 13 oz, s.d.=684 g), which is below the 25th 

percentile for U.S. births (Kuczmarski et al., 2000). Alternative analyses were run using 

the clinical definition of ‘low birth weight’ (<2500 g). 

A retrospective questionnaire provided data on potential confounding variables 

and psychosocial stressors experienced between birth and age 15. Confounders included 

self-reported ethnicity (by checking options or filling in the “other” line), birth date, and 

habit of weightlifting exercise. Subjects were coded as ‘weightlifter’ if they replied “yes” 

to the question “Do you regularly lift weights?” Age at date of participation was 

calculated based on reported birth date (to the nearest 1/10th of a month).  

The remainder of the questionnaire was designed to capture levels of psychosocial 

adversity experienced between birth and age 15 years. Modified from published 

questionnaires found to predict emotional and physiological responses to stress (Kohrt & 

Worthman, 2009), young adult mental health (Attar et al., 1994; Mayer et al., 2009), and 

cardiovascular disease risk (Krieger, 1990; Krieger & Sidney, 1996; Krieger et al., 2005), 

each question was intended to capture a distinct health or survival hazard. All questions 

are listed ad verbatim in Table 1. The same set of questions was repeated in triplicate in 

reference to the age ranges ‘birth to 5th birthday,’ ‘age 5 to 10th birthday,’ and ‘age 10 to 

15th birthday.’ Analysis was run on the number of questions with at least one affirmative 
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response reported between birth and age 5, birth to age 10, and birth to age 15. This 

meant that a subject’s total ‘stress score’ could range between 0 and 13 (because there 

were 13 questions total) despite answering “yes” repeatedly to the same question in 

reference to events experienced during multiple age ranges. In this way subjects were 

scored by the number of types of stressful experiences recalled rather than a cumulative 

number of events, a method commonly employed by studies linking early psychosocial 

stress to downstream outcomes (Brown et al., 2009; Coall & Chisholm, 2010; Danese et 

al., 2009; Felitti et al., 1998). Subjects were then classified as ‘high stress’ if they 

reported experiencing 4 or more types of adverse events prior to age 5 (n=6), 6 or more 

types prior to age 10 (n=6), and 8 or more types prior to age 15 (n=3). Similar thresholds 

have been used in published research linking childhood psychosocial adversity to later-

life health outcomes (Brown et al., 2009; Felitti et al., 1998). 

Predictions	  
A summary of operationalized concepts and hypotheses is provided in Table 2. 

Because growth-limiting energy balances in utero and between birth and puberty may 

constrain skeletal muscle development, I predict that small birth size and short relative 

leg length will correlate with reduced adult skeletal muscle mass after controlling for 

relevant confounders (e.g., sex, total body mass, intentional muscle-building exercise 

habits, age, ethnicity). High level of exposure to psychosocial stress prior to age 15 is 

also expected to correlate with reduced adult muscle mass independent of the effects of 

birth size and relative leg length. 
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Statistical	  Analyses	  
As an initial analytic step, descriptive statistics, bivariate correlation plots, and 

mean-by-groups plots were constructed. Pearson correlations were calculated between 

birth size, RLL, and each age range of ‘high stress.’ Multiple regression was used to 

assess the influence of predictor variables (birth size, RLL, and stress) on skeletal muscle 

mass while controlling for potential confounders (e.g., sex, exercise habits). This method 

allows examination of multiple simultaneous influences on a single outcome variable 

while considering the effects of every other predictor in the model (Belsley et al., 1980; 

Neter et al., 1999). Further, it allows comparison between the relative magnitudes of 

influence of each predictor on the outcome of interest, after controlling for all other 

effects (Neter et al., 1999). Potential confounders of the relationships linking prenatal, 

childhood nutritional, and psychosocial experiences to adult skeletal muscle mass 

included in the model selection procedure were: weight, sex, age, weightlifter status, 

Hispanic ethnicity, and Caucasian ethnicity (other ethnicities were under-represented in 

our sample). Backward elimination was employed by first fitting a model containing all 

predictors, then systematically eliminating one predictor at a time based on the highest p-

value at each iteration. An ultimate cut-off criteria of alpha=0.05 was employed for all 

variables included in the final model. I included all possible interaction terms in this 

process. Where eliminated, theory-motivated predictors were assessed using added 

variable plots (Cook, 1993, 1994; Zurlo et al., 1990), and, where graphically suggested, 

were reintroduced into the final model and tested for statistical significance before final 

elimination. No non-significant predictor was included in the final model because 

inclusion of non-informative predictors has been shown to bias the estimation of the 
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remaining coefficients in the model (Belsley et al., 1980). The final model was evaluated 

for colinearity graphically, using bivariate correlation plots between predictors, and 

formally, using variance inflation factors (Neter et al., 1999). General model fit was 

assessed using plots between predicted values and residuals as well as through histograms 

and normal probability plots of residuals (Cook, 1994; Neter et al., 1999). Errors were 

normally distributed and no dependency between fitted values and residuals was 

observed. Residuals associated with the final models presented in this paper did not 

deviate from normality based on Kolmogorov-Smirnov tests (Neter et al., 1999; Smirnov, 

1948). 

Results	  
The average skeletal muscle mass of men in this sample was 31.0 kg (S.E.=6.5kg, 

n=25). The average skeletal muscle mass of women in the sample was 19.3 kg 

(S.E.=4.4kg, n=25). 

No correlations were found between ‘small birth size,’ ‘short relative leg length,’ 

and any age range of ‘high stress’ category (see Table 3), ensuring the linear 

independence of predictors included in the final analysis. As continuous variables, ‘birth 

weight,’ ‘relative leg length,’ and ‘cumulative types of adverse childhood experiences’ 

(any age range) failed to achieve statistical significance in the prediction of skeletal 

muscle mass. After controlling for total body mass, the parameters related to ethnicity, 

‘short relative leg length,’ and ‘small birth size,’ failed to achieve significance as well.  

The final regression model explaining skeletal muscle mass included predictors 

that achieved statistical significance at the alpha=0.05 level (variance inflation factors did 

not exceed 2.0). In the final model, male sex, overall body size, age, and self-
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identification as someone who routinely lifts weights positively correlated with muscle 

mass (see Table 4). Alone, these variables explained 79.5% of the observed variation in 

adult skeletal muscle mass (results not presented). In three separate models, each age 

range of ‘high stress’ was included in addition to these confounders of muscle mass. 

Although all ‘high stress’ definitions returned negative coefficients, only ‘high stress: 

birth-10yr’ (i.e., reported experiencing 6 or more types of adverse events prior to the 10th 

birthday) achieved statistical significance (final model presented in Table 4) and 

explained 10% of the remaining variation after controlling for sex, age, and weight-lifting 

status. 

In the final model (R2=81.6%), men had 7.3 kg more muscle mass than women 

(p<0.001) and weightlifters enjoyed 4 kg more muscle mass than non-weightlifters 

(p<0.001) (after controlling for all other included predictors in the model). At baseline, 

subjects scored as ‘high stress: birth to age 10’ (i.e., accumulated 6 or more types of 

adverse childhood events within the first 10 years of life) had 4.1 kg less muscle mass 

than subjects who experienced fewer adverse events during this age range (p=0.027). For 

every 1 kg increase in total body weight, muscle mass increased by 0.24 kg (p<0.001) 

and for every 1 year increase in age, muscle mass increased by 0.31 kg (p=0.003). 

Exclusion of the hypothyroid women did not alter the model. 

One interaction term approached significance when added to the general model. 

‘Weightlifter x High stress: birth-10yr’ was associated with a negative coefficient (β=-

6.221, p=0.052) suggesting that weightlifters of high stress enjoyed less of an increase in 

skeletal muscle mass due to their weightlifter status than weightlifters of low stress. 
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Discussion	  
Our results suggest that, within an urban U.S. population, prenatal and childhood 

nutrition do not impact adult muscle mass. Instead, a high level of exposure to 

psychosocial stressors during the first ten years of life is associated with reduced adult 

muscle mass. After controlling for appropriate confounders (sex, age, total body mass, 

weightlifting habit), a high level of psychosocial stress experienced between birth and the 

10th birthday predicted a 4.1 kg (>9 lb) deficit in skeletal muscle mass relative to 

individuals who reported less stressful childhoods. Among men in this sample, a 4.1 kg 

decline in total muscle mass reflects a 13% change from the mean. Among women, this 

represents a 21% decline from the mean skeletal muscle mass observed. Additionally, the 

strong negative impact of the interaction term ‘weightlifter x high stress: birth-10yr’ on 

adult muscle mass suggests that childhood stress may severely reduce the sensitivity of 

adult muscle mass to hypertrophy-inducing activities. 

These profound deficits in muscle mass observed among individuals who 

experienced high childhood stress support the hypothesis that early exposure to 

psychosocial stressors reduces adult body size through reductions in muscle mass. In the 

sampled population, this effect appears independent of energy balance during 

development. If the assayed psychosocial stressors communicate reduced viable 

reproductive lifespan, as has been previously proposed (Coall & Chisholm, 2010; Ellis et 

al., 2009; Nettle, 2011), it is possible that they induce a condition-dependent energy 

allocation strategy that de-emphasizes ‘growth and maintenance’ in favor of alternative 

fitness-enhancing functions. Within this population, postnatal energy balance was likely 

not growth-limiting (indeed only one in fifty of the study participants answered 
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affirmatively to sections of the questionnaire that asked “Did you ever go hungry due to 

lack of food?” and this was a man who achieved a height of 1.82 m [6 ft]). A shift in 

energy allocation away from muscle hypertrophy despite adequate energy intake to 

support growth may, due to evolved life history tactics, take the form of accelerated 

maturation and increased reproductive effort. Although unknown within the current study 

sample, psychosocial stressors have been linked to accelerated maturation in similar well-

fed populations (Belsky et al., 1991; Chisholm et al., 2005; Draper & Harpending, 1982; 

Sheppard & Sear, 2011). However, future research is needed to investigate whether 

elevated childhood psychosocial adversity may exert similar effects on maturational 

timing and achieved adult body size within populations suffering growth-limiting 

energetic scarcity, and whether or not these impacts are independent of developmental 

nutrition. 

The current study also suggests a threshold effect of accumulated adverse events 

during childhood. Although limited in sample size (n=50), the results suggest a level of 

heightened adversity must be achieved before evidence of reduced muscle mass is 

observed. Larger studies document a similar cumulative impact of childhood adversities 

on adult morbidity and mortality (Brown et al., 2009; Danese et al., 2009). Such an effect 

would be expected if the development of a ‘non-stressed’ phenotype was robust and the 

induction of an alternative phenotype associated with stress required adequate (e.g., 

reliable) signals of environmental condition. In other words, the developing body appears 

able to “absorb” a certain level of psychosocial stress without observable phenotypic 

consequence. In the current study, 6 or more events prior to the 10th birthday impacted 

adult muscle mass but 8 or more events prior to the 15th birthday did not. Future research 
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may address whether the developmental timing of stressful events or the ‘rate of 

accumulation’ of events influences their impact on adult phenotype. 

The absence of ‘small birth size’ from the final model predicting adult skeletal 

muscle mass is surprising given known links between birth weight and later lean tissue 

mass (Fewtrell et al., 2004; Kensara et al., 2005; Labayen et al., 2006, 2008; Sayer et al., 

2004, 2008; Yliharsila et al., 2007). Adjusting the birth size category definition to ‘low 

birth weight’ matching the clinical threshold (<2500 g) did not change this result, nor did 

replacement of the categorical variable ‘small birth size’ with continuous birth weight 

(birth weight was negatively correlated with muscle mass, though did not approach 

significance). The omission of childhood ‘high stress’ from analyses did not cause birth 

weight or either category of ‘small birth size’ to achieve significance. One possible 

explanation for this result is that the current study employed tomography- and 24-hr 

creatinine-calibrated equations for the calculation of skeletal muscle mass independent of 

other lean tissues (Heymsfield et al., 1982). Among 20 reviewed research articles 

reporting reduced lean mass among those born small, only half measured direct indicators 

of muscle mass as opposed to the difference between total body and fat mass (Table 5). 

Of these 10, only 3 reported reduced muscle mass among those born small after 

controlling for total body mass (Kensara et al., 2005; Kuh et al., 2002; Sayer et al., 2008). 

Although valuable for its separation of skeletal muscle from other components of lean 

tissue mass, the method employed in the current study suffers from several limitations. 

Skeletal muscle mass was calculated as the product of sex-specific constants, upper-arm 

muscle area, and height (Heymsfield et al., 1982). Therefore, this method is not sensitive 

to differences in muscle mass outside of the upper-arm that have been reported 
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previously (Kahn et al., 2000). Further, small birth size has been reliably linked to shorter 

stature (Gale et al., 2001; Kensara et al., 2005; Kuh et al., 2002; Li et al., 2003; Loos et 

al., 2001, 2002; Sachdev et al., 2005; Sayer et al., 2004; Wells et al., 2005; Weyer et al., 

2000). After adjustment of height for sex, our small birth size group was 5.5 cm shorter 

than our average birth size group (p=0.010, results not presented elsewhere). If the body 

composition of those born small alters the scaling relationship of skeletal muscle mass to 

height, then the predictive equations may be invalid. In other words, differences in body 

composition among people born small, who represent less than 25% of the U.S. 

population as defined by the current study (Kuczmarski et al., 2000), may reduce the 

accuracy of predictive equations developed from a random sample of American men and 

women. 

Also surprising in our final model is the limited difference in muscle mass 

attributable to sex. Within our sample (ages 18-38 yr), men had 7.3 kg (16.1 lbs) more 

muscle mass than women after controlling for differences in overall body size, age, 

weightlifting status, and childhood stress. Omitting childhood stress from the model 

increased this sex-difference to 7.6 kg (results not shown, p<0.001), but this is still a 

smaller difference than has been reported in other urban North American populations of 

the same age range (12 kg difference) (Janssen et al., 2000). One reason to suspect 

skewed observations of skeletal muscle mass in our sample is the self-selection of 

research participants. These data were collected as part of a larger exercise physiology 

research project that provided participants with free results of otherwise expensive fitness 

testing and required a 32-hr fast from all calories. The current data were recorded at the 

start time of the fast prior to fasting-related dropout, but the prospect of fasting for 32 
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hours may have differentially impacted recruitment of men and women of different 

muscle masses. Although speculative, women interested in participating due to free 

fitness testing may have been more muscular than a random sample of women. Also 

speculative, the prospect of fasting may have prevented men of higher muscle mass from 

participating because their anticipated discomfort due to fasting may have been amplified 

by their elevated caloric requirement. 

Conclusion	  
Among an urban U.S. population, variation in pre- and post-natal energy balance 

did not explain variation in adult skeletal muscle mass. Instead, high exposure to 

psychosocial adversity in the first decade of life predicted reduced muscle mass and 

attenuated increases in muscle mass attributable to a regular habit of weightlifting 

exercise. This study supports the hypothesis that early-life psychosocial stress induces an 

energy allocation pattern de-emphasizing ‘growth and maintenance’ in favor of other 

fitness priorities. To investigate whether childhood stress impacts adult body size, 

including muscle mass, independent of developmental energy balance, future research 

should explore the reported relationships within populations suffering growth-limiting 

nutrition. 
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Tables	  
Table 2.1. Survey of stressful events experienced during development. The same set of 
questions was repeated 3 times, once for each age range. Below are the instructions for 
the age range birth to 5 years. 

Instructions:	  Please	  indicate	  if	  any	  of	  the	  following	  events	  happened	  from	  the	  time	  you	  were	  born	  
until	  your	  5th	  birthday	  by	  circling	  Y	  (yes)	  or	  N	  (no).	  

Y	  or	  N	   1.	  Did	  you	  have	  a	  serious	  physical	  injury?	  

Y	  or	  N	   2.	  Were	  you	  a	  witness	  or	  victim	  of	  physical	  violence?	  

Y	  or	  N	   3.	  Did	  you	  ever	  hide	  someplace	  because	  of	  violence	  in	  your	  home	  or	  neighborhood?	  

Y	  or	  N	   4.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  suffer	  serious	  physical	  illness	  or	  injury?	  

Y	  or	  N	   5.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  suffer	  serious	  mental	  illness?	  

Y	  or	  N	   6.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  pass	  away?	  

Y	  or	  N	   7.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  spend	  time	  in	  jail	  (or	  juvenile	  detention)?	  

Y	  or	  N	   8.	  Did	  you	  or	  a	  close	  family	  member	  experience	  discrimination,	  get	  prevented	  from	  doing	  
something,	  or	  get	  hassled	  or	  made	  to	  feel	  inferior	  because	  of	  your	  race,	  ethnicity,	  color,	  
ancestry,	  sexual	  orientation,	  gender,	  sex,	  religious	  affiliation,	  citizenship,	  or	  country	  of	  birth?	  

Y	  or	  N	   9.	  Did	  one	  (or	  both)	  of	  your	  parents/step-‐parents	  become	  unemployed	  for	  a	  time?	  

Y	  or	  N	   10.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  move	  out	  of	  your	  home?	  

Y	  or	  N	   11.	  Did	  you	  go	  to	  live	  with	  a	  different	  relative	  or	  spend	  time	  in	  foster	  care?	  

Y	  or	  N	   12.	  Did	  you	  and	  your	  family	  move	  from	  one	  place	  to	  another?	  

Y	  or	  N	   13.	  Did	  your	  family’s	  home	  or	  property	  get	  wrecked	  in	  a	  natural	  disaster,	  accident,	  or	  crime?	  
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Table 2.2. Concepts and variables linked to hypotheses. 

	   	  

Variable	   Concept	  Operationalized	   Hypothesis	  Tested	  

Small	  birth	  size	  
Growth-‐limiting	  energy	  
balance	  in	  utero	  

Prenatal	  energetic	  scarcity	  restricts	  skeletal	  
muscle	  development	  

Short	  relative	  leg	  length	  
Growth-‐limiting	  energy	  
balance	  from	  birth	  to	  age	  10	  

Energetic	  scarcity	  from	  birth	  to	  puberty	  
restricts	  skeletal	  muscle	  development	  

High	  psychosocial	  stress	  
Cues	  of	  reduced	  viable	  
reproductive	  lifespan	  

Cues	  of	  reduced	  viable	  reproductive	  lifespan	  
attenuate	  skeletal	  muscle	  development	  
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Table 2.3. Correlations between potential predictor variables, no linear relationships are 
significant 

r	  (p-‐value)	   Small	  birth	  size	   Short	  relative	  leg	  length	  
Short	  relative	  leg	  length	   0.181	  (0.209)	   	  
High	  stress:	  birth-‐5yr	   0.045	  (0.758)	   -‐0.050	  (0.729)	  
High	  stress:	  birth-‐10yr	   0.045	  (0.758)	   0.075	  (0.603)	  
High	  stress:	  birth-‐15yr	   -‐0.054	  (0.708)	   -‐0.034	  (0.813)	  
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Table 2.4. Regression analysis of the effects of early-life events on adult skeletal muscle 
mass, kg (n=50). 

Parameter	   Constant	   β	  
Std	  Err	  
coeff	  

p-‐value	  
Model	  
R2	  

Body	  mass,	  kg	   -‐4.715	   0.239	   0.042	   <0.001	   81.6%	  
Male	   	   7.275	   1.309	   <0.001	   	  
Weightlifter	   	   4.037	   1.049	   <0.001	   	  
Age,	  yrs	   	   0.310	   0.100	   0.003	   	  
High	  stress:	  birth-‐10yr	   	   -‐4.087	   1.788	   0.027	   	  
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Table 2.5. Literature review: the impact of birth size on skeletal muscle mass depends on 
method of assessment, sex, and correction for body size. 

Citation	   Population	  
Birth	  size	  
indicator	  

Age	   Methods	  
Body	  size	  
correction	  

Correlation	  of	  
birth	  size	  w/	  
lean	  tissue	  

Correlation	  of	  
birth	  size	  w/	  

muscle	  
M	   F	   M	   F	  

Hediger	  et	  
al.,	  1998	  

USA	  	   SGA	  	   Infants	   UAMA	   (none)	   	   	   +	   +	  

Sayer	  et	  al.,	  
2003	  

UK	   Continuous	   Elderly	  
FFM	   (none)	   +	   	   	   	  

Grip	  strength	   (none)	   	   	   +	   	  
Li	  et	  al.,	  
2003	  

Guatemala	   BW	  z-‐score	   Adults	   FFM	   (none)	   +	   +	   	   	  

Weyer	  et	  
al.,	  2002	  

Pima,	  USA	   Continuous	   Adults	   FFM	   (none)	   +	   +	   	   	  

Labayen	  et	  
al.,	  2008	  

Spain	   BW	  z-‐score	   Adolescents	   FFM	   height	   0	   +	   	   	  

Singhal	  et	  
al.,	  2003	  

UK	   BW	  z-‐score	  
Adolescents	   FFM	   height	   +	   +	   	   	  
Children	   FFM	   height	   +	   +	   	   	  

Sachdev	  et	  
al.,	  2005	  

India,	  
urban	  

Continuous	   Adults	   FFM	   height	   +	   +	   	   	  

Yliharsila	  et	  
al.,	  2007	  

Finland	   Continuous	   Elderly	  
Grip	  strength	   height	   	   	   0	   0	  

FFM	   height	   +	   +	   	   	  
Euser	  et	  al.,	  
2005	  

Netherland
s	  

BW	  z-‐score	   Adults	   FFM	   height	   +	   +	   	   	  

Kahn	  et	  al.,	  
2000	  

USA	   Continuous	   Adults	   ThighMA	   height	   	   	   +	   	  

Wells	  et	  al.,	  
2005	  

Brazil,	  
urban	  

BW	  
quartiles	  

Children	   FFM	   height	   +	   	   	   	  

Fretwell	  et	  
al.,	  2004	  

UK	  
Preterm	  (all	  
<1850g)	  

Children	  
FFM	   height	   0	   0	   	   	  
UAMA	   height	   	   	   0	   0	  

Rogers	  et	  
al.,	  2006	  

UK	  
Sex-‐specific	  
BW	  z-‐score	  

Children	   FFM	   height	   +	   +	   	   	  

Labayen	  et	  
al.,	  2006	  

Spain	   BW	  z-‐score	   Adolescents	   FFM	   height	   0	   +	   	   	  

Loos	  et	  al.,	  
2001	  

Belgium	   Continuous	   Adults	   FFM	   weight	   +	   	   	   	  

Loos	  et	  al.,	  
2002	  

Belgium	   Continuous	   Adults	   FFM	   weight	   	   +	   	   	  

Sayer	  et	  al.,	  
2008	  

UK	   Continuous	   Elderly	  
CT	  of	  forearm	   weight,	  height	   	   	   +	   0	  
CT	  of	  calf	   weight,	  height	   	   	   0	   0	  

Kensara	  et	  
al.,	  2005	  

UK	  
<25th	  %tile	  
(vs.	  >75th)	  

Elderly	  
DXA	  for	  SM	   weight,	  height	   	   	   +	   	  
UAMA	   weight,	  height	   	   	   0	   	  

Gale	  et	  al.,	  
2001	  

UK	   BW	  tertiles	   Elderly	   FFM	   weight,	  height	   +	   +	   	   	  

Kuh	  et	  al.,	  
2002	  

UK	   Continuous	   Adults	   Grip	  strength	   weight,	  height	   	   	   +	   +	  

SGA,	  small	  for	  gestational	  age;	  FFM,	  fat	  free	  mass=(total	  body	  mass	  –	  fat	  mass),	  measured	  by	  anthropometric	  
equations,	  dual	  x-‐ray	  absorptiometry	  (DXA),	  or	  bioelectrical	  impedance	  (BIA);	  UAMA,	  upper-‐arm	  muscle	  area|upper-‐
arm	  circumference,	  triceps	  skinfold	  thickness;	  ThighMA,	  thigh	  muscle	  area|thigh	  circumference,	  thigh	  skinfold	  
thickness;	  CT,	  computerized	  tomography	  scan.	  
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Chapter	  3: The	  Predictive	  Adaptive	  Response	  Hypothesis	  Fails	  to	  
Explain	  Fasting-‐Induced	  Changes	  in	  Calorie	  Requirements	  

Introduction	  
Over the past quarter century, deficits in birth size (regardless of gestational age) 

have been convincingly linked to reductions in adult body size (Hediger et al., 1998; 

Kahn et al., 2000; Kuh et al., 2002; Sayer et al., 2004, 2008) and to elevated incidence of 

chronic diseases known to result from long-term peripheral insulin resistance (e.g., type 

II diabetes, atherosclerosis) (Barker et al., 1989; Barker, 1993; Hales and Barker, 1992; 

Hovi et al., 2007; Martyn and Greenwald, 1997; Osler et al., 2009; Yajnik et al., 2003). 

Under the assumption that relative deficits in birth size reflect relative deficits in fetal 

energy balance (Barker, 1995), it has been proposed that the energy-limited fetus adjusts 

its metabolism and growth trajectory in order to survive within its lower-energy 

environment (Wells, 2010). It remains unclear, however, why these phenotypic 

adjustments should persist into adulthood.  

The Predictive Adaptive Response (PAR) model suggests that observed 

relationships between small birth size and adult phenotypes reflect evolutionarily 

adaptive adjustments made in expectation of an energy-limited future environment 

(Gluckman and Hanson, 2006; Kuzawa, 2005, 2008; Kuzawa et al., 2007). According to 

the PAR model, phenotypic adjustments induced by fetal energetic scarcity persist 

because they confer relative energetic savings throughout adulthood, and these energetic 

savings are thought to improve relative reproductive success within energy-sparse 

environments (Gluckman and Hanson, 2007). 

Because the phenotypes observed downstream of fetal energetic scarcity may 

support a variety scenarios, PAR and non-PAR alike, it has been difficult for researchers 
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to definitively test PAR hypotheses (Ellison and Jasienska, 2007). For instance, the 

reduced adult body size associated with fetal energetic scarcity may reflect phenotypic 

susceptibility to growth-limiting energetic constraints in a non-adaptive developmental 

damage scenario (Barker, 1994, 1995). Alternatively, reduced adult body size may reflect 

adaptive adjustments to growth trajectory or energy allocation patterns that maximize 

fitness within the tightened constraints imposed by early energetic scarcity (Baker et al., 

2010; Godfrey and Barker, 2000). Under a bet-hedging scenario, reduced adult body size 

may reflect a phenotype that minimizes differences in fitness attributable to fluctuations 

in environmental conditions (Jones, 2005). But only the PAR model proposes that 

phenotypes induced by fetal energetic scarcity serve the specific adaptive function of 

down-regulating somatic energy requirements within energy-scarce adult environments 

(Gluckman et al., 2007): 

If the signals in the developmental phase suggest limited nutrient availability, then 
the organism will adjust its developmental trajectory such that the mature 
individual has a metabolic homeostasis better adapted for survival in a sparse 
environment. (p. 7) 

In order to test the plausibility of the PAR model, the current study examines 

whether phenotypes associated with small birth size serve their proposed energy-sparing 

adaptive function in adulthood. Relying on the definition outlined by Williams (1966) 

and Curio (1973), adaptations are distinguished by a clear relationship linking an 

exposure (fetal energetic scarcity) to a response (phenotypes induced by fetal energetic 

scarcity) that improves fitness in the environment inducing that response. Unique to the 

PAR hypothesis is the prediction that individuals who are ‘cued in’ to an energy-scarce 

future environment should enjoy fitness benefits during energetic scarcity. I propose that 
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fitness benefits associated with a ‘predictive adaptive’ phenotype may be achieved by 

improving the sensitivity of metabolic demands to bouts of acute negative energy 

balance. To test this hypothesis, I compared within-subject energy consumption rates 

before and after exposure to a period of fasting. The PAR hypothesis predicts that those 

born small should enjoy greater energetic savings during this bout of negative energy 

balance. 

Periods of fasting are known to modify metabolic demands at rest and during 

activity. Both resting energy expenditure (REE) and mechanical efficiency, the physical 

work that can be performed per calorie metabolized, are known to decline during fasting 

(Bahr et al.,1991; Elia et al., 1984; Kouda et al., 2006; Nair et al., 1987; Webber and 

MacDonald, 1994). Fasting-induced reductions of REE are thought to reflect a survival 

response whereby energy is diverted away from long-term fitness goals (e.g., 

reproduction) in order to support survival in the short-run. An illustrative example is the 

impairment of female fertility, modulated by ovarian hormone production, in response to 

negative energy balance (Ellison, 2003; Williams et al., 2010). Another example is the 

fasting-induced impairment of insulin sensitivity within skeletal muscles (Gjedsted et al. 

2007; Newman and Brodows 1983; Mansell and Macdonald 1990), which is thought to 

preserve circulating glucose for consumption by insulin-independent tissues like the brain 

(Peters et al., 2004). The PAR hypothesis predicts that individuals ‘cued in’ to an energy-

scarce environment enjoy relatively greater fasting-induced reductions in REE, allowing 

greater energetic savings (Prediction 1, see Table 1). 

Mechanical efficiency refers to the amount of physical work that can be 

performed per calorie of energy consumed, analogous to the fuel economy of a vehicle. 
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In a fasted state, the added metabolic costs of gluconeogenesis and ketogenesis required 

to fuel metabolism in the absence of ingested carbohydrate drive mechanical efficiency 

down (Bahr et al., 1991; Elia et al., 1984; Webber and MacDonald, 1994). By increasing 

the metabolic costs of physical activity, fasting-induced reductions in mechanical 

efficiency likely exacerbate challenges faced during bouts of energetic scarcity (Cahill et 

al., 1996; Reaven, 1998). For example, impaired mechanical efficiency likely reduces the 

net return to energy-capture activities (Reaven, 1998). Hypothesized changes in 

phenotype congruent with a ‘predictive adaptive response’ may cushion mechanical 

efficiency from the negative impacts of calorie restriction (Stannard and Johnson, 2004; 

Wang and Mariman, 2008). Thus, the PAR hypothesis predicts relatively attenuated 

reductions in mechanical efficiency among those born small, allowing greater energetic 

savings while preserving physical performance (Prediction 2). 

 The PAR hypothesis belongs to the family of “fetal programming” models 

(Godfrey and Barker 2001; Lucas 1994) which treat fetal energetic constraint as the 

initiator mechanism responsible for phenotypes observed many years later. It remains 

unclear, however, whether fetal experience influences phenotype independent of 

postnatal experience. For instance, psychosocial stressors have been linked to type 2 

diabetes, atherosclerosis, and coronary heart disease (Black, 2006; Chandola et al., 2006; 

Cohen et al., 2007; Krantz and McCeney, 2002; Lemelin et al., 2009; Vitaliano et al., 

2002; Winkleby et al., 2007)—the identical suite of chronic metabolic illnesses linked to 

small birth size. Because it is plausible that small birth size and postnatal conditions co-

vary (perhaps along sociocultural lines), it is necessary to assess whether birth size and 

postnatal experiences reflect independent exposures (Bogin and Baker, 2012). Because 
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indicators of an adjusted metabolism have been linked by separate literatures to prenatal 

energy balance and postnatal psychosocial stress, current evidence cannot distinguish 

whether these experiences exert independent or interacting effects on development. 

 Life History Theory provides an alternative explanation to fetal programming 

models for the persistence of energy-sparing phenotypes into adulthood. Life History 

Theory posits a causal relationship linking environmental conditions to energy allocation 

strategies. A phenotype characterized by reduced body size and limited energy 

consumption within insulin-dependent tissues (e.g., muscles) reflects a strategy that 

diverts energy away from somatic investment. Under Life History Theory, reduced 

somatic investment results from elevated risks to reproductive viability (e.g., mortality, 

infertility, senescence) (Charnov 1993, Roff 2002, Stearns 1992). If psychosocial 

stressors reflect risks to reproductive viability then they may contribute to the persistence 

of an energy-sparing phenotype throughout life. Consistent with this hypothesis, 

epidemiological research has demonstrated that adverse childhood experiences like 

abuse, removal of a parent from the home, and witnessing violence correspond to 

elevated local mortality rates (Adler et al., 1993; Chen et al., 2002), earlier reproductive 

senescence among women (Geronimus, 1987, 1992), and quantifiable reductions in 

lifespan (Brown et al., 2009; Felitti et al., 1998). These associations support the 

assumption that perceived childhood stressors signal actual risks to reproductive viability. 

Therefore, Life History Theory may motivate explanations for the observed links 

between childhood stress and altered metabolic phenotype, but current evidence cannot 

distinguish whether these effects occur independently of birth size. 
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 To address the possibility that childhood psychosocial stressors, as indicators of 

risk to reproductive viability, independently impact the metabolic phenotypes observed 

during this study, I test the Life History-motivated hypothesis that elevated childhood 

psychosocial stress reduces somatic energy expenditure. I predict that this will be 

observable as reduced resting energy expenditure (Prediction 3) and greater mechanical 

efficiency (Prediction 4) among adults who experienced relatively increased levels of 

psychosocial stress during development. This Life History-motivated hypothesis does not 

directly inform our expectation of observed sensitivity of REE and mechanical efficiency 

to fasting. It may, however, predict that elevated childhood psychosocial stress will be 

linked to reduced somatic energy expenditure at all time points. This would appear as 

relatively reduced REE and relatively greater mechanical efficiency both before and after 

fasting among individuals who experienced greater psychosocial adversity during 

development. 

Methods	  

Recruitment	  
Subjects were recruited from the Albuquerque Metro Area by internet and print 

advertisements (e.g., craigslist, newspaper classifieds), and included healthy men and 

women ages 18-38 who had access to an accurate record of their birth (e.g., through a 

living mother, written record). Subjects were weight-stable within the year preceding 

participation and had no history of diabetes or disorders of the heart, lungs, or kidneys. 

Female subjects were not currently pregnant or breastfeeding and women were asked not 

to schedule participation during menses. Women not on hormonal contraceptives were 

asked to schedule participation only during the luteal phase of their menstrual cycles. 
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Exclusion criteria included current participation in an elite athletic training program (e.g., 

pro cycling, NCAA sports) and regular use of drugs known to alter metabolism (e.g., 

Adderall, nicotine), except thyroid hormone therapies which were allowed so long as 

dosage had not changed within the 6 months preceding participation. Two subjects (both 

female) reported current treatment for hypothyroidism. Because hypothyroidism can 

affect muscle performance (Argov et al., 1988; Khaleeli et al., 1983) separate analyses 

were run including and excluding these two subjects (final model results did not 

significantly differ). Subjects were paid $80 for completing the study. Those born under 6 

lbs (~2700 g) were over-recruited in order to increase the number of small birth size 

subjects. No distinction was made between small birth size attributable to premature birth 

or other causes. This study was approved by the Human Research Review Committee at 

the University of New Mexico Health Sciences Center (HRPO #10-338). 

Retrospective	  Data	  Collection	  
During the consent process that occurred no less than three days prior to 

metabolism testing, subjects received a questionnaire to take home. The questionnaire 

included sections on health history, drug and substance use (e.g., prescriptions, caffeine 

consumption, smoking), exercise habits, demographic information, birth circumstances, 

and adverse childhood experiences. Subjects were instructed to contact an older family 

member for help reporting early-life events they may not remember accurately. To 

improve confidentiality, questionnaires were returned in sealed envelopes only identified 

by participant ID number.   

Experimental	  Design	  
Step 1: Metabolism Testing Controls 
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Throughout the recruitment and consent processes, subjects were informed of the 

fasting and lifestyle restrictions required during this study. At the time of consent that 

occurred no less than 3 days prior to testing, subjects were given verbal and written 

instructions to: (1) abstain from muscle-tearing activities (e.g., weightlifting, sprinting) 

and eating meat starting 3 days prior to metabolism testing, (2) abstain from metabolism-

altering drug use (e.g., nicotine, caffeine, Ritalin, Adderall) starting 24 hours prior to 

metabolism testing, (3) eat a normal portion meat-free breakfast between 5 and 6 hours 

prior to the first round of metabolism testing with no calories thereafter, and (4) abstain 

from all forms of exercise on the mornings prior to metabolism testing. Subjects were 

also informed on the procedure for validating whether fasting had occurred (explained 

below) and that payment was contingent upon passing this validation procedure. All 

metabolism testing occurred between 1100 and 1400. Subjects were asked to schedule 

their metabolism tests to begin between 5 and 6 hours after their average daily waking 

time. 

Step 2: Metabolism Testing Round 1, Pre-fast 

Subjects reported to the University of New Mexico Exercise Physiology 

Laboratory (Albuquerque, NM) between 5 and 6 hours after their last consumption of 

calories (Compher et al., 2006). Data recorded included the subject’s weight, height, 

sitting height, reported waking time, food recall of their last meal (to verify restrictions), 

and the approximate time at their last consumption of calories (to estimate the length of 

fasting).    

Resting energy expenditure (REE, kcal/min) was assessed in real-time by indirect 

calorimetry using a TrueOne 2400 canopy system (ParvoMedics, Salt Lake City, UT). 
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Subjects were positioned under a ventilated canopy for 30-60 minutes while resting 

supine in a temperature-controlled room. After a period of acclimation to the testing 

environment (during which a subject’s rate of breathing became steady), respiratory gas 

exchange was estimated from continuous sampling averaged over 5-second intervals. 

Comparison of carbon dioxide production (VCO2, l/min) to oxygen consumption (VO2, 

l/min) allowed calculation of resting energy expenditure (REE) within each 5s interval 

(McArdle et al. 2001, Weir, 1949), providing a time series of metabolic parameters for 

each subject. Controls were employed to improve the reliability of inter-test comparisons 

(see Compher et al. [2006] and Leonard [2012] for descriptions of indirect calorimetry 

best practice). The raw time series data were then averaged over 5-minute intervals and 

the ‘minimum 5-min average REE’ was used for analysis. This minimum REE occurred 

during steady state respiration for all subjects. Subjects achieved steady state respiration, 

during which oxygen consumption rate did not change by more than 15% within a 

continuous 5-minute period, after a variable period of acclimation. As subjects relaxed, 

their oxygen consumption rates fell until steady state was achieved. To avoid further 

drops in REE, subjects were monitored for 10 minutes after first achieving steady state. 

Then testing was stopped. 

In addition to REE, this method of indirect calorimetry allowed estimation of 

respiratory quotient (RQ). RQ refers to the ratio of carbon dioxide exhaled to oxygen 

inhaled in a single breath and varies by the proportion of carbohydrate, lipid, and protein 

substrates fueling metabolism (McArdle et al. 2001). RQ values approach 1.0 when 

subjects are relying almost exclusively on carbohydrate sources of energy, which is 

typical in a fed state. Values approach 0.67 when subjects are relying almost exclusively 
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on adipolysis to fuel metabolism, which is typical in a fasted state. Subjects’ RQ values 

were therefore expected to fall throughout the period of fasting (Webber and MacDonald, 

1994). Failure of a subject’s RQ to decrease from before to after fasting was grounds for 

disenrollment from the study under the assumption that fasting had not occurred (this is 

the fasting validation procedure mentioned above). 

After the resting test, gross mechanical efficiency (energy produced per energy 

consumed in the whole body [Ettema and Loras, 2009]) was assessed during stationary 

cycling while connected to the TrueOne 2400 indirect calorimetry system via 

mouthpiece. The indirect calorimeter recorded breath-by-breath respiratory exchange 

ratios that were used to calculated calories of energy consumed throughout the task. A 

cycle ergometer (Excalibur Sport by Lode, Groningen, Netherlands) was programmed to 

force subjects to maintain constant work, or rate of energy output, during the task. 

Ergometers achieve constancy of energy output by continuously adjusting resistance to 

the subject’s pedaling cadence. This method allowed real-time comparisons of ‘energy 

consumed’ (joules per second measured via indirect calorimetry) to ‘energy produced’ 

(joules per second controlled by the ergometer). Analogous to the fuel efficiency of a 

vehicle, this method allows calculation of the fuel efficiency of the body during 

stationary cycling (joules produced per second / joules consumed per second = % 

efficiency). 

The cycle was fitted to each subject by a trained technician (MW) in order to 

achieve maximal knee extension without injury. Subjects cycled in normal shoes (i.e., not 

clipped in) for 27 minutes total, which included 2 minutes of low intensity warm-up 

followed by five 5-minute ‘stages.’ At each stage, the ergometer was programmed to a 
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different level of energy output rate (i.e., watts of work). All stages were sub-maximal in 

intensity, initially set to 20, 30, 40, 50, and 60 percent of the subject’s estimated 

maximum oxygen consumption, and then adjusted based on actual oxygen consumption 

during testing. Maximum oxygen consumption estimates, measured in metabolic 

equivalents or “METs,” were based on resting heart rate and other inputs employing the 

standard equations developed by Jurca et al. (2005) and the American College of Sports 

Medicine (Whaley et al., 2005). In this way, exercise testing was controlled for the 

subject’s cardiovascular fitness level. 

Efficiency was calculated in keeping with previous exercise physiology research 

(Bell and Ferguson, 2009; Cannon et al., 2007; Coyle et al., 1992). Breath-by-breath 

energy consumption estimates were averaged over the final 3 minutes of each stage. Each 

of the 5 stages of cycling produced a data point relating ‘energy consumed’ to an 

experimentally-fixed level of ‘energy produced’ (held constant by the ergometer). The 

slope of the line fitted through a subject’s five data points represents the number of 

calories produced by a unit increase in calories consumed. This slope is the subject’s 

gross mechanical efficiency during stationary cycling. 

After testing, subjects left the lab with instructions to go about their normal lives 

with the exceptions noted in Step 1 above. During the fast, they were permitted to drink 

zero-calorie, caffeine-free beverages ad libitum (e.g., water, herbal tea, diet caffeine-free 

soda). 

Step 3: Metabolism Testing Round 2, Post-fast 

Subjects returned to the lab for an identical round of testing beginning at the same 

time next day. This final round of testing occurred an average of 29 hours after the 
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subject’s last consumption of calories. Immediately following the REE test, a subject’s 

post-fast RQ was compared to their pre-fast RQ in order to determine the likelihood that 

fasting had occurred. Two individuals (1 male, 1 female) failed this validation procedure 

(i.e., RQ did not decrease) at which point no further testing was performed and all data 

collected from these two subjects were excluded from analyses. For the stationary cycling 

test, all stages were of identical workload and occurred in the same order as on day 1. 

Predictions	  
Table 1 presents our theory-motivated predictions. According to the PAR 

hypothesis, prenatal energetic scarcity induces a phenotype that minimizes fitness 

disadvantages experienced in response to future bouts of negative energy balance. 

Accordingly, I predict that those exposed to prenatal energetic scarcity, i.e., those born 

small (Barker, 1995), will enjoy relatively greater energetic saving during fasting. This 

will be achieved via enhanced fasting-induced reductions in REE and attenuated fasting-

induced reductions in gross mechanical efficiency.  

According to the Life History hypothesis, postnatal experiences that signal 

elevated risks to reproductive viability inspire physiological adjustments that reduce 

somatic energy expenditure. Accordingly, I predict that those who experienced greater 

psychosocial adversity throughout development will enjoy relatively reduced metabolic 

demands both before and after fasting. This will include reduced REE and greater gross 

mechanical efficiency at all time points, relative to individuals who experienced less-

stressed childhoods. 
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Variables	  
Table 3 provides lists of the theory-motivated predictors and confounders 

considered in each analysis. Birth weight (reported to the nearest ounce then converted to 

grams) was used to indicate fetal energy balance. Subjects were asked to contact a family 

member or to reference a birth record in order to accurately report their own birth 

weights. Subjects recorded their birth weights on a questionnaire and during follow up, 

were asked how they learned the information. Of the 42 subjects included in analysis, 4 

reported consulting a written family record (e.g., heirloom baby book) and 38 reported 

consulting their mothers. The accuracy and reliability of maternally recalled birth weight 

is high in western societies regardless of maternal age, educational or socioeconomic 

status (Adegboye and Heitmann, 2008; Catov et al., 2006; Goffin et al., 2000). The 

accuracy of birth weight in family records is unknown. 

A retrospective questionnaire provided data on potential confounding variables 

and psychosocial stressors experienced between birth and age 15. Confounders included 

self-reported ethnicity (by checking options or filling in the “other” line), sex, birth date, 

and exercise habits. Age at date of participation was calculated based on reported birth 

date (to the nearest 1/10th of a month). Subjects were coded as ‘weightlifter’ if they 

replied “yes” to the question “Do you regularly lift weights?” Subjects were coded as 

‘cyclist’ if they indicated that they “routinely” ride a bicycle, stationary cycle, or attend 

spin classes. Subjects were coded as ‘sedentary’ if they indicated that they routinely 

perform vigorous aerobic exercise no more than 1 time per week (duration of bouts not 

reported). Immediately preceding their first round of testing, subjects were asked to 

estimate the time at which they consumed their last calorie. This allowed calculation of 
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‘fast length’ (to the nearest 1/10 of an hour). Actual fast lengths ranged from 27.2 to 30.3 

hours. Two subjects were excluded from analysis due to over-long periods of fasting 

(actual fast length >33 hours). 

The remainder of the questionnaire was designed to capture levels of psychosocial 

adversity experienced between birth and age 15 years. Questions were modified from 

published questionnaires found to predict emotional and physiological responses to stress 

(Kohrt and Worthman, 2009), young adult mental health (Attar et al., 1994; Mayer et al., 

2009), and cardiovascular disease risk (Krieger, 1990; Krieger and Sidney, 1996; Krieger 

et al., 2005). Questions are listed ad verbatim in Table 2. The same set of questions was 

repeated in triplicate in reference to the age ranges ‘birth to 5th birthday,’ ‘age 5 to 10th 

birthday,’ and ‘age 10 to 15th birthday.’ Analysis was run on counts of the number of 

questions with an affirmative response reported within the age range. Therefore analysis 

was run on three separate stress variables (one for each age range), for which scores 

could range between 0 and 13 (because there were 13 questions total). In this way, 

subjects were scored on the number of types of stressful experiences recalled rather than a 

cumulative number of events, a method commonly employed by studies linking early 

psychosocial stress to downstream outcomes (Brown et al., 2009; Coall and Chisholm, 

2010; Danese et al., 2009; Felitti et al., 1998).   

All anthropometric and metabolism testing measurements were performed by the 

author (MW) who completed training programs in nutrition assessment and exercise 

physiology laboratory methods at the University of New Mexico (Department of Health, 

Exercise and Sports Sciences). Weight (to the nearest 1/10th kg) was measured in 

minimal clothing, shoes off using the same digital scale for every subject (Seca, Chino, 
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CA). Metabolic testing outcome variables included REE and gross mechanical efficiency 

at the beginning of the period of fasting (within 5-6 hr of the last consumption of 

calories) and at the end of the fast (~29 hr after last consumption of calories). The pre-

fasting values were used to predict the post-fasting values. In this way, fasting-induced 

changes in REE and efficiency could be attributed to theory-motivated predictors while 

controlling for baseline values. Resting energy expenditure was included in the model 

selection procedures for efficiency in case net mechanical efficiency, efficiency just 

within those motor units responsible for cycling, was affected by predictor variables but 

gross mechanical efficiency was not (for further explanation, the reader is referred to a 

review of cycling efficiency calculations by Ettema and Loras [2009]). 

Statistical	  Analyses	  
As an initial analytic step, descriptive statistics, bivariate correlation plots, and 

means-by-group plots were constructed. Then, multiple regression was used to assess the 

influence of theory-motivated predictors (birth size and stress scores) on outcomes while 

controlling for potential confounders (e.g., sex, exercise habits). This method allows 

examination of multiple influences on a single outcome variable while simultaneously 

considering the effects of every other predictor in the model (Belsley et al., 1980; Neter 

et al., 1999). Further, it allows comparison between the relative magnitudes of influence 

of each predictor on the outcome of interest, after controlling for all other effects (Neter 

et al., 1999). For all outcomes, potential confounders included: weight, sex, age, 

weightlifter status, sedentary status, Hispanic ethnicity, and Caucasian ethnicity (other 

ethnicities were under-represented in our sample). The model selection procedure for 

post-fasting outcomes additionally included the potential confounders: ‘length of fast’ 
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and ‘pre-fasting value.’ Mechanical efficiency models also included cycling status and 

that day’s resting energy expenditure. Backward elimination was employed by first fitting 

a model containing all potential predictors, then systematically eliminating one parameter 

at a time based on the highest p-value at each iteration. An ultimate cut-off criteria of 

alpha=0.05 was employed for all variables included in the final model. Where eliminated, 

theory-motivated predictors (birth weight and stress scores) were assessed using added 

variable plots (Cook, 1993, 1994; Larsen and McLeary, 1972) and, where graphically 

suggested, were reintroduced into the final model and tested for statistical significance 

before final elimination. No non-significant predictor was included in the final model 

because inclusion of non-informative predictors biases the estimation of the remaining 

coefficients in the model (Belsley et al., 1980) limiting the model’s interpretability for 

biological significance. The final model was evaluated for colinearity graphically, using 

bivariate correlation plots between predictors, and formally, using variance inflation 

factors (Neter et al., 1999). Final model fits were graphically assessed by plotting 

residuals against predicted values and examining normal probability plots of residuals 

(Cook, 1994). For all final models, errors were normally distributed and no dependency 

between fitted values and residuals were observed. In other words, residuals associated 

with each of the final models presented in this paper did not deviate from normality based 

on Kolmogorov-Smirnov tests (Neter et al., 1999; Smirnov, 1948) and no patterns were 

observed amidst the scatterplots of the residuals versus the fitted values of each final 

model. 
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Results	  
Table 4 presents the final regression models explaining resting energy expenditure 

(REE). At the beginning of the period of fasting (5-6 hr after the last consumption of 

calories), REE did not depend on birth weight or developmental psychosocial stress after 

controlling for body mass. In the final model of pre-fasting REE, weightlifters required 

233 kcal/day more energy than non-weightlifters (p<0.001) and men required 831 

kcal/day more energy than women (p=0.001). The energetic demands attributable to 

increases in body mass depended on sex; the interaction term ‘Body mass x Male’ (β=-

9.5, p=0.005) discounts the increase in pre-fasting REE associated with additional 

kilograms of body mass in men. Controlling for all other predictors in the model, each 

additional kilogram of body mass cost women 18 kcal more per day but cost men only 8 

kcal more per day (p<0.001).  

Variation in the sensitivity of REE to fasting is explained by predictors included 

in the final model of post-fasting REE after controlling for observed differences in the 

pre-fasting REE value. At the end of the fast (an average of 29 hr after the last 

consumption of calories), REE depended heavily on the pre-fasting REE value (β=0.95, 

p<0.001), which alone explained 85% of observed variation in post-fasting REE. A pre-

fasting REE coefficient less than 1 indicates a reduction in REE from before to after 

fasting since each 1 kcal/day increase in pre-fasting REE contributes <1 kcal/day to post-

fasting REE. Male sex and the number of types of psychosocial stressors reportedly 

experienced in the early adolescent age range 10-15 yr (‘Stress:10-15yr’) explained 31% 

of the variation remaining after controlling for pre-fasting REE. Contrary to the PAR 

prediction (Prediction 1), birth weight did not approach significance in the model 
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examining sensitivity of REE to fasting. In alternative analyses replacing continuous birth 

weight with the categorical variables ‘low birth weight’ (<2500 g) or ‘small birth size’ 

(<sample mean), these indicators of pre-natal energetic scarcity failed to approach 

significance as well.  

In the final model controlling for sex and ‘Stress:10-15yr,’ each additional 1 

kcal/day of pre-fasting REE only contributed 0.75 kcal/day to the post-fasting REE 

(p<0.001) suggesting that REE fell in response to fasting (i.e., post-fasting REE only 

achieved 75% of its pre-fasting value). At the end of the fast (controlling for all other 

predictors included in the model), men required 171.31 kcal/day more energy than 

women (p=0.004) and, interestingly, each additional type of psychosocial stress 

reportedly experienced during the early adolescent age range 10-15 yr predicted 50.70 

kcal/day more energetic demand (p=0.003). This model suggests that REE falls in 

response to fasting, but that male sex and psychosocial stressors experienced between 

ages 10-15 yr decrease the sensitivity of resting metabolic demands to fasting. According 

to this model, birth weight does not impact the sensitivity of REE to fasting. 

 Table 5 presents the final regression models explaining gross mechanical 

efficiency. At the beginning of the period of fasting, no parameters approached 

significance in the prediction of mechanical efficiency except birth weight. Each 

additional kilogram of birth weight predicted a 1.86% improvement in pre-fasting 

mechanical efficiency (p=0.034). Birth weight alone explained 10.7% of observed 

variation in pre-fasting mechanical efficiency. Contrary to the Life History-motivated 

prediction (Prediction 4a), pre-fasting efficiency was not affected by developmental 

psychosocial stress. 
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Variation in the sensitivity of gross mechanical efficiency to fasting is explained 

by predictors included in the final model of ‘post-fasting efficiency’ after controlling for 

differences in the ‘pre-fasting efficiency’ value. At the end of the fast, mechanical 

efficiency depended heavily on its pre-fasting value (β=0.97, p<0.001), which alone 

explained 68% of observed variation in post-fasting efficiency. In the final model, each 

1.0% of pre-fasting efficiency only contributed 0.94% to post-fasting efficiency 

(p<0.001), suggesting that efficiency fell in response to fasting (i.e., post-fasting 

efficiency achieved only 94% of its pre-fasting value). After controlling for this effect, 

‘Stress:10-15yr’ explained 16% of the remaining variation observed in post-fasting 

efficiency. In the final model after controlling for pre-fasting efficiency, each additional 

type of psychosocial stress reportedly experienced in the early adolescent age range 10-

15 yr predicted a fall in mechanical efficiency of 0.74% (p=0.020) (recall that decreases 

in efficiency reflect increased metabolic demands during physical work). Contrary to the 

PAR prediction (Prediction 2), birth weight did not approach significance in the model 

examining sensitivity of mechanical efficiency to fasting (the lack of effect was also 

apparent in alternative models replacing continuous birth weight with categorical 

variables ‘low birth weight’ [<2500 g] or ‘small birth size’ [<sample mean]). This model 

suggests that gross mechanical efficiency falls in response to fasting and that 

psychosocial stressors experienced between ages 10-15 yr amplify this effect. 

Discussion	  
This research demonstrates that birth weight does not predict the sensitivity of 

metabolic demands to fasting. Because reduced birth weight is the diagnostic indicator 

employed by the PAR hypothesis to assess fetal energetic scarcity (Gluckman and 
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Hanson, 2006), the PAR model predicts that adults of smaller birth size should display 

relatively greater energetic savings in response to current energetic scarcity. Energetic 

savings are generally considered advantageous because they allow redistribution of 

scarce resources to meet the needs of competing fitness-enhancing functions (Zera and 

Harshman, 2001). Fetal energetic scarcity that results in small birth size is known to 

induce phenotypic adjustments (Barker, 1993; Hales and Barker, 1992; Hediger et al., 

1998; Hovi et al., 2007; Kahn et al., 2000; Kuh et al., 2002; Martyn and Greenwald, 

1997; Osler et al., 2009; Sayer et al., 2004, 2008; Yajnik et al., 2003). In order to ascribe 

the adaptive function to these adjustments that the PAR hypothesis proposes, they must 

demonstrate fitness advantages during similar energy-scarce conditions in adulthood 

(Williams, 1966; Curio, 1973). I found no evidence that this occurred, in the form of 

energetic savings, either at rest or during physical activity. Contrary to predictions 

derived from the PAR hypothesis, our results demonstrate that birth weight does not 

impact the reductions in resting energy expenditure or gross mechanical efficiency 

known to occur in response to fasting (Bahr et al.,1991; Elia et al., 1984; Kouda et al., 

2006; Nair et al., 1987; Webber and MacDonald, 1994). 

Additionally, our results demonstrate a positive correlation between birth weight 

and gross mechanically efficiency independent of postnatal experiences. Because 

efficiency reflects the amount of physical work than can be performed per calorie of 

energy consumed by the body, this relationship suggests that phenotypic adjustments 

associated with small birth size impair the amount of physical labor that can be supported 

by equivalent energy budgets. This effect is in direct opposition to the predictions of the 

PAR model as considered in this paper. Impairment was not mediated by current energy 
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balance (as explained above) and did not depend on postnatal psychosocial stress, body 

mass, sex, age, or any other potential predictor listed in Table 3. A heightened energy 

requirement associated with physical work more reasonably represents a fitness handicap 

than a fitness-enhancing response. Because this negative impact of small birth size on 

adult efficiency was observed independent of current energy balance or any other 

postnatal experiences tested, it may reflect phenotypic concessions made in response to 

early energetic constraints (though the current study design cannot distinguish between 

developmental damage, adjusted energy allocation paradigm, or bet-hedging scenarios).  

This research also demonstrates that adverse postnatal experiences, in the form of 

stressful childhood events, do not reduce metabolic demands. Because psychosocial 

stress is associated with risks to reproductive viability (Adler et al., 1993; Brown et al., 

2009; Chen et al., 2002; Felitti et al., 1998; Geronimus, 1987, 1992), Life History Theory 

may be invoked when proposing that developmental exposure to psychosocial stressors 

should predict reductions in somatic energy expenditure (Stearns, 1992). Contrary to our 

Life History-derived hypothesis, developmental psychosocial stress did not predict 

reductions in baseline resting energy expenditure or gross mechanical efficiency. 

However, stressful experiences accumulated during early adolescence (ages 10-15 yr) 

increased metabolic demands during fasting, both at rest and during physical activity. 

Importantly, this effect was independent of birth size. 

The increased metabolic demand—during fasting—associated with increasing 

numbers of early adolescent stressful events was unanticipated. Previous studies 

investigating the sensitivity of adult stress responses to the timing of stressful experiences 

accumulated during development suggest that the transition from juvenility to adulthood 
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represents a period of unique vulnerability to the developmental influences of 

physiological and psychological stress (Lupien et al., 2009; McCormick et al., 2010; 

Romeo 2010). Steinberg (2010) suggests that the plasticity of human brain development 

during adolescence, especially in the frontal cortex, may explain observed links between 

adolescent experiences and downstream physiological responses to stress. Although 

speculative, because negative energy balance represents a physiological stressor, it is 

possible that adolescent experiences that have ‘tuned’ the body’s stress response 

influence the sensitivity of adult metabolic demands to fasting. Future research is needed 

to investigate the mechanism and potential evolutionary significance linking early 

adolescent psychosocial stress to the sensitivity of adult metabolism to sudden energetic 

scarcity. 

This study suffered from several limitations. First, our results linking adolescent 

stress to metabolic outcomes, rather than earlier occurrences, may reflect a recall bias if 

participants more accurately reported events that occurred more recently in time. Because 

prospective data collection is often infeasible, future research could address this problem 

by validating assays of early-life stress that are independent of conscious memory (e.g., 

biomarkers). One method that may prove useful toward this end is a metric of 

accumulated lifetime stress called allostatic load. Allostatic load is calculated from co-

occurring cardiovascular, metabolic, and inflammatory biomarkers (Seeman et al., 2004) 

and has been linked, in longitudinal studies beginning in childhood, to accumulating 

numbers of stressful lifetime experiences (Caspi et al., 2006; Evans et al., 2007). Future 

Life History-motivated research may examine potential associations between allostatic 

load and indicators of somatic investment. 
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This study also suffers from a lack of information about participants’ early 

postnatal growth. Data were generated from a healthy, urban U.S. sample that was not 

likely calorie-restricted during postnatal development (Polhamus et al., 2009) and likely 

enjoyed low-pathogen environments. These circumstances may increase the possibility of 

catch-up growth subsequent to small birth size, which is known to impact the physiology 

contributing to chronic metabolic disease risk in adulthood (Erikkson et al, 1999, 2006; 

Ibáñez et al., 2006; Meas et al., 2008; Ong et al, 2000). Although it seems unlikely 

because catch-up growth is thought to exacerbate, rather than moderate, the physiological 

adjustments associated with small birth size, it is possible that the effects of catch-up 

growth on adult physiology masked the relationships I attempted to examine between 

birth weight and adult metabolism. Future research is required to rule out the possibility 

that catch-up growth subsequent to small birth size impacts the results reported herein. 

Conclusion	  
The results of this study contradict the PAR hypothesis in that individuals exposed 

to fetal energetic scarcity enjoyed no enhanced energetic savings in response to current 

energetic scarcity. These results argue against the ascription of adaptive function to 

phenotypes induced by fetal energy balance at the cautions of Baker (2011), Curio 

(1973), Jones (2005), Kuzawa (2005), Wells (2010), and Williams (1966). Moreover, this 

study suggests that small birth size is associated with a fitness handicap—reduced level 

of physical work that can be supported by equivalent energy budgets. The negative 

impact of this handicap was not mediated by current energy balance or postnatal 

psychosocial experiences (i.e., it was evident in all downstream environments). Also 
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important, this study demonstrates that post-natal stress can independently and 

significantly influence adult metabolism. 
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Tables	  
 

Table 3.1. Hypotheses, predictions tested in this paper, and results. 

	  

	  

	   	  

Hypotheses	   Predictions	  Tested	   Results	  

Predictive	  
Adaptive	  
Response	  

Prenatal	  energetic	  scarcity	  
induces	  a	  phenotype	  that	  
minimizes	  the	  fitness	  
disadvantages	  that	  occur	  
during	  bouts	  of	  negative	  
energy	  balance	  

Small	  birth	  size	  should	  be	  linked	  to:	  
(1) Fasting-‐induced	  reductions	  in	  

resting	  energy	  expenditure	  
(2) Preserved	  mechanical	  efficiency	  

during	  fasting	  

	  
(1)	  rejected	  
	  
(2)	  rejected	  
	  

Life	  History	  
Theory	  

Cues	  of	  risk	  to	  reproductive	  
viability	  inspire	  
physiological	  adjustments	  
that	  reduce	  somatic	  energy	  
expenditure	  

Psychosocial	  stress	  experienced	  
during	  development	  should	  be	  
linked	  to:	  
(3) Reduced	  resting	  energy	  

expenditure	  
(a) Pre-‐fasting	  
(b) Post-‐fasting	  

(4) Greater	  mechanical	  efficiency	  
(a) Pre-‐fasting	  
(b) Post-‐fasting	  

	  
	  
	  
	  
(3a)	  rejected	  
(3b)	  rejected	  
	  
(4a)	  rejected	  
(4b)	  rejected	  
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Table 3.2. Survey of stressful events experienced during development. The same set of 
questions was repeated 3 times, once for each age range. Below are the instructions for 
the age range birth to 5 years. 

Instructions:	  Please	  indicate	  if	  any	  of	  the	  following	  events	  happened	  from	  the	  time	  you	  were	  born	  
until	  your	  5th	  birthday	  by	  circling	  Y	  (yes)	  or	  N	  (no).	  

Y	  or	  N	   1.	  Did	  you	  have	  a	  serious	  physical	  injury?	  

Y	  or	  N	   2.	  Were	  you	  a	  witness	  or	  victim	  of	  physical	  violence?	  

Y	  or	  N	   3.	  Did	  you	  ever	  hide	  someplace	  because	  of	  violence	  in	  your	  home	  or	  neighborhood?	  

Y	  or	  N	   4.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  suffer	  serious	  physical	  illness	  or	  injury?	  

Y	  or	  N	   5.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  suffer	  serious	  mental	  illness?	  

Y	  or	  N	   6.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  pass	  away?	  

Y	  or	  N	   7.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  spend	  time	  in	  jail	  (or	  juvenile	  detention)?	  

Y	  or	  N	   8.	  Did	  you	  or	  a	  close	  family	  member	  experience	  discrimination,	  get	  prevented	  from	  doing	  
something,	  or	  get	  hassled	  or	  made	  to	  feel	  inferior	  because	  of	  your	  race,	  ethnicity,	  color,	  
ancestry,	  sexual	  orientation,	  gender,	  sex,	  religious	  affiliation,	  citizenship,	  or	  country	  of	  birth?	  

Y	  or	  N	   9.	  Did	  one	  (or	  both)	  of	  your	  parents/step-‐parents	  become	  unemployed	  for	  a	  time?	  

Y	  or	  N	   10.	  Did	  a	  relative	  who	  you	  were	  very	  close	  to	  move	  out	  of	  your	  home?	  

Y	  or	  N	   11.	  Did	  you	  go	  to	  live	  with	  a	  different	  relative	  or	  spend	  time	  in	  foster	  care?	  

Y	  or	  N	   12.	  Did	  you	  and	  your	  family	  move	  from	  one	  place	  to	  another?	  

Y	  or	  N	   13.	  Did	  your	  family’s	  home	  or	  property	  get	  wrecked	  in	  a	  natural	  disaster,	  accident,	  or	  crime?	  
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Table 3.3. Potential predictors included in each model selection procedure. 

Outcome	  Models:	   Resting	  energy	  expenditure	   Gross	  mechanical	  efficiency	  
at	  beginning	  of	  fast	   at	  end	  of	  fast	   at	  beginning	  of	  fast	   at	  end	  of	  fast	  

Theory-‐Motivated	  
Predictors	  

Birth	  weight	  
Stress:	  birth-‐5yr	  
Stress:	  5-‐10yr	  
Stress:	  10-‐15yr	  

Birth	  weight	  
Stress:	  birth-‐5yr	  
Stress:	  5-‐10yr	  
Stress:	  10-‐15yr	  	  
Pre-‐fasting	  REE	  

Birth	  weight	  
Stress:	  birth-‐5yr	  
Stress:	  5-‐10yr	  
Stress:	  10-‐15yr	  

Birth	  weight	  
Stress:	  birth-‐5yr	  
Stress:	  5-‐10yr	  
Stress:	  10-‐15yr	  	  

Pre-‐fasting	  efficiency	  
Confounders	   Male	  

Body	  mass	  
Weightlifter	  
Sedentary	  
Hispanic	  
Caucasian	  

Age	  

Male	  
Body	  mass	  
Weightlifter	  
Sedentary	  
Hispanic	  
Caucasian	  

Age	  
Length	  of	  fast	  	  

Male	  
Body	  mass	  
Weightlifter	  
Sedentary	  
Hispanic	  
Caucasian	  

Age	  
Cyclist	  

Pre-‐fasting	  REE	  

Male	  
Body	  mass	  
Weightlifter	  
Sedentary	  
Hispanic	  
Caucasian	  

Age	  
Cyclist	  

Post-‐fasting	  REE	  
Length	  of	  fast	  
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Table 3.4. Regression analysis explaining variation in resting energy expenditure, 
kcal/day (n=39). 

	  
Parameter	   Constant	   β	  

Std	  Err	  
coeff	  

p-‐value	  
Model	  
R2	  

At	  beginning	  of	  fast	   Body	  mass,	  kg	   963.2	   17.51	   2.56	   <0.001	   86.7%	  
Weightlifter	   	   232.58	   41.18	   <0.001	   	  
Male	   	   830.80	   219.40	   0.001	   	  
Body	  mass	  x	  Male	   	   -‐9.50	   3.16	   0.005	   	  

At	  end	  of	  fast	   Pre-‐fasting	  REE,	  kcal/day	   285.3	   0.75	   0.08	   <0.001	   89.5%	  
Stress:	  10-‐15yr,	  count	   	   50.70	   15.76	   0.003	   	  
Male	   	   171.32	   55.02	   0.004	   	  
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Table 3.5. Regression analysis explaining variation in gross mechanical efficiency, % 
(n=42). 

	  
Parameter	   Constant	   β	  

Std	  Err	  
coeff	  

p-‐value	  
Model	  
R2	  

At	  beginning	  of	  fast	   Birth	  weight,	  kg	   21.53	   1.86	   0.85	   0.034	   10.5%	  
At	  end	  of	  fast	   Pre-‐fasting	  efficiency,	  %	   2.59	   0.94	   0.10	   <0.001	   72.5%	  

Stress:	  10-‐15yr,	  count	   	   -‐0.74	   0.31	   0.020	   	  

	   	  



	  

	  

76	  

Chapter	  4: Does	  birth	  weight	  impact	  height	  independent	  of	  its	  
influence	  on	  age	  at	  menarche?	  

Introduction	  
Small birth size and earlier age at menarche have each been linked to reductions 

in women’s heights (Labayen et al., 2006; Loos et al., 2002; Sachdev et al., 2005; Weyer 

et al., 2002; Georgiadis et al., 1997; Okasha et al., 2001; Onland-Moret et al., 2005; Sear 

et al., 2004). Because small birth size may predict an accelerated pace of maturation 

leading to earlier menarche (Cooper et al., 1996; Ibanez et al., 2000, 2006; Morris et al., 

2010; Ong et al., 2009; Ruder et al., 2010; Sloboda et al., 2007), it remains unclear 

whether the observed reductions in height among women born small are attributable to 

earlier menarche alone, or if birth size exerts an additional effect on adult height 

independent of its influence on menarcheal timing. The timing of menarche also appears 

highly sensitive to psychosocial adversities experienced during childhood (Belsky et al., 

1991; Bergevin et al., 2003; Chisholm, 1993; Chisholm et al., 2005; Ellis, 2004; Mendle 

et al., 2011; Pesonen et al., 2008; Romans et al., 2003; Surbey, 1990;	  Turner et al., 1999; 

Villamor et al., 2009; Wise et al., 2009). This study attempts to separate the impacts of 

birth weight, level of exposure to childhood psychosocial adversities, and age at 

menarche in the prediction of height among a contemporary cohort of U.S. young 

women. 

Conceptual	  Model	  and	  Predictions	  
Because first birth predictably follows menarche within natural fertility 

populations (several examples reviewed by Walker et al., 2006), the timing of menarche 

in a women’s life course is studied as a transition event marking the end of the juvenile 

growth phase and the beginning of the reproductive phase of her life. Menarche occurs 
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after the adolescent growth spurt (Ellison, 1981, 2001) and is among the latest-occurring 

physical changes reflecting reproductive maturation in girls (Ellison, 2001). For these 

reasons, age at menarche may accurately reflect the duration of the growth phase of life. 

All else equal, earlier menarche, reflecting reduced duration of growth, should produce 

shorter heights. Often within cohorts, the women who achieved menarche earlier are 

indeed shorter (Georgiadis et al., 1997; Okasha et al., 2001; Onland-Moret et al., 2005; 

Sear et al., 2004). Because deficits in birth weight have been associated (in separate 

literatures) to both earlier menarche (Cooper et al., 1996; Ibanez et al., 2000, 2006; 

Morris et al., 2010; Ong et al., 2009; Ruder et al., 2010; Sloboda et al., 2007) and reduced 

height among women (Labayen et al., 2006; Loos et al., 2002; Sachdev et al., 2005; 

Weyer et al., 2002), it is plausible that girls born small end up shorter solely due to a 

reduction in their duration of growth (see Figure 1). 

In addition to its link with small birth size, earlier menarche has been associated 

with several types of childhood psychosocial adversities. For instance, earlier menarche 

is associated with exposure to violence during childhood in the forms of elevated 

homicide rates (Villamor et al., 2009) and physical and sexual abuse (Bergevin et al., 

2003; Mendle et al., 2011; Romans et al., 2003; Turner et al., 1999; Wise et al., 2009). 

Earlier menarche is also predicted by childhood separation from a parent, inconsistent 

parental discipline, and other indicators of a low quality parent-child relationship (Belsky 

et al., 1991; Chisholm, 1993; Chisholm et al., 2005; Ellis, 2004; Surbey, 1990). Because 

level of childhood exposure to psychosocial adversity positively correlates, in many 

cases, with health and mortality hazards (Adler et al., 1993; Brown et al., 2009; Chen et 

al., 2002; Felitti et al., 1998; Geronimus, 1987, 1992), previous explanations have relied 
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on the Life History-motivated hypothesis that maturation accelerates in response to cues 

of reduced reproductive lifespan (Chisholm, 1993; Chisholm et al., 2005; Ellis et al., 

2009). If childhood adversity reduces a girl’s expected reproductive lifespan, she may 

“accept” cessation of growth at a shorter stature because the benefits to increases in body 

size are discounted by the probability of dying prior to reproduction. All else equal, the 

reductions in ‘target adult size’ induced by childhood adversities should produce earlier 

menarche. But it remains unclear whether birth size and level of childhood adversity 

reflect separate exposures each capable of independently influencing age at menarche 

(see Figure 2).  

Based on this body of previous research, I predict that deficits in birth weight and 

elevated exposure to childhood psychosocial adversity independently predict earlier 

menarche (controlling for appropriate confounders). If this is the case, each exposure will 

significantly correlate with observed age at menarche in a combined multivariate 

analysis, and the potential two-way interaction between them will be insignificant. 

Additionally, I predict that age at menarche alone explains adult height without additional 

impacts from birth weight or level of exposure to childhood psychosocial adversity. If 

this is the case, an instrumental variable calculated from these exposures (and appropriate 

confounders) will explain observed variation in women’s heights after controlling for 

relevant confounders. 

Methods	  
The study sample was limited to 15-year-old girls (ages 180-191 months at the 

time of examination) who fasted prior to participation in the Mobile Examination Centers 

of the U.S. National Health and Nutrition Examination Survey (NHANES) between 
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2007-2010 (n=122). This cohort is the only age for which birth weight was recorded and 

all girls interviewed had already achieved menarche. Due to missing data, analysis was 

limited to 99 young women (see Table 1). Sample weights were calculated based on 

published NHANES guidelines to adjust analytical results so that they represent the 

civilian non-institutionalized U.S. population at year-end 2008 (NCHS, 2006). Children 

in this population generally enjoy high energy balances (Polhamus et al., 2009), but data 

on individual childhood growth rates were unavailable.  

Reported birth weight (to nearest ounce, converted to grams) and reported age at 

menarche (to nearest year) were recorded during structured interviews by trained 

NHANES personnel. Standing heights (to nearest 0.1 cm) were assessed by NHANES 

health technicians using wall-mounted stadiometers with digital displays (NHANES, 

2009). Level of exposure to psychosocial adversity during childhood was estimated by 

allostatic load score.  

Allostatic	  Load	  Score	  
Allostatic load considers the long-term impact of repeated stress on multiple 

physiological regulatory pathways (Stewart, 2006). Repeated exposure to psychosocial 

stress is thought to permanently activate physiological stress-coping mechanisms, 

permanently exacerbating levels of biomarkers associated with elevated lifetime stress 

(Crimmins et al., 2003). Thus, allostatic load is a metric that combines metabolic, 

cardiovascular, and inflammatory biomarkers to quantify individual-level differences in 

cumulative lifetime exposure to psychosocial stress (Crimmins et al., 2003; Geronimus et 

al., 2006; Gruenewald et al., 2006; Seeman et al., 2010; Stewart, 2006). Given the young 

age of the cohort studied (i.e., 15-year-olds have spent the majority of their lives as 
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children), I operated under the assumption that differences in allostatic load scores reflect 

differences in levels of childhood exposure to psychosocial stress. Supporting this 

assumption, previous longitudinal studies have shown that the physiological effects first 

noted in response to childhood adversity persist through adolescence and into young 

adulthood, independent of later environment (Caspi et al., 2006; Evans et al., 2007). 

Additionally, retrospective studies have linked increasing numbers of recalled childhood 

and adolescent adversities to increasing cardiovascular, inflammatory, and metabolic 

disease risk factors in adults while controlling for adult experiences (e.g., occupation, 

smoking) (Alastalo et al., 2009; Chen et al., 2006; Danese et al., 2007, 2009). 

Allostatic load scores were calculated for each young woman based on the levels 

of her cardiovascular, inflammatory, and metabolic regulatory system biomarkers. In 

keeping with previously published methods, one point was assigned for each biomarker 

exceeding the a priori thresholds listed in Table 2. The biomarkers chosen to calculate 

allostatic load in the current study match those used in previous research. They include 

systolic and diastolic blood pressures, resting heart rate, and whole blood concentrations 

of total cholesterol, HDL cholesterol, glycosylated hemoglobin, and c-reactive protein 

(Crimmins et al., 2003, 2009; Evan, 2003; Geronimus et al., 2006; Merkin et al., 2009; 

Seeman et al., 1997, 2010a). Among the biomarkers for which elevated levels are 

associated with stress-induced poor health, thresholds were defined as greater than 1 

standard deviation above the weighted sample mean. Because elevated HDL cholesterol 

is considered protective of health, the HDL threshold was defined as less than -1 standard 

deviation below the weighted sample mean. To incorporate the complex NHANES 
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sampling design, standard deviations were calculated from the weighed variances. 

Weighted variance was defined by the formula:  

 

 [Σwi(xi – µ)2] / [(Σwi) - 1], (eq. 1) 

 

Where wi is the sample weight of the ith individual, xi is her biomarker value, and µ is the 

weighted sample mean of the biomarker. 

Among the biomarkers available for 15 year olds in the NHANES 2007-2010 

database, those chosen for inclusion in our allostatic load metric were known not to 

change with maturational status in the direction of our a priori thresholds. Before 

including an available biomarker in our calculation of allostatic load, I plotted its 

weighted sample means against age for girls ages 8 through 17 (by year) in the NHANES 

2007-2010 sample (see Figure 3). Among biomarkers for which elevated levels are 

associated with poor health, I excluded those that predictably increased with age. For 

instance, elevated BMI is often included in scores of allostatic load as an indicator of 

metabolic dysregulation in adults (Crimmins et al., 2003, 2009; Geronimus et al., 2006). 

But because women predictably gain BMI throughout adolescence (Hill and Hurtado, 

1996; Howell 2010; Marlowe, 2010), a BMI above any pre-defined threshold may simply 

reflect accelerated maturation—confounding analysis of our outcomes of interest. For 

this reason, I did not include BMI in the calculation of allostatic load. Because blood 

pressure increases with height throughout development (NHLBI, 2012), and height 

increases with maturational status, systolic and diastolic blood pressures were corrected 

for height before graphically assessing their feasibility for inclusion. Blood pressures 
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corrected for height did not increase predictably with age (see Table 3), suggesting that 

height-corrected blood pressures greater than a pre-defined threshold do not simply 

reflect advanced maturational status. Thus, systolic and diastolic blood pressures 

corrected for height were included in analysis. Similarly, among biomarkers for which 

diminished levels are associated with poor health (e.g., HDL), I excluded those that 

predictably decreased with age. Mean-by-age plots of biomarkers used in our calculation 

of allostatic load are shown in Figure 3. Formal trend analysis linking weighted mean 

biomarker values to age are displayed in Table 3. No significant increasing linear trends 

with age (or decreasing, in the case of HDL) were found, suggesting that elevated levels 

(or decreased levels, in the case of HDL) are not simply attributable to relatively 

advanced maturational status compared to cohort peers. 

Statistical	  Analysis	  
A two-stage regression analysis was performed whereby the first-stage model 

predicted age at menarche and the second-stage model predicted height based on the 

‘predicted age at menarche’ calculated from the first-stage regression equation. 

In the first stage, sample weighted multiple regression analysis (DuMouchel and 

Duncan, 1983) assessed the influence of birth weight (kg) and allostatic load scores 

(counts, 0-7 possible) on age at menarche (years) while controlling for the potential 

confounding effects of ethnicity and socioeconomic factors. Ethnicity categories reported 

in NHANES 2007-2010 included: Non-Hispanic White, Non-Hispanic Black, Mexican 

American, Other Hispanic, and Other Ethnicity. Socioeconomic status indicators included 

in model selection procedures were: the young woman’s U.S. citizenship status, the total 

number of people living in her household, the head-of-household’s gender (to control for 
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dual income), the head-of-household’s education level, and the family of the girl’s 

income-to-poverty ratio. Income-to-poverty ratio is the ratio of total family income to the 

level of income required for the family to be eligible for federal public assistance. This 

threshold poverty level is federally defined per family size, location of residence (based 

on cost of living), and is adjusted yearly to account for inflation (NHANES, 2011a). 

Backward elimination was employed by first fitting a model containing all potential 

predictors, then systematically eliminating one parameter at a time based on the highest 

p-value at each iteration. The selected model included only predictors significant at the 

p<0.05 level. Then, two-way interaction terms between predictors included in the 

selected model were added one at a time and examined for significance.  

In the second stage, an identical model selection procedure was employed to 

estimate height. The initial model included ‘predicted age at menarche’ (calculated from 

the first-stage regression equation) and parameters not chosen for inclusion in the first-

stage model. At each iteration, one parameter was eliminated from the model based on 

the highest p-value. Due to the limited sample size, the selected model included only 

predictors significant at the p<0.1 level. Finally, two-way interaction terms between 

predictors included in the selected model were added one at a time and examined for 

significance. 

Results	  
Table 4 presents the first-stage regression model selected to estimate age at 

menarche. During the model selection procedure, birth weight, ethnicities, U.S. 

citizenship status, household size, and head-of-household education level were eliminated 

because they did not approach significance at the alpha=0.1 level. According to the final 
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model, allostatic load score, family income-to-poverty ratio, and head-of-household sex 

explained 22% of the observed variation in age at menarche. Supportive of our 

hypothesis, each point increase in allostatic load score corresponded to a 5 month earlier 

age at menarche (p=0.001) after controlling for other effects. Controlling for the effect of 

all other predictors in the model, each point decrease in family income-to-poverty ratio 

corresponded to a 2.4 month earlier age at menarche (p=0.009), and girls living in a 

female-headed household achieved menarche 7 months earlier (p=0.013). No two-way 

interaction terms between these predictors approached significance, suggesting that all 

reported effects are additive. Pearson correlations confirmed that no two predictors in this 

model were linearly dependent (see Table 5). Additional univariate analysis confirmed 

that age at menarche was not linearly dependent on birth weight (Pearson’s r=-0.950, 

p=0.300). 

Table 6 presents the second-stage regression model selected to estimate height. 

The instrumental variable ‘predicted age at menarche’ did not linearly co-vary with the 

other predictors included in this model (see Table 7 for Pearson correlations). Controlling 

for all other effects, each year delay in the ‘predicted age at menarche’ corresponded to a 

3.7 cm boost in height (p<0.001). This effect alone explained 13% of observed variation 

in height. Although the other effects did not achieve statistical significance at the 

alpha<0.05 level, these predictors were included in the final model due to their potential 

biological relevance. Controlling for all other effects, each 1 kg deficit in birth weight 

predicted a 2 cm deficit in height (p=0.052), and Mexican American ethnicity predicted a 

4.2 cm deficit in height (p=0.053). No interaction terms approached significance. 
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Discussion	  
To our knowledge, this study is among the first to simultaneously examine birth 

weight and childhood psychosocial experience in the prediction of age at menarche 

(although see Blell et al., 2008). The results of our first-stage regression model suggest 

that family poverty, living in a female-headed household, and elevated exposure to 

childhood psychosocial adversity can independently hasten female reproductive 

maturation. Contrary to our hypothesis, birth weight did not influence age at menarche 

among 15 year-olds in the NHANES 2007-2010 sample. 

A female-headed household and the income-to-poverty ratio of a girl’s family 

were negatively associated with age at menarche suggesting that girls living in poorer 

socioeconomic conditions matured earlier. This result matches previous research 

(Braithwaite et al., 2009; James-Todd et al., 2010). The link between accelerated 

menarche and elevated childhood psychosocial adversity that remained after controlling 

for these indicators of socioeconomic status (SES) also finds support in the literature 

(Coall and Chisholm, 2010; Ellis and Essex, 2007). Because low SES and childhood 

psychosocial adversities positively correlate, in many cases, with health and mortality 

hazards (Adler et al., 1993; Brown et al., 2009; Chen et al., 2002; Felitti et al., 1998; 

Geronimus, 1987, 1992), previous explanations have relied on the Life History-motivated 

hypothesis that maturation accelerates in response to cues of reduced reproductive 

lifespan (Chisholm, 1993; Chisholm et al., 2005; Ellis et al., 2009). Reflecting the 

fundamental tradeoff of current versus future reproduction, this body of evidence 

suggests that the duration of growth is reduced (in order to mature and reproduce sooner) 

when future reproductive opportunities are uncertain. Our results are consistent with this 
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model under the assumption that earlier ages at menarche reflect reduced durations of the 

growth period.  

The lack of association between birth weight and age at menarche in the current 

sample finds support in the literature (Boyne et al., 2010; Dos Santos Silva et al., 2002; 

Persson et al., 1999; Terry et al., 2009; Wehkalampi et al., 2011), although other studies 

report earlier menarche among girls born lighter (Cooper et al., 1996; Ibanez et al., 2000, 

2006; Morris et al., 2010; Ong et al., 2009; Ruder et al., 2010; Sloboda et al., 2007). 

None of these previous reports simultaneously considers the impact of childhood 

psychosocial experiences on female maturational tempo. Although speculative, the 

inconsistency with which birth weight has been linked to age at menarche previously 

may, in part, be explained by a failure to control for the independent effect of childhood 

stress on menarcheal timing.  

In our second-stage model, Mexican American ethnicity, birth weight, and 

‘predicted age at menarche’ (calculated from the first-stage regression equation) exerted 

independent effects on height at age 15. Similar deficits in stature among Mexican 

Americans, independent of SES, were observed in a previous wave of HANES data 

(Ryan et al., 1990). Previous research also supports the observed deficit in stature among 

women who achieved menarche earlier than their peers (Georgiadis et al., 1997; Okasha 

et al. 2001; Onland-Moret et al., 2005; Sear et al. 2004). Controlling for Mexican 

American ethnicity and predicted age at menarche, birth weight was positively correlated 

with height at age 15: girls who were born 1 kg lighter were 2 cm shorter. Consistent 

reductions in height associated with small birth size have been reported previously (Gale 

et al., 2001; Labayen et al., 2006; Loos et al., 2002; Sachdev et al., 2005; Weyer et al., 
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2002). Loos et al. (2002) report a 3.26 cm reduction in height among women per 1 kg 

deficit in birth weight.  

Contrary to our predictions, these results suggest that birth weight influences 

height independent of maturational timing. Although a constant rate of linear growth 

across the entire period of development is unrealistic, height at age 15 can be simplified 

as the product of ‘average growth rate’ by ‘duration of growth.’ Assuming age at 

menarche reflects the duration of the growth phase, our results suggest that women who 

were born lighter experienced a reduced ‘average growth rate’ (averaged from conception 

until the time of observation at age 15). By documenting differences in the growth 

schedules of girls born different sizes, future research may tease apart this rather 

unsatisfying observed reduction in ‘average growth rate’ among women born lighter.  

Our interpretation that deficits in birth weight predict slower average growth rates 

appears, at first blush, inconsistent with previous reports documenting relatively rapid 

childhood growth among those born small (Chakraborty et al., 2007; Dos Santos Silva et 

al., 2002). Previous research has demonstrated that, in environments of sufficient 

nutritional quality to sustain rapid growth, individuals born small may grow relatively 

rapidly during infancy and childhood (Chakraborty et al., 2007) catching-up to or 

surpassing the heights of peers born heavier (Casey et al., 1991; Dos Santos Silva et al., 

2002; Hack et al., 2005). However, these accelerated rates of growth do not persist after 

early childhood (Casey et al., 1991; Knops et al., 2005) and at least one published 

longitudinal study found that the absolute differences in female adult height attributable 

to difference in birth weight were achieved prior to age 8 (Ibanez et al., 2006). Upon 

adulthood, deficits in birth weight reliably predict deficits in stature among both women 
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(Adair, 2007; Gale et al., 2001; Labayen et al., 2006; Loos et al., 2002; Sachdev et al., 

2005; Weyer et al., 2002) and men (Adair, 2007; Gale et al., 2001; Kensara et al., 2005; 

Li et al., 2003; Loos et al., 2001; Sachdev et al., 2005; Sayer et al., 2004; Weyer et al., 

2002).  

The current study is limited by our assumption that allostatic load scores at age 15 

accurately reflect childhood exposure to psychosocial stressors that signal reduced 

reproductive lifespan for girls in the study population. However, this type of biomarker-

based method for assaying childhood stress offers two advantages over common 

alternative techniques that rely on conscious memory and self-reported information. 

Previous research addressing the developmental consequences of childhood stress has 

often relied on retrospective questionnaires or interviews. These techniques have been 

criticized for potential recall biases and subjective interpretations of, even self-deception 

regarding, events that may have caused significant stress during childhood (Bergevin et 

al., 2003). Additionally, a biomarker-based method of assaying childhood stress extends 

the possibility of studying childhood stress within existing databases that were originally 

assembled for other purposes, as I have done herein using data collected by the 

NHANES. 

Conclusion	  
Data collected from a contemporary U.S. cohort suggest that birth weight does not 

predict age at menarche, childhood exposure to psychosocial stress accelerates 

maturation independent of SES, and deficits in stature attributable to deficits in birth size 

occur independent of age at menarche. Our interpretation of these results is that 

childhood stress reduces the ‘target adult height’ that a girl in good nutritional condition 
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will likely achieve prior to ceasing growth and that differences in birth weight predict 

differences in growth schedules that impact final height but not age at menarche. 
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Tables	  and	  Figures	  
 

Table 4.1. Inclusion criteria for girls in the sample. 

Description	   n	   n	  missing	  
Girls	  who	  were	  between	  180-‐191	  months	  of	  age	  at	  the	  time	  of	  MEC	  examination	   140	   0	  
…who	  fasted	   122	   18	  
...for	  whom	  all	  allostatic	  load	  biomarkers	  were	  available	   113	   9	  
…who	  reported	  age	  at	  menarche	  to	  nearest	  year	   108	   5	  
…whose	  family’s	  income-‐to-‐poverty	  ratio	  was	  reported	   101	   7	  
…whose	  family’s	  head	  of	  household	  gender	  was	  reported	   99	   2	  
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Table 4.2. Biomarkers used in calculation of ‘Allostatic Load’ metric for 15-year-old 
U.S. women examined during NHANES 2007-2010. 

Biological	  
Regulatory	  
System	  

Biomarker	   Weighted	  
Mean	  

Weighted	  
S.D.	  

Threshold	  
	  

Inflammatory	   C-‐reactive	  protein,	  mg/dL	   0.1289	   0.4170	   >	  +1	  S.D.	   0.5459	  
Metabolic	   Total	  cholesterol,	  mg/dL	   159.0023	   26.0143	   >	  +1	  S.D.	   185.0166	  

HDL	  cholesterol,	  mg/dL	   50.2413	   11.9365	   <	  -‐1	  S.D.	   62.1778	  
Glycosylated	  hemoglobin	  
(HbA1c),	  %	  

5.1481	   0.1117	   >	  +1	  S.D.	   5.2598	  

Cardiovascular	   Height-‐corrected	  systolic	  
blood	  pressure,	  mmHg/cm	  

0.6570	   0.0734	   >	  +1	  S.D.	   0.7304	  

Height-‐corrected	  diastolic	  
blood	  pressure,	  mmHg/cm	  

0.3940	   0.0817	   >	  +1	  S.D.	   0.4757	  

Pulse,	  beats/min	   78.9658	   1.3360	   >	  +1	  S.D.	   80.3018	  
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Table 4.3. Weighted means by age of allostatic load biomarkers observed among female 
participants in NHANES 2007-2010. 

Cohort	   CRP	   TC	   HDL	   HbA1c	   Systolic/Ht	   Diastolic/Ht	   Pulse	  
8	   0.1750	   164.3327	   52.2918	   NA	   0.7486	   0.3883	   87.4153	  
9	   0.1212	   164.4385	   52.0235	   NA	   0.7323	   0.3836	   86.1281	  
10	   0.1152	   161.6123	   51.9688	   NA	   0.7032	   0.3727	   85.0903	  
11	   0.1239	   159.6676	   50.8792	   NA	   0.6889	   0.3735	   83.5705	  
12	   0.0733	   159.5577	   52.7894	   5.2522	   0.6756	   0.3615	   81.5339	  
13	   0.1023	   157.2138	   54.1082	   5.2632	   0.6499	   0.3695	   80.0532	  
14	   0.1363	   154.5615	   52.5225	   5.2302	   0.6629	   0.3782	   80.8512	  
15*	   0.1417	   158.3897	   50.5129	   5.1444	   0.6556	   0.3925	   78.7709	  
16	   0.1470	   160.7685	   53.0357	   5.1519	   0.6529	   0.3869	   78.2270	  
17	   0.1782	   164.2875	   54.7309	   5.1879	   0.6486	   0.3664	   77.6013	  
Beta	  trend	   0.0025	   -‐0.3629	   0.1697	   -‐0.0212	   -‐0.0109	   -‐0.0003	   -‐1.1204	  
p-‐trend	   0.513	   0.347	   0.256	   0.070	   <0.001	   0.795	   <0.001	  
CRP,	  c-‐reactive	  protein	  (mg/dL);	  TC,	  total	  cholesterol	  (mg/dL);	  HDL,	  high-‐density	  lipoprotein	  cholesterol	  
(mg/dL);	  HbA1c,	  glycosylated	  hemoglobin	  (%),	  data	  not	  collected	  from	  participants	  under	  12	  years	  of	  age;	  
Systolic/Ht,	  height-‐corrected	  systolic	  blood	  pressure	  (mmHg/cm);	  Diastolic/Ht,	  height-‐corrected	  diastolic	  
blood	  pressure	  (mmHg/cm);	  Pulse,	  resting	  heart	  rate	  (beats/minute).	  
	  
*Note:	  Inconsistency	  between	  weighted	  means	  displayed	  in	  Tables	  2	  and	  3	  are	  due	  to	  current	  inclusion	  of	  
girls	  excluded	  from	  regression	  analysis	  due	  to	  missing	  data	  (see	  Table	  1).	  Table	  2	  thresholds	  were	  defined	  
using	  only	  girls	  included	  in	  analysis.	  
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Table 4.4. Final weighted first-stage regression model explaining age at menarche (in 
years) among 15-year-old U.S. women examined during NHANES 2007-2010 (n=99). 

Parameter	  
Model	  

Constant	  
β	  

S.E.	  of	  
Coefficient	  

p-‐
value	  

Model	  
R2	  

Allostatic	  load	  (count)	   12.697	   -‐0.434	   0.129	   0.001	   22.0%	  
	  Income:Poverty	  Ratio	  	   0.197	   0.073	   0.009	  

Female	  head	  of	  household	   -‐0.603	   0.238	   0.013	  
Allostatic	  load	  x	  Income:Poverty	  Ratio	   	   	   *	  
Allostatic	  load	  x	  Female	  head	  of	  household	   	   	   *	  
Income:Poverty	  Ratio	  x	  Female	  head	  of	  household	   	   	   *	  
U.S.	  citizenship	   	   	   *	  
No.	  people	  living	  in	  household	   	   	   *	  
Head	  of	  household	  educational	  status	   	   	   *	  
Non-‐Hispanic	  White	   	   	   *	  
Non-‐Hispanic	  Black	   	   	   *	  
Mexican	  American	   	   	   *	  
Other	  Hispanic	   	   	   *	  
Other	  Ethnicity	   	   	   *	  
Birth	  weight	  (kg)	   	   	   *	  
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Table 4.5. Pearson correlations between predictors selected for inclusion in first-stage 
model. 

Pearson’s	  r	  (p-‐value)	   Female	  head	  of	  
household	  

Income:Poverty	  
Ratio	  

Income:Poverty	  Ratio	   -‐0.134	  (0.129)	   	  

Allostatic	  load	  score	   -‐0.017	  (0.858)	   0.091	  (0.354)	  
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Table 4.6. Final weighted second-stage regression model of height (cm) considering 
predicted age at menarche for 15-year-old U.S. women examined during NHANES 2007-
2010 (n=102). Birth weight impacts height, controlling for predicted age at menarche. 

Parameter	   Model	  
Constant	   β	   S.E.	  of	  

Coefficient	  
p-‐

value	  
Model	  
R2	  

Predicted	  age	  at	  menarche	  (years)	  	   112.31	   3.723	   1.007	   <0.001	   21.2%	  
Birth	  weight	  (kg)	  	   1.990	   1.010	   0.052	  
Mexican	  American	   -‐4.203	   2.147	   0.053	  
Predicted	  age	  at	  menarche	  x	  Birth	  weight	  	   	   	   *	  
Predicted	  age	  at	  menarche	  x	  Mexican	  American	   	   	   *	  
Birth	  weight	  x	  Mexican	  American	   	   	   *	  
U.S.	  citizenship	   	   	   *	  
No.	  people	  living	  in	  household	   	   	   *	  
Head	  of	  household	  educational	  status	   	   	   *	  
Non-‐Hispanic	  White	   	   	   *	  
Non-‐Hispanic	  Black	   	   	   *	  
Other	  Hispanic	   	   	   *	  
Other	  Ethnicity	   	   	   *	  
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Table 4.7. Pearson correlations between predictors selected for inclusion in second-stage 
model. 

Pearson’s	  r	  (p-‐value)	   Birth	  weight	   Predicted	  Age	  at	  
Menarche	  

Predicted	  Age	  at	  
Menarche	   0.157	  (0.114)	   	  

Mexican	  American	  
Ethnicity	   0.044	  (0.605)	   -‐0.046	  (0.644)	  
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Figure 4.1. Conceptual model 1. Separate literatures link small birth size to earlier 
menarche and shorter stature. It is plausible that the deficits in stature among women 
born small result solely from the earlier cessation of growth implied by earlier menarche. 
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Figure 4.2. Conceptual model 2. Elevated exposure to psychosocial adversity predicts 
earlier menarche, potentially independent of birth size. Earlier menarche predicts shorter 
adult stature. 
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Figure 4.3. Mean-by-age plots (sample weighted) of allostatic load biomarkers observed 
among female participants in NHANES 2007-2010. Tests for trend significance shown in 
Table 2. Among biomarkers for which significant linear trends with age are found 
(height-corrected systolic blood pressure, pulse, glycosylated hemoglobin), none are in 
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the direction that would inflate allostatic load score among girls of advanced maturational 
status. 
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Chapter	  5: Conclusion	  
The analyses presented in this dissertation combined birth weight and indicators 

of postnatal developmental conditions to examine the relationships between early-life 

experiences and adult phenotypes. While previous research has highlighted associations 

between birth size and the later-life outcomes examined in this dissertation (adult height 

and lean tissue mass, age at menarche, metabolic physiology), this dissertation presents 

evidence that post-natal experiences independently and significantly affect these 

phenotypes as well. In some instances (explained below), controlling for post-natal 

experiences eliminated the correlations previously reported between birth size and the 

outcome of interest. 

Review	  of	  Results	  
Chapter 2 explains that neither birth weight, indicating prenatal energy balance, or 

relative leg length, indicating childhood energy balance, predicted adult skeletal muscle 

mass while controlling for level of childhood psychosocial adversity. Independent from 

indicators of early-life nutrition, a high level of psychosocial adversity experienced in the 

first decade of life predicted reductions in muscle mass and diminished returns to muscle-

building habits of weightlifting exercise. These effects did not depend on sex or ethnicity. 

The absence of a link between birth weight and later muscle mass contradicts previous 

research, although much previous research fails to control for overall body size or 

childhood psychosocial experience. 

Chapter 3 presents evidence that deficits in birth weight predict deficits in gross 

mechanical efficiency such that individuals born lighter can perform only a proportion of 

the physical work that heavier-born peers can support on an equivalent energy budget. 
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This effect was not mediated by postnatal experiences, suggesting that prenatal energy 

balance independently and significantly alters a phenotype reflected in mechanical 

efficiency.  

Chapter 3 also explains that psychosocial stress during the early-adolescent 

period, between ages 10-15 yr, predicts metabolic sensitivity to acute negative energy 

balance (i.e., fasting). This sensitivity of metabolic economy, both at rest and during 

moderate activity, was not mediated by birth weight. This suggests that postnatal 

psychosocial experiences ‘program’ adult metabolic sensitivity to energetic stress 

(independent of prenatal energy balance). 

Chapter 4 presents evidence that childhood exposure to psychosocial stress, as 

indicated by allostatic load score at age 15, accelerates maturation independent of birth 

weight. Nevertheless, birth weight predicted differences in stature at age 15 (independent 

of age at menarche) suggesting that prenatal energy balance impacts postnatal growth 

schedules that contribute to final height but not age at menarche. The positive correlation 

found between birth weight and women’s height is consistent with previous research. 

Generalizability	  
 All analyses presented in this dissertation rely on data collected from 

contemporary U.S. young adults. This population is generally well-fed (Polhamus et al, 

2009) and children in the U.S. are increasingly likely to suffer health consequences from 

consistent positive energy balances (Ogden et al., 2002). Phenotypic correlations 

observed within U.S. young adults, therefore, likely reflect developmental processes that 

were less constrained by energy abundance than is typical in other populations. It is 

plausible that the associations reported herein between developmental psychosocial 
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experiences and adult phenotypes—and the lack of associations with pre- and post-natal 

nutrition—reflect only what happens when energetic constraints on development are 

extremely relaxed.  

Conclusion	  
In a well-fed population where childhood energy balance is high and stable, 

developmental experience of psychosocial stress significantly affected age at menarche, 

adult muscle mass, and sensitivity of calorie requirements to fasting. These effects appear 

independent of prenatal energy balance inferred from birth weight. In the case of adult 

muscle mass, birth weight did not explain observed variation after controlling for 

childhood psychosocial stress, which contradicts previous research informed by fetal 

programming models. The association previously reported between birth weight and 

adult height was confirmed in this population, even after controlling for developmental 

psychosocial experiences that impact age at menarche. Birth weight was also found to 

significantly influence gross mechanical efficiency despite controlling for postnatal 

experiences. These results support the fetal programming idea that prenatal energy 

balance (inferred from birth weight) influences growth trajectory of height and 

contributes to adult metabolic physiology. The body of work presented in this dissertation 

suggests that prenatal and postnatal experiences reflect independent exposures that can 

each significantly contribute to adult phenotype.  
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