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Design and Implementation of a Scala Compiler
Backend Targeting the Low Level Virtual

Machine

by

Geoffrey Reedy

B.S., Computer Science, University of Missouri — Rolla, 2004

M.S., Computer Science, University of New Mexico, 2014

Abstract

The Scala programming language successfully blends object-oriented and functional

programming. The current implementation of Scala is tied to the Java Virtual Machine

(JVM) which constrains the implementation and deployment targets. This thesis de-

scribes the implementation of a new backend for the Scala compiler that targets the Low

Level Virtual Machine (LLVM). Targeting LLVM allows compilation of Scala programs

to optimized native executables and enables implementation techniques that are not

possible on the JVM. We discuss the design and implementation of this backend and

evaluate its ability to compile existing Scala programs and the performance of the gen-

erated code. We then outline the additional work needed to produce a more complete,

performant and robust backend.
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Chapter 1

Introduction

In this thesis we present a new backend for the Scala compiler which targets the Low

Level Virtual Machine (LLVM). At its core LLVM provides a type-safe, universal intermedi-

ate representation designed to be targeted by high-level compilers and code generators

that translate this intermediate language to native assembly or machine code. By tar-

geting LLVM’s intermediate representation the compiler author can support several

architectures with a single code generation target.

The Scala compiler currently targets the Java Virtual Machine (JVM). The JVM is a

managed runtime for class based object oriented programming languages. It provides

runtime features such as garbage collection, method dispatch, thread-based concur-

rency, and rich libraries. LLVM, true to its name, does not provide these features. Instead

it supplies what a language implementer needs to build exactly those facilities that are

needed by the particular language. Indeed, most of the complexity in the backend we

have implemented is in the implementation and support of these facilities. In exchange,

these facilities can support Scala and its features in ways that the JVM does not.

Because LLVM can generate standalone native code it does not require a virtual

machine on deployment targets. This could lead to Scala being a viable option for
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Chapter 1. Introduction

platforms where a JVM is not available including embedded systems and Apple’s iOS

platform.

Scala programs compiled to LLVM would also not suffer from the long start up time

required for the JVM, making Scala a more attractive choice for system programming

and scripting. Scala on LLVM can also provide a platform for experimentation in imple-

mentation techniques for a hybrid functional/object oriented language.

This thesis begins with brief overviews of the Scala compiler and LLVM followed by a

description of the LLVM backend and how Scala constructs map to LLVM. This includes

details of code generation and runtime support facilities (e.g. garbage collection). We

present results on the performance of the code generated by the LLVM backend. The

performance numbers are disappointing but the analysis shows that more efficient

implementation of runtime features could bring significant improvements. We end with

a discussion of the missing features of the backend outlining how they can be completed

and an outlook towards possible future extensions of the project.
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Chapter 2

Background

2.1 The Scala Compiler

Scala’s compiler is built on a powerful and flexible framework that allows the compiler

to be assembled from separate components each implementing different aspects of

compilation.This section gives an overview of the architecture of Scala’s compiler as it

relates to creating a new backend. A full treatment of this architecture can be found in

Odersky and Zenger’s 2005 paper “Scalable component abstractions” [15].

2.1.1 Components and Phases

Each component defines a phase of the compilation pipeline and declares its depen-

dencies. The compiler uses the dependency information to assemble the pipeline as

documented in Nielsen [13].

The initial phases parse each source file into a syntax tree, enter symbols into the

compiler’s symbol table, and annotate the trees and symbols with type information.

Intermediate phases process these trees, symbols, and types to analyze, optimize, or

3



Chapter 2. Background

desugar the program. The final phases translate the syntax tree into the ICode interme-

diate language, optmize the ICode, and generate code for the target platform.

2.1.2 Platforms

The target platform can be considered as a meta-component within the Scala compiler

architecture. Platforms specify

• platform specific phases;

• loading symbol and type information from compiled code;

• the method for comparing two objects for equality; and

• whether a value of a given type might be a boxed primitive.

For example, the JVM platform specifies a symbol loader that reads from class files in the

filesystem or JAR files and that the flatten and genJVM phases should be included in the

compilation pipeline.

The main addition to the Scala compiler for this project is the additional platform

component for LLVM and the code generation phase it instructs the compiler to use.

Unfortunately, platform specific knowledge is not confined to the platform abstrac-

tion. There are some phases within the compiler that check which target platform is

active and change their behavior accordingly. Even though the number and scope of this

embedded platform knowledge is limited, any new target platform must extend these

areas of the compiler to support the additional platform.

2.1.3 ICode

ICode is an intermediate language used in the Scala compiler. The icode phase of the

compiler generates the ICode representation of the program from the annotated syntax

trees processed in earlier compiler stages.

4



Chapter 2. Background

ICode resembles JVM bytecode in many ways. Code is organized into methods, which

are in turn collected within classes. Classes, fields, and methods are each identified by

their symbol within the compiler’s symbol table.

The execution model is a stack based machine with a separate call stack and operand

stack; each method can also define a set of local variables to use as scratch space. To

facilitate analysis, optimization, and code generation, a method’s code is organized into

basic blocks, sequences of instructions with a single entry point (the first instruction)

and a single normal exit point (the last instruction). A basic block can be exited at any

time due to a thrown exception.

Each method contains a (possibly empty) list of the exception handlers for the code

in the method. An exception handler covers one or more basic blocks and handles

a particular exception type (or any of its subtypes). The handlers are stored in order

from innermost to outermost so that iteration over the handlers that cover a given block

will yield the handlers in the order that they should be evaluated. When an exception

handler matches the thrown exception, control transfers to the start block specified in

the handler. When no exception handlers match, execution of the method stops and the

exception propagates to its caller.

ICode instructions are annotated with enough type information that the types of

values consumed from and pushed onto the operand stack can be determined by in-

specting the instruction alone. This makes it possible to verify that optimizations and

other ICode transformations preserve type-safety. However, in ICode type parameters

have been erased so the types are approximations of the types in the source program,

known within the compiler as a TypeKind.

As an example the Scala source and resulting ICode for a factorial function are shown

in Listing 2.1 and Listing 2.2 respectively. A detailed description of ICode can be found

in Section 3.2.1 of Dragos’ PhD thesis [4].

5



Chapter 2. Background

Listing 2.1: Scala source for fact

def fact(n: Int): Int = {
if (n == 0) 1 else n ∗ fact(n−1)

}

Listing 2.2: ICode for fact

def fact(n: Int (INT)): Int {
locals: value n
startBlock: 1
blocks: [1,2,3,4]

1:
LOAD_LOCAL(value n)
CONSTANT(0)
CJUMP (INT)EQ ? 2 : 3

2:
CONSTANT(1)
JUMP 4

3:
LOAD_LOCAL(value n)
THIS(fact)
LOAD_LOCAL(value n)
CONSTANT(1)
CALL_PRIMITIVE(Arithmetic(SUB,INT))
CALL_METHOD fact.fact (dynamic)
CALL_PRIMITIVE(Arithmetic(MUL,INT))
JUMP 4

4:
RETURN(INT)

}

6



Chapter 2. Background

2.2 Low Level Virtual Machine

The Low Level Virtual Machine (LLVM) is an open source compiler framework for op-

timization [7], code generation and lifelong program analysis through profile guided

reoptimization [8]. It began as a research project at the University of Illinois and is now

being used by a number of open source and commercial projects [11]. LLVM specifies

a portable and universal intermediate representation and provides tools for analysis,

optimization, and native code generation (both ahead-of-time and just-in-time). It is

used as the target for a number of functional and object oriented languages including

Haskell [16] and Java [2].

LLVM supports features such as efficient tail calls, precise garbage collection [10],

zero-cost exception handling [6], link-time optimization, and atomic memory operations.

These features make LLVM an attractive target for compilers because they get all of these

features, analyses and optimizations for free, the quality and quantity of which are

consistently increasing.

2.2.1 Intermediate Representation

There are three equivalent representations for LLVM assembly, called LLVM Intermediate

Representation (LLVM IR), a textual syntax for human inspection and authoring, a space

efficient binary format known as bitcode, and an in memory representation used by the

LLVM tools and libraries. LLVM includes tools for processing code in the binary format

and converting between the textual and binary forms; these tools are described in more

detail below. The semantics of LLVM IR are defined in the LLVM Language Reference

Manual [9] but we give a brief overview here.

An IR file in either binary or textual form is known as a module and is the translation

unit in the LLVM system. A module contains global data declarations and definitions,

7



Chapter 2. Background

type definitions, named module metadata, external function declarations and function

definitions.

LLVM IR is a static single assignment (SSA) [3] language with an unlimited number

of registers. Function bodies are given as a list of basic blocks with a distinguished

entry block in which the function’s execution begins. Each block may begin with a

sequence of phi instructions that merge incoming values from the block’s predecessors.

This is followed by any number of normal instructions (e.g., arithmetic, conversions,

memory operations, function calls). The last instruction in a basic block is known as

the terminator and determines how execution proceeds. The basic terminators are the

unconditional branch, conditional branch, generalized conditional branch (switch), and

function return. Control flow due to exception handling is represented explicitly in LLVM

by the invoke instruction. This instruction is a function call that specifies the successor

block for a normal return and the successor block for an exceptional exit from the called

function. The special terminator unreachable can be used to tell the LLVM optimization

passes that the end of a block will not be reached, for instance, after calling a function

that does not return.

LLVM IR is distinguished from most low-level intermediate languages by the presence

and use of high-level type information. This type information and the data flow informa-

tion implicit in the SSA form provide opportunities for much richer optimizations and

analyses than are typically possible for a low-level representation.

Continuing the previous example, a factorial function written in the textual LLVM IR

is shown in Listing 2.3. This demonstrates the explicit nature of control flow and typing

in LLVM IR. Every instruction contains type information for its arguments, and when

necessary the result type. In this case only two types are used: i32 and i1; 32 bit and 1 bit

integers respectively. In reality a third type is used in this fragment, namely the type of

@factorial: i32(i32)*. This type can be inferred from the return type and argument types

used in the call instruction and does not need to be given explicitly.

8



Chapter 2. Background

Listing 2.3: LLVM code for factorial

define i32 @factorial(i32 %n) {
entry:
%iszero = icmp eq i32 %n, 0
br i1 %iszero, label %return1, label %recurse

return1:
ret i32 1

recurse:
%nminus1 = add i32 %n, −1
%factnminusone = call i32 @factorial(i32 %nminus1)
%factn = mul i32 %n, %factnminusone
ret i32 %factn

}

2.2.2 Extending and Embedding LLVM

One of LLVM’s greatest strengths is that, rather than being a monolithic system, it is

designed as a set of components that can be extended with additional functionality

and used outside of the tools distributed with LLVM. This enables a compiler to emit

LLVM IR, possibly annotated with metadata specific to the language, and supply passes

for language-specific optimizations and analyses. A language runtime can embed the

just-in-time compiler and execution engine of LLVM and use the LLVM API to expose

the runtime services to the hosted program. This project uses the JIT engine in this way,

whereas language-specific optimizations are deferred to future work.

9



Chapter 3

The LLVM Backend

Compared with the JVM backend, the LLVM backend is more complex as it must in-

clude details about garbage collection, method invocation, exception handling, layout

of objects in memory, class metadata, runtime type checks, and other services that are

provided by the JVM. Additionally, these features cannot be designed in isolation; they

must work in concert. For example, the garbage collector needs to trace the pointers

contained within objects, so object layout and class metadata must be designed to sup-

port this. This chapter discusses the design and implementation of the LLVM backend

along with the consequences and rationale of the decisions made. This chapter presents

examples that demonstrate various aspects of the backend. Each example uses the Scala

classes, traits and objects defined in Listing 3.1 as the basis for the example.

3.1 Design Goals

Throughout the development of the LLVM backend, decisions were guided by two high

level goals: minimize the changes to the existing compiler code and start with simple

solutions avoiding premature cleverness.

10



Chapter 3. The LLVM Backend

Listing 3.1: The class definitions used in further examples.

trait MetaSyntactic { def name: String }

trait Contains[T] { def children: Array[T] }

class Foo(val anInt: Int) extends Object with MetaSyntactic { val name = "foo"; }

class Bar(val children: Array[Foo]) extends Foo with Contains[Foo] {

override val name = "bar"

}

object Baz extends Foo { override val name = "baz" }

Minimizing the changes to the compiler is important so that the backend can con-

tinue to work as the rest of the compiler independently evolves. Unfortunately some

modifications to the compiler beyond enabling the selection of the backend were re-

quired. However, these changes have been rather small and by adhering to this goal we

have successfully tracked Scala’s development for roughly two years.

Choosing simple solutions first allowed development of a partially functional back-

end in less than a month. Though some early choices later proved inadequate, this

principle enabled continued rapid development.

3.2 ICode vs. Abstract Syntax Trees

The Scala compiler uses two different representations for programs: abstract syntax trees

and the ICode stack-based intermediate language. The built-in backends generate their

code from ICode but it is possible for a backend to generate code directly from the AST.

We chose to follow the other backends and generate code from ICode.

Aligning with the other backends allowed us to use them as a template for the LLVM

11



Chapter 3. The LLVM Backend

backend. ICode also has a clear executable semantics which makes it easier to faithfully

implement Scala’s semantics instead of creating a language that is slightly different.

Targeting ICode may also reduce the modifications needed as Scala evolves since

new language features will either be desugared to existing ICode or accommodated by

extending ICode in some way. In the first case, no additional effort is required to support

the new feature. If ICode is extended, inspecting how the other backends were affected

can make clear what changes are required.

Generating code from ICode does have some disadvantages. ICode assumes certain

characteristics of managed runtimes for object oriented languages, the JVM in particular.

This makes certain optimizations and alternative compilation strategies difficult or

impossible.

3.3 Run-time Value Representation

Scala’s type system has value types (subtypes of AnyVal) and reference types (subtypes of

AnyRef) and unifies them under the universal type Any. In ICode, however, values and

references are stratified. Reference types can be further divided into classes and arrays.

3.3.1 Values

The ICode value types are represented by scalar LLVM and C types. Table 3.1 shows each

ICode value type, the corresponding LLVM type used in the generated code and the C

datatype used in the runtime support code. We assume that LLVM promotes i1 to fill a

full byte and that sizeof(bool) == 1.

12
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Table 3.1: ICode value types and their corresponding LLVM and C types

ICode Type LLVM Type C Type

unit void void
bool i1 bool
byte i8 int8_t
short i16 int16_t
char i16 uint16_t
int i32 int32_t
long i64 int64_t
float float float
double double double

3.3.2 References

Both instance-references and array-references are represented by a pair of pointers. The

first pointer points to a method table for the reference and the second points to the

instance data. The method table pointer is always appropriate for the static type of the

reference, which may be a supertype or an interface type implemented by the runtime

type of the referenced object. For simplicity, both pointers are given a generic type (i8*

in LLVM; void* in C) for the ABI and must be cast to the appropriate type when used.

3.4 Name Mangling

In ICode, classes, fields, methods, etc. are identified by symbols organized in a con-

tainment hierarchy. During code generation we need to map these symbols into a flat

namespace for LLVM in a way that will not produce any collisions. We employ a name

mangling scheme that encodes the symbol path, entity kind, entity name, and any fur-

ther information needed to uniquely name an entity (e.g., method argument and result

types).

13
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Figure 3.1: Class metadata for Bar, Foo, and Array[Foo] showing selected relationships.
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3.5 Class Metadata

Information about classes needed at runtime for program execution is stored in a global

metadata structure per class and associated auxiliary data. This information supports

method invocation, runtime type tests, garbage collection, and debugging. The details

of these structures are shown in Figure 3.1. The description of the array element and

array class pointers is deferred until the discussion of the implementation of arrays. The

remaining members are described below.

The superclass pointer is consulted at runtime for type tests and casts for class type

targets. Likewise, the list of implemented interfaces is used for tests and casts to interface

types.

The instance size member gives the total size of an instance including the superclass

fields. For instances that are a subclass this gives the offset from the object’s start to

the subclass fields. In combination with the number of reference fields defined in the

class, this information is used by the garbage collector to locate all of the object pointers

within a given instance.

3.6 Instance Structures

The instance structure definition specifies the layout of instance data in memory. The

structure begins with the superclass instance structure which is followed first by the

reference fields defined in the class and second by the non-reference fields. An example

illustrating the layout scheme is given in Figure 3.2.

The base object type is at the top of the class hierarchy and defines the fields needed

to support the runtime system and basic object behavior such as garbage collection

and runtime type checks. Currently, this is only a pointer to the class metadata for the

15
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class pointer
}

Object Header

Foo.name

Foo.anInt

}
Foo Instance Data

Bar.children
}
Bar Instance Data

Figure 3.2: Instance structure layout of a Bar instance.

instance’s dynamic type but as the system evolves more fields may become necessary.

The instance layout scheme ensures that this information is at the beginning of the

instance data so that it can be accessed without regard to the specific type of instance.

Including the superclass instance structure as the first member means that casts

do not change pointer values, only their interpretation. The ordering of fields so that

references come before non-references helps the garbage collector to find the pointers

in an object.

3.7 Arrays

Array instances share the common object header followed by a length field and a variably

sized block of memory that contains the data elements. The class metadata for arrays are

dynamically created on demand and a pointer to the element class’ metadata is stored

in the array class’ metadata. This is done because the element type of arrays on the

JVM can be inspected at runtime. While this is not necessary to ensure type safety for

cast-free programs, some Scala programs may depend on this detail so we duplicate the

feature in our implementation.
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3.8 Virtual Method Tables

The virtual method tables associate the methods of a class or interface with their imple-

mentations and are used during method invocation to select the proper implementation

for the receiver. Virtual method tables are organized so that methods are grouped accord-

ing to the class in which they are declared and methods within a group are canonically

ordered. This organization of object instances and method tables allows allows an object

reference to be used without conversion whenever a reference to one of its super-classes

is required.

3.9 Code Generation

At a high level, the LLVM backend produces an LLVM module for each ICode class.

In this section class refers to an ICode class unless otherwise specified. This module

contains the structure definition for instances; class metadata and virtual method tables;

global static data; implementation of the methods defined in the class; functions for

obtaining the address of instance and static data fields; string constants; and, for classes

that implement a singleton object (a module class in ICode parlance), a function that

initializes the singleton instance. Declarations for functions and types from the runtime

system and other classes are also included in the module. This section describes how

each of these components are generated from the compiler’s internal representations.

3.9.1 Method Implementations

Most of the work of the code generation phase is in translating method implementations

to LLVM functions. Here we discuss the translation from method signature to function

type; conversion from ICode’s operand stack representation to LLVM’s SSA register
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representation; and details of method invocation and exception handling.

In principle, LLVM supports structure types as both arguments and return types

of functions but experience shows that using them can cause problems with LLVM’s

optimization and code generation passes (e.g. they might not be supported by all LLVM

backends). This precludes the obvious mapping from method signatures to function

types where the argument and results types are simply translated according to the rules in

section 3.3 with the receiver (if any) passed as the first argument. Instead, this approach

is modified by passing the virtual method table and object pointer of references as two

separate arguments. To handle methods that return a reference value, the function

accepts an extra pointer argument where the result’s method table pointer will be stored;

the object pointer is then returned.

Each function begins with a prologue that allocates stack space for the local variables

defined in the method and other variables that are used during exception handling and

method invocation. The prologue also communicates information about the function

and its local variables by calling into the runtime. Each basic block of the method is

translated to a basic block in the function by iterating over the ICode operations in the

basic block and emitting LLVM instructions that implement the operation’s semantics.

An ICode operation may require only one or two LLVM instructions or perhaps tens of

instructions. In some cases the operation might not produce any instructions but affect

the state of the translation process.

ICode assumes several implicit value conversions that must be done explicitly when

generating LLVM. In ICode the numeric types are all cross convertible and the target

type is determined by the operation, so we must duplicate this behavior by emitting the

LLVM instructions to do these type conversions. Another implicit conversion is from

class-typed references to interface-typed references. To implement this in LLVM we

must load the object’s class metadata and find the method table for the target interface

and create a new reference structure that holds a pointer to that method table.
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· · ·

%n = load i32* %local.n

· · · i32 %n

; No code needed

· · · i32 %n i32 1

%d = sub i32 %n, 1

· · · i32 %d

LOAD_LOCAL(value n)

CONSTANT(1)

CALL_PRIMITIVE(Arithmetic(SUB,INT))

to
p

to
p

to
p

to
p

ICode operations Virtual stacks and LLVM
instructions

Figure 3.3: Visualization of the compile time operand stack showing how
stack slots are mapped to and from LLVM values during compilation.

At first it seems that reconciling ICode’s operand stacks and LLVM’s SSA registers

would be difficult, but it can actually be dealt with quite easily. The key observation is

that the stack is a static single assignment structure since values on the stack are never

modified: the act of pushing a value onto the stack is a static single assignment to a

new stack slot. This leads to an implementation where the stack is manifest only during

compilation and each stack slot holds the LLVM value that is the slot’s value at runtime.

When an ICode operation is translated values are popped from this stack and the result

is pushed, as shown in Figure 3.3.

Conveying values between basic blocks is somewhat more complicated because

LLVM requires explicit phi instructions to merge incoming values from predecessor

basic blocks. The method used is similar to that described by Bebenita for converting
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Java bytecodes to SSA form [1]. Each basic block is analyzed to determine how many

values are required to be on the stack upon entering the block and how many values

the block leaves on the stack upon exit. The outgoing stack slots of each block are

given unique names based on the block identifier and the position of the slot on the

stack. The use of specific names allows each basic block to be translated without any

knowledge of the content of its predecessors, simplifying the compilation process. Before

translating the contents of the basic block, φ instructions are inserted that map the

outgoing stack slots of the predecessor blocks to the incoming slots of the block. Before

completing translation of a basic block the values remaining on the stack are assigned

to SSA registers with the appropriate distinguished names. Note that each block is

responsible for selecting the stack slots it uses directly as well as those it merely passes

along to its successors.

To a first approximation, method invocation is quite simple: load the appropriate

function pointer from the receiver’s method table and call the function with the ar-

guments from the compile-time operand stack. However, any method may throw an

exception during its execution. In order to handle exceptions the function must be called

using the invoke instruction which is a terminator in LLVM. We first actually generate

invalid LLVM IR by emitting the invoke in the middle of the basic block and with a non-

existent destination. The code is fixed up after all basic blocks have been translated by

splitting blocks at invoke instructions and rewriting the target of the invoke instruction

to be the newly created successor.

This brings us to exception handling in the LLVM backend. An ICode basic block

may be covered by any number of exception handlers. Exception handlers have a nested

structure corresponding to the try-catch-finally expressions of the source program. Each

handler handles a single exception type so a single case in a source level handler may

result in several ICode handlers. We use the intrinsics that support zero-cost exception

handling as documented in Exception Handling in LLVM [6]. An exception landing pad
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%x0 %x1 · · · %xn

%x.out.0 = select i1 true, %x0, undef

%x.out.1 = select i1 true, %x1, undef
...

%x.out.n = select i1 true, %xn , undef

block.x:
...

%y0 %y1 · · · %yn

%y.out.0 = select i1 true, %y0, undef

%y.out.1 = select i1 true, %y1, undef
...

%y.out.n = select i1 true, %yn , undef

block.y:
...

block.z:

%z.in.0 = phi t0 [ %x.out.0, %block.x ], [ %y.out.0, %block.y ]

%z.in.1 = phi t1 [ %x.out.1, %block.x ], [ %y.out.1, %block.y ]
...

%z.in.n = phi tn [ %x.out.n, %block.x ], [ %y.out.n, %block.y ]

%z.in.0 %z.in.1 · · · %z.in.n

...

Figure 3.4: Example showing the transfer of stack values between basic
blocks. Since LLVM does not have a copy operation, a select instruc-
tion with a constant condition is used to simulate it.

is emitted for each ICode basic block. The landing pad is a new basic block that calls

the LLVM intrinsics to set up the exception handling machinery. All invoke instructions

within the block have their exception target set to this landing pad. The landing pad

extracts the exception instance from the exception information and passes control on

to a set of basic blocks that check the type of the exception against the guard of each

exception handler, transferring control to the first matching handler. The handlers are

tested from innermost to outermost to preserve the programmer’s intent. If no handlers

match the exception’s type the exception is rethrown.
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The backend makes no special attempt to emit efficient LLVM code and in fact

usually emits code with many redundancies and unnecessary register renaming. These

inefficiencies are a consequence of the simplistic approach taken of transliterating ICode

operations into LLVM instructions one at a time without regard for any surrounding

instructions. We instead depend on LLVM optimization passes for efficiency, allowing the

backend’s code to remain simple and more easily maintained. However, the LLVM lacks

understanding of Scala’s semantics and misses some opportunities for optimizations.

For example, multiple loads from a single method table may not be eliminated because

the optimization passes do not realize that the method tables are immutable. Rather

than change our code generation to deal with these issues we plan to annotate the code

so that the default optimizations can take these opportunities or, if necessary, write our

own optimization passes to address these inefficiencies. At this time we are focused on

creating a functional backend; this and other optimzations are deferred as future work.

3.9.2 Native Methods

No implementation is emitted for methods marked with the @native annotation. Rather

the method’s implementation function is declared as an external functions and should

be provided by code that is linked in to the final executable. This mechanism predates

the foreign function interface described in section 3.11 and we expect that in most cases

the FFI will be used in preference to native methods.

3.9.3 Singleton Initialization

As mentioned previously, singletons require special initialization routines as well as

a global variable to hold the singleton instance. A module’s initialization function is

called whenever the module is accessed through a LOAD_MODULE operation, ensuring

that the program receives a properly initialized instance. The initialization function
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is responsible for allocating the instance, calling its constructor, and registering the

singleton as a GC root. It is not an error in Scala to have circular references among

singletons so the initialization function must account for the fact that it may be invoked

recursively.

3.10 Runtime

The runtime library for Scala on LLVM consists of implementations of a small portion of

the Java API and support functions used by the generated LLVM code. These support

functions cover dynamic creation of array classes, array bounds checks, boxing and

unboxing between primitive values and objects, interfaces with the garbage collector,

instance allocation and initialization, runtime type checks, interface virtual method

table lookup, null pointer checks, string concatenation, and interfaces with the platform

exception handling routines.

Most of the Java API classes in the runtime library are implemented purely in Scala.

However the implementations of java.lang.Object, java.lang.Class and java.lang.String

are written in C. The use of class names from Java is a consequence of deriving the LLVM

platform component from the JVM platform component and will likely change in the

future.

We intend to continue writing as much of the runtime in Scala as possible. We also

plan to convert some of the existing C code to Scala. In particular, parts of the runtime

library were written before the implementation of a foreign function interface and were

implemented in C because of the need to interface with native libraries. The runtime

should eventually implement all platform specific aspects of the standard library as

specified in Chapter 12 of the Scala Language Specification [14].

The final piece necessary to run Scala programs with LLVM is the loader. The loader
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is written in C++ and uses the LLVM API. It performs the following steps:

1. Initializes LLVM

2. Loads the program’s bitcode

3. Creates a JIT execution engine

4. Dynamically creates a function that

(a) installs a top-level exception handler,

(b) converts the argv C array to a Scala Array[String],

(c) initializes the singleton containing the program’s main method, and

(d) invoke the main method with the argument array.

5. Calls the created function

We have also written an ahead-of-time compiler that emits the LLVM module along

with a main function that can be compiled to native code. However the incomplete

library implementation causes linking to fail for most programs due to missing symbols

whereas the JIT mode can proceed as long as the undefined symbols are not accessed

during execution.

3.11 Foreign Function Interface

The foreign function interface (FFI) enables access to native libraries from Scala pro-

grams. The FFI takes some inspiration from Haskell’s FFI [12] and borrows some of its

concepts.

3.11.1 Marshallable Types

The first borrowed concept is that of marshallable types. Marshallable types are those

whose values can be transferred between Scala and foreign code. In our FFI, each of

the value types and the special reference type scala.ffi.Ptr are marshallable. Table 3.2
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Table 3.2: Marshallable types and their corresponding C type.

Scala Type C Type Argument Result

scala.Unit void No Yes
scala.Bool bool Yes Yes
scala.Byte int8_t Yes Yes
scala.Short int16_t Yes Yes
scala.Char uint16_t Yes Yes
scala.Int int32_t Yes Yes
scala.Long int64_t Yes Yes
scala.Float float Yes Yes
scala.Double double Yes Yes
scala.ffi.Ptr[T] void * Yes Yes

Table 3.3: C types and the provided type alias.

C Type Scala Type

char scala.ffi.CChar
short scala.ffi.CShort
int scala.ffi.CInt
long scala.ffi.CLong
long long scala.ffi.CLongLong
intptr_t scala.ffi.CIntPtr
intmax_t scala.ffi.CIntMax
size_t scala.ffi.CSizeT

shows these types along with the C type they are marshalled to and from. The table also

indicates whether the type is valid as an argument or result type of a foreign function.

Scala’s value types have a fixed size while the sizes of many basic C types are defined

by the target platform. The build process for the LLVM backend probes the target

platform and generates type aliases mapping basic C types to the appropriate Scala value

type. The provided type aliases are listed in Table 3.3.
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3.11.2 Storable Types and Pointers

Pointers are represented by scala.ffi.Ptr[T] which actually hold a scala.ffi.CIntPtr. When

generating foreign calls, the compiler emits code that extracts the pointer value from the

object from any pointer arguments and creates a new instance wrapping any pointer

results.

For transferring values to and from raw memory the FFI defines the trait scala.ffi.Stor-

able[T] which mirrors the Foreign.Storable type class of Haskell’s FFI. Implementations

of scala.ffi.Storable[T] must provide methods for storing and loading values given a

scala.ffi.Ptr[T]. The FFI provides an implementation of scala.ffi.Storable[T] for each of

the marshallable types.

The type parameter of scala.ffi.Ptr[T] is not used within the type (a so-called phantom

type constructor) but instead provides a modicum of type safety for pointers and assists

with locating the proper scala.ffi.Storable[T] instance using Scala’s implicit resolution

mechanism.

Valid pointers can be constructed by calls to the scala.ffi.alloc object. This object

has methods to explicitly allocate and free memory as well as higher-order methods

that allocate memory prior to executing their argument functions and free the memory

when the argument function finishes execution, either through normal termination or

by throwing an exception.

3.11.3 Importing Foreign Functions

A Scala program gains access to a foreign function by defining a method with the @foreign

annotation. This annotation takes a string argument that gives the name of the foreign

function. The function must have a single argument list and each argument type and

the result type must be marshallable.
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When a foreign method is encountered by the compiler the normal compilation

of the method body is suppressed. Instead the compiler emits code that marshalls

each of the method arguments, calls the foreign function with the marshalled values,

unmarshalls the function’s result and returns it.

3.11.4 Exporting Scala Methods to Foreign Code

Methods of singleton objects can be exported to foreign code by marking the method

with a @foreignExport annotation. The annotation takes a string argument that specifies

the name of the created foreign function. Like imported foreign functions, each argu-

ment type and the result type must be marshallable and the method must have a single

argument list.

For a foreign exported method, the compiler emits a function with the specified name

that marshalls the foreign arguments to Scala values, invokes the method, marshalls the

result to a foreign value, and returns the marshalled result. Currently this feature is of

limited usefulness because there is not any way to get a function pointer for the exported

function.

3.12 Memory Management

Currently the runtime system for LLVM backend incorporates a simple mark-sweep

collector. Each allocation request is serviced by the standard C allocation routines while

tracking the total amount of memory allocated. The heap is given a fixed size and a

collection is run when an allocation would exceed this limit.

Every allocation is extended to include a header and the returned pointer points

just past the header. This header contains the information needed to run the garbage
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collection algorithm. This information includes the pointers used for heap walking

and maintaining the marking worklist as well as the size of the allocation for heap size

tracking.

3.12.1 GC Roots

Marking starts at roots. There are two types of roots: static and shadow-stack. Static

roots are global objects that can be accessed at any point in a program and are always

live. Shadow-stack roots are the objects stored in the local variables and in the virtual

operand stack of executing methods. Static roots are stored in a global array. Stack roots

are maintained in a shadow stack structure maintained during program execution. On

method entry the current shadow-stack pointer is saved and method’s local variables are

registered on the shadow stack. The LLVM instructions emitted for each ICode operation

pop any consumed references from the shadow stack and push any produced references

onto the shadow stack. The shadow stack has a fixed size and the program aborts if it is

exceeded. On method exit the shadow-stack pointer is restored to its saved value.

3.12.2 Marking

The marking phase builds a linked list of live objects, initially containing just the root

objects. This linked list also serves as the worklist for the marking phase. During marking,

objects to the left of the current work item have been scanned for pointers and objects

to the right of the work item have not been scanned. The pointers within the current

work item are scanned and any found objects that are not already in the work list are

inserted after the current work item. When all pointers have been scanned the next item

in the worklist becomes the current work item. This amounts to a depth-first traversal of

the heap looking for objects reachable from the roots.

28



Chapter 3. The LLVM Backend

3.12.3 Sweeping

In the sweep phase of a collection cycle, the entire heap is traversed. Objects that are not

marked (i.e. have a NULL worklist pointer) are freed. Marked objects have their worklist

pointer cleared to prepare for the next collection cycle.
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Results

The LLVM backend and runtime is able to compile and execute some existing Scala

programs and the fragments of Scala’s standard library required for these programs. In

particular we can run the nbody benchmark from the Programming Language Bench-

mark Game1 suite and the Scala Pro version of the benchmark from Hundt [5]. Since

we do not have implementations for formatted output routines (e.g., printf) we have

modified these programs only to use unformatted output routines. We did have to

modify the Scala library to avoid using unimplemented platform features. We also have

a test program that is designed to exercise a wide variety of language features that also

serves as a regression test for the backend. The main impediment to running a wider

variety of programs is the incomplete runtime library.

1File nbody.scala as of 2013-06-01
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4.1 Performance

The code generated by the LLVM backend runs significantly slower than the same pro-

gram compiled for and run on the JVM.2 As a first step to understand the performance

disparity we disable the garbage collector since maintaining the shadow stack incurs

significant overhead. The table below shows the execution times for a single run of each

of the test programs. The time given is the sum of user and system time as reported by

the time program. All measurements were taken on an otherwise idle system with an

Intel Core i7-3612QM processor and 8GiB of memory and show the results for a single

run of each program. We found that the running time of the programs was long enough

that any variability in an individual run was negligible.

Time (s)

Program LLVM JIT LLVM JIT no GC JVM

Test Program 6.15 4.25 0.51

nbody Benchmark (n = 108) 851.03 166.81 16.29

Havlak Benchmark 269.11 111.16 10.61

This shows that the garbage collector does indeed have a large overhead but there is

still a wide performance gap. We then looked at two other runtime features with a perfor-

mance cost: array bounds checking and null pointer checks. We added the capability to

invidually disable these features much as was done with the garbage collector. We also

considered the overhead of virtual method calls and modified the nbody benchmark to

avoid virtual calls as much as possible. We also added, to both the original and modified

versions of the program, the ability to repeat the benchmark a configurable number of

times so that a linear regression could be used to factor out the fixed JIT startup times.

We ran both versions of the benchmark (with n = 106) for all combinations of features

2java version "1.7.0_25"; OpenJDK 64-Bit Server VM (build 23.7-b01, mixed mode)

31



Chapter 4. Results

0.1

1

10

100

a b c d a b c d a b c d a b c d

Original Program Modified Program
1 iteration 32 iterations 1 iteration 32 iterations

a GC enabled, null pointer and bounds checks enabled
b GC disabled, null pointer and bounds checks enabled
c GC enabled, null pointer and bounds checks disabled
d GC disabled, null pointer and bounds checks disabled

Figure 4.1: Performance of the nbody benchmark (n = 106) under various
configurations of the LLVM backend normalized to the JVM backend.

and found that with all of the features disabled, the performance comes within a factor

of two of the JVM for 32 iterations with both just-in-time and ahead-of-time compilation

and actually beats the JVM for a single iteration with ahead-of-time compilation. This

gives hope that, with some effort, the LLVM backend can be performance competitive

with the JVM. Figure 4.1 shows a selection of these results for the ahead-of-time compiled

runs.

These results indicate that more efficient implementations of these features can

narrow the performance gap. Note that the JVM results for the original and modified

programs are nearly identical, indicating that the HotSpot VM is able to inline the

monomorphic virtual calls elimitating the virtual call overhead.
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4.2 Missing Language and Runtime Features

Besides the incomplete library implementation, there are other features necessary for

a complete and practical implementation of Scala that we do not provide and that will

require compiler and runtime support.

Separate Compilation

We currently require that the entire source code of a program, including the source

code of Scala’s standard library, be submitted to the compiler. This greatly increases

compilation time as the standard library code is quite large and complex. Separate

compilation is not technically necessary to have a complete implementation of Scala,

but it can be considered as a requirement for a practical backend.

Scala achieves separate compilation on the JVM platform by embedding pickled

symbol information into the generated class files. We should be able to achieve separate

compilation by generating the same pickled symbol information and outputting it within

or alongside the LLVM modules.

Multithreading

The Scala standard library assumes the presence of multithreading support in the under-

lying platform for features such as futures and parallel collections. Since we cannot fully

support Scala’s standard library it cannot be considered a complete implementation.

Structural Types

The cleanup phase of the compiler replaces calls to structural types with code that uses

Java’s reflection facilities to locate the correct method to call at run-time. We do not
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override this aspect of the compiler and thus do not support structural types.

Rather than implement runtime reflection, we envision an alternative mechanism

for supporting structural types. Structural types can be considered as post hoc interfaces.

With this perspective, the appropriate interface method tables can be generated at link-

time or run-time and the standard method lookup procedure can be used for structural

types.
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Conclusions

This work represents an important first step towards an implementation of Scala that

compiles to native code though there are still significant hurdles to overcome. Certainly,

the performance problems must be addressed and more sophisticated allocation and

garbage collection routines are needed. Compared to these, providing a more complete

platform library is a minor concern with a straightforward resolution. If these issues can

be addressed, Scala can become a viable choice for a wider variety of applications and

environments.
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Future Work

6.1 Compiling From Trees

While generating code from the ICode representation was a prudent first step it may

preclude certain compilation strategies and optimization opportunities in the future.

ICode is very close to the semantics of the Java Virtual Machine and inherits many of its

limitations. One of our objectives is to explore implementation techniques specifically

suited for Scala and this may require generating LLVM code directly from the compiler’s

abstract syntax trees. Some of the ideas presented in this section might depend on this

change in code generation.

6.2 Lightweight Function Objects

When compiling Scala to Java bytecode each anonymous function is implemented as a

unique class because the JVM does not have first-class functions or closures. However

with LLVM we could treat functions as a primitive type, much the same as is done with
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the JVM primitive types. Special subclasses of the Function class could be used for

closures and eta expansion. The closure subclass could be represented in LLVM as a pair

containing a pointer to the function and a pointer to the closure context. Likewise the eta

expansion subclass could be represented as a pointer to a simple stub that resolves the

method and calls it. This would likely require generating code from trees as discussed

previously since ICode eliminates information needed to implement these special cases.

6.3 Elimination of Primitive Boxing

The Java platform requires that primitive values must be boxed to be used in an object

context. This causes problems particularly for generic data structures. Using fields of

object type within these data structures in conjunction with automatic boxing of primi-

tives allows a single implementation to work with all types in the language but boxing

can introduce significant overhead in memory usage and performance. Boxing can

be eliminated by writing multiple implementations of a data structure that have fields

of particular primitive types. The Scala compiler incorporates a specialization mecha-

nism that can automatically generate these multiple implementations but this causes a

combinatorial explosion in code size when multiple type parameters are specialized.

In the LLVM backend we represent references as a pair of pointers, the first pointing

to the referent’s method table and the second pointing to the referent’s data. We could

allow primitive values to be used as objects without incurring an allocation penalty by

storing primitive values in the data pointer, as is done for small integers in OCaml and

other systems. In OCaml, the low bit of a value is used to distinguish pointers from

scalars which limits the range of unboxed integers. However, we can use the method

table to determine the interpretation of the value and represent the full range of native

integers unboxed. In principle this same optimization could be used for any class where

the instance data fits within a pointer, such as a class representing an IPv4 address or, on
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platforms with 64-bit pointers, a single precision complex number.

6.4 Platform Abstraction of Scala Libraries

Scala’s standard library is currently dependent on the Java API. It would be good for

both the LLVM backend and the CIL backend to separate the parts of the library that are

tied to the JVM from those that are not. For example, the JavaConversions class in the

collection package would not have a direct analog on other platforms.

There are also parts of the library that use Java classes in their implementation for

proper interaction with the underlying platform. Examples of this include I/O, exception

classes, comparators, and mathematics. A potential strategy is to include the platform

neutral portions directly in the class and mix in a trait from a scala.platform package. Each

backend would then supply a different implementation of the traits in scala.platform.

6.5 Scala Specific LLVM Optimizations

LLVM provides facilities for writing language-specific optimization passes. These opti-

mizations can exploit high-level information about the program communicated by the

compiler by metadata attached to the LLVM instructions. There may be specific Scala

idioms that would benefit from a targeted LLVM optimization. This could include whole

program optimizations performed at link time. As an example, if a base class method

is only invoked on instances of a certain subclass, loads of the receiver vtable could be

replaced by a direct reference to the subclass vtable.
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