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Abstract

Latent structure techniques have recently found extensive use in regression analysis

for high dimensional data. This thesis attempts to examine and expand two of such

methods, Partial Least Squares (PLS) regression and Supervised Principal Compo-

nent Analysis (SPCA). We propose several new algorithms, including a quadratic

spline PLS, a cubic spline PLS, two fractional polynomial PLS algorithms and two

multivariate SPCA algorithms. These new algorithms were compared to several pop-

ular PLS algorithms using real and simulated datasets. Cross validation was used to

assess the goodness-of-fit and prediction accuracy of the various models. Strengths

and weaknesses of each method were also discussed based on model stability, robust-

ness and parsimony.
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The linear PLS and the multivariate SPCA methods were found to be the most

robust among the methods considered, and usually produced models with good fit

and prediction. Nonlinear PLS methods are generally more powerful in fitting non-

linear data, but they had the tendency to over-fit, especially with small sample sizes.

A forward stepwise predictor pre-screening procedure was proposed for multivariate

SPCA and our examples demonstrated its effectiveness in picking a smaller number

of predictors than the standard univariate testing procedure.
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Chapter 1

Introduction

In disciplines such as economics, computational chemistry, social science, psychol-

ogy, medical research and drug development, it is not uncommon to have high di-

mensional data with a large number of variables, and relatively limited sample sizes.

Multicollinearity typically exists in such data causing numerical and statistical prob-

lems with applying traditional regression techniques such as Ordinary Least Squares

(OLS) regression. Modeling techniques with latent variables that are not directly

observed or measured but constructed by projecting the raw variables onto lower

dimensional spaces have been developed to deal with these issues. Partial Least

Squares (PLS) regression and Supervised Principal Component Analysis (SPCA)

are two popular latent variable modeling techniques. Both PLS and SPCA con-

struct the latent variables, or components, with orthogonality and certain variance

or covariance maximization criteria. In this thesis, we seek to expand PLS and SPCA

techniques and compare them with some previously established PLS algorithms.

Chapter 2 reviews and expands PLS methods. In Section 2.1, we review the two

most popular algorithms, NIPALS and SIMPLS for linear PLS. We also discuss these

algorithms’ differences and similarities. In Section 2.2 we review a number of popular
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Chapter 1. Introduction

nonlinear PLS methods, which generalize linear PLS by using polynomial functions

for the inner relations between the latent variables for the predictors and responses.

Section 2.2.1 reviews Wold et al.’s (1989) quadratic PLS algorithm and discusses its

limitations. In Section 2.2.2, we review the error-based quadratic PLS algorithms

developed by Baffi et al. (1999b). Their error-based weights updating procedure

will be used in our new nonlinear PLS algorithms. In Section 2.2.3, we review Li

et al.’s (2001) nonlinear PLS method integrating the Box and Tidwell (1962) power

transformation. Section 2.2.4 reviews Wold’s (1992) spline PLS algorithm. In Section

2.3.1, we propose a simplified quadratic and a simplified cubic spline PLS algorithm.

In Section 2.3.2, we propose two new nonlinear PLS algorithms utilizing fractional

polynomial transformations. Examples illustrating these algorithms are given in

Section 2.3.3, with comparisons to several other PLS algorithms. In Section 2.4.1,

we present a general formulation for prediction with PLS methods. In Section 2.4.2,

we describe the use of cross validation to evaluate the performance of PLS methods.

In Chapter 3 we use a number of real and simulated datasets to compare the fit

and prediction properties of the different PLS methods. The data are described in

Section 3.1 and 3.2. Results are presented and discussed in Sections 3.3 - 3.4.

In Chapter 4 we discuss Supervised Principal Component Analysis (SPCA). We

first review traditional principal component analysis (PCA) and the univariate SPCA

proposed by Bair and Tibshirani (2004). In Section 4.2 we generalize SPCA to allow

multiple responses. Two versions of mutivariate SPCA are proposed. One uses

univariate Likelihood Ratio Tests (LRT) to order predictors individually and the

other uses a forward stepwise procedure for sequentially ordering the predictors. In

Section 4.3, the multivariate SPCA algorithms are compared to the PLS methods

using the example datasets. Discussion of the results is given in Section 4.4.

In Chapter 5, we summarize the dissertation findings and discuss potential future

research.
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Chapter 2

Partial Least Squares

Partial Least Squares (PLS), also called “Projection to Latent Structures,” is a

relatively new biased regression modeling technique that was first developed and

used in economics by Herman Wold (Wold, 1966, 1975). It then became popular

in a number of application areas such as computational chemistry (chemometrics),

quantitative structure-activity relationships modeling, multivariate calibration, and

process monitoring and optimization. In the past four decades, PLS methodology

has been expanded beyond the initial linear NIPALS algorithm (Nonlinear Iterative

Partial Least Squares) developed by H. Wold and coworkers during the mid 1970s

(Eriksson et al., 1999). In the late 1980s to early 1990s, PLS was formulated in a

statistical framework (Höskuldsson, 1988; Helland, 1990; Frank and Friedman, 1993).

de Jong (1993) developed a linear PLS algorithm, SIMPLS, in which the latent

variables are calculated directly rather than iteratively. Svante Wold, Herman’s

son, has probably made the most significant contributions to the PLS literature and

popularized PLS in computational chemistry. His work (Wold et al., 1989; Wold,

1992) on nonlinear PLS enabled PLS to fit highly nonlinear data. Later works by

Baffi et al. (1999b) and Li et al. (2001) modified Wold’s nonlinear PLS algorithms to

allow more flexible inner relationships. These later methods were shown to achieve

3



Chapter 2. Partial Least Squares

better fit and prediction with a number of datasets.

PLS emerged as a way to model ill-conditioned data for which the ordinary least

squares (OLS) regression is not appropriate. Suppose we have data matrices, X

and Y , with X being an N × P predictor matrix and Y being an N ×M response

matrix. If the goal is to predict Y from X, the simplest method to use is OLS

regression, where the underlying model is often written as Y = XB + E, where B

is the P ×M coefficient parameter matrix and the rows of E are usually assumed

to be independent identically distributed (i.i.d.) vectors of normal random errors.

When X is full rank, the parameter matrix can be estimated with the least squares

estimator: B̂ = (X ′X)−1X ′Y . However, when the number of predictors is large

compared to the number of observations, X may be singular and the parameter

estimates are not unique. A solution is to reduce the dimension of X through latent

variable projections. Principal Component Analysis (PCA) is probably the most

popular approach taking this strategy. In PCA, much of the variance in X can

often be explained by a few orthogonal latent variables or components (often one or

two). The orthogonality of the principal components eliminates multicollinearity in

X. Then these few principal components can be used as new predictors in an OLS

regression with the response Y . Since the principal components are chosen to explain

X only, irrelevant information with regard to Y is also retained. PLS can be viewed

as a response to this weakness of PCA in that it extracts information that is relevant

to both Y and X through a simultaneous decomposition of both the response and

the predictor matrices.

4



Chapter 2. Partial Least Squares

2.1 Linear PLS: NIPALS and SIMPLS

Linear PLS decomposes X and Y in terms of sets of orthogonal factors and loadings.

In this following illustration of the basic structure of linear PLS, XN×P and YN×M

denote the centered (with mean 0) and scaled (with standard deviation 1) predictor

and response matrices.

A linear PLS model with A components has the form

XN×P = TN×AP
′
A×P + E

= [t1, t2, ..., tA]


p′1

p′2
...

p′A

+ E

=
A∑
a=1

tap
′
a + E = t1p

′
1 + t2p

′
2 + · · ·+ tAp

′
A + E,

and

YN×M = UN×AQ
′
A×M + F

= [u1, u2, ..., uA]


q′1

q′2
...

q′A

+ F

=
A∑
a=1

uaq
′
a + F = u1q

′
1 + u2q

′
2 + · · ·+ uAq

′
A + F,

where the columns of T and U (ta and ua for a = 1, 2, ..., A) are latent variables (also

called “factors” or “factor scores” in PLS) for X and Y , the columns of P and Q (pa

and qa for a = 1, 2, ..., A) are X and Y loading vectors, and E and F are residuals.

5



Chapter 2. Partial Least Squares

The latent variables ta and ua are constrained to be in the column space of X and

Y , respectively. That is, ta = Xwa and ua = Y ca for some wa and ca, and therefore

T = XW and U = Y C, where wa and ca are the ath column of W and C, respectively.

Different PLS algorithms estimate wa and ca differently through fulfilling certain

covariance maximization criteria with a number of constraints. Details about these

criteria and constraints for two of the most popular PLS algorithms, NIPALS and

SIMPLS, will be given in Sections 2.1.1 and 2.1.2.

Besides the decomposition of the data matrices, a linear relation is assumed

between each pair of the latent variables: ua = bata + ha, where ba is a constant and

ha denotes residuals. Write diag(B) as an A × A matrix containing b1, b2, ..., bA as

the diagonal elements and zeros as the other elements. This allows Y to be modeled

by T and Q as:

YN×M = TN×Adiag(B)A×AQ
′
A×M + F ∗

= [t1, t2, · · · , tA]


b1 0 · · · 0

0 b2 · · · ...
... · · · . . . 0

0 · · · 0 bA




q′1

q′2
...

q′A

+ F ∗

=
A∑
a=1

tabaq
′
a + F ∗ = t1b1q

′
1 + t2b2q

′
2 + ...+ tAbAq

′
A + F ∗.

Letting q∗
′
a = baq

′
a, we can rewrite this equation in regression form as

YN×M = t1q
∗
1
′ + t2q

∗
2
′ + ...+ tAq

∗
A
′ + F ∗

=
A∑
a=1

taq
∗
a
′ + F ∗

= TQ∗′ + F ∗

= XWQ∗′ + F ∗

= XBPLS + F ∗,

6



Chapter 2. Partial Least Squares

where BPLS = WQ∗′.

2.1.1 Iterative PLS algorithm: NIPALS

Herman Wold (1975) published the first PLS algorithm, which he named “Nonlinear

Iterative Partial Least Squares (NIPALS).” Although it is described as “nonlinear,”

the inner relation between the latent variables ua and ta is linear, thus we consider

NIPALS a linear PLS algorithm. The basic steps of NIPALS are described at the

end of this section in Table 2.1. In summary, NIPALS searches for the estimates of

the first pair of components t1 and u1 through iterative steps 2-8 in Table 2.1 and

it stops when the estimate of t1 does not change given some pre-specified tolerance.

Once t̂1 and û1 are obtained, the algorithm proceeds by deflating the data matrices

(Step 11) and repeats the iterative steps to obtain t̂2 and û2, and so on until the last

factor scores t̂A and ûA are obtained.

Instead of estimating the X weights wa and Y weights ca directly, NIPALS esti-

mates weights w∗a and c∗a based on the deflated matrices Xa−1 and Ya−1. Therefore

in NIPALS the latent variables ta and ua are estimated as

t̂a = Xa−1ŵ
∗
a and ûa = Ya−1ĉ

∗
a.

Since C(Xa−1) ⊂ C(X) and ta = Xwa = Xa−1w
∗
a, we have wa = (X ′X)−1X ′Xa−1w

∗
a.

Hence we can get the estimate of wa with ŵa = (X ′X)−1X ′Xa−1ŵ
∗
a. Similarly, the

estimate of ca satisfies ĉa = (Y ′Y )−1Y ′Ya−1ĉ
∗
a. Once we have the estimates for wa, ba

and qa, we can obtain the estimate of the PLS coefficient BPLS with B̂PLS = Ŵ Q̂∗
′
.

In Table 2.1, we use t
(i)
a , u

(i)
a , w

∗(i)
a and c

∗(i)
a to denote the intermediate values

for the estimates of parameters ta, ua, w
∗
a and c∗a at the ith iteration, respectively,

7



Chapter 2. Partial Least Squares

and t̂a, ûa, ŵ
∗
a and ĉ∗a denote the estimates of the corresponding parameters upon

convergence.

Manne (1987) and Höskuldsson (1988) have shown that upon convergence the

NIPALS weights estimates ŵ∗a and ĉ∗a correspond to the first pair of left and right

singular vectors obtained from a singular vector decomposition (SVD) of the matrix

of cross-products X ′a−1Ya−1, where X0 and Y0 are the original mean centered and

scaled X and Y matrices, and Xa−1 and Ya−1 are the deflated X and Y matrices

(see Step 11) for a > 1. Therefore ŵ∗a and ĉ∗a maximize the squared covariance

between t̂a = Xa−1ŵ
∗
a and ûa = Ya−1ĉ

∗
a, cov

2(Xa−1ŵ
∗
a, Ya−1ĉ

∗
a) with unit length con-

straints ŵ∗
′
a ŵ
∗
a = 1 and ĉ∗

′
a ĉ
∗
a = 1 (de Jong, 1993). In addition, t̂′as and û′as satisfy

t̂1⊥t̂2⊥...⊥t̂A and û1⊥û2⊥...⊥ûA, respectively (Höskuldsson, 1988; de Jong, 1993).

2.1.2 Non-iterative Linear PLS algorithm: SIMPLS

A disadvantage of NIPALS is that unlike PCA, in which each principal component is

a linear combination of the original set of variables, the second through Ath NIPALS

components, t2, t3, ..., tA and u2, u3, ..., uA, are all calculated based on the deflated

X and Y matrices. Hence it is difficult to interpret these latent variables. de Jong

(1993) developed an alternative approach called SIMPLS, which avoids the iterative

procedure, the deflation of X and Y , and derives the PLS factors directly as linear

combinations of the original data matrices.

The SIMPLS algorithm extracts successive orthogonal factors of X, ta = Xwa,

that are determined by maximizing their covariance (or cross-product) with corre-

sponding Y factors, ua = Y ca. Again, X and Y are the mean centered and scaled

predictor and response matrices, whereas wa and ca are the PLS X and Y weights for

the ath component. Specifically, de Jong sets four conditions to control the solution

of the PLS weights:

8



Chapter 2. Partial Least Squares

(1) Maximization of covariance: u′ata = c′a(Y
′X)wa = max!

(2) Normalization of X weights wa: w
′
awa = 1.

(3) Normalization of Y weights ca: c
′
aca = 1.

(4) Orthogonality of X factors: t′bta = 0 for a > b.

The last constraint is necessary because without it there will be only one solution.

In particular, the X and Y weights for the first component, w1 and c1, can be

calculated as the first left and right singular vectors of the cross-product matrix

S0 ≡ X ′Y , but then the weights for the remaining components are not defined. The

last constraint requires for a > b:

t′bta = t′bXwa = (t′btb)p
′
bwa = 0⇒ p′bwa = 0

⇒ wa⊥pb

⇒ wa⊥Pa−1 ≡ [p1, ..., pa−1],

where pb is the loading vector for the bth X factor. Hence any later weights vector

wa, where a > 1, is orthogonal to all preceding loadings.

Let P⊥a−1 = IP −Pa−1(P ′a−1Pa−1)−1P ′a−1 be a projection operator onto the column

space orthogonal to Pa−1, i.e. all X loading vectors preceding pa. Then wa and ca can

be obtained from the SVD of P⊥a−1S0, i.e. the cross-product matrix after a loading

vectors have been projected out, or S0 projected onto a subspace orthogonal to Pa−1.

SIMPLS avoids deflating the X and Y matrices by deflating the cross-product

S0 = X ′Y instead. The deflation is achieved by Sa−1 = S0−Pa−1(P ′a−1Pa−1)−1P ′a−1S0

for a ≥ 2. In practice, Sa−1 is usually deflated from its predecessor Sa−2 by carrying

out the projection onto the column space of Pa−1 as a sequence of orthogonal projec-

tions. For this, an orthonormal basis for Pa−1, Va−1 ≡ [v1, v2, ..., va−1], is constructed

from a Gram-Schmidt orthonormalization of Pa−1, i.e., va−1 ∝ pa−1−Va−2(V ′a−2pa−1),

a = 3, ..., A starting with V1 = v1 ∝ p1. Thus the deflation of Sa−1 is obtained by

9
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Sa−1 = Sa−2 − va−1(v′a−1Sa−2) for a ≥ 2 (de Jong, 1993).

Usually, the number of response variables in Y is smaller than the number of

predictors in X, i.e., M < P . It is more efficient to compute the estimate of ca from

S ′a−1Sa−1 by finding its dominant eigenvector and then obtain the estimate of wa by

ŵa ∝ Sa−1ĉa.

We summarize the basic idea of the SIMPLS algorithm in Table 2.2. The steps

of the SIMPLS algorithm are presented as in Table 2.3.

In Step 16 of Table 2.3, the PLS regression coefficients are computed as

B̂PLS = Ŵ Q̂∗
′
, where Q̂∗

′
= diag(B̂)Q̂′. Note the diagonal elements in B̂, i.e. the

estimates for the inner relation coefficients ba
′s, are not computed directly in SIMPLS

but can be easily obtained once we have the t̂′as and û′as.

de Jong (1993) proves that NIPALS and SIMPLS are equivalent when Y is uni-

variate. Although for multivariate responses, t̂a and ûa computed from these two

algorithms are not the same after the first component, experience suggests that

these algorithms give similar results (de Jong, 1993).

As noted earlier, a main advantage of SIMPLS over NIPALS is that the SIMPLS

weights have a more straightforward interpretation than the NIPALS weights since

the factors are computed directly in terms of the original data matrices. de Jong

(1993) also found that SIMPLS is computationally faster than NIPALS, especially

when the number of X variables is large. However we note that NIPALS converges

quickly and with today’s advanced computing technology the speed disadvantage

may be of little concern unless the dataset is very large.

10
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Table 2.1: Outline of the NIPALS Algorithm

Step Summary of Step
0 Set X0 = X and Y0 = Y , where X and Y are centered and scaled.

Set a = 1.

1 Set i = 1 and initialize the Y factor scores u
(i)
a as the first column of Y ,

and initialize the X factor scores t
(i)
a as the first column of X.

2 Estimate X weight w
∗(i)
a by regressing Xa−1 on u

(i)
a : w

∗(i)
a =

X′a−1u
(i)
a

u
(i)′
a u

(i)
a

.

3 Normalize w
∗(i)
a to unit length: w

∗(i)
a = w

∗(i)
a∥∥∥w∗(i)a

∥∥∥ .

4 Calculate X factor scores: t
(i)
a = Xa−1w

∗(i)
a .

5 Calculate Y weights c
∗(i)
a by regressing Ya−1 on t

(i)
a :c

∗(i)
a =

Y ′a−1t
(i)
a

t
(i)′
a t

(i)
a

.

6 Normalize c
∗(i)
a to unit length: c

∗(i)
a = c

∗(i)
a∥∥∥c∗(i)a

∥∥∥ .

7 Update u
(i)
a : u

(i)
a = Ya−1c

∗(i)
a .

8 Check convergence by examine the change in t
(i)
a ,

i.e.,
∥∥∥t(i−1)
a − t(i)a

∥∥∥ /∥∥∥t(i−1)
a

∥∥∥ < ε, where ε is small, e.g., 10−6.

If no convergence, increment i = i+ 1 and return to Step 2.

Upon convergence, set t̂a = t
(i)
a , ûa = u

(i)
a , ŵ∗a = w

∗(i)
a , and ĉ∗a = c

∗(i)
a .

9 Estimate X and Y loadings by regressing Xa−1 on t̂a and

regressing Ya−1 on ûa: p̂a =
X′a−1 t̂a

t̂′a t̂a
, q̂a =

Y ′a−1ûa

û′aûa
.

10 Obtain the coefficient estimate between ua and ta by regressing ûa on t̂a:

b̂a = û′a t̂a
t̂′a t̂a

.

11 Deflate Xa−1 and Ya−1 by removing the present component:

Xa = Xa−1 − t̂ap̂
′
a and Ya = Ya−1 − b̂at̂aĉ∗

′
a .

12 Increment a = a+ 1.
Repeat Step 1 - 11 to give desired number of components.

11
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Table 2.2: Basic idea of the SIMPLS Algorithm

Basic SIMPLS algorithm
Center and scale X and Y
Obtain the cross-product S0 = X ′Y
For a = 1, ..., A
if a = 1, compute SVD of S0

if a ≥ 2, compute SVD of Sa−1 = Sa−2 − va−1(v′a−1Sa−2)
Estimate X weights ŵa = first left singular vector of SVD of Sa−1

Estimate X factor scores t̂a = Xŵa
Estimate Y weights ĉa = Y ′ t̂a

t̂′a t̂a

Estimate Y factor scores ûa = Y ĉa
Estimate X loadings p̂a = X ′t̂a/t̂

′
at̂a

Store ŵa, t̂a, ûa, and p̂a as the ath column of

Ŵ , T̂ , Û , and P̂ , respectively
End

12



Chapter 2. Partial Least Squares

Table 2.3: Steps for the SIMPLS Algorithm

Step Summary of Step
1 Compute cross-product S0 = X ′Y

Set a = 1
2 Estimate Y weights ca: ĉa = dominant eigenvector of S ′a−1Sa−1

3 Then estimate X weights wa: ŵa = Sa−1ĉa
4 Estimate the X score: t̂a = Xŵa
5 Normalize X score: t̂a = t̂a

‖t̂a‖
6 Normalize X weights: ŵa = ŵa

‖ŵa‖
7 Estimate the X loading: p̂a = X ′t̂a
8 Estimate the Y loading according to t̂a: q̂a = Y ′t̂a
9 Estimate the Y score: ûa = Y ĉa
10 Initialize orthogonal loadings: v̂a = p̂a
11 Construct the orthonormal basis by G-S orthonormalization:

If a > 1 then

v̂a = p̂a − V̂a−1(V̂ ′a−1p̂a)
End (If)

12 Normalize v̂a: v̂a = v̂a

‖v̂a‖
13 Deflation of cross-product Sa−1: Sa = Sa−1 − va(v′aSa−1)
14 Store ŵa,t̂a,p̂a,q̂a,ûa,and v̂a as

the ath columns of Ŵ ,T̂ ,P̂ ,Q̂,Û ,and V̂ , respectively.
15 Increment a = a+ 1.

Repeat Steps 2-14 for desired number of components (A).

16 Estimate the regression coefficients BPLS: B̂PLS = Ŵ Q̂∗
′
.

13
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2.2 Nonlinear PLS with polynomial inner

relations

As in linear PLS, a nonlinear PLS model with A components has the form

X = TP ′ + E and Y = UQ′ + F , where P and Q contain the loading vectors for

X and Y , respectively, whereas T and U contain the latent variables ta and ua that

are constrained to be in the column space of X and Y , respectively, i.e., ta = Xwa

and ua = Y ca for some wa and ca. However instead of assuming that ua and ta are

linearly related, more flexible relationships will be allowed.

Linear PLS regression is very popular as it is a robust multivariate linear regres-

sion technique for the analysis of noisy and highly correlated data. However when

applied to data that exhibit significant non-linearity, linear PLS regression is often

unable to adequately model the underlying structure. Between the late 1980s and

early 2000s, researchers made great advances in integrating non-linear features within

the linear PLS framework. The goal was to produce nonlinear PLS algorithms that

retain the orthogonality properties of the linear methodology but were more capable

of dealing with nonlinearity in the inner relations. Among these new PLS meth-

ods, the most notable are the quadratic PLS algorithm (QPLS2) proposed by Wold

et al. (1989) and later modifications. These methods include Frank’s (1990) nonlin-

ear PLS (NLPLS) algorithm with a local linear smoothing procedure for the inner

relations, Wold’s (1992) spline PLS algorithm (SPL-PLS) with a smooth quadratic

spline function for the inner relations, and the error-based quadratic PLS algorithms

proposed by Baffi et al. (1999b). A fair amount of effort was also made in devel-

oping PLS algorithms using neural networks, which can approximate any continu-

ous function with arbitrary accuracy (Cybenko, 1989). Important neural network

PLS methods are Qin and McAvoy’s (1992) generic neural network PLS algorithm

(NNPLS), Holcomb and Morari’s (1992) PLS-neural network algorithm combining

14
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PCA and feed forward neural networks (FFNs), Malthouse et al.’s (1997) nonlin-

ear PLS (NLPLS) algorithm implemented within a neural network, Wilson et al.’s

(1997) RBF-PLS algorithm integrating a radial basis function network, and Baffi et

al.’s (1999a) error-based neural network PLS algorithm. While neural network PLS

algorithms are popular, they are also criticized for having the tendency to over-fit

the data (Mortsell and Gulliksson, 2001), being not parsimonious, and unstable (Li

et al., 2001). We will not consider neural network methods here.

Another important nonlinear PLS algorithm is Li et al.’s (2001) Box-Tidwell

transformation based PLS (BTPLS). The BTPLS algorithm is attractive because it

provides a family of flexible power functions for modeling the PLS inner relation,

with linear and quadratic models as special cases. Secondly and probably more im-

portantly, BTPLS automatically selects the “best” power based on goodness-of-fit

of the data. Therefore, there is no need to pre-specify the exact functional form

for the PLS inner relation, as was necessary with fixed-order polynomial PLS algo-

rithms. This gives more flexibility and potentially more power for modeling data

with different levels of nonlinearity. According to Li et al. (2001), BTPLS is “a

compromise between the two extremes of the complexity spectrum of PLS, i.e., lin-

ear PLS and neural network PLS (NNPLS).” Compared to the neural network PLS

algorithms, BTPLS exhibits advantages in terms of both “computational effort and

model parsimony” (Li et al., 2001).

We note that from a statistical point of view, Wold’s quadratic PLS (QPLS2),

spline PLS (SPL-PLS), and the error-based PLS (PLS-C) are all fixed-order poly-

nomial PLS methods, in which the inner relations are still linear in the parameters.

Other methods, for example BTPLS, are nonlinear in the parameters. The term

“nonlinear” has been used in the literature to describe all of these methods. We

will follow the convention of referring to such extensions of NIPALS and SIMPLS as

nonlinear PLS, although the models used for the inner relation may or may not be
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nonlinear in the parameters.

In this paper we will focus on nonlinear PLS models QPLS2, PLS-C, SPL-PLS

and BTPLS, which all adopt the original iterative linear PLS framework. As with

NIPALS, these algorithms estimate weights w∗a and c∗a based on the deflated data

matrices Xa−1 and Ya−1 rather than estimate PLS weights wa and ca directly. Once

w∗a and c∗a are estimated, the estimates for wa and ca can be obtained as previously

discussed for NIPALS, i.e. ŵa = (X ′X)−1X ′Xa−1ŵ
∗
a and ĉa = (Y ′Y )−1Y ′Ya−1ĉ

∗
a. In

the following sections, we will first review and discuss the strengths and potential

problems for these models. We will then develop a simplified spline PLS model and

a PLS model that integrates a fractional polynomial based function for the inner

relation between the latent variables.

Throughout the rest of this thesis we will use a natural notation to denote

element-wise operations on the inner relation, the column vector ta and various data

matrices. For example,

t2a =


t2a1

t2a2

...

t2aN

 ,

and

X2
a−1 =


X2
a−1,11 X2

a−1,21 · · · X2
a−1,P1

X2
a−1,12 X2

a−1,22 · · · X2
a−1,P2

... · · · . . .
...

X2
a−1,1N X2

a−1,2N · · · X2
a−1,PN

 ,

where tai is the ith element of ta, and Xa−1,ji is the ith row and jth column element

of Xa−1.
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2.2.1 Wold’s Quadratic PLS

In linear PLS, a first-order linear relation is assumed for the pairs of the latent

variables, i.e., for the ath component, ua = bata + ha, where ba is estimated by

least squares and ha denotes the residuals. The central idea behind a nonlinear PLS

method is to change this first-order linear inner relation to a higher-order polynomial

or nonlinear function so that more flexibility may be achieved.

If we rewrite the inner relation in a more general form:

ua = f(ta, βa) + ha,

where f(·) denotes an arbitrary polynomial function and βa is a vector of parame-

ters to be estimated, then we can modify the original linear PLS methods with the

hope that such methods are capable of modeling data with more complex curvature

characteristics.

Wold et al. (1989) proposed a quadratic PLS method QPLS2 by specifying the

inner relation as:

ua = βa0 + βa1ta + βa2t
2
a + ha,

i.e., a simple quadratic function for the ath PLS component.

The QPLS2 algorithm follows the same iterative scheme as NIPALS, i.e., com-

putes the parameters for one component at a time and upon convergence deflates the

data matrices and then repeats the computations for subsequent components. The

basic idea of QPLS2 is to project X and Y onto T and U with goals of (1) decompos-

ing X and Y as TP ′ and UQ′, respectively, with orthogonality among components;

and (2) satisfying the quadratic inner relation between ua and ta.
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QPLS2 starts with a linearly initialized X weights estimate ŵ∗a, and then up-

dates ŵ∗a via a Newton-Raphson (Ypma, 1995) type linearization of the quadratic

inner relation. Vectors t̂a, q̂a, and ûa are updated as in NIPALS. The inner relation

coefficients βa0, βa1 and βa2 are estimated through least squares. As with NIPALS,

ta is in the column space of X, however w∗a is derived from the correlation of ua with

a linear combination of ta and the quadratic term t2a.

A critical part of QPLS2 is the procedure for updating the X weights estimate

ŵ∗a. Suppose we call the relation between latent variables ta and ua as the “inner

mapping,” and call the relation between ta and Xa−1 or between ua and Ya−1 as

the “outer mapping” (Baffi et al., 1999b). Then, using a higher order polynomial

function to relate each pair of latent variables affects the calculations of both the

inner mapping and the outer mapping because ŵ∗a is derived from the covariance of

the ûa scores with Xa−1. To take this into account, Wold et al. (1989) proposed a

procedure for updating ŵ∗a by means of a Newton-Raphson linearization of the inner

relation function, i.e. a first-order Taylor series expansion of the quadratic inner

relation, and then solving it with respect to the weights correction. However, Wold’s

procedure for updating the ŵ∗a is not straightforward and appears awkward. We will

not discuss QPLS2 further and the details of this algorithm can be found in Wold

et al. (1989).

2.2.2 Error-based quadratic PLS

Baffi et al. (1999b) proposed an alternative quadratic PLS algorithm (PLS-C) with an

updating method that we think is more sensible. Write the nonlinear inner relation

as ua = f(ta, βa) + ha, where ta = Xa−1w
∗
a and f(·, ·) is assumed to be an arbitrary

continuous function that is differentiable with regards to w∗a. Baffi et al. (1999b)

treat the coefficient βa as fixed and approximate ua = f(ta, βa) + ha by means of a
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Newton-Raphson linearization:

ua = Ya−1c
∗
a ≈ f00 +

∂f

∂w∗a
∆w∗a ⇒

Ya−1c
∗
a − f00 ≈

∂f

∂w∗a
∆w∗a, (2.1)

where f00 denotes the fitted ua through the “inner mapping” at the current iteration,

∂f/∂w∗a is the partial derivative of the inner relation function with respect to w∗a,

and ∆w∗a denotes the weights correction. For PLS-C, the inner relation function is:

f(ta, βa) = βa0 + βa1t+ βa2t
2
a + ha.

Therefore f00 at the current iteration can be written as:

f
(i)
00 = β

(i)
a0 + β

(i)
a1 t

(i)
a + β

(i)
a2 t

(i)2
a .

The partial derivative, defined as Z, is solved as:

Z = ∂f
∂w∗a

= βa1Xa−1 + 2βa2(ta1
′
P ) ∗Xa−1,

where 1′P denotes a row vector of 1′s with length P (number of predictor variables),

and “∗” indicates element-wise multiplication. Therefore, in the last term of the

calculation of Z, (ta1
′
P ) ∗Xa−1 is

(ta1
′
P ) ∗Xa−1 =


ta1Xa−1,11 ta1Xa−1,21 · · · ta1Xa−1,P1

ta2Xa−1,12 ta2Xa−1,22 · · · ta2Xa−1,P2

... · · · . . .
...

taNXa−1,1N taNXa−1,2N · · · taNXa−1,PN

 .

In the calculation, ua = Ya−1c
∗
a in (2.1) is replaced with its estimate at the current

iteration u
(i)
a = Ya−1c

∗(i)
a and then the estimate for ∆w∗a at the ith iteration, ∆w

∗(i)
a , is
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obtained by regressing u
(i)
a −f (i)

00 onto Z(i), which is obtained by plugging t
(i)
a and β

(i)
a

into the derivative matrix Z. Baffi et al. (1999b) then update w
∗(i)
a by adding ∆w

∗(i)
a .

The updating of ŵ∗a is repeated iteratively until t
(i)
a = Xa−1w

∗(i)
a converges according

to some pre-determined tolerance. Note u
(i)
a − f (i)

00 calculates the mis-match between

the estimates of ua at the ith iteration based on the “outer mapping” and the “inner

mapping.” This is why Baffi et al. (1999b) call their algorithm “the error-based

quadratic PLS algorithm.”

Baffi et al. (1999b) show that the error-based quadratic PLS algorithm (PLS-C)

performs better than QPLS2 in both goodness-of-fit and prediction. They observed

in their examples that PLS-C places more emphasis than QPLS2 toward explaining

the variability associated with Y rather than X. They claimed this might be because

the error-based input weights updating procedure omits the direct link between the

input weights w∗a and the output scores ta, and w∗a ceases to be directly linked to the

predictor matrix X. The weights correction ∆w∗a is in fact related directly to the

mismatch between ua and f00. This result may be desirable if prediction in Y is the

ultimate goal of the model.

The X weights updating procedure can be generalized to any inner relation,

provided the function is differentiable to the second order. The general error-based

w∗a weights updating steps are presented in Table 2.4. Table 2.5 gives a step-by-

step outline for general error-based nonlinear PLS algorithms without specifying a

particular inner relation for ta and ua. All later nonlinear PLS algorithms that we

will discuss essentially take the same steps. The differences only lie in the actual

Newton-Raphson linearization of the inner relation and the calculation of the partial

derivative matrix Z in the w∗a updating procedure for different inner relations.
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Table 2.4: The error-based method for updating X weights w∗a.

Step Summary of Step
1 Obtain the first order Taylor series expansion of

ua = Ya−1c
∗
a = f(ta, βa) + ha ≈ f00 + ∂f

∂w∗a
∆w∗a.

Set f
(i)
00 = f(t

(i)
a , β

(i)
a ), i.e. f00 estimated at the current ith iteration.

Input t
(i)
a and β

(i)
a into the partial derivative matrix Z = ∂f

∂w∗a
and

denote the resulting matrix as Z(i). Set u
(i)
a = Ya−1c

∗(i)
a .

2 Approximate the miss-match between u
(i)
a and f

(i)
00 with

u
(i)
a − f (i)

00 = Z(i)∆w
∗(i)
a .

3 Estimate ∆w
∗(i)
a via least squares: ∆̂w

∗(i)
a = (Z(i)′Z(i))−Z(i)′(u

(i)
a − f (i)

00 ).

4 Update w
∗(i)
a with w

∗(i)
a = w

∗(i)
a + ∆̂w

∗(i)
a .
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Table 2.5: Steps in the error-based polynomial PLS algorithms.

Step Summary of Step
0 Set X0 = X and Y0 = Y , where X and Y are centered and scaled.

Set a = 1.
1 Set i = 1 and

initialize ua: u
(i)
a = the column of Ya−1 with the maximum variance.

2 Estimate X weights w∗a by regressing Xa−1 on u
(i)
a : w

∗(i)
a =

X′a−1u
(i)
a

u
(i)′
a u

(i)
a

.

3 Normalize w
∗(i)
a : w

∗(i)
a = w

∗(i)
a∥∥∥w∗(i)a

∥∥∥ .

4 Calculate X factor scores: t
(i)
a = Xa−1w

∗(i)
a .

5 Set up the design matrix R for fitting the inner relation ua = f(ta, βa) + h
with least squares regression. The first column of R is a column of ones

and the remaining columns are the polynomial terms in t
(i)
a .

Compute β
(i)
a = (R′R)−1R′u

(i)
a .

6 Set f
(i)
00 = f(t

(i)
a , β

(i)
a ).

7 Calculate Y loadings: q
(i)
a =

Y ′a−1f
(i)
00

f
(i)′
00 f

(i)
00

.

8 Update u
(i)
a : u

(i)
a = Ya−1q

(i)
a

q
(i)′
a q

(i)
a

, where q
(i)
a

q
(i)′
a q

(i)
a

= c
∗(i)
a is the Y weights estimate.

9 Update the coefficients β
(i)
a with the updated u

(i)
a by least squares.

10 Update w
∗(i)
a according to Table 2.4.

11 Normalize w
∗(i)
a to unit length: w

∗(i)
a = w

∗(i)
a∥∥∥w∗(i)a

∥∥∥ .

12 Update ta with the updated weights: t
(i)
a = Xa−1w

∗(i)
a .

Update the design matrix R.

13 Check convergence by examining the change in t
(i)
a . If convergence,

move to Step 14, else increment i = i+ 1 and return to Step 5.

14 Set f00 = f(t
(i)
a , β

(i)
a ), and obtain the final estimate of qa, ta, βa, ua and pa:

q̂a =
Y ′a−1f00

f ′00f00
, normalize q̂a with q̂a = q̂a

‖q̂a‖ ; t̂a = t
(i)
a ; β̂a = (R′R)−1R′u

(i)
a ;

ûa = f(t̂a, β̂a); and p̂
′
a = t̂′aXa−1

t̂′a t̂a
.

15 Deflate X and Y by removing the present component:
Xa = Xa−1 − t̂ap̂

′
a and Ya = Ya−1 − ûaq̂

′
a.

16 Increment a = a+ 1. Use deflated X and Y for additional
components. Repeat Step 1 - 15.
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2.2.3 The Box-Tidwell PLS algorithm

Box and Tidwell’s (1962) power transformation for linear regression has proved useful

in modeling nonlinear relationships. For a positive predictor x, the power transfor-

mation takes the following form:

ξ =

x
α, if α 6= 0

ln(x), if α = 0.

Suppose the problem has a single response variable y and a single predictor vari-

able x. Instead of fitting the linear regression model

y = β0 + β1x+ e,

we fit a linear regression model between y and ξ:

y = f(ξ, β0, β1) + e = β0 + β1ξ + e = β0 + β1x
α + e.

Clearly, the model with the transformed x is more flexible, with the linear model

as the special case α = 1. There are many other useful transformations such as the

square root (α = 1/2), the reciprocal (α = −1), the quadratic (α = 2), and the

natural logarithm (α = 0) of x. To estimate the unknown parameters β0, β1 and α,

Box and Tidwell used linearization of the function f with a first order Taylor series

expansion about an initial guess of α0 = 1:

E(y) = f(ξ, β0, β1) ≈ β0 + β1x+ (α− α0) {∂f(ξ; β0, β1)/∂α}α=α0
= β0 + β1x+ γz,
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where γ = (α− 1)β1 and z = xln(x). Box and Tidwell (1962) estimate α, β0 and β1

as follows:

(1) Obtain the least squares estimate of β1 in E(y) = β0 + β1x and denote the

estimate as β̂1.

(2) Obtain the least squares estimate of γ in E(y) = β0 + β1x+ γz as γ̃.

(3) Estimate α as α∗ = (γ̃/β̂1) + 1.

(4) Update the estimates of β0 and β1 by least squares in E(y) = β0 + β1ξ with ξ

defined using α = α∗.

After α∗, the estimate of α, from the first iteration is obtained, additional iter-

ations of step (1)-(4) follow by replacing the initial guess of α = 1 with α = α∗.

However, as Box and Tidwell (1962) noted, the procedure rapidly converges and of-

ten one iteration is satisfactory. Alternatively, non-linear least squares can be used

to estimate the parameter directly.

The Box-Tidwell transformation assumes x > 0. In PLS regression, the latent

variable ta has zero mean, which means that the Box-Tidwell transformation cannot

be applied directly to model the PLS inner relation. Therefore Li et al. (2001)

modified the Box-Tidwell procedure so that the transformed latent variable satisfies

(sgn(ta))
δ|ta|α if α 6= 0 and (sgn(ta))

δln(|ta|) if α = 0, where in both cases δ = 0 or

1. Here sgn(ta) denotes the element-wise operation

sgn(ta) =


sgn(ta1)

sgn(ta2)
...

sgn(taN)

 ,

and the sign function sgn(taj) is defined as
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sgn(taj) =


1, if taj > 0

0, if taj = 0

−1, if taj < 0.

Additional modifications are needed since |taj|α is undefined when both taj = 0

and α < 0. Hence, α is constrained to be positive, i.e. α > 0. Therefore, the

regression model used for modeling the PLS inner relation can be written as:

ua = β0 + β1(sgn(ta))
δ|ta|α + ha,

where |ta|α = ln(|ta|) if α = 0 for δ = 0 or 1.

To ensure α > 0, Li et al. (2001) define α = v2, where v is non-zero. They

estimate the parameters following the original Box-Tidwell procedure, except that g

is expanded with respect to v instead of α, using an initial guess v0 = 1. They then

linearize the model with a first-order Taylor series:

ua = β0 + β1(sgn(ta))
δ|ta|v

2

≈ β0 + β1(sgn(ta))
δ|ta|+ (v − v0)

{
∂f(ta; β0, β1, δ, v

2)/∂v
}
v=v0

= β0 + β1(sgn(ta))
δ|ta|+ 2(v − 1)β1(sgn(ta))

δ|ta|ln(|ta|)

= β0 + β1z1 + γz2

where γ = 2(v − 1)β1, z1 = (sgn(ta))
δ|ta| and z2 = (sgn(ta))

δ|ta|ln(|ta|). Li et al.

(2001) estimate α, β0, β1 and γ using the following steps:

(1) Obtain the least squares estimate of β1 in

ua = β0 + β1(sgn(ta))
δ|ta|+ ha
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for both δ = 0 and δ = 1. Choose between δ = 0 and 1 based on which gives the

smaller residual sum of squares. Denote the corresponding estimate of β1 by β̂1.

(2) Obtain the least squares estimate of γ in

ua = β0 + β1(sgn(ta))
δ|ta|+ γβ1(sgn(ta))

δ|ta|ln(|ta|) + ha

for both δ = 0 and δ = 1. Choose between δ = 0 and 1 based on which gives the

smaller residual sum of squares. Denote the corresponding estimate of γ by γ̃.

(3) Estimate α as α∗ = ((γ̃/2β̂1) + 1)2.

(4) Update the least squares estimates of β0, β1, and δ in

ua = β0 + β1(sgn(ta))
δ|ta|α

∗
+ ha

for both δ = 0 and δ = 1. Choose the set of estimates that gives the better fit and

denote these estimates as β̂∗0 , β̂∗1 and δ̂∗.

At each of the steps (1), (2) and (3), least squares is performed separately for

the two values of δ and the estimates with the better fit are selected. Also note that

only the results from the first iteration of Box-Tidwell procedure are used.

The BTPLS algorithm resembles the error-based quadratic PLS algorithm in that

it follows the same computational scheme as NIPALS and uses the error-based PLS

X weights updating procedure of Baffi et al. (1999b). The matrix of derivatives

Z = ∂f/∂w∗a is obtained for both δ = 1 and 0:

Z =

 αβ1(|ta|(α−1)1′P ) ∗Xa−1 if δ = 1

αβ1(|ta|(α−1)1′P ) ∗ |Xa−1| if δ = 0 .
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Li et al. (2001) proposed two versions of BTPLS. We described BTPLS(I). The

other version, BTPLS(II), contains a linear term for the inner relation:

ua = β0 + β1ta + β2(sgn(ta))
δ|ta|α + ha.

BTPLS(II) includes BTPLS(I) as a special case (when β1 = 0). BTPLS(II) is more

flexible at the expense of an additional parameter. Li et al. (2001) suggest that

BTPLS(I) is preferable to BTPLS(II) when model simplicity is more important than

model fit for small datasets where data over-fitting is often an issue. However, we

did not see much difference in performance between these two algorithms for some

small and medium-sized datasets. We will provide results for BTPLS(I), which we

will refer to as “BTPLS” for simplicity.

Li et al. (2001) compared BTPLS with linear PLS, PLS-C and the error-based

neural network PLS (NNPLS) algorithms for several real and simulated datasets

with a high degree of nonlinearity. They conclude that BTPLS provides better fits

and predictions than linear and quadratic PLS for data with nonlinear features.

Compared to NNPLS, BTPLS is more computationally efficient, parsimonious and

stable.

Li et al. (2001) introduce a couple of “tricks” to ensure numerical stability of

BTPLS. In Step (2) of the modified Box-Tidwell procedure, observations with ta

values close to zero, say |taj| < ρ, where ρ is a small positive value, are eliminated

from the calculation. In addition, in Step (3), the estimated power α∗ is truncated

as follows:

α∗ =

 αmin if ((γ̃/2β̂1) + 1)2 < αmin

αmax if ((γ̃/2β̂1) + 1)2 > αmax,

where αmin and αmax are preset boundary values.
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Li et al. did not explicitly state what boundary values were used for their analysis.

Choices for ρ, αmin and αmax may be case-specific, i.e., different choices of these values

may affect the stability of the algorithm with different datasets. This was true in

our attempts to apply BTPLS to several datasets. In addition, although we have no

problem with truncating the estimated power, we are less comfortable with holding

out observations to allow the fitting of the power model.

One limitation of BTPLS is the functional form for the PLS inner relations. When

α < 1, the functions are not differentiable at ta = 0 and predicted values of ua for

observation with ta near 0 may be unreasonable. For example, consider the plots in

Figure 2.1 for the following three possible BTPLS inner relation functions:

fA(ta) = ln|ta|

fB(ta) = sgn(ta)ln|ta|

fC(ta) = |ta|0.2.

The plots in Figure 2.1, from left to right, are for these three functions.

Figure 2.1: Plots of possible non-differential or discontinuous inner relation functions
for BTPLS.

Obviously, fA(ta) and fB(ta) are discontinuous and fC(ta) is non-differentiable at

zero. Thus estimation around zero would be problematic. This may be why Li

et al. hold out values of ta that are close to zero. Again, the problem lies in the
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functional form for the inner relation. It would be desirable to avoid such problems

by modifying the functional forms instead of modifying the data.

Another potential drawback of BTPLS is that the power α is estimated on a

continuous scale. Although this may make the modeling function very flexible, this

may also result in over-fitting, especially for small datasets or datasets with influential

observations.

2.2.4 Spline nonlinear PLS algorithms

Wold (1992) proposed a spline PLS algorithm (SPL-PLS), in which quadratic or

cubic functions are smoothly connected through a number of knots. The cubic spline

function used for modeling the PLS inner relation can be written as:

ua = β0 + β1ta + β2t
2
a + β3t

3
a +

J∑
j=1

bj+3(ta − zj)3
+ + ha,

where zj is the jth knot (j = 1, 2, ..., J), and bj+3 denotes the coefficient for (ta−zj)3
+

term, and the positive part function (x)+ is defined as

(x)+ =

 x if x > 0

0 else.

The cubic term (ta − zj)
3
+ works exactly like a linear regression interaction term

between (ta − zj)3 and an indicator of whether ta − zj is positive.

In SPL-PLS, the number of the knots depends on the sample size and the knots

are selected so that each piece of the cubic curve contains approximately an equal

number of observations. SPL-PLS adapts a PLS input weights updating procedure

that is related to QPLS2, but we will omit the details. Other than the updating

procedure, there are a couple of specification issues that make SPL-PLS difficult
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to implement. First, since estimates of the latent variables ua and ta change at

each iteration, it is difficult to pre-specify the location or number of knots for the

inner relation spline function. Wold (1992) suggests that the number of knots is

best estimated with cross validation, i.e., fit multiple spline models with different

number of knots and choose the “best” according to cross validation. This makes

the algorithm cumbersome and difficult to implement.
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2.3 Simplified Spline and Fractional Polynomial

PLS

2.3.1 Simplified Spline PLS

We first propose a simplified version of the spline PLS algorithm that utilizes the

error-based PLS weights updating procedure and contains a single knot at zero. A

single knot at zero is parsimonious, and sensible because the t′as are linear combi-

nations of Xa−1, which is initially centered at zero. Hence the average value of ta is

approximately zero. This simplification eliminates the needs for specifying the num-

ber and location for knots according to the ta values, which are more “unknown”

to us than the original data. With one knot, we have two polynomials that are

connected smoothly at zero and such functions provide more flexibility than single

polynomial functions.

In particular, we propose quadratic (QSPLPLS) and cubic (CSPLPLS) spline

PLS algorithms. The inner relations for these two methods take the following forms:

(a) QSPLPLS: ua = s(ta) = β0 + β1ta + β2t
2
a + β3(ta − 0)2

+ + ha and

(b) CSPLPLS: ua = s(ta) = β0 + β1ta + β2t
2
a + β3t

3
a + β4(ta − 0)3

+ + ha.

We fit these spline PLS models by following the computational procedure of the

other error-based polynomial PLS algorithms. Details of the procedure are presented

in Section 2.2.2. As before, the coefficients are estimated using least squares. The

matrices of partial derivatives Z = ∂s/∂w∗a for these two methods are

(a) QSPLPLS: Z = β1Xa−1 + 2β2(ta1
′
P ) ∗Xa−1 + 2β3[(ta)+1′P ] ∗Xa−1 and

(b) CSPLPLS: Z = β1Xa−1 +2β2(ta1
′
P )∗Xa−1 +3β3(t2a1

′
P )∗Xa−1 +3β4[(ta)

2
+1′P ]∗

Xa−1,
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where in both cases, 1′P is a row vector of 1′s with length P , and “∗” denotes element-

wise multiplication.

2.3.2 Fractional Polynomial PLS

To overcome our concerns with BTPLS, we propose a new nonlinear PLS algorithm

that utilizes the fractional polynomial family and an error-based X weights updat-

ing procedure. Regression models using fractional polynomials of the predictors have

appeared in the literature for many years but was first formalized by Royston and

Altman (1994). Fractional polynomials can be viewed as a compromise between

fixed-order polynomials and the more flexible power models such as the Box-Tidwell

power model. The power terms of the fractional polynomials are restricted to a

handful of predefined set of rational values. The powers are selected so that the

conventional polynomials used in regression modeling are included. Through exam-

ples with a number of datasets, Royston and Altman (1994) show that fractional

polynomials often provide a better fit with fewer terms than conventional fixed-order

polynomials. They claim that fractional polynomials are “reasonably flexible, easy

to understand, parsimonious and, perhaps above all, are simple and quick to fit using

standard multiple-regression software” (Royston and Altman, 1994).

A fractional polynomial of degree m is defined as follows. For arbitrary powers

ψ1 ≤ ... ≤ ψm and positive values of X

φm(X; ξ, ψ) =
m∑
j=0

ξiHj(X),

where for j = 1, ...,m,

Hj(X) =

 X(ψj) if ψj 6= ψj−1

Hj−1(X)lnX if ψj = ψj−1,
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and H0(X) = 1 and ψ0 = 0.

Note

X(ψj) =

 Xψj if ψj 6= 0

ln(x) if ψj = 0.

For X < 0, Royston and Altman (1994) suggest a simple transformation of X so

that the positivity requirement can be met. For example, one solution is to choose

a non-zero value ζ < X and rewrite the definition as

φm(X; ξ, ψ) =
m∑
j=0

ξiHj(X − ζ).

Royston and Altman (1994) found that models with m > 2 are rarely needed in

practice and fractional polynomials with m ≤ 2 offer many potential improvements

compared to traditional polynomials. They suggest that candidate values of the

power ψ include all powers from a fixed set

Ψ = {−2,−1,−0.5, 0, 0.5, 1, 2, ...,max(3,m)} .

They claim this specification is sufficiently rich to cover many practical cases ad-

equately. Obviously, fitting a fractional polynomial is simply fitting a number of

fixed-order polynomials.

Our motivation for developing a new PLS method comes from the potential prob-

lems of the BTPLS algorithm. Let us review these concerns. First, the modeling

functions are not continuous at ta = 0 for α < 1 and are non-differentiable at ta = 0

for 0 < α < 1. Second, the power parameter in BTPLS is estimated, so flexibility

may result in over-fitting, for example, when the dataset is small. Also, the power

α is constrained to be positive. Without this constraint, we may be able to find
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better models with less effort. A PLS algorithm utilizing the fractional polynomials

may have potential for solving these problem. That is, it makes sense to fit a few

pre-selected polynomial models and select the one that fits the data best. In addi-

tion, we can use least squares for parameter estimation and linearization of nonlinear

functions is no longer needed. Thus the estimation is straightforward.

To overcome the first problem of BTPLS, we follow Royston and Altman’s (1994)

suggestion and shift ta linearly so that the shifted t′as are always positive. Specifically,

we first normalize ta:

t∗a = ta
||ta|| ,

which guarantees that −1 ≤ taj/||ta|| ≤ 1 for the jth element of ta. Then for k > 0,

define

z1(t∗a) = k + kt∗a ∈ (0, 2k), and z2(t∗a) = k − kt∗a ∈ (0, 2k),

which are both centered at k. A natural choice is k = 1, which we use in subsequent

discussions.

We can fit fractional polynomials with z1(t∗a) or z2(t∗a). There is no obvious reason

to choose one over the other. We tried three possible functional forms using both

z1(t∗a) and z2(t∗a):

f1(ta) = β0 + β1t
∗
a + β2[(1 + t∗a)

α + (1− t∗a)α],

f2(ta) = β0 + β1t
∗
a + β2[(1 + t∗a)

α − (1− t∗a)α], and

f3(ta) = β0 + β1t
∗
a + β2[(1 + t∗a)

α1 + (1− t∗a)α1 ] + β3[(1 + t∗a)
α2 − (1− t∗a)α2 ],
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where

(1± t∗a)α =

 ln(1± t∗a) if α = 0

(1± t∗a)ln(1± t∗a) if α = 1.

Our choices for α′is follows the recommendation of Royston and Altman (1994).

We considered 8 candidate powers {−2,−1,−0.5, 0, 0.25, 0.5, 1, 2} for f1(ta) and 7

candidate powers {−2,−1,−0.5, 0, 0.25, 0.5, 1} for f2(ta). For f2(ta), we avoided

α = 2 because the quadratic terms cancel, resulting in the same model as α = 1.

With f3(ta) we require α1 6= α2 to avoid redundant terms with the same power. With

such choices in the powers, f1(ta), f2(ta) and f3(ta) include a variety of shapes. For

example, Figure 2.2 shows the plots of a few possible choices for f1(ta).

Figure 2.2: Plots of example functions in f1(t) with power 2, 0.5, 1 and -1.

We consider two variants of the fractional polynomial PLS algorithm, which we
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call the Modified Fractional Polynomial PLS algorithms I and II (MFPPLS-I and

MFPPLS-II). In MFPPLS-I, a series of 8, 7, or 8 × 7 − 7 = 49 polynomial PLS

models are fitted individually for each component, depending on whether f1(t), f2(t)

or f3(t) is used. Then the model with the best fit, i.e. the model with the minimum

residual sum of squares in ua is selected for that component. Our examples show that

f1(t) and f2(t) are less likely to lead to over-fitting than f3(t). In our summaries,

MFPPLS-I is based on f1(t). The results based on f2(t) are similar.

With MFPPLS-II, the “best” model is selected at each iteration of fitting the

inner relation. That is, in Step 5 of Table 2.6, all models are fitted in each iteration

and then they are compared. The model with the minimum residual sum of squares

is selected at that iteration, and then the algorithm moves to the next iteration.

Initially, MFPPLS-II showed convergence problems with the discrete set of powers.

The estimated parameters and latent variables may not be stable after a relatively

large number of iterations (e.g., 5,000) for some data. Often the estimated power

fluctuates dramatically between iterations and this contributes to the instability of

the latent variables. In retrospect, this may not be too surprising because the powers

are discrete. To avoid the jump in selected powers from iteration to iteration, we

changed the discrete power set to a continuous set. In practice, we use an equally

spaced, relative fine grid:

α1 ∈ [−2 : s : 2] and α2 ∈ [−2 : s : 1] for α1 6= α2,

where s is the spacing between two adjacent powers. The condition α1 6= α2 in

MFPPLS-II is necessary otherwise β2 and β3 are non-estimable.

After experimenting with the grid spacing, we decided on s = 0.1, i.e. 41 and 31

candidates for α1 and α2, respectively. This choice gives us sufficient continuity in

the powers so that convergence problems are avoided. Therefore, MFPPLS-II fits a

total of 41× 31− 31 = 1240 polynomial models at each iteration of the computation
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and then picks the one with the best fit of ta and ua. Obviously this is a lot of

computation, but the algorithm runs quickly with small or medium sized datasets.

In our summaries, MFPPLS-II uses f3(ta) for the inner relation because it showed

better data fit and reasonable predictive ability.

Figures 2.3 - 2.5 demonstrate an example of the convergence problem with using

MFPPLS-II with discrete powers. The convergence problem occurred with the second

component for the Cosmetics data. A description of the Cosmetics data will be

given in Section 2.3.3. Figure 2.3 shows the trace plots (i.e. iteration history) for the

estimates of parameters β0, β1, β2, β3, α1 and α2. Figure 2.4 and Figure 2.5 show the

trace plots for the elements of the estimates for t1 and u1, respectively. Figures 2.6 -

2.8 give similar summaries for MFPPLS-II with continuous powers. The convergence

measure for ta (with an analogous measure for ua) is defined as

Dt =
N∑
n=1

(t(i)an − t(i−1)
an )2/

N∑
n=1

(t(i−1)
an )2,

where t
(i)
an denotes the estimated value of ta at the ith iteration for the nth observation.

When discrete powers were used, the parameter estimates for β1, β3 and α2

had not converged after 3000 iterations (Figure 2.3), and neither had the estimated

elements of t1 and u1 (Figure 2.4 - 2.5). With a continuous sets of powers, the

estimated elements of t1 and u1 converged after about 200 to 300 iterations. Although

the parameter estimates may still be changing at the end of the 200 to 300 iterations,

we are not too concerned once ta and ua are stable, since the predicted values in Y are

calculated through the fitted values of ta and ua. Details for nonlinear PLS prediction

will be given in Section 2.4. Convergence problems were not observed with MFPPLS-

I. For fixed-order polynomial PLS models such as the error-based quadratic PLS and

the simplified spline PLS, the algorithms usually converges within 100 iterations.

In conclusion, our final MFPPLS-I algorithm uses f1 for the inner relation map-
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Figure 2.3: Trace plots for parameter estimates using MFPPLS-II with discrete
powers (Cosmetics Data, the first component).

ping:

f1(ta) = β0 + β1t
∗
a + β2[(1 + t∗a)

α + (1− t∗a)α],

where α ∈ {−2,−1,−0.5, 0, 0.25, 0.5, 1, 2}. The final MFPPLS-II algorithm uses

f3(ta) = β0 + β1t
∗
a + β2[(1 + t∗a)

α1 + (1− t∗a)α1 ] + β3[(1 + t∗a)
α2 − (1− t∗a)α2 ],

where α1 ∈ [−2 : 0.1 : 2], α2 ∈ [−2 : 0.1 : 1] for α1 6= α2.

For MFPPLS-I, the partial derivative matrix Z takes one of three forms according

to whether the power α equals either 0 or 1. For MFPPLS-II, Z takes one of seven
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forms according to whether one or both powers α1 and α2 equals either 0 or 1. Table

2.6 gives these expressions, where D = (||ta||Xa−1 − tata′Xa−1/||ta||)/||ta||2.

Table 2.6: Partial derivative matrix Z in MFPPLS-I and MFPPLS-II.

Power Z = ∂f
∂w∗a

for MFPPLS-I

α = 0 [(β1 + β2
1

1+t∗a
+ β2

1
1−t∗a

)1′P ] ∗D

α = 1 [(β1 + 2β2 + β2ln(1 + t∗a) + β2ln(1− t∗a))1′P ] ∗D

else [(β1 + αβ2(1 + t∗a)
α−1 + αβ2(1− t∗a)α−1)1′P ] ∗D

Power Z = ∂f
∂w∗a

for MFPPLS-II

α1 = 0, α2 = 1 [(β1 + β2
1

1+t∗a
+ β2

1
1−t∗a

+ β3ln(1 + t∗a)− β3ln(1− t∗a))1′P ] ∗D

α1 = 1, α2 = 0 [(β1 + 2β2 + β2ln(1 + t∗a) + β2ln(1− t∗a) + β3
1

1+t∗a
−β3

1
1−t∗a

)1′P ] ∗D

α1 = 0, α2 6= 1 [(β1 + β2
1

1+t∗a
+ β2

1
1−t∗a

+ α2β3(1 + t∗a)
α2−1

−α2β3(1− t∗a)α2−1)1′P ] ∗D

α1 6= 1, α2 = 0 [(β1 + α1β2(1 + t∗a)
α1−1 + α1β2(1− t∗a)α1−1 + β3

1
1+t∗a

−β3
1

1−t∗a
)1′P ] ∗D

α1 = 1, α2 6= 0 [(β1 + 2β2 + β2ln(1 + t∗a) + β2ln(1− t∗a) + α2β3(1 + t∗a)
α2−1

−α2β3(1− t∗a)α2−1)1′P ] ∗D

α1 6= 0, α2 = 1 [(β1 + α1β2(1 + t∗a)
α1−1 + α1β2(1− t∗a)α1−1 + β3ln(1 + t∗a)

−β3ln(1− t∗a))1′P ] ∗D

else [(β1 + α1β2(1 + t∗a)
α1−1 + α1β2(1− t∗a)α1−1 + α2β3(1 + t∗a)

α2−1

−α2β3(1− t∗a)α2−1)1′P ] ∗D
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Figure 2.4: Trace plots for estimates of t1 using MFPPLS-II with discrete powers
(Cosmetics Data).
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Figure 2.5: Trace plots for estimates of u1 using MFPPLS-II with discrete powers
(Cosmetics Data).
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Figure 2.6: Trace plots for parameter estimates using MFPPLS-II with continuous
powers (Cosmetics Data, the first component).
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Figure 2.7: Trace plots for estimates of t1 using MFPPLS-II with continuous powers
(Cosmetics Data).

43



Chapter 2. Partial Least Squares

Figure 2.8: Trace plots for estimates of u1 using MFPPLS-II with continuous powers
(Cosmetics Data).
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2.3.3 Example

The Cosmetics data (Wold et al., 1989) will be used to illustrate MFPPLS-I and

MFPPLS-II. The data have been used by Wold et al. (1989), Baffi et al. (1999b) and

Li et al. (2001) to illustrate nonlinear PLS methods. The data were slightly altered

prior to publication to prevent the source and type of the 17 cosmetic cream formu-

lations used from being revealed (Wold et al., 1989). The formulations are composed

of P = 8 chemical constituents such as glycerin, water, emulsifier, and vaseline. In

a test of the quality of these creams, each cream has been applied to one half of

the face of each of 10 women models, while at the same time a “standard cream”

has been applied to the other half of the face. Then judges, including both trained

evaluators and the models, gave their scores for the M = 11 different quality indica-

tors such as “ease of application,” “greasiness,” “skin smoothness,” “skin shininess,”

and “overall appeal,” relative to the “standard cream.” The responses from the 10

models were averaged. Hence the data consist a 17 × 11 response matrix (Y ) and

a 17 × 8 predictor matrix (X). The purpose of the study was to develop a model

relating the cream composition (X) to the quality indicators (Y ). This model can

hopefully lead to the formulation of an “optimal” cream by choosing the appropriate

composition.

MFPPLS-I and MFPPLS-II were applied to the Cosmetics data, each using six

components. Both algorithms fit the data better than linear PLS methods. We mea-

sured the goodness-of-fit with the total variance explained over all response variables,

which is defined as:

R2
Y = 1−

∑
mi{Ymi−Ŷmi}2∑
mi{Ymi−Y m.}2 ,

where Ymi and Ŷmi are the actual and fitted values of the ith observation of the

mth response variable, and Y m. is the mean value of the mth response. R2
Y is the
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multi-response analog of the R2 for linear regression. Tables 2.7 - 2.10 give the R2
Y

achieved by MFPPLS-I, MFPPLS-II, NIPALS and BTPLS, with the corresponding

estimated coefficients for the PLS inner relations for each of the six components.

Figures 2.9 - 2.12 show the plots of the estimated ta and ua with the fitted curves

for each component estimated by MFPPLS-I, MFPPLS-II, NIPALS and BTPLS,

respectively. The plots of the latent variables show that both modified fractional

polynomial algorithms are able to fit the inner relations well with smooth curves.

These new methods fit the Cosmetics data slightly worse than BTPLS but better

than NIPALS.

Table 2.7: MFPPLS-I fits the Cosmetics Data.
Model Fit 1 2 3 4 5 6

R2
Y 0.2579 0.4487 0.5886 0.6675 0.7228 0.7494
β0 0.13 -0.39 -0.17 -4.09 1.78 15.49
β1 6.80 6.45 4.98 4.23 2.90 1.67
β2 2.06 6.45 2.75 1.93 -0.83 -7.55
α1 0 1 1 2 -1 -0.5

Table 2.8: MFPPLS-II fits the Cosmetics Data.
Model Fit 1 2 3 4 5 6

R2
Y 0.2676 0.3380 0.5132 0.6133 0.6497 0.7352
β0 -2.39 -2.02 -86.04 -0.24 -7.93 1.48
β1 -1655.60 273.28 -353.60 66.14 475.94 -85.15
β2 1.13 -0.04 43.06 0.12 3.94 -0.62
β3 1034.90 -331.12 182.74 -148.25 -390.91 45.35
α1 -2 -2 0.2 -2 2 -2
α2 0.8 0.4 1 0.2 0.6 1

Table 2.9: NIPALS fits the Cosmetics Data.
Model Fit 1 2 3 4 5 6

R2
Y 0.1676 0.3440 0.4549 0.5358 0.6083 0.6613
β 0.99 1.15 0.90 0.99 0.99 1.52
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Figure 2.9: Plots of t̂a vs. ûa with the fitted curves, MFPPLS-I.

Table 2.10: BTPLS fits the Cosmetics Data.
Model Fit 1 2 3 4 5 6

R2
Y 0.2997 0.4793 0.6170 0.6963 0.7540 0.7803
β0 0.25 0.09 0.00 -0.01 -0.05 -0.59
β1 4.94 3.41 1.81 1.64 1.06 0.77
δ 1 1 1 1 1 0
α 4.50 2.08 0.92 1.23 0.65 1.96
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Figure 2.10: Plots of t̂a vs. ûa with the fitted curves, MFPPLS-II.
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Figure 2.11: Plots of t̂a vs. ûa with the fitted curves, NIPALS.
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Figure 2.12: Plots of t̂a vs. ûa with the fitted curves, BTPLS
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2.4 PLS Prediction and Cross Validation

2.4.1 Obtaining PLS Predictions

The regression coefficient matrix BPLS can be readily computed for NIPALS and

SIMPLS as B̂PLS = Ŵ Q̂∗
′
, where Q̂∗

′
= diag(B̂)Q̂′. Ŵ is the estimated X weight

matrix; B̂ is a diagonal matrix containing the estimates of the PLS inner relation

coefficients as the diagonal elements; and Q̂ is the estimated normalized Y loading

matrix. To predict the response for a new observation with X = X~, we first obtain

the predicted values on the standardized scale:

Ŷ ~
0 = X~

0 B̂PLS,

where X~
0 is the X~ vector scaled and centered using the mean and standard devi-

ation from the X matrix used for the PLS fit. Next we transform Ŷ ~
0 to its original

scale:

Ŷ ~
m = (Ŷ ~

0m + Y m)std(Ym),

where Y m and std(Ym) are the mean and standard deviation of the mth response

variable Ym, both computed with the data used to fit the model.

For the other PLS algorithms discussed in this thesis, the prediction is done

for each component, and then the results are summed to obtain the final predicted

values. In particular, we calculate the PLS X latent variable values t̂~a sequentially

for components a = 1, 2, ..., A. For the first component, t̂~1 = X~
0 ŵ
∗
1, and then

we continue the calculation with t̂~a = X~
a−1ŵ

∗
a, where X~

a−1 = X~
a−2 − t̂~a−1p̂

′
a−1 for

a = 2, 3, ..., A. Once t̂~a is calculated, we obtain the predicted output latent variable

value with
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û~
a = fa(t̂

~
a ; β̂a),

where fa(t̂
~
a ; β̂a) is the fitted inner relation for the ath component with parameter

estimates β̂a. The predicted response is calculated as

Ŷ ~
0 =

A∑
a=1

û~
a q̂
′
a,

where q̂a is the estimated ath Y loading vector from the PLS model. Lastly, we

transform Ŷ ~
0 back to the original response scale.

2.4.2 Model Selection and Validation with Cross Validation

An important aspect of fitting PLS models is to determine the number of components.

More components improve the fit to the data, but at the potential risk of over-fitting,

i.e., getting a well fitting model with little prediction power. The decision of the

“best” number of components with a good balance between model fit and predictive

power is often made with cross validation (Wold, 1982; Höskuldsson, 1988; Wold

et al., 2001; Eriksson et al., 1999).

Ideally, we should test the prediction accuracy of a model with a separate vali-

dation set that is not used in the model building process. In such cases, the dataset

used for model building is often referred to as a “training set,” and the validation

set is called a “test set.” However, this may not be always possible as collecting

high dimensional data is often costly. Therefore researchers may not have sufficient

data to split into a test set and a training set. If this is the case, cross validation

provides a sensible alternative to evaluate how well a model predicts new data. Good

discussions of cross validation can be found in Wakeling and Morris (1987), Denham

(1997), Hastie et al. (2001), and Wold et al. (2004).
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Cross validation is generally carried out by dividing the full dataset into a number

of approximately equal sized subsets, say, five to 10, and then one subset is held out

at a time while the remaining data are used to build the model. Once the model

is fit, predicted values of the held out cases are calculated. The squared difference

between the observed and predicted response is calculated and aggregated to give

the predictive sum of squares, PRESS. This is repeated so that each subset is held

out once and only once. This procedure is called “V-fold cross validation,” where V

is the number of subsets. Leave-One-Out cross validation (LOOCV) corresponds to

V = N , the total sample size of the full dataset. The PRESS statistic is defined as:

PRESS =
∑

mi (Ymi − Ŷ(mi))
2,

where Ŷ(mi) is the predicted value of Ymi based on the model fit to the (V −1) subsets

that exclude Ymi.

A relatively small PRESS indicates good predictive power of a PLS model. A few

other diagnostic measures based on PRESS are popular for measuring PLS models’

predictive power. These measures include Q2 (Wold, 1982), Eriksson’s (1999) total

CV criteria, and the Root Mean Square Prediction Error (RMSPE). The Q2, also

called “the goodness of prediction” or “the prediction variation” (Eriksson et al.,

1999), is defined as follows:

Q2 = 1−
∑

mi{Ymi−Ŷ(mi)}2∑
mi{Ymi−Y (m.)}2

= 1− PRESS∑
mi{Ymi−Y (m.)}2

,

where
∑

mi

{
Ymi − Y (m.)

}2
is the sum of squared differences between the observed

responses and the mean responses calculated from the data less the held out ob-

servations. Q2 can be large negative but converges to R2
Y in probability (Quan,

1988).

Eriksson’s (1999) total CV criterion is defined as:
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CV = PRESS/(N − A− 1),

where N is the sample size and A is the number of components. Clearly CV attempts

to penalize a model for the number of components. Eriksson et al. (1999) suggest

choosing the model with the smallest CV . However, when N gets large, the penalty

effect diminishes.

RMSPE is a scaled measure of prediction error defined as

RMSPE =
√
PRESS/[(N − 1)M ],

where M is the number of response variables. A smaller RMSPE indicates a “better”

model.

We will use R2
Y and Q2 to compare strength in goodness-of-fit and prediction

for competing PLS models, respectively, and use CV and RMSPE to determine the

number of components in a given PLS model.

A number of cross validation procedures have been implemented in PLS packages.

For example, the PLS procedure in SAS provides LOOCV and V-fold cross validation

and computes the PRESS statistic.
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A Comparison of PLS methods

Seven PLS algorithms were compared in terms of data fitting and prediction. These

algorithms include linear PLS (NIPALS/SIMPLS), the error-based quadratic PLS

algorithm (PLS-C), the Box-Tidwell PLS algorithm (BTPLS), the two simplified

spline PLS algorithms (QSPLPLS and CSPLPLS), and the two fractional polynomial

PLS algorithms (MFPPLS-I and MFPPLS-II). Nine small to large sized datasets

and two large simulated nonlinear datasets were used for the comparison. For each

method, models with one to five components were fit to these datasets, unless the

total response variance was explained before the fifth component, i.e., R2
Y = 1.

LOOCV was used for the small to medium sized real data (N ≤ 60) and five-fold cross

validation was used for one large sized (N = 215) real and the two simulated datasets

(N = 500). With V-fold cross validation, results vary with the data splitting. We

ran the five-fold cross validation 10 times for each model and averaged the results.

The strength and weakness of each PLS method will be discussed.

Our tests with various data revealed that the nonlinear PLS methods often make

poor predictions on test data with “outlying” values in the input latent variable,

i.e., extremely small or large fitted values of t̂~a . This is not surprising since the
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extrapolation with high degree polynomials can often be risky. One possible solution

is to base prediction for new observations by restricting the calculated t̂~a values

within the range of t̂a obtained from the model fit. That is, if t̂~a < min(t̂a) then

set t̂~a = min(t̂a), and if t̂~a > max(t̂a) then set t̂~a = max(t̂a). These truncated t̂~a

values are then used in the prediction calculations. The truncation of t̂~a improved

the predictive ability (expressed in Q2) noticeably for all six nonlinear PLS methods

with almost all the datasets tested. The same truncation was also applied to the

linear PLS methods, which are less affected by extreme cases.

We chose NIPALS instead of SIMPLS for the comparisons because it is more

straightforward to obtain predictions based on truncating the extreme t̂~a values in

cross validation. The two algorithms typically gave similar conclusions.

3.1 Real Data

The sample sizes of the nine real-world datasets vary from seven to 215. All these

datasets have been used either to illustrate certain PLS algorithms or other multi-

variate methods. The Cosmetics data has been described in Section 2.3.3. The

other eight datasets are described as follows.

The Lung Toxicity data is described in McDonald et al.’s article (2004) inves-

tigating the relationship between composition and toxicity of motor vehicle emission

samples. The study used both PCA and linear PLS methods to fit the data, which

contains 11 response variables and 68 predictor variables on seven samples. The

predictor variables are measures of the particle and semi-volatile organic chemical

constituents from five groups of motor vehicles, including “normal-emitting” gasoline

vehicles, “normal-emitting” diesel vehicles, “high-emitting” gasoline vehicles emit-

ting white or black smoke, and “high-emitting” diesel vehicles. The emission sam-

ples were measured at both room temperature and at approximately 30 degrees
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Fahrenheit for two “normal-emitting” groups. The measures were then averaged

over samples within each vehicle group. Therefore, there are a total of seven sam-

ples (McDonald et al., 2004). The response variables are 11 laboratory measures of

toxicity measured from inflammation and tissue damage in rat lungs.

The Aroma data was used by Frank and Kowalski (1984) for predicting wine

quality and geographic origin from chemical measurements. It can also be found

in an SAS example for the PLS procedure. The data are from 37 Pinot Noir wine

samples, each described by 17 elemental chemical concentrations (Cd, Mo, Mn, Ni,

Cu, Al, Ba, Cr, Sr, Pb, B, Mg, Si, Na, Ca, P, K) and a score of the wine’s aroma

(the response) given by a panel of judges.

The Sea Water data are originally from Lindberg et al.’s (1983) linear PLS

analysis of spectrofluorimetric data on mixtures of humic acid and ligninsulfonate.

It is also available from the SAS Documentation. The data contain 27 spectra of sea

water, and three compounds in 16 samples from the Baltic Sea. The predictors are

the emission intensities at different frequencies in the spectrum. The responses are

the amounts of the three chemicals in the sample.

The Penta data come from the field of drug discovery and were used as a

SAS example data illustrating the PLS procedure. The dataset contains 30 samples

with 15 chemical measurements, which include size, lipophilicity, and polarity at

various sites on the molecule, and a measurement of the activity of the compound,

represented by the logarithm of the relative Bradykinin activating activity. The data

were used to develop a model to predict the compound’s biological activity from these

chemical measurements.

The Acids data, originally reported in McAvoy and Chamberlain (1989), are

available from the SAS Documentation. The data consist of spectrographic readings

on 33 samples containing known concentrations of two amino acids, tyrosine and
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tryptophan. The predictor variables are the measured spectra at 30 frequencies across

the range of frequencies. The response variables are the logarithms of the tyrosine

and tryptophan concentrations, and the logarithm of the total concentration.

The Jinkle data are provided to us by Jinkle Seagrave at the Lovelace Respiratory

Research Institute, Albuquerque, New Mexico. The data contain seven samples with

eight acute lung responses in rats and 24 chemical compositional measurements. The

goal is to build a model using these chemical measurements to predict the acute lung

responses.

The Mortality data, which appeared in McDonald and Schwing (1973), have

been popular in regression applications. The data contain 60 samples with measures

of U.S. mortality rates and 15 predictor variables including air pollution, weather,

population and socioeconomic variables. The goal is to relate air pollution and

confounders to mortality.

The Tecator data contain information on 215 samples of finely chopped pure

meat with different moisture, fat and protein contents. These three measurements

are the response variables. The predictor variables are 100 highly correlated mea-

surements from a spectrum of absorbances, recorded on a Tecator Food Analyzer.

The Tecator data have been used for neural network modeling and are available at

http://lib.stat.cmu.edu/datasets/tecator.

3.2 Simulated Non-Linear Data

Two simulated non-linear datasets, Sim A and Sim B, were generated. Each dataset

contains 500 samples with one response and four predictor variables. Sim A was

generated according to Baffi et al. (1999), i.e., x1, x2, x3, and x4 are mutually inde-

pendent uniformly distributed in [−0.25, 0.25] and Y = exp(2x1 sin(πx4))+sin(x2x3).
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Sim B was generated according to Li et al. (2001), i.e., x1, x2, x3, and x4 are mutually

independent uniformly distributed in [−0.25, 0.25] and Y = sinh(25x3) cos(x4)/30 +

50x2 sin(x1).

Baffi et al. (1999b) showed that PLS-C works well with Sim A, while Li et al.

(2001) showed that BTPLS works well with Sim B.

3.3 Results

Tables 2.11 - 2.21 summarize the results of the comparison with the selected datasets.

For the Cosmetics data, all nonlinear PLS algorithms fitted the data better

than NIPALS. QSPLPLS and CSPLPLS gave the best fit, both explaining about

30 - 80% of the total variance in responses with one to five components. The other

nonlinear PLS algorithms performed similarly and achieved slightly lower R2
Y ’s than

the spline algorithms. Although NIPALS did not fit as well as the nonlinear algo-

rithms, it showed less over-fitting and is the only algorithm to be able to predict

the Cosmetic data. The five component NIPALS model achieved the highest Q2

of 0.15. All nonlinear PLS algorithms suffered from over-fitting and made poor pre-

dictions. Except for the one component BTPLS model (Q2 = 0.02), all nonlinear

PLS models have Q2 < 0. RMSPE chose a five components NIPALS model, a three

components PLS-C model, and all the other nonlinear models with one component.

CV picked the three components NIPALS model as the “best” linear PLS model and

one component models for all nonlinear methods.

The nonlinear PLS methods gave similar goodness-of-fit on the Lung Toxicity

data. All one component nonlinear models have R2
Y ’s around 0.9 whereas the one

component NIPALS model has an R2
Y of 0.70. The data fit of NIPALS improved

quickly as the number of components increased. With three components, all models
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are able to explain most of the response variances with R2
Y > 0.97. NIPALS showed

the strongest predictive power among all the methods. The two components NIPALS

model has a Q2 of 0.50, the highest for all models. The one component CSPLPLS

model (Q2 = 0.21) predicted the best among all nonlinear PLS models. All QS-

PLPLS and MFPPLS-II models showed severe over-fitting and had Q2 < 0. Cross

validation with BTPLS encountered numerical problems in the iterative calculation

so prediction results were not obtained. RMSPE chose a two components NIPALS

model, a four components PLS-C model, and all other models (except BTPLS) with

one component. CV chose a two components NIPALS model and all other models

(except BTPLS) with one component.

Most nonlinear PLS algorithms fitted the Aroma data well. The one compo-

nent models using PLS-C, QSPLPLS, CSPLPLS and MFPPLS-I explained about

90% of the total response variance. MFPPLS-II did not fit as well as the other

nonlinear algorithms but fitted better than NIPALS. PLS-C and MFPPLS-II pre-

dicted well with their respective highest Q2 at 0.54 and 0.51, both for one component

models. The four components NIPALS model is the most predictive linear model

with Q2 = 0.52. The one component BTPLS and CSPLPLS models had moderate

predictive power with Q2 = 0.21 and 0.19, respectively. QSPLPLS and MFPPLS-I

models suffered from over-fitting and have no predictive power. RMSPE picked a

four components NIPALS model and all the other models with one component. CV

picked one component models for all methods.

With the Sea Water data, the nonlinear methods fitted the data well and slightly

better than NIPALS. With three components, the MFPPLS-II model explained 94%

and all the other nonlinear models explained 100% of total response variance. The

three components NIPALS model has an R2
Y of 0.91. The three components PLS-C

and BTPLS models have the strongest predictive power (Q2 > 0.92) among all mod-

els. A three components QSPLPLS model also predicted well with Q2 = 0.85. NI-
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PALS, MFPPLS-I and MFPPLS-II also exhibited good predictive ability. CSPLPLS

is the only method that did not predict well and its one component model has the

highest Q2 of 0.12. Both RMSPE and CV chose a four components NIPALS model

and a one component CSPLPLS model. Both criteria selected three components

models for all other methods.

All PLS methods fitted and predicted the Penta data reasonably well. The non-

linear PLS methods except MFPPLS-II achieved an R2
Y above 0.92 with one compo-

nent. The one component MFPLS-II model has R2
Y = 0.50. The R2

Y improved to 0.96

with the two components model. The one and two components NIPALS models have

R2
Y = 0.69 and 0.82, respectively. The five components NIPALS model achieved the

highest Q2 among all models at 0.71. The nonlinear methods obtained their respec-

tive highest Q2 between 0.35 and 0.50 with one or two components. RMSPE picked

the five components NIPALS model, the one component PLS-C model, BTPLS and

MFPPLS-I models, and the two components QSPLPLS, CSPLPLS and MFPPLS-II

models. CV picked the two components NIPALS and MFPPLS-I models and all

other models with one component.

With the Acids data, all seven PLS methods had similar goodness-of-fit. All one

component models have an R2
Y of about 0.5 and all two components models have an

R2
Y of about 0.9. NIPALS provided the best predictive models among all methods.

The five components NIPALS model achieved the highest Q2 at 0.90. Among nonlin-

ear PLS models, the five components MFPPLS-II model has the highest Q2 at 0.34.

The other nonlinear methods suffered severely from over-fitting and have little or no

predictive power. RMSPE and CV selected the same “best” models for all methods

but MFPPLS-II, i.e., a five components model for NIPALS, one component models

for PLS-C, QSPLPLS, CSPLPLS and MFPPLS-I, and a two components model for

BTPLS. For MFPPLS-II, RMSPE picked the model with five components, whereas

CV picked the model with four components.

61



Chapter 3. A Comparison of PLS methods

With the Jinkle data, BTPLS had numerical problems and was only able to fit

one component. All other methods performed similarly in data fit with R2
Y between

40 and 50% with one component and about 60 - 70% with two components. The

one component BTPLS model achieved the highest Q2 at 0.32 among all models.

MFPPLS-I predicted reasonably well and achieved its highest Q2 at 0.29 with one

component. NIPALS has its highest Q2 at 0.18 with two components. Other PLS

models have Q2 < 0 and thus do not have any predictive power. Both RMSPE and

CV chose the same “best” model, i.e., a two components NIPALS model and the

other models with one component.

With the Mortality data, all nonlinear methods except MFPPLS-II provided

similar fits, with one component models having R2
Y of 0.77 - 0.81. The two compo-

nents MFPPLS-II model has R2
Y = .69, although the one component model only ob-

tained R2
Y = 0.11. NIPALS gave R2

Y = 0.52 and 0.72 with one and three components,

respectively. In terms of predictive ability, MFPPLS-I suffered from over-fitting and

has no predictive power. All other methods perform well with one component, with

BTPLS having the highest Q2 at 0.58. Cross validation only worked for the first BT-

PLS component due to numerical problems. RMSPE and CV chose the same models,

i.e., three components NIPALS and MFPPLS-II models and all other models with

one component.

All methods fit the Tecator data well. The nonlinear models explained most of

the response variance with one or two components. NIPALS did not fit the data as

well as the nonlinear methods but has R2
Y = 0.91 for a five components model. The

five components NIPALS model achieved the highest Q2 at 0.92. BTPLS, QSPLPLS

and PLS-C models also predicted well. CSPLPLS, MFPPLS-I and MFPPLS-II have

no predictive power with these data. Again, RMSPE and CV picked the same “best”

models, i.e., a five components NIPALS model, two components PLS-C, BTPLS

and MFPPLS-II models, and one component QSPLPLS, CSPLPLS and MFPPLS-I
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models.

NIPALS did not fit the Sim A data well. In contrast, PLS-C, BTPLS, QSPLPLS

and CSPLPLS built models having R2
Y > 0.62 with one component and R2

Y of 0.84

- 0.92 with three components. MFPPLS-I and MFPPLS-II fitted the data better

than NIPALS but not as well as the other nonlinear methods. PLS-C and the two

spline algorithms showed excellent predictive ability and the models fitted with these

methods have Q2’s close to their R2
Y ’s. The five components PLS-C model has the

highest Q2 among all models at 0.94. BTPLS has its highest Q2 at 0.46 with one

component, and MFPPLS-II has its highest Q2 at 0.25 with five components. Neither

NIPALS nor MFPPLS-I showed predictive power for these data. RMSPE and CV

selected the same models, i.e., a one component NIPALS model, three components

BTPLS and MFPPLS-I models, and five components PLS-C, QSPLPLS, CSPLPLS

and MFPPLS-II models.

With the Sim B data, BTPLS, QSPLPLS, CSPLPLS and MFPPLS-II fitted and

predicted the data well. Models built with these methods have both high R2
Y ’s and

Q2’s. The five components CSPLPLS model has the highest Q2 among all models

at 0.96. Both NIPALS and PLS-C fitted and predicted the data well with one com-

ponent, but additional components added little value to these models. MFPPLS-I

achieved goodness-of-fit similar to NIPALS and PLS-C but had little predictive power

with small Q2 values. RMSPE and CV selected the same models, in particular, a

two components NIPALS model, a three components MFPPLS-I model, four com-

ponents PLS-C and BTPLS models, and five components QSPLPLS, CSPLPLS and

MFPPLS-II models.
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3.4 Discussion

All the nonlinear PLS methods we considered exhibited superior data fit to the linear

PLS algorithms in most of the examples. However, a useful model should also have

good predictive power. We have observed that over-fitting is often a problem for the

nonlinear PLS models when the sample size is small and the number of variables

is relatively large. For such data, linear PLS methods may not be able to fit the

data as well as the nonlinear PLS models, but often has higher predictive power. For

example, consider the Lung Toxicity data, which have 68 predictors and 11 response

variables but only seven observations. Although all the nonlinear PLS models were

able to explain about 90% of the total response variance with one component, the

corresponding Q2′s are lower than that of the one component linear PLS model,

which explains 70% of the total response variance (Table 2.12). Similar observations

can be made with several other small sized datasets, such as the Cosmetics data

(Table 2.11), the Penta data (Table 2.15), and the Acids data (Table 2.16).

Among the nonlinear PLS methods, the two simplified spline PLS methods have

consistently shown excellent data fits and suffer less from over-fitting. For many

datasets, these methods achieved moderate to good predictive ability. For example,

CSPLPLS performed better than the other nonlinear PLS methods for the Lung

Toxicity data, QSPLPLS performed very well for the Tecator data, and both QS-

PLPLS and CSPLPLS performed well for the Mortality data and the two simulated

large datasets. PLS-C also suffers less from over-fitting, but in general does not fit

as well as the spline PLS algorithms.

Of the two fractional polynomial PLS algorithms, MFPPLS-I showed excellent

data fitting ability for all the real datasets, while MFPPLS-II provided comparable

fits to the other nonlinear PLS methods. While low predictive power caused by over-

fitting was common with these two new methods, MFPPLS-I has good predictive

64



Chapter 3. A Comparison of PLS methods

power for the Sea Water data and predicted well with the Jinkle data. MFPPLS-

II exhibited very good predictive ability for the Aroma data and the Sim B data.

A disadvantage of MFPPLS-II is that it requires more computational time than the

other algorithms.

When the sample size is reasonably large, nonlinear PLS models have the po-

tential to fit and predict highly nonlinear data well, as these methods demonstrated

with the simulated data.

BTPLS often fails to converge because of singularity problems during the com-

putation. The causes of such problems are not yet clear. Although BTPLS usually

performs well both in terms of fit and prediction when it worked, its unstable con-

vergence is problematic. We suggest future effort to modify the BTPLS algorithm

so that problems are minimized.

The relative strength and weakness of each method, as illustrated through our

examples, are listed in Table 2.22 and Table 2.23. In summary, the linear PLS models

have the least problem with over-fitting but are often incapable of fitting data that

are highly nonlinear. The nonlinear PLS models are better in handling nonlinearities

but often suffered from low predictive ability due to over-fitting when sample sizes

are small. Therefore, linear PLS may still be the preferred methodology for data

with small sample sizes. However, the nonlinear PLS methods sometimes performed

better with small datasets, so we suggest that multiple methods be tried to maximize

the possibility of identifying the “best” PLS model for a particular dataset. Except

for MFPPLS-II, all methods take little computation time even with relatively large

datasets.

We also recommend predictions for new observations be based on restricting the

input latent variable values within the range of the t̂a values obtained from the PLS

model fit. Our examples showed that this modification can greatly improve the
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prediction accuracy, especially with the nonlinear PLS models.
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Table 3.1: PLS comparison with the Cosmetics data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.1676 0.3440 0.4549 0.5358 0.6083

PLS-C 0.2584 0.4576 0.6009 0.6760 0.7257
BTPLS 0.2997 0.4793 0.6170 0.6963 0.7540

QSPLPLS 0.3096 0.5161 0.6619 0.7413 0.8001
CSPLPLS 0.3083 0.5279 0.6564 0.7516 0.7997

MFPPLS-I 0.2579 0.4487 0.5886 0.6675 0.7228
MFPPLS-II 0.2512 0.4250 0.4902 0.6077 0.6743

RMSPE
Component 1 2 3 4 5

NIPALS 1.0884 1.0787 1.0041 1.0238 0.9792
PLS-C 1.1654 1.1856 1.1360 1.1603 1.1525

BTPLS 1.0506 1.2040 1.1685 1.1490 1.1225
QSPLPLS 1.1337 1.2635 1.2382 1.3242 1.3138
CSPLPLS 1.2855 1.3622 1.3882 1.4398 1.4671

MFPPLS-I 1.2774 1.3163 1.3906 1.4499 1.4698
MFPPLS-II 1.1097 1.1570 1.1949 1.1942 1.1851

CV
Component 1 2 3 4 5

NIPALS 13.8999 14.6282 13.6484 15.3718 15.3405
PLS-C 15.9371 17.6701 17.4715 19.7461 21.2532

BTPLS 12.9514 18.2247 18.4866 19.3622 20.1583
QSPLPLS 15.0799 20.0688 20.7554 25.7168 27.6155
CSPLPLS 19.3887 23.3279 26.0902 30.4033 34.4387

MFPPLS-I 19.1459 21.7803 26.1819 30.8328 34.5633
MFPPLS-II 14.4488 16.8292 19.3316 20.9160 22.4704

Q2

Component 1 2 3 4 5
NIPALS -0.0494 -0.0307 0.1070 0.0716 0.1507

PLS-C -0.2032 -0.2451 -0.1432 -0.1926 -0.1766
BTPLS 0.0222 -0.2842 -0.2096 -0.1694 -0.1160

QSPLPLS -0.1385 -0.4141 -0.3580 -0.5532 -0.5289
CSPLPLS -0.4638 -0.6437 -0.7071 -0.8362 -0.9066

MFPPLS-I -0.4454 -0.5347 -0.7131 -0.8622 -0.9135
MFPPLS-II -0.0908 -0.1858 -0.2649 -0.2632 -0.2440
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Table 3.2: PLS comparison with the Lung Toxicity data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.6961 0.9320 0.9726 0.9810 0.9928

PLS-C 0.9008 0.9760 0.9889 0.9956 0.9983
BTPLS 0.8962 0.9663 0.9787 0.9857 0.9947

QSPLPLS 0.9008 0.9760 0.9894 0.9958 0.9985
CSPLPLS 0.9008 0.9760 0.9894 0.9970 0.9997

MFPPLS-I 0.9008 0.9760 0.9894 0.9970 0.9998
MFPPLS-II 0.8998 0.9724 0.9815 0.9899 0.9963

RMSPE
Component 1 2 3 4 5

NIPALS 0.9187 0.7885 0.8197 0.8034 0.8061
PLS-C 1.0471 1.0457 1.0458 1.0451 1.0462

BTPLS NA
QSPLPLS 1.7806 1.8333 1.8255 1.8291 1.8334
CSPLPLS 0.9932 1.0292 1.0324 1.0577 1.0661

MFPPLS-I 1.0253 1.0758 1.0685 1.0734 1.0701
MFPPLS-II 1.1235 1.1917 1.1557 1.1607 1.2126

CV
Component 1 2 3 4 5

NIPALS 11.1401 10.2580 14.7838 21.3020 42.8813
PLS-C 14.4720 18.0424 24.0604 36.0464 72.2454

BTPLS NA
QSPLPLS 41.8532 55.4586 73.3130 110.4077 221.8522
CSPLPLS 13.0222 17.4779 23.4496 36.9174 75.0068

MFPPLS-I 13.8751 19.0971 25.1187 38.0216 75.5800
MFPPLS-II 16.6612 23.4313 29.3838 44.4576 97.0509

Q2

Component 1 2 3 4 5
NIPALS 0.3272 0.5044 0.4643 0.4854 0.4821

PLS-C 0.1260 0.1283 0.1281 0.1292 0.1274
BTPLS NA

QSPLPLS -1.5277 -1.6795 -1.6566 -1.6672 -1.6797
CSPLPLS 0.2135 0.1556 0.1503 0.1082 0.0940

MFPPLS-I 0.1620 0.0773 0.0898 0.0815 0.0871
MFPPLS-II -0.0062 -0.1321 -0.0648 -0.0740 -0.1722
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Table 3.3: PLS comparison with the Aroma data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.5986 0.7014 0.7817 0.7991 0.8088

PLS-C 0.8978 0.9596 0.9851 0.9908 0.9951
BTPLS 0.8416 0.8420 0.9030 0.9096 0.9099

QSPLPLS 0.8852 0.9822 0.9913 0.9971 0.9992
CSPLPLS 0.9090 0.9723 0.9891 0.9953 0.9982

MFPPLS-I 0.8937 0.9041 0.9153 0.9254 0.9296
MFPPLS-II 0.6559 0.7541 0.8827 0.8877 0.9012

RMSPE
Component 1 2 3 4 5

NIPALS 0.7909 0.7825 0.7930 0.7642 0.7706
PLS-C 0.7459 0.9025 0.9171 0.9056 0.9298

BTPLS 0.9777 NA
QSPLPLS 1.2353 1.2901 1.3477 1.3565 1.3687
CSPLPLS 0.9919 1.0622 1.1069 1.1260 1.1407

MFPPLS-I 1.1748 1.1996 1.1892 1.2141 1.2157
MFPPLS-II 0.7696 0.7845 0.8262 0.8180 0.8378

CV
Component 1 2 3 4 5

NIPALS 0.6434 0.6483 0.6859 0.6569 0.6895
PLS-C 0.5722 0.8625 0.9176 0.9227 1.004

BTPLS 0.9833 NA
QSPLPLS 1.5697 1.7624 1.9815 2.0700 2.1756
CSPLPLS 1.0119 1.1947 1.3365 1.4263 1.5112

MFPPLS-I 1.4195 1.5236 1.5427 1.6583 1.7162
MFPPLS-II 0.6092 0.6516 0.7447 0.7528 0.8152

Q2

Component 1 2 3 4 5
NIPALS 0.4826 0.4936 0.4799 0.5170 0.5089

PLS-C 0.5398 0.3263 0.3043 0.3216 0.2849
BTPLS 0.2093 NA

QSPLPLS -0.2623 -0.3767 -0.5024 -0.5219 -0.5495
CSPLPLS 0.1863 0.0667 -0.0134 -0.0486 -0.0764

MFPPLS-I -0.1415 -0.1902 -0.1696 -0.2192 -0.2224
MFPPLS-II 0.5101 0.4910 0.4354 0.4465 0.4194
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Table 3.4: PLS comparison with the Sea Water data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.4192 0.6616 0.9069 0.9448 0.9549

PLS-C 0.4526 0.7792 1
BTPLS 0.4525 0.7792 1

QSPLPLS 0.4526 0.7792 1
CSPLPLS 0.4526 0.7792 1

MFPPLS-I 0.4526 0.7792 1
MFPPLS-II 0.4525 0.7304 0.943 0.9844 0.9928

RMSPE
Component 1 2 3 4 5

NIPALS 24.4629 12.0049 11.4989 10.5560 11.8262
PLS-C 20.1294 12.9316 6.5259

BTPLS 20.3440 14.4300 6.5628
QSPLPLS 20.1570 16.5728 9.2509
CSPLPLS 22.4430 25.1615 23.0621

MFPPLS-I 20.2081 18.1520 13.2636
MFPPLS-II 20.7580 22.8814 15.2777 16.4656 17.9133

CV
Component 1 2 3 4 5

NIPALS 1923.5 498.87 495.84 455.84 629.36
PLS-C 1302.4 578.86 159.7

BTPLS 1330.3 720.81 161.51
QSPLPLS 1306.0 950.74 320.92
CSPLPLS 1619.0 2191.5 1994.5

MFPPLS-I 1312.6 1140.6 659.71
MFPPLS-II 1385.0 1812.3 875.28 1109.1 1534.8

Q2

Component 1 2 3 4 5
NIPALS -0.0514 0.7468 0.7677 0.8042 0.7543

PLS-C 0.2881 0.7062 0.9252
BTPLS 0.2729 0.6341 0.9243

QSPLPLS 0.2862 0.5174 0.8496
CSPLPLS 0.1151 -0.1123 0.0656

MFPPLS-I 0.2825 0.4211 0.6909
MFPPLS-II 0.2430 0.0802 0.5899 0.5237 0.4008
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Table 3.5: PLS comparison with the Penta data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.6905 0.8243 0.8744 0.8927 0.9057

PLS-C 0.9557 0.9731 0.9853 0.9899 0.9944
BTPLS 0.9294 0.9295 0.9733 0.9815 0.9934

QSPLPLS 0.9634 0.9892 0.9944 0.9973 0.9987
CSPLPLS 0.9415 0.9861 0.9955 0.9984 0.9994

MFPPLS-I 0.9436 0.9605 0.9699 0.9722 0.9744
MFPPLS-II 0.5017 0.9553 0.9628 0.9663 0.9680

RMSPE
Component 1 2 3 4 5

NIPALS 0.5751 0.5040 0.5109 0.4958 0.4828
PLS-C 0.6319 0.6812 0.7007 0.6778 0.6693

BTPLS 0.7017 NA
QSPLPLS 0.7270 0.7150 0.7423 0.7524 0.7585
CSPLPLS 0.7206 0.7080 0.7346 0.7344 0.7262

MFPPLS-I 0.7245 0.7720 0.8145 0.8114 0.8329
MFPPLS-II 0.7211 0.6749 0.6854 0.6842 0.6917

CV
Component 1 2 3 4 5

NIPALS 0.3425 0.2729 0.2911 0.2851 0.2817
PLS-C 0.4136 0.4984 0.5476 0.5330 0.5413

BTPLS 0.5100 NA
QSPLPLS 0.5474 0.5491 0.6147 0.6566 0.6951
CSPLPLS 0.5378 0.5384 0.6019 0.6256 0.6373

MFPPLS-I 0.5436 0.6401 0.7399 0.7637 0.8382
MFPPLS-I 0.5386 0.4893 0.5241 0.5431 0.5781

Q2

Component 1 2 3 4 5
NIPALS 0.5876 0.6832 0.6745 0.6935 0.7093

PLS-C 0.5020 0.4214 0.3878 0.4270 0.4414
BTPLS 0.3859 NA

QSPLPLS 0.3409 0.3624 0.3128 0.2941 0.2826
CSPLPLS 0.3524 0.3748 0.3271 0.3274 0.3422

MFPPLS-I 0.3455 0.2568 0.1727 0.1789 0.1349
MFPPLS-II 0.3515 0.4319 0.4141 0.4162 0.4033
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Table 3.6: PLS comparison with the Acids data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.4780 0.8677 0.9366 0.9544 0.9715

PLS-C 0.5296 0.9235 0.9993 0.9998 0.9999
BTPLS 0.5296 0.9235 0.9999 0.9999 0.9999

QSPLPLS 0.5293 0.9231 0.9991 0.9996 0.9998
CSPLPLS 0.5295 0.9222 0.9986 0.9998 0.9999
MFPLS-I 0.5296 0.9236 0.9999 0.9999 0.9999

MFPLS-II 0.4820 0.8872 0.9396 0.9450 0.9732

RMSPE
Component 1 2 3 4 5

NIPALS 0.8657 0.4926 0.3993 0.3888 0.3487
PLS-C 1.2300 1.3390 1.4025 1.3804 1.3694

BTPLS 1.1384 1.0263 1.0831 1.0806 1.0829
QSPLPLS 1.3144 1.8151 1.8913 1.8961 1.8874
CSPLPLS 1.4392 1.6325 1.6480 1.6490 1.6499

MFPPLS-I 1.2922 1.6053 1.6807 1.6852 1.6890
MFPPLS-II 1.0748 1.0581 0.9418 0.8910 0.8817

CV
Component 1 2 3 4 5

NIPALS 2.3207 0.7764 0.5277 0.5182 0.4323
PLS-C 4.6849 5.7371 6.5112 6.5328 6.6671

BTPLS 4.0136 3.3702 3.8835 4.0035 4.1698
QSPLPLS 5.3505 10.5430 11.8410 12.3270 12.6650
CSPLPLS 6.4147 8.5279 8.9904 9.3228 9.6790

MFPPLS-I 5.1710 8.2464 9.3505 9.7370 10.1430
MFPPLS-II 3.5774 3.5826 2.9360 2.7219 2.7643

Q2

Component 1 2 3 4 5
NIPALS 0.3617 0.7933 0.8642 0.8712 0.8964

PLS-C -0.2886 -0.5272 -0.6754 -0.6230 -0.5973
BTPLS -0.1040 0.1029 0.0007 0.0054 0.0010

QSPLPLS -0.4717 -1.8064 -2.0469 -2.0625 -2.0343
CSPLPLS -0.7645 -1.2701 -1.3134 -1.3162 -1.3188

MFPPLS-I -0.4224 -1.1951 -1.4060 -1.4191 -1.4301
MFPPLS-II 0.0160 0.0464 0.2445 0.3238 0.3378
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Table 3.7: PLS comparison with the Jinkle data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.4301 0.6713 0.7930 0.8983 0.9528

PLS-C 0.4837 0.7332 0.8650 0.9649 0.9885
BTPLS 0.4837 NA

QSPLPLS 0.4837 0.7332 0.8562 0.9572 0.9758
CSPLPLS 0.4837 0.7331 0.8649 0.9643 0.9814

MFPPLS-I 0.4837 0.7329 0.8646 0.9627 0.9862
MFPPLS-II 0.3866 0.6378 0.7692 0.8504 0.9408

RMSPE
Component 1 2 3 4 5

NIPALS 0.1204 0.1010 0.1080 0.1144 0.1150
PLS-C 0.1238 0.1290 0.1347 0.1312 0.1347

BTPLS 0.0917 NA
QSPLPLS 0.1253 0.1317 0.1561 0.1641 0.1620
CSPLPLS 0.2613 0.3054 0.3485 0.3501 0.3480

MFPPLS-I 0.0937 0.1001 0.0950 0.1008 0.1010
MFPPLS-II 0.1524 0.1616 0.1659 0.1653 0.1753

CV
Component 1 2 3 4 5

NIPALS 0.1392 0.1223 0.1865 0.3142 0.6351
PLS-C 0.1470 0.1996 0.2902 0.4128 0.8710

BTPLS 0.0807 NA
QSPLPLS 0.1506 0.2082 0.3898 0.6460 1.2598
CSPLPLS 0.6556 1.1194 1.9428 2.9415 5.8128

MFPPLS-I 0.0842 0.1202 0.1445 0.2437 0.4896
MFPPLS-II 0.2230 0.3136 0.4401 0.6560 1.4754

Q2

Component 1 2 3 4 5
NIPALS -0.1692 0.1784 0.0605 -0.0554 -0.0666

PLS-C -0.2348 -0.3408 -0.4623 -0.3866 -0.4627
BTPLS 0.3225 NA

QSPLPLS -0.2650 -0.3984 -0.9639 -1.1699 -1.1157
CSPLPLS -4.5051 -6.5197 -8.7883 -8.8801 -8.7623

MFPPLS-I 0.2929 0.1923 0.2719 0.1815 0.1778
MFPPLS-II -0.8728 -1.1064 -1.2174 -1.2036 -1.4779
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Table 3.8: PLS comparison with the Mortality data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.5229 0.6653 0.7192 0.7330 0.7462

PLS-C 0.7664 0.8364 0.8629 0.8917 0.9088
BTPLS 0.7857 0.7886 0.8487 0.8676 0.8900

QSPLPLS 0.7882 0.8825 0.9309 0.9624 0.9748
CSPLPLS 0.8065 0.8792 0.9474 0.9733 0.9819

MFPPLS-I 0.7657 0.7708 0.7924 0.7928 0.7987
MFPPLS-II 0.1142 0.6866 0.6985 0.7067 0.7091

RMSPE
Component 1 2 3 4 5

NIPALS 47.1608 44.4292 42.0845 42.7516 42.9494
PLS-C 46.6545 47.0186 48.7246 50.2357 53.8043

BTPLS 40.6790 NA
QSPLPLS 44.4892 50.0681 53.5670 53.2517 53.6065
CSPLPLS 45.6288 52.2332 51.2921 52.2997 52.2079

MFPPLS-I 79.4048 82.2499 83.8494 84.1821 81.7784
MFPPLS-II 51.6217 47.3942 45.4903 46.0396 45.9156

CV
Component 1 2 3 4 5

NIPALS 2262.5 2043.2 1866.0 1960.6 2015.5
PLS-C 2214.2 2288.3 2501.3 2707.2 3162.9

BTPLS 1683.8 NA
QSPLPLS 2013.4 2594.8 3023.1 3042.0 3139.7
CSPLPLS 2117.9 2824.0 2771.8 2934.2 2978.0

MFPPLS-I 6413.8 7002.4 7407.4 7602.0 7306.9
MFPPLS-II 2710.7 2325.0 2180.2 2273.8 2303.4

Q2

Component 1 2 3 4 5
NIPALS 0.4442 0.5067 0.5574 0.5433 0.5391

PLS-C 0.4561 0.4476 0.4068 0.3694 0.2766
BTPLS 0.5865 NA

QSPLPLS 0.5054 0.3736 0.283 0.2914 0.2819
CSPLPLS 0.4798 0.3182 0.3426 0.3165 0.3189

MFPPLS-I -0.5755 -0.6905 -0.7568 -0.7708 -0.6711
MFPPLS-II 0.3341 0.4387 0.4829 0.4703 0.4732
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Table 3.9: PLS comparison with the Tecator data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.1633 0.5298 0.7624 0.8277 0.9078

PLS-C 0.9132 0.9808 0.9878 0.9917 0.9941
BTPLS 0.9210 0.9900 0.9923 0.9940 0.9944

QSPLPLS 0.9192 0.9876 0.9907 0.9937 0.9951
CSPLPLS 0.9132 0.9814 0.9903 0.9932 0.9955

MFPPLS-I 0.9227 0.9917 0.9943 0.9944 0.9947
MFPPLS-II 0.7222 0.9249 0.9588 0.9763 0.9846

RMSPE
Component 1 2 3 4 5

NIPALS 8.5414 6.5877 4.0072 3.3394 2.6093
PLS-C 5.7363 5.5993 19.6937 27.447 48.7616

BTPLS 3.1992 2.894 3.5463 3.9905 4.1102
QSPLPLS 4.4332 5.4184 53.5006 86.3307 104.3972
CSPLPLS 90.2698 241.789 2362.3246 3804.8835 4376.2294

MFFPLS-I 10.9014 11.2891 11.3439 11.3746 11.4035
MFFPLS-II 72.5894 72.4071 475.7466 2968.8729 2969.1738

CV
Component 1 2 3 4 5

NIPALS 219.8962 131.4276 48.8614 34.0945 20.9162
PLS-C 188.4602 186.2309 2411.5264 4435.1015 10899.5542

BTPLS 31.0243 25.7578 39.2772 50.1682 53.3968
QSPLPLS 62.5709 92.2442 18387 34729 52512
CSPLPLS 48510 350202 43670255 82762114 101282253

MFPPLS-I 372.1608 410.6639 416.2585 421.2448 425.4798
MFPPLS-II 30090 29759 1546375 78324088 78699826

Q2

Component 1 2 3 4 5
NIPALS 0.1958 0.5216 0.823 0.8771 0.9249

PLS-C 0.3082 0.3195 -7.7615 -15.045 -38.2492
BTPLS 0.8865 0.9062 0.8577 0.8191 0.8083

QSPLPLS 0.7711 0.6644 -65.71 -124.4378 -188.0125
CSPLPLS -176.9362 -1267.91 -158880 -297365 -362605

MFPPLS-I -0.359 -0.4915 -0.5047 -0.5155 -0.5234
MFPPLS-II -108.8774 -107.1574 -5591.08 -282954 -282958
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Table 3.10: PLS comparison with the Sim A data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.0208 0.0208 0.0208 0.0208 0.0221

PLS-C 0.6175 0.9016 0.9230 0.9295 0.9499
BTPLS 0.6351 0.9032 0.9076 0.9082 0.9237

QSPLPLS 0.6184 0.8986 0.9205 0.9267 0.9530
CSPLPLS 0.6407 0.6713 0.8419 0.8571 0.8809

MFPPLS-I 0.1220 0.2536 0.3015 0.3131 0.3268
MFPPLS-II 0.2175 0.4118 0.5355 0.5955 0.6073

RMSPE
Component 1 2 3 4 5

NIPALS 0.1314 0.1317 0.1317 0.1317 0.1318
PLS-C 0.0785 0.0397 0.0355 0.0338 0.0306

BTPLS 0.0871 0.0790 0.0745 0.7542 0.7492
QSPLPLS 0.0795 0.0436 0.0383 0.0369 0.0323
CSPLPLS 0.0785 0.0536 0.0437 0.0420 0.0381

MFPPLS-I 0.1274 0.1244 0.1224 0.1499 0.1822
MFPPLS-II 0.1230 0.1139 0.1088 0.1037 0.1027

CV
Component 1 2 3 4 5

NIPALS 0.0174 0.0176 0.0176 0.0176 0.0177
PLS-C 0.0062 0.0016 0.0013 0.0012 0.0009

BTPLS 0.0082 0.0096 0.0092 4.5364 4.5456
QSPLPLS 0.0063 0.0019 0.0015 0.0014 0.0011
CSPLPLS 0.0062 0.0029 0.0019 0.0018 0.0015

MFPPLS-I 0.0164 0.0156 0.0152 0.0232 0.0347
MFPPLS-II 0.0153 0.0133 0.0125 0.0116 0.0115

Q2

Component 1 2 3 4 5
NIPALS -0.1500 -0.1568 -0.1568 -0.1568 -0.1572

PLS-C 0.5911 0.8956 0.9164 0.9244 0.9378
BTPLS 0.4616 0.3675 0.3902 -293.5700 -293.5700

QSPLPLS 0.5810 0.8730 0.9019 0.9091 0.9306
CSPLPLS 0.5902 0.8080 0.8726 0.8818 0.9029

MFPPLS-I -0.0802 -0.0273 0.0032 -0.5237 -1.2736
MFPPLS-II -0.0130 0.1237 0.1803 0.2365 0.2470
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Table 3.11: PLS comparison with the Sim B data.

R2
Y

Component 1 2 3 4 5
NIPALS 0.6013 0.6046 0.6046 0.6046 0.6055

PLS-C 0.6054 0.6860 0.7104 0.7124 0.7154
BTPLS 0.8132 0.9106 0.9416 0.9418 0.9443

QSPLPLS 0.8047 0.9000 0.9324 0.9329 0.9359
CSPLPLS 0.8271 0.9318 0.9633 0.9641 0.9662

MFPPLS-I 0.6054 0.6459 0.6817 0.6886 0.6907
MFPPLS-II 0.8194 0.8652 0.8901 0.9421 0.9431

RMSPE
Component 1 2 3 4 5

NIPALS 1.6515 1.6443 1.6443 1.6443 1.6452
PLS-C 1.6476 1.4930 1.4444 1.4370 1.4473

BTPLS 1.1380 0.7723 0.6547 0.6437 0.6449
QSPLPLS 1.1649 0.8458 0.7126 0.6957 0.6939
CSPLPLS 1.0979 0.7065 0.5496 0.5340 0.5317

MFPPLS-I 2.5417 2.5285 2.5023 2.7192 2.8444
MFPPLS-II 1.1548 1.0373 0.9775 0.8869 0.8805

CV
Component 1 2 3 4 5

NIPALS 2.7331 2.7146 2.7202 2.7257 2.7340
PLS-C 2.7201 2.2383 2.0992 2.0816 2.1159

BTPLS 1.2977 0.5990 0.4314 0.4178 0.4202
QSPLPLS 1.3598 0.7190 0.5116 0.4882 0.4866
CSPLPLS 1.2079 0.5015 0.3047 0.2876 0.2858

MFPPLS-I 6.6274 6.5724 6.4650 7.6437 8.4100
MFPPLS-II 1.3367 1.0811 0.9633 0.7964 0.7861

Q2

Component 1 2 3 4 5
NIPALS 0.5950 0.5986 0.5986 0.5986 0.5982

PLS-C 0.5970 0.6690 0.6902 0.6934 0.6890
BTPLS 0.8077 0.9114 0.9363 0.9385 0.9382

QSPLPLS 0.7985 0.8937 0.9245 0.9281 0.9285
CSPLPLS 0.8210 0.9259 0.9550 0.9577 0.9580

MFPPLS-I 0.0180 0.0281 0.0459 -0.1258 -0.2361
MFPPLS-II 0.8020 0.8401 0.8579 0.8827 0.8845
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Table 3.12: Strengths of PLS methods

Methods Strengths
Linear PLS non-iterative, no convergence problems

overall best prediction
fewer over-fitting problems
in general, better prediction with more components

PLS-C converges quickly
results stable
overall good goodness of fit
good or acceptable prediction
excellent prediction for large simulated data

BTPLS good goodness-of-fit
overall good or acceptable prediction
flexible functional forms
less over-fitting problem among nonlinear PLS methods

QSPLPLS converges quickly
results stable
excellent goodness of fit
excellent prediction for large simulated data
overall good prediction among nonlinear PLS methods

CSPLPLS converges quickly
results stable
excellent goodness of fit
excellent prediction for large simulated data
overall good prediction among nonlinear PLS methods

MFPPLS-I results stable
Good to very good goodness of fit
sometimes good prediction with small datasets

MFPPLS-II results stable
fair to good goodness of fit
very good prediction for large simulated datasets

78



Chapter 3. A Comparison of PLS methods

Table 3.13: Weaknesses of PLS methods

Methods Weaknesses
Linear PLS inflexible function for inner relationship

poor goodness-of-fit for nonlinear data

PLS-C tends to over-fit
poor prediction for some small datasets
sometimes moderate goodness of fit if data highly nonlinear

BTPLS algorithm unreliable, results unstable
often unable to work
have to modify data but still fails to work sometimes

QSPLPLS tends to over-fit
prediction for small datasets may be poor

CSPLPLS tends to over-fit
prediction for small datasets may be poor

MFPPLS-I tends to over-fit
overall poor prediction even for large datasets

MFPPLS-II more computational time
poor prediction for small datasets
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Chapter 4

Supervised Principal Component

Analysis with Multiple Responses

In principal component analysis (PCA), one first decomposes the predictor matrix

X into A principal components ua = Xwa with the first principal component u1

accounting for as much of the variability in X as possible, and each successive com-

ponent accounting for as much of the remaining variability as possible. The compo-

nents also satisfy u1⊥u2⊥...⊥uA. The principal components U can be computed as

follows.

Assume that the columns of XN×P are the mean centered predictor variables.

Write the SVD of X as

X = UDV ′,

where U , D, V are N ×K, K ×K and P ×K respectively, and K = min(N − 1, P )

is the rank of X. D is a diagonal matrix containing the singular values dj with

d1 ≥ d2 ≥ ...dK ≥ 0. The columns of U are the principal components u1, u2, ... ,

uK . From the SVD of X, we also have
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U = XVD−1 = XW ,

where W = V D−1 is the principal component weight matrix.

The first few components, which often contain most of the information in X,

are used as new predictors in a regression analysis with a response Y . PCA is a

commonly used regression tool to deal with multicollinearity of predictors and the

number of predictors being larger than the sample size. A potential weakness of

PCA is that its construction does not consider the relationship between X and Y

and thus the resulting components may not contain much information that is useful

in explaining or predicting Y . Supervised PCA (SPCA) is a modified version of

PCA targeting this weakness that appears to be a promising tool for prediction in

regression problems (Bair et al., 2006; Roberts and Michael, 2006).

4.1 Univariate SPCA

SPCA was first proposed as a semi-supervised regression tool for predicting patient

survival with DNA microarray data (Bair and Tibshirani, 2004). Bair et al. (2006)

provided further details. Several applications (Bair et al., 2006; Roberts and Michael,

2006) demonstrated that SPCA is able to identify the underlying structures that are

relevant to the response and often produces more accurate predictions than PCA.

SPCA is similar to conventional PCA except that the components are constructed

on a subset of the predictors, which are selected based on their association with the

response. Bair et al. (2006) proposed the following SPCA algorithm. Let X be

the mean centered N × P predictor matrix and Y be a vector of the single response

variable. First, the standard regression coefficients for measuring the univariate effect

of the jth predictor on Y are calculated:
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sj =
X′jY

‖Xj‖ ,

with a scale estimate σ̂ omitted from the calculation since it is common to all sj
′s.

Let Cθ be the collection of indices such that |sj| > θ, where θ is a threshold value

estimated by cross validation. Denote Xθ as the matrix consisting of the columns

of X corresponding to Cθ. Then compute the principal components of the reduced

predictor matrix Xθ using the SVD:

Xθ = UθDθV
′
θ .

The columns of Uθ, say uθ1, uθ2, ..., uθm, are the supervised principal components

of X. Bair et al. (2006) suggest that the first or the first few supervised principal

components be used to fit a regression model. For example, a simple linear regression

model with the first SPCA component uθ1 can be fitted with:

Ŷ spc,θ = Y + γ̂uθ1.

If wθ1 are the principal component weights for uθ1, then

Ŷ spc,θ = Y +Xθβ̂θ,

where β̂θ = γ̂wθ1. This approach directly extends to models built from multiple

components.

SPCA is applicable to generalized regression settings such as logistic regression

and Cox proportional hazards models. Bair et al. (2006) suggest that a score statistic

be used in place of the standardized regression coefficients to assess the association

between each predictor and the response, followed by the use of the appropriate

generalized regression at the last step.
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4.2 Multivariate Extension of SPCA

To extend the univariate SPCA to multiple responses, we use likelihood ratio test

(LRT) statistics to evaluate the association of each predictor in X with Y , which is

assumed to be a N ×M matrix. Both X and Y are centered to have zero means.

Assume Y = XjBj + Ej, where Xj is the jth predictor in X, Bj is a 1 ×M vector

and the rows of the error term Ej have a multivariate normal distribution N(0,Σj).

This is a simple linear regression model for each response with no intercepts. Write

Yi as an M × 1 vector by stacking the ith observation for each of the M responses

and denote Xji as the ith observation in Xj. Then the likelihood function is

L(Bj,Σj) = (2π)−
N
2 |Σj|−

N
2 exp[−1

2

N∑
i=1

((Yi −B′jXji)
′Σ−1

j (Yi −B′jXji))]

= (2π)−
N
2 |Σj|−

N
2 exp[−1

2
trace(Σ−1

j (Y −XjBj)
′(Y −XjBj))],

which implies

L(B̂j, Σ̂j) = (2π)−
N
2

∣∣∣Σ̂j

∣∣∣−N
2

exp[−N
2
trace(Σ̂−1

j Σ̂j)]

= (2π)−
N
2

∣∣∣Σ̂j

∣∣∣−N
2

exp(−N
2

2
),

where B̂j = (X ′jXj)
−1X ′jY and Σ̂j = Y ′(I−MXj

)Y/N . Here I is the N ×N identity

matrix and MXj
is a N × N perpendicular projection operator onto C(Xj), i.e.

Xj(Xj
′Xj)

−Xj
′. Therefore the LRT statistic testing H0 : Bj = 01×M vs. HA : Bj 6=

01×M is

Λj =
L(B̂j0, Σ̂j0)

L(B̂j, Σ̂j)
=

∣∣∣Σ̂j0

∣∣∣−N
2

∣∣∣Σ̂j

∣∣∣−N
2

=

∣∣∣Σ̂j

∣∣∣N
2

∣∣∣Σ̂j0

∣∣∣N
2

=

∣∣∣Y ′(I−MXj
)Y

N

∣∣∣N
2

∣∣Y ′Y
N

∣∣N
2

.
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A smaller Λj value indicates a stronger association between Xj and Y .

Once we obtain the LRT statistic Λj for all Xj
′s, we rank the Xj

′s according to

increasing values of the Λj
′s, i.e., Λ(1) < Λ(2) < ... < Λ(p). The denominator of Λj is

the same for all j′s and therefore it is irrelevant for the ranking. The remaining steps

are similar to the SPCA for single response. Suppose the final selected subset of X

is Xspc and Uspc contains the corresponding principal components. The prediction

for a new observation Y ~ can be obtained through

Ŷ ~ = Y + UspcΓ̂,

where Y is the mean response vector and Γ̂ = (Uspc
′Uspc)

−Uspc
′Y .

Besides the univariate LRT, we also used a forward selection LRT procedure to

rank the predictor variables, as a means to account for correlations among predictors.

A series of stepwise tests may be better than the univariate tests for selecting the

“best” subset of predictors for SPCA. For example, suppose two predictors are highly

associated with the responses and one is a proxy of the other. If one of them is selected

in the subset for principal component construction, including the other in the subset

may add little extra value. With the univariate LRT, it is highly likely that both these

predictors or neither predictor would be selected in the subset. A stepwise procedure,

analogous to that used in multiple regression for automatic model selection, may be

used to avoid redundant predictors from being selected and thus potentially result in

a more parsimonious SPCA model. A forward selection procedure is straightforward

to implement, as described below.

(1) Calculate univariate LTR statistics Λj for all predictors, and rank Xj in terms

of ascending Λj. Denote the ordered predictors X(1), X(2), ..., X(P ).

(2) Calculate LTR statistics Λ∗j for testing the significance of X(1) with each of the

other predictors X(2), ... , X(P ) individually. In particular, let X(1,s) = [X(1) X(s)]

for s = 2, 3, ..., P and define
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Λ∗j =
|Σ̂∗j |

N
2

|Σ̂j0|
N
2

,

where Σ̂∗j = (Y ′Y − Y ′X(1,s)(X(1,s)
′X(1,s))

−X(1,s)
′Y )/N . Next, update and relabel the

ranking of the predictors X(2), ... , X(P ) according to Λ∗j . Let X(2,s) =

[X(1) X(2) X(s)] for s = 3, ..., P .

(3) Find the next forward stepwise selected predictor X(3) using the same ap-

proach as in Step (2). Repeat this step until all P predictors are ordered.

The multivariate SPCA algorithm with univariate LRT tests will be called

MSPCA-I. The forward selection algorithm will be identified as MSPCA-II. With

MSPCA-I and MSPCA-II, a prediction model can be built for K predictors and

A components, provided A ≤ K. For a given value of A, the optimal number

of predictors, denoted as Pspc, can be identified by cross validation, following the

presentation in Section 2.4.2. Similarly, prediction measures such as Q2, CV , and

RMSPE can be compared for a fixed number of predictors and a varying number A

of components.

4.3 Examples

MSPCA-I and MSPCA-II were tested with the datasets that were used in Chapter

3 for comparing PLS algorithms. We compared MSPCA-I and MSPCA-II to each

other and to the PLS algorithms in terms of goodness-of-fit (measured by R2
Y ) and

predictive ability (measured by Q2). RMSPE and CV were used to determine the

“best” number of components. As with the comparison of PLS algorithms, LOOCV

was used for the small to medium sized real datasets (N ≤ 60), and five-fold cross

validation was used for the large sized (N = 215) Tecator data and the two simulated

datasets Sim A and Sim B (N = 500).
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Results for MSPCA-I and MSPCA-II are presented in Table 4.1 - 4.11 at the end

of this section. The results shown are based on the models with the optimal number

of predictors for each fixed number of components.

With the Cosmetic data, MSPCA-I and MSPCA-II performed similarly and the

R2′s are the same for all models with one to five components. The one component

models, where only one predictor was selected in the SPC predictor subset, are

equivalent to linear regression models. These models’ ability to fit the data is similar

to that of NIPALS but not as good as the nonlinear PLS models. However, the

MSPCA models suffered less from over-fitting than the nonlinear PLS models but

did not predict as well as NIPALS. RMSPE selected a four components MSPCA-I

model and a three components MSPCA-II model both having a Q2 of 0.12. CV

selected one component models with both methods.

Both MSPCA-I and MSPCA-II fitted and predicted the Lung Toxicity data

well. Both five components models obtained an R2
Y near 1. RMSPE selected a five

components MSPCA-I model and a three components MSPCA-II model. MSPCA-I

achieved the highest Q2 of 0.49 with five components, whereas the three components

MSPCA-II model obtained its highestQ2 of 0.32. CV selected one component models

for both methods. The performance of these MSPCA models is similar to NIPALS

and better than nonlinear PLS.

The MSPCA methods performed similarly with the Aroma data. Both one

component MSPCA models have R2
Y = 0.63 and MSPCA-I achieved its highest R2

Y

at 0.71 with four components whereas MSPCA-II obtained its highest R2
Y at 0.77

with five components. However, the second and subsequent components did not

substantially improve prediction. RMSPE selected the five components MSPCA-

I model and the one component MSPCA-II model. CV chose the one component

model for both methods. MSPCA did not fit the Aroma data as well as PLS methods

but predicted better. The one component MSPCA-II model and the five components
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MSPCA-I model achieved their respective highest Q2 at 0.60 and 0.63, whereas the

highest Q2 from the PLS models is 0.54, achieved by the one component PLS-C

model.

With the Sea Water data, both MSPCA methods fitted and predicted the

data well. Their performance is comparable to that of the PLS methods. Both two

components models have R2
Y ’s over 0.83. An interesting observation is that MSPCA-

II seems to be able to fit the data as well as MSPCA-I with fewer predictors. For

example, with five components, MSPCA-II has a higher R2
Y than MSPCA-I with 20

predictors. The two components MSPCA-II model has the highest R2
Y at 0.85 among

all MSPCA models. Both RMSPE and CV selected a three components MSPCA-I

model and a two components MSPCA-II model.

With the Penta data, both MSPCA methods fitted and predicted the data rea-

sonably well. Although they did not fit as well as the nonlinear PLS methods, they

showed less over-fitting and predicted better. Both three components models ex-

plained about 80% of the response variation. Both methods achieved the highest

Q2 at 0.79 with five components. RMSPE selected the five components model for

both methods, whereas CV prefers a one component MSPCA-I model and a two

components MSPCA-II model.

With the Acids data, both MSPCA methods performed well. Although they

did not fit the data as well as the nonlinear PLS methods, neither did they over-

fit the data and thus predicted better. Both methods have R2
Y > 0.9 with three

components. MSPCA-II fitted the data as well as or slightly better than MSPCA-I

with fewer predictors, regardless of the number of components. For example, the

three components MSPCA-II model using three predictors has R2
Y = 0.94, whereas

the three components MSPCA-I model needed 21 predictors to have R2
Y = 0.92. The

five components MSPCA-II model with 5 predictors has the highest Q2 at 0.93 among

all MSPCA models. Both RMSPE and CV chose a four components MSPCA-I model
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and a five components MSPCA-II model.

Both methods fitted and predicted the Jinkle data well. While the MSPCA

methods achieved comparable fit to the PLS methods, they displayed better robust-

ness and predicted considerably better than any of the PLS algorithms. RMSPE

picked four components MSPCA models, while CV selected two components models.

Both methods achieved their best prediction with four components having Q2 = 0.52.

The MSPCA methods fitted and predicted the Mortality data well. Although

they did not fit as well as most of the nonlinear PLS methods, they predicted better.

Both RMSPE and CV made the same choices of models, i.e. a two components

MSPCA-I model and a five components MSPCA-II model, where both achieved

their respective best prediction with Q2 = 0.61 and 0.62. The forward stepwise

predictor screening procedure selected fewer predictors for two to four components

models than the univariate procedure.

MSPCA-I and MSPCA-II fitted the Tecator data well and their prediction ability

is comparable to the best PLS methods, such as NIPALS, BTPLS and QSPLPLS.

The five components MSPCA-II model has the highest Q2 at 0.93 among all MSPCA

and PLS models. Both RMSPE and CV picked a four components MSPCA-I model

and a five components MSPCA-II model. The forward stepwise procedure once again

picked smaller predictor subsets than the univariate selection procedure.

As with NIPALS, MSPCA-I and MSPCA-II had trouble fitting the nonlinear

Sim A data. Since there are only four predictors in the data, no five components

model is fit. None of these models was able to fit and predict the data.

The performance of the MSPCA models with the Sim B resembles that of NI-

PALS. That is, the one component models were able to fit and predict well (both

R2
Y ’s and R2

Y ’s are about 0.6). Additional components provided no further value.

The nonlinear PLS methods fitted and predicted these data considerably better.
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Table 4.1: MSPCA comparison with the Cosmetic data.

Pspc
Component 1 2 3 4 5

MSPCA-I 1 2 3 8 8
MSPCA-II 1 2 3 8 8

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.2115 0.3292 0.4220 0.4714 0.5695

MSPCA-II 0.2115 0.3292 0.4220 0.4714 0.5695

RMSPE
Component 1 2 3 4 5

MSPCA-I 1.0067 1.0176 1.0003 0.9973 0.9978
MSPCA-II 1.0067 1.0176 0.9953 0.9973 0.9978

CV
Component 1 2 3 4 5

MSPCA-I 11.8920 13.0176 13.5460 14.5863 15.9283
MSPCA-II 11.8920 13.0176 13.4127 14.5863 15.9283

Q2

Component 1 2 3 4 5
MSPCA-I 0.1022 0.0827 0.1137 0.1190 0.1182

MSPCA-II 0.1022 0.0827 0.1224 0.1190 0.1182
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Table 4.2: MSPCA comparison with the Lung Toxicity data.

Pspc
Component 1 2 3 4 5

MSPCA-I 2 9 37 37 33
MSPCA-II 1 66 56 68 68

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.1498 0.4042 0.8989 0.9682 0.9792

MSPCA-II 0.0472 0.5012 0.4430 0.7806 0.9908

RMSPE
Component 1 2 3 4 5

MSPCA-I 0.9924 0.8936 1.0342 1.0434 0.7960
MSPCA-II 1.0794 0.9921 0.9245 1.3259 1.0467

CV
Component 1 2 3 4 5

MSPCA-I 13.0001 13.1748 23.5311 35.9258 41.8239
MSPCA-II 15.3794 16.2407 18.8026 58.0114 72.3117

Q2

Component 1 2 3 4 5
MSPCA-I 0.2149 0.3635 0.1473 0.1321 0.4948

MSPCA-II 0.0712 0.2153 0.3187 -0.4014 0.1266
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Table 4.3: MSPCA comparison with the Aroma data.

Pspc
Component 1 2 3 4 5

MSPCA-I 1 3 4 5 6
MSPCA-II 1 3 4 8 6

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.6346 0.6338 0.6341 0.7082 0.7080

MSPCA-II 0.6346 0.6759 0.6933 0.6831 0.7719

RMSPE
Component 1 2 3 4 5

MSPCA-I 0.6969 0.7040 0.6875 0.6809 0.6705
MSPCA-II 0.6969 0.7005 0.7030 0.7368 0.7357

CV
Component 1 2 3 4 5

MSPCA-I 0.4996 0.5247 0.5157 0.5215 0.5220
MSPCA-II 0.4996 0.5196 0.5392 0.6107 0.6286

Q2

Component 1 2 3 4 5
MSPCA-I 0.5983 0.5901 0.6090 0.6166 0.6282

MSPCA-II 0.5983 0.5941 0.5912 0.5510 0.5523
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Table 4.4: MSPCA comparison with the Sea Water data.

Pspc
Component 1 2 3 4 5

MSPCA-I 27 27 27 27 20
MSPCA-II 3 10 27 26 5

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.2509 0.8673 0.9065 0.9066 0.9428

MSPCA-II 0.1622 0.8364 0.9065 0.9049 0.9792

RMSPE
Component 1 2 3 4 5

MSPCA-I 22.6273 10.5489 9.1941 9.9174 10.8736
MSPCA-II 21.0632 9.1903 9.1941 9.9101 12.7936

CV
Component 1 2 3 4 5

MSPCA-I 1645.6991 385.1964 316.9898 402.3573 532.0616
MSPCA-II 1426.0496 292.3641 316.9898 401.7701 736.5387

Q2

Component 1 2 3 4 5
MSPCA-I 0.1005 0.8045 0.8515 0.8272 0.7923

MSPCA-II 0.2205 0.8516 0.8515 0.8275 0.7124
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Table 4.5: MSPCA comparison with the Penta data.

Pspc
Component 1 2 3 4 5

MSPCA-I 1 2 14 15 15
MSPCA-II 2 4 15 13 15

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.7728 0.7756 0.8013 0.8295 0.836

MSPCA-II 0.7351 0.7925 0.7912 0.8371 0.836

RMSPE
Component 1 2 3 4 5

MSPCA-I 0.4446 0.4665 0.4321 0.4223 0.4147
MSPCA-II 0.4440 0.4292 0.4496 0.4163 0.4147

CV
Component 1 2 3 4 5

MSPCA-I 0.2048 0.2338 0.2082 0.2069 0.2078
MSPCA-II 0.2042 0.1978 0.2255 0.2010 0.2078

Q2

Component 1 2 3 4 5
MMSPCA-I 0.7534 0.7286 0.7672 0.7776 0.7855
MSPCA-II 0.7541 0.7703 0.7479 0.7839 0.7855
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Table 4.6: MSPCA comparison with the Acids data.

Pspc
Component 1 2 3 4 5

MSPCA-I 21 29 21 21 29
MSPCA-II 4 9 3 16 6

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.4335 0.8497 0.9232 0.9343 0.9348

MSPCA-II 0.4271 0.8601 0.9400 0.9346 0.9564

RMSPE
Component 1 2 3 4 5

MSPCA-I 0.8410 0.4588 0.3436 0.3248 0.3286
MSPCA-II 0.8210 0.4321 0.3311 0.3276 0.2947

CV
Component 1 2 3 4 5
MMSPCA-I 2.1902 0.6737 0.3908 0.3617 0.3840
MSPCA-II 2.0872 0.5974 0.3630 0.3680 0.3088

Q2

Component 1 2 3 4 5
MSPCA-I 0.3976 0.8207 0.8994 0.9101 0.9080

MSPCA-II 0.4259 0.8410 0.9066 0.9086 0.9260
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Table 4.7: MSPCA comparison with the Jinkle data.

Pspc
Component 1 2 3 4 5

MSPCA-I 8 23 24 22 24
MSPCA-II 2 24 24 24 24

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.2529 0.7164 0.869 0.9198 0.9338

MSPCA-II 0.1164 0.7164 0.8690 0.9198 0.9338

RMSPE
Component 1 2 3 4 5

MSPCA-I 0.1070 0.0925 0.0818 0.0772 0.1336
MSPCA-II 0.1100 0.0926 0.0818 0.0775 0.1336

CV
Component 1 2 3 4 5

MSPCA-I 0.1098 0.1027 0.1070 0.1429 0.8562
MSPCA-II 0.1161 0.1029 0.1070 0.1440 0.8562

Q2

Component 1 2 3 4 5
MSPCA-I 0.0776 0.3099 0.4608 0.5201 -0.4379

MSPCA-II 0.0252 0.3086 0.4608 0.5164 -0.4379
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Table 4.8: MSPCA comparison with the Mortality data.

Pspc
Component 1 2 3 4 5

MSPCA-I 1 7 7 11 6
MSPCA-II 1 2 6 6 6

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.4144 0.6343 0.6383 0.6410 0.6804

MSPCA-II 0.4144 0.5627 0.6017 0.6756 0.7127

RMSPE
Component 1 2 3 4 5

MSPCA-I 49.3088 39.5026 40.1987 41.2048 40.2197
MSPCA-II 49.3088 48.7961 43.3283 41.2733 39.1281

CV
Component 1 2 3 4 5

MSPCA-I 2473.2818 1615.2083 1702.4996 1821.3105 1767.4060
MSPCA-II 2473.2818 2464.6078 1977.9123 1827.3731 1672.7651

Q2

Component 1 2 3 4 5
MSPCA-I 0.3924 0.6101 0.5962 0.5757 0.5958

MSPCA-II 0.3924 0.4050 0.5309 0.5743 0.6174
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Table 4.9: MSPCA comparison with the Tecator data.

Pspc
Component 1 2 3 4 5

MSPCA-I 2 8 45 22 21
MSPCA-II 1 3 3 4 5

R2
Y

Component 1 2 3 4 5
MSPCA-I 0.2740 0.5438 0.9177 0.9319 0.9322

MSPCA-II 0.2734 0.8564 0.9273 0.9344 0.9353

RMSPE
Component 1 2 3 4 5

MSPCA-I 8.1486 6.8185 2.8249 2.5664 2.5930
MSPCA-II 8.1518 3.5315 2.6560 2.5388 2.5267

CV
Component 1 2 3 4 5

MSPCA-I 200.1388 140.9718 24.3262 20.1401 20.6593
MSPCA-II 200.2927 37.9136 21.4730 19.7076 19.6147

Q2

Component 1 2 3 4 5
MSPCA-I 0.2663 0.4857 0.9116 0.9272 0.9257

MSPCA-II 0.2657 0.8617 0.9220 0.9288 0.9294
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Table 4.10: MSPCA comparison with the Sim A data.

Pspc
Component 1 2 3 4

MSPCA-I 4 4 4 4
MSPCA-II 4 4 4 4

R2
Y

Component 1 2 3 4
MSPCA-I 0.0183 0.0197 0.0201 0.0208

MSPCA-II 0.0185 0.0197 0.0201 0.0208

RMSPE
Component 1 2 3 4

MSPCA-I 0.1238 0.1280 0.1305 0.1317
MSPCA-II 0.1238 0.1280 0.1305 0.1317

CV
Component 1 2 3 4

MSPCA-I 0.0154 0.0165 0.0172 0.0176
MSPCA-II 0.0154 0.0165 0.0172 0.0176

Q2

Component 1 2 3 4
MSPCA-I -0.0144 -0.089 -0.1342 -0.1568

MSPCA-II -0.0139 -0.089 -0.1342 -0.1568
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Table 4.11: MSPCA comparison with the Sim B data.

Pspc
Component 1 2 3 4

MSPCA-I 2 2 3 4
MSPCA-II 2 2 3 4

R2
Y

Component 1 2 3 4
MSPCA-I 0.6013 0.6031 0.6038 0.6046

MSPCA-II 0.6013 0.6031 0.6040 0.6046

RMSPE
Component 1 2 3 4

MSPCA-I 1.6424 1.6436 1.6433 1.6443
MSPCA-II 1.6424 1.6472 1.6467 1.6443

CV
Component 1 2 3 4

MSPCA-I 2.7029 2.7123 2.7169 2.7257
MSPCA-II 2.7029 2.7243 2.7281 2.7257

Q2

Component 1 2 3 4
MSPCA-I 0.5995 0.5989 0.5991 0.5986

MSPCA-II 0.5995 0.5972 0.5974 0.5986
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4.4 Discussion

The comparison between MSPCA-I and MSPCA-II shows that these methods per-

form similarly in both goodness-of-fit and prediction. For most of the real data we

examined, these methods exhibit reasonably good performance. In some cases, al-

though MSPCA methods are not able to fit the data as well as the nonlinear PLS

methods, they are less prone to over-fitting and thus able to predict better. The over-

all performance of these semi-supervised methods resembles that of the linear PLS.

As with the linear PLS, MSPCA is a robust regression tool that can work well with

high dimensional data having severe predictor multicollinearity. However, MSPCA

methods did not fit and predict the two simulated highly nonlinear datasets as well as

the nonlinear PLS methods. Some modifications to the algorithms, such as applying

polynomial transformations to the principal components before the regression, may

potentially improve MSPCA’s performance with such data.

The forward stepwise procedure used in MSPCA-II provided a more effective

means to rank the predictor variables than the univariate procedure in MSPCA-I.

In a number of examples, MSPCA-II selected predictor subsets with fewer variables

yet fitted the data at least as well as MSPCA-I. This was especially true for data

with high predictor multicollinearity, such as the Acids and Tecator data where

MSPCA-II consistently picked fewer predictors than MSPCA-I. MSPCA-II often

provides more parsimonious models and therefore it is preferred to MSPCA-I.

Previous SPCA studies (Bair et al., 2006; Roberts and Michael, 2006) suggested

that the first principal component be used for regression. Our examples show that

more often than not, extra components could add considerable value and result in

more predictive models. We recommend fitting models with a number of components,

say five, and using cross validation to choose the final model.
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Conclusion

In Chapter 2, we reviewed the general PLS methodology and two popular linear

PLS algorithms, NIPALS and SIMPLS. We then reviewed a number of nonlinear

extensions of the PLS modeling technique, including Wold’s (1989) quadratic PLS,

Baffi et al.’s (1999b) error-based PLS-C, Li et al.’s (2001) BTPLS utilizing Box-

Tidwell power transformations and Wold’s (1992) spline PLS algorithm. We also

explored and discussed the strength and limitations of these methods. We then

proposed two simplified spline PLS algorithms and two fractional polynomial PLS

algorithms. We have shown that these methods have potential to model complicated

nonlinear data by providing greater flexibility in fitting the PLS inner relations.

All the newly proposed algorithms adapted the error-based X weights updating

procedure.

In Chapter 4, we first reviewed traditional principal component analysis and Bair

et al.’s (2004, 2006) SPCA modeling technique, which uses a predictor subset selec-

tion procedure based on univariate tests of the association between each predictor

and the response. We then expanded SPCA to allow multiple responses and consid-

ered two approaches for selecting predictors, one of which uses a forward selection
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criterion.

Chapters 3 and 4 present comparisons of the new and existing methods using real

and simulated data. Our analyses showed that both simplified spline PLS algorithms

are flexible enough to fit a number of different datasets very well. In general, these

new methods showed relative robustness among nonlinear PLS methods and provided

reasonable predictive power. The MFPPLS algorithms were able to fit most of the

datasets very well but showed a tendency to over-fit when the sample size is small.

Therefore we recommend using the nonlinear PLS with caution when the sample

size is small. Assessment of the prediction error is necessary to guard against over-

fitting. Overall linear PLS algorithms are more robust than nonlinear PLS methods

and they have fewer problems with over-fitting. However, the nonlinear PLS methods

are much more capable of fitting data with high nonlinearity.

The overall performance of the MSPCA algorithms is similar to that of linear PLS.

With the forward stepwise predictor selecting procedure, MSPCA-II often selected

fewer predictors than MSPCA-I yet provided comparable fits and predictions. We

recommend MSPCA-II over MSPCA-I.

In summary, this thesis makes several contributions to data modeling with la-

tent variable regressions. First, we expand PLS modeling techniques by introducing

several new algorithms that are suited for fitting and predicting nonlinear data.

Second, we extend univariate SPCA to handle multiple responses. Our proposed

forward stepwise procedure provides a more effective means to find the important

predictors in MSPCA than the simple unadjusted ordering scheme proposed by Bair

et al. (2006). And last, our comparisons of these newly developed methods with some

previously established popular PLS algorithms provide valuable insights about these

techniques’ ability to handle data with different sample sizes and characteristics.

In the future we may use simulation studies to fully assess when certain methods
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are likely or unlikely to perform well with regards to sample size, data dimensional-

ity and correlation. Hopefully such studies will provide better guidelines for making

choices among these methods. Another potential future consideration is to incor-

porate variable transformations into MSPCA in a hope to better handle nonlinear

data.
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