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Abstract

Large entry-level courses are commonplace at public 2- and 4-year institutions of higher

education (IHEs) across the United States. Low pass rates in these entry-level courses, cou-

pled with tight budgets, have put pressure on IHEs to look for ways to teach more students

more effectively at a lower cost. Efforts to improve student outcomes in such courses are

often called “course redesigns.” The difficulty arises in trying to determine the impact of a

particular course redesign; true random-controlled trials are expensive and time-consuming,

and few IHEs have the resources or patience to implement them. As a result, almost all

evaluations of efforts to improve student success at scale rely on observational studies. At

the same time, standard multilevel models may be inadequate to extract meaningful infor-

mation from the complex and messy sets of student data available to evaluators because they

throw away information by treating all passing grades equally. We propose a new Bayesian

approach that keeps all grading information: a partially ordered multinomial probit model
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with random effects fit using a Markov Chain Monte Carlo algorithm, and a logit model that

can be fit with importance sampling. Simulation studies show that the Bayesian Partially

Ordered Probit/Logit Models work well, and the parameter estimation is precise in large

samples. We also compared this model with standard models considering Mean Squared

Error and the area under the Receiver Operating Characteristic (ROC) curve. We applied

these new models to evaluate the impact of a course redesign at a large public university

using the students’ grade data from the Fall semester of 2012 and the Spring semester of

2013.
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Chapter 1

Introduction

1.1 Background

Intermediate Algebra is an entry-level mathematics course at a large public university in the

southwestern United States, which we call the University, and enrolls approximately 2500

students per year. This course is a pre-requisite to all mathematics courses that satisfy

university-level general education requirements, and successful completion of the course is

considered a gateway to further success in higher education. However, Intermediate Algebra

has had a historical pass rate of about 45%, and as such, has been a barrier to graduation for

many students. Before the Fall semester of 2012, students enrolled in one of approximately

20 lecture-based, 60-student sections that were taught almost exclusively by part-time in-

structors each semester. Over time, individual instructors have tried different approaches

to teaching the course in order to improve student performance, including a completely on-

line section, online homework sets using commercial software, and integrating individual or

group work into the lecture via handouts or a workbook. Because no formal evaluations of

these alternative methods of instruction have taken place, no attempted changes have been

widely implemented. In the Spring of 2012, a team of University administrators, faculty,
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and graduate students researched different instructional approaches used at other institu-

tions with the intent of increasing the success rate of students in both Intermediate Algebra

and the subsequent courses that students need to take to graduate from the University. The

team determined that there was significant promise in one particular model and proposed to

pilot it in the Fall of 2012. Enthusiasm for the redesign amongst university administrators

accelerated the full implementation, which occurred in Spring 2013. The Redesigned course

is a self-paced course offered in a computer lab. The model employs mastery-learning, which

allows students to move quickly through material they already understand and to spend

more time working on material that is harder for them, receiving help from circulating tu-

tors when needed. In the Fall of 2012, 1308 students enrolled in Intermediate Algebra. Of

those, 1092 enrolled in a traditional 60-student lecture, and 216 enrolled in the Redesigned

course.

The way that students enroll in university courses, coupled with the complexity of getting

permission to do experiments on students, means that it was not possible to randomly assign

students into the two different instructional groups. Thus, this evaluation is an observational

study that models student success using student and instructor covariates and using several

different model structures and outcome measures. The two instructional methods of interest

will be called “Traditional lecture” and “Redesign” for the purpose of this dissertation.

The primary research questions for the evaluation component are:

1. What is the impact of the Intermediate Algebra redesign on

(a) Student success in Intermediate Algebra in the semester taken,

(b) Student success in mathematics courses taken in subsequent semesters that satisfy

general education requirements at the University?

Additionally, the primary research questions related to the statistical modeling are:

2. How will advanced (novel) statistical modeling improve our understanding of the dif-
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ferential impact of the Traditional lecture and Redesign instructional methods?

3. What are good model structures for analyzing this kind of data?

1.2 Project Summary

In 1994, Robert C. Heterick, Jr., former president of Educom, pointed out that our knowledge

about how using information technology in teaching and learning affects learning outcomes

and cost was still meager, and one of our continuing tasks must be to measure, hypothesize,

and finally formalize theories about how technology applies to education. One of our great

failings so far as a community was relying too heavily on the anecdotal and not doing the

hard work to justify our concepts through meticulous measurement and theory building. He

also addressed the need to help faculty and learners measure the outcome of incorporating

information technology to teaching (Heterick, 1994). While he made these statements 20

years ago, they are still important today.

In response to the great need for college-level math course evaluation using advanced

statistical tools, we developed two new statistical models: Bayesian partially ordered probit

and logit models to help measure student outcomes more accurately despite the limited

information we have, because usually students’ success is recorded as letter grades.

We started with standard statistical approaches like obtaining descriptive statistics of the

data and classical ANOVA (analysis of variance), t-test, and pass rate calculations that have

been used by other authors. We also used standard models like multilevel logit and probit

models to check if there is a significant difference in student mean passing rates between the

Traditional lecture and the redesigned Intermediate Algebra course. Due to the limitation

of the standard models to our data, we developed and implemented new statistical models:

Bayesian partially ordered probit/logit models. The Bayesian partially ordered probit/logit

models are the statistical contribution of this dissertation, and they are shown to be superior
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to standard models such as a multilevel probit model and an ordered probit model with a

five-fold cross validation based on Mean squared Error and Area Under the ROC curve.

This will be discussed in Chapter 3. Our models give a more precise prediction than the

standard models do for partially ordered letter grade data, which is one of the most frequently

encountered data forms used to measure educational outcomes.

Our models take into account independent variables such as gender, high school graduate

or GED certificate holder, the amount of time after high school graduation, ACT and SAT

math scores, semester credit hour load, semester GPA (a weighted average of students’ grade

in the semester while taking Intermediate Algebra), race/ethnicity, and include a random

effect. We use instructor as a second-level variable to model the data in Fall 2012, because

students are nested under instructors, and one instructors taught only the Redesigned sec-

tions, while all other instructors taught the Traditional lecture sections. The models are

based on the assumption that student letter-grades are based on an unobserved score be-

tween 0 and 100, and they predict students’ course scores out of 100 that we do not observe.

We provide these novel statistical tools to help more accurately evaluate the course redesign.

This research started out as an evaluation of a particular implementation of a technology-

based course redesign, but it has implications that reach beyond the particular implemen-

tation studied. Even more than the findings, the methods employed in this research can

be applied to improve the evaluation of similar efforts elsewhere. In fact, these models can

be used to analyze any partially ordered data in fields besides education. We applied these

models to analyze the performance of Intermediate Algebra course redesign at the Univer-

sity. After finishing this dissertation, we will work on incorporating these new statistical

models into SPSS, a spreadsheet-based software which anyone with knowledge of Excel can

use. The advantage of coding the models into SPSS is that someone with only a little bit of

statistical knowledge can apply the models to their partially ordered data. This will make

it possible for educators to easily use it to analyze their data more precisely than with stan-

dard models. These models fill the void of measurement work: accurately evaluating course
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redesign despite the limited information we have.
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Chapter 2

Course Redesign and Assessment:

Background and Implementation

Structure

This chapter contains four sections. The first provides background information on teaching

Intermediate Algebra. The second section defines the terms we use in this dissertation about

course redesign. The third section introduces the nature of the Intermediate Algebra course

redesign at the University. The fourth section reviews the methods currently described in

the education literature for the evaluation of course redesign.

2.1 Background

The poor quality of mathematics education in the United States at the level of Intermedi-

ate Algebra was known as early as the late 1970s and early 1980s. Gardner et al. (1983)

found that high school curricula no longer had a central purpose that would give students

systematic training. Only 31 percent of recent high school graduates completed Algebra II,
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the rough high school equivalent of Intermediate Algebra. They also found that time spent

on homework and average student achievement had declined, despite the fact that grades

were rising. As a comparison, in many other industrialized countries, courses in mathematics

(other than arithmetic and general mathematics) started in grade 6 and are required of all

students, and students spent about three times the number of class hours in math as even

the most science-oriented U.S. students. At that time, there were thirty-five states which

required only 1 year of mathematics in high school (Gardner et al., 1983).

This situation has remained largely unchanged. In the report from National Mathematics

Advisory Panel in 2008 (Panel, 2008), it was found that 15-year-old students in the United

States ranked 25th among their peers in 30 developed nations in math literacy and problem-

solving. Failure to thrive in mathematics during their K-12 education causes difficulty and

stress once students go to college. According to the report of National Mathematics Advisory

Panel in 2008, which was adopted by Department of Education Secretary Margaret Spellings,

“The sharp falloff in mathematics achievement in the U.S. begins as students reach late

middle school, where, for more and more students, algebra course work begins.” Moreover,

they found that students who completed Algebra II in high school were more than twice

as likely to graduate from college compared to students with less mathematical preparation

(Panel, 2008). Because the content of Algebra II in high school mentioned in the report is

roughly equivalent to the content of Intermediate Algebra in college, we can see that students

who are placed into Intermediate Algebra in college (because they did not complete or did not

master Algebra II in high school) are at a greater risk of failing out of college. Intermediate

Algebra prepares students to succeed in College Algebra, the gateway course to most Math,

Science, and Engineering degrees. So the quality of the preparation that students receive

in Intermediate Algebra impacts their ability to graduate with a degree in a technical field.

Small (2002) reported that the failing (FDW) rate in College Algebra is often in the 40%-

60% range and “College Algebra blocks academic opportunities and plans for approximately

200,000 students per semester.” Moreover, failing in College Algebra or Intermediate Algebra

is a common cause of students dropping out of college. At many institutions, nearly half of
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these non-passing students drop out of college entirely (Beaudrie, 2002). In order to build

up students’ math skills and help students pass College Algebra, universities offer a lower

level math course: Intermediate Algebra. The level of the mathematics course that students

are placed in the first year of their college is typically decided by their ACT, SAT or a math

placement test score.

When students drop out of college, there is a negative long-term effect on both the

students and on the country’s economy. To students, higher education can bring them a

well-paid job and a better future, and dropping out of college takes away many possible

opportunities from them. In addition, more highly educated workers are needed for the

economy in many fields. The workforce may be in short supply of highly educated peo-

ple when many students cannot finish their college. Improving learning and achievement in

Intermediate and College Algebra can have a positive impact on both students and the econ-

omy. The unacceptable failing rates, the significant economic impact, and student frustration

have motivated mathematics educators to implement novel approaches intended to improve

students performance in remedial and entry-level college math courses such as Intermediate

Algebra and College Algebra.

Technological developments in the last three decades have brought new options for re-

forming the traditional teaching model. Computer software programs for courses in many

subjects have been developed and are in use at many institutions. For example, early in

Fall 2000, the University of North Florida invested in a 40-seat College Algebra lab and

added a no-credit lab hour in addition to the traditional three hours per week of class time.

The result was that the passing rate of students who used the computer lab increased 12%

compared to the students who did not use the computer lab (Dedeo, 2001). More advanced

computer-based college-level mathematics courses have been implemented since then in many

universities and received encouraging results. At Mississippi Valley State University, students

meet 75 minutes per week in class with an instructor and have 75 minutes per week scheduled

time in a lab, with a total of 3 hours per week in lab required, and take exams online (except
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the final exam). Mississippi Valley State University offered fewer sections after the redesign

because there were fewer repeats. Jackson State Community College required that a student

scheduled 3 hours per week in a lab, instead of a regular class, exams were offered online and

proctored; the pass rate was 42% and improved to 59% for Basic Math. At the University of

Central Florida, students had one class per week with an instructor, an additional 3 hours

of lab time, online exams, and their 65% pass rate went up to 74% (Mason et al., 2012).

2.2 Definition of Terms

Before we describe the introductory-level college math course redesign studied here, there

are some terms we need to clarify.

2.2.1 Emporium Model

The Emporium Model is a teaching model in which students use computer-based resources

to learn and be assessed. It is also called the Computer Assisted Instruction (CAI) model,

and has generally been accepted by educators and students as an alternative to the tradi-

tional lecture teaching model in college level introductory courses. In many universities and

colleges, the emporium model has been shown to enhance students learning and reduce costs.

2.2.2 Traditional Instruction and Course Redesign

There are many possible ways to change a course structure to improve student learning. In

this study, the course redesign uses modern information technology to reorganize the teaching

of a large enrollment course with the intention of improving student learning outcomes at a

lower cost. The course redesign is not just an online course, but uses information technology

to provide more individualized instruction (Twigg, 2011). In particular, the course redesign
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at the University consists of an implementation of the emporium model, which is a redesign

structure that is supported by the National Center for Academic Transformation (NCAT).

There are also other course redesign models such as supplemental model, replacement model,

fully online model, buffet model, and the linked workshop model, and the evaluation methods

presented here could be used to analyze any of these models.

The traditional approach of teaching Intermediate Algebra referred to in this study is a

lecture-based approach. Under the current traditional teaching model, the Department of

Mathematics and Statistics at the University offered approximately 45 lecture-based sections

per year with at least 55 students each which are taught almost exclusively by part-time

instructors.

2.3 The Redesigned Course Structure

The Redesigned course at the University is an implementation of the emporium model for

teaching Intermediate Algebra. During Fall 2012, the University ran a pilot with 216 stu-

dents, divided into two sections, which were taught by one instructor. To accomplish this,

there was a computer lab with about 25 computers that was open 60 hours per week. Each

student was required to spend at least 3 hours per week working in the lab. The full im-

plementation in Spring 2013 was situated in a computer lab with 125 computers that can

accommodate 1000 students for about 5.5 computer hours per week. There was also a sepa-

rate room with 15 computers for taking exams. According to Mason et al. (2012) and direct

communication with the course coordinator, the redesigned Intermediate Algebra course has

the following characteristics:

1. Lectures replaced with individualized study. Lectures are replaced with required

time in the computer lab. The content of the course is presented using a commercially

available computer and internet learning environment called ALEKS (ALE, 2013).
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Students work on their course content in the lab, where on-demand, personalized as-

sistance is available through the software and lab staff.

2. Self-paced with modularized content. In a traditional lecture, all students work

at the same pace; the redesigned Intermediate Algebra course allows students to move

quickly through and test out of the material they already know so that they can spend

more time on concepts and problems that are more difficult for them. At the beginning

of the semester, students take an online assessment, then they are given a specific plan

for individual study designed to fill in their knowledge gaps. The Intermediate Algebra

content is organized into three modules. Once a student has passed a module exam at

75% proficiency, they will not be required to return to that module even if they do not

finish all three modules in the first term of enrollment. Students may finish the course

at any time during the semester, and may also complete the content over the next two

semesters (including summer). In the full implementation starting from Spring 2013,

students are also allowed to work on weekends and during breaks. The grades students

receive for the redesigned Intermediate Algebra course are A, B(with +/-), C+, C , W

(Withdrawal), I (Incomplete), CR (passing with credit), NC (failing with no credit) or

AUD (Audit).

3. Individualized and outcome-based instruction. At the beginning of each module,

students take a diagnostic exam that determines the individual students’ strengths

and weaknesses and creates an individual learning plan. Students get online help via

videos, tutorials, examples, and animations on the topics which are difficult for them.

There are also instructors working in the lab to help students with difficult parts of

the curriculum when needed. Instructors also monitor students’ progress online, and

communicate with them via email to keep them on task and on time. Tutors are always

available in the lab to answer questions and give individual instruction. Each students

learning plan is modified based on his or her own strengths and weaknesses shown

by their homework or quiz solutions. A math coach is also provided to teach student
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academic and behavior skills like time management, planning, persistence, and give

timely encouragement and insight.

4. Cost saving. At the time of the proposal, the Intermediate Algebra redesign was

projected to reduce the cost per student from $82 to $64, with a potential cost-savings of

about $45,000 per year (Mason et al., 2012). This is similar to many other institutions:

Virginia Tech produced savings of about $53 per student (the cost went from $77 to

$24). In 2000, the University of Alabama redesigned Intermediate Algebra and the

redesign reduced the cost per student from approximately $122 to $86, a 30-percent

savings. The University of Idaho redesigned Intermediate Algebra and Pre-Calculus in

2000, and the new active-learning model reduced the total cost of offering both courses

from approximately $338,000 to $235,000, a reduction of 31 percent (Twigg, 2011).

In the Fall semester of 2012, the University ran two parallel methods to teach Intermediate

Algebra: 1092 students were taught using the traditional lecture method, and 216 enrolled in

one of two pilot sections of the Redesigned course. The traditional sections used a common

final exam that was graded by all instructors together, with each instructor grading one or

two questions for impartiality and consistency. The final exam for the redesigned sections

had similar questions from the same topics as the traditional lecture sections, but students

in the redesigned sections took the final exam online with questions generated by the com-

puter software from the same topics. Students in the redesigned sections are permitted to

repeatedly take the final exam, but the questions are different each time they try. Likewise,

the final exam for each student is different but comprised of similar types of questions from

the same topics. This ensures that students who finished the course before the end of the

semester could not release the questions to the ones who finished later. In Spring 2013, all

students were enrolled in the Redesigned course.
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2.4 Statistical Evaluations of Course Redesigns

Heterick (1994) brought up the importance of accurately measuring the impact of course

redesigns. In the past, the statistical evaluation of course redesigns was limited to pass-rate

calculations, standard t-tests, ANOVA or ANCOVA models. Besides these basic calculation

and analysis with standard models, a complete evaluation of the performance of the Interme-

diate Algebra redesign using advanced statistical tools has the potential to provide a more

precise picture of the impact of a course redesign.

Research into the impact of college-level mathematics course redesigns shows some po-

tential promise but also leaves some unanswered questions. In this section, we will review

the evidence for and against course redesigns at various institutions, and provide a critique

of some of the methods of evaluation that were used. This leads us to suggest alternative

models for evaluating course redesigns. In her paper “The math emporium: A silver bullet

for higher education”, Carol Twigg, the president and CEO of National Center for Academic

Transformation (NCAT), presented the evidence of success of the math emporium model at

the University of Alabama, University of Idaho, Jackson State Community College, Louisiana

State University, Alcorn State University, the University of Missouri-Saint Louis, Cleveland

State University, and the University of Central Florida (Twigg, 2011). After redesigning

Intermediate Algebra in 2000, student success rates (grades of C or better) increased from

40.6 percent in Fall 1999 to 78.8 percent in Fall 2003 at the University of Alabama. In 2008,

Alcorn State University, students in the redesigned College Algebra course using the empo-

rium model performed significantly better than those in the traditional format: the average

score on mid-term and final exams of Fall 2008 traditional sections was 55.89, while that of

Fall 2009 redesigned sections was 66.16. Student success rates in Intermediate Algebra at

the University of Idaho in 2000 increased from 59 percent in the traditional format to 75

percent in the redesigned format, and in Precalculus from 68 to 75 percent. Similar excit-

ing results for introductory-level mathematics course redesigns in the other four institutions

listed above were also reported.
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Hagerty et al. (2010) evaluated the effect of Algebra course redesign at Black Hills State

University (BHSU), a four-year, public liberal arts school located in Spearfish, South Dakota

from the years of 2001 to 2006. After students enrolled in eight sections of College Algebra,

four sections were selected to use the same online software (the redesigned sections), and

four sections were taught using the traditional approach. Instructors were assigned to a

redesigned section and a traditional section for both the comparison of the effect by an

individual instructor as well as the overall effect. The result showed “a 21% increase in

passing rate (from 54% to 75%), a 300% increase in enrollment in the next mathematics

course in the program (trigonometry), a 25% improvement in attendance, and a statistically

significant increase in Collegiate Assessment of Academic Proficiency (CAAP , a nationally

normed test) scores”. The passing rate was defined by a “C” or above. What we have seen so

far that the success of course redesigns is mainly from directly recorded pass rates, final exam

scores and other test scores. However, the College Algebra redesign at a community college

in the southeast did not go well, as reported by Wynegar and Fenster (2009). Wynegar and

Fenster (2009) conducted an analysis of the impact of Computer Aided Instruction (CAI)

teaching model and traditional lecture on student learning of College Algebra, where student

learning was defined by grades in the College Algebra course, controlling for instructor

specific grading differences. They translated the students’ final exam scores on a scale where

the grade “A”=4.0, “B”=3.0, “C”=2.0, “D”=1.0, and “F”=0.0 and conducted a simple one

way ANOVA t-test. They found that, “students in the traditional lecture averaged a 2.07,

compared to 1.61 for CAI. Students taking the course with traditional lecture outperformed,

on average, those in CAI by 0.46, a difference of almost one-half a letter grade.” The 0.46

difference was statistically significant with from a t-test with t=1.99, and p-value <.05.

Considering the failing rate, “29% of students failed the CAI course, compared to 20% that

failed the traditional lecture course.”

This analysis has several serious defects in the methods they used:

1. The response or dependent variable must be continuous, and have normal or roughly

14



Chapter 2. Course Redesign and Assessment

normally distributed residuals, which is the key assumption of the ANOVA model

and t-test. In this case even though the categorical letter grades were transformed to

numerical values, the response variable is still by no means continuous, nor are the

residuals normally distributed, so the assumption of the t-test is violated.

2. When there are many ordered categories, a regression or ANOVA model can be fit with

the transformed numerical dependent variable (Gelman and Hill, 2007), if the normal

distribution assumption holds. But clearly, it is not the case with the data of Wynegar

and Fenster (2009). In this case not only the assumption of ANOVA is violated, but

also the continuous model does not take into account the ceiling and floor effects of the

ordinal outcome (Winship and Mare, 1984). The ceiling and floor effects underestimate

the effect of the treatment by putting an artificially low ceiling on the high response,

and a high floor on the low response, thus shortening the distance of high responses

and low responses. The transformed variable means that A (4.0) is twice as good as C

(2.0), four times good as D(1.0), this is not a fact. How were other grades such as CR

(pass with credit), NC (fail with no credit), W (Withdrawal), I (Incomplete), AUD

(Audit) treated? The authors did not mention this in the paper. These grades cannot

be properly represented with one number because we do not have much information

about them, and it is also inappropriate to remove them from the study as they encode

important information about student success.

3. Last, since the paper never mentions that students were randomly assigned to the

different treatment groups, this is an observational study. The effect of confounding

variables on the response (students’ College Algebra grade) such as students’ math

preparation level, family social economic status, and high school (or high school GPA)

should be considered. The impact of these variables on the students’ College Alge-

bra performance between the groups might not be equal since the students were not

randomly assigned. The authors did not consider the different influences of other

covariates on the response between the traditional lecture and CAI.
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Due to these reasons, the analysis of Wynegar and Fenster (2009) does tell us some in-

formation about their study, but their conclusion for this study is suspect. We have seen

similar practices in education literature: researchers simply match letter grades with a nu-

merical value (the GPA that each letter grade indicates), and fit a regression or ANOVA

model. Stephens and Konvalina (1999) investigated whether the integration of the computer

software MAPLE into Intermediate and College Algebra would have an effect on students’

performance in the courses. They used one-way ANOVA and boxplots to compare the exam

scores of the experimental group (with computer software used in teaching the course) and

the control group (without using computer software). A good thing about their study is

that students from both groups took the same final exam, and the exam score is known.

Their conclusions were that the mean scores for both Intermediate Algebra and College Al-

gebra in the experimental group is higher than those of the control group, but the test is

not significant because the p-value is big. Stephens and Konvalina (1999) did not consider

the randomization principle for designing an experiment, and did not include the influence

of the difference in students’ information, such as students’ background information, math

preparation level before taking the Intermediate Algebra and College Algebra between the

two groups either. Hence, the conclusions are not very convincing. This is a common mistake

in evaluating a course redesign: assuming that the students are randomly assigned into the

two groups, traditional lecture sections and redesigned sections, and assuming the students’

backgrounds and life situations in the two groups are the same. In most cases, evaluations

are observational studies because it is expensive and time consuming, so often is not possi-

ble, to randomly assign students into the control and treatment groups. Students typically

take several classes, and many have work or family obligations, so we allow each student

to register in the class that fits his or her schedule. This means that students’ conditions

that affect their success in the course might be different between the traditional sections and

the redesigned sections; thus, this “background” difference must be accounted for when we

evaluate student success between the two groups.

The next two analyses did not adequately consider the difference in student success
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caused by confounding covariates either. In Spring 2010, Bishop (2010) analyzed the effect

of computer-based instruction on student mathematics achievement and students’ attitude

toward mathematics in developmental and introductory mathematics courses: Elementary

Algebra, Intermediate Algebra, and College Algebra, at a community college. Her partici-

pants were 112 students enrolled in 6 algebra classes. The control group was the three classes

taught using traditional lecture instruction, and the treatment group was the three classes

taught using computer-based instruction via the interactive online software MathXL. The

control and treatment groups were taught the same objectives and received instruction two

days a week for 75 minutes per day. The ANOVA results were that students in the tra-

ditional lecture group had significantly higher score than students in the computer-based

classes. ANCOVA results of the pre- and post-tests showed no significant difference in the

achievement between the control and treatment groups.

The “modified emporium model” experiment for teaching College Algebra went better

at the University of Missouri-Kansas City(UMKC) (Brown, 2012). The study at UMKC

used all 193 students enrolled in College Algebra in University of Missouri-Kansas City

in 2011-2012 academic year, with 87 students in the redesigned College Algebra course

and 106 students in the traditional lecture. Brown (2012) analyzed the difference in mean

final exam score and failing (DWF) rate between the students enrolled in the redesigned

and traditional lecture sections, and also compared the difference of mean final exam score

between the two teaching models across different gender and race/ethnicity, as well as within

each gender and each race/ethnicity. His analysis was conducted by Statistical Package

for the Social Sciences (SPSS) using t-tests, two-proportion z-tests, Multivariate Analysis

of Variance (MANOVA) and ANOVA. The result was that performance for the redesign

students was slightly higher (59.14 versus 57.93), but the difference was not significant at

an overall level of significance of 0.05 (the p-value = 0.358); although they hoped that the

DFW rate would be lower for the redesign group than for the traditional group, the fact

was that a 41% DFW rate in the redesign and a 21% DFW rate in the traditional approach.

Other results are: males scored higher than females in the redesign (59.6 versus 58.4) while
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females scored higher than males with the traditional approach (59.6 versus 55.0). The

final exam scores between redesign and traditional lecture students are: African-American

students (43.6 versus 43.3), Caucasian students (65.8 versus 62.1), Hispanic students (76.25

versus 45.9), and non-residential, international students (84.8 versus 77.8). However, this

difference in students’ College Algebra score attributed by race/ethnicity of students was

not included in their models. Brown (2012) concluded that the slightly better performance

on the final exam in the Redesign sections at UMKC could be considered quite promising

for future implementation of the modified emporium model, especially considering that the

implementation in the Spring semester of 2012 was the first implementation and the students

in the Redesign sections were less prepared than those in the traditional lecture sections as

measured by student ACT, SAT and high school GPA. If Brown (2012) had incorporated the

demographic information of students’ as well as their math preparation level into a regression

model, to include the influence of this information on students’ course score, the evaluation

would have been more accurate. Bishop (2010) and Brown (2012) had good response data:

students’ exam score at the end of the semester, but the information was not well utilized

in their analysis.

As we can see from these examples, the statistical evaluation of college-level course re-

design is often no more sophisticated than a pass-rate calculation, standard t-test, ANOVA or

ANCOVA. Furthermore, many more advanced standard modeling approaches, such as mul-

tilevel probit/logit and ordered probit/logit models, have limitations as described in Chapter

4. An evaluation of the impact of the Intermediate Algebra redesign is in need of advanced

statistical tools that can give a more accurate comparison than the earlier methods.
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Chapter 3

A Review of Relevant Statistical

Models

In this chapter, we focus on giving a summary of the development of the models for discrete

and ordinal data. The models are ordinary probit/logit models, multilevel probit/logit mod-

els, and ordered probit/logit models. We review both the Bayesian and non-Bayesian version

of these models, as well as their associated computation methods. A note on notation: the

bold symbols represent matrices or vectors.

3.1 Models

In this section, we review Bayesian models with dichotomous or polychotomous response vari-

ables: probit/logit models, multilevel probit/logit models, and ordered probit/logit models.

Non-Bayesian counterpart of these models are also discussed.
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3.1.1 Probit and Logit Regression Models

A Introduction of Probit and Logit Regression Models

For illustration purposes, we start with a review of linear regression. The standard linear

regression model is:

Yi = X ′iβ + εi (3.1)

with dependent variable Y = (Y1, . . . , Yn) and independent variables X ′i = (1, Xi1, . . . , Xip),

n is the number of observations, i = 1, 2, . . . , n and p is the number of predictor variables.

ε′is are called disturbance terms or error terms.

A linear regression model assumes that the dependent variable, Y , is continuous, although

this does not put any restriction on the possible values that the independent variables may

take on. Other assumptions with the linear regression model in Equation 3.1 are: εi is not

correlated with any of the independent variables, εi has a mean of 0, E(εi) = 0, and uncor-

related from one another, Cov(εi, εj) = 0 ( called “serial independence”), and V ar(εi) = σ2
ε ,

where σ2
ε is constant across all observations (called “homoscedasticity”). These assumptions

about εi are often called Gauss-Markov assumptions. Another common assumption is that

εi is normally distributed. This implies that β̂ is normally distributed, so hypothesis tests

and confidence intervals about β̂ can be easily constructed.

Logistic regression was established by Cox (1971) to analyze binary or dichotomous data.

When the response (Y ) is binary or dichotomous, i.e, “Pass” or “Fail”, “Yes” or “No”, the

probability of “Pass” or “Yes” can be modeled when the outcomes of Y are assumed to be

mutually exclusive and exhaustive, we can use a logit or probit model to model the response

data on a set of explanatory variables (X = (X ′1, X
′
2, . . . , X

′
n)). A logit model is described

as:

pi = P (Yi = 1|Xi), (3.2)

logit(pi) = log(
pi

1− pi
) = X ′iβ. (3.3)
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The probit model is an alternative inverse standard normal function with Φ−1(·) replaces

the logit:

Φ(−1)(pi) = X ′iβ. (3.4)

Where Φ is the cumulative distribution function (CDF) of the standard normal distribution,

and Φ(−1) is the inverse of the CDF. The functions logit and Φ(−1) are examples of link

function: functions which map the mean of the the actual binary response to the real number

line. This is done so that, at some level, the model is a linear model. The choice of a link

is up to the user, see McCulloch (2006) and Thompson and Baker (1981) for a discussion

of link functions. We consider only these two link functions in this dissertation. Figure 3.1

displays the predicted probability by probit and logit link functions. We see that as long as

the predicted probability is not extreme, and close to 0 or 1, the probability estimated with

the same value for X iβ but using the two different link functions are almost the same.
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Figure 3.1: A comparison of predicted probabilities from probit and logit models. The
blue curve represents the predicted probabilities from the logit model, and the red curve
represents the predicted probabilities from the probit model. The vertical axis represents
the probability of Y = 1, the horizontal axis represents the values taken by X ′iβ.
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The logit model is given in Equation 3.3, since the transformed response log( pi
1−pi ) = X ′iβ,

if the ith element of X changes by one unit, then the logarithm of the odds ratio will change

βi times, because the right side will become X ′iβi + βi, then taking the exponential to get

rid of the logarithm, so the odds ratio will change by a factor of eβi . Since for small values

of βi ( for example, βi < 1), eβi ≈ 1 + βi, this is almost the same as saying a βi% increase

in the odd ratio. For example, if βi = 0.25, then e.25 = 1.28. Thus, when X increases by

one unit, the odd ratio will increase by a factor of 1.28, or increases by 28%. While the

expression of probit model in Equation 3.4 depends on not just β, but on the value of X i

and all other variables in the equation. So to even calculate the impact of X i on Y we have

to choose values for all other variables Xj variables. Typical options are to set all variables

to their means or their medians. Another approach is to fix the X ij and let X iJ 6=j vary

from its minimum to maximum values, then you can plot how the marginal effect of X ij

changes across its observed range of values. Thus, the simplicity of the interpretation of

the logit models has lead to their popularity. For this reason, logit models for binary or

polychotomous response data are preferred, for example, see O’Brien and Dunson (2004).

Estimation of β for Probit/Logit Regression Models

In this section, we will review the common estimation strategies for probit/logit models.

Least Square Estimation Using the explanation of Aldrich and Nelson (1984), the

method of Least Square Estimation is to find parameter estimators that make the pre-

dicted Y values the closest to the actually observed Y , based on the relationship between Y

and X. In ordinary regression, this closeness is measured by the sum of squared differences

between the predicted and observed Y. The Least Square Estimator for β is the β̂ that make

the sum of squared error the smallest.

The Ordinary Least Square (OLS) estimates of β in linear models are those which min-

imize the sum of squared error
∑N

i=1 ε̂
2 =

∑N
i=1(Yi −X

′
iβ̂)2. According to Gauss-Markov
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theorem, the OLS estimators are Best Linear Unbiased estimators (BLUE) (Christensen,

2011). The OLS estimates for probit or logit models becomes

β̂ = argminβ

[
N∑
i=1

(Yi −
exp(X ′iβ)

1 + exp(X ′iβ)
)2

]

Horrace and Oaxaca (2006) found that OLS estimates are frequently biased and almost

always inconsistent in the linear probability models. Therefore, OLS estimates of a dichoto-

mous dependent variable are not desirable. Besides the assumptions we just discussed in

Section 3.1.1 about probit or logit models, we also assume that Yis are statistically indepen-

dent of each other conditional on Xβ. Similar to OLS regression, there should not be exact

linear dependency among the independent variables (X) and the number of observations

should be greater than the number of X variables (n > p), each X must have some varia-

tions, and no two or more X are perfectly correlated. Hence, probit and logit models can

have the same multicollinearity problem as OLS regression does, which cause computational

imprecision, unstable estimates, and large sampling error. Using weights in Ordinary Least

Square estimation for probit and logit models make the statistical properties (unbiasedness,

efficiency, normality) hold only asymptotically.

Maximum Likelihood Estimation In contrast to ordinary regression estimated by the

method of Least Square Estimation, the standard approaches to fit a probit or logit model is

to use Maximum Likelihood Estimation. The Maximum Likelihood method has a long his-

tory going back to Fisher (1922). Maximum Likelihood Estimates (MLE) are the parameter

values such that the likelihood (L(θ) = f(Y |θ)) obtains its maximum value. MLEs en-

joys a large number of properties such as consistency, asymptotic normality, and asymptotic

efficiency. See Cramer (1946), and Wald (1949) for examples of such properties.

In contrast to OLS, the method of MLE has a different objective that can be described as

follows. Let pi = P (Y i = 1|X i), so P (Yi = 0|X i) = 1−pi, then the probability of observing

outcome Yi is P (Yi|X i) = pi
Yi(1− pi)Yi . The probability of observing a particular sample of
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N values of Y , given all N sets of of values of X i is given by the product of N probabilities,

P (Y |X) =
N∏
i=1

pi
Yi(1− pi)Yi ,

because the observations are independent. Note that pi is formulated in Equation 3.3 and

3.4. The value of pi depends on β in the models, thus the likelihood is P (Y |X,β). The

likelihood function L(β|Y ,X) ≡ P (Y |X,β). With this function, given the data on Y and

X, and an estimate for β, calling it β̂, the probability or likelihood between 0 and 1 would be

calculated. The principle of Maximum Likelihood Estimation is to use the parameter value of

β̂ that can make the likelihood given the particular observed data as large as possible. That

is, the β̂ we would take, L(β̂|Y ,X) = maxβL(β|Y ,X), or β̂ = argmaxL(β|Y ,X). In

brief, the difference between Least Square Estimation and Maximum Likelihood Estimation

is that Least Square Estimation picks the the parameter estimates that produce the smallest

sum of squared errors in the fit between the model and data, while Maximum Likelihood

Estimation chooses the parameter estimates that imply the highest probability or likelihood

of having obtained the observed sample Y . The method of Maximum Likelihood is widely

used and can be found in most computer packages. Given a random sample of n observations,

for the probit model: Pi = P (Yi = 1) = Φ(Xi
>β), the MLE of β is obtained by maximizing

the likelihood function:

L(β|Y ,X) =
N∏
i=1

[Φ(X ′iβ)]
Yi [1− Φ(X ′iβ)]

(1−Yi) (3.5)

Similarly, the likelihood function to get MLE of β with the logit model is:

L(β|Y ,X) =
N∏
i=1

[
exp(X ′iβ)

1 + exp(X ′iβ)

]Yi [ 1

1 + exp(X ′iβ)

]1−Yi
. (3.6)

To make 3.5 and 3.6 easier to work with, we take logarithm on the probit and logit likelihood

because if β maximize L(β|Y ,X), then it also maximize logL(β|Y ,X), which is concave

and the estimates β̂ are the points at which the derivative equals to 0. The MLE β̂ is

the solution to the equations: ∂logL(β|Y ,X)
∂β

= 0. Neither of these solutions have a closed
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form. Instead, iterative algorithms such as EM (Dempster et al., 1977) or Newton-Raphson

algorithm must be used.

Iteratively Reweighted Least Squares (IRLS) is also a popular algorithm to find the MLE.

For a logit model, let E(Yi) = eXiβ

1+eXiβ
and V ar(Yi) = V0, V = Diag(V0, . . . , V0), i = 1, . . . ,m.

If β is known, a simple consistent estimator of V would be

V̂ 0 =
1

m

m∑
i=1

(
Yi −

eXiβ

1 + eXiβ

)(
Yi −

eXiβ

1 + eXiβ

)′
.

The algorithm is: start with the OLS estimator and compute V̂ with OLS of β, then replace

V by V̂ just obtained to get the next step estimator of β, and repeat the process. Goldstein

(1989) showed that if normality holds and the IRLS converges, the limiting estimator is iden-

tical to the Maximum Likelihood Estimator. Hence, Iteratively Reweighted Least Squares

is widely used to find both the maximum likelihood estimates and the asymptotic covari-

ance matrix for parameters in generalized linear models (which include the probit and logit

models). For more detail about IRLS, see Holland and Welsch (1977) and Green (1984).

For the large samples, MLEs exhibit the asymptotic properties of unbiasness, efficiency,

and normality. These properties seem to hold reasonably well for probit and logit models,

even in moderate-sized samples in which number of observations (N) is only 100 more than

the number of predictor variables (p)(N − p = 100). However, the maximum likelihood

method works poorly when the sample size is small, and the MLE can be substantially

biased when the samples are small (Griffiths and Pope, 1987). Another drawback to MLEs

with these models is that since the likelihood equations for probit and logit are nonlinear,

the algebraic solutions are not obtainable, and the approximations by standard iterative

algorithm need to be used.

In summary, as long as the assumptions hold, the MLE estimators for probit and logit

models have nearly the same asymptotic properties as OLS estimates of the linear regres-

sion model. When the MLE models are nonlinear, computational cost can increase, and the

properties are asymptotic. It is known, under regularity conditions, that MLEs are asymp-
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totically normal with asymptotic covariance matrix equal to the Fisher Information matrix.

One representation of the (i, j)th element Fisher Information matrix of β̂ is:

−E
[
∂2logL(β|Y ,X)

∂βi∂βj

]
,

which can be estimated by the iterative maximization algorithm such as Newton-Raphson

or IRLS algorithm and is obtainable from most computer packages. The Fisher Information

matrix can be used to construct asymptotic confidence intervals and hypothesis tests.

Bayesian Estimation for Probit and Logit Regression Models

An alternative to classical estimation (Least Square, Maximum Likelihood, etc) is to use a

Bayesian method of inference. In general, the MLE θML = argmaxθL(θ|X). If we interpret

the ML estimation from the Bayesians view, the MLE can be seen as a Bayesian estimator

assuming uniform priors π(θ) ∼ 1. The MLE is the posterior mode. However, assuming

an uniform prior is often unreasonable, since we frequently have information about the

distribution of the parameter we are estimating, and uniform priors may also lead to improper

posteriors.

The Bayesian paradigm for statistical inference is revolves around Bayes Theorem.

Bayesian can trace their roots back to Bayes (1763) and Laplace (1813). The fundamental

idea of Bayesian statistics is that we have unobserved parameters, θ, which follows a prior

distribution, π(θ), the observed data Y are conditional on the value of θ, are assumed to have

a distribution f(Y |θ), which is the likelihood. MLE bases the inferences on θ primarily on

the likelihood. In contrast, Bayesian inference is centered around the posterior distribution,

π(θ|Y ), the conditional distribution of unobserved parameter given the observed data. The

posterior distribution is calculated using Bayes’ theorem and provides a natural updating of

prior belief based on what was observed in the data. The posterior distribution is formulated
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as:

π(θ|Y ) =
f(Y |θ)π(θ)

m(Y )

∝ f(Y |θ)π(θ),

(3.7)

where, m(Y ) =
∫
f(Y |θ)π(θ)dθ is the marginal likelihood of the data. The prior distribu-

tion represents the information about an uncertain parameter θ that is combined with the

probability distribution of new data to yield the posterior distribution. There are generally

two ways of defining a prior distribution: subjective and objective. The subjective approach

holds a belief that the prior distribution should reflect a researcher’s or expert’s actual sub-

jective opinion about the unobserved parameters, and the opinion is incorporated into the

posterior distribution of the parameter. While objective Bayesian minimize the influence of

prior distribution on the posterior, meaning that the observed data dominate the posterior

distribution. The main types of objective priors are uniform priors, Jeffrey prior or reference

priors.

Albert and Chib (1993) developed a fully Bayesian approach to estimate β in the probit

model. They used a latent variable Si, which is continuous and unknown, but conditional

on the observed binary variable Yi:

Yi =

1 if Si > 0,

0 if Si 6 0,

and Si is modeled as:

Si = X ′iβ + εi, (3.8)

with

εi
iid∼ N(0, 1),

for i = 1, 2, . . . , N . It is easy to show that:

P (Yi = 1|X iβ) = P (Si > 0) = Φ(X ′iβ).
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Conditional on Yi, Si follows a truncated normal distribution Si|β, Yi ∼ N(X ′iβ, 1), trun-

cated to the possible positive or negative range of Si indicated by each Yi. The joint pos-

terior density of the latent variable S = (S1, S2, ..., SN) and coefficient β given the data

Y = (Y1, ..., YN) is:

π(β,S|Y ) ∝ π(β)
N∏
i=1

{I(Si > 0)I(Yi = 1) + I(Si ≤ 0)I(Yi = 0)} × φ(Si;X
′
iβ, 1),

where φ(X;µ, σ2) is the normal pdf N(µ, σ2). I(X ∈ A) is the indicator function that equals

to 1 if the random variable is contained in the set A. π(β) is the prior for β. This joint

posterior distribution is not of closed form, making it difficult to normalize and construct

inference directly.

Using a flat (noninformative) prior for β, the conditional distribution of β given S and

Y is:

β|S,Y ∝ π(β)
N∏
i=1

φ(S;X ′β, 1)

β|Y ,S ∼ N
(
(X ′X)−1X ′S, (X ′X)−1

)
.

Si|Yi,β is truncated normal N(X ′β), which truncated at the left by 0 if Yi = 1, and

truncated at the right by 0 if Yi = 0.

Albert and Chib (1993) described a Gibbs sampler for the probit model. Introducing

the latent variable makes the the conditional distributions of the model parameters in the

probit model conjugate, if the flat prior or a proper normal prior for β were assumed, the

full conditional distribution of all parameters can be easily calculated. They used Gibbs

sampling to sample from the full conditional distributions. See Section 3.2.2 for a review of

Gibbs sampling. Since the esoteric interpretation of the probit models is widely criticized,

a Bayesian version logit model for binary or polychotomous response data was proposed by

O’Brien and Dunson (2004). O’Brien and Dunson (2004) introduced a fully Bayesian logit

model using a similar latent continuous variable, Si, behind the observed binary or ordered

categorical data. In their model, Si is an independent logistically distributed random variable
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with location X ′β and scale σ2
εlogistic

= 1. The density function of Si they used is:

L(Si|X ′β) =
exp{−(Si −X ′β)}

[1 + exp{−(Si −X ′β)}]2

Or expressed as:

Si = Xβ + εi, εi
iid∼ logistic(0, 1)

The logistic distribution has similar tail behavior as the t-distribution, so O’Brien and

Dunson (2004) obtained the posterior multivariate logistic distribution from multivariate

t distribution by importance sampling. Due to close correspondence between logistic and t

distribution, selecting the degree of freedom in the t distribution v = 7.3 and setting the

parameter = π2(v−2)/3v, the t distribution can approximate the logistic distribution. Since

the posterior computation is challenging, caused by the complexity of the likelihood, they

sampled from an alternative t-link model and used importance sampling to estimate the

parameters. See Section 3.2.2 for more details on importance sampling.

Related work in Bayesian logit models, such as Jaakkola and Jordan (2000) used the

variational estimation techniques to approximate the posterior, and the EM algorithm to

estimate the posterior mode for Bayesian logistic models with Gaussian prior distribution.

Xu and Akella (2008) used a Bayesian logistic regression model for active relevance feedback

analysis. These belongs to the empirical Bayes and modeling strategy is not a fully Bayesian

approach. An example of a fully Bayesian model is Genkin et al. (2007), who presented a

simple Bayesian logistic regression approach that uses a Laplace prior to avoid overfitting

and produces sparse predictive models. Holmes and Held (2006) discussed auxiliary variable

methods for inference in Bayesian logistic regression, including covariate set uncertainty, and

showed how the logistic method is easily extended to multinomial regression models.

3.1.2 Multilevel Linear, Probit and Logit Models

In this section, we will review multilevel linear, probit and logit models.
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Multilevel/Hierarchical Linear Models

Multilevel linear models are also called hierarchical linear models (Goldstein, 1995; Wong

and Mason, 1985), mixed effect models and random-effects models (Singer, 1998), or random-

coefficient regression models (Longford, 1993), and covariance component models (Dempster

et al., 1981). Raudenbush et al. (2002) classified them all “Hierarchical Linear Models”. In

social and behavioral sciences, these multilevel analysis techniques has gained increasingly

popularity, and many applications have been published.

Multilevel (hierarchical) linear models have become popular in education research for

more than two decades. For example, Aitkin and Longford (1986) used what they called

“random parameter models” for the analysis of the studies involving clustered observations

to access school effectiveness. Lockheed et al. (1989) applied a multilevel model to analyze

what improved performance in grade 8 mathematics in Thailand. Goldstein (1989) devel-

oped an iterative generalized least squares estimation procedure for analyzing hierarchically

structured data for an example in education data, and made an efficient computational pro-

cedures later in 1992. A complete book “Multilevel Statistical Models” by Goldstein was

published in 2011. Statistical computing programs were also created for computing such as

HLM (Raudenbush et al., 2004), MIXOR (Hedeker and Gibbons, 1996), MLWIN (Rasbash

et al., 2000), SAS PROC MIXED procedure (Littell, 2006), and VARCL (Longford, 1988).

The name of multilevel/hierarchical models is from the data structure: first we have

variables describing individuals, but individuals are also grouped in larger units, each unit

consisting of a number of individuals, and these units may be grouped in larger units. Lon-

gitudinal data, which records individuals responses over time while the responses at the

same time are correlated with each other, can also use a multilevel structure. For example,

students (the first level) are grouped in classes, and classes (the second level) are grouped in

schools, schools (the third level) in school districts, and so on. In other words, data are nested

or clustered into different levels of groups. The advantages of using multilevel/hierarchical
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models if the data is grouped or nested into different levels are: First, individuals in the

same group have same value of the group variable, and have some similarities. For exam-

ple, students’ grades in an Intermediate Algebra class can be different than the grades in a

dancing class. So the assumption of independence of observations, that is basic for classi-

cal statistical techniques, does not apply here. Second, with multilevel/hierarchical models,

we take into account the variation within groups and between groups, or variation between

individuals within the same group and the variation between groups at each level. Third,

multilevel models can provide good information about group effect at different levels. For

example, using individual response variable about students, we get information about the

variability of students in the response between the upper level groups like classes, even the

variability between schools (the third level group). Regular one-level models assume all the

variability at the individual response level and do not give information about group effects,

this can be misleading (Bosker and Snijders, 1999). Hierarchical Linear Models have become

the basis of two of the most active research areas in statistics and biostatistics: nonlinear

mixed models and generalized linear mixed models.

The linear regression model was expressed in Equation 3.1. Hierarchical Linear Models

are statistical models in the analysis of variance (ANOVA) and in regression analysis where

it is assumed that some of the coefficients are fixed while others are random. A standard

two level Hierarchical Linear model takes the form:

Yi = X ′iβ +Z ′iτ + εi. (3.9)

With,

The first level : εi
iid∼ N(0, σ2

ε ),

The second level : τj
iid∼ N(0, σ2

τ ),

where X i = (1, Xi1, . . . , Xip), β = (β0, . . . , βp), and τ = (τ1, . . . , τj), Zi is a vector that

contains only 0s and 1s, for i = 1, 2, . . . , n and j = 1, 2, . . . , J . X i and Zi are the fixed

and random design vectors, respectively. β is a vector of unknown fixed effects, and τ
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is the vector of unknown random effects. The response variable at level 1 is assumed to

be normally distributed when the outcome variable is continuous. Another assumption for

multilevel linear models or hierarchical linear models is that the expected outcome at each

level may be represented as a linear function of the regression coefficients (Raudenbush et al.,

2002).

Bayesian models naturally incorporate random effects since all parameters are assumed

to be random variables. To make a hierarchical linear model a Bayesian model, we only

need to assume a prior for the nonrandom parameters. We discuss Bayesian computation in

Section 3.2.2.

Multilevel Probit and Logit Models

Multilevel logistic regression models add random effects into the ordinary (one-level) fixed

effect logistic regression model for the data those are nested or clustered into different levels.

Thus, similar to multilevel linear models, with Pi = P (Yi = 1), the multilevel logit model

has both fixed-effects and random effects and is in the form:

logit(Pi) = log(
Pi

1− Pi
) = X iβ +Ziτ =⇒ Pi =

exp(X iβ +Ziτ )

1 + exp(X iβ +Ziτ )
. (3.10)

Alternatively, a multilevel probit model is formulated as:

Φ−1(Pi) = X iβ +Ziτ =⇒ Pi = Φ(X iβ +Ziτ ) = P (Z ≤X iβ +Ziτ ). (3.11)

where Z has standard normal distribution.

Non-Bayesian Estimation Methods for Multilevel Linear, Probit and Logit Mod-

els

Standard non-Bayesian methods of estimation in hierarchical generalized linear models are

Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML). Hartley and Rao
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(1967) first used ML in mixed model analysis. They developed a procedure for the maxi-

mum likelihood estimation of the unknown constants and variances included in the general

mixed analysis of variance model, involving fixed and random factors and interactions, also

discussed the consistency and asymptotic efficiency of the estimates as well as tests of hy-

potheses and confidence regions. For a detailed description of ML or REML estimation for

multilevel linear models, see Jiang (2007) and Raudenbush et al. (2002).

The REML method was first proposed by Thompson (1962) and was put on a broad

basis by Patterson and Thompson (1971). It was to take care of the bias of the MLE for the

variance components when the number of parameters increase with the sample size. A good

example is the well-known Neyman-Scott problem (Neyman and Scott, 1948). The model

for this problem can be expressed as: yij = µi + εij, i = 1, . . . ,m, j = 1, . . . , n, where εij are

independent and distributed as N(0, σ2), and we are interested in estimating σ2. It can seen

as a special case of the hierarchical linear model when n = 2:

Y = Xβ +Zτ + ε,

where Y is a vector of observations, X is a matrix of known covariates, β is a vector of

unknown regression coefficients. Z is a known design matrix, τ is a vector of random effects,

and ε is a vector of errors. It can shown in this case that the MLE of σ2 is not consistent as

m→∞. Here, the number of parameters is proportional to the sample size, while the means

µ1, . . . , µm are considered as nuisance parameters. Instead of using the original data, we do a

simple transformation: zi = yi1−yi2, so the nuisance terms are gone, and zi ∼ N(0, 2σ2). The

key idea of REML is: apply a transformation to the data to eliminate the fixed effects, then

use the transformed data to estimate the variance components. Once the REML estimator

of the variance components is obtained, the MLE of β and τ can be calculated. There are

other solutions to the Neyman-Scott problem, see Berger and Bernardo (1992) for a Bayesian

solution.

The REML estimator does not depend on the choice of transformation. Under suitable

conditions, the REML estimator is consistent and asymptotically normal. Jiang (1996, 1997)
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showed that if the rank of the design matrix X is fixed or bounded, the ML and REML

estimators are asymptotically equivalent, and REML is obviously superior to ML where the

number of fixed effects grows with the sample size.

As an unique case of generalized hierarchical linear models, multilevel logit or probit

models have the nonlinear first level model, and the first level error terms are non-normal.

The likelihood functions for β under a generalized hierarchical linear mixed model are not of

closed form. In fact, these likelihood functions involve high-dimensional integrals that can

not be evaluated analytically. Using an example from Jiang (2007), for the simple one-way

random effect model with binary data yij, i = 1, . . . ,m1, j = 1, . . . ,m2 are conditionally

independent, with Pij = P (yij = 1|u, v), logit(Pij) = u+ui+vj, u is an unknown parameter.

The random effects u1, . . . , um1 and v1, . . . , vm2 are independent such that ui ∼ N(0, σ2
1),

vj ∼ N(0, σ2
2), where σ2

1 and σ2
2 are unknown. It can be shown that the likelihood function

for estimating (u, σ2
1, σ

2
2) can be expressed as:

c− m1

2
log(σ2

1)− m2

2
log(σ2

2) + uy.. + log

∫
. . .

∫ [m1∏
i=1

m2∏
j=1

(1 + exp(u+ ui + vj))

]−1

×exp

[
m1∑
i=1

uiyi.+
m2∑
j=1

vjy.j −
1

2σ2
1

m1∑
i=1

u2i −
1

2σ2
2

m2∑
j=1

v2j

]
du1 . . . dum1dv1 . . . dvm2 .

The high dimensional integral in the above equation is very difficult to evaluate, if m = n

= 40, the dimension of the integral will be 80, and the integrand involves a product of 1600

terms. This shows that for multilevel probit and logit models, the likelihood-based inference

can be computationally challenging in many situations.

To solve or avoid this difficulty, some numerical integration or approximation approaches

must be employed. Stiratelli et al. (1984) estimated the parameters of logistic regression

model with nested, normally distributed random effects by approximating the mode of the

posterior distribution of the random parameters. Inference is based upon maximum like-

lihood estimation of fixed effects and variance components, as well as a empirical Bayes

estimation of random effects. However, this method is computationally intensive. Wong
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and Mason (1985) used essentially the same approach, and it has been extended by many

authors. Breslow and Clayton (1993) termed this method penalized quasi-likelihood (PQL).

Gilmour et al. (1985) considered general covariates in logistic regression with a Gaussian

random intercept using expectation maximization (EM) and Newton-Raphson algorithms,

respectively. Anderson and Aitkin (1985) first proposed a random effect binary model with

maximum likelihood estimator of variance component, an univariate Gaussian quadrature

was used for integration of the random effects.

Many other methods were developed for the approximation of the high dimensional in-

tegrals in Maximum Likelihood Estimation such as Laplace approximations, the Newton-

Raphson algorithm, normal approximations, and Gauss-Hermite quadrature. We leave these

methods to Section 3.2.1. Most of the standard software packages have procedures for these

methods.

Bayesian Multilevel Probit and Logit Regression Models

The computational burden has limited data analysis with multilevel probit and logit models

with which the outcome variable Y is dichotomous rather than Gaussian in several ways.

1. First, investigators have largely restricted their attention to random intercept models

to avoid higher dimensional numerical integration. Because the likelihood methods

that work with Gaussian outcomes do not work in this case, the likelihood function

itself cannot even be evaluated without integrating out the random effects.

2. Second, specialized software is required and is typically optimized for a particular

random effects distribution (e.g., the Gaussian). Available software such as SAS, R,

MLwiN fit nonlinear models via quasi-likelihood methods by linearizing the second

line of the model via Taylor series expansion, yielding marginal and penalized quasi-

likelihood estimates according to the form of the expansion used. These are not full

likelihood methods and would be better termed likelihood-based techniques. Draper
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(2008) showed nominal 95% interval estimates with this approach in random effects

logistic regression models can be far less than 95% when the intervals are based only on

marginal and penalized quasi-likelihood point estimates and their (estimated asymp-

totic) standard errors.

3. Third, inferences about the regression coefficients have often been made conditional

upon the estimated random effects variance to avoid difficult integration.

To overcome these computational difficulties, Zeger and Karim (1991) first adopted a Monte

Carlo method, the Gibbs sampler (Gelfand and Smith, 1990; Geman and Geman, 1984),

and casted Generalized Hierarchical Linear Model or Linear Mixed Models ( GLMM) in the

Bayesian framework to overcome the computational limitations with maximum likelihood

estimation. They provided a fully Bayesian approach to the multilevel/hierarchical linear

model: yij = x′ijβ + z′ijτi + εij, i = 1, . . . ,m, j = 1, . . . , n. Where yij is the response for

the jth observation in cluster i and here yij follows an exponential family distribution; xij

is a p x 1 vector of covariates associated with that response; β is the vector of regression

coefficients, and zij is a q x 1 subset of xij with random effects; τi is a q x 1 vector of

random effects assumed to be normally distribution with mean 0 and variance σ2
τ , and εij is

independent error with mean 0 and variance ε2ε . Compared to a GLM, this multilevel model

reflects heterogeneity across clusters in the regression coefficients, since observations from

the same cluster are correlated. Instead of maximum likelihood estimation, Markov Chain

Monte Carlo rejection sampling methods (Devroye, 1986) and Gibbs sampling were used to

estimate the parameters.

Zeger and Karim (1991) first implemented Gibbs sampling and rejection sampling to

generalized linear mixed models with Gaussian random effects, and estimated the generalized

linear mixed models with a fully Bayesian approach. Albert and Chib (1993) brought a fully

Bayesian version of probit model on binary and polychotomous response data, and used

the Gibbs sampling in conjunction with data augmentation, which lead to computationally

simpler strategy. Bradlow et al. (1999) added a random effect to the standard Item Response
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Theory (IRT) models to account for the nesting of items within the same testlets. They

adopted a latent variable probit model. In their model, the latent score tij is given by:

tij = aj(θi − bj) + εij,

where,

yij =

1 if tij > 0,

0 if tij 6 0,

and εij is a unit normal variance used to indicate randomness in response yij across hypothet-

ical replication of item i. The parameter θ, aj and bj were given interpretation as examinee

proficiency, item discrimination, and item difficulty, respectively. Independent normal priors

were given to each parameter:

θi ∼ N(0, 1),

aj ∼ N(ua, σ
2
a),

bj ∼ N(ub, σ
2
b ),

εij ∼ N(0, σ2
ε ).

The conditional distribution of the latent score tij given other parameters is truncated nor-

mal, and the conjugate Gaussian priors yield Gaussian conditional distributions for each

parameter, and similar to Albert and Chib (1993), a Gibbs sampler was used. Modifications

of regular multilevel probit and logit models were presented with different priors. For ex-

ample, Kleinman and Ibrahim (1998) proposed a Dirichlet process prior for the distribution

of the random effects. Fahrmeir and Lang (2001) developed a unified approach for Bayesian

inference via Markov Chain Monte Carlo simulation in generalized additive and semipara-

metric mixed models, by assigning appropriate Markov random field priors with different

forms and degrees of smoothness.
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3.1.3 Ordered and Multinomial Probit/Logit Models and Estima-

tion

In this section, we review the ordered probit/logit models, and multinomial probit/logit

models, as well as the estimation approaches to these models.

Ordered and Multinomial Probit/Logit Models

Both derived from binary probit/logit models, ordered probit/logit models fit ordinal cate-

gorical data, while multinomial probit/logit models work for unordered nominal data.

Ordered Probit/Logit Models Ordinal data are the most frequently encountered type of

data in the social sciences. For example, respondents are asked to characterize their opinions

on a scale such as: “yes, maybe, no”, “always, frequently, sometimes, rarely, never”, or a

Likert scale: “strongly Disagree, disagree, don’t know, agree, strongly agree” or “strongly

dissatisfied, dissatisfied, neutral, satisfied, dissatisfied”. These categories have a clear order.

We also run into data like: “no high school diploma, high school diploma, some college,

bachelor’s degree, masters degree, doctoral degree”, “free school lunch, reduced school lunch,

full price lunch”, “0-10K per year, 10-20K per year, 20-30K per year, 30-60K per year, > 60K

per year”, “low, medium, high”, “basic math, regular math, pre-AP math, AP math”. The

similarity of these data is that there is a increasing or decreasing order on the data according

to the strength or amount, and there commonly assumed to be equal distance between the

neighboring points. The ordered logit and probit models enable us to model ordinally scaled

dependent variables with one or more independent variables. The most natural way to view

ordinal data is to postulate an underlying latent variable Si associated with each observed
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response Yi. For binary cases, the response data has only two categories, 0 or 1.

Yi =

1 if Si ≥ γ,

0 if Si < γ.

Where the value of γ is determined by the specific situation in application.

If the response data has many ordered categories (Albert and Chib, 1993):

Yi =



1 if γ0 < Si < γ1;

2 if γ1 < Si < γ2;

3 if γ2 < Si < γ3;

4 if γ3 < Si < γ4;

...

m if γc − 1 < Si < γc.

Where γ = (γ1, . . . γc) are the boundaries of the latent variable for each category. The

probability of an observation falling in each category is:

Pr(Yi = c) = Pr(γc−1 < Si < γc) (3.12)

and the value of bounds for the latent variable Si corresponding to each category is de-

cided according to each specific situation. The parameters γ are also called thresholds or

cutpoints, and are in increasing order (−∞ < γ0 < γ1 < γ2 < · · · < γc−1 < γc < ∞).

Such latent variables are assumed to be continuous and centered on a mean value, which are

often modeled as a linear function of one or several covariates. The distribution of the latent

variable can be expressed with Equation 3.13

S = X ′β + ε, (3.13)

where the covariance matrix cov(ε) = Σ. Then the probability of Yi falling in each category
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is:

Pic =

∫ γc

γc−1

f(Si − x′iβ)dSi,

= P (γc−1 < Si < γc),

= F (γc −X ′iβ)− F (γc−1 −X ′iβ).

(3.14)

Where F (·) is the cumulative distribution function (CDF).

Identifiability in the latent probit model is always a concern, because if there is an

existence of unidentifiable parameters, trajectories of the Markov chain for components of

the parameter will tend to drift to a very extreme value, are difficult to converge, and lead to

unstable computation (Gelfand and Sahu, 1999). In the ordered probit model, the parameters

β and the covariance matrix Σ are not identifiable if the boundaries of γ are unknown, see

McCulloch et al. (2000). To ensure the identifiability of the parameters, we either have to

impose known boundaries, or at least restrictions, on the latent variable. For example, make

γ1 = 0, or fix or restrict the covariance matrix. Albert and Chib (1993) made the covariance

matrix equal to I. Let σij be the ijth element of the covariance matrix Σ, since σ11 is

positive, frequentist methods often set σ11 = 1 to achieve the identification of parameters.

McCulloch et al. (2000) developed a Bayesian algorithm to leave the boundaries of the latent

variable random, but work on priors of the covariance matrix to make the parameters in the

multinomial probit model identifiable.

Let Y i be an ordinal response variable with C categories for ith subject, along with a

vector of covariatesX i. A regression model can be done to establish the relationship between

the response variable and the covariates, and yield the probability that a individual falling

in each category pci = P (Y i = yc|X i), c = 1, . . . , C. Ordered probit or logit models can be

done with SAS procedures such as proc logistic, proc genmod and R polr or lrm procedures,

or SPSS and other software. Usually, these models give the cumulative probabilities gci =

P (Y i ≤ yc|X i), c = 1, . . . , C. The last cumulative probability equals 1. Thus the probability

that an individual’s response falls in category c can be obtained by using the cumulative

probability of the category minus the probability of the category before it: P (Y i = c) =
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P (Y i ≤ c) − P (Y i ≤ c − 1). An ordered logit model for an ordinal response Y i with C

categories is defined by a set of C − 1 equations where the cumulative probabilities pci =

P (Y i ≤ yc|X i) are related to the predictors X i through the function:

logit(pci) = logit(
pci

1− pci
) = γc −X ′iβ, c = 1, . . . , C.

It is not possible to simultaneously estimate the overall intercept β0 and all C−1 thresholds,

and the identification problem is usually solved by either omitting the overall constant from

the linear predictor (to make β0 =0) or fixing the first threshold to zero (make γ1 =0). Where

pci =
exp(γc −X ′iβ)

1 + exp(γc −X ′iβ)
=

1

1 + exp(−γc −X ′iβ)
.

The ordered logit model is also called the “proportional odds model” because the ratio of

the odds for the event Y1 ≤ c to the odds of the event Y2 ≤ c is:

pc1/(1− pc1)
pc2/(1− pc2)

= exp [−(X1 −X2)
′β] ,

which is independent of the category of response c. The ordered logit model is a member of

the wider class of cumulative ordinal models, where the logit function is replaced by other

link function, a probit or complementary log-log are the most common ones. In the case of

a probit link, the probability of an observation being in category c is:

Φ−1(pic) = γc −X ′iβc

Pr(Yi = c|Xi,βc, σ
2
ε ) = Pr(Si ≥ γc|X i,βc, σ

2
ε )

= 1− Φ(γc −X iβc)

=

∫ ∞
Xβ

1√
2π
exp

[
−1

2
S2
i

]
dSi.

This is also called ordinal probit model. The ordinal probit model predicts probabilities

similar to those obtained from the proportional odds model, just as predictions from binary

probit model are similar to the obtained from a binary logit model. Since ordinal probit

model can make sampling from its posterior distribution particularly efficient, for this reason,

it may be preferred to other model links if a Bayesian model is employed.
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Unordered Multinomial Probit/Logit Models Unordered multinomial probit/logit

models apply to the data which are mutually exclusive categories with no logical order,

for example, marital status: “married, divorced, widowed, never married”, political parties:

“Republican, Democrat, Green”, or occupational choice: “academic, business, non-profit

organization”. Unordered multinomial probit/logit models are also a generalization of bi-

nary probit/logit models. For the unordered multinomial logit model, the probability of an

individual i choose alternative j is:

Pij = P (Yi = j) =
exp(X ′iβj)∑J
j=1 exp(X

′
iβj)

, (3.15)

where X i represents the independent variables for individual i, βj is the coefficient of the

independent variables for category j, and
∑J

j=1 pij = 1. To estimate the model, we set one

category as baseline (reference), and β1 = 0. So when there are only two categories, the

denominator becomes 1 + exp(X ′iβj), and Equation 3.15 becomes the binary logit model.

Similar to the difference of the binary logit model to the binary probit model, a multi-

nomial probit model uses the standard normal CDF as the link function. One important

difference between the multinomial logit model and multinomial probit model is that the

logit model assumes independence of irrelevant alternatives (IIA), while the probit model

does not. IIA requires that an individual’s evaluation of an alternative relative to another

alternative should not change if more alternatives are added or dropped to the analysis. A

common example of this assumption is the red bus-blue bus problem. Suppose we have three

transportation categories: a red bus, a blue bus, and a car, and we are equally likely to choose

each one. Thus the probability of selecting each is 0.33, but if a red bus is removed as an

option, then we will be twice as likely to take the blue bus than before, and the probability

of taking the blue bus and the car becomes 0.66 and 0.33, because the red bus and blue bus

are perfect substitute of each other. Multinomial logit regression assumes that none of the

categories can serve as substitutes. This is often erroneous. The unrealistic assumption of

IIA can be relaxed in the ordered logit model by introducing a latent variable into the model

according to the order indicated by the response data.
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Parameter estimation of the multinomial probit or logit models is the same as estimating

a series of binary logit or probit models. To estimate the model, one category has to be

chosen to be the baseline (reference) category for the other categories, so the coefficient

of independent variables for this category need to be normalized to 0, and the estimation

is made for each of the other categories versus the baseline category. Thus the coefficient

interpretation for category j is: in comparison to the baseline category, each unit increase in

the independent variable increase/decrease the probability of selecting of alternative j, by

the marginal effect expressed as a percent. See So and Kuhfeld (1995) and Chikhi (2013) for

a detailed description of multinomial logit models.

Multilevel Ordered Probit/Logit Models Multilevel (random effect) ordered probit

and logit models can be used for the analysis of correlated or nested ordinal response data.

Rampichini and d’Andrea (1998) proposed a hierarchical ordinal probit model with group

structure and ordinal response variables to predict the life satisfaction in Italy in different re-

gions. A latent variable was also used in their model. Estimation of the model was obtained

by means of an iterative maximum likelihood estimation procedure based on numerical inte-

gration and the EM algorithm. Fielding et al. (2003) developed a multilevel logit model to

analyze students’ grade data in different institutions. They treated the students’ grades as

ordinal data, contrasted to converting the letter grades to point score. Item response models

can be considered as latent variable models that have an individual-specific underlying trait

that drives a respondent’s multiple responses to a set of questions or items. See Section 3.1.4

for an introduction of item response models.

Adams et al. (1997) proposed two-level multilevel item response models to model cate-

gorical response data with a latent variable. They used a vector valued random variable X

to indicate the Ki + 1 possible responses to item i. That is, X ′ = (Xil, Xi2, . . . , XiKi), where

Xij =

1 if response to item i is in categor j;

0 otherwise.
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For the sake of model identification, a response in category zero is denoted by a vector of zeros

as a reference category. They fit a logit link to the model, and estimated the model with

maximum likelihood using the Newton-Raphson method or the EM algorithm (Dempster

et al., 1977), efficient posterior computation with the model is challenging, due to the lack

of simple forms for the posterior distributions.

The decision between linear regression and ordered multinomial regression is not always

black and white. When you have a large number of categories that can be considered equally

spaced, simple linear regression is an optional alternative (Gelman and Hill, 2007), but the

assumptions of a simple linear regression must be satisfied.

Maximum Likelihood Estimation to Ordered Probit/Logit Models

Maximum likelihood estimation for ordinal regression models may be obtained using iter-

ative reweighted least squares (IRLS), an estimate of the asymptotic covariance matrix of

the MLE can be obtained with this method to perform classical inference concerning the

MLE. If an uniform prior is assumed in a Bayesian model, then the MLE and asymptotic

covariance matrix obtained using IRLS can be used as approximation to the posterior mode

and posterior covariance marix.

For non-Bayesian ordered probit models, Rampichini and d’Andrea (1998) proposed a

hierarchical ordinal probit model with group structure and ordinal response variables to

predict the life satisfaction in Italy in different regions. Their latent variable multilevel

probit model can be written as:

Sin = X ′ijβ + τj + εij, i = 1, . . . , K, n = 1, . . . , Ni;

Yinj = I(γj−1 < Y ∗in ≤ γj), j = 1, . . . ,m

where Sin is the latent variable corresponding the categories Y . X ′in is a vector of observable

explanatory variables, β is a vector of unknown parameter to estimate, τj is the unobservable
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random cluster component, and εin is the “observable individual effect”. The assumptions

are τj ∼ N(0, σ2
τ ), and E(ε) ∼ N(0, σ2

ε ). From the assumption: E(Sin) = X ′ijβ, V ar(Sij) =

σ2
τ + σ2

ε , and

ρ = corr(Sin, Sin′) =
σ2
τ

σ2
τ + σ2

ε

=
θ2

1 + θ2

where θ represents the proportion of variance explained by the cluster effect, and θ2 = σ2
τ/σ

2
ε .

The model was estimated by means of an iterative maximum likelihood procedure based on

numerical integration and the EM algorithm (Dempster et al., 1977).

The multilevel ordinal logit model of Fielding et al. (2003) used the iterative generalized

least squares procedures of MLwiN (Rasbash et al., 2000), and penalized quasi-likelihood

in the MLwiN macros MULTICAT (Yang and Wang, 1998), incorporating the improved

approximation procedures of Goldstein and Rasbash (1996).

In summary, similar to binary mutilevel probit and logit models, developing an accurate

approximate method for integrating parameter and covariance components has motivated

many authors’ works. The most frequently used approximation methods for evaluating the

integral over the random effects are Marginal Quasi-Likelihood (MQL) or Penalized Quasi-

Likelihood (PQL). Both of them are available in the MLwiN software. But Rodriguez and

Goldman (1995), Raudenbush et al. (2000), and Lin and Breslow (1996) have reported

downwardly biased estimates using these procedures especially when the first-order Taylor

expansion was used. Numerical integration that used for multilevel linear model and mul-

tilevel probit and logit models can also be used here when there are multiple categories of

responses, if the assumed distribution is normal. Gauss-Hermite quadrature approximates

the integral by a summation on a specified number of quadrature points Q for each dimen-

sion of the integration. If there is only one random effect, the quadrature solution requires

only one additional summation over Q points relative to the fixed effect estimate. However,

when there are more than five random effects, the quadrature becomes computationally

burdensome.

Rabe-Hesketh et al. (2002) proposed an adaptive quadrature that works better than
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MQL and PQL in multilevel latent variable models in terms of both parameter recovery and

computational efficiency, since it requires fewer quadrature points to achieve the same pre-

cision. Rabe-Hesketh et al. (2005) showed through simulation that the adaptive quadrature

performed well in a wide variety of situations and outperforms ordinary quadrature. The or-

dinary and adaptive Gauss-Hermite quadrature have been implemented in software packages

including Egret (Corcoran et al., 1999), Gllamm (Rabe-Hesketh et al., 2004), LIMDEP

(Greene, 2002), MIXOR (Hedeker and Gibbons, 1996), MIXNO (Hedeker and Gibbons,

1996), Stata (Corporation, 2001), and SAS PROC NLMIXED (institute, 2004).

“Maximum simulated likelihood” or “simulated maximum likelihood” method is com-

monly used in econometrics and transportation using simulation approach to integrate over

the random effects, and is considerably faster than quatrature methods, especially as the

number of random effects increase (Haan and Uhlendorff, 2006). This estimation approach

has been included in LIMDEP Greene (2002) for several types of outcome variables, including

nominal and ordinal variables.

Generalized linear mixed models have become increasingly popular. Many methods have

been proposed for estimating such models. However, to date there is no single method that

can be assumed to work well in all circumstances in terms of both parameter recovery and

computational efficiency.

Bayesian Estimation to Ordered Probit/Logit Models

Several Markov Chain Monte Carlo (MCMC) algorithms (see Section 3.2.2) have been pro-

posed for a Bayesian version of ordered probit models, among them the most notable ones

are those of Albert and Chib (1993), Cowles (1996), and Nandram and Chen (1996). To

avoid the bias of MLE in small samples and the inaccuracy of normal approximation, Al-

bert and Chib (1993) first proposed a fully Bayesian approach to the binary and ordered

probit model. They adopted the latent variable model in Equation 3.8, with normally dis-
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tributed error terms. Then the latent variable Si given β and Yi is independent normally

distributed N(X ′iβ, 1), and truncated to (γc−1, γc]. The observed categorical response Yi = c

if γc−1 < Si ≤ γc. The joint distribution of the latent variable given other parameters is

formulated as:

π(β,γ,S|Y ) = C
N∏
i=1

[√
1/2πexp(−(Si −X ′iβ)2/2)×

(
C∑
c=1

I(Yi = c)I(γc−1 < Si < γc)

)]

If a diffuse or flat prior is placed on β, then β|S,Y is distributed N
(
β̂, (X ′ΩX)−1

)
,

where β̂ = (X ′ΩX)−1X ′Ω−1S. Albert and Chib (1993) used Markov chain Monte Carlo

(MCMC) to sample from the posterior distribution for parameter estimation. Gibbs sam-

pling allows one to sample from a multivariate posterior distribution using a full conditional

distribution. For more details about Gibbs sampling, see Section 3.2.2.

Sorensen et al. (1995) presented a Bayesian analysis on genetic data of dog hip dysplasia

with multiple threshold models on binary and ordered categorical data, and the models are

essentially the latent variable binary and ordered probit models. They described different

posterior distributions and explored the slow mixing problem of Gibbs sampling on their

data. Cowles (1996) proposed a multivariate Hastings-within-Gibbs algorithm to speed up

convergence when the intervals within which γcs must be generated from the full conditional

distribution are very narrow, so there are too many bins, and this is achieved by using a Hast-

ings algorithm (Hastings, 1970) to generate latent variables and bin boundary parameters

jointly, instead of individually from their respective full conditionals.

3.1.4 Partially Ordered Models

In this section we review several partially ordered models in the literature.

Rosenbaum (1991) gave a generalization of ordered statistical methods, specifically,

Wilcoxin’s rank sum statistic, Spearman’s rank correlation, and Page’s statistic, to partially
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ordered data. The method used a function of two matrices h(X1,X1) to measure the poset

(partially ordered sets) structure of the categories and illustrated the approaches using the

data of Morton et al. (1982). The study in Morton et al. (1982) focused on the lead levels in

the blood of children of employees in a factory in Oklahoma who used lead in the manufacture

of batteries. Employees are measured on both exposure to lead (low, medium, high) and

personal hygiene (good, fair, poor). The 9 pairs of (exposure, hygiene) were seen as partially

ordered. The latent lead quantity brought to home and went to children’s bloodstream (xi)

was assumed, and it is decided by parents’ exposure and hygiene. The response, yi, is the

lead level in children ’s blood.

Meulders et al. (2005) extended the approaches by Rosenbaum (1991) for item response

theory models. Item response theory (IRT) models are commonly used in education testing.

In item response theory terminology, questions on a “test” are called items, and the indi-

viduals taking a test are called examinees. The objectives of a item response theory model

are to assess the ability of examinees or the effectiveness of the test items in measuring ex-

aminees’ skills or aptitude in certain topics. This skills, aptitude or certain ability are called

the latent trait or latent variables, and are usually denoted by θ. An item response curve

describes the probability that an individual answers an item correctly as a function of his or

her latent trait θ. For ith individual and jth item, this probability is written as:

P (Yij = 1|θi) = F (ajθi − bj).

Where F (·) is often assumed to be a standard normal or logistic cdf, and Yij denotes the

response of the ith individual to the jth item on the test, and Yijs can be binary or ordered

polychotomous. The data structure for IRT models are described in Table 3.1.

Polytomous IRT models are used for items that have more than two score categories. For

example, a test item that allows for partial credit, such as a rated essay question for which

examinees can receive zero to four points, or a survey item with multiple ordered response

levels (strongly disagree, disagree, agree, or strongly agree). Meulders et al. (2005) proposed

a generalized loglinear latent variable item response model for multivariate partially ordered
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Item 1 Item 2 · · · Item k
Examinee 1 y11 y12 · · · y1k
Examinee 2 y21 y22 · · · y2k
...

...
...

...
...

Examinee n yn1 yn2 · · · ynk

Table 3.1: A typical data structure of IRT models

polytomous responses. They estimated the model with both the SAS NLMIXED procedure

and the MCMC Metropolis algorithm. An example of the partially ordered responses is when

scoring responses to open-ended questions on different aspects, each aspect can be seen as an

item, and the response to it is binary. The response combinations formed by the binary scores

on the different skills (aspects) can be considered partially ordered, such as the responses

coded as “000,100,010,110,001,101,011,111”, where “100, 010” are less or worse than “110,

101, 011” and all are worse than “111”. Thus, what they mean partially ordered is the latent

level indicated by the combinations of the responses to each question. Another example they

gave is their participants were rated the frequency (0 = seldom, 1 = sometimes or often)

and the intensity (0 = usually mild, 1 = sometimes mild and sometimes strong, 2 = usually

strong) with which they experienced four anger-related feelings. Thus, the data can be

formally represented as four multicomponent posets (one for each feeling) which consist of

one trichotomous and one binary component. The latent trait is measured by the frequency

and intensity of experienced “anger”, “irritation”, “disgust” or “rage”. Therefore, there are

six categories resulted from combining all frequency and intensity levels (“00, 01, 10, 11,

20, 21”). The poset described by Meulders et al. (2005) has latent states associated with

profiles that include a range of attributes, and a level of mastery is indicated for each of

the attributes. The poset consists of the different profiles suggested by the classification of

students’ answers to a question. A profile j is said to be greater than a profile k if and only if

for all attributes the associated mastery levels for j are at least as high as the corresponding

levels for k. Thus, the profiles that include a set of responses are partially ordered. Meulders

50



Chapter 3. A Review of Relevant Statistical Models

et al. (2005) used Bayesian nonparametric density estimation methods for their generalized

loglinear model with a focus on normal mixtures, and a Dirichlet process prior was adopted.

Zhang and Ip (2012) expanded the structure of poset to the partially ordered response

that do not include several attributes, and developed a GLM for partially ordered data. They

split the partially ordered categories into groups that contained fully ordered alternatives.

They then fit ordered logit models to each of these groups. All results are then combined to

yield an partially ordered model. See Ip et al. (2013) for a related mixed effect multivariate

hidden Markov model to handle partially ordered disability states.

3.2 Computation

In this section, we review the most commonly used computing algorithms in non-Bayesian

and Bayesian probit and logit models, as well as mutlilevel or ordered probit/logit models.

3.2.1 Non-Stochastic Numerical Methods

Numerical Integration: Laplace approximation

When the exact likelihood with multi-integrals is difficult to compute, the Laplace approxi-

mation is widely used. Suppose we wish to approximate an integral of the form:∫
exp [−q(x)] dx (3.16)

by a Taylor series expansion of q(·) about x,

q(x) = q(x̃) +
1

2
q′′((x̃)(x− (x̃))2 + · · · .

Substitute the first two terms into Equation 3.17 yields∫
exp (−q(x)) dx ≈

√
2π

q′′(x̃)
exp(−q(x̃)). (3.17)
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Equation 3.17 can be extended to multivariate case. If q(x) is a well-behaved function that

attains its minimum value at x = x̃ with q′(x) = 0 and q′′(x) > 0, where q′ and q′′ denote

the gradient (the vector of first derivatives) and Hessian (the matrix of second derivatives)

of q, then Equation 3.17 can be written as:∫
exp(−q(x))dx ≈ c|q′′(x̃)|(−1/2)exp(−q(x̃))

where c is a constant depending only on the dimension of the integral. In practice, as the

Laplace approximation is carried to the higher order, the computational difficulty increases.

Penalized Quasi-Likelihood Estimation

The penalized quasi-likelihood can be defined as a nonlilnear regression model (Breslow and

Clayton, 1993). In the case of binary data Yi,

E(Yi|β, τ ) = h(X iβ +Ziτ )

h(·) is the probit (normal CDF) or logit (logit−1) link function. Let φi = X iβ + Ziτ , we

have level-1 model:

Yij = φi + εi, E(ei) = 0, V ar(ei) = φi(1− φi). (3.18)

This is a nonlinear model, and we would like to linearize it by the first-order Taylor series

expansion. At the iteration t, we have:

φi ≈ φ(t) +
dφi
dsi

(si − sti)

dφi
dsi

= φi(1− φi) = wi,

(3.19)

Substituting the linear approximation φ(t) for φi in Equation 3.18 gives:

Yi = φ(ti) + w
(t)
i (si − s(t)i ) + ei.
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Rearranging this equation so that all known terms are on the left side of the equation:

Yi − φ(t)
i

w
(t)
i

+ s
(t)
i = si +

ei

w
(t)
i

.

This equation can be written as the familiar two-level hierarchical linear model:

Y
∗(t)
i = XT

i γ + ZT
i uj + εi, (3.20)

εi ∼ N(0, w
(t)−1
i ),

uj ∼ N(0, T ).

Where,

Y
∗(t)
i =

Yi − φ(t)
i

w
(t)
i

+ s
(t)
i ,

εi =
ei

w
(t)
i

.

The estimate

s
(t)
i = XT

i γ̂
(t) + ZT

i u
∗(t)
j ,

where u
∗(t)
j is the approximate posterior mode,

u
(t)
j = (ZT

j W
t
jZj + T (t)−1)−1ZT

j W
(t)
j (Y

∗(t)
i −Xj

ˆ(γ)
(t)

),

for

W
(t)
j = diag(w

(t)
i , . . . , w

(t)
nj

).

The penalized quasi-likelihood algorithm works as follows:

1. Treat Equation 3.20 as a standard hierarchical linear model, using the methods of EM

(Dempster et al., 1977) or Fisher scoring to maximize the likelihood with respect to

the level-2 variance - covariance components T and the fixed effects γ, based on some

initial estimates of si and wi.

2. Based on the new estimates, γ(t+1), T (t+1), compute new weights wi = φ(t+1)(1−φ(t+1)),

and also compute new values of the linearized dependent variable Y
∗(t+1)
i .
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3. Go back to step 1. Iterate until the parameter estimates converge to some pre-assigned

tolerance.

However, Breslow and Lin (1995) found that the first order penalized quasi-likelihod es-

timates of the variance component are seriously biased and inconsistent for multilevel logit

models and proposed a bias correction. Rodriguez and Goldman (1995) also pointed out

that penalized quasi-likelihood approximate procedures for estimating parameters of gener-

alized linear multilevel models, in particular those with binary responses, can be seriously

biased when the underlying random parameter values are large. Goldstein and Rasbash

(1996) described a procedure which shows a considerable improvement in estimation and is

implemented in currently available software. Jiang (2007) concluded that no matter to what

order the Laplace approximation is carried out, the bias-corrected PQL estimator will never

be consistent. Of course, as the Laplace approximation is carried to even higher order, the

bias may reduce to a negligible level, but at the price of increasing computational difficulty.

PQL also only works well when the variance components are small.

EM Algorithm

The EM algorithm (Dempster et al., 1977) is an iterative optimization strategy motivated

by missing data and considering the conditional distribution of what is missing given what

is observed. There are two main applications of the EM algorithm. The first is when the

data indeed has missing values, due to problems with or limitations of the observation pro-

cess. The second occurs when optimizing the likelihood function is analytically intractable,

but when the likelihood function can be simplified by assuming the existence of values for

additional but missing (or hidden) parameters. The latter application is more common in

practice.

Assume that data X are observed and is generated by some distribution. We call X the

incomplete data and assume that there is a complete data set Z = (X,Y ), where Y is the
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latent, unobserved variable. We also assume a joint density function:

f(Z|θ) = f(X,Y |θ) = f(Y |X,θ)L(X|θ).

With this density function, we can define a new likelihood function:

L(θ|Z) = L(θ|X,Y ) = L(X,Y |θ),

where the missing information Y is unknown and controlled by a underlying distribution,

thus we can think that X and θ are constant and Y is a random variable. The original

likelihood L(θ|X) is referred to as the incomplete-data likelihood function.

The EM algorithm first finds the expected value of the complete-data log-likelihood

log [L(X,Y |θ)] with respect to the unknown data Y given the observed data X and the

current parameter estimates. Thus, we define Q(θ|θ(t)) to be the expectation of the joint

log likelihood for the complete data, conditional on the observed data X, so

Q(θ|θ(t)) = E
[
logL(θ|Y )|X,θ(t)

]
= E

[
logfY (Y |θ)|X,θ(t)

]
=

∫
[logfY (Y |θ))] fZ|X(Z|X,θ(t))dz.

As a most general form of the EM algorithm, EM is initiated from θ(0) then alternate between

two steps: E for expectation and M for maximization.

1. E step: Compute Q(θ|θ(t)).

2. M step: Maximize the expected value we just calculated Q(θ|θ(t)) with respect to θ.

Set θ(t+1) equal to the maximizer of Q.

3. Return to the E step unless a stopping criterion has been met.
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Each iteration increases the log-likelihood, and the algorithm will converge to a local maxi-

mum of the likelihood function (Wu, 1983). A modified form called Generalized EM (GEM)

is to change the M-step. Instead of maximizing Q(θ|θ(t)), we find some θ(t+1) such that

Q(θ(t+1)|θ(t)) > Q(θ|θ(t)). It is also guaranteed to converge. One if the most widely used

application is EM algorithm is to find the MLEs.

Newton-Raphson algorithm

Newton-Raphson (NR) algorithm also uses Taylor linearization to approximate the root (x)

in a function g(x). This method requires g(x) to be differentiable on an interval and g′(x) = 0

at a root. Suppose x∗ is the root for g(x∗) = 0, for x close to x∗,

0 = g(x∗) ≈ g(x) + g′(x)(x∗ − x),

x∗ − x =
−g(x)

g′(x)
,

x∗ ≈ x− g(x)

g′(x)
.

We start from the initial guess x0, which is hopefully close to x∗, and implement an iterative

operation to find x∗:

x1 = x0 −
g(x0)

g′(x0)

. . .

xi+1 = xi −
g(xi)

g′(xi)
i = 0,1,2,...

Continuing until |xi+1 − xi| < ε, for some ε > 0, and the ending point is the approximation

to the root x∗.

Convergence of NR depends on the form of g(x) and the choice of the starting value,

that is, how close x0 is to x∗. If g(x) has two continuous derivatives and x∗ is a simple

root of g(x), then there exists a neighborhood of x∗ for which NR converges to x∗ for any

x0 in that neighborhood. In addition, if g(x) is convex, (g′′(c) > 0 for all x) then NR
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converges from any starting point. But many functions are not convex, so the first result is

most practical. However, it does not tell you how to find the neighborhood from which NR

converges regardless of the starting value. The first result suggests convergence will occur if

you start close to x∗. There are situations that NR does not converge from the designated

starting value. In this cases, the distance between approximations |xi+1 − xi| is increasing.

The Newton-Raphson method can be used to approximate the multi-dimensional integral

in finding the fixed and random effects in generalized linear mixed models, but it is well

known that Newton-Raphson may be inefficient and extremely slow when the dimension of

the solution is high.

Normal approximation and Posterior Mode

The normal approximation is widely used by the empirical Bayes approaches to estimate

parameters in the general linear mixed models including the multilevel logit or probit mod-

els. The idea of empirical Bayes can be traced back to Maritz (1970) and Robbins (1964),

and the major work was established by Efron and Morris (1972, 1973, 1975). Empirical

Bayes method gained popularity in 1970s and 1980s. Empirical Bayes approaches use es-

sentially maximum likelihood estimation for a subset of the parameters. Suppose that

X = (X1, . . . , Xn)
iid∼ f(X|θ), where θ is a vector including fixed and random effects as

well as variance and covariance components. Suppose the prior π(θ) and f(X|θ) are posi-

tive and twice differentiable near ˆ(θ)
π

(the posterior mode). A posterior mode is also called

“generalized MLE”, a maximum posteriori probability (MAP) estimate, and can be used to

obtain a point estimate of an unobserved quantity on the basis of empirical data. Then,

under suitable regularity conditions, the posterior distribution p(θ|X) for a large sample

size can be approximated by a normal distribution having the mean equal to the posterior

mode, and covariance matrix equal to negative inverse Hessian (second derivative matrix)

of the log posterior evaluated at the mode. The matrix can be notated as [Iπ(x)]−1, the
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“generalized” observed Fisher information matrix for θ. Symbolically,

Iπij(x) = −
[

∂2

∂θi∂θj
log (f(x|θ)π(θi))

]
θ=θ̂

π
.

If the prior is flat, we replace the posterior mode θ̂
π

with the MLE θ̂, and the generalized

observed Fisher information matrix is replaced by the usual observed Fisher information

matrix, I(θ), where,

Iij(x) = −
[

∂2

∂θi∂θj
log(f(x|θ)π(θi))

]
θ=θ̂

.

This can simply be notated as p(θ|x) ∼ N(θ̂
π
, [I(x)]−1). Wong and Mason (1985) used

the normal approximation and the Newton-Raphson algorithm to estimate the vector of

parameters in the multilevel logistic model since the posterior distribution of the parameters

is not of closed form and was very difficult to solve at the time. Their idea is to estimate the

random effect parameters with maximum likelihood estimation, plug in the estimates into

the likelihood, and use standard Bayesian estimation for the remaining parameters.

3.2.2 Bayesian Computation methods

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods are powerful tools in modern statistics, and

constitute a collection of methods for generating samples from posterior distributions. In

Bayesian statistics, Markov Cain Monte Carlo methods are used widely to numerically es-

timate multi-dimensional integrals. The key to Markov Chain simulation is to create a

Markov process whose stationary distribution is π(θ|y) (the posterior distribution), and run

the simulation long enough that the distribution of the current draws is close enough to

the stationary distribution. After reaching stationarity, all further iterations of the Markov

Chain are approximate realizations from the target distribution (here the posterior distribu-

tion). These realizations can be used together with Markov Chain Monte Carlo estimators to

estimate parameters or summaries of the posterior distribution (Glynn and Iglehart, 1989).
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When the realizations from the posterior distribution are dependent samples, according to

Ergodic theorems, the approximation still works well (Karlin and Taylor, 1981).

Gibbs Sampling Gibbs Sampling is an adaption of the Metropolis-Hastings algorithm

(Hastings, 1970), which is a Markov Chain Monte Carlo (MCMC) method for obtaining

a sequence of random samples from a probability distribution for which direct sampling is

difficult to do. It was first described by Geman and Geman (1984). Gelfand and Smith (1990)

reviewed Gibbs sampling and revealed its great potential in calculating Bayesian posterior

densities for a variety of structured models. Gibbs sampling allows one to sample from

posterior distribution using the full conditional distributions. A full conditional distribution

is the conditional distribution of a parameter given all of the other parameters in the model.

The stationary distribution is approximately equal to the desired posterior distribution. The

data set which is obtained by Gibbs sampling converges to the joint posterior distribution

of the parameters (Gelfand and Smith, 1990). For the parameters θi (i = 1, . . . , k), we set

the initial values for the parameter as θ01, . . . , θ
0
p. Good starting values can be MLEs, or

estimated posterior means. At the tth iteration, each element of θti is updated by sampling

form the full conditional distributions:

θ
(t)
1 ∼ π(θ1|θ(t−1)2 , . . . , θ

(t−1)
k ,y)

θ
(t)
2 ∼ π(θ2|θ(t)1 , θ

(t−1)
3 , . . . , θ

(t−1)
k ,y)

θ
(t)
3 ∼ π(θ3|θ(t)1 , θ

(t)
2 , θ

(t−1)
4 , . . . θ

(t−1)
k ,y)

... ∼ ...

θ
(t)
k ∼ π(θk|θ(t)1 , θ

(t)
2 , . . . , θ

(t)
(k−1),y)

If we run a large number of iterations, the joint distribution of θ
(t)
i = (θ

(t)
1 , θ

(t)
2 , . . . , θ

(t)
k )

approaches the posterior distribution. We can run the algorithm as long as needed to reach

the level of precision we want. The full conditionals are easy to sample from if the model is

conjugate.
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To reduce the influence of bad starting values, we remove the first values, and this is

called burn in. Often, there is autocorrelation among the draws in each parameter sequence,

while high correlation among draws in each parameter sequence makes the convergence of the

sequence slow, some authors (Plummer et al., 2005; Zuur et al., 2002) recommended using

thinning (only keep every kth observation for some k) to reduce autocorrelation. We take

care of these issues by monitoring graphical plots of the sampled parameter values (trace

plots). Gelman and Rubin (1992) described a more formal diagnostic for convergence. How

many iterations do the Gibbs sampler need to run? Raftery and Lewis (1992) concluded that

the required iterations for Gibbs sampler can be quite different, even for different quantities

of interest within the same problem. Raftery and Lewis (1992) designed a method to test

for the needed number of iterations. The examples they gave need iterations from about

5000 to 30,000 iterations. Things to note about Gibbs sampler are: first, parameters need

not be updated individually, we can do them in blocks to reduce correlation and increase the

convergence rate (Roberts and Sahu, 1997). For example, update all location parameters

together when we know their multivariate distribution. Blocking the parameters can solve

the problem that Gibbs sampling does not converge when the posterior distribution of the

parameters is multi-modal. Second, the full conditional distributions need to be known or

at least be amend to be reliably simulated from. If we are not able to sample from the full

conditional distributions, then Gibbs sampling can not be used.

Many modifications of the Gibbs sampler have been proposed to increase the convergence

rate. A Metropolis-Hastings algorithm can be used within a Gibbs sampler to speed up con-

vergence, for example, Cowles (1996) used a multivariate Hastings-within-Gibbs algorithm

when the intervals for the latent variable are very narrow. A hybrid Gibbs sampling, the

Metropolis-Hastings steps within a Gibbs algorithm, can be very useful when the conditional

distribution for one or more elements is not available in closed form (Givens and Hoeting,

2012).
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Metropolis-Hastings Algorithm The Metropolis-Hastings algorithm (Metropolis and

Ulam, 1949; Hastings, 1970) can be used when the Gibbs sampler fails, either because of

poor convergence or the inability to sample from the full conditional distributions. Like the

Gibbs sampler, an initial value for θ0 must be set and this will affect the rate of convergence.

At each iteration t, a proposed vector θ∗ is drawn from a symmetric proposal distribution

h(θ∗|θ(t−1)), symmetric here means that h(θ∗|θ(t−1)) = h(θ(t−1)|θ∗), later it was generalized

to the non-symmetric case. This draw can be dependent on the value at the previous iteration

θ(t−1). The probability of θ∗ from the proposed distribution h(θ∗|θ(t−1)) is:

r = min

[
f(y|θ∗)π(θ∗)h(θ(t−1),θ∗)

f(y|θ(t−1))π(θ(t−1))h(θ∗,θ(t−1))
, 1

]
then we set θt = θ∗ with probability min(r, 1), or θ(t−1) otherwise. The algorithm is repeated

until the chain reaches its stationary distribution, at least approximately, and continued until

the desired precision is reached.

Good proposal distributions can greatly enhance the performance of the Metropolis-

Hastings algorithm. A well-chosen proposal distribution produces candidate values that

cover the support of the stationary distribution in a reasonable number of iterations, and

produces candidate values that are not accepted or rejected often (Chib and Greenberg,

1995). If the full condition distributions are known for certain parameters, they may be

updated utilizing a Gibbs step (Robert and Casella, 2004).

Non-iterative Monte Carlo Method

Importance Sampling Importance sampling (Glynn and Iglehart, 1989) can reduce vari-

ance and increase the efficiency of Monte Carlo algorithms for estimating integrals (Ferren-

berg and Swendsen, 1988; Geweke, 1989). Suppose we want to generate simulations from the

distribution Ef (g(θ)), which does not have a closed form so is hard to do, we can simulate

from importance density h(θ). Instead of drawing from a distribution which is complicated,

importance sampling samples from a distribution that is similar to the target distribution
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using the ratio of the target distribution to the similar distribution, and this ratio is called

importance weight. The importance sampling estimator for expected value of g(θ) is:

Ef (g(θ)) =

∫
g(θ)f(θ)dθ,

=

∫
g(θ)

f(θ)

h(θ)
h(θ)dθ,

=

∫
g(θ)w(θ)h(θ)dθ,

= Eh(g(θ)w(θ)).

With Monte Carlo Estimation, Ef (g(θ)) can be approximated as:

Ef [g(θ)] ≈ 1

T

T∑
t=1

g(θ(t))× f(θ)

h(θ)
,

≈ 1∑T
t=1wt

T∑
t=1

g(θ(t))wt,

Where θ(1), . . . , θ(−1) are draws from h(θ) with Importance Weights:

wt =
f(θ)

h(θ)
.

f(θ) is the posterior distribution in Bayesian statistics. The idea behind importance sampling

is that instead of sampling from the posterior itself, which we do not know, we simulate from

a different distribution, which we know and is close to the actual posterior, and “correct” it to

account for the fact that it is not the actual posterior. The correction is done by weighting the

sampled points by the ratio of the posterior to the importance distribution, both of which we

should be able to evaluate numerically. Glynn and Iglehart (1989) noted that this estimator

of Ef (g(θ)) is consistent and can also follow central limit theorems under mild regularity

conditions. A good choice of h(θ) can ensure a low sampling variance. The tails of h(θ)

should be at least as heavy as f(θ) for accurate estimation. If this requirement is not met,

then some standardized importance weights will be huge, then the few draws from importance
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distribution with much higher density under f(θ) than under h(θ) will receive huge weights

and inflate the variance of the estimator. As it is shown above, importance sampling can

be used to estimate posterior distributions that are only known up to a constant of ratio.

Importance sampling estimators save time when we have many models under consideration;

we can use a single sample from one of the models to give a rough approximation under each

model.

Note on Possibly High Dimensions

When the number of variables gets larger in the joint distribution, it becomes difficult to

calculate the marginal distribution by integration. Suppose there is a joint distribution

f(x, y1, y2, . . . yn), then the marginal distribution of x is:

f(x) =

∫
· · ·
∫
f(x, y1, y2, . . . yn)dy1 . . . dyn (3.21)

it is very difficult to integrate out all other variables in equation 3.21 when there are many of

them. In a Bayesian setting, for a posterior distribution with parameter θ (a n× 1 vector),

π(θ|Y ) =
L(Y |θ)π(θ)∫
L(Y |θ)π(θ)

. (3.22)

When the value of n is very large, calculating the marginal distribution is not feasible, and

this is the “curse of dimensionality” in finding posterior distributions. Before Gelfand and

Smith (1990) brought Gibbs sampling to Bayesian statistics, Wong and Mason (1985) found

that as the dimension of the parameter increases, numerical integration became more difficult

to achieve accurate approximation without an astronomical amount of calculation.

Markov Chain Monte Carlo methods like Gibbs sampler enable us to avoid calculating

high dimensional integrals by sampling a series of one dimensional random variables. Gibbs

sampler makes sampling from the posterior distribution much easier as the dimension of

the problem increases. Gelfand (2000) explained how to avoid the curse of dimensionality:

suppose P (θ −→ A) is the transition kernel of a Markov chain with stationary distribution
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h(θ), if h(0)(θ) is a density that gives starting point for the chain, then with this staring point

θ(0) and using P (θ −→ A), we can generate a trajectory of the chain: θ(0), θ(1), θ(2), . . . , θ(t). If

t is large enough, θ(t) is approximately from the target distribution h(θ). Raftery and Lewis

(1992) gave some examples to sample from a 10-dimensional multivariate normal posterior

distribution and an 190-dimensional posterior distribution from spatial statistics using Gibbs

sampler. They investigated how many iterations we have to run Gibbs sampler to make it

converge to the target distribution, and reach the desired level of precision.

Sampling from truncated distributions

Gelfand et al. (1992) described using Gibbs sampling to sample from truncated distributions

to carry out a full Bayesian calculation. These kinds of complex constrained parameter

problems were previously unanalyzable by standard numerical integration techniques. Ex-

amples were given about sampling from ordered multinomial exponential family parameters

and other data with truncated restrictions. The introduction of a latent variable reduces

sampling from the truncated densities such as truncated normal, beta, and gamma, to the

sampling of two or several uniform random variables, and is easier to code. Polson (1993)

found that including a latent variable in log-concave densities can improve convergence.

Damien and Walker (2001) discussed in detail about a slice sampling for a truncated

normal distribution. Use a simple example, suppose X ∼ N(0, 1), that is:

fX(x) ∝ exp(−x
2

2
).

Introduce the latent variable S which has joint distribution with X given by

fX,S(x, s) ∝ I
(0,exp(−x2

2
))

(s),

then we have the full conditional distribution:

S|X = x ∼ U(0, exp(−x
2

2
)),

X|S = s ∼ U(−
√
−2log(s),

√
−2log(s)).
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It is simple to implement this idea for a truncated standard normal variable. Suppose we

wish to sample from the truncated standard normal density given by

fX(x) ∝ exp(−x
2

2
)I(x∈(a,b)).

The joint distribution of latent variable S and X is:

fX,S(x, s) ∝ I
(0,exp(−x2

2
))

(s)I(x∈(a,b)).

which leads to the full conditionals:

S|X = x ∼ U(0, exp(−x
2

2
),

X|S = s ∼ U(max(a,−
√
−2log(s)),min(b,

√
−2log(s))).

This algorithm added one more full conditional: a uniform distribution to the Gibbs sam-

pling. Damien and Walker (2001) introduced a novel approach to sampling truncated densi-

ties: Adaptive Uniform Rejection Sampling (AURS), which is similar in spirit to Adap-

tive Rejection Sampling by Gilks and Wild (1992). The AURS algorithm is: let h(·)

be a non-increasing continuous function on (0, c), such that 0 < h(0) < ∞. To sample

from f(u) ∝ h(u), at the ith iteration of the algorithm we have evaluated h(uj) at uj for

j = 1, . . . , i+ 1, where 0 = u1 < · · · < ui < ui+1 = c. Let

gi(u) ∝
i∑

j=1

h(uj)I(uj < u < uj+1)

Take u′ from gi(·) and w from the uniform distribution on the interval (0, 1). If w < h(u′)
h(uj)

where uj ≤ u′ < uj+1, then we accept u′ as a random variate from f(u). Otherwise, we

proceed to the (i + 1)th iteration with gi+1(·). For more information and algorithms about

sampling from truncated densities, see Robert (1995) and Foulley (2000).
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Chapter 4

Bayesian Partially Ordered Probit

and Logit Models with an Application

to the Course Redesign in Fall 2012

4.1 Problem Statement

This chapter presents Bayesian partially ordered probit and logit models and used these

models to evaluate the impact of Intermediate Algebra course redesign at the University.

Multilevel models (i.e., random effect or hierarchical models) have become a popular

choice in education research. Raudenbush (1988) reviewed statistical methods in educa-

tional statistics and concluded that multilevel linear models were a prominent theme in

modeling education data. Kaplan and Elliott (1997) summarized that the application of

multilevel linear regression methods had resulted in extraordinary advances in school pro-

cess research since multilevel linear models account for the clustered sampling schemes in

education research. Their popularity has increased over time. Similar to simple linear re-

gression, the response data for multilevel linear models should be continuous and the error
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terms are assumed to be normally distributed. However, the response data in education

(student success) is often recorded as students’ letter grade A, B, C, D (possibly with +/-)

and F, as well as CR/NC (Pass/Fail), W (Withdrawal), I (Incomplete) and AUD (Audit).

Obviously, it is not a case to fit multilevel linear models.

Meanwhile, common models used for categorical response data (such as students’ letter

grades) are probit/logit models (Aldrich and Nelson, 1984; Wong and Mason, 1985; Sti-

ratelli et al., 1984) and ordered probit/logit models (Schaafsma and Osoba, 1994; Fullerton,

2009; Hedeker, 2008). These approaches enable a researcher to model binary or ordinally

scaled dependent variables with one or more independent variables. The response data for

ordered probit/logit models has to be ordered with about equal distance between neigh-

boring points. All of these models can be easily fit in software packages such as SAS

(PROCGLIMMIX,NLMIXED,LOGIT and others) and R (nlme and polr libraries and

others). Maximum likelihood Estimation is primarily used by these procedures.

However, we often have data that does not fit into one of these scenarios. For example,

assume that the exam score or course score of students were not recorded, and we observe

students’ letter grade with possible values: A, B, C, D, F, CR (Pass with Credit), NC

(Fail with No Credit), I (Incomplete), AUD (Audit the course) and W (Withdrawal). This

variable is partially ordered because, while an A is clearly better than a D, a CR is not

necessarily better or worse than an A, B, or C. A multilevel/hierarchical linear regression or

a simple linear regression model clearly do not fit this categorical response data. In order

to fit a multilevel binary probit/logit model to this type of data, we have to collapse all

passing grades together and all failing grades together. Moreover, it is hard to classify I,

AUD, W to either pass or fail. Similarly, to fit an ordered probit/logit model, we have to

only consider the fully ordered letter grade (A-F), but give up the unordered data. Both

of these approaches result in a loss of information by either truncation or exclusion. An

unordered probit/logit model ignores the ordered information among the letter grades, and

does not answer our research question, see Section 4.4 for more explanation.
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For computational reasons, we consider Bayesian models in this chapter. Albert and

Chib (1993) first brought a Bayesian method using a latent variable to model dichotomous

and polychotomous ordered and unordered response data. In this dissertation, we expand

the model of Albert and Chib (1993) to partially ordered response data with random effects

in a fully Bayesian approach. We also extend the results to a logit model using the idea of

O’Brien and Dunson (2004). We apply these models to an example of the course redesign

evaluation at the University.

4.2 Data and Descriptive Statistics

4.2.1 Data and variable introduction

The initial data file consisted of available demographic information and all courses taken by

the 1308 students who were enrolled in Intermediate Algebra in Fall 2012. Each student

enrolled in one or several courses, and some registered in multiple sections of some courses.

The data has the section number of each course, number of credit hours and a letter grade

for each course, college, college description, department, race/ethnicity, gender, high school

they graduated from, high school graduation date, ACT score, SAT score, and several other

variables. For duplicate courses, i.e., when a student registered for the same course in two

or more sections and received two or more grades, we kept the highest grade for the same

course.

We were limited to the student data approved for use by the Institutional Review Board.

Since we had all the courses each student enrolled in the Fall semester of 2012, we used

this information to calculate students’ course load (total credit hours each student took

except Intermediate Algebra) in Fall 2012, and the semester GPA of each student in the

semester when they took Intermediate Algebra, excluding Intermediate Algebra itself. It is

common sense that if a student takes many courses in the semester, he or she will not have
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as much time to study for each course, and the grade in Intermediate Algebra would likely

be correspondingly lower. On the other hand, a student with a lower course load should tend

to do better in each course. We expect that a students’ course load will be a good predictor

variable for students’ Intermediate Algebra success.

Likewise, the semester GPA will reflect all of the outside factors that might affect a

student’s performance in Intermediate Algebra. For example, if a student is working many

hours at a job or has a serious illness, that is likely to affect his or her grades in all courses, not

just Intermediate Algebra. The semester GPA will also reflect non-cognitive skills like study

habits, tendency to attend or skip classes, and so on, that can impact academic success across

the board. So we included the semester GPA as a proxy measure for the combination of

factors outside of the teaching environment that are likely to impact success in Intermediate

Algebra.

SAT and ACT scores are a strong predictor of success in lower division courses in college.

They have been used by most of the universities as the most important criterion for college

admission and are used for placement into lower-division mathematics courses at the Univer-

sity; students with a math SAT score between 450 and 500 or math ACT score between 19

and 21 are placed into Intermediate Algebra. Since students’ math SAT or ACT score reflect

some combination of mathematical aptitude and achievement, we included this variable in

the analysis.

Many students take either the SAT or the ACT but not both. Because both SAT and

ACT math scores measure a similar construct, we combined them into a single variable

SAT/ACT using the national mean and standard deviation provided by the companies who

produce those assessments to calculate standardized z-scores. That is, using the ACT Math

or SAT math score of each student minus the mean ACT or SAT score of all students in the

U.S., and divided by the standard deviation of ACT or SAT score of all students in the U.S.,

denoted SAT/ACT in this work. If a student took both of the exams or the same exam

more than once, the highest score is assigned to SAT/ACT .
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Most students in college have taken and passed a course in high school that addresses

the content in Intermediate Algebra. A problem is that it may have been many years since

they learned the material. We made two variables to describe this behavior. “High school”

is an indicator for the students who have a high school diploma or were still in high school

when they were enrolled in Intermediate Algebra at the University. Students without a high

school diploma, but have a GED certificate may include home schooled students, or any

other non-high school graduates who found their way into the University. The time in years

since high school graduation (named HS grad. years) is calculated as the elapsed time in

years between the day students graduated from high school to August 20, 2012, when the

Fall semester of 2012 began. These two variables allow us to include information on the

students’ scholarly past and how recent it is.

Gender and race/ethnicity (self-identified) were used as control variables in our work. We

considered the groups: Asian, white, Hispanic, native American and “other races”. “Other

races” are used as reference group in the models.

There are 11 different instructors who taught the traditional lecture sections in Fall 2012.

The 12th instructor was in charge of all the students in the Redesigned sections, and did not

teach any of the traditional lecture sections of the course in the Fall semester of 2012. This is

the pivotal independent variable in our work. The instructor variable was treated as a random

effect in all models used in this work. Thus, we can compare the Redesigned sections with

the traditional lecture sections by making inferences about the instructor random effects.

In the process, we found that the variable about college and department:

COLLEGE DESC and DEPARTMENT DESC are actually which department and col-

lege offered the course, not the college or department a student belongs to. For example, In-

termediate Algebra are always offered by Math and Statistics department and College of Art

and Science. Thus, the information of COLLEGE DESC and DEPARTMENT DESC

is useless, and tells us nothing about students. We removed the information for other courses

after we calculated Semester GPA and Course load because we are interested in students’
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Variable Name Description
SAT/ACT Standardized SAT or ACT math score.

Course load Total credit hours each student took in the Fall
semester of 2012, excluding Intermediate Algebra.

Semester GPA A weighted average of students’ GPA in the Fall
semester of 2012, calculated excluding Intermedi-
ate Algebra.

High school “1” if a student graduated from high school, “0” if
a student has a GED certificate.

HS grad. years The elapsed time in years between a student’s high
school graduation date and Aug. 20, 2012.

Gender Male/Female.
Race /Ethnicity Self identified race/ethnicity of a student. Re-

stricted to Asian, White, Hispanic, Native Ameri-
can or of other race/Ethnicity.

Instructor Which instructor taught the section the student
was enrolled in. Instructors are labeled with num-
bers 1-12, 12 denotes the Redesigned course.

Table 4.1: Detailed descriptions of independent variables.

Intermediate Algebra success in this dissertation, not what courses a department offers.

The predictor variables used in this dissertation are described in Table 4.1.

4.2.2 Descriptive Statistics

In this sections, we examine the impact of the independent variables on student success in

Intermediate Algebra through a series of plots, tables and tests.

Distribution of independent variables

We made plots to learn about the distribution of the quantitative independent variables:

HS grad. years, SAT/ACT , Course Load and Semester GPA.
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The upper left corner of Figure 4.1 displays a histogram of HS grad. years. We have

defined HS grad. years as the elapsed time in years between students graduated from high

school and August 20, 2012, the first day of the Fall semester when they took Intermediate

Algebra. Some students are still in high school making their HS grad. years negative. We

see that about 70% students just graduated from high school when they took Intermediate

Algebra in the Fall semester of 2012, while only a few had graduated from high school for

15 or more years. The mean value of HS grad. years of students in Fall 2012 is 2.602 years.

The upper right corner Figure 4.1 describes a histogram of SAT/ACT (standardized SAT

or ACT math score). The histogram shows that SAT/ACT is roughly normally distributed,

the mean standardized SAT/ACT score is -0.458 (ACT = 19, SAT = 463), and the standard

deviation is 0.4239. For all U.S. ACT and SAT math scores, mean of ACT = 21, Std. Dev.

of ACT = 5.3; mean of SAT = 516, Std. Dev = 116. Recall that the placement score to

Intermediate Algebra is: ACT math 19-21, SAT math 450-500.

The lower left corner Figure 4.1 provides a histogram for the variable Course load, which

is the credit hours students took excluding Intermediate Algebra in Fall 2012. About 20%

of the Intermediate Algebra students have a Course load 12 credit hours, and around 45%

of students had 15-16, 10% of students had 18 or more. According to the student statistics

in the Fall semester of 2012 reported by the registrar office of the University, the average

load of undergraduate students is 12.86. The average course load of students enrolled in

Intermediate Algebra course is actually 16.97, which is 13.97 plus the three credit hours in

Intermediate Algebra.

The lower right corner of Figure 4.1 gives a histogram for the variable Semester GPA.

The histogram tells us that the semester GPA of Intermediate Algebra students in the

Fall semester of 2012 is approximately normally distributed with mean 2.97 and standard

deviation 0.656.
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Figure 4.1: Histograms for quantitative independent variables about Intermediate Algebra
students in the Fall semester of 2012. The left upper panel displays the distribution of the
elapsed time in years after students graduated from high school to the first day of the Fall
semester of 2012; the right upper panel: the distribution of SAT/ACT score of the students
enrolled in Fall 2012. Left lower panel presents the distribution of the total credit hours each
student took. The right lower panel gives the distribution of students’ semester GPA in the
Fall semester of 2012.
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Student success between the two teaching methods: the Traditional lecture and

the Redesign

First, we would like to roughly examine students success measured by pass rate between the

two teaching methods: the Traditional lecture and the Redesign with a standard frequency

table. Table 4.2 describes student success between the two teaching methods. We have to

decide to treat “I” (Incomplete), “W” (withdrawal), “AUD” (Audit) as a pass or a fail. If

we treat the “I” (Incomplete), “W” (withdrawal), “AUD” (Audit) as a fail, the pass rate for

traditional lecture sections is 62.09% (678/1092), and the pass rate for the Redesign students

is only 30.56% (66/216).

The Chi-Square test is a commonly used method to test for association between cate-

gorical variables. It was created by Pearson (1900) and later refined by Fisher (1948). We

use the Chi-Square test to investigate if there is relationship between students’ pass rate in

Intermediate Algebra and the teaching method. Alternative, we can use Fisher’s exact test.

The Chi-Square test can safely be used with critical values from a Chi-square distribution

when no more than 20% of the expected counts are less than 5 and all individual expected

counts are 1 or greater. In particular, all four expected counts in a 2 × 2 table should be 5

or greater. The p-value is the area to the right of the test statistic under the density curve

of the Chi-square distribution with (r − 1)(c − 1) degrees of freedom, and r represent the

number of rows, c is the number of columns of the two-way table. In this case, the null and

alternative hypothesis that we are testing by the Chi-Square test are:

H0: The pass rate of students in the traditional lecture sections = the pass rate of students

in the Redesign

H1: The pass rate of students in the traditional lecture sections 6= the pass rate of students

in the Redesign

The Chi-square test statistic with 1 degree of freedom is 73.10 in our case, with a p-value
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<0.0001. This suggests that the pass rate of Intermediate Algebra students between the

traditional lecture sections and the Redesign is statistically different.

Traditional Lecture Redesign Total
Passed students 678 66 744
Passed percentage 51.83 5.05 56.88%

among all students
Pass rate 62.0 30.56

in each group
Failed students 414 150 564
Failed percentage 31.65 11.47 43.12%
among all students
Failing rate 37.91 69.44
Total number of students 1092 216 1308
Percentage of students 83.49 16.51 100%

in each group over all

Table 4.2: A comparison of the pass rate between traditional lecture sections and the Re-
design. The “Passed percentage among all students” means the percentage of passed students
by each teaching method over all students enrolled in the Intermediate Algebra course in
the Fall semester of 2012, similarly, the “Failed percentage among all students” means the
percentage of failed students taught by each teaching method over all students enrolled in
the Intermediate Algebra course in the Fall semester of 2012. The “Pass (Failing) rate”
represents the percentage of passed (failed) students from traditional lecture or the Redesign
when I, W , AUD are treated as a fail.

Grade distribution of students in the Redesign

Because the pass rate of students in the Redesign is very low, we would like to look into

the letter grades of the Redesign students. Table 4.3 describes the distribution of students’

grades in the Redesign. 54.63% (118/216) of students got an I (incomplete) grade. We

treated the “I”s as failing the course. That is why the non-passing rate in the Redesign is

so high. However, these 54.63% of students who were given Incomplete are still continuing

in the Spring semester, and students in the Redesign are allowed to have three semesters
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(including summer) to finish the course, and get the “I” changed to a passing grade. The

“I” will become an “F” if a student still can not passed the course at the end of the third

semester.

Letter Grade Frequency Percent Cumulative Frequency
I 118 54.63 118
W 30 13.89 148
A+ 14 6.48 162
A 26 12.04 188
A- 14 6.48 202
B+ 6 2.78 208
B 4 2.41 212
B- 1 0.46 213
C 1 0.46 214
D 2 0.92 216

Table 4.3: Grade distribution of students in the Redesign in Fall 2012

Student success in two populations: students with an SAT/ACT score and those

without an SAT/ACT score.

Either a SAT or an ACT score are required by many universities as the one of the criteria

for college admission, and is thought widely as related to students’ learning ability and

academic performance in college. In the data, there is a small portion of students who did

not take the SAT or ACT and still enrolled in Intermediate Algebra. We would like to see

how this group of students perform in Intermediate Algebra relative to those who took the

SAT or ACT test. Table 4.4 provides a comparison of students success between two groups.

The first row gives the number of students who passed Intermediate Algebra from the two

groups: there were 700 students who took the SAT or ACT passed the course, and only

44 students not taking a SAT or an ACT passed the course. The second row starting with

“Pass rate among all students” gives that the overall pass rate in Intermediate Algebra in
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the Fall semester of 2012, which is 56.88%. Of the 56.88% of students who passed, 53.52%

of them took a SAT or ACT test, and 3.36% did not. The third row “Pass rate in each

group” gives the percentage of students who passed the course in each group (those with

the SAT/ACT and those without): 57.85% of students who took an SAT/ACT passed the

course, while percentage of passed students among those who did not take the SAT/ACT

was lower (44.90%). Similarly, the next rows provide information about students who did

not pass the course from the two groups: either took the a SAT or an ACT or did not. The

last two rows under “Total number of students in each group” gives the total number of

students who took the SAT or ACT (1210 students) and those who did not take (98), as well

as the percentage: 92.50% of students enrolled in the Intermediate Algebra in Fall 2012 took

the SAT or ACT, only 7.49% students in the course in that semester did not take the SAT

or ACT test, and there were total 1308 students enrolled for Intermediate Algebra after the

first three weeks of the semester.

According to the University’s admission policy, students are required to have an SAT or

ACT score to be admitted to the University, unless they have at least 24 college credits.

These 98 students who did not have a SAT or an ACT score are likely transferred students

from other universities. For example, some private universities do not require students to

have a SAT or an ACT test score. Alternatively, these students might have taken the compass

placement test.

The Chi-Square test statistic is 6.2019, the corresponding p-value is 0.0128, which is

smaller than the standard 0.05 significance level. Thus, we conclude that the pass rates

of students who have an SAT/ACT score is statistically different from those without an

SAT/ACT score. We will further examine how the students with an SAT/ACT score and

those without are assigned into the traditional lecture sections and the Redesign.
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Students who Students who did not Total
took SAT/ACT take SAT/ACT

Passed students 700 44 744
Passed percentage 53.52 3.36 56.88%

among all students
Pass rate 57.85 44.90

in each group
Failed students 510 54 564
Failed percentage 38.99 4.13 43.12%
among all students
Failing rate 42.15 55.10

in each group
Total number of students 1210 98 1308

in each group
Percentage of students 92.51 7.49 100%

in each group over all

Table 4.4: the pass rate comparision between students took an SAT/ACT and those who did
not in Fall 2012. The “Passed percentage among all students” means the percentage of passed
students in each group over all students enrolled in the Intermediate Algebra course in the Fall
semester of 2012, similarly, the “Failed percentage among all students” means the percentage
of failed students in each group over all students enrolled in the Intermediate Algebra course
in the Fall semester of 2012. The “Pass (Failing) rate” represents the percentage of passed
(failed) students in each group (students with an SAT/ACT score or those without enrolled
in the course in Fall 2012) over all students in each group.

How students with and without an SAT/ACT score were split up into the Tra-

ditional lecture sections and the Redesign?

The results in Section 4.2.2 suggest that students with an SAT/ACT did significantly better

than those without an SAT/ACT score. Since we are concerned with students success in

the Redesign, we would like to know the proportion of students with an SAT/ACT and

those without an SAT/ACT in the Redesign. Note that this is an observational study, and

students are not randomly assigned into the Traditional lecture sections (our control group)

or the Redesign (our treatment group).
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Table 4.5 describes the component of students (with or without an SAT/ACT score) in

the Traditional lecture sections and the Redesign. The four rows after “Traditional lecture”

tell the number and proportion of students who took the SAT/ACT in the Traditional

lecture section: among the 1092 students in the Traditional lecture section of Intermediate

Algebra course in Fall 2012, 1018 of them took the SAT/ACT, and 74 of them did not take

the SAT/ACT. 83.49% of students were in the Traditional lecture sections, among those,

77.83% took an SAT/ACT, while 5.66% did not. Among all students in the Traditional

lecture sections, 93.22% of students took the SAT/ACT test, only 6.78% of students did not

take SAT/ACT test. The row starting with “percentage 3” tells that 84.13% of students who

took the SAT/ACT in the Intermediate Algebra class were in the Traditional lecture sections,

while only 75.51% of students without the SAT/ACT score were in the Traditional lecture

sections. The four rows after “Redesign” gives students’ combination in the Redesign. We see

that only 15.87% of students with the SAT/ACT registered the Redesign, while there were

24.49% of students without SAT/ACT score in the Redesign. The percentage of students

in the Redesign among all Intermediate Algebra students is 16.5%. The row beginning with

“percentage 5 in the Redesign” telling us that among the students in the Redesign, 89.89%

of them have SAT/ACT score, while 11.11% of them do not. The corresponding percentages

in the Traditional lecture section are 93.22% and 6.78%.

The p-value from the Chi-Square test of the data in Table 4.5 is 0.027, suggesting that

the proportion of students with an SAT/ACT score registered the Redesign is significantly

lower than that of those without the SAT/ACT score ( 15.87% vs. 24.49%) in the Traditional

lecture sections. Also, the proportion of students with an SAT/ACT score is significantly

higher than that of those without an SAT/ACT score (84.13% vs. 75.51%) in the Traditional

lecture sections. In other words, considering the students who do not an SAT/ACT score

have a significantly lower pass rate than those who do. This also means that more unprepared

students went to the Redesign. Generally comparing only the pass rate between Traditional

lecture sections and the Redesign creates a bias in favor of Traditional lecture sections.
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students students did not Total
took SAT/ACT take SAT/ACT

Traditional 1018 74 1092
percentage 1 77.83 5.66 83.49%

among all students
percentage 2 93.22 6.78 100%

in lecture sections
percentage 3 84.13 75.51

in each category
Redesign 192 24 216
percentage 4 14.68 1.83 16.51%

among all students
percentage 5 88.89 11.11 100%

in the Redesign
percentage 6 15.87 24.49

in each category
Total 1210 98 1308
percentage 7 92.51 7.49 100%

in each category over all

Table 4.5: Percentages of students with or without an SAT/ACT score in the Redesign.
“percentage 1” represents the persentage of students in each group among all Intermediate
Algebra students in Fall 2012, and “pencentage 2” gives that percentage of students in
each group among all students in the Traditional lecture sections. The row starting with
“Percentage 4” provides the pencentage of students in each group among all students in
the course in the semester. The row began with “percentage 6” displays the percentage of
students from each group in the Redesign. The row of “percentage 7” gives the percentage
of students from each group over all students in Intermedaite Algera course in Fall 2012.

Students’ Intermediate Algebra success between different race/ethnicity groups

It is known that students from different race/ethnicity groups do not tend to do the same

academically. Considering the diverse nature of the University, we would like to investigate

how different racial group of students do in the Intermediate Algebra course. Students’

race and ethnicity are self-identified. There were only 5 non-resident aliens and 1 native

Hawaiian so these races are ignored for the sake of Chi-square test because the sample
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size of these two groups are too small, and we also removed the 17 students who did not

provide their race/ethnicity information (“race/ethnicity unknown”). Table 4.6 provides

students’ success in Intermediate Algebra across different race/ethnicity groups. The row

after “Pass” tells the number of students who passed the course from different race/ethnicity

groups, the row starting with “percentage 1” gives the percentage of passed students in each

race/ethnicity group among all students (1285). “percentage 2” represents the percentage of

passed students from each race/ethnicity group among all passed students; and the row of

“pass rate” provides the pass rate of students from each race/ethnicity group in Intermediate

Algebra course. Similarly, the row starting with “Failed students” gives that number of

students who did not pass the course; the row beginning with “percentage 3” tells the

percentage of students who did not pass the course from each race/ethnicity group over all

the students. “percentage 4” represents the percentage of the students who did not pass from

each race/ethnicity group among all the non-passed students. The row of “Failing rate” gives

the percentage of non-passed students in each race in Intermediate Algebra course. The last

two rows after “Total” gives the total number of students from each race as well as percentage

of students from each race in Intermediate Algebra course in Fall 2012.

The pass rate of students was the highest for Asian students (66.67%), the second highest

was whites (63.82%), then the pass rate of students from “Two or more races” (56.86%),

Hispanic (55.41%), native American (44.44%), then Black or African American (42.86%).

The Chi-square test statistic with degree of freedom 5 is 19.29, p-value is 0.0017, which is

smaller than 0.05 significance level. We conclude that the proportion of students who passed

Intermediate Algebra across different race/ethnicity groups differs. Because of the different

performance of students from various race/ethnicity group in Intermediate Algebra course,

we should incorporate this information into the models of comparing student success between

the Traditional lecture sections and the Redesign, and should not ignore this difference but

only rely on the overall pass rate to give a conclusion. Again, this is because we have a

non-randomized observational study, and not an experiment.
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According to the report from the University registrar “Headcount by race/ethnicity and

level Fall 2012”, there were 21,008 undergraduate students enrolled in the University, among

them, 42.96% Hispanic students, 38.29% whites, 3.05% Asian, 6.39% native American, 2.73%

African American (UNM, 2012). In Table 4.6, “percentage 5” represents the percentages of

students from different race/ethnicity group in Intermediate Algebra, they are: 51.83% His-

panic, 30.97% whites, 6.30% Native American, 4.36% African American, and 2.57% Asian.

That means that more than average of Hispanic, and African American students were en-

rolled in Intermediate Algebra in Fall 2012, lower than average of white students registered

in this course, and the proportion of native American and Asian students in Intermediate

Algebra course were about the same as the proportion of students of these race/ethnicity

groups at the University in undergraduate programs during Fall 2012.
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Hispanic White Native Two or Black or Asian Total
American more races Afri. Amer.

Passed students 369 254 36 29 24 22 734
percentage 1 28.72 19.77 2.80 2.26 1.87 1.71 57.12
percentage 2 50.27 34.60 4.90 3.95 3.27 3.00
pass rate 55.41 63.82 44.44 56.86 42.86 66.67
Failed students 297 144 45 32 22 11 551
percentage 3 23.11 11.21 3.50 1.71 2.49 0.86 42.88
percentage 4 53.90 26.13 8.17 5.81 3.99 2.00
fail rate 44.59 36.18 55.56 43.14 57.14 33.33
Total 666 398 81 51 56 33 1285
percentage 5 51.83 30.97 6.30 3.97 4.36 2.57 100.0

Table 4.6: The number and percentage of passed or non-passed students from different race/ethnicity groups.

83



Chapter 4. Bayesian Partially Ordered Probit and Logit Models

Student success in Intermediate Algebra course between high school graduates

and GED holders

GED certificate holders include the students who dropped out of high school, or home

schooled students, but passed the “General Educational Development (GED)” tests and

were certified that they have American or Canadian high school-level academic skills. Since

home schools can not be controlled by education administration authorities, the quality of

instructors and curriculum vary greatly among home schools. We would like to analyze how

these students do in Intermediate Algebra course compared to those who graduated from a

regular high school.

The population for GED holding students is small at the University: for the Intermediate

Algebra classes in the Fall semester of 2012, there were only 53 students had GED certificate.

Table 4.7 gives a frequency table comparing the pass rate of high school graduates and GED

certificate holders in the Intermediate Algebra class in Fall 2012. We see from the table that

the pass rate of high school graduates was 57.93%, while the pass rate of GED certificate

students was only 32.08%. The Chi-Square test statistic is 13.858 with 1 degree of freedom,

and yields a p-value of 0.0002. Based on this small p-value, we conclude that the pass rate

in Intermediate Algebra class between high school graduates and GED certificate students

is significantly different.

Are boys better at math than girls?

It has been a misconception for a long time that men do better in math than women.

To satisfy our curiosity, we investigated this phenomenon in this section. Table 4.8 shows

that the pass rate was 59.75% for female students, and 53.45% for male students in the

Intermediate Algebra course in Fall 2012. The Chi-Square test statistic is 5.2522 with 1

degree of freedom, and the p-value for this test is 0.0219, which suggests that the pass rate

for female students in Intermediate Algebra course was statistically significantly higher than
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High school graduates GED certificate holders Total
Passed students 727 17 744
Passed percentage 97.72 2.28 100%
among all in the course
Pass rate 57.93 32.08

in each group
Failed students 528 36 564
Failed percentage 93.62 6.38 100%
among all in the course
Failing rate 42.07 67.92

among each group
Total number of students 1255 53 1308

in each group
Percentage of students 95.95 4.05 100%

in each group over all

Table 4.7: Passe rate between high school graduates and GED certificate holders in the
Fall semester of 2012. The “Passed percentage among all students” means the percentage
of passed students in each group over all students enrolled in the Intermediate Algebra
course in the Fall semester of 2012. Similarly, the “Failed percentage among all students”
means the percentage of failed students in each group over all students enrolled in the
Intermediate Algebra course in the Fall semester of 2012. The “Pass (Failing) rate” represents
the percentage of passed (failed) students in each group (high school graduates or GED
certificate holders) enrolled in the course in Fall 2012 over all students in each group.

that of males. Meanwhile, from the University registrar report, 43% of all students at the

University were male, and 57% of them were female in Fall 2012. In Intermediate Algebra,

there were similarly more females (54.51%) than males (45.49%).

The relationship between students’ Intermediate Algebra success and the amount

of time since graduating from high school

Many instructors have an impression that very old students tend to do better than young

students. In most cases, students’ age is approximately the amount of time after they

graduated from high school plus 18. We wish to see how the amount of time since students
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Female Male Total
Passed students 426 318 744
Passed percentage 32.57 24.31 56.88%

among all students
Pass rate 59.75 53.45

of each gender
Failed students 287 277 564
Failed percentage 50.89 49.11 100%

among all students
Failing rate 40.25 46.55

of each gender
Total number of students 713 595 1308

of each gender
Percentage of students 54.51 45.49 100.00

of each gender over all

Table 4.8: The pass rate between female and male students in the Fall semester of 2012. The
“Passed percentage among all students” means the percentage of passed students in each
gender over all students enrolled in the Intermediate Algebra course in the Fall semester of
2012; similarly, the “Failed percentage among all students” means the percentage of failed
students of each gender over all students enrolled in the Intermediate Algebra course in the
Fall semester of 2012.

graduated from high school is related with students’ Intermediate Algebra success.

We split up the years since students graduated from high school into several categories:

students who are still in high school, newly high school graduates who graduated from high

school less than 5 years ago, students who have graduated from high school in 5 to 10 years

(many students in this group were in military for several years, and went to college after

they left the military), students who graduated from high school more than 10 years to

20 years ago (many people in this group took Intermediate Algebra trying to change their

career), older people who have graduated from high school for 20 years to 30 years, as well as

the students who have graduated from high school more than 30 years taking Intermediate

Algebra to enrich their life.
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We see from Table 4.9 that the pass rate of high school students enrolled in Intermediate

Algebra is about the same as freshmen who graduated from high school 0-5 years ago, which

is about 59%. The pass rate decreases to 42.05% for the students graduated from high school

5-10 years ago, and stays constant for students graduated 10-20 years ago, then it increases

to 50% for high school graduation years 20-30 years group, and dropped to 21.43% for older

people who graduated from high school more than 30 years ago. Because the oldest groups:

the students having high school graduation years 20-30 years or >30 years have such small

sample sizes (18 or 14, respectively), so the pass rates of these two groups obtained from

these very small samples are not very reliable. Overall, there is a pattern that the pass rate

decreases as years since high school graduation increases.

4.2.3 Multicollinearity issues and variable selection

Multicollinearity refers to the problems associated when predictor variables are highly inter-

correlated in regression models. This violates some of the basic assumptions in regression

models. Multicollinearity is considered to be one of the most severe problems in multiple

regression models and is often referred to by social modelers as the “familiar curse”. Multi-

collinearity diagnostics measure how much regressors are related to other regressors and how

this affects the stability and variance of the regression estimates. For detailed explanations

about multicollinearity see Belsley et al. (2005), Stewart (1987), Velleman and Welsch (1981)

and others.

Signs of multicollinearity in a regression analysis include:

1. Large standard errors on the regression coefficient, so that estimates of the true model

parameters become unstable.

2. The parameter estimates vary greatly from sample to sample for the same parameters.

3. Drastic changes in the regression estimates after only minor data changes.

4. Unreasonable conclusions reached from the usual tests of significance (such as the wrong
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Years since HS graduation <0 0-5 5-10 10-20 20-30 >30 Total
Pass 7 699 37 19 9 3 744
Percentage 1 0.54 51.15 2.83 1.45 0.69 0.23 56.88
Percentage 2 0.94 89.92 4.97 2.55 1.21 0.40 100%
Pass rate 58.33 59.15 42.05 42.22 50.00 21.43
Not Pass 5 462 51 26 9 11 564
Percentage 3 0.38 35.32 3.90 1.99 0.69 0.84 43.12
Percentage 4 0.89 81.91 9.04 4.61 1.60 1.95 100%
Failing rate 41.67 40.85 57.95 57.78 50.00 78.57
Total 12 1131 88 45 18 14 1308
Percentage 5 0.92 86.47 6.73 3.44 1.38 1.07 100.0

Table 4.9: Pass rate of students with different years since high school graduation. The first
row:“Years since HS graduation” displays the 6 groups we divided according to students’
years since high school graduation; The second row, which starts with “Pass”, gives the
number of students passed the course in each group. “Percentage 1” represents the percent-
age of passed students in each group over all the 1308 students in the course; “Percentage
2” is the percentage of passed students in each years group over number of passed students
(744). The row starting with “Pass rate” provides the percentage of passed students over
the total number of students in each of the 6 groups in the course. Similarly, the row “Not
pass” provides the number of students who did not pass the course; “Percentage 3” gives
the number of failed students in each group over the total number of students in the course
(1308), and “Percentage 4” represents the number of failed students in each year group over
the number of failed students. “Failing rate” represents the percentage of failed students in
each group among the students in each group. “Total” tells the number of students in each
group; “Percentage 5” gives the percentage of students in each “Years since HS graduation”
group over all students in the course (1308).

sign for a parameter).

5. Extreme correlations between pairs of variables.

6. Omitting a variable from the equation results in smaller regression standard errors.

7. A good fitting model does not give good outside predictions.

We begin with assessing the pairwise correlations of the continuous predictor variables. A

Pearson correlation coefficients matrix is displayed in Table 4.10. A typical first approach for
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detecting multicollinearity is to inspect the correlation matrix for high pairwise correlations.

However, this is not sufficient, since multicollinearity can exist with no pairwise correlations

being high. In our case, there is no extreme correlation between two predictor variables

identified, and the largest correlation is that between HS grad. years and SAT/ACT :

-0.29, which is not considered big enough to concern for multicollinearity.

Variable Semester GPA Course load SAT/ACT HS grad. years
Semester GPA 1.000 0.013572 0.1018 −0.00036
Course load 0.13572 1.000 0.00065 −0.12652
SAT/ACT 0.10178 0.00065 1.0000 −0.28692
HS grad. years −0.00036 −0.12652 −0.28695 1.000

Table 4.10: Multicollinearity dianostics of quantitative predictor variables of the Fall data

Three other commonly used diagnostics for testing multicollinearity are VIF (Variance

Inflation Factor), tolerance and condition index. The tolerance is the proportion of variance

in a given predictor that is not explained by all of the other predictors, while the VIF is

simply 1 / tolerance. The VIF represents a factor by which the variance of the estimated

coefficient is multiplied due to the multicollinearity in the model. A VIF greater than 10 is

a sign of multicollinearity, while Allison (2012) tends to get concerned when a VIF is greater

than 2.50. The variance inflation factors given in Table 4.11 are all small, and the largest

is 2.11836. Thus, there is no sign of multicollinearity. We obtained the condition index for

each predictor variable and they also suggest that there is no mulitcollinearity problem. We

omitted the condition index table for brevity.

Taking into account the results from stairwise elimination for variable selection, the

interaction terms between the predictor variables do not appear to be significant. We will

use these predictor variables listed in Table 4.11 to fit the models.
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Variable Tolerance VIF
Intercept 0
Semester GPA 0.95902 1.04273
Course load 0.95667 1.04529
SAT/ACT 0.87359 1.1447
HS grad. years 0.84635 1.18154
High school 0.9612 1.04037
Instructor 0.9731 1.02765
Asian 0.87165 1.14725
White 0.47264 2.11576
Hispanic 0.47206 2.11836

Table 4.11: Collinearity dianostics based on tolerance and variance inflation factor by each
predictor variable

4.3 Limitation of Using Multilevel Logistic Models

Based on the description of the data in Section 4.2, one option for modeling the partially

ordered data such as students’ letter grades is a multilevel logistic model (Wong and Mason,

1985; Gilmour et al., 1985; Gelman and Hill, 2007), in which,

Yi|pi
ind∼ Bern(pi)

logit(pi) = X i
′β +Zi

′τ i = 1, 2, . . . , n.

τj|σ2
τ

iid∼ N(0, σ2
τ ) j = 1, 2, . . . , J.

Yi is a binary response variable. X i and Zi are fixed and random design vectors for student

i; X i contains the student’s demographic and achievement information and Zi indicates

which instructor the student had. β = (β1, β2, . . . , βp)
′ is a vector of unknown fixed effects

and τ = (τ1, τ2, . . . , τJ)′ is the vector of unknown random effects. σ2
τ is the variance of the

random effect τ , and n is the number of students, while p is the number of covariates and

J is the number of instructors. A probit model can be used by simply replacing the logit

function with the inverse standard normal cdf.

With this model, we are forced to make our response variable, the letter grade, into a
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binary variable (pass or fail). This means that the passing letter grades (A+, A,A−, B+, B,

B−, C+, C, CR) are treated equally. Similarly, the failing letter grades (C−, D+, D,D−, F,

NC) are also treated equally. It is important to note that this model can not describe student

success precisely. Suppose there are two classes of 20 students each. In one class, 10 students

passed the course with an A and 10 failed with an F, while 10 students in the other class

passed the course with a C and 10 failed with a F. The pass rate is the same between the

two classes, which is 50%, but the student performance is actually different. Another issue

in our data is that many students in the Redesign (the Redesigned course, 54.6%) received

an Incomplete at the end of the term. How should we interpret these Incompletes: as a

passing letter grade? As a failing letter grade? These students had not yet completed all of

the course topics, but they were still working. Both options are extreme because this “go at

your own pace” course can be completed over three semesters; there is simply not enough

information available to make this determination a priori. Many authors forced the letter

grades “I”, “W”, “AUD” to be failing grades to fit a logistic model, while this distorted

the information conveyed in the data. An alternative practice is to leave these students out

of the study, but eliminating about 70% students with “I”,“W” or “AUD” in the Redesign

would be highly problematic.

4.4 Limitation of Fitting Ordered Probit/Logit Models

or Unordered Multinomial Probit/Logit Models

Another option for modeling this type of data is to use an ordered probit/logit model or un-

ordered multinomial probit/logit model. These models enable us to model ordinally scaled or

unordered nominal dependent variables with independent variables. For a detailed descrip-

tion of ordered probit or logit models see Section 3.1.3, or McKelvey and Zavoina (1975),

McCullagh (1980), Winship and Mare (1984), and Kropko (2007).
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An ordered logit model is an extension of the above binary logistic model, but the response

data can have more than two ordered categories. Ordered logit or probit models are widely

used in economics, marketing and psychology. With this model, the dependent variable has

to include ordered cases with about equal distance between neighboring categories. There is

a single, unobservable, continuous variable related to this ordered scale, so we can assume a

latent variable for the model. We reviewed ordered probit and logit models in Section 3.1.3.

Since in our case, some of our response data are ordered (A,B,C,D, with +/−s, and F ),

but others are not ordered and overlap (CR,NC,W, I, AUD). Note that NC,W, I are not

necessarily better than D or F, and CR is not necessarily better than A,B, or C. Thus,

only part of our data qualifies for the ordered logit models, and we would have to remove

observations with responses CR,NC,W, I, AUD to use these models. This would result in

a loss of information. Again, a probit version of this model can be easily considered by

changing the link function.

Unordered multinomial logit/probit models fit the case that the response categories are

mutually exclusive, collectively exhaustive, and without a logical ordering or natural ranking,

see Section 3.1.3 for more explanation. Examples for unordered multinormial logit/probit

models such as the choice of existent political parties, religion, neighborhood, ways of trans-

portation, etc. Since those categories are unordered, and the probability of falling in each

category versus the baseline category is given if we apply this model with several kinds of

software like SAS,R, Stata and others. The result can be interpreted as in comparison to

the baseline category, each unit increase in the independent variable increase/decrease the

probability of selecting (falling in) an alternative category. Obviously, this is not what we

want with our data to answer our research questions. Furthermore, part of our responses

(letter grades A,B,C,D, with +/-s, and F ) are ordered, unordered multinomial logit/probit

models discard this natural ordering conveyed by the letter grades and ignore the known re-

lationship. Borooah (2002) stated that if the response variable is ordered but we treat it as

unordered and fail to impose a legitimate ranking on the outcome, this might lead to a loss

of efficiency. Thus, an unordered multinomial model is not a good fit either.
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4.5 A Description of Our Proposed Models

In this section, we propose two new models: the Bayesian partially ordered probit and

logit models, which can accommodate data having some ordering but are not fully ordered.

Assume that each student has a latent score, Si, an unknown numerical score for student i.

The partially ordered probit model is formulated as:

Si = X ′iβ +Z ′iτ + εi (4.1)

With

εi|σ2
ε

iid∼ N(0, σ2
ε )

τj|σ2
τ

iid∼ N(µτ , σ
2
τ )

for i = 1, 2, . . . , n and j = 1, 2, . . . , J . Where, X i and Zi are the fixed and random design

vectors, respectively. X i includes the covariates about student information, and we use

Zi to represent the instructor who taught student i to model the Fall 2012 data. β =

(β1, β2, . . . , βp)
′ is a vector of unknown fixed effects, and τ = (τ1, τ2, . . . , τJ)′ is the vector of

unknown random effects. We denote the sample size by n, the number of fixed effects by p,

and the number of instructors by J . If the students’ exam or course score Si is known, a

reasonable model would be a hierarchical linear model having the same form as Equation 4.1.

Our model is much simpler than the item response poset models reviewed in Section 3.1.4,

In our example, we do not know Si. However, the observed letter grade Yi gives us

information about the latent score Si. For example, if student i passed, we know that

Si > 73 if 73 is the cut-off point for passing the course.

Albert and Chib (1993) examined the situation where Yi is either a pass or fail with a

Bayesian probit model. Note that, if we assume εi
iid∼ N(0, 1)

P (Si > 73|β, τ ) = 1− Φ(73−Xiβ − Ziτ) = Φ(−(73−Xiβ − Ziτ)).
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Which gives us a probit-style probability. For the case of ordered Yi (for example A, B, C,

D with+/- and F), Albert and Chib (1993) assumed a latent continuous random variable

distributed as N(Xβ, 1) (see Section 3.1.1), and the observed categorical response Yi = j

if γj−1 < Si ≤ γj, where the bin boundaries γ1, ..., γJ−1 are typically unknown, and γ0 ≡

−∞, γJ ≡ ∞. Thus, Si|β, γ, Y follows a truncated normal distribution. This is the standard

formulation of a Bayesian ordered probit model.

In our case, including CR, NC, I, W, AUD as possible letter grades, we can only partially

order the responses. However, each possible grade does yield a range of possible values of

Si. For example, we can view Yi = A+ ⇒ 97 ≤ Si, Yi = A− ⇒ 93 ≤ Si < 97, . . . Yi =

F ⇒ 0 ≤ Si < 60. For the unorderable grades, we assume that Yi = CR ⇒ 73 ≤ Si,

Yi = NC ⇒ 0 ≤ Si < 73, Yi = W ⇒ 0 ≤ Si < 73, Yi = I ⇒ 0 ≤ Si ≤ 100, and Yi =

AUD ⇒ 0 ≤ Si ≤ 100. This assumes that we have little knowledge what the course score

of a student receiving an I (Incomplete), or AUD (Audit) was at the time he or she left the

course.

The key purpose of this formulation is that we know the conditional distribution of the

latent data Si, conditional on the parameters (β, τ , σ2
τ , σ

2
ε ) and the letter grade (Yi), has a

truncated normal distribution. Symbolically,

Si|β, σ2
ε , τ , Yi, σ

2
τ
ind∼ TN(X iβ +Ziτ , σ

2
ε , LYi , UYi).

Let LYi denote the lower bound and UYi denote the upper bound of Si given student i received

letter grade Yi. Then, Si is truncated on the boundaries of each letter scale, and we know

that Si ∈ (LYi , UYi). Table 4.12 displays the boundaries of course scores corresponding to

each letter grade. We used 73 as the cutoff passing score. If a student earned an A+, his

course score is between 97 and 100, an A is between 93 and 97, . . . , and an F is between

0 and 60. A C- is not considered a passing grade for this course. The score for CR is

between 73 and 100, while NC is between 0 and 73. A “W” is treated as a failure in this

dissertation. “I” and “AUD” give us the least information about students’ course score, thus

“I” and “AUD” can take any value between 0 and 100. Other universities may have different
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rules concerning non-standard grades. For example, Incomplete may only be awarded to

students currently failing. The boundaries for the latent score can be easily modified for

their particular institution.

Letter LYi UYi Letter LYi UYi
Grade (Yi) Grade
A+ 97 100 D+ 67 70
A 93 97 D 63 67
A- 90 93 D- 60 63
B+ 87 90 F 0 60
B 83 87 CR 73 100
B- 80 83 NC 0 73
C+ 77 80 W 0 73
C 73 77 I 0 100
C- 70 73 AUD 0 100

Table 4.12: The range of course scores for each letter grade. The range of course scores
corresponding to each letter grade Yi, LYi is the lower limit score of a letter grade, and UYi
is the upper limit of the letter grade.

Because the boundaries of the latent score Si, given the letter grade Yi are known, as

displayed in Table 4.12, we are able to allow the variance of the error terms σ2
ε to be variable

while the parameters remain identifiable. We include the random effect in the model because

the grades of students taught by the same instructor may be correlated. Ignoring this nested

feature of the data will cause underestimating the variance of the estimated coefficients, and

resulting in inconsistent parameter estimates as well, if the underlying relationship between

the outcome variable and the explanatory variables is nonlinear (Rodriguez and Goldman,

1995). The variance of the random effects τ is σ2
τ .

The key point to take away from this model is that Si is unknown, and we only observe

the partially ordered categorical variable Yi. However, the letter grade that a student receives

does provide information on the possible value of Si. With this latent variable representation,

we can not only model ordered and unordered multinomial response data, but also partially
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ordered categorical outcomes. The knowledge from the partial ordering is also preserved.

Specifically, our model has exactly the form of a linear mixed model with random effects.

The latent score of a student taught by any instructor listed can be predicted if the students’

information is known.

4.5.1 Bayesian formulation of partially ordered probit model with

random effect

The latent variable formulation of the probit and logit models described earlier naturally lead

themselves to Bayesian models. Sampling from the posterior allows us to make predictions

while taking into account parameter uncertainty. Bayesian analysis can easily incorporate

truncated distributions and also allows us to use subjective information in our priors.

To estimate the parameters β, τ , σ2
τ and σ2

ε , we use Bayesian inference with a prior for

each parameter represented by π(β), π(τ ), π(σ2
τ ), and π(σ2

ε ), respectively. The likelihood

L(β, τ , σ2
τ , σ

2
ε |Y ) = Pr(Y |β, τ , σ2

τ , σ
2
ε ) =

n∏
i=1

Pr(Yi|β, τ , σ2
τ , σ

2
ε ),

and posterior distribution

π(β, τ , σ2
τ , σ

2
ε |Y ) =

∫
S

π(β, τ , σ2
τ , σ

2
ε ,S|Y )dS

=

∫
S

L(Y |S,β, τ , σ2
τ , σ

2
ε )π(S|β, τ , σ2

τ , σ
2
ε )π(β, τ , σ2

τ , σ
2
ε )

m(Y )
dS,

where L(Y |S,β, τ , σ2
τ , σ

2
ε )π(S|β, τ , σ2

τ , σ
2
ε ) is the joint likelihood of Y and S, m(Y ) is the

marginal distribution of Y ,

m(Y ) =

∫
S

∫
β

∫
τ

∫
σ2
τ

∫
σ2
ε

L(Y |S,β, τ , σ2
τ , σ

2
ε )π(S|β, τ , σ2

τ , σ
2
ε )

π(β, τ , σ2
τ , σ

2
ε )dβdτdσ

2
τdσ

2
εdS.

The multidimensional integral looks intimidating (especially when there are many βs and

τ s), and obviously it is not simple to find. Following Albert and Chib (1993), we defined
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a Gibbs sampler utilizing the latent variable S, that is, the sample we obtained by sam-

pling from full conditional distributions successively with Gibbs sampling converges to the

posterior distribution, see Section 3.2.2 for a description of Gibbs sampling.

Prior Distribution

To complete a Bayesian analysis, we need prior distributions for β, τ , µτ (the mean of

random effects τ s), σ2
τ s, and σ2

ε . For computational convenience, we assumed an improper

uniform prior for β (we had little prior knowledge about β), a normal prior for the instructor

random effects τ (conditional on hyperparameters), an improper uniform prior for the aver-

age instructor random effect µτ , and inverse gamma priors for the variance of the instructor

random effects σ2
τ and the latent score error variance σ2

ε . Symbolically:

π(β) ∝ 1,

τj|µτ , σ2
τ

iid∼ N(µτ , σ
2
τ ) for j = 1, 2, . . . , J,

π(µτ ) ∝ 1,

σ2
τ

iid∼ IG(ατ , βτ ),

σ2
ε

iid∼ IG(αε, βε),

where, ατ , βτ , αε, βε are fixed constants. In practice, these may be chosen to reflect subjective

knowledge or prior ignorance. Typical conditional independence is assumed, meaning:

π(β, τ , σ2
τ , σ

2
ε ) = π(β|τ , µτ , σ2

τ , σ
2
ε )π(τ |µτ , σ2

τ , σ
2
ε )π(µτ |σ2

τ , σ
2
ε )π(σ2

τ |σ2
ε )π(σ2

ε )

= π(β)π(τ |µτ , σ2
τ )π(µτ )π(σ2

τ )π(σ2
ε )

for all unobservables. In the examples considered in this work, we set aτ = aε = 300 and

bτ = bε = 6. This was based on our previous experience with course grades. Other applicants

of this model may require modifications to this prior formulation. Specifically, a user may

assume subjective priors for β and µτ if prior knowledge is available.
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These priors imply that our posterior distribution including S satisfies:

π(S,β, τ , σ2
ε , σ

2
τ |Y ) ∝ f(S|Y ,β, τ , σ2

ε )π(β)π(τ |µτ , σ2
τ )π(µτ )π(σ2

ε )π(σ2
τ ).

The Disribution of Parameters in the Partially Ordered Multinomial Probit

Models

In this section, we develop the partially ordered probit model stated in Equation 4.1 step by

step. We start with simpler models, and gradually add complexity. The partially ordered

probit model encapsulates the following several simpler models, and each model can be

applied to partially ordered categorical response data with the algorithm stated in Section

4.5 and 4.6. Which model to choose depends on the specific form of the data and personal

preference.

Model 1: Partially ordered probit model with only fixed effects. We start from the

simplest: the partially ordered multinomial probit model with only fixed effects. Albert and

Chib (1993) first applied this model with a Bayesian approach on ordered polychotomous

response data, and we generalized to partially ordered response data. The model is expressed

in Equation 4.2, and this is the standard latent structure model:

Si = X ′iβ + εi, (4.2)

εi|σ2
ε

iid∼ N(0, 1),

for i = 1, 2, . . . , n.

Using a noninformative prior for β, and fixing the variance of Si at 1, Si is distributed
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as N(X iβ, 1). The conditional distribution of β given S and Y is:

π(β|S, Y ) ∝ π(Y |S,β)π(S|β)π(β)

∝ L(S|β)

∝ exp

[
−1

2
(S −Xβ)>(S −Xβ)

]
∝ exp

[
−1

2
(S>S − β>X>S − S>Xβ + β>X>Xβ)

]
∝ exp

[
−1

2
(β>X>Xβ − 2β>X>S + S>X>(X>X)

>
(X>X)−1X>S)

]
∝ exp

[
−1

2
(β − (X>X)−1X>S)

>
(X>X)(β − (X>X)−1X>S)

]
.

which is the kernel of a multivariate normal distribution with mean (X>X)−1X>S and

covariance matrix (X>X)−1. This means that β conditional on S and Y is distributed as:

β|S,Y ∼ N((X>X)−1X>S, (X>X)−1).

Model 2: Partially ordered probit model with fixed and random effects Now, we

add the random effect τ to the model in Equation 4.2 to describe the nested feature of the

data. The model can be expressed as:

Si = X iβ +Ziτ + εi, (4.3)

εi
iid∼ N(0, σ2

ε = 1),

τj
iid∼ N(0, σ2

τ ),

with the noninformative prior for β. Again, the variance σ2
ε is fixed at 1. The conditional

distribution of the latent score, S, given other parameters is: S|β, τ ∼ (Xβ+Zτ , 1). Using

matrix expression for all parameters, the conditional distribution of β given other parameters
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is:

β|S, τ ∝ L(S|β, τ )π(β)

∝ L(S|β, τ )

∝ exp

[
−1

2
(S −Xβ −Zτ )>((S −Xβ −Zτ )

]
∝ exp

[
−1

2
(−(S)>Xβ − β>X>S + β>X>Xβ + β>X>Zτ + τZ>Xβ)

]
∝ exp

[
−1

2
(β>X>Xβ − 2β>(X>S −X>Zτ ) + β>X>X(X>X)−1X>Xβ)

]
∝ exp{−1

2

[
β − (X>X)−1(X>S −X>Zτ)

]>
X>X

[
β − (X>X)−1(X>S −X>Zτ )

]
}

We recognize that this expression is the kernel of normal distribution. Hence the conditional

distribution of β given all other parameters is normal:

β|S, τ ∼ N
(
(X>X)−1(X>S −X>Zτ ), (X>X)−1

)
.

The conditional distribution for the random effect τ in model 2 Applying Model

2 to the course redesign evaluation at the University, τ is the effect of different instructor on

student success measured by the letter grades. Let nj represents the number of students with

instructor j, and student’s score is normally distributed: Si|β, τ , σ2
τ , σ

2
ε ∼ N(X ′iβ+Z ′iτ , 1),

the variance of the error terms is still fixed. Recall that the prior of τj is

τj|µτ , σ2
τ
iid∼ N(uτ , σ

2τ) for j = 1, 2, . . . , J.
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The conditional distribution of τj given S and β is:

τj|S,β, µτ , σ2
τ ∝ L(S|β, τ )π(τ ),

∝
nj∏

i=nj−1+1

1√
2π
exp

[
−1

2
(Si −X iβ − τ j)2

]
× 1√

2πσ2
τ

exp

[
− 1

2σ2
τ

(τ j − µτ )2
]
,

∝ exp

−1

2

 nj∑
i=nj−1+1

(Si −X iβ − τ j)2 +
(τ j − µτ )2

σ2
τ

,
∝ exp

−1

2

 nj∑
i=nj−1+1

(Si −X iβ)2 − 2

nj∑
i=1

(Si −X iβ)τ j + njτ
2
j +

1

σ2
τ

(τ 2j − 2uττj + µ2
τ )

,
∝ exp

{
−1

2

[
τ 2j (nj +

1

σ2
τ

)− 2τj

(
µτ
σ2
τ

+

nj∑
i=1

(Si −X iβ)

)]}
,

∝ exp

{
−
nj + 1

σ2
τ

2

[
τ 2j − 2τj(nj +

1

σ2
τ

)
−1
(
µτ
σ2
τ

+

nj∑
i=1

(Si −X iβ)

)]}
,

∝ exp

{
− 1

2(nj + 1
σ2
τ
)−1

[
τ 2j − 2τj(nj +

1

σ2
τ

)
−1
(
µτ
σ2
τ

+

nj∑
i=1

(Si −X iβ)

)]}
,

with n0 = 0. Thus, τj is normally distributed with mean =

(nj + 1
σ2
τ
)
−1
(
µτ
σ2
τ

+
∑nj

i=1(Si −X iβ)
)

and variance = (nj + 1
σ2
τ
)
−1

. Symbolically,

τj|S,β ∼ N

(
(nj +

1

σ2
τ

)−1 ×

(
µτ
σ2
τ

+

nj∑
i=1

(Si −X iβ)

)
, (nj +

1

σ2
τ

)
−1
)

The conditional distribution for σ2
τ in Model 2 To derive the conditional distribution

for σ2
τ , we need a prior. An Inverse Gamma prior for σ2

τ , π(σ2
τ ) ∝ Inverse Gamma(ατ , βτ ),

makes the conditional distribution of σ2
τ |β, τ ,S conjugate. It is reasonable since we can

adjust the value of ατ , βτ according to our prior knowledge on students’ course score variation

between instructors. The prior for σ2
τ is:

π(σ2
τ |ατ , βτ ) =

βτ
ατ

Γ(ατ )
(σ2

τ )
−ατ−1exp

(−βτ
σ2τ

)
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with mean = βτ
ατ−1 for ατ > 1 and variance = βτ

2

(ατ−1)2(ατ−2) for ατ > 2. Then the conditional

distribution for σ2
τ |S,β, τ is:

σ2
τ |S,β, τ ∝ L(S|β, τ )π(β)π(τ |σ2

τ )π(σ2
τ )

∝ π(τ |σ2
τ )π(σ2

τ )

∝

(
nj∏
i=1

1√
2πσ2

τ

exp

[
− 1

2σ2
τ

(τj − µτ )2
])

× βτ
ατ

Γ(ατ )
(σ2

τ )
−ατ−1exp(

−βτ
σ2
τ

)

∝ (
1

σ2
τ

)

J
2
+ατ+1

exp

(
− 1

σ2
τ

[
βτ +

∑J
j=1(τj − µτ )2

2

])

∝ (σ2
τ )
−(J

2
+ατ )−1exp

(
− 1

σ2
τ

[
βτ +

∑J
j=1(τj − µτ )2

2

])

which is the kernel of Inverse Gamma distribution with ασ2
τ

= J
2

+ ατ and βσ2
τ

= βτ +∑J
j=1(τj−uτ )2

2
. Thus the conditional distribution of σ2

τ |S,β, τ is:

σ2
τ |S,β, τ ∼ IG(

J

2
+ ατ , βτ +

∑J
j=1(τj − uτ )2

2
)

The mean of τj can be fixed at 0, or allowed to be random. If we would like to make µτ a

random variable, then use a flat prior π(µτ ) ∝ 1, the distribution of µτ |τj, σ2
τ will be normal

with mean τ̄ = 1
J

∑
τj, and variance σ2

τ

J
, symbolically represented by µτ |τj, σ2

τ ∼ N(τ̄ , σ
2
τ

J
).

So far, the variance of Si|β, τ , σ2
τ , σ

2
ε has been made fixed as 1, and this was done for

identifiability concerns. We may allow it to vary if the boundaries of S for each partially

ordered categories are known (as in our case).

The conditional distribution of σ2
ε in model 2 With σ2

ε being random, the model

becomes:

Si = X iβ +Ziτ + εi, (4.4)

εi
iid∼ N(0, σ2

ε ),

τj
iid∼ N(0, σ2

τ ).
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We would like to use a subjective conjugate Inverse Gamma prior for σ2
ε to ensure the con-

jugacy of the full conditional distribution, and incorporate prior knowledge about variability

of students’ course score. The prior of σ2
ε is defined as:

π(σ2
ε |αε, βε) =

βε
αε

Γ(αε)
(σ2

ε )
−αε−1exp(

−βε
σ2
ε

).

Let us begin with the likelihood and prior to derive the full conditional distribution of σ2
ε :

σ2
ε |S,β, τ , σ2

τ , ε ∝ L(S|β, τ , ε)π(β)L(τ |σ2
τ )π(σ2

τ )L(ε|σ2
ε )π(σ2

ε )

∝ L(ε|σ2
ε )π(σ2

ε )

∝
n∏
i=1

(
1√

2πσ2
ε

exp

[
1

2σ2
ε

(εi − µε)2
]
× (

1

σ2
ε

)αε+1exp(−βε
σ2
ε

)

∝ 1

(σ2
ε )

(1/n)
exp

n∑
i=1

ε2i
2σ2

ε

× (
1

σ2
ε

)αε+1exp(−βε
σ2
ε

)

∝
(

1

σ2
ε

)(n
2
+αε+1)

exp
n∑
i=1

(
ε2i

2σ2
ε

− βε
σ2
ε

)

∝ σ2
ε
−(n

2
+αε)−1exp

[
− 1

σ2
ε

(
βε +

n∑
i=1

ε2i
2

)]

where µε = 0 is the mean of the error terms, and εi = Si−X iβ+Ziτ . Thus, the conditional

distribution of σ2
ε given other parameters is also Inverse Gamma: σ2

ε |S,β, τ , σ2
τ , ε ∼ IG(n

2
+

αε, βε +
∑n

i=1
ε2i
2

).

If a logit style model is desired, O’Brien and Dunson (2004) showed that a simple change

of the distribution of εi results in a logit marginal distribution. The logit link can be

implemented in the model listed in Equation (4.1) by changing the distribution of ε to

εi
ind∼ logistic(X iβ + Ziτ , σ

2
ε ). The predicted probability with the logit link is easier to

interpret than with the probit link as described in Section 3.1.1.
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4.6 Computation

Bayesian inference is centered around the posterior distribution, the distribution of the pa-

rameters given observables. Unfortunately, computing the posterior often involves computing

high dimensional integrals rarely available in a closed form. Instead, it is often easier to sam-

ple from the posterior distribution. Those samples, combined with ergotic theorems, can be

used to conduct inference on parameters and make predictions. The Gibbs sampler (Geman

and Geman, 1984; Tanner and Wong, 1987), described in Section 3.2.2, is a Markov Chain

Monte Carlo (MCMC) method for obtaining a sequence of random samples from a proba-

bility distribution for which direct sampling is difficult to do. Gibbs sampling constructs a

Markov Chain which has stationary distribution equal to the target posterior distribution.

For an introduction to Gibbs sampling, see Casella and George (1992).

4.6.1 Gibbs Sampling for the Probit Model

Gibbs sampling can work well when it is easy to sample from the full conditional distributions

of each unknown parameter (the distribution of that parameter given all other parameters

and the data). Iteratively sampling from the full conditionals builds the Markov chain.

Following Tanner and Wong (1987) and Albert and Chib (1993), we use the latent score as

a parameter to facilitate the Gibbs sampler.

Recall that conditional on the observed letter grade Yi and all other parameters, Si follows

a truncated normal distribution (the letter grade tells us the range of possible values of the

latent score). The conjugacy of this model makes the full conditionals of each parameter

known. Generally, the conditional distributions of β, τ , and µτ are normal while σ2
τ and σ2

ε

are inverse gamma. The specific full conditional distributions were defined in Section 4.5.1.

A Gibbs sampler for the probit model with random effect is described as follows: at the

t-th iteration, each parameter is updated by sampling from the following full conditional
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distributions:

β(t) ∼ π(β|τ (t−1), µ(t−1)
τ , σ2

τ
(t−1)

, σ2
ε
(t−1)

,Y )

τ (t) ∼ π(τ |β(t), µ(t−1)
τ , σ2(t−1)

τ , σε
2(t−1),Y )

µ(t)
τ ∼ π(µτ |β(t), τ (t), σ2(t−1)

τ , σ2(t−1)
ε ,Y )

σ2(t)
τ ∼ π(σ2

τ |β(t), τ (t), µ(t)
τ , σ

2
τ
(t−1)

, σ2
ε
(t−1)

,Y )

σ2(t)
ε ∼ π(σ2

τ |β(t), τ (t), µ(t)
τ , σ

2
τ
(t)
,Y )

S(t) ∼ π(S|β(t), τ (t), µ(t)
τ , σ

2
τ
(t)
, σ2

ε
(t)
,Y )

The elements of β and τ are updated in blocks to improve mixing (Roberts and Sahu,

1997). We assessed convergence by monitoring trace plots and the Gelman-Rubin diagnostic

(Gelman and Rubin, 1992). A thinning of the draws was also done, that is, we kept every 10th

observation among the draws to reduce autocorrelation among the draws in each parameter

sequence and to conserve space.

We used Gibbs sampling to fit Model 2 with the data described in Section 4.2 (the

Intermediate Algebra student data in the Fall 2012 at the University). We ran the Gibbs

sampler for 1,000,000 iterations. Figure 4.2 shows that the trace plots of the posterior

draws of the parameters look acceptable, pretty random points, with little autocorrelation

or dependency on the initial values. We have no evidence that the chain has not reached its

stationary distribution. These draws may be used to make inferences.
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Figure 4.2: Trace plots for β1(SAT/ACT ), β2(Course load) and σ2
ε as well as the first two

τs. The trace plots for the other parameters are similar.
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4.6.2 Importance Sampling for the Logit Model

Recall that in Section 4.5 we described how a logit model may be implemented by changing

the distribution of Si in the model on Equation (4.2) from normal with variance σ2
ε to

a logistic distribution with scale parameter σ2
εlogit

. This model is no longer conditionally

conjugate, ruling out using an easy Gibbs sampler for model fitting, but similar to O’Brien

and Dunson (2004), we may use importance sampling.

Importance sampling can reduce variance and increase the efficiency of Monte Carlo al-

gorithms for estimating integrals (Ferrenberg and Swendsen, 1988; Geweke, 1989). Instead

of drawing from the target distribution, importance sampling samples from an easier “im-

portance” distribution. The ratio of the target distribution’s density to the density of the

importance distribution is used as weights to estimate expectations of the target distribution.

See Section 3.2.2 for a description about importance sampling.

In our example, since we already have sampled from the posterior distribution of the

probit model, importance sampling is an easy way to estimate parameters in the partially

ordered logit model. Thus, we use the probit model (πprobit) as the importance distribution to

estimate moments of the logit model (πlogit). Let g(·) represent a function of any parameter,

and θ is all the unknown parameters. The importance sampling estimator for the expected

value of g(θ), based on T draws from the full posterior of the probit model is :

̂Eπlogit(g(θ)) ≈ 1

T

T∑
t=1

g(θ(t))× πlogit(θ
(t)|Y )

πProbit(θ
(t)|Y )

≈ 1∑T
t=1wt

T∑
t=1

g(θ(t))wt

With importance weights

wt =
πlogit(θ

(t)|Y )

πprobit(θ
(t)|Y )
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In our case the importance weights are defined as:

wt =
πlogit(S

(t)|β(t), τ (t), µ
(t)
t , σ

2(t)
ε , σ

2(t)
τ ,Y )

πprobit(S
(t)|β(t), τ (t), µ

(t)
t , σ

2(t)
ε , σ

2(t)
τ ,Y )

and θ(t) is the t-th draw of that particular parameter from the probit model samples. The

choice of using the probit model as the importance distribution both because it is practical

(we outlined how to obtain these draws in Section 4.6.1) and in our experience it works

well. Recall that if there are any huge weights, then some of the estimates under the target

distribution will be biased, so the variance of the estimator will be increased. For this

purpose, we made a histogram to check the distribution of the weights in Figure 4.3. We see

from the plot that there are no extreme values for importance weights. This indicates that

the estimator obtained from this importance sampling should work well.
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Figure 4.3: Boxplot of the logarithm of importance weights.
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The parameter estimates from Gibbs sampling and importance sampling are discussed

in Section 4.10.1.

4.7 Gain in Using the Partially Ordered Probit/Logit

Models and Extensions

The latent partially ordered representation described above allows us to model all the grading

information in the data. That means we do not have to throw away information by forcing

the data into a standard binary logistic model or an ordered probit/logit model. With our

course redesign evaluation project, not only can students’ ordered letter grades A,B,C,D

(with +/−), F be used in the model, but also other partially ordered grades such as CR,

NC, W, I, AUD. We can use all this information to give a more precise prediction of student

performance, which is measured by a latent variable, students’ course score Si. The predicted

probability of a student passing the course (Pr(Si > 73)) can be estimated based on the

demographic and achievement data for a student (X) and which instructor taught him or

her (Z).

With these models, some categories that do not convey much information are treated

like missing data that falls within a broad range. For example, the course score for grades

“I” and “AUD” can be anything between 0 and 100; we do not know these scores because

the students did not finish or their performance in the course was not actually recorded.

The course scores of these students are predicted by the model from the data we have about

these students.

The latent variable model is easily interpreted for non-statisticians. Introducing the

latent variable makes the model take the same form as a linear regression model. As we have

reviewed in Section 3.1.1, standard probit and logit models are interpreted as probabilities,

it is hard to interpret how the probability changes according to the changing of predictor
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variables even for the logit model, do not mention the widely criticized esoteric interpretation

of the probit model. Introducing a latent variable, the latent score Si changes directly in

responds to the changing of predictor variables X and Z, as with the linear regression.

Thus, non-statisticians do not have to have the knowledge about link functions and Bayesian

modeling to interpret the models at a high level. Some knowledge in algebra is sufficient to

interpret this model.

When only binary grades are observed, the partially ordered probit/logit models collapses

to a standard probit/logit model. Similarly, when only ordered grades are observed, the

models collapse to an ordered probit/logit model. Thus, the partially ordered framework

includes both binary and ordered data as special cases. The partially ordered probit or logit

models are flexible to use for either binary, ordered or partially ordered response data.

It is easy to fit the model with Gibbs sampling and importance sampling. Although

the joint posterior distribution of parameters (S, β, τ , µτ , σ
2
τ , σ

2
ε ) is complicated in the sense

that it is difficult to normalize, since our probit model is conditionally conjugate, the Gibbs

sampler can be used to fit it. It is computationally easy to sample from the conjugate

full conditional distribution, and the algorithm converges fast. Then based on the probit

model, importance sampling can be used to estimate the parameters of the logit model. In

our experience, estimating parameters and making predictions take less than 30 minutes of

computer time.

4.8 Identifiability concern

Indentifiability is always an issue in latent variable models. Unidentifiable models can lead

to issues of convergence when attempting to fit the model (Gelfand and Sahu, 1999) and

interpretation (Dawid, 1979). As defined by Basu (1983), a parameter θ is identifiable by

data Xi if different values of θ yields different distribution of Xi. Bayesian identifiabililty

(Dawid, 1979) is concerned with whether observing the data increases our prior knowledge
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about the parameter. Gelfand and Sahu (1999) found that trajectories of the Markov chain

for components of the parameter will tend to drift to very extreme values, have difficulty

converging to the stationary, and can lead to unstable computation if there are unidentifiable

parameters.

The existence of an intercept µ0 in Equation 4.1 would produce an unidentifiable model

because the random effects have a non-zero mean, since with an intercept µ0, the model

becomes:

S1 = u0 +X iβ + τ1

S2 = u0 +X iβ + τ2

. . .

Sn = u0 +X iβ + τJ

Where n represents the number of observations, and J is the length of the random effect.

The u0s here are unidentifiable unless
∑n

i=1Xiβ + τj = 0, which is unreasonable in practical

situations. Hence, we have set the intercept u0 = 0. The convergence problem caused by

including u0 can also be detected from the diagnostic trace plots. The trace plots from the

model including u0 shows a systematic pattern, which is a sign of lacking of convergence.

A similar problem happens to one of the predictor variable race/ethnicity, which takes

the value of Asian, White, Hispanic, native American and other races, trace plots suggest

the lack of convergence caused by identifiability of the parameter. We split race/ethnicity

into four variables: Asian, White, Hispanic and other races, and keep the first three races

but left out other races as a reference category to make the three race/ethnicity categories

identifiable.

The variance of the εi (σ2
ε ) is identifiable because we fixed the bin boundaries. Our

response data Yi is partially ordered, the boundaries of each category γs is known, thus the

variance σ2
ε is identifiable. If the boundaries γ1, . . . , γJ−1 are unknown, to ensure parameter
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identifiability, the variance σ2
ε has to be fixed. For this reason, Albert and Chib (1993)

imposed restriction on the bin boundaries by taking γ1 = 0 and made σ2
ε = 1. For partially

ordered cases, a similar practice can be used. For a greater discussion of identifiability in

latent probit models see Huang and Bandeen-Roche (2004), Xu and Craig (2009), and Qu

et al. (1996).

4.9 Simulation Study

To assess statistical properties of this model in terms of estimation and prediction, we de-

signed a simulation study. We consider the case of k = 2 fixed effects for β and J = 12

different random effects for τ . Specifically, we fixed β = (−1.45, 4.89), the random effect

τ = (81.20, 79.67, 81.80, 81.10, 75.68, 78.85, 77.14, 76.36, 76.12, 78.00, 80.91, 78.44), and stan-

dard deviation of error terms σε = 6.08. A vector for instructors was made with random

assigned number 1-12 of probabilities for each instructor c(0.0896, 0.0535, 0.0928, 0.2170,

0.0865, 0.0401, 0.0275, 0.1352, 0.1195, 0.0448, 0.0464, 0.0472). Based on this, the design ma-

trix for instructors Z was set. Each created observation was randomly assigned an X i vector

and assigned a group for the random effect (Zi). The first element of X i was generated fol-

lowing a Bernoulli trial with probability of success 0.283. The second element of X i was

drawn from a normal distribution.

Conditional on these parameters, fixed design vector, and random design vector, each

observation was generated a latent course score following Equation 4.1 Si = X ′iβ+Z ′iτ + εi.

This in turn implies the ordered letter grades Yi (A+ to F). To incorporate the partial

ordering, 5% of students were assigned to earn CR/NC. This process was repeated for sample

sizes of n = 500, 1000, 3000, 5000 and 10, 000.

For each data set, we fit the model in Equation (4.1) with the prior distributions of

Section 4.5.1 using the algorithm of Section 4.6. We obtained one hundred thousand post-

convergence draws from the marginal distribution of each parameter and sample size. Fig-
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ure 4.4 displays kernel density estimates of the marginal posterior distribution of β1 and τ7

for each sample size. The solid black vertical line represents the true value.
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Figure 4.4: Density estimates of β1 and τ7. The left and right panel display the kernel density
estimates of the marginal posterior distribution of β1 and τ7 respectively. Each color denotes
a different sample size. The true value is represented by the solid black line.
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In both panels of Figure 4.4, the posterior distributions are more variable at the smaller

sample sizes. The posterior distribution from the smaller samples are also further from

the true value, although they are unbiased estimates of the true value. As the sample size

increases, the posteriors concentrate more around the true value. The plots of the other

parameter estimates were so similar that we omitted them from the dissertation.

4.10 Application to our Redesigned Course Evaluation

on Fall 2012 Data

We apply our partially ordered probit and logit models to the Redesigned course evalua-

tion in Fall 2012. This section describes the parameter estimates of the models and the

interpretation, as well as the prediction with these models.

4.10.1 Results

Returning to the course redesign evaluation at the University, we would like to apply the

partially ordered multinomial probit and logit models to analyze the data. We include

the variables in Table 4.13 based upon the results from stairwise elimination, in which the

interaction terms do not suggest to be significant predictors, so the interaction terms are

not included in the model. We implement the model stated in Section 4.5 and obtained

1,000,000 post convergence draws from the posterior distribution of the partially ordered

probit model using the algorithm described in Section 4.6. Importance sampling was used

to estimate the posterior mean of all parameters in the logit model. Table 4.13 displays the

estimated posterior mean of all β parameters (fixed effects) for the probit and logit models.

Figure 4.5 displays a distribution of the estimated marginal posterior of the β parameters

in the probit model.
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Variable Probit Logit
SAT/ACT 3.732 3.881

Course load −0.618 −0.630
Semester GPA 10.213 10.493
HS grad. years −0.239 −0.224

High school 3.878 3.146
Gender 0.303 0.349

Asian 5.260 6.507
White 3.272 3.486

Hispanic 1.795 2.115

Table 4.13: Estimated posterior means of the elements of β. The first column contains the
variable name associated with each β, and the column under “Probit” and “Logit” are the
estimated posterior means of the elements of β for each independent variable, respectively.
Estimated posterior means of the elements of β.

From Table 4.13, we see that the parameter estimates from the two models have the

same sign and are not far from each other in magnitude, we just use the probit model to

illustrate the interpretation, since the interpretation of logit model is similar. The simple

interpretation of these models is one of the benefits of including a latent variable into the

model. The coefficients for SAT/ACT and Semester GPA are positive and large, which

means students who did well in SAT or ACT math or have a higher GPA in the semester

from other course tend to do better in Intermediate Algebra. Specifically, controlling for

other variables, if students’ standardized SAT/ACT math score increase one point, their

Intermediate Algebra course score tend to increase 3.732 points.

Recall that students’ Semester GPA ranges from 0 to 4.33, and was calculated on

the courses excluding Intermediate Algebra. The parameter estimate of Semester GPA

means that with controlling for other variables, if students’ Semester GPA increases 1

unit, their Intermediate Algebra course score (ranges from 0 to 100) on average increase by

10.213 points. Course load has a negative coefficient, indicating that students who took

more courses tend to do worse in Intermediate Algebra. If we hold other variables constant,
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students taking one more credit hours will be likely to have 0.618 points lower in Intermediate

Algebra, most of college courses have 3 credit hours, so if a student take 3 more credit hours,

his or her Intermediate Algebra course score will decrease about 2 points (0.618×3 = 1.854).

Gender has a coefficient of 0.303, since male is represented as 0 and female as 1, the

coefficient 0.303 means that female students have 0.303 points higher than male students in

Intermediate Algebra if other variables take the same values. It suggests that Gender is not

a significant predictor variable.

HS grad. years has a negative estimated coefficient (−0.239), meaning that while con-

trolling other variables, if a student graduated from high school one year earlier, his or her

Intermediate Algebra course score will tend to be 0.239 points lower. Remember that the

mean of HS grad. years for Intermediate Algebra students in Fall 2012 is 2.6 years, and

HS grad. years ranges from a negative number to over 30 years. With the same other

conditions, a student in Intermediate Algebra class who graduated from high school 5 years

longer by the time taking the Intermediate Algebra course in August 20, 2012, can have an

Intermediate Algebra course score 1 point lower, and 2 points lower if graduating from high

school 10 years longer.

High school graduates on average had 3.878 points higher in Intermediate Algebra than

GED certificate holders if we control for other variables. Asian students tend to do a little

bit better than whites (2 points on average), whites are like to do better than Hispanics

(about 1.5 points higher on average), and Hispanics do better in Intermediate Algebra than

other races (about 1.8 points). The group Asian has a big variance, and this is caused by

the small sample size: there were only 33 Asian students enrolled in Intermediate Algebra

course in the Fall semester of 2012.
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Figure 4.5: Boxplots of β estimated using draws from the posterior distribution of the probit
model. The solid horizontal line is at zero.
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Figure 4.6 displays boxplots of the marginal distribution of the instructor random effects

under the probit model. The random effects were centered about zero for easier comparison.

Recall that we were primarily interested in how students in the Redesigned course performed

relative to other students, and the Redesigned course was taught solely by instructor 12, who

did not teach any Traditional lecture sections in the semester. Thus, the difference of in-

structor random effects between instructor 12 and other instructors represents the difference

of students’ performance between Traditional lecture sections and the Redesigned course.

Looking at the box plots, we see that the model estimates of the grade distribution in the

Redesigned course (listed as Instructor 12) is similar to the instructors with the highest

observed grade distributions (instructors 9 and 5), and are higher than that of most of the

other instructors. The average score of the Redesigned course was about 8 points higher

than the average student score of instructor 2. Students from the Redesigned course aver-

aged approximately 4 points higher in the course (out of 100) than an average instructor

(controlling for all of the covariates), which is almost half of a letter grade.

Using this model, we estimate that students in the Redesigned course averaged almost

half a letter grade higher in Intermediate Algebra than students in a typical lecture section.

This suggests that students in the Redesigned course did as well as students from the sections

of the best scored instructor with a Traditional lecture method.
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Figure 4.6: Boxplots of instructor random effects (τ ). The draws were centered at zero by
subtracting the overall mean (of all instructor effects). Instructor 12 is the Redesigned course
and the numbers 1-11 represent different instructors who taught the Traditional lecture
sections.
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4.10.2 Prediction with The Partially Ordered Probit and Logit

Models

An advantage of fitting models through Markov Chain Monte Carlo approaches is that we

can easily make predictions about the course score for individuals. Considering a student

who is a white, male, high school graduate with average SAT/ACT score (ACT math score

19 or SAT mathematics score 463), average Semester GPA (2.97), average number of years

since high school graduation (2.6 years) and who was in the Redesigned course. Using

our fitted probit model, his average predicted score is 80.3 and his probability of passing

the Intermediate Algebra course is 0.75. Figure 4.7 displays the posterior predicted grade

distribution for this student under both the probit and logit model.
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Figure 4.7: Estimated posterior predictive distribution of scores for an example student from
the Redesigned course section under the probit (left figure) and logit (right figure) model.
The vertical red line represents the passing score 73.
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If this student was instead taught by instructor 2 (the instructor with the lowest students’

score), his average posterior predicted score under the probit model would change to 72.2

while his probability of passing the Intermediate Algebra course drops to 0.47. Figure 4.8

displays the posterior predicted grade distribution for this student under both the probit

and logit model.
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Figure 4.8: Estimated posterior predictive distribution of scores for an example student from
a Traditional lecture section: the section taught by instructor 2 under the probit (left figure)
and logit (right figure) model. The vertical red line represents the passing score.
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If the model assumptions are reasonable, the ability to quickly make predictions of student

scores allows us to quantify how much better a section would perform if the format was

changed to the Redesign.

4.11 Comparison to Alternative Analysis

The main advantage of this model is that we can use all of the data while a standard

ordered or binary probit model cannot. In our example, the binary probit model ignores the

magnitude of the letter grade by converting them to passing or failing grades and completely

ignores those who receive a W, I or AUD. The ordered probit model similarly ignores grades

of CR, NC, W, I, AUD. The ordered probit uses the least amount of observations but has

more detailed information than the binary probit model. The partially ordered probit model

uses all of the observations with all of the detail.

We divide the data into five equal subsets, each time using one subset as training set

with which we estimate parameters of the model, while leaving the other four subsets as test

set. We plug in the value of the covariates of each observation to the model we obtained

from the training set, and predict the value of the response, then compare with the observed

response value. Cross validation can test how well the model will fit an independent data

set, and provide unbiased assessment of the model estimate. The mean squared error (MSE)

is one of many ways to quantify the difference between values predicted by an estimator and

the true values of the response.

In signal detection theory, a Receiver Operating Characteristic (ROC) curve is a graphical

plot which illustrates the performance of a binary classifier system. It is created by plotting

the fraction of true positives out of the total actual positives (true positive rate) versus the

fraction of false positives out of the total actual negatives (false positive rate), at various

threshold settings. The Area Under ROC Curve (AUC) analysis provides tools to select

possibly optimal models and to discard suboptimal ones independently.
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To quantify the impact of this loss of information, we utilized five-fold cross validation

with two measures of model fit: a mean squared error (MSE) and the area under the ROC

curve (AUC). These measures are based on only predicting the probability of passing the

course. We chose this because the University is most interested in predicting pass rates. For

the ordered probit and binary probit, we used the Bayesian formulation from Albert and

Chib (1993) with the same random effects and predictors as the partially ordered model.

We applied a Bayesian version of the partially ordered probit model, ordered probit model

and binary probit model on the Fall 2012 Intermediate Algebra student data. The data was

randomly placed into 5 folds of equal size. For each of the five folds, the data not in that fold

was used to fit each of the three probit models. Predictions of the passing rate were made

for each student in that fold. From those predictions, the MSE and AUC were calculated

with the actual pass/fail results for those students. Students who received a W, I, or AUD

were excluded at this stage. Table 4.14 presents the average MSE and AUC over the five

folds for all three models.

Model MSE AUC
Partially Ordered Probit 0.310 0.654
Ordered Probit 0.327 0.599
Binary Probit 0.348 0.642

Table 4.14: Estimated measures of model fit for each model. The first column lists the
models used. The second column gives an estimated MSE using five-fold cross validation.
The third column gives an estimated AUC using five-fold cross validation.

We see from Table 4.14 that, in terms of MSE and AUC, the partially ordered model

performs the best. In other words, the information gained from using all grading information

for students does translate into a better predictive model. The ordered model performs worse

than the binary probit model for this data in terms of AUC but better in terms of MSE.

We attribute this to it being unable to use the 158 students who received a CR or NC. The

extra detail of the ordered model could not compensate, in terms of model fit, for the loss of

these students. If there were no CR/NC students, we suspect that the ordered model would
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perform better than the binary probit model.

124



Chapter 5

Analysis of Spring 2013 Course

Redesign Data

5.1 Introduction

In the Spring semester of 2013, all the Intermediate Algebra students at the University were

put into the Redesigned course. We apply our partially ordered probit and logit models,

presented in Chapter 4, to the Intermediate Algebra Redesigned course grade data of Spring

2013. We use the same variables with the Spring 2013 data as those with the Fall 2012

data. After cleaning the data, we find that there were 950 students enrolled in Intermediate

Algebra in the Spring semester of 2013, and we use the information of these students for

analysis.
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5.2 Descriptive Statistics

5.2.1 Descriptive Statistics for the Spring 2013 data

We would first like to explore the data with tables and Chi-Square tests to answer the

following questions that we are interested in about the Spring 2013 Intermediate Algebra

student success.

Distribution of letter grades in the Redesign of Spring 2013

Since 54.63% of students received Incomplete in the Redesign in the previous semester,

which tremendously influenced our method of analysis, we would like to know the grade

distribution of Spring 2013 Intermediate Algebra students in the Redesigned course. We

see from Table 5.1 that 56.21% (534 out of 950) of the students received an “I”, compared

to 54.63% (118 out of 216) in the Redesign of the previous Fall semester. 15.05% students

got a “W”. Oddly, 3 students preferred to get D or D- instead of a “W” or “I”, although

the Department of Math and Statistics planned not to give D or F grades in the Redesign.

There were 2 students registered for “CR/NC”, and both ended up with a “NC”. Because

there were so many Incompletes, we must take this into account when building models.

Pass Rate of students with and without SAT/ACT scores on the Spring 2013

data after removing “I” and “AUD”

Students with an “I” have not completed the course for this analysis, and there were 56.21%

(534) students received a “I” in the Spring 2013, so we only considered students who have

finished or withdrawn from the course. We exclude the “I” and “AUD” students from the

dataset at this stage only for comparing pass rate. Later for fitting the multilevel logistic

model and the partially ordered probit/logit models, we will use all of the data including
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Letter grade Frequency Percent
A+ 18 1.89
A 77 8.11
A- 36 3.79
B+ 26 2.74
B 71 7.47
B- 16 1.68
C+ 7 0.74
C 11 1.16
D 1 0.11
D- 2 0.21
CR 5 0.53
NC 2 0.21
W 143 15.05
I 534 56.21
AUD 1 0.11

Table 5.1: Distribution of letter grades in the Redesign of Spring 2013, the first column
represents each letter grade was given in the Redesign in Spring 2013; the second column
gives the the number of students who received each letter grade in the Redesign of spring
2013, and the third column provides the precentage of students who received each letter
grade listed in the first column.

the “I” and “AUD” students. Students with “W” grade stay in the data in this step because

“W” is considered as a fail in the Redesign. After deleting students with “I” and “AUD”

from the dataset, we have 415 observations. We treat the letter grades: A,B(with + and -)

and C+, C and CR as passing grades, and W as failing grade. Table 5.2 tells that there were

267 out of 415 ( 64.34%) students passed, and the pass rate for students with an SAT/ACT

score is 66.40%; the pass rate for students without an SAT/ACT score is 47.83%. Among

the students who took the SAT/ACT, 33.6 % of them did not pass, and 52.17% students

who do not have a SAT/ACT score failed the course.

The p-value for the Chi-Square test with degree of freedom 1 is 0.0132, suggesting that

the pass rate of the students with an SAT/ACT score is significantly higher than those

without an SAT/ACT score. Again, this indicates that students who transferred from other
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Students with Students without Total
SAT/ACT SAT/ACT

Passed students 245 22 267
Passed percentage 59.04 5.30 64.34%

among all students
Pass rate 66.40 47.83

among each group
Failed students 124 24 148
Failed percentage 29.88 5.78 35.66%
among all students
Failing rate 33.60 52.17

among each group
Total number of students 369 46 415

in each group
Percentage of students 89.92 11.08 100%

in each group over all

Table 5.2: Pass rate comparision between students who took an SAT/ACT and those who did
not. The “Passed percentage among all students” means the percentage of passed students
in each group over all students enrolled in the Intermediate Algebra course in the Spring
semester of 2013, similarly, the “Failed percentage among all students” means the percentage
of failed students in each group over all students enrolled in the Intermediate Algebra course
in the Spring semester of 2013. The Pass (Failing) rate represents the percentage of passed
(failed) students in each group (students with an SAT/ACT score or those without).

universities did not do as well as students who came to the University directly from high

school.

Pass rate of students across different race/ethnicity

The University has a large, diverse student population. In particular, the University has a

much larger Hispanic population in comparison to the rest of the country. In the Intermediate

Algebra course, Hispanic has the largest student population, and always over 50% of the

students in this course are Hispanic; only a very small percentage of students are from

the race/ethnicity groups other than Hispanic and whites. We would like to continue to

128



Chapter 5. Analysis of Spring 2013 Course Redesign Data

monitor students’ success across different race/ethnicity in the Intermediate Algebra course

in Spring 2013, while the new teaching method was fully adopted, i.e. completely using

computer software to teach Intermediate Algebra.

The pass rates of each race/ethnicity group in the Redesign in the Spring semester of

2013: 64.14% for Hispanic, 64.58% for whites, and 61.29% for native Americans, 64.29% for

two or more races. There is only one native Hawaiian student in the data, and there are 4

non-resident aliens, 2 Asian students, 8 students with “race/ethnicity unknown”, 8 black or

African Americans. The sample size for these races are too small, so the pass rates yielded

from these race/ethnicity groups are not reliable. The number of passed or failed students

from these race/ethnicity groups are less than 5, which causes inaccuracy of Chi-square test,

so we deleted them from the data for the sake of Chi-Square test. To protect the privacy of

students from these very small race/ethnicity groups such as non-resident aliens, Asian, black

or African Americans and native Hawaiian, the table of pass rate across the race/ethnicity

groups is omitted.

The p-value for the Chi-square test on the data without the very small race/ethnicity

groups is 0.9899, suggests that there is not significant difference in the pass rate among

different race/ethnicity groups in the Redesign in Spring 2013. Recall that there was a

significant difference in students’ pass rate across different race/ethnicity groups in Fall

2012.

According to the University “Official Enrollment Report Spring 2013” (UNM, 2013),

there were 40.92% of whites, 38.33% of Hispanic students, and small percentages of other

races. Thus, there was a bigger percentage of Hispanic students in Intermediate Algebra

than in the University at large.
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Student success between high school graduates and GED certificate holders

Again, we would like to investigate how the students with GED certificate did in the Inter-

mediate Algebra course compared to high school graduates, since most of GED certificate

holders are composed of home-schooled students, or students who did not finish high school

but enrolled in college later. Table 5.3 displays student success between high school grad-

uates and GED certificate holders in the Redesign in Spring 2013 on the data excluding

“I” and “AUD” students. Among high school graduates, 65.39% students passed, and in

the group of GED certificate holders, 45.45% students passed. There were only 22 GED

students in the data, while 393 high school graduates. The p-value for Chi-Square test is

0.0574 with 1 degree of freedom, suggesting that the pass rate is not significantly different

at 0.05 significance level between students who graduated from high school and those who

have GED certificate. We also did the Chi-Square test on the data with all Spring 2013

students including “I” and “AUD” students, the results were same: the pass rates of high

school students and GED holders are not significantly different.

Pass Rate between males and females

Our analysis on the Fall 2012 Intermediate Algebra student data concluded that female

students did better than male students in this course. We would like to redo the test using

the Spring 2013 data. Table 5.4 provides the pass rate between male and female students.

There were 66.40% of female students passed Intermediate Algebra in Spring 2013, and

61.11% males passed the course. Again, the p-value for Chi-Square test in pass rate between

male and female students is 0.2722, suggesting that the pass rate between male and female

is not statistically different. Note that there were 578 (60.84%) females, and 372 (39.16%)

males enrolled in the Intermediate Algebra class at the University in Spring 2013, and this

is consistent to the student population at the University, since there were more female

than male enrolled in the University in Spring 2013. According to the University “Official
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High school graduates GED certificate holders Total
Passed students 257 10 267
Passed percentage 61.93 2.41 64.34%

among all students
Pass rate 65.39 45.45

among each group
Failed students 136 12 148
Failed percentage 32.77 2.89 35.66%
among all students
Failing rate 36.41 54.55

among each group
Total number of students 393 22 415

in each group
Percentage of students 94.70 5.30 100.00

in each group over all

Table 5.3: Passe rate between high school graduates and GED certificate holders in the
Redesign in Spring 2013. The “Passed percentage among all students” means the percentage
of passed students in each group over all students enrolled in the Intermediate Algebra course
in the Spring semester of 2013; similarly, the “Failed percentage among all students” means
the percentage of failed students in each group over all students enrolled in the Intermediate
Algebra course in the Spring semester of 2013. The “Pass (Failing) rate” represents the
percentage of passed (failed) students in each group (high school graduates or GED certificate
holders) enrolled in the course in Spring 2013 over all students in each group.

Enrollment Report Spring 2013” (UNM, 2013), there were 19,464 undergraduate students

enrolled in the Spring, 2013, consisting of 8,607 males and 10,857 females.

Distribution of quantitative independent variables

Figure 5.1 describes the distribution of independent variables: HS grad. years (high school

graduation years), SAT/ACT (standardized SAT/ACT score), Course load and

Semester GPA. We see that high school graduation years is strongly right skewed, and

about 95% of students graduated from high school less than 15 years ago. The mean high

school graduation years is 3.11 years, while the average high school graduation years of
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Female Male Total
Passed students 168 99 267
Passed percentage 40.48 23.86 64.34%

among all students
Pass rate 66.40 61.11

among each group
Failed students 85 63 148
Failed percentage 20.48 15.18 35.66%

among all students
Failing rate 33.60 38.89

among each group
Total number of students 253 162 415

in each group
Percentage of students 60.96 39.04 100.00

in each group over all

Table 5.4: Passe rate between male and female students in the Redesign in Spring 2013. The
“Passed percentage among all students” means the percentage of passed students in each
gender over all students enrolled in the Intermediate Algebra course in the Spring semester
of 2013; similarly, the “Failed percentage among all students” means the percentage of failed
students of each gender over all students enrolled in the Intermediate Algebra course in
the Spring semester of 2013. The “Pass (Failing) rate” represents the percentage of passed
(failed) students of each gender enrolled in the course in Spring 2013 over all male or female
students who did not receive an I and a AUD in the course in Spring 2013.

students in Intermediate Algebra course in Fall 2012 was 2.602 years, standard deviation is

5.84. The mean SAT/ACT is -0.705, which is lower than that of students in the Fall (-0.458

with standard deviation 0.4239), we don’t know if that means students are doing worse

in math in high school, or the ACT/SAT math tests becomes harder, or many students

who had higher SAT/ACT score but still in the range of SAT 450-500 or ACT 19-21 took

Intermediate Algebra in the local community college for a lower cost, and standard deviation

is 0.406. The histogram for Course load tells that the average credit hours each student took

in Spring 2013 was 13.069 credit hours, comparing to 13.97 credit hours in the Fall. Note that

these credit hours don not include the three credit hours from Intermediate Algebra. The

distribution of Semester GPA is roughly normal with mean 2.7085, compared to average
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semester GPA 2.97 in the Fall semester of 2012.

133



Chapter 5. Analysis of Spring 2013 Course Redesign Data

 

 

Figure 5.1: Histograms for quantitative independent variables about Intermediate Algebra
students from Spring 2013. The left upper panel displays the distribution of the elapsed
time in years after students graduated from high school by taking Intermediate Algebra in
Spring 2013. The right upper panel: the distribution of the SAT/ACT score of the students
enrolled in the course from Spring 2013. The left lower panel presents the distribution of
the total credit hours excluding the credit hours from Intermediate Algebra. The right lower
panel gives the distribution of students semester GPA calculated excluding the three credits
from Intermediate Algebra in Spring 2013 when they took Intermediate Algebra.
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Students enrolled in both of the semesters

All Intermediate Algebra students were in the Redesign in Spring 2013, while there was only a

pilot section of 216 students of the Redesign, and most of other students were taught with the

Traditional lecture method in Fall 2012. In order to compare student learning performance

in the Redesign between Fall 2012 and Spring 2013, as well as comparing student learning

performance between Spring 2013 and that of the Traditional lecture sections in Fall 2012,

we need to combine the datasets of the two semesters together.

After getting rid of the 12 students who did not receive any grade, which is probably a

recording mistake, there are 2258 students in the dataset. Among them, 166 students were

recorded twice because they were enrolled in the Fall and retook the course in the Spring.

From these 166 duplicates who both enrolled in the Fall and the Spring, we pulled out

students who were in the Redesign of Fall 2012, and found that there were 11 students who

took Intermediate Algebra in the Redesign of Fall 2012. In other words, there are 11 students

took Intermediate Algebra in the Redesign in Fall 2012, and re-enrolled the course in Spring

2013, and 155 students taught by the Traditional lecture method in Fall 2012 retook it in the

following Spring semester of 2013. Note that the students who received Incomplete do not

have to register the course again, they just need to continue to work on the materials they

left in the previous semester, and after they finish and pass the course, the instructor will

go back to their Fall 2012 grade and change the “I” to a passing grade. If the Incomplete

students can not pass the course in three semesters (including summer), the “I” will become

an “F”.

Table 5.5 describes the Fall grades distribution of these 11 students who did not pass the

course in the Redesign in Fall 2012 and continued to work on it in Spring 2013. We do not

know why it shows that the two Incomplete students re-enrolled in the course. Recall there

were 118 (54.63%) Incompletes in the Redesign and 8 Incompletes from the lecture sections,

so 126 students total received an “I” in Fall 2012. These 126 students should be continuing
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to work on the course in Spring 2013. We do not have information about their score or their

updated grade to change the “I” by the end of Spring 2013.

Letter Grade Frequency Percent Cumulative Frequency Cumulative Percent
W 7 63.64 7 63.64
D 2 18.18 9 81.82
I 2 18.18 11 100.00

Table 5.5: Fall grade distribution of students retaking Intermediate Algebra in the Spring
that were in the Redesign in Fall 2012.

There were a total of 564 students who did not pass in Fall 2012 (414 from the lecture

sections, and 150 students from the Redesign), only 166 of them continued in the Spring.

Again, we took a subset from 166 duplicates, and only kept students’ Spring grade. Table 5.6

gives the grade distribution of the Spring grade for the 166 students who did not pass in the

Fall and continued in the Spring. From our past research, whether or not students attempted

Intermediate Algebra before is not significant in predicting their learning performance in the

current semester, and students who tried to take Intermediate Algebra before do slightly

worse on average than students who never tried to take the course before. The trend still

holds on the Spring data, as we can see from Table 5.6, 66.87% of re-enrolled students

received “I”, the pass rate for these re-enrolled students is as low as 10.26% if we consider

“I” as a fail for the current semester.

To compare the student performance in Spring 2013, the pilot Redesign in Fall 2012, and

the Traditional lecture sections in Fall 2012, considering the pass rate in the Intermediate

Algebra course was consistently hovering below 50%, so there were always returning students

in this course. There were 166 students in the Spring 2013 who returned after they failed

the course in Fall 2012, while there were definitely also students who failed the course before

the Fall semester of 2012, and returned from the previous semesters, but we do not have

information of Intermediate Algebra students before Fall 2012. Because the Intermediate

Algebra grades of these three groups of students are all under the same influence of some
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Letter Grade Frequency Percentage
A 6 3.61
A- 3 1.81
B+ 1 0.60
B 4 2.41
B- 1 0.60
C 2 1.20
I 111 66.87
W 38 22.89

Table 5.6: Spring grades of the 166 students who did not pass in the Fall but continued in
the Spring. There were 89.76% of this group of students did not pass by the end of Spring
2013

students repeatedly taking the course and the information we have, we could only ignore

this effect for right now.

5.2.2 Descriptive statistics on combined data

Before we fit the models to the data, we would like to explore the combined data for the

Fall and the Spring, to see the effect of the predictor variables on a larger population to

get a more accurate picture. In other words, how students’ success in Intermediate Algebra

differ between the students who have an SAT/ACT score and those who do not, high school

graduates and GED holders, as well as different gender and race/ethnicity groups. In this

section, we still treat the grades A,B(with +/-), C+, C and CR as passing grade, and all

other grades including C−, D+, D,D−, F,NC,W, I, AUD as failing grades.
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Difference in Intermediate Algebra pass rate between students with an

SAT/ACT score and those without

Table 5.7 provides the pass rate of students in Intermediate Algebra between students with

an SAT/ACT score and those without. The pass rate of students with an SAT/ACT score in

this course is 46.30%, while the pass rate of students without an SAT/ACT score is 30.59%.

There were only a small percentage of students (9.70%) who did not take the the SAT/ACT.

The p-value of Chi-Square test <.0001 suggests that the pass rate of students with an

SAT/ACT score in this course is significantly higher than those without an SAT/ACT score.

Using the students from the two semesters for analysis, we still get the same conclusion.

Gender effect on student Intermediate Algebra success

From the combined data of Intermediate Algebra students from the two semesters, Table 5.8

tells that there are more females than males (57.17 % vs. 42.83%) enrolled in the Intermediate

Algebra course, and there were also more females (46.01%) than males (43.13%) passed the

course. Again, the difference in the pass rate between females and males in the course is not

significant since the p-value from the Chi-Square test is 0.1721, bigger than 0.05 significance

level. This suggests that students’ math ability is not significantly different between males

and females.

High school effect on student Intermediate Algebra success

Table 5.9 presents the student Intermediate Algebra success between high school graduates

and GED certificate holders. We see that 95.57 % students enrolled in Intermediate Algebra

are high school graduates, only 4.43% (100 students) have GED certificate. The pass rate

for high school graduates in Intermediate Algebra course of the two semesters is 45.60%, and

27.00% for GED certificate holders. The p-value of Chi-Square test is 0.0003, which suggests
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Students with Students without Total
SAT/ACT score SAT/ACT score

Passed students 944 67 1011
Passed percentage 44.81 2.97 44.77%

among all students
Pass rate 46.30 30.59 100%

among each group
Failed students 1095 152 1247
Failed percentage 48.49 6.73 55.23%
among all students
Failing rate 53.70 69.41

in each group
Total number of students 2039 219 2258

in each group
Percentage of students 90.30 9.70 100%

in each group over all

Table 5.7: Pass rate comparision between students took an SAT/ACT and those who did
not. The “Passed percentage among all students” means the percentage of passed students in
each group over all students enrolled in the Intermediate Algebra course in the two semesters.
Similarly, the “Failed percentage among all students” means the percentage of failed stu-
dents in each group over all students enrolled in the Intermediate Algebra course in the two
semesters. The “Pass (Failing) rate” represents the percentage of passed (failed) students
in each group (students with an SAT/ACT score or those without in the course) over all
students in each group.

that this difference is statistically significant.

Pass rate between different race/ethnicity groups

Recall that we had to take away some race/ethnicity group to use the Chi-square test because

of very few students in these race/ethnicity groups when we analyzed the Fall 2012 or Spring

2013 data. Redoing the test on more students from the two semesters will give use a more

reliable result. Table 5.10 describes the pass rate between different race/ethnicity. The pass

rates of Asian and non-resident alien are the biggest, 55.81% and 53.33%, respectively, the
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Female Male Total
Passed students 494 417 1011
Passed percentage 26.31 18.47 44.77%

among all students
Pass rate 46.01 43.13

for each group
Failed students 697 550 1247
Failed percentage 30.87 24.36 55.23%

among all students
Failing rate 53.99 56.88

in each group
Total number of students 1291 967 2258

in each group
Percentage of students 57.17 42.83 100.00

in each group over all

Table 5.8: Passe rate between female and male students in the two semesters. The “Passed
percentage among all students” means the percentage of passed students of each gender over
all students enrolled in the Intermediate Algebra course in the two semesters. Similarly,
the “Failed percentage among all students” means the percentage of failed students of each
gender over all students enrolled in the Intermediate Algebra course in the two semesters. The
“Pass (Failing) rate” represents the percentage of passed (failed) female (or male) students
over all female (or male) students.

next is whites ( 51.22%), two or more races (44.19%), Hispanic (43.19%), native American

(36.18%), black or African American (36.14%), then “Race unknown” (31.25%). Because the

percentages of students from two or more races, black or African American, Asian, “Race

unknown”, and non-resident alien are so small among the Intermediate Algebra student

population, range from 3.81% to 0.67%, we put these minority races in the group of “other

races” to fit the models. The p-value from Chi-Square test is 0.0014, suggests that there

is a significant difference in Intermediate Algebra pass rate between different race/ethnicity

groups.
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High school graduates GED certificate holders Total
Passed students 984 27 1011
Passed percentage 43.58 1.20 44.77%

among all students
Pass rate 45.60 27.00

in each group
Failed students 1174 73 1247
Failed percentage 51.99 3.23 55.23%

among all students
Failing rate 54.40 73.00

in each group
Total number of students 2158 100 2258

in each group
Percentage of students 95.57 4.43 100.00

in each group over all

Table 5.9: Passe rate comparison between high school graduates and GED certificate holders
from the two semesters. The “Passed percentage among all students” means the percentage
of passed students in each group over all students enrolled in the Intermediate Algebra
course in two semesters. Similarly, the “Failed percentage among all students” means the
percentage of failed students in each group over all students enrolled in the Intermediate
Algebra course in the two semesters. The “Pass (Failing) rate” represents the percentage
of passed (failed) students in each group (high school graduates or GED certificate holders)
enrolled in the course in the two semesters over all students in each group.

Distribution of quantitative independent variables on the combined Fall and

Spring Intermediate Algebra grade data

Comparing the histogram of HS grad. year in Table 5.2 and Table 5.1, there were some high

school students taking Intermediate Algebra in the Fall 2012, but not in the Spring 2013.

The distributions of these variables are similar between the Fall data and the combined data

of two semesters.

141



Chapter 5. Analysis of Spring 2013 Course Redesign Data

Hisp. White Native Two or Black or Asian race Non Total
Ameri. more African unknown -Res

races Ameri. Alien
Pass 530 316 55 38 30 24 10 8 1011
1 23.50 14.01 2.44 1.69 1.33 1.06 0.44 0.35 44.83
2 43.19 51.22 36.18 44.19 36.14 55.81 31.25 53.33
Fail 697 301 97 48 53 19 22 7 1244
3 30.91 13.35 4.30 2.13 2.35 0.84 0.98 0.31 55.17
4 56.81 48.78 63.82 55.81 63.86 44.19 68.75 46.67
Total 1227 617 152 86 83 43 32 15 2255
5 54.41 27.36 6.74 3.81 3.68 1.91 1.42 0.67 100.0

Table 5.10: Pass rate of students from two semesters between different races. The row “Pass”
gives the number of passed students from each race. The row starting with “1” provides
the percentage of passed students in each race over all Intermediate Algebra students from
the two semesters, row “2” describes the pass rate in each race based on the data from
the two semesters. The row “Fail” gives the number of failed students, row “3” tells the
percentage of failed students in each race over all Intermediate Algebra students from the
two semesters. The row starting with “4” represents the failing rate in the course in each race
for the students enrolled in the two semesters. “Total” means the total number of students
in each race, and the row beginning with “5” gives the percentage of students of each race
among all students enrolled in the course in the two semesters.
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Figure 5.2: Histograms for the quantitative independent variables for Intermediate Algebra
students from two semesters. The left upper panel displays the distribution of the elapsed
time in years after students graduated from high school until taking Intermediate Algebra
in Fall 2012 or Spring 2013; the right upper panel: the distribution of SAT/ACT score of
the students enrolled in the course from the two semesters. The left lower panel presents the
distribution of the total credit hours excluding the credit hours from Intermediate Algebra.
The right lower panel gives the distribution of students’ semester GPA calculated excluding
the three credits from Intermediate Algebra in the Fall semester of 2012 or Spring 2013 when
they took Intermediate Algebra.
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Investigation on high school graduation years

From Figure 5.1 and Figure 5.2, we can only see that there was a very small percentage

of students who graduated from high school more than 15 years ago. Because mathematics

materials across courses are closely related, the higher level math builds upon the lower level,

it is common that the longer students wait to take Intermediate Algebra, they forget more of

what they have learned in high school, and consequently do worse in this course. In response

to the feedback from some professors that very old students tend to do better than young

people in school, it is necessary to do further investigation on the influence of the amount

of time since students graduated from high school on the students learning outcomes on a

much larger dataset.

Again, we split up HS grad. years (high school graduation years) to several categorical

variables: students who are still in high school so have years graduated from high school less

than 0; new high school graduates having years graduated from high school between 0 to

5; students who have graduated from high school longer than 5 to 10 years; students who

graduated from high school more than 10 to 20 years ago; older people who graduated from

high school more than 20 years to 30 years, 30 years to 40 years as well as longer than 40

years.

Table 5.11 displays that Intermediate Algebra pass rates of high school students and those

who just graduated from high school are close (46.15% to 46.92%), but there is a dramatic

drop in pass rate for the students graduate from high school 5 years to 10 years ago ( 44.92%

to 33.33%), then this decreasing pace is a little bit slower for students graduated from high

school 10 to 20 years ago ( 33.33% to 28.40%), and the decreasing trend tend to be steady

after students graduated from high school for 10-20 years, 20-30 years, 30-40 years (28.40%

to 27.5% to 25.0%); for the people graduated from high school more than 40 years, their

pass rate increase to 33.33. However, there were only 9 students (0.40%) in this group.

The p-value for Chi-Square test is less than 0.0001, suggest that students’ pass rate does
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differ with the increasing of high school graduation years. Since there were only 9 students

who graduated from high school more than 40 years ago, we deleted these outliers from the

dataset for fitting the models.
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Years graduated <0 0-5 5-10 10-20 20-30 30-40 >40 Total
from high school
Passed students 12 907 51 23 11 4 3 1011
Passed percentage 0.53 40.17 2.26 1.02 0.49 0.18 0.13 44.77

among all students
Pass rate 46.15 46.92 33.33 28.40 27.5 25.0 33.33

in each category
Failed students 14 1026 102 58 29 12 6 1247
Failed percentage 0.62 45.44 4.52 2.57 2.08 0.53 0.27 55.23

among all students
Failing rate 53.85 53.08 66.67 71.60 72.31 75.0 66.67

in each category
Total number of students 26 1933 153 81 40 16 9 2258

in each group
Percentage of students 1.15 85.61 6.78 3.59 1.77 0.71 0.40 100.0

in each group over all

Table 5.11: Pass rate of students across students with different years graduated from high school. The “Passed
percentage among all students” means the percentage of passed students in each group over all students enrolled in
the Intermediate Algebra course in two semesters; similarly, the “Failed percentage among all students” means the
percentage of failed students in each group over all students enrolled in the Intermediate Algebra course in the two
semesters. The “Pass (Failing) rate” represents the percentage of passed (failed) students in each age group enrolled
in the course in the two semesters over all students in each group.
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5.2.3 The test for multicollinearity among predictor variables

We re-investigate the problem of multicollinearity among predictor variables on the combined

data. See Section 4.2.3 for a discussion about multicollinearity. We generate a pairwise corre-

lation matrix between all continuous variables, and did not see any high correlation between

any two variables. Multicollinearity diagnostics tolerance, Variance Inflation Factor (VIF)

and condition index were also assessed. The VIFs for whites and Hispanic are bigger than

2.5, making us a little concerned of multicollinearity among the predictor variables. Further,

we checked the condition index. One condition index is quite large: 32.99447, pair this with a

very small Eigenvalue (0.00612), and two big values for proportion of variation (0.97480 and

0.64010), these are evidence that there is the existence of multicollinearity. This is caused by

the reference group, which includes the students other than whites and Hispanic, counts for a

very small percentage (only about 10%). A solution to this multicollinearity is to increase the

Variable Parameter Standard t Value Pr > |t| Tolerance Variance
Estimate Error Inflation

Semester GPA 0.12529 0.01317 9.52 < .0001 0.93770 1.06644
Course load -0.00286 0.00405 -0.70 0.4812 0.89839 1.11311
SAT/ACT 0.15989 0.02542 6.29 < .0001 0.85183 1.17395
HS grad. years -0.02567 0.00467 -5.50 < .0001 0.89140 1.12183
High school 0.00228 0.07951 0.03 0.9771 0.98350 1.01678
redesign -0.13102 0.01153 -11.36 < .0001 0.86008 1.16269
White 0.05396 0.03684 1.46 0.1432 0.39582 2.52643
Hispanic 0.02250 0.03380 0.67 0.5056 0.37040 2.69982
native American -0.00555 0.05102 -0.11 0.9134 0.67270 1.48654

Table 5.12: Multicollinearity dianostics. “redesign” is a variable telling wether a student
took Intermediate Algebra in the Redesign in Fall 2012, Traditional lecture in Fall 2012, or
the Spring 2013.

size of the reference group: put White together with other minority race/ethnicity groups as

the reference group. This is also desirable because Hispanics is a group that is interested to

the University. Since there were 54.41% Hispanic students and 27.36% whites (Table 5.10)
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in our data, and we would like to know how Hispanic students do in Intermediate Algebra

comparing to white Caucasian.

The p-value for the Chi-Square test is quite big (0.9771), and there is still large condition

index after we put whites into the reference group, and this suggests that there is still some

multicollinearity between the predictor variables. Remember there were only 4.43% of GED

holders in the combined data (Table 5.9), and Table 5.3 on Spring data suggests that the pass

rate is not significantly different between high school graduates and GED certificate holders.

The backward elimination procedure also deleted High school from a logistic regression

model at the 0.1 significance level. Thus, we decided to take away High school and White

from the model. See Table 5.13, the variance inflation factors are all smaller than 1.2, and

the biggest condition index is 20.857. The model should be free of multicollinearity problem

with these selected variables.

Variable Parameter Standard t Value Pr > |t| Tolerance Variance
Estimate Error Inflation

Semester GPA 0.12654 0.01314 9.63 < .0001 0.89919 1.06187
Course load -0.00303 0.00405 -0.75 0.4549 0.85474 1.11211
SAT/ACT 0.16196 0.02538 6.38 < .0001 0.90015 1.16994
HS grad. years -0.02537 0.00465 -5.46 < .0001 0.89352 1.11093
redesign -0.13108 0.01152 -11.38 < .0001 0.86126 1.16108
Hispanic 0.0149 0.02404 -0.68 0.499 0.87106 1.14803
native American -0.04278 0.04412 -0.97 0.3324 0.89939 1.11187

Table 5.13: Multicollinearity dianostics. “redesign” is a variable telling wether a student
took Intermediate Algebra in the Redesign in Fall 2012, Traditional lecture in Fall 2012, or
the Spring 2013.

We add three interaction terms: SAT/ACT * HS grad. years,

HS grad. years * Hispanic, and SAT/ACT * Hispanic, because the results from backward

elimination suggest that these three interaction terms are significant.
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5.2.4 Multilevel Logistic Model

We are curious about what happens if we fit the data with a standard multilevel logistic

model. Note that, the response variable of this model has to be binary, so we create a binary

response variable: pass or fail, with the letter grades “I”, “AUD”, and “W” as well as “C-”,

“D”(with +/-), “F” and “NC” being treated as fail. Table 4.13 and Table 5.15 are the fix

and random effects for the multilevel logistic model:

pi = logit−1(X iβ +Ziτ )

Where pi is the probability of student i passing Intermediate Algebra, X i and Zi are design

vectors for the fixed and random effects, respectively. In our case, X i is the value for a list

of variables about students’ information, and Zi is a 12 × 3 matrix consists of 0s and 1s

telling if the student took Intermediate Algebra in Spring 2013, the pilot Redesign in Fall

2012 or a Traditional lecture section in Fall 2012. β and τ are fixed and random effects.

The test of covariance parameters based on the residual pseudo-likelihood gives a p-

value < .0001, this suggests that the difference in the random intercepts is not 0, in other

words, there is significant difference in students’ probability to pass the course between

students taking the course in Spring 2013, in the pilot Redesign of Fall 2012 and in the

Traditional lecture sections of Fall 2012. Table 5.14 and 5.15 provide a description of the

estimates for the fixed effects and random effects of the multilevel logistic model. We see

that the random intercept for the lecture sections in Fall 2012 is the highest, then the pilot

Redesign in Fall 2012, the intercept for the Spring Redesign is the lowest. This is likely

caused by treating the over 50% of Incompletes (I) and Audits (AUD) in the Redesign of

both Spring 2013 and Fall 2012 as a failing grade.
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variable Estimate Standard t Pr > |t|
Error

Intercept -1.2869 0.5476 -2.35 0.0501
semester GPA 0.6897 0.07498 9.20 < .0001
Course load -0.01063 0.02049 -0.52 0.6041
SAT/ACT 1.1707 0.2288 5.12 < .0001
HS. grad. years -0.09345 0.03682 -2.54 0.0112
Gender -0.1649 0.1055 -1.56 0.1183
Hispanic -0.2192 0.1833 -1.20 0.2319
Native American -0.1691 0.2271 -0.74 0.4566
SAT/ACT* HS grad. years -0.03309 0.04592 -0.72 0.4713
HS grad. years*Hispanic -0.1604 0.05769 -2.78 0.0055
SAT/ACT*Hispanic -0.6739 0.2652 -2.54 0.0111

Table 5.14: Estimates of the fixed effects. The column “variable” lists the name of variables
we used for the model, and the variable “Gender” takes female as reference group. The
column “Estimate” displays the parameter estimate for variables listed in the first column
with the multilevel logistic model; the column “Standard Error” gives the standard error of
the parameter estimate in the multilevel logistic model, the column “t” provides the value
of t-statistic and Pr > |t| gives of the p-value for each parameter estimate.

Effect Subject Estimate t Pr > |t|
Intercept Lecture 0.7742 1.93 0.1887
Intercept Redesign -0.3639 -0.89 0.4596
Intercept Spring -0.4103 -1.02 0.4108

Table 5.15: Estimates of the random effects. In the column “Subject” , “Lecture” means the
Traditional lecture section in the Fall semester of 2012, “Redesign” represents the Redesign
in Fall 2012, and “Spring” means the Redesign in the Spring semester of 2013. “Estimate”
column gives the parameter estimates for its left column; the last two columns provides the
t-statistic and p-value for each parameter estimate.

Prediction with the multilevel logistic model

Using the parameter estimates of the multilevel logistic model in Table 5.14 and Table 5.15,

for any student from Traditional lecture sections in the Fall semester of 2012, the estimated
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probability of passing the course is estimated as:

logit(−1) ˆ(pi) = (−1.2869 + 0.7742 + 0.6897× semesterGPA− 0.0106× Courseload+ 1.1707

×SAT/ACT − 0.0935×HS grad. years− 0.165×male− 0.2192×Hispanic

−0.169×Native American− 0.0331× SAT/ACT ×HS grad. years− 0.1604

×HS grad. years×Hispanic− 0.6739× SAT/ACT ×Hispanic)

To estimate the probability of passing the course for a student from the pilot Redesign in

Fall 2012, or in Spring 2013, simply change the random effect coefficient 0.7742 to -0.3639

or -0.4103. We left the non-significant terms in the model for comparison’s sake.

Suppose there is a student with average semester GPA (2.863), Course load (13.862),

SAT/ACT (-0.561) and HS grad. years (2.815), who is a Hispanic male, and took Inter-

mediate Algebra in Fall 2012 in one of the Traditional lecture sections, his probability of

passing Intermediate Algebra would be 53.4%. If he was in the pilot Redesign last Fall,

then his probability of passing the course is 26.8%; if he took the course in Spring 2013, his

probability of passing the course would drop to 25.9%. If the student is a Hispanic female,

her probability of passing Intermediate Algebra in the lecture section in Fall 2012, the pilot

Redesign in Fall 2012 and the Redesign in Spring 2013 would be 53.4%, 27.2% and 26.3%,

respectively.

This predicted probabilities are very low because all other grades except A,B (with +/-)

and C+, C,CR are treated as a fail. Since there were over 50% Incompletes in the Redesign,

if treating the Incompletes as a a pass, the pass rate will be extremely high. Either way, the

prediction from the multilevel logistic model will be far from the truth and is not reasonable.

Moreover, it gives only a probability of passing and ignore the difference among the passing

letter grades, and the difference among the failing letter grades. This brings the necessity to

apply our new models to analyze the data to make a better use of the grading information,

and these models consequently provide a more precise prediction of the student success.
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5.2.5 Analysis with the Bayesian Partially Ordered Multinomial

Probit and Logit Models

As we have seen in the last section, the multilevel logistic model in Section 5.2.4 distorts the

more than 50% of Incomplete and Audit grades in the Redesign, and utilizes only part of the

information conveyed by the letter grades. It is not an accurate measurement to treat the

Incomplete grades as either fail or pass, since these students still have a chance to complete

the course. Forcing the response variable to be binary throws away the original grading

information we have. To overcome the shortcomings of traditional multilevel modeling and

to use all the information in the data, we apply our Bayesian partially ordered probit and

logit models described in Chapter 4 to compare student learning performance between the

Redesign in Spring 2013 and the pilot Redesign in Fall 2012, as well as the Redesign in

Spring 2013 versus the Traditional lecture sections in Fall 2012.

For the sake of comparison, we include all variables and interaction terms from the mul-

tilevel logistic model in Section 5.2.4. In Chapter 4, we compared the student performance

between Traditional lecture sections and the pilot Redesign by comparing the students per-

formance taught by all the instructors, because there was one instructor who taught only

the Redesign, and other instructors only taught the Traditional lecture sections. Now we

lump all instructors who taught Traditional lecture sections in Fall 2012 together and all

instructors teaching the Redesign in Spring 2013 together. This is because we mainly care

about the comparison between Traditional lecture sections and the Redesign.

We ran the algorithm for 100,000 iterations, kept every 10th observation (thinning) to

save space and burned out the first 1/4 observations to reduce the dependency of the sample

on the initial values. Figure 5.3 displays the trace plots for several parameters in the model

on the combined Fall and Spring data. The plots suggest that there is no evidence of serious

departure from the stationary. We omitted the remaining trace plots for brevity.
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Figure 5.3: Trace plots for convergence diagnostics. The first three plots are the posterior
draws for β1, β2 and β3, respectively. The last two plots are the posterior draws for τ3 and
σε.
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Estimated posterior means for the coefficients of Bayesian partially ordered pro-

bit and logit models

Table 5.16 lists the parameter estimates for each element of β. The estimated coefficients

for the probit and the logit model have the same sign, and are close in magnitude, so the

interpretation of them are similar. We focus on the probit model for the rest of this section.

The estimated coefficients for SAT/ACT and Semester GPA are positive and big, which

mean that students who did well in SAT and ACT math, or have a higher GPA in the

semester, tend to do better in Intermediate Algebra. Specifically, the estimated coefficient

of SAT/ACT means that if the standardized SAT/ACT (ranges from −4 to 4) increases

one point, the student’s course score (in a range of 0 to 100) will increase on average 7.197

points while controlling other variables. If Semester GPA (in a range of 0 to 4) increases

one point, the course score will tend to increase 4.327 points, while holding other variables

constant. Course load has a negative coefficient, indicating that students who took more

courses tended to do worse in Intermediate Algebra. Fixing the values of other variables, if a

student takes one more credit hour, his or her average course score in Intermediate Algebra

will likely decrease by 0.118 points, so if a student takes one more course of 3 credit hours,

his or her score in Intermediate Algebra will decrease for 0.354 points.

The coefficient for HS grad. years (high school graduation years) is negative, meaning

that students who wait a longer time to take Intermediate Algebra after they graduated from

high school tend to do worse. Marginally, if a student’s time of high school graduation by

the time of taking Intermediate Algebra is one year longer, his or her average Intermediate

Algebra course score will go down for 0.326 points.

Gender is set to 0 for male and 1 for female, so the positive coefficient for gender means

that female students did better than male students, on average, the score of female students

is 1.53 points higher than male students. Hispanic has a small positive coefficient, so it has

a positive effect on Intermediate Algebra course score, suggests that Hispanic students might
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do a little better than students in the reference group. However, Hispanic has an interaction

with HS grad. years and SAT/ACT with an estimate -0.106, which increases the negative

effect of HS grad. years and decrease the positive effect of SAT/ACT score on Intermediate

Algebra success for Hispanic students. Thus, we cannot say if Hispanic students did better

than other race/ethnicity groups overall. The negative coefficient of native American tells

that that native American students did a little bit worse than other race/ethnicity groups,

and they had on average 0.532 points lower than other race/ethnicity groups on average with

the same values of other variables.

The negative coefficients (-0.106 for the probit model, -0.144 for the logit model) of the

interaction term SAT/ACT * HS grad. years means that the longer a student graduated

from high school (or earned their GED certificate), the less the effect of the SAT/ACT score

is on students’ Intermediate Algebra grade. This is reasonable, since most students take

their SAT/ACT in the junior or senior year of high school, the longer the HS grad. years is,

students tend to forget more of the math knowledge they learned in high school, which also

was measured by the SAT/ACT test, so the effect of SAT/ACT on students’ Intermediate

Algebra success is decreased. Similarly, the higher the SAT/ACT score is, the less the effect

of HS grad. years on Intermediate Algebra score is. This is because the better students did

in the SAT/ACT tests, the less they tend to forget after the same amount of HS grad. years,

the effect of HS grad. years on students’ Intermediate Algebra score tend to decrease with

SAT/ACT getting higher.

HS grad. years * Hispanic have a coefficient -1.025 ( or -0.969 for the logit model), which

means that the coefficient for HS grad. years we just saw (-0.326) is for the race/ethnicity

groups other than Hispanics, and for Hispanic students, it should be -0.326 -1.025 = -1.351

for the probit model, and -0.319-0.969= -1.288 for the logit model. In other words, for

Hispanic students, the effect of HS grad. years on Intermediate Algebra grade is worse

(negative and at a bigger magnitude). For the same value of HS grad. years, Hispanic

students’ grades tend to be lower. The coefficients of SAT/ACT * Hispanic (-1.868 or
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-2.075) mean that the effect of SAT/ACT for Hispanic students on Intermediate Algebra

course score should be lower, and the coefficients should be: 7.197-1.868 = 5.329 for the

probit model, this indicates that for the students with the same SAT/ACT score, Hispanic

students tend to do a little worse than students of other race/ethnicity groups on average.

Again, these results are consistent with education literature.

Probit logit
SAT/ACT 7.197 7.654
Semester GPA 4.327 4.319
Course load −0.118 −0.115
HS grad. years −0.326 −0.319
Gender 1.530 1.648
Hispanic 0.226 0.205
Native American -0.532 −0.470
SAT/ACT * HS grad. years -0.106 −0.144
HS grad. years × Hispanic -1.025 −0.969
SAT/ACT × Hispanic -1.868 −2.075

Table 5.16: the column under “Probit” gives the posterior mean of the elements of β (the
estimated coefficients for each predictor variable and the interaction terms) obtained with the
Bayesian partially ordered probit model, and the column under “Logit” lists those obtained
by the Bayesian partially ordered logit model.

Figure 5.4 displays the boxplots of all the parameters estimated from the sample for

each element of β, the rightmost three boxplots are for the interaction terms: SAT/ACT *

HS grad. years, HS grad. years * Hispanic and SAT/ACT * Hispanic.
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Figure 5.4: Marginal posterior distributions of the estimated elements of β. The solid hori-
zontal line represents the overall mean. Sem.GPA represents “Semester GPA”: a weighted
average of students’ GPA in Spring 2013 excluding the course of Intermediate Algebra, years
is brief representation of HS grad. years for saving space on the graph.
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Table 5.17 gives the estimated posterior means for the random effects τ for students

taking the course in Traditional lecture sections or the pilot Redesign in Fall 2012, as well

as in the Redesign Spring 2013. We see from Table 5.17 that the estimated intercept for

the pilot Redesign in Fall 2012 was the highest, the 2nd was the Redesign in Spring 2013,

and it was the lowest for the lecture sections in Fall 2012. The random effect serves as

an intercept for the probit and logit models, that is, the models to predict student course

score from the Fall 2012 Traditional lecture section, the Fall 2012 pilot Redesign and the

Spring 2013 Redesign have different intercepts. The difference of the posterior mean of the

random intercepts for the Redesign in Fall 2012 and Spring 2013 is only about 2 points

(73.67 and 75.54), but they are all much higher than that of Traditional lecture sections in

Fall 2012 (67.06). This difference indicates that the students’ course score in the Fall and

Spring Redesign, as well as Traditional lecture sections are different. The average quantity of

difference is: about 2-point difference between the two Redesigns, and the Spring Redesign

has 6.5 points higher than the Traditional lecture in Fall 2012 on average.

Figure 5.5 gives a boxplot of all random effects for the course section categories estimated

from the posterior draws. The estimated random intercepts for the Redesign in Fall 2012

and Spring 2013 are significantly higher than those in the Traditional lecture sections in Fall

2012, while there is an overlapping between the Redesigns in Fall 2012 and Spring 2013.

Note that there is a large variance for the Redesign in Fall 2012, which is caused by the

small sample size: we had only 216 students, while there were four times more students in

the Redesign in Spring 2013 (950 students). Thus, we conclude that the difference between

the Redesign in Fall 2012 and Spring 2013 is not significant.
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Section Probit Logit
Traditional Lecture in Fall 2012 67.057 66.805
The Pilot Redesign in Fall 2012 75.544 75.989
The Redesign in Spring 2013 73.671 73.303

Table 5.17: The estimated posterior means of the random effects under the probit model
and logit model. The column under “Section” provides the information of students taking
Intermediate Algebra in the Traditional lecture sections in Fall 2012, the pilot Redesign
in Fall 2012, or Redesign in Spring 2013. The column under “Probit” are random effects
estimated from the partially ordered probit model, and the column under “Logit” means the
random effects estimated from the partially ordered logit model.
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Figure 5.5: A boxplot of random effects (τ s). “Fall lecture” describes the the distribution
of posterior draws for the Traditional lecture sections in Fall 2012; “Fall Redesign” gives the
distribution of posterior draws for the pilot Redesign in Fall 2012, and “Spring Redesign”
displays the distribution of posterior draws for the Redesign in Spring 2013.
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Prediction with Bayesian partially ordered probit and logit models

Once the posterior parameter draws are obtained, we can use them to predict the course

score of students. The University is very diverse, but one race/ethnicity of interest is His-

panic. Hispanic students comprise 38.22% of the student body (UNM, 2013), about the same

percentage as whites in the University. About 50-60% of Intermediate Algebra students are

Hispanic. Thus, we care about how Hispanic students do in this course. For a Hispanic

male with an average SAT/ACT score (SAT Mathematics 451 or ACT Math 18), average

Semester GPA (2.863), Course load (14 credit hours excluding Intermediate Algebra) and

average HS grad. years (2.815 years), Figure 5.6 displays the posterior distribution of the

Hispanic student’s predicted scores estimated from the Bayesian partially ordered probit

model if he was taught by the Traditional lecture method in Fall 2012, the Redesign in Fall

2012, or by the Redesign in Spring 2013, respectively. Figure 5.7 describes the posterior dis-

tribution of the predicted scores by the Bayesian partially ordered logit model if the student

was taught by the lecture in the Fall 2012, the Redesign in Fall 2012, and the Redesign in

Spring 2013.
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Figure 5.6: Distribution of predicted scores by the partially ordered probit model for a
Hispanic male with average information. Left upper panel: the student took the course in
the Fall semester of 2012 by the Traditional lecture method. Right upper panel: the student
took the course in the Redesign in Fall 2012. Lower panel: the student took Intermediate
Algebra in the Redesign in Spring 2013. The red line is the passing score (73).
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Figure 5.7: Distribution of predicted scores by the partially ordered logit model for a Hispanic
male with average information. Left upper panel: the student took the course in the Fall
semester of 2012 by the Traditional lecture method. Right upper panel: the student took
the course in the Redesign in the Fall, 2012. Lower panel: the student took Intermediate
Algebra in Spring 2013. The red line is the passing score (73).
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Table 5.18 lists the mean of the predicted score and predicted probability of passing the

course for the example Hispanic student estimated from both our Bayesian partially ordered

probit and logit model. If he took Intermediate Algebra with the Traditional lecture method

in the Fall semester of 2012, his average score is 71, and his probability of passing the course

is 0.44; if he was in the Redesign in the Fall semester of 2012, his score would be around 80,

his probability of passing the course is about 0.75. His score and passing probability would

be a little lower if he took it in the Redesign in Spring 2013, about 78 by the probit model,

77 by the logit model, and the passing probability is around 0.71. On average, students’

score is about 7 points (2/3 of a letter grade) higher if they switch from Traditional lecture

sections to the Redesign. There is not a significant difference in students’ score between the

Redesign in Fall 2012 and Spring 2013 (only about 1.5 points on average).

Section
Score Probability of Pass

Probit Logit Probit Logit

Traditional lecture in Fall 2012 71.43 71.4 0.44 0.44
The pilot Redesign in Fall 2012 79.28 80.76 0.75 0.75
The Redesign in Spring 2013 77.99 77.98 0.71 0.71

Table 5.18: The predicted score and passing probability for the Hispanic male with both the
Bayesian partially ordered probit and logit models. The two columns under “Score”: Probit
and Logit provide the predicted score by the partially ordered probit model and logit model,
respectively. The two columns under “Probability of Pass” gives the predicted probabilities
by the partially ordered probit or logit model, respectively.

Overall, according to the results from the Bayesian partially ordered probit and logit

model, we conclude that students’ performance measured by the course score and the pass

rate in the lecture sections in Fall 2012 is the lowest, students’ performance in the Redesign

in Fall 2012 and the Spring 2013 is significantly higher than that of the Traditional lecture

sections. Students’ course score and pass rate in the full Redesign in Spring 2013 are a little

bit lower than that of the pilot Redesign in Fall 2012, and this difference is not significant.
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Hence, we have evidence that the Redesign is better than the Traditional lecture method in

terms of students’ learning performance.

These results obtained with the partially ordered probit/logit models are based on the

assumption that the Incomplete students in the Redesign have the same situation as those in

the Traditional lecture sections. We know that instructors rarely give an “I” in a Traditional

lecture class in the University, However, in the Redesign, the grade “I” may related to

students’ math ability, and these students may be less motivated in a self-paced environment.

Of course there might be also some students in the Redesign who did not finish the course

within the semester because some trauma happened to them in the middle of the semester.

5.3 Analysis on Students’ Continuing Success

in Higher Level Math Courses Following the Fall

Semester of 2012

Recall that our primary research questions for the evaluation component were:

“What is the impact of the Intermediate Algebra course redesign on:

1. Student success in Intermediate Algebra in the semester taken, and

2. Student success in more advanced mathematics courses (such as College Algebra,

A Survey of Mathematics, and Introduction to Statistics) taken in the subsequent

semesters?”

To answer the second question, we acquired course and grade data in the Spring semester

of 2013 for all students who registered for Intermediate Algebra in Fall 2012 after the third

week of the semester.
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There were 1115 students who enrolled in Intermediate Algebra in the Fall 2012 and

continued to take courses in the Spring at the University. But only 586 students who took

Intermediate Algebra in Fall 2012 continued to take College Algebra, A Survey of Math-

ematics, or Introduction to Statistics in Spring 2013. Recall that we had grades for 1308

students from the Fall 2012, thus, 193 of them did not take any course in the Spring 2013 at

the University after they took Intermediate Algebra in the Fall 2012. Further information

about these 193 students can be collected, for example, will some of them come back to the

University some time later? Have some of them transferred to other universities? What are

these students doing right now? We suspect part of these students might drop from the col-

lege entirely after failing Intermediate Algebra several times. Unfortunately, this frequently

happened to students who attempted Intermediate Algebra several times and failed, which

means that they cannot earn their degree at the University. They became frustrated and

dropped out of college. The negative impact of this phenomenon to the students and to the

country was discussed in Section 2.1. We merged the Spring higher level math course grade

data with the cleaned Intermediate Algebra data in the Fall 2012. This gives us the data for

the 586 students who took Intermediate Algebra in the Fall semester of 2012 and continued

to take College Algebra, A survey to Mathematics, or Introduction to Statistics, after they

finished Intermediate Algebra in Fall 2012.

According to our analysis on the Fall 2012 Intermediate Algebra grade data, 744 students

passed Intermediate Algebra in the semester. Now we know that 586 students among them

continued to take upper level math courses College Algebra, A Survey of Mathematics, and

Introduction to Statistics. The remaining 158 students will take one of these three courses

later to fulfill the requirement of their degree program.

Table 5.19 gives the distribution of students in the upper level mathematics courses in

the semester of Spring 2013. There were 370 (63.14%) students taking College Algebra, 133

(22.70%) students took Introduction to Statistics, and 83 (14.16%) students took A Survey

of Mathematics in the Spring 2013.
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Courses Frequency Percent Cumulative Cumulative
Frequency Percent

College Algebra 370 63.14 370 63.14
Introduction to Statistics 133 22.70 503 85.84
Survey of Mathematics 83 14.16 586 100.00

Table 5.19: Distribution of students who took Intermediate Algebra in the Fall 2012 and
upper level math courses during the Spring semester of 2013.

Comparisons of the pass rate of students from Traditional lecture sections and

Redesign in higher level math courses

A comparison of overall pass rate For all the 586 students who continued to take

higher level math courses in the Spring semester of 2013, Table 5.20 gives the pass rate of

students in the three higher level courses in the Spring who took Intermediate Algebra in

the Traditional lecture sections is 68.48%, and the pass rate in the three higher level math

courses in the Spring for Intermediate Algebra Redesign students is 69.83%, about the same.

The p-value 0.988 from the Chi-square test suggests that there is no difference in the pass

rate in the upper level math courses between students who took Intermediate Algebra from

the Traditional lecture sections and those who were from the Redesign in Fall 2012.

Comparisons of the pass rate in each class We divide the data into three subsets:

students in College Algebra, A Survey of Mathematics and Introduction to Statistics to

investigate the pass rate in each course between students from the Intermediate Algebra

Traditional lecture sections and those from the Redesign.

A comparison of the pass rate in College Algebra Table 5.21 describes that the

pass rate in College Algebra between students coming from the Intermediate Algebra Tra-

ditional lecture sections and the Redesign in Fall 2012 are 64.18% and 65.71%, respectively.

The p-value from the Chi-square test is 0.8568, which suggests that the pass rate in College
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Traditional lecture Redesign Total
Passed students 365 37 402
Passed percentage 62.29 6.31 68.60%

among all students
Pass rate 68.48 69.81

among each group
Failed students 168 16 184
Failed percentage 28.67 2.73 31.40%
among all students
Failing rate 31.52 30.19

in each group
Total number of students 533 53 586

in each group
Percentage of students 90.96 9.04 100.00

in each group over all

Table 5.20: Overall pass rate of the 586 students in continuing upper level math courses
between those from Intermediate Algebra Traditional lecture sections and Redesign. The
“Passed percentage among all students” means the percentage of passed students from each
Intermediate Algebra teaching method over all 586 students enrolled continued to take higher
level math courses in Spring 2013. Similarly, the “Failed percentage among all students”
means the percentage of failed students from each Intermediate Algebra teaching method
over all 586 students enrolled continued to take upper level math courses in Spring 2013.
The “Pass (Failing) rate” represents the percentage of passed (failed) students in the higher
level courses from each Intermediate Algebra teaching method over all student in each group
(taught by the Traditional lecture or the Redesign).

Algebra between students taking Intermediate Algebra from Traditional lecture sections and

the Redesign is not significantly different.

A comparison of the pass rate in Introduction to Statistics Table 5.22 displays

students passing information in Introduction to Statistics between those who took Interme-

diate Algebra in the Traditional lecture sections and Redesign. Among the 133 students who

took Intermediate Algebra in Fall 2012, then Introduction to Statistics in Spring 2013, 97 of

them passed the course. 72.80% of the students were from the Intermediate Algebra lecture
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College Algebra Traditional lecture Redesign Total
Passed students 215 23 238
Passed percentage 58.11 6.22 64.32%

among all students
Pass rate 64.18 65.71

among each group
Failed students 120 12 132
Failed percentage 32.43 3.24 35.68%

among all students
Failing rate 35.82 34.29

in each group
Total number of students 335 35 370

in each group
Percentage of students 90.54 9.46 100%

in each group over all

Table 5.21: Pass rates in College Algebra between students taking Intermediate Algebra
from Traditional lecture sections and the Redesign.

sections, and 75% of them from the Redesign. The Chi-Square test gives the p-value 0.95,

suggesting that there is no difference in Introduction to Statistics pass rate between students

who took Intermediate Algebra by the Traditional lecture method and the Redesign in Fall

2012. There were only 8 students from the Redesign in Fall 2012 continued take Introduction

to Statistics in Spring 2013, and 2 of them failed the course. One thing of concern is that

the sample size of students in Introduction to Statistics from the Redesign is too small.

A comparison of the pass rate in A Survey of Mathematics Table 5.23 displays

students’ passing information in A Survey of Mathematics between those who took Inter-

mediate Algebra in the Traditional lecture sections and those in the Redesign. Among the

83 students who took Intermediate Algebra in Fall 2012 and continued to take A Survey

of Mathematics in the following Spring, 73 of them took Intermediate Algebra from the

Traditional lecture sections and there were only 10 students taking Intermediate Algebra

in the Redesign. 80.82% of the students from the Intermediate Algebra Traditional lecture
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Introduction to Statistics Traditional lecture Redesign Total
Passed students 91 6 97
Passed percentage 68.42 4.51 72.93%

among all students
Pass rate 72.80 75.00

among each group
Failed students 34 2 36
Failed percentage 25.56 1.50 27.07%

among all students
Failing rate 27.20 25.00

among each group
Total number of students 125 8 133

in each group
Percentage of students 93.98 6.02 100%

in each group over all

Table 5.22: Pass rates in Introduction to Statistics between students coming from Interme-
diate Algebra Traditional lecture sections and the Redesign.

sections passed A Survey of Mathematics and 80% of them were from the Redesign in Fall

2012 passed. The p-value of the Chi-Squire test is 0.95, suggesting that there is no differ-

ence in Survey of Mathematics pass rate between students who took Intermediate Algebra

from Traditional lecture sections and those from the Redesign in the previous Fall semester.

Again, we are concerned that the students in Survey of Mathematics and from the Redesign

is too small.
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A Survey of Mathematics Traditional lecture Redesign Total
Passed students 59 8 67
Passed percentage 71.08 9.64 80.72%

among all students
Pass rate 80.82 80.00

among each group
Failed students 14 2 16
Failed percentage 16.87 2.41 19.28%

among all students
Failing rate 19.18 20.00

in each group
Total number of students 73 10 83

in each group
Percentage of students 87.95 12.05 100%

in each group over all

Table 5.23: Pass rates in A Survey of Mathematics between students who took Intermediate
Algebra in Traditional lecture sections and Redesign.
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Discussion and Future Work

6.1 Discussion

Student success is often measured using letter grades, which are sometimes totally ordered

but often have only a partial ordering. The Bayesian partially ordered probit and logit

models presented in this dissertation are a way of retaining all of this ordering information.

These models are generalizations of the standard models in the sense that binary or ordered

response variables, which are required for the standard models, are special cases of partially

ordered response variables. We used a Bayesian approach because prior knowledge about

the parameters can be incorporated into the model and the Bayesian computation tools

can be used to fit the models. Additionally, the model we present is understandable to

non-statisticians. The motivation for these models was evaluating the impact of a course

redesign. In this example, we observe students’ letter grades and many students received

Incomplete, the analyses from the standard models are strongly biased because those models

can not use well the unordered information. Applying our partially ordered probit and logit

models to the data, we could use all the grading information to predict students’ course

score, and compare students’ success in the Traditional lecture sections and the Redesign.
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Students’ background and instructor information were also utilized through covariates.

With the Fall 2012 data, the results from our models show that the students from the

Redesign scored higher and consequently have a better probability to pass the course than

those from the Traditional lecture sections on average, and the application on the combined

data of Fall 2012 and Spring 2013 also suggests that the Redesign in the two semesters both

the Fall and the Spring was superior to the Traditional lecture teaching method, basing

on the predicted students’ performance with our models. The different random effects, the

predicted course score and passing probability of students by the models quantify part of the

benefits students gain by switching from the Traditional lecture sections to the Redesign.

Thus, we have evidence that the Redesign is effective in helping students learn Intermediate

Algebra.

The partially ordered probit model outperforms totally ordered and binary probit models

in terms of cross-validated mean squared error and area under the ROC curve. This is not

surprising since it includes more information (the partially ordered subjects) in the same

general model structure. In a sense, the model automatically performs an imputation on

the partially ordered subjects. The gain we see is thus related to the gain in modeling the

“missing” data.

There are, however, limitations to the study and clear areas of needed future work. In

our example, the model has the potential to help fill in the missing data represented by the

large number of Incompletes; however, the method we used assumes that Incompletes were

randomly assigned to students, when this may not be the case. While it is true that if a

student gets an Incomplete in a Traditional lecture section where such grades are reserved for

extreme situations like an illness or family emergency, it may not be the case in a self-paced

course that builds such grades into its structure. In other words, it is reasonable to assume

that the Incomplete grades are randomly assigned in a Traditional lecture section, but they

may reflect something about a student’s study skills, for example, in the Redesigned course.

Settling this issue will require examining the actual score that students eventually receive in
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the course. This data was not available at the time of the study.

We developed this model specifically for the Redesigned course evaluation discussed in

Section 3.1.1, but it is easily extended to other categorical data problems with a partially

ordered response variable. For example, criminal sentences are partially ordered: one year

in prison is clearly less than two years. But one year of prison with 3 years probation is

not necessarily less than 16 months in jail. A data set containing sentences, crimes, and

demographic characteristics of the criminals could be analyzed with this model. Another

example is compensation and benefits in job offers: a job with a yearly payment $100,000 is

clearly better than a job paid with $80,000 per year, but if the $80, 000 provides two months

paid vacation and good benefit while the $100,000 one does not, we can not say which one is

better; what if another job paying $70, 000 with three months paid vacation, flexible schedule

and even better benefits? There is no clear order that one job is better than another. If

there is a dataset containing partially ordered job categories according to salary, benefits,

paid vacation, stability of the job, etc, with people’s demographic information, we could

apply the partially ordered probit and logit models to predict people’s job preference. This

could help the employers set offer strategies to attract the best employees they want. Other

partially ordered examples such as different situations of alcoholism: nondrinker, former

drinker, current social drinker, and current heavy drinker; different psychiatric conditions:

no anxiety, mild anxiety, anxiety with depression, severe depression and severe anxiety. The

models also work for censored data in a public health, medical or biology field, where the

event of interest of some individuals occur before they enter the study, or is only known

to happen in an interval, and sometimes some individuals drop out of the study because of

unexpected reasons. Our models can also be applied to this censored data and the missing

response data are imputed automatically by the model.

In education field, the boundaries for the partially ordered response variable: students’

letter grades are usually known, so the variance of the error terms σ2
ε does not have to be

fixed to make parameters identifiable. When the model is applied to data in other fields,
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the limits of the latent variable for each observed response categories (we called it γ) may

be viewed as unknown. The work of McCulloch et al. (2000) on defining a prior for σ2
ε ( or

covariance matrix) to get fully identified parameters can be used for the partially ordered

probit model.

6.2 Future Work

After this dissertation, there are several interesting problems we would like to tackle.

Modifications to the model in Equation 4.1 can easily be made. Say we observe student

performance in the higher level math courses for which Intermediate Algebra is a prerequisite,

autoregressive error terms could be utilized in this case to model students’ performance in

all future courses.

In Section 4.9, we fixed the value of parameters β, τ , σ2
ε , and simulated X and Z, then

used the model expressed in Equation 4.1 to simulate the latent variable Si, and map the the

latent variable Si with a partially ordered response variable Yi. We repeated this process for

the sample size n = 500, 1000, 3000, 5000 and 10, 000. Figure 4.4 shows that with the sample

size increasing, the posterior estimates concentrate more on the true value, and vary less.

We used 12 instructors, and each instructor teaches about 40 students on average, hence

the estimates of τ are based on these about 40 students taught by each instructor when the

sample size n=500. When the sample size increases to 1000, 3000, 50000 and 10,000, while

the number of instructors stays the same, there would be about 80, 240, 400, 800 students

taught by each instructor. The estimates of τ will based on many more observations, of

course, are more accurate and closer to the true value. Considering the situation that when

the sample size increases, the length of τ s also increases while fixing the class size, we

suspect that the estimate of τ s will not get closer to the true value. This is worth further

investigation.
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The Gibbs sampler, in this case, requires us to sample from the truncated normal dis-

tribution. This sampling can be slow if many dependent observations are needed. We will

produce faster algorithms for this sampling. We would also like to adopt an Exact Hamilto-

nian Monte Carlo algorithm for Truncated Multivariate Gaussians (Pakman and Paninski,

2013) to make the fitting faster.

We analyzed students’ continuing success in higher level mathematics course in the Spring

semester of 2013 after they passed the Intermediate Algebra course in the previous semester,

Fall 2012, in Section 5.3, and this analysis is only based on the 586 students who continued to

take higher level math courses in Spring 2013. There were only 216 students in the Redesign

in Fall 2012, of which 66 students passed at the end of the semester, and out of those 53 passed

students enrolled in the higher level math courses in Spring 2013. Most of students enrolled

in Intermediate Algebra in Fall 2012 did not passed the course at the end of the semester

and would probably still continue to work on it. There were also some students who passed

Intermediate Algebra but did not take any math courses in the following semester. Thus, the

current analysis is limited because of the small number of students from the Redesign in Fall

2012, which was the available data at the time of this analysis. For a complete evaluation,

we will require data about students enrolled in the Intermediate Algebra course for a longer

period of time (say, 5 years), and all the courses they take in each semester and the letter

grades for the course. Then we can fit the data to a dynamic linear model to do a time series

analysis.

54.63% of students received Incompletes in the Redesign in Fall 2012, and this percent-

age is 56.21% in Spring 2013. How long did it take for students to pass the course? Upon

following up and collecting data about the Incomplete students, we could build a survival

function and a hazard function to predict the average time students take to finish Inter-

mediate Algebra, and investigate how the predictor variables such as students’ SAT/ACT,

semester GPA, course load, high school graduation years, gender, race/ethnicity influence

the time that students needed to pass the course.
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Since there are so many Incompletes, students use the computers and facilities in the

Redesigned course to keep working on the course for over one semester, these students take

spots in the course, and become a burden to the department. We need to try our best to help

and stimulate these students to finish sooner. The department chair suggested a monetary

stimulus: students have to deposit a certain amount of money when they register for this

course, and they can get the money back if they pass the course at the end of the semester, if

not, the deposit money will be forfeited. This might be a good idea to push students to work

hard on this course. How much money should we ask students to deposit? If the amount

is too small, say $5, then students will not care about it. If we set the amount of money

too big, suppose $2000, then many students can not afford it, they would turn to other

universities like the local community college to take Intermediate Algebra. We could design

an experiment to find the optimum amount of money that is most effective in motivating

students pass the course soon.

The context of this problem is to make a decision: Traditional or Redesign? Given the

prior research about math course redesign from other institutions, the benefit to student

achievement appears to be worth the cost of changing instructional methods from the Tra-

ditional lecture to the Redesign. Conditional on the data from the University and the model

fit, do we come to the same decision? Simply said, what minimum improvement in student

achievement is worth switching from Traditional to Redesign? We can develop a loss func-

tion to encapsulate the costs of Traditional and the cost of Redesign to help decide which is

preferred given our evidence.

We wish to examine the impact of the prior distribution. Specifically, we wish to define

“good” priors for repeated use over different data. We plan to perform a sensitivity analysis

to understand the impact of the priors on the posterior distributions, including, in a simula-

tion study, whether “good” priors are substantially better than “non-informative” priors and

whether “unreasonable” priors greatly distort inference, and under which situations (such

as for various sample sizes). The non-informative priors such as Jefferey or reference priors
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have not been well-defined for multilevel (random effect) models yet in the literature. We

would like to expand the partially ordered probit and logit models by changing the prior

distribution, for example, to use a non-parametric or semi-parametric prior, to make the

random effects τ follow a distribution that is a realization of a Dirichlet process. Further-

more, a strategy for including prior information should be developed to help practitioners

convert their “knowledge” into hyperparameters; for information on this see (Bedrick et al.,

1996) and others.

In Section 4.2.3 and 5.2.3, we did multicollinearity diagnostics for the predictor variables

of the models. We would like to work on developing diagnostics for detecting multicollinearity

in Bayesian models for the discrete data. Current diagnostics are based on a linear model

with respect to the covariates.

For the purpose of using the developed model at the University in the future, well-

documented code and a “how-to” guide will be included. At a minimum this “package” will

include a function to anonymize records drawn from the University (with a description of

how the records were drawn), a function to read the anonymized data, and functions to fit

the data (with error handling), provide descriptive summaries, descriptive diagnostics, and

basic well-labeled plots. The “how-to” guide will provide how to use the functions, with a

worked out example, and enough detail that a masters-level graduate student should be able

to implement the model. Some detail will be provided for how to address common problems

(non-convergence, etc.).

SPSS is a point-and-click spreadsheet based software which anyone with knowledge of

Excel can use. To make our models easier to use by other, we will work on incorporating our

new statistical models into SPSS for the Department of Mathematics and Statistics at the

University to use for further evaluating of the performance of the Redesigned course. The

advantage of coding the model into SPSS is that someone with only a little bit of statistical

knowledge can apply the models to future Intermediate Algebra (or any other course) grade

data. Currently, the model is fit in R and it would take an R novice a fair amount of time
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to learn how to run the code properly. We envision that the Statistical Consulting Clinic

at the University will be able to use this model to evaluate future course redesigns as well

as monitoring student performance. Of course, the models with SPSS can also be easily

used by other universities or colleges to analyze their course redesign or any kinds of course

reform, as well as apply on any partially ordered response data like the jail time and career

preference examples we mentioned earlier.
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