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ABSTRACT 

 

 

 A detailed history of drought variability in the Colorado River Basin for the last 

half millennium was obtained using tree ring-widths of precipitation sensitive trees as a 

proxy record of past climatic conditions. A one-dimensional edge detection filter was 

applied to standardized ring-width indices to identify years with rapid change in ring-

width magnitude that may reflect changes in state. Both standardized indices and edge 

detection outputs were mapped to analyze how the spatial pattern of drought changes 

over time. A Principal Components Analysis was performed for both the mapped index 

and edge detection outputs to determine whether there were specific patterns within the 

data. This data analysis identified repeating spatial patterns between each of the identified 

drought periods during drought onset, with the first principal component of the edge 

detection accounting for 60% of the variance in the edge data. A temporal mapping of 

principal component loadings suggests that the Pacific Decadal Oscillation and the 

Atlantic Multidecadal Oscillation play a significant role in forcing drought onset patterns. 

Superposed Epoch Analysis and a species-sensitivity analysis revealed that there are 

differences that exist between the droughts, including variation in the timing of the peak 
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index year relative to the onset of drought (peak edge year), in magnitude of drought 

response, and in the migration patterns of drought onset, making it difficult to classify the 

droughts.  

 The edge detection filter was found to be successful in identifying periods of 

drought onset, illustrating drought onset, and capturing migration of drought areas. The 

Principal Component Analysis loading patterns suggest that there are specific regions 

within the Colorado River Basin that vary synchronously during drought onset. Having a 

better understanding of these repeating regional variations in the Colorado River Basin 

will lead to improved drought predictability, and aid in water management in the region.  
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Chapter 1 

Introduction 

 Drought is a recurring natural phenomenon that directly impacts the environment 

and indirectly impacts the economy. Successive drought years in a region often lead to 

significant crop failure, and severely reduce water resources both within the drought 

region and in areas connected hydrologically to the region. In economic terms, drought is 

one of the costliest natural disasters (Cook et al., 2007). Between 1980 and 2003, drought 

accounted for 17% of weather related disasters in the United States (U.S.), and was 

responsible for over 40% of the total cost (Cook et al., 2007). The Western U.S., because 

of its geographic and climatologic characteristics, is particularly prone to drought 

(Hidalgo, 2004). In the past, the West has experienced widespread and prolonged 

droughts, leading to devastating societal and ecological impacts (Cook et al., 2007; 

Hidalgo, 2004; Woodhouse et al., 2009). General Circulation Models (GCMs) project a 

reduction in precipitation for areas in the Western U.S. during the 21
st
 century due to a 

warmer climate influenced by an increase in greenhouse gases (Cayan et al., 2010; IPCC, 

2013; Held and Soden, 2006). Water is already a precious resource in this region due to 

natural aridity and a growing population pressure, and reduced precipitation will likely 

exacerbate the effects of drought. If GCM projections materialize, Western U.S. society 

may face deeper and historically more unusual water shortages, and sustainability of 

current water supplies from the over appropriated Colorado River and similar water 

resources will become unrealistic (Cayan et al., 2010, Lane et al., 1999; Meko and 

Woodhouse, 2005). 



2 

 

 Understanding the spatial distribution of drought sources (i.e. how drought edges 

migrate), and quantifying the time scale and onset characteristics both temporally and 

spatially, are paramount to improving drought predictability and could possibly be used 

for recognition of specific types of drought. In this study drought is characterized within 

the Colorado River Basin region since 1500AD, including the initiation and migration of 

these events using an edge detection filter. A Principal Components Analysis is used to 

determine the spatial characteristics and variability of drought onset. The study site, 

hereafter referred to as the Colorado River Basin (CRB), includes the Upper and Lower 

Colorado River Basins, and portions of the surrounding basins (the Missouri Basin, the 

Arkansas-White-Red Basin, the Rio Grande Basin, and the Great Basin).  

  



3 

 

Chapter 2 

Scientific Background 

Drought & Causal Mechanisms 

 Drought is a naturally occurring phenomenon that has affected the Western U.S. 

for millennia (Grissino-Mayer, 1996; Meko et al., 2005; Woodhouse and Overpeck, 

1998). Drought is well preserved in tree ring records from precipitation-sensitive trees 

that are located along the drier limits of the species (Cook et al., 2007; Fritts, 1976; Meko 

et al., 2007). Some of the precipitation sensitive tree species in the CRB include 

Ponderosa pine, Douglas fir, and Pinyon pine (Scuderi, 2015; Williams et al., 2010). 

During the Medieval Climate Anomaly (roughly 900AD-1300AD), tree-ring data suggest 

that droughts in the CRB were widespread and lasted for decades, only being separated 

by one or two relatively wet years (Cook et al., 2007; Meko et al., 2007). Droughts within 

the last century have occurred on average every 25 years, and have typically lasted 5 to 

10 years (Cook et al., 2007). The megadroughts that occurred in the mid- to late-12
th

 

century and during the late 16
th

 century (Cook et al., 2007; Meko et al., 2007; Stahle et 

al., 2000; Woodhouse et al., 2009) would have far more devastating impacts on Western 

U.S. society today. Analysis of drought in the CRB during recent centuries, and the 

potential for classifying these droughts, will lend itself to possibly classifying the 

megadroughts of the past, in terms of causal mechanisms, and the potential for such an 

event occurring in the future. An essential part of understanding this difference in drought 

variability is having knowledge of the climate of the CRB region, and the mechanisms 

within the climate system that control it.  
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 The southern CRB (Arizona and New Mexico) receives moisture from the Gulf of 

California and the Gulf of Mexico due to monsoonal flow (Adams and Comrie, 1997; 

Sheppard et al., 2002). The region also receives moisture from the Pacific Ocean due to 

the overlying Westerlies. Monsoonal flow causes a precipitation maximum during the 

summer months, with precipitation totals in the CRB increasing with elevation due to 

orographic processes (Adams and Comrie, 1997; Sheppard et al., 2002). A second 

precipitation maximum occurs in the lower CRB during the winter, when Pacific-track 

storms carried by the polar jet stream produce a significant snowpack (Sheppard et al., 

2002). Spring snowmelt from the winter snowpack is a major source of water for 

reservoirs in the region, whereas much of the summer monsoonal precipitation evaporates 

before it can contribute to the groundwater supply (Sheppard et al., 2002). The primary 

source of moisture for the northern CRB (Colorado, Utah, Wyoming, and Nevada) is the 

Pacific Ocean. The trajectory of Pacific-track storms arriving in the upper and lower CRB 

is dependent on sea surface temperature (SST) patterns in the Pacific and Atlantic Oceans 

(McCabe-Glynn et al., 2013). These SST patterns influence the positions of high- and 

low-pressure centers in the Northern Pacific Ocean and over the continental U.S. 

(McCabe-Glynn et al., 2013). 

 Studies of paleoclimatic proxies and climate model simulations have shown that 

anomalous states of sea surface temperatures (SSTs) in specific oceanic regions 

influences drought conditions globally, including the CRB region (Cole and Cook, 1998; 

Cook et al., 2007; Enfield et al., 2001; Gray et al., 2003; Hoerling and Kumar, 2003; 

McCabe-Glynn et al., 2013; Tootle et al., 2005). The migration of high- and low-pressure 
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centers due to changing sea surface temperatures (SSTs) is a part of this oceanic 

oscillation phenomenon.  

 The El Nino – Southern Oscillation (ENSO) occurs on the shortest timescale with 

episodic intervals occurring every 2 to 8 years (Cole and Cook, 1998; Tootle et al., 2005). 

During an El Nino event, SSTs in the eastern and tropical Pacific Ocean are anomalously 

warm. The increase in SST changes the surface pressure distribution in the tropical 

Pacific (CPC, 2012). The change in surface pressure along the equator produces a 

perturbation in the atmospheric circulation features, which can enhance the subtropical jet 

stream resulting in anomalous precipitation patterns over the continental U.S. (CPC, 

2012). The opposite conditions occur during a La Nina event. The trade winds along the 

equator are enhanced, which results in anomalously cool SSTs appearing along the 

equator and off the western coast of South America. The oscillation in surface pressure 

causes a perturbation in atmospheric circulation, which leads to meridional shifts and 

variations in the sub-tropical and polar jet streams. It should be noted that cooler SSTs 

during La Nina events are known to be drought-inducing for regions of the western U.S. 

(Cook et al., 2007; Hoerling and Kumar, 2003).  

 Other oceanic oscillations that contribute to drought in the continental U.S. are the 

Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) 

(Enfield et al., 2001; Gray et al., 2003). The PDO occurs in the Northern Pacific Ocean 

(north of 20°N), and has a SST episodic oscillation of about 15 to 25 years. It is forced by 

variations in the location and strength of the Aleutian Low (Gray et al., 2003). The 

negative phase, or cool phase, of PDO is linked to drought in the central and southern 
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Rocky Mountains (Gray et al., 2003; McCabe-Glynn et al., 2013; Mantua et al., 1997; 

Tootle et al., 2005).  

 The AMO occurs in the Northern Atlantic Ocean, and has an episodic oscillation 

of about 65 to 85 years. The cycle is thought to be associated with fluctuations in the 

strength of the thermohaline circulation (Gray et al., 2003; Tootle et al., 2005). The warm 

phase of AMO results in portions of the western U.S. (the central and southern Rocky 

Mountains) receiving less than normal rainfall (Gray et al., 2003; McCabe-Glynn et al., 

2013; Tootle et al., 2005). Tootle et al. (2005) find that both PDO and AMO can work to 

either enhance or diminish the effects of ENSO. Based on this, it is evident that the 

occurrence of prolonged, continental-scale droughts, involve complex interactions 

between the Atlantic and Pacific Oceans (Enfield et al., 2001; Gray, 2003). 

 Teleconnections between the coupled ocean-atmosphere oscillations and 

occurrences of global hydrologic anomalies result in known patterns of drought. McCabe 

et al. (2004) completed analyses of patterns of drought frequency in the U.S. as a result of 

the states of PDO and AMO, and found that drought frequency in the CRB has the 

greatest increase during the combination of negative PDO and positive AMO. Fye et al. 

(2003) reconstructed past pluvial and drought patterns over the U.S. (using tree-ring 

chronologies) as they relate to the spatial extent and magnitude of the 1930’s and 1950’s 

droughts, and found that reconstructed drought patterns exhibit similarities in terms of 

extent and intensity to both the 1930’s and 1950’s droughts. What this study addresses, 

that others have not, is the spatial pattern associated with drought onset in the CRB.  
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Analyzing Tree Ring-width as a Proxy   

 In order to better understand the characteristics of drought, it is necessary to look 

beyond the period of instrumental record. A method of extending the drought record back 

into the past is analyzing tree ring-width as a proxy for climate. Tree ring-width 

properties that make them useful as a proxy for drought are moisture-stress sensitivity, 

broad spatial coverage, annual resolution (to capture single year droughts), exactly dated 

(for regional comparison), and chronology lengths of centuries to millennia (Cook et al., 

2007; Fritts, 1976).  

 Ring-width data is collected by sampling at least two core radii per tree to reduce 

intra-tree variability, and at least 20 trees per site in order to minimize “noise”, 

introduced by tree-specific environmental factors that are not being studied (Fritts, 1976; 

Grissino-Mayer, 2014). Site selection depends on what limiting factor, precipitation or 

temperature, the dendroclimatologist wants to study. Precipitation sensitive sites are 

typically located at the lower elevational or drier limits of the particular species, whereas 

temperature sensitive sites are found near or at the upper elevational or latitudinal limits 

of the species (Fritts, 1976). The core samples are then mounted and sanded to allow for 

cross-dating and raw ring-width measurement. Cross-dating (matching patterns in the raw 

ring-widths) allows for the record to be extended back in time, which results in the 

identification of the exact year that each annual ring was formed (Fritts, 1976; Grissino-

Mayer, 2014). The raw ring-widths are measured to the nearest 0.01 millimeter and 

recorded in digital data files (ITRDB, 2015).  
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 Long-term variations can occur in ring-width growth at frequencies from several 

decades to several centuries, and these may arise as a result of changes in the tree itself or 

with respect to changes in environmental conditions. As a tree ages, the annual ring-

widths naturally become smaller (Fritts, 1976). This growth trend is most often modeled 

as a negative exponential function (Fritts, 1976). The process of fitting a negative 

exponential curve to the raw ring-width data, then dividing each raw ring-width by the 

corresponding value of the fitted curve for a particular year is called standardization. This 

allows the large variability in ring-width of the younger, fast-growing tree to be 

comparable to the reduced variability in ring-with of the older, slow-growing tree (Fritts, 

1976). Standardization results in a time series of unit-less tree-ring index values, or 

growth departures, where the expected index value for any given year is 1. Because ring-

width is dependent on the limiting factors of the surrounding environment, such as 

temperature and precipitation, any change of state in the regional climatic conditions, 

such as those that take place during a drought, will be evident in the growth rings of trees 

at a site, regardless of their age (Fritts, 1976).  

 Parameters other than annual ring-width that have been analyzed with respect to 

changes in climate are earlywood width, latewood width, and changes in wood density 

(Fritts, 1976). Earlywood is the portion of the annual ring that is formed during the 

spring, when the growing season begins. Earlywood is comprised of relatively large cells 

with thin walls, and appears light in color (Fritts, 1976). Towards the end of summer, 

growth begins to slow, and latewood is formed. The cells within the latewood are 

relatively small, and have thick walls, making it appear dark in color (Fritts, 1976). 

Measuring the width of the earlywood or latewood would relate to the climatic conditions 
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during the spring or summer growing season, respectively (Fritts, 1976). For sites where 

variations in the environmental conditions of the growing season are more highly 

correlated to changes in cell structure, measuring maximum wood density would give the 

most information with regards to the varying climatic conditions (Fritts, 1976). X-ray 

negatives of the core sample are used to measure the wood density within each annual 

ring, with the maximum wood density appearing at the end of the growing season (Fritts, 

1976). 

 Drought is difficult to define due to variability in climatic conditions, 

socioeconomic dynamics, and water demands specific to different locations around the 

world (Mishra and Singh, 2010). Organizations globally define drought differently 

according to their specific water needs. For example, the World Meteorological 

Organization (WMO) defines drought as “a sustained, extended deficiency in 

precipitation” (WMO, 1986), whereas, The Food and Agriculture Organization (FAO, 

1983) of the United Nations defines drought as “the percentage of years when crops fail 

from the lack of moisture.” In a study of hydrologic drought in the Sacramento and Upper 

Colorado River basins by Meko and Woodhouse (2005), a joint-drought year (drought in 

both basins) was defined as a year when both basins were below some defined 

streamflow threshold. Both Cook et al. (2007) and Fye et al. (2003) define drought based 

on reconstructed PDSI. In this study, drought is defined based on standardization of the 

ring-widths, with an index value of 1.0 representing the expected growth of an annual 

ring throughout the chronology established from the growth function. An occurrence of 

index values less than 1.0 are considered to indicate drought conditions at a given site. 
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Edge Detection 

 The edge detection process focuses on object boundaries, where values are 

changing rapidly over a short distance (Canny, 1986). In this case, a rapid change in ring-

width magnitude over a relatively short time period could be considered an ‘edge’. Lim 

(1990) describes an edge “as a boundary or contour at which a significant change occurs 

in some physical aspect of the image,” making the method equivalent to thresholding. In 

this study, thresholding is equivalent to detecting the boundary that indicates a change in 

climatic state, either from wet to dry or dry to wet conditions. The extraction of edge 

features in an image can also be useful for image matching (Ali and Clausi, 2001).  

 The objective of edge detection is to simplify the analysis of images by reducing 

the amount of data to be processed and still preserving structural information about 

existing boundaries (Canny, 1986). In this study, this is accomplished by implementing a 

one-dimensional edge detection filter with a step impulse response as described by Canny 

(1986) (Fig. 1).  

 
Figure 1. Impulse response of a one-dimensional difference of boxes edge detection filter (Canny, 

1986). 

 

It is assumed that the data consists of possible edges plus white Gaussian noise, and for 

this reason a Gaussian smoothing filter is initially applied to the data (Canny, 1986). For 

an edge detection filter to be useful, it must meet the following criteria: 1) Good 

detection, there should be a low probability that the edge filter marks false edges (this 
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criterion corresponds to maximizing signal-to-noise ratio), 2) Good localization – the 

points marked as edges should be as close as possible to the actual edge, and 3) High 

sensitivity – only one response to a single edge (Canny, 1986). Canny (1986) states that 

an edge detection filter with a broad impulse response will have a better signal-to-noise 

ratio output, whereas a narrow filter will give better localization of edges. This tradeoff 

between detection and localization performance usually exists when using a step impulse 

response edge detection filter, however, in this study the Gaussian smoothing filter 

maximizes the signal-to-noise ratio initially which allows for the use of a narrow, 3-year 

moving step impulse response edge detection filter.  

 

PDSI 

 One method of monitoring the spatial and temporal variability of drought is a 

drought index constructed from climatological data. The Palmer Drought Severity Index 

(PDSI) is one such index. Developed initially by Palmer in 1965 (Palmer, 1965) in order 

to assess the severity of drought conditions, it can also be used to document both 

abnormally dry and abnormally wet conditions (Alley, 1985) and to analyze the 

characteristics of past droughts. In real time, PDSI is used to monitor drought conditions 

in order to trigger mitigation strategies if drought conditions become severe. 

 PDSI was developed using a water balance model approach based on monthly 

precipitation and temperature data. Other variables included in the water balance model 

calculation include evapotranspiration, potential evapotranspiration, soil water recharge, 

potential soil water recharge, runoff, potential runoff, water loss from the soil, and 

potential water loss from the soil (Alley, 1985; Palmer, 1965). A ratio of the monthly 
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average actual to the monthly average potential is calculated for the set of variables for 

each month of the year. Given these coefficients, departures between actual precipitation 

and the Climatically Appropriate for Existing Conditions (CAFEC) precipitation can be 

calculated for each month and converted into a moisture anomaly index, known as the 

Palmer Z-Index, which is shown in Equation 1 (Alley, 1985).  

𝑍(𝑗) = 𝐾𝑗 ∗ 𝑑                                                                         (1) 

Kj is a weighting factor for month ‘j’ that is used to adjust the departure in precipitation 

(d) so that it is comparable for different areas and different months (Alley, 1985). The Z-

Index represents the departure of weather for a particular month from the average 

climatic conditions for that month (Heim, 2002). PDSI is “an integrator of weather 

conditions over an extended period of time” because when calculating the PDSI for a 

particular month the Z-Index for that month and the previous month are taken into 

account (Alley, 1985). This is shown by Equation 2 (Alley, 1985).  

𝑃𝐷𝑆𝐼(𝑖) = ((0.897) ∗ 𝑃𝐷𝑆𝐼(𝑖 − 1)) + (𝑍(𝑖)/3)                                         (2) 

Because PDSI is primarily influenced by departures in precipitation it is best at defining 

when a meteorological drought has occurred (Heim, 2002), defined as “a sustained, 

extended deficiency in precipitation” by the WMO (1986). The onset and termination of 

such an event is calculated based on the probability that the dry (or wet) spell has started 

or ended (Heim, 2002). A lag exists from the time a meteorological drought ends and the 

time that it takes for the environment to recover from drought conditions; therefore, the 

PDSI can indicate that a drought event has ended even if hydrological drought, defined as 

a period of inadequate water resources for the established water uses in a given system 

(Mishra and Singh, 2010), is still present.  
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 Assumptions that are made in the initial water balance model concept for PDSI 

are that the top layer of soil holds one inch of moisture, that this moisture is not 

transferred to the layer beneath until the top layer is completely saturated, that runoff 

does not occur unless both layers are saturated, and that all of the precipitation that occurs 

during a month is utilized in that specific month in processes within the water balance 

model (Heim, 2002). Many have criticized that Palmer’s water balance model is too 

simple to represent the complex hydrological processes that take place. Some of the 

concerns are the holding capacities of the soil layers remain constant through all seasons, 

runoff does not occur until both soil layers are saturated, and there is no universal method 

for calculating evapotranspiration (Alley, 1984). There have been studies that calculate 

modified versions of PDSI in order to correct for some of the assumptions, however, 

Palmer’s PDSI is still one of the most widely used regional drought indices.  
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Chapter 3 

Methodology 

Study Site 

 The Colorado River Basin (CRB) was selected for this drought study because the 

basin includes the two largest reservoirs in the U.S. (Lake Mead and Lake Powell) (Kim 

et al., 2008). These reservoirs “provide municipal and industrial water for nearly 25 

million people, agricultural water for 3 million acres, and hydroelectric power for 11.5 

billion kilowatt-hours” (Kim et al., 2008). Figure 2 shows the boundaries of the actual 

Upper and Lower Colorado River Basins, while Figure 3 shows the boundaries of the site 

for this study.  

 
Figure 2. Map delineating the boundaries of the Upper and Lower Colorado River Basins (Miller 

and Piechota, 2008). 
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The bounded region in Figure 3 will be referred to as the CRB due to the fact the Upper 

and Lower CRB represent the majority of the region. Figure 3 also shows the locations of 

the 437 tree-ring site files and the PDSI grid points that were used in this study. 

 
Figure 3. Map showing the Colorado River Basin study site (black boundary). The tree-ring site files 

(blue diamonds) and PDSI grid points (numbered red dots) used in statistical and spatial analysis are 

shown as well. Thin black lines within the study region denote climate division boundaries. 

 

This particular boundary was chosen in order to capture the entire CRB, and surrounding 

areas that could be affected hydrologically. It was also chosen to incorporate the majority 

of the tree-ring site files that were taken into account by the point-by-point regression 

(PPR) method used by Cook et al. (1999) to reconstruct PDSI at the indicated grid points.  

PPR is “the sequential, automated fitting of single-point principal components regression 
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models of tree rings to a grid of climate variables” (Cook et al., 1999). This method is 

based on the knowledge that drought is a regional phenomenon; therefore, only trees 

proximal to a particular PDSI grid point are likely to provide information with regard to 

drought at that location (Cook et al., 1999). For each PDSI grid point, Cook et al. (1999) 

defined a search radius of 450 kilometers (about 4 degrees latitude/longitude) from which 

to consider candidate tree-ring predictors of drought for that location. Given that the 

PDSI grid point spacing is 2.5x2.5 degrees, this means that the PDSI reconstruction is 

significantly smoothed spatially. 

Preprocessing 

 Raw ring-width and standardized chronology data for 437 site files were 

downloaded from the International Tree-Ring Data Bank (ITRDB) (ITRDB, 2014). For 

each site file, multiple raw ring-width core files, and the standardized ring-width index 

file, were saved as text documents. One site file may contain 50 or more individual raw 

core files that are stored in the ‘Arizona Tree Ring Laboratory’ standard format, with 

measurements in units of 0.01 mm (NCDC, 2014) (Fig. 4). The raw ring-width core text 

files and the standardized ring-width index text file were imported into Excel to convert 

raw ring-width data to units of 1.00 millimeter, then imported into the statistics program 

StatView (SAS institute, 1999) for statistical analysis. 
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Figure 4. Example of raw ring-width data format from site file CO076 (Dean et al., 2015).  

Figure 4 shows the format of the raw ring-width file. The first three rows contain site-

specific information, such as the location name, tree species, latitude and longitude of the 

site, the earliest and latest year included in the raw data, and the publishing authors. The 

first column is the site ID, the second column is the first year of each decade, the third 

column is the raw measurement of the annual ring in units of 0.01 mm for the first year in 

the decade (1700AD, 1710AD, 1720AD, etc.), the fourth column is the raw measurement 

of the annual ring in units of 0.01 mm for the second year in the decade (1701AD, 

1711AD, 1721AD, etc.), and the pattern continues through the end of the row (NCDC, 

2014). Figure 5 shows the format of the standardized ring-width index file.  

 
Figure 5. Example of standardized tree-ring index chronology data from site file CO076 (Dean et al., 

2015). 
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The first three rows contain site-specific information, such as the location name, tree 

species, site elevation, start and end year of the chronology, and publishing authors. For 

each of the subsequent rows, the first six numbers are the site ID, the next four are the 

first year of each decade, the next four numbers are the tree-ring index value for the first 

year of the decade, the next three numbers are how many cores the index measurement is 

based on, then the pattern continues for each year in the decade (NCDC, 2014). As stated 

previously, drought conditions are defined to exist for any given year when the index 

value is less than 1. This definition is based on the process of standardization, where the 

value 1 indicates the expected growth of a tree in any given year based on its age. 

Therefore, years with an index value less than 1 tend to be drier with respect to tree 

growth than those with index values greater than 1. 

Statistical Approaches 

 Using StatView, a Gaussian smoothing filter was designed and used to suppress 

white noise present in the data. Then, a one-dimensional edge detection filter (Canny, 

1986) was applied to the output of the Gaussian smoothing filter to identify years in 

which rapid changes in ring-width magnitude occurred. This analysis is different from 

previous studies since the use of the edge detection filter on the tree-ring data in order to 

identify periods of drought has not been done. 

 This analysis was applied to all raw ring-width core files, and the standardized 

ring-width index files. The natural growth function present in the raw ring-width core 

data was still present in the output of the edge detection filter; therefore, all further 

analysis was only completed for the standardized chronology index files. Table 1 shows 

the filter weights associated with both the Gaussian and edge detection filters that were 
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applied to the tree-ring indices. The equations for both the Gaussian and edge filters can 

be found in Appendix A. 

Table 1: Filter Weights 

Filter Year – 2 Year – 1 Year Year + 1 Year + 2 

Gaussian 1 2 5 2 1 

Edge n/a -2 0 2 n/a 
Table 1: Weights for both the Gaussian 5-year smoothing filter, and the 3-year moving edge 

detection filter.  

The Gaussian smoothing filter is a 5-year moving filter which increases the signal-to-

noise ratio in the data. The edge detection filter is a 3-year moving filter with a step 

impulse response. Figure 6 shows the index chronology from site file NM529, the output 

of the Gaussian smoothing filter being applied to the chronology, and the output of the 

edge detection filter being applied to the output of the Gaussian smoothing filter. The 

large, positive edge values correspond to a rapid decrease in index value over the 3-year 

filter period. 
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Figure 6. (Top) NM529 site file index chronology. (Middle) Output of Gaussian smoothing filter 

applied to NM529 index chronology. (Bottom) Output of edge detection filter applied to the output of 

the Gaussian smoothing filter. Maximums in the edge output that are greater than or equal to 9.1 are 

considered to be significant because they greater than or equal to 2 standard deviations away from 

the mean edge value 

 In this study, reconstructed PDSI from the North American Drought Atlas (Cook 

and Krusic, 2004) was used as a tool for comparison between the timing of changes in 

state marked by the edge detection to drought onset marked by the PDSI. To do this, the 

site files were grouped according to their proximity to a specific PDSI grid point. Table 

B1 in Appendix B lists the number of site files that were grouped with each PDSI grid 
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point, and the quadrant of which state the PDSI grid point is located. Figure 7 shows the 

locations of the quadrant boundaries.  

 
Figure 7. Map of the Colorado River Basin study site (black border), showing the distribution of 

tree-ring site files (blue dots), and PDSI grid points (red dots). Bold red lines within each state depict 

quadrant boundaries as they were defined for statistical analysis purposes. Quadrants with diagonal 

red lines were not used due to the lack of site files in the area. 

In order to identify years when a rapid transition to drier conditions occurred in the CRB, 

three criteria were defined: 1) the presence of a significant positive edge value, 2) a 

coherent response among the site files, and 3) the significant positive edge must occur in 

at least 2 quadrants. This drought onset identification was done by transforming the edge 

detection output for each of the site files within a quadrant to z-scores (subtracting the 

mean (0.0185) and dividing by the standard deviation (4.641)). Based on the properties of 

a normal distribution, 95.4% of the data lies within ±2 standard deviations of the mean; 

therefore, any year when the z-score was greater than +2 was considered to be significant, 
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and corresponds to a change in climatic state (wet to dry). The edge values that 

correspond to the ± 2 standard deviations away from the mean are 9.3 and -9.2.  

 Next, the years just prior to the identified significant-edge year were analyzed for 

coherence, or similar behavior between the site files. This was completed by analyzing 

each quadrant for instances when the standard deviation between the site file edge output 

decreased prior to the significant-edge year, signifying a similar response between the 

site files. Figure 8 shows examples of periods that satisfy criteria 1 and 2 for the 

Northeast Arizona quadrant.  

 
Figure 8. Time series of normalized edge detection output (multi-colored lines) for each site files 

within the northeast Arizona quadrant, reconstructed PDSI from grid point 104 (black line), and the 

standard deviation between the edge detection outputs (red line). Time periods highlighted with 

green boxes satisfy criteria 1 (z-score greater than 2) and criteria 2 (decrease in standard deviation 

prior to the edge peak). 

 

The following 15 time periods (total of 103 years) listed in Table 2 satisfied all three 

criteria, and are referred to as the Specified Drought Periods (SDP).  
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Specified Drought 

Period 

Quadrants 

1554AD-1562AD NM-sw, NM-nw, NM-ne, CO-sw, AZ-ne, AZ-se, NV-east 

1610AD-1614AD NM-sw, NM-nw, AZ-nw, AZ-ne, NV-east, UT-ne 

1620AD-1624AD 

NM-nw, CO-sw, CO-ne, CO-se, AZ-nw, AZ-ne, AZ-se, 

NV-east, UT-se 

1630AD-1638AD NV-se, WY-west, NV-east, NV-ne, UT-se 

1650AD-1654AD CO-ne, AZ-nw, UT-se 

1680AD-1686AD 

NV-sw, NM-nw, CO-nw, CO-ne, CO-se, AZ-nw, AZ-ne, 

UT-ne 

1726AD-1730AD 

NM-nw, CO-sw, CO-nw, AZ-nw, AZ-ne, NV-se, NV-east, 

NV-ne, UT-se, WY-west 

1745AD-1749AD AZ-nw, AZ-se 

1771AD-1775AD NM-nw, AZ-se 

1814AD-1820AD NM-sw, NM-nw, NM-ne, CO-sw, CO-se, AZ-ne, AZ, se 

1838AD-1848AD NM-ne, CO-nw, CO-ne, CO-se, AZ-nw, AZ-ne, AZ-se 

1866AD-1872AD AZ-nw, AZ-ne, NV-east, NV-ne, UT-ne, WY-west 

1876AD-1882AD CO-ne, CO-se 

1930AD-1936AD NM-sw, AZ-se, NV-se, NV-east, WY-west, WY-cen/east 

1948AD-1956AD NM-se, NM-nw, NM-ne, CO-sw, CO-ne, CO-se 
Table 2. Quadrants that experienced drought onset (z-score greater than or equal to 2) during 

specified drought periods. 

 

A SDP was determined to end when there was a negative edge peak, signaling a 

transition from dry to wet conditions. All further analysis was performed only for these 

SDPs. 

 Within each SDP, a peak drought index and edge year was identified. The index 

values for all site files were averaged for each year during each SDP. The year that had 

the lowest index average within each SDP was designated as the peak index drought year. 

Next, the edge detection values for all of the site files were averaged for each year during 

each SDP. The year that had the highest edge average within each SDP was designated as 

the peak edge year. Because a large positive edge value for year ‘x’ indicates a sudden 

decrease in index value from year ‘x-1’ to year ‘x+1’ it is expected that the peak edge 
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year would occur before the peak index drought year. Table B2 in Appendix B lists the 

peak index year and peak edge year for each SDP.  

GIS Approaches 

 Two separate StatView files were created, one with the index chronologies for all 

437 site files, and one with the edge detection output for all 437 site files. Each StatView 

file was then transposed into Excel so that individual rows consisted of a separate site 

file. Prior to the year 1500AD and post 1960AD, the majority of the site files have fewer 

tree-ring index values. For this reason, analysis of index and edge detection data was 

limited to 1500AD-1960AD. The index and edge detection Excel files were then 

imported into ArcMap, each separated into 100-year increments due to program 

limitations (Index 1500AD-1599AD, Edge 1500AD-1599AD, Index 1600AD-1699AD, 

Edge 1600AD-1699AD, etc.). For each 100-year index and edge file, any site file that did 

not have a complete record for that time period was discarded. This was done because 

ArcMap automatically replaces blank spaces within text files with the value of zero upon 

converting the text file to a shapefile. In the case of tree-ring index measurements, a 

value of zero indicates a year of no growth, as opposed to a blank space which would 

indicate that there is not an index measurement for that particular year. This modified 

dataset is referred to as the “trimmed” dataset, and it was used for all spatial analysis. 

Table B3 in Appendix B shows the number of site files that were used for each 100-year 

period.  

 The Inverse Distance Weighting (IDW) tool was used to create maps of index 

values and edge detection values for each year from 1500AD-1960AD for the entire CRB 
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region. IDW interpolation assumes that points that are closer together are more alike than 

those that are farther apart (ArcGIS1, 2012). To assign an index or edge value to an 

unmeasured location, “IDW assumes that each measured point has a local influence that 

diminishes with distance,” therefore it gives more weight to the measured index and edge 

values that are closest to the prediction location and the weights diminish as a function of 

distance (ArcGIS1, 2012). Drawbacks to IDW interpolation are that it is an exact 

interpolator, so the maximum and minimum index and edge values can only occur at 

measured locations, even though this may not actually be the case (ArcGIS1, 2012). IDW 

interpolation is also sensitive to clustering of measured locations and outliers (ArcGIS1, 

2012).  

 Another spatial analysis tool available in ArcMap used for interpolation is 

kriging. Kriging approaches have the assumption that some of the spatial variance 

between the locations of measured index values can be modeled by random processes 

with spatial autocorrelation, where the spatial autocorrelation model must be known 

(ArcGIS, 2013). Kriging was not used in this case because of the lack of information to 

explicitly model the spatial autocorrelation associated with the random processes that 

affect the index values, however with more information in the future this may be an 

appropriate interpolator for the dataset. 

 Once the specified drought periods were selected from the results of the statistical 

analysis, the corresponding index maps for each year within the time periods were 

combined for a Principal Components Analysis (PCA) (the same was done for the edge 

detection maps). PCA is a way of identifying patterns in data, and expressing the data in a 

way that highlights the similarities and differences (Smith, 2002). PCA is the 
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transformation of data into a new multivariate attribute space, where the axes of the new 

space are rotated with respect to the old space (ArcGIS2, 2012; Smith, 2002). In other 

words, the axes are rotated in order to best fit the variance of the data. The new, rotated 

axes are known as eigenvectors, and their length is described by an eigenvalue. 

Eigenvectors are the “axes” (directions) along which a linear transformation occurs by 

“stretching/compressing” and/or “flipping”; eigenvalues give you the factors by which 

this stretching/compressing occurs. The eigenvector with the largest eigenvalue is known 

as the first principal component. It captures the most significant relationship between the 

data, and explains the largest portion of variance within the dataset (ArcGIS2, 2012; 

Smith, 2002). In this case, mapping the first principal component (PC1) loadings will 

produce a map of the spatial pattern that explains the greatest amount of variance within 

the index data during SDPs.  The eigenvector with the second largest eigenvalue (PC2) is 

aligned such that it captures the maximum remaining variance in the dataset (explaining 

the second-highest amount of variance within the data) (ArcGIS2, 2012; Smith, 2002). 

Mapping PC2 loadings produces a map of the spatial pattern that explains the next 

highest amount of variance not explained by the first. In many cases, more than 90% of 

the variance can be explained by the first three eigenvalues (Smith, 2002).   
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Chapter 4 

Data Analysis 

Edge Detection 

 The output of the Gaussian smoothing and edge detection filters was previously 

shown in Figure 6, but a closer look at the edge output versus the index chronology is 

presented in Figure 9 below. The normalized index and edge output for site file NM030 

are shown from 1700AD-1749AD. 

 
Figure 9. Normalized index (blue) and edge output (red) for site file NM030 from 1700AD-1749AD.  

The index value reaches a maximum in the year 1726AD and begins to decrease until it 

reaches a minimum in 1729AD. The maximum edge value occurs during the years of the 

transition from the maximum index value to the minimum index value (1727AD and 

1728AD). This large, positive edge value marks a change in state from relatively wet 

conditions to relatively dry conditions. Mapping the edge response shows which sites are 

experiencing transitions from relatively wet (high index value) to relatively dry (low 

index value) conditions, based on the sites experiencing significant positive edge values. 
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 Figures 10a and 10b show the IDW spatial interpolation of the index and edge 

values for the year 1561AD, respectively. 

  
A 
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Figure 10. (a) Map of the IDW spatial interpolation of the index values for the year 1561AD, (b) Map 

of the IDW spatial interpolation of the edge values for the year 1561AD. Climate division boundaries 

(black lines) and all 437 site files (purple dots) are shown.  

 

In Figure 10a, red and orange areas experienced relatively dry conditions (index values 

less than 1), while yellow and green areas experienced relatively wet conditions (index 

values greater than or equal to 1). In Figure 10b, areas shaded blue experienced negative 

edge values, indicating a transition from a relatively low index value to a relatively high 

index value (dry to wet conditions). Areas shaded brown experienced positive edge 

values, indicating a transition from a relatively high index value to a relatively low index 

value (wet to dry conditions). The maximum and minimum edge values on the color bar 

are the significant edge values located ±2 standard deviations away from the mean. If any 

B 
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site file experiences an edge value outside of these bounds, the site file will be assigned 

either -9.2 or 9.3 (depending on the transition type). 

 Analyzing the sequence of IDW edge interpolation maps for each SDP allows for 

the identification of edge migration patterns.  Figure 11 (a-e) shows the edge and index 

IDW interpolation maps from 1726AD to 1730AD.  

 

 
 

1726 1726 

1727 1727 

1728 1728 
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Figure 11. IDW edge (left) and index (right) interpolation for 1726AD to 1730AD. Purple diamonds 

show the locations of each site file. 

 

In 1726AD (Fig. 11a), the edge detection (left) indicates site files on the border between 

New Mexico and Colorado, and also on the border between Arizona and Utah, 

experienced positive edge values, meaning these are the locations experiencing a 

transition from relatively high to relatively low index values (wet to dry conditions). In 

1727AD (Fig. 11b, left), the positive edge values intensified and expanded to site files 

within the Four Corners region, and in portions of eastern Nevada. Further intensification 

occurred in 1728AD (Fig. 11c, left), where site files in northeastern Nevada and 

northwest Colorado experienced larger positive edge values. Within this time period, 

1728AD is the peak edge year (experienced the most positive edge values), which 

1730 1730 

1729 1729 
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indicates that the greatest decrease in index magnitude (rapid change of state) took place 

from 1727AD to 1729AD. The edge detection for 1730AD (Fig. 11e, left) shows many of 

the site files transitioning to negative edge values, indicating a change to relatively larger 

index values (wetter conditions). Figure 12(a-i) shows the edge migration for the SDP 

1948AD to 1956AD.  

 
 

 

 

1948 1949 

1950 1951 
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Figure 12. IDW edge detection interpolation maps for 1948AD through 1956AD. Black lines 

represent climate division boundaries, and purple dots show the site file locations. The dark brown 

areas represent significant positive edge values, and show drought onset.  

 

Analyzing the edge migration/intensification pattern for each SDP will allow for the 

identification of any similarities between the onset and termination of droughts.   
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Principal Components Analysis 

 A Principal Components Analysis (PCA) was performed in the Spatial Analyst 

extension of ArcMap on the index and edge maps of the SDPs in order to highlight the 

statistical patterns between the site files. Figure 13 below shows the 3 principal 

components (PCs) for the index data, along with the amount of variance explained by 

each.  

 
          (47%)          (37%)          (16%)  

Figure 13. Principal components analysis of the site file index data. (Left) PC1, explaining 47% of the 

variance. (Middle) PC2, explaining 37% of the variance. (Right) PC3, explaining 16% of the 

variance. Site files included in the analysis are shown as purple dots.  

 

PC1 (Fig. 13, left) explains 47% of the variance of the index data, and shows a significant 

divide between the northern and southern portions of the CRB, with negative loadings 

over the southern Rockies, northwestern New Mexico, and east-central Arizona. PC2 

(Fig. 13, middle) explains 37% of the variance, with positive loadings centered on the 

Four Corners region (central CRB). PC3 explains 16% of the variance within the index 

data, and exhibits an east-west divide pattern where the sites in the eastern portion of the 

CRB have positive loading values while western Arizona and Nevada sites have negative 

values. 

 Figure 14 shows the 3 PC maps of the edge detection data for all of the SDPs. 
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           (60%)            (27%)           (13%) 

Figure 14. Principal components analysis of the site file edge detection data. (Left) PC1, explaining 

60% of the variance. (Middle) PC2, explaining 27% of the variance. (Right) PC3, explaining 13% of 

the variance. Site files included in the analysis are shown as purple dots.   

 

PC1 (Fig. 14, left) explains 60% of the variance of the edge detection data. The site files 

in the Four Corners region (central CRB) and the southern portion of the CRB have 

positive loadings while the site files in Wyoming have negative loadings. PC2 (Fig. 14, 

middle) explains 27% of the variance, and the sites with positive loadings located in 

eastern Nevada, northern Arizona, and northwest Colorado, while sites in New Mexico 

have negative loadings. PC3 explains 13% of the variance the edge detection data, with 

sites located in the Four Corners region (central CRB) and the eastern half of the CRB 

(northern New Mexico, Colorado, and central/eastern Wyoming) having positive 

loadings, and sites in southern New Mexico and most of Arizona have negative loadings.  

 A PCA was also completed for only the peak edge years within each SDP. The 

results are shown in Figure 15. 
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           (75%)            (16%)           (9%) 

Figure 15.  Principal components analysis of the site file edge detection data for the peak edge years 

within each SDP. (Left) PC1, explaining 75% of the variance. (Middle) PC2, explaining 16% of the 

variance. (Right) PC3, explaining 9% of the variance. Site files included in the analysis are shown as 

purple dots. 

 

Given that these peak edge years were taken into account for the PCA analysis shown in 

Figure 14, it is expected that the PC maps in Figure 15 would look similar to those in 

Figure 14, respectively. However, there are some subtle differences which are expressed 

in the different values of variance explained by each PC.  

 A sampling uncertainty test, as outlined by North et al. (1982), was completed for 

each PCA to determine if each PC pattern was representative of the true pattern. The 

sampling error calculation is shown in Equation 3.  

𝑖 =  𝑖 ∗ (
2

𝜈
)

1

2
                                                               (3)    

In equation 3,  represents each eigenvalue and ν represents the degrees of freedom, 

where the degrees of freedom is equal to the number of sampling points (103 years for 

the Index and Edge PCA, 15 years for the Peak Edge Year PCA). The results of the 

sampling error calculation are shown in Table 3.      
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PCA Type 1 1 

1 

Range 2 2 

2 

Range 3 3 

3 

Range 

Index 1.31 ±0.18 

1.49-

1.13 1.01 ±0.14 

1.15-

0.87 0.45 ±0.06 

0.51-

0.39 

Edge 233 ±32 

265 - 

201 104 ±14 118 - 90 52 ±7 59 - 45 

Peak Edge 

Year 86 ±31 117 - 54 18 ±7 25 - 11 10 ±4 14 - 6 

Table 3. Eigenvalues (), sampling error in the eigenvalue (), and the sampling error envelope ( 

range) for the eigenvalue for each PCA type.  

 

It has been shown that each PC pattern is sufficiently independent of the surrounding PC 

patterns if the sampling error envelope does not overlap with the eigenvalue of the 

surround PC (North et al., 1982). In this study, each PC pattern is sufficiently 

independent, and is therefore able to be interpreted as representing the true pattern.  

Superposed Epoch Analysis 

 A Superposed Epoch Analysis (SEA) was completed to determine if there were 

similarities in the timing of the edge detection between the SDPs. This type of analysis is 

used to characterize a “response” index for a single type of event (Haurwitz and Brier, 

1981). For each SDP, the edge values of the site files within the quadrants that exhibited 

a significant edge during that period were averaged for each year of the SDP. The SDP 

edge averages were plotted for an 8-year period (initiation year 0, through ending year 8). 

This type of comparison is designed to illustrate any response that is locked in time, 

rather than specific to any individual event (Haurwitz and Brier, 1981). In this case, if 

each SDP has a similar edge response, this will be evident in the analysis. Figure 16 

shows the results of the SEA.  
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Figure 16. Superposed Epoch Analysis of the average edge response for each of the specified drought 

periods.  

 

Each of the SDP edge averages exhibit an increase in edge value from year 0 to year 2. 

After year 2, some of the averages begin to decrease while others continue to increase 

and peak in either year 3 or 4. Table 4 shows which SDPs peak in year 1 or 2 versus the 

SDPs that peak in year 3 or 4. 

Year of Edge Peak Specified Drought Periods 

1 or 2 

1610AD-1614AD, 1620AD-1624AD, 1650AD-1654AD, 

1726AD-1730AD, 1745AD-1749AD, 1771AD-1775AD, and 

1843AD-1848AD 

3 or 4 

1554AD-1562AD, 1633AD-1638AD, 1680AD-1686AD, 

1814AD-1820AD, 1866AD-1872AD, 1876AD-1882AD, and 

1930AD-1936AD 

Table 4. List of SDPs and which years in the Superposed Epoch Analysis that the edge peak occurs. 

  To determine whether the edge trends illustrated in Figure 16 were a part of a 

pattern, or simply random, a separate SEA was conducted. Between 1500AD and 

1960AD, 15 random time periods were selected that did not include any of the years in 
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the SDPs, but that did include the same total number of years as are in the analysis in 

Figure 16. The results are shown in Figure 17. 

 
Figure 17. Superposed Epoch Analysis of the average edge response of 15 random “non-drought” 

periods. 

 

This SEA suggests that there is no apparent trend between the non-drought edge 

averages, which further supports the existence of a pattern between the SDP edge 

averages.  

Differences in Species Sensitivity 

 In order to determine if there are large differences in ring-width index based on 

the species of tree, time series of the average index for each species were made for each 

SDP. Only species that appeared in more than 2 out of the 6 states in the CRB were used, 

to ensure a wide coverage. The results for the 1680AD-1686AD and 1745AD-1749AD 

SDPs are shown in Figure 18(a-b). 
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Figure 18. (a) Species-averaged index for 1680AD-1686AD. (b) Species-averaged index for 1745AD-

1749AD. 

  

It is a common feature in all 15 SDPs that the PILO, PIFL, and PCEN species were less 

sensitive to changes in state than PIED, PIMO, PIPO, and PSME (see Table B4 in 

Appendix B for tree species codes). The species that had common trends in sensitivity 

were then averaged together. Figure 19(a-e) shows the results. Years in which all of the 

species displayed an equal sensitivity to a change in state are 1632AD (Fig. 19b), 

1819AD (Fig. 19d), 1842 (Fig. 19d), and 1934AD (Fig. 19e), suggesting that the shift 

from wet to dry conditions during these respective SDPs was of greater magnitude. 
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 Figure 19(a-e). Precipitation-sensitive species index values (blue line), and temperature-sensitive 

species index values (red line) for each specified drought period. The temperature-sensitive species 

index values are generally more stable than the precipitation-sensitive species. Years where both 

precipitation- and temperature-sensitive species exhibit equal sensitivity to changes in state (wet to 

dry) are 1632AD (b), 1819AD (d), 1842AD (d), and 1934AD (e). 

 

 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

y1
8

1
4

y1
8

1
5

y1
8

1
6

y1
8

1
7

y1
8

1
8

y1
8

1
9

y1
8

2
0

y1
8

3
8

y1
8

3
9

y1
8

4
0

y1
8

4
1

y1
8

4
2

y1
8

4
3

y1
8

4
4

y1
8

4
5

y1
8

4
6

y1
8

4
7

y1
8

4
8

y1
8

6
6

y1
8

6
7

y1
8

6
8

y1
8

6
9

y1
8

7
0

y1
8

7
1

y1
8

7
2

In
d

e
x 

Year 

PIED, PIMO, PIPO, PSME: Average

PCEN, PIFL, PILO: Average

D 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

y1
8

7
6

y1
8

7
7

y1
8

7
8

y1
8

7
9

y1
8

8
0

y1
8

8
1

y1
8

8
2

y1
9

3
0

y1
9

3
1

y1
9

3
2

y1
9

3
3

y1
9

3
4

y1
9

3
5

y1
9

3
6

y1
9

4
8

y1
9

4
9

y1
9

5
0

y1
9

5
1

y1
9

5
2

y1
9

5
3

y1
9

5
4

y1
9

5
5

y1
9

5
6

In
d

e
x 

Year 

PIED, PIMO, PIPO, PSME: Average

PCEN, PIFL, PILO: Average

E 



43 

 

Chapter 5 

Interpretations 

Assessing the Edge Detection filter 

 To assess whether the edge detection filter was successful in identifying the onset 

of changes of state from wet to dry, the edge detection output for each quadrant was 

compared to reconstructed PDSI from the respective PDSI grid point (Table B1, 

Appendix B). Figure 20(a-c) shows the edge detection output for three different 

quadrants compared to the reconstructed PDSI for their respective grid points.  
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Figure 20(a-c). (a) Normalized edge output from site files in the New Mexico southwest quadrant 

(colored lines) and reconstructed PDSI from grid point 120 (black line) for SDPs identified for that 

quadrant. (b) Normalized edge output from site files in the Arizona northeast quadrant (colored 

lines) and reconstructed PDSI from  grid point 104 (black line) for SDPs identified for that quadrant. 

(c) Normalized edge output from site files in the Colorado northwest quadrant (colored lines) and 

reconstructed PDSI from grid point 117 (black line) for SDPs identified for that quadrant. 

There are some slight variations in the timing of the edge peak relative to when the 

decrease in the PDSI begins, but the overall pattern indicates that the edge detection filter 

is successful in identifying changes of state within the index data because for every SDP 

that appears in any particular quadrant, the edge peak corresponds to a decrease in the 
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PDSI. PDSI is a measure of drought that utilizes a smoothing filter over a period of 3 to 

36 months. The PDSI was developed to include the entire duration of a drought (or wet 

spell), so that a single abnormally-wet month in the middle of a long-term drought would 

not have an impact on the PDSI, or even 2 or 3 months with near-normal precipitation 

following a drought would not necessarily indicate that the drought is over (Dai and 

NCAR, 2014). This differs from a tree’s response to moisture deficits, because a single 

relatively wet year (relatively wider ring-width) in the middle of a drought period 

(several relatively thin ring-widths) will be apparent. There are criteria for determining 

when a drought (or wet spell) is beginning or ending, and the PDSI is adjusted based on 

these criteria (Alley, 1984; Palmer, 1965). Because the reconstructed PDSI is dependent 

on a majority of the same tree-ring index data that the edge detection is being applied to, 

there is an expected correlation between the two (reconstructed PDSI and the edge 

detection). However, the difference is that PDSI is a cumulative measure of drought 

whereas the edge detection filter is being used to identify changes in state (wet to dry). 

The importance of a repeating occurrence of an edge peak at the same time as a decrease 

in the reconstructed PDSI is that it shows the edge detection filter is finding the onset of 

the dry periods, and the mapping of this response allows for the identification of the 

regions where the change is taking place.  

 To further assess the ability of the edge detection filter to identify the onset of 

drought, a comparison between drought periods identified in this study (SDPs) versus 

droughts identified in other tree-ring reconstructed drought analyses was completed. Both 

the 1930’s and 1950’s drought periods have been well documented in other studies (Cook 

et al., 2007; Meko and Woodhouse, 2005; Stahle et al., 2000). The SDPs of 1620AD-
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1624AD, 1650AD-1654AD, 1680AD-1686AD, 1726AD-1730AD, 1838AD-1848AD, 

and 1866AD-1872AD correspond to years identified by Meko and Woodhouse (2005) as 

drought years for the Blue River Basin (defined by below normal streamflow), which is 

located in the northern CRB. Stahle et al. (2000) identified the onset of the 16
th

 century 

megadrought during the 1550’s in the southern portion of the CRB, which corresponds to 

the 1554AD-1562AD SDP identified in this study.  

Pattern Recognition  

 The positive PC loadings (bright green) and negative PC loadings (black) are a 

measure of the correlation between the site data (either index or edge) with the PC. For 

any particular PC, sites that have positive loadings are the sites that vary together, while 

sites that have negative loadings vary together but in the opposite manner. The 

interpretation of boundaries between positive and negative loadings is they correspond to 

the divide between different overlying circulation features, which result in different in 

climatic conditions. This interpretation is based on studies that have shown tree ring-

width is dependent on the most limiting factor, such as temperature, precipitation, 

disease, biological processes, etc. (Cook et al., 2007; Fritts, 1976; Grissino-Mayer, 2014; 

Meko and Woodhouse, 2005). When trees over such a large geographical area vary in the 

same manner, the most likely limiting factor is climatic conditions.  

 The results of the PCA on the index and edge detection output for the SDPs 

suggest that there are similar circulation patterns forcing the drought intervals. In the case 

of the Index PCA, PC1 (Fig. 13, left) exhibits a north-south divide between the sites that 

vary together, and accounts for 47% of the variance. The sites in the central/southern 
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portions of the CRB have negative loadings, while sites in the northern portion of the 

CRB have positive loadings. This north-south divide pattern is also illustrated in PC2 

(Fig. 13, middle), but the signs of the loadings switch from negative to positive in the 

central/southern portion and from positive to negative in the northern portion of the CRB. 

Together, these similar patterns account for 84% of the variance in the index data. Based 

on the interpretation that the PC spatial loading patterns correspond to circulation 

features, this pattern suggests that a possible atmospheric dipole setup (low pressure 

center in the north with high pressure center in the central/south, or high pressure center 

in the north with low pressure center in the central/south) is a common feature that affects 

variance of tree-ring index values during drought in the CRB.   

 The results of the edge detection PCA show that PC1 (Fig. 14, left) is 

characterized by a similar north-south divide pattern as in PC1 and PC2 of the index 

PCA, and accounts for 60% of the edge variance. The PC1 loading pattern shows that 

sites within the central/southern portion of the CRB change state (wet to dry) together 

while sites in the northern portion of the CRB change state (dry to wet) together. This 

suggests that the possible atmospheric pressure dipole feature is forcing the changes in 

state. PC2 (Fig. 14, middle) accounts for 27% of the variance, and shows that sites in 

New Mexico and eastern Colorado change state (dry to wet) together while the remainder 

of the sites in central, western, and northern portions of the CRB change state (wet to dry) 

together. This loading pattern suggests there is another type of circulation feature that is 

forcing changes in state during the SDPs. Based on PC3’s loading patter (Fig. 14, right) 

there may be a third, more complex circulation patter involved in western US drought.  
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 An additional edge PCA was completed only for sites with a continuous record 

from 1500AD to 1960AD (154 sites), to have the longest temporal coverage. The results 

are shown in Figure 21(a,b).  

 
Figure 21. (a) Edge PCA PC1 pattern, (b) edge PCA PC2 pattern. Sites marked with red dots are 

experiencing loadings less than zero (negative), tan dots represent sites experiencing loadings from 0 

to 0.25, green dots represent sites experiencing loadings from 0.25 to 0.5, and blue dots represent sites 

experiencing loadings greater than 0.5.  
 

The PC1 pattern based on the 154 continuous sites (Fig. 16a) exhibits the same north-

south divide as PC1 in Figure 14, with positive loadings in the central/southern CRB and 

negative loadings to the north. PC2 (Fig. 16b) shows the same northwest-southeast divide 

as PC2 in Figure 14, with positive loadings to the northwest and negative loadings to the 

southeast. Since the same patterns emerge using this limited 154 site subset, it can be said 

that the patterns are both real and robust and recur without significant change over time. 

 It is well known that anomalous states of SSTs affect the distribution of high- and 

low-pressure centers around the globe, leading to changes in state with regard to 

hydroclimatic variables (Cole and Cook, 1998; Cook et al., 2007; Enfield et al., 2001; 
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Gray et al., 2003; Hoerling and Kumar, 2003; McCabe-Glynn et al., 2013; Tootle et al., 

2005). If the patterns of drought onset shown by the edge PCA (Fig. 14) are indeed 

forced by the overlying circulation features, and the circulation features associated with 

the patterns in PC’s 1 and 2 (Fig. 14, left and middle, which together account for 87% of 

the variance) are dependent on SSTs, then this suggests that the individual SDPs are 

forced by similar states of oceanic oscillations. 

 Mantua et al. (1997) calculated correlation coefficients between December – 

February precipitation in North America and the PDO index from 1900-1992 (Fig. 22). 

The results show that the PDO index is positively correlated with precipitation in the 

southwestern U.S. and northern Mexico, and negatively correlated with precipitation in 

the northwest U.S. and western Canada. The red box in Figure 22 shows the location of 

the CRB relative to the correlation analysis. The correlation coefficients exhibit a north-

south divide within the red box. The similarities between the PDO - precipitation 

correlation pattern and the PC1 edge pattern (Fig. 14, left and Fig. 21a) suggest that PC1 

is capturing the variance in drought onset as it relates to the PDO.  
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Figure 22. PDO index loading vectors (1945–1993) for Pacific SST’s and correlations between North 

American winter precipitation and the PDO index are shown (from Mantua et al., 1997; Nigam et al., 

1999). Red box denotes relative location of the CRB. Location of the San Gorgonio, California and 

Nordegg, Alberta tree-ring sampling sites used by MacDonald and Case (2005) are shown also. 

 

 Enfield et al. (2001) calculated correlation coefficients between the AMO index 

and climate division rainfall in the U.S. (Fig. 23). In Figure 23, climate division 

precipitation within the CRB is negatively correlated with AMO, where the highlighted 

dots indicate correlation above the 90% significance level. In the Enfield et al. (2001) 

analysis, the southwest and northeast portions of the CRB experience strong negative 

correlations between precipitation and AMO. These areas correspond to the areas in PC2 

(Fig. 14, middle) that experience large, positive loadings (Arizona and Northern 

Colorado). However,  a strong negative correlation is not present in the northwest portion 

of the CRB (Fig. 23), while at the same time there are large and positive loadings in the 
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northwest CRB in PC2 of Figure 14 (middle). This discrepancy may be influenced by the 

relative size of the climatic divisions in this area with precipitation values assigned to an 

entire climate division possibly not representing the conditions at a particular site because 

climate division boundaries do not necessarily have to correspond to actual transitions 

between climate types. So, these similarities indicate that the pattern in PC2 (Fig. 14) is 

likely capturing the variance in the edge data due to circulation patterns forced by the 

AMO.  

 
Figure 23. Correlation of the AMO index with climate division rainfall (from Enfield et al., 2001). 

Positive correlations are marked with red dots, and negative correlations are marked with blue dots. 

The larger highlighted circles indicated correlations above the 90% confidence level. The red box 

shows the location of the CRB. 

 

 

 Figure 24(a-l) shows the reconstructed state of oceanic oscillations for each SDP 

starting with 1630AD-1638AD (due to length constraints on some of the reconstruction 

data).  
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Figure 24(a-l). Reconstructed oceanic oscillation indices for each SDP (a through l, respectively) 

beginning with the year 1630AD. Nino3.4 index (SST anomalies) (blue), AMO index (red), and PDO 

index (green). Y-axis is the standardized index value. 
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Tree-ring chronologies used in the reconstruction of the AMO index were located in the 

southeastern United States, Northern Scandinavia, the Mediterranean, and Eastern 

Egypt/Jordan (Gray et al., 2004). The data used to reconstruct the PDO index was derived 

from tree-ring chronologies located in southern California, western Canada, southern 

Alaska, and eastern China (Biondi et al., 2001; D’Arrigo et al., 2001; MacDonald and 

Case, 2005; Shen et al., 2006). The data used to reconstruct Nino3.4 Index (SST 

anomalies) was from tree-ring chronologies located in the tropics and mid-latitude of 

both hemispheres (Li et al., 2013), corals from the central Pacific, tree-ring chronologies 

from the Texas-Mexico border region, corals plus tree-rings from the tropics (Wilson et 

al., 2010), and tree-ring chronologies spanning the coterminous United States from the 

North American Drought Atlas (Li et al., 2011). The state of oceanic oscillations was 

compared to the peak index and edge years listed in Table B2 in Appendix B. The most 

common combination of oscillation indices that occurred during the peak edge and peak 

index years was negative Nino3.4 index (SST anomalies), negative PDO index, and 

positive AMO index, occurring 8 out of 12 instances. Instrumental data and the results 

from the analysis of drought frequency by McCabe et al. (2004) supports that this 

combination of indices corresponds to drought in the CRB (Gray et al., 2004; NOAA 

ESRL, 2015).  

Drought Classification 

 Comparing the edge migration of the 1726AD-1730AD SDP (Fig. 11) to the edge 

migration of the 1948AD-1956AD SDP (Fig. 12), it is apparent that there are significant 

differences between the two. While no two SDPs have an identical edge migration 

pattern, similarities between the SDPs, and thus the potential for categorization, lie in the 
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common areas affected by drought onset. These are the patterns represented in the edge 

PCA’s (Fig. 14 and Fig. 21). Based on the variance accounted for by PC1, the central and 

southern portions of the CRB are the areas that experience drought onset the most. PC2 in 

Figure 14 shows that the second most common drought onset pattern includes the central 

and western portions of the CRB. The patterns illustrated in PC1 (Fig. 14, left) and PC2 

(Fig. 14, middle) are the most significant drought onset patterns, accounting for 87% of 

the variance in the edge data. Mapping PC1 (PDO-type) and PC2 (AMO-type) loadings 

temporally allows for the discrimination of the PDO and AMO influence on each SDP.  

 

Figure 25. PDO-type (PC1) loadings (red line) and AMO-type (PC2) loadings (blue) for each SDP 

from 1500AD – 1960AD. This analysis only includes the 154 sites with continuous records. 

The PDO-type loadings exhibit a consistent maximum for each SDP, which indicates that 

PDO has a similar influence on the drought onset pattern for almost every SDP. Also, the 

mean spacing between each of the SDPs is about 20-30 years, which corresponds to the 

accepted episodic oscillation of 25 years for PDO. In contrast, AMO-type loadings have 

periods of strong positive loadings (mid- to late-1600’s and mid- to late-1800’s) and 

periods of relatively weak positive loadings (mid-1700’s). This amplitude-modulated 

pattern is also present in AMO index reconstructions. Figure 26 shows the reconstructed 

AMO index from Gray et al. (2004) for the period of study.  
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Figure 26. Reconstructed AMO index from Gray et al. (2004). 

 

There is a strong, positive AMO index during the late 1600’s and late 1800’s, which 

corresponds to the periods in Figure 25 when AMO has a stronger influence on drought 

onset, as indicated by the strong, positive AMO-type loadings. During the mid-1700’s, 

the reconstructed AMO index is relatively neutral. This corresponds to the timing of 

relatively weak, positive AMO-type loadings seen in Figure 25 with PDO providing the 

majority of the forcing on the drought onset pattern. Therefore, the AMO index strength 

plays a critical role in how much influence Atlantic oceanic oscillations, as quantified in 

the AMO index, have on drought onset patterns in the CRB.  

 Superposed Epoch Analysis shows that the edge detection for each SDP has the 

same general pattern, with only slight differences between each SDP. As illustrated in 

Figure 16, some of the SDPs have one sharp edge peak, which indicates there is one year 

of a significant change in state, where others have a smoothed edge peak with multiple 

large, positive edge values in a row, indicating an initial change of state followed by a 

continued change of state of similar magnitude acting to intensify the drought.  
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Chapter 6 

Conclusions and Future Research 

 Using an edge detection filter, occurrences of drought onset in the CRB were 

identified and characterized in terms of their spatial patterns and migration vectors. The 

SDP edge PC1 patterns (Fig. 14, left and Fig. 21a) support the idea of an atmospheric 

pressure dipole (forced by changes in oceanic oscillations) acting as the main control on 

the variance of changes in state from wet to dry conditions within each SDP in the CRB. 

This pattern is very similar to the north-south dipole present in the CRB during the 

negative phase of PDO. PC 2 (Fig. 14, middle, and Fig. 21b) suggest that there is a 

second atmospheric circulation pattern in addition to this dipole that plays a role in 

drought onset as well, likely a circulation pattern forced by the positive phase of AMO. 

Mapping of the PC1 and PC2 loadings temporally further suggests that PDO and AMO 

are the leading forcing mechanisms for drought onset patterns in the CRB. Therefore, 

even though the majority of the SDPs have the same oceanic oscillation index setup that 

is ultimately forcing drought onset, these droughts are different. There are differences in 

the timing of the peak index year relative to the onset of drought (Table B2, Appendix B), 

there are differences in magnitude (as evidenced by the species analysis in Fig. 19), and 

there are differences in the edge migration patterns.  

 The edge detection filter could also be applied to different types of tree-ring 

analysis, such as earlywood-width, latewood-width, or wood density. This may allow for 

a seasonal distinction between drought onset patterns. It would also be beneficial to apply 

this technique to the tree-ring records in the CRB dating back to the early 12
th

 century to 
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analyze the onset pattern of the single greatest megadrought to determine if the edge was 

similar or different from those within the past 500 years (Cook et al., 2007). 

 Within the CRB, there is a responsibility to balance economic interests, 

environmental management, and water law (Pulwarty and Melis, 2001). This balance is 

affected by changes in water availability, and controls on its variability, which include 

climate (Pulwarty and Melis, 2001). The results presented in this paper are a useful 

starting point for improving drought predictability, and possibly aiding in water 

management decisions during times of drought onset. For instance, the patterns shown in 

the PCA analysis provide insight as to which areas in the CRB are affected by drought 

the most, and how these sites vary together. If a pattern similar to that of PC1 in Figure 

14 (left) begins to emerge with respect to a decrease in precipitation at meteorological 

observation stations, and the state of oceanic oscillation indices is known, it is possible to 

know the general region within the CRB that will most likely experience similar 

conditions.  

 A more detailed analysis between the edge patterns and individual drought 

periods and their duration could result in improved drought predictability. For example, if 

a particular drought onset pattern develops, could this be indicative of how long the 

drought will last? 3 years? 5 years? 10 years? Applying the GISS GCM 2100 scenario 

with economic development, Lane et al. (1999) found that the major overall impacts of 

global warming in the United States occur in the west, and include more stress on 

available water due to increases in total withdrawals and, in some areas, decreases in 

stream flows. An enhanced ability to better predict drought patterning and duration in the 

currently over appropriated Colorado River Basin becomes increasingly more important 
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when considering the effect of global warming on future availability and wise use of 

scarce water resources. 
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Appendix A 

Equations 

 

 

Equation 1. The Gaussian smoothing equation applied to a tree-ring index value in a 

particular year, where NM587 represents the index value for that particular year. The 

resulting smoothed index value for that year takes into account the index values of the 2 

years prior and the 2 years post the year of interest.  

 
NM587gaussian =  

SUM(LAG(NM587,-2),(LAG(NM587,-1)*2),(NM587*5),(LAG(NM587,1)*2),LAG(NM587,2)) 

 

 

 

 

Equation 2. The edge detection equation applied to the output of the Gaussian smoothing 

equation (Equation 1), where NM587gaussian is the smoothed index value for a 

particular ‘year of interest’. The edge detection takes into account the change in 

smoothed index magnitude from the year before the ‘year of interest’ to the year after the 

‘year of interest’. The edge weightings were assigned based on the Canny (1986) 

description of a step-impulse response edge detector.  
 

NMedge =  

SUM((LAG(NM587gaussian,-1)*-2),(NM587gaussian*0),(LAG(NM587gaussian,1)*2)) 
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Appendix B 

Tables 

Table B1. PDSI grid point and number of tree-ring site files within each quadrant. 

Quadrant PDSI Grid Point Number of Site Files 

New Mexico – Southwest 120 29 

New Mexico – Northwest  119 53 

New Mexico – Northeast 133 21 

Colorado – Southwest 118 37 

Colorado – Northwest  117 22 

Colorado – Northeast 131 67 

Colorado – Southeast 132 20 

Arizona – Northwest 88 41 

Arizona – Northeast 104 30 

Arizona – Southeast 105 53 

Nevada – Southeast 73 3 

Nevada – Eastern 72 17 

Nevada – Northeastern 71 6 

Utah – Southwest 87 2 

Utah – Northeast 102 9 

Utah – Southeast 103 6 

Wyoming – Western 101 23 

Wyoming – Central/Eastern 116/130 13 

 

 

 

 

 

 

 



63 

 

Table B2. Peak edge years and peak index years within each specified drought period. A 

peak year was calculated by averaging only the site files within the quadrants that 

experienced drought onset during that particular specified drought period. The peak edge 

year is defined as the year within the specified drought period with the maximum average 

edge value, and the peak index year is defined as the year within the specified drought 

period with the lowest average index value. 

 

Specified Drought Period Peak Edge Year Peak Index Drought Year 

1554AD-1562AD 1557 1561 

1610AD-1614AD 1612 1613 

1620AD-1624AD 1622 1624 

1630AD-1638AD 1630 1632 

1650AD-1654AD 1653 1654 

1680AD-1686AD 1684 1685 

1726AD-1730AD 1728 1729 

1745AD-1749AD 1747 1748 

1771AD-1775AD 1772 1773 

1814AD-1820AD 1817 1819 

1838AD-1848AD 1840 1842 

1866AD-1872AD 1870 1871 

1876AD-1882AD 1879 1880 

1930AD-1936AD 1933 1934 

1948AD-1956AD 1950 1954 
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Table B3. Number of tree-ring site files included in each 100-year period. Site files that 

did not have a complete record for the entire 100-year period were not used for that 

particular period.  

100-Year Period Number of Site Files used in Spatial Analysis 

Index 1900-1999 434 

Index 1800-1899 422 

Index 1700-1799 385 

Index 1600-1699 255 

Index 1500-1599 154 

Edge 1900-1999 432 

Edge 1800-1899 423 

Edge 1700-1799 385 

Edge 1600-1699 254 

Edge 1500-1599 154 
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Table B4. Tree species codes (WSL, 2012), the dominant sensitivity of the species 

(Scuderi, 2015), and the number of site files per species used in statistical analysis.  

Species Code Species Name Precip. vs. Temp. 

Sensitive 

Number of Site 

Files 

PIED Colorado Pinyon, 

Colorado Pinyon 

pine, Pinyon, and 

Pinyon pine 

Precipitation 

sensitive 

88 

PIMO Single Leaf Pinyon Precipitation 

sensitive 

13 

PIPO Ponderosa pine Precipitation 

sensitive 

130 

PSME Douglas fir Precipitation 

sensitive 

119 

PCEN Engelmann spruce, 

Mountain spruce, 

Silver spruce, and 

White spruce 

Precipitation and 

Temperature 

sensitive 

27 

PIFL Limber pine Temperature 

sensitive 

16 

PILO Great Basin 

Bristlecone pine, 

Intermountain 

Bristlecone pine, and 

Western Bristlecone 

pine  

Temperature 

sensitive 

11 
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