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CHARACTERIZATION OF TRAFFIC LOAD AND 

LOCAL CALIBRATION OF THE MEPDG FOR NEW MEXICO 

 

by José Iván Rodríguez Ruiz 

 

B.S., Civil Engineering, Universidad de Granada, 2009 

M.S., Civil Engineering, University of New Mexico, 2011 

 

ABSTRACT 

 
In the Mechanistic-Empirical Pavement Design Guide (MEPDG), traffic loading is more 

complex and precise than in the old AASHTO 1993 Guide. Traffic load in MEPDG is 

characterized by a larger number of traffic inputs such as Annual Average Daily Truck 

Traffic (AADTT), traffic growth, traffic directional distribution, lane distribution, vehicle 

class distribution, hourly distribution, monthly distribution, axle load spectra, number of 

axles per truck class, traffic wander, speed, and tire pressure. Many of these inputs can 

only be obtained from Weigh-in-Motion (WIM) data. There are about 15 WIM stations in 

New Mexico. Data from these WIM sites are evaluated for their use for local calibration 

of the MEPDG. An algorithm is developed in Visual Basic Application (VBA) to check 

the quality of WIM data. In essence, frequency distributions of the gross vehicle weight 

and the front steering axle weight are calculated and compared to the criteria 

recommended by the Traffic Monitoring Guide (TMG). It is observed that only three 

WIM sites have consistent and reliable weight data. The reasons for the inconsistency in 

collected WIM data are found to be lack of calibration and bad condition of the pavement 
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surface near WIM sites. Also, axle load spectra are developed for all WIM data using an 

algorithm implemented in VBA. The influence of axle load spectra on pavement 

performance is predicted using MEPDG. For the sections analyzed, it is shown that the 

effect of axle load spectra is very high on fatigue cracking, moderate on permanent 

deformation, and non-existent on thermal cracking and roughness.  

In this study, local data related to traffic, climate, pavement structure, materials, and 

distress are collected from different NMDOT sources and stored in MEPDG Oracle 

database. A total of 29 New Mexico pavement sections are found to have all MEPDG 

inputs, however data lack from quantitative distress values required for MEPDG 

calibration. This is because New Mexico has collected qualitative distress data rather than 

actual measurements of rut depth and crack length over the past years. Instead of using 

these 29 sections, only 11 sections from the Long Term Pavement Performance (LTPP) 

database located in New Mexico are used for local calibration. The permanent 

deformation, alligator cracking, and longitudinal cracking models are calibrated. In 

calibration methodology, the target is fixed to reduce the residual sum of squared errors, 

defined by the difference between predicted and measured distress, so that any bias is 

eliminated and precision is increased. The optimized calibration coefficients are: βr1 = 

1.0, βr2 = 0.9, βr3 = 1.2, βGB = 0.8, βSG = 0.8 for the rutting model; C1 = 0.73, C2 = 0.09, 

C3 = 7200 for alligator cracking; and C1 = 5.5, C2 = 2.56, C3 = 1000 for longitudinal 

cracking. It is concluded that the newly developed calibration coefficients reduce the 

error in the MEPDG prediction and are beneficial for designing pavements using 

MEPDG in New Mexico.  
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Chapter 1  

INTRODUCTION 

 

1.1 Problem Statement  

The new Mechanistic-Empirical Pavement Design Guide (MEPDG) represents a recent 

breakthrough in the analysis and design of pavement structures. Unlike the previous 1993 

AASHTO Guide for Pavement Design that was purely empirical, the MEPDG uses 

mechanistic principles for determining the stresses and strains in the pavement structure 

(asphalt concrete, granular bases, and subgrade). Then, empirically-based models are 

used in MEPDG for predicting distresses such as permanent deformation, cracking, or 

roughness and performance during the pavement design life. The MEPDG does not only 

require a much larger number of inputs, but also these are more complex in general. 

There are three main groups of inputs: traffic loading, environmental conditions, and 

material properties.  

Traffic loading is one of the most important inputs of MEPDG. The MEPDG uses a 

rather complex approach to characterize the traffic loading. Traffic loading constitutes the 

magnitude and frequency of the load applied on the pavement during its design life. In 

addition, MEPDG requires a series of frequency distributions such as directional 

distribution, lane distribution, truck class distribution, monthly distribution, hourly 

distribution, axle load spectra, and traffic growth. The development of these inputs is 

very important to perform level one design, and thus, for the implementation of MEPDG 

in New Mexico. 
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Axle load spectra comprise the weight frequency distributions of single, tandem, tridem, 

and quad axles for every truck class. There are 10 truck classes (4 to 13) according to the 

FHWA classification scheme. This input can only be obtained by processing the weight 

data collected at Weigh-In-Motion (WIM) sites. There are different technologies used in 

WIM stations to collect continuous weight data. These include the use of piezoelectric 

sensors, piezoquartz sensors, kistler sensors, bending plates or load cells. Each 

technology has a particular accuracy, or random error in the measurement, plus a 

systematic bias due to the lack of calibration that drifts over time. Therefore, it is critical 

to provide a procedure for examining the quality of WIM data and ensure the 

development of MEPDG traffic inputs from only reliable WIM data. 

The traffic inputs obtained from reliable WIM data are needed in the local calibration of 

the MEPDG for New Mexico conditions. The empirical models or transfer functions that 

relate stresses and strains to the pavement performance were calibrated globally at a 

national level. A representative sample of pavement sections from the Long Term 

Pavement Performance program (LTPP) around North America were used for national 

calibration at level 3. This suggests that predictions of MEPDG with default empirical 

models match the average distresses observed in the field around the country, but 

MEPDG may not predict accurately the field distresses observed locally (i.e. New 

Mexico) under local conditions of traffic, climate, and materials. There is a need for local 

calibration of the distress models using pavement sections within New Mexico to allow 

MEPDG to predict the distresses actually observed in the field under New Mexico 

conditions. 
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1.2 Hypotheses 

Hypothesis One: Very few software packages are available today for quality control of 

WIM data and development of traffic MEPDG inputs (TrafLoad, 2004; PrepME, 2009). 

Available software packages are not compatible with the WIM data collected by the New 

Mexico Department of Transportation (NMDOT). Considering the collection of WIM 

data for pavement design, a positive weight measurement bias produces a positively 

biased axle load spectra. During the MEPDG simulation, this results in over-prediction of 

pavement distress and pavement thickness, and thus, in unnecessary costs of construction. 

Similarly, a negative bias in axle load spectra results in under-prediction of pavement 

thickness, and thus, in unnecessary costs of rehabilitation.  

Hypothesis Two: If a procedure can be developed to check the quality of WIM data, it 

will prevent under or over-design and save costs of construction and rehabilitation. A set 

of subroutines to develop axle load spectra and other traffic inputs are needed to check 

WIM data quality and accomplish the implementation of MEPDG in New Mexico. 

Calibration of the MEPDG has to be performed under local conditions of traffic, climate, 

and materials. This means that there is a need for determining a set of calibration 

coefficients for every distress transfer function such that the residual error (difference 

between the predicted distress and the actual value observed in the field) is minimized. 

This process requires the collection of accurate input data related to traffic, climate, and 

materials, for a sufficient number of pavement sections including LTPP sections located 

in New Mexico. 
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1.3 Objectives 

Under the first hypothesis, the objectives are to: 

 Provide a procedure to examine the quality of WIM data in New Mexico. 

 Develop axle load spectra and other truck traffic distributions for implementation 

of MEPDG in New Mexico. 

 Study the influence of axle load spectra and WIM data quality on pavement 

performance. 

Under the second hypothesis, the objectives are to: 

 Gather data for all MEPDG inputs (traffic, climate, and materials) for a sufficient 

number of pavement sections throughout New Mexico. 

 Determine a set of calibration coefficients that minimize the residual errors for a 

specific distress model such as rutting and fatigue cracking models. 

 Validate the effectiveness of these calibration coefficients for a number of 

pavement sections that were not included in the local calibration process. 

1.4 Thesis Outline 

 Chapter 1 – Introduction 

 Chapter 2 – Literature Review 

 Chapter 3 – Characterization of Traffic Load for MEPDG 

 Chapter 4 – Local Calibration of the MEPDG for Flexible Pavement in New 

Mexico 

 Chapter 5 – Conclusions and Recommendations 
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Chapter 2  

LITERATURE REVIEW 

 

2.1 Traffic Loading Characterization in the MEPDG 

2.1.1 Introduction 

Traffic is one of the most important inputs required for the design of pavement structures. 

Traffic load constitutes the magnitude and frequency of the loads applied during the 

design life of a pavement. The AASHTO 1993 Guide for Pavement Design characterized 

traffic by defining the equivalent single axle load (ESAL). On the other hand, MEPDG 

uses a more complex approach, requiring a larger number of traffic inputs which are 

listed below (MEPDG Documentation, 2004): 

 Base year two-way Annual Average Daily Truck Traffic (AADTT) 

 Truck-traffic directional and lane distribution factors 

 Truck operational speed 

 Vehicle class distribution factors 

 Monthly truck-traffic distribution factors 

 Hourly truck-traffic distribution factors 

 Truck-traffic growth factors 

 Axle load distribution factors 

 Axle and wheelbase configurations 

 Tire characteristics and inflation pressure 

 Truck lateral distribution factor 
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2.1.2 Hierarchical Approach in Traffic Characterization 

The MEPDG adopts a hierarchical approach for the design inputs, defining three levels of 

traffic data input (Levels 1 through 3) on the basis of available data accuracy and 

reliability. This is because all state transportation agencies do not have the needed 

resources to collect detailed traffic data. The three levels can be defined as (MEPDG 

Documentation, 2004): 

 Level 1 – Very good understanding of traffic characteristics. It is the most 

accurate and it requires historical site-specific truck traffic volume and axle 

weight distributions (measured along or near the roadway segment to be 

designed). 

 Level 2 – Moderate understanding of traffic characteristics. It is reasonably 

accurate and based on regional and statewide truck volume and load data for 

the roadway to design.  

 Level 3 – Poor understanding of traffic characteristics. It is based on default 

values from national databases or little truck volume and weight data are 

available (e.g., an average annual daily traffic (AADT), a truck percentage, or 

no segment specific axle load distribution). Also an estimate based on local 

experience is considered Level 3. 

In this thesis, level 2 analysis is performed. 

2.1.3 Data Sources in Traffic Characterization 

In this section, the main traffic volume and load data sources used for traffic 

characterization in MEPDG are described. The input data hierarchical level depends on 
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the source of the traffic information collected. The input is Level 1 only when the data is 

site or segment specific, Level 2 when it is regional default data, and Level 3 when it is 

national default summaries (MEPDG Documentation, 2004). 

WIM Data 

For each vehicle weighed, the Weigh-in-Motion (WIM) station produces a tabulation of 

the vehicle type (FHWA class 4 through 13) and the number, spacing, and weight of 

axles. WIM data are required to determine the normalized axle load distribution or 

spectra for each axle type within each truck class. Processing and analysis of the WIM 

data to obtain the normalized axle load spectra is external to MEPDG. WIM data is 

specific to a site or roadway location. 

AVC Data 

Over a period of time, the Automatic Vehicle Classifier (AVC) produces a tabulation of 

the number and types of vehicles (FHWA class 4 through 13). AVC data are used to 

determine the normalized truck class distribution by performing a process which is 

external to MEPDG. Again, the level of AVC data depends on the specific location of the 

station (site-specific, regional/statewide, or national). AVC data cannot produce weight 

or axle load spectra. 

Vehicle Counts 

Vehicle counts data include the total number of vehicles classified in passenger vehicles 

(FHWA class 1 through 3), buses (FHWA class 4), and trucks (FHWA class 5 through 

13). Vehicle counts can be continuous (365 days a year, the most accurate type); seasonal 

(from 2 to 12 times a year for periods of time ranging from 24 hours to 2 weeks); or short 

duration (ranging from 6 hours to 7 days). Vehicle counts provide Level 1, 2 and 3 traffic 
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volume inputs depending on the specific location where data are collected (site-specific, 

regional/statewide, or national). 

Traffic Forecasting and Trip Generation Models 

Traffic forecasting and trip generation models are based on turning movement studies, 

origin and destination studies, license plate surveys, etc., and they are very useful in 

urban areas. Traffic forecasting and trip generation models calibrated with site-specific or 

regional/statewide data can provide Level 1 or 2 traffic inputs. Their application is 

beyond the scope of this study. 

2.1.4 Inputs for Traffic Characterization 

Detailed traffic characterization requires four types of traffic data (MEPDG 

Documentation, 2004): 

 Type 1 - Base year truck traffic volume 

 Type 2 - Traffic volume adjustment factors 

o Vehicle class distribution factors 

o Monthly distribution factors 

o Hourly distribution factors 

o Traffic growth factors 

 Type 3 - Axle load distribution factors 

 Type 4 - General traffic inputs 

o Traffic wander standard deviation 

o Number of axle types per truck class 

o Axle configuration 

o Wheelbase 
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o Tire dimensions and inflation pressures 

All these inputs are considered Level 1 when the value is determined through direct 

measurement on site-specific segments, Level 2 when a regional or statewide value from 

roadways with similar traffic characteristics is used (i.e. similar volume, composition of 

traffic, and loading patterns), and Level 3 if the default value provided in the software is 

adopted (MEPDG Documentation, 2004). 

2.1.4.1 Base Year Truck Traffic Volume 

The base year is defined as the year when the roadway is open to traffic for first time. 

The following base year information is required (MEPDG Documentation, 2004): 

 Two-way Annual Average Daily Truck Traffic (AADTT) 

 Number of lanes in the design direction 

 Percent of trucks in the design direction 

 Percent of trucks in the design lane 

 Truck operational speed 

Two-Way Annual Average Daily Truck Traffic 

Two-way AADTT is the average volume of truck traffic (classes 4 to 13) passing a road 

segment in both directions during 24 hours. It is obtained from traffic counts during a 

time period (between 1 day and 1 year) by using WIM, AVC, vehicle counts, or traffic 

forecasting and trip generation models. It is recommended to use as the base year 

AADTT the average of the three most recent years with adequate data. 

Number of Lanes in the Design Direction 

It represents the total number of lanes in one direction and is a design specification. 
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Percent of Trucks in the Design Direction 

The directional distribution factor (DDF) is defined as the percentage of trucks in the 

design direction and quantifies any difference in the volume of trucks in both directions. 

It is commonly assumed to be 50 percent but this is not always the case, for instance, 

when the route used for transporting goods to and from areas is different. According to 

the Long Term Pavement Performance (LTPP) database, usually the mean directional 

distribution factor for total truck traffic has a value of 0.525. It is suggested to use the 

truck DDF for the most common truck type (class 9) if detailed site-specific or 

regional/statewide truck traffic data are not available. 

Percent of Trucks in the Design Lane 

The truck lane distribution factor (LDF) is defined as the percentage of trucks in the 

design lane and quantifies the distribution of truck traffic between the lanes in one 

direction. For one lane in one direction, this factor is 1.0. In accordance to the LTPP 

database, the mean lane distribution factor for all trucks is 0.79 for a four lane roadway 

and 0.45 for a six lane roadway. 

Vehicle Operational Speed 

The vehicle operational speed is the average travel speed of trucks and depends on many 

factors, such as the roadway facility type (Interstate or otherwise), terrain, percentage of 

trucks, etc. The default operational speed value in MEPDG is 60 mph. 

2.1.4.2 Truck Traffic Volume Adjustment Factors 

Detailed traffic characterization requires four types of truck traffic volume adjustment 

factors (MEPDG Documentation, 2004): 

 Vehicle class distribution factors 
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 Monthly distribution factors 

 Hourly distribution factors 

 Traffic growth factors 

Vehicle Class Distribution Factors 

The normalized vehicle class distribution represents the percentage of each truck class 

(classes 4 through 13) within the AADTT for the base year. Summing the percent of 

AADTT for all truck classes should equal 100. The definitions of the standard vehicle 

classes that are commonly used in the collection of traffic data are included in Table 2.1 

(Traffic Monitoring Guide, 2001). 

The formula used to compute the vehicle class distribution factors for each vehicle class 

is following: 

𝑉𝐶𝐷𝐹𝑖 = 𝐴𝐴𝐷𝑇𝑇 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑇𝑜𝑡𝑎𝑙 𝐴𝐴𝐷𝑇𝑇

× 100   Eq. 2.1 

where i represents each FHWA vehicle class from 4 to 13. 

The data required for vehicle class distributions are obtained from WIM, AVC, and 

vehicle counts. The most usual vehicle classification counting programs are of short 

duration. Also, MEPDG contains default vehicle class distribution factors (Level 3) based 

on the Roadway Functional Classification and the combination of the Truck Traffic 

Classification (TTC) groups that best describe the expected traffic stream (MEPDG 

Documentation, 2004).  

Monthly Distribution Factors 

Truck traffic monthly distribution factors (MDF) represent the percentage of the annual 

truck traffic for a given truck class that occurs in a specific month. They depend on 
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factors such as land use and roadway location. MEPDG assumes that the monthly 

distribution of truck traffic is constant during the pavement design life. 

The monthly distribution factor for a specific month can be calculated as the monthly 

truck traffic for the given class divided by the total truck traffic for that truck class for the 

entire year. The following equation can be used to compute monthly distribution factors: 

𝑀𝐷𝐹𝑖𝑗 = 𝑇𝑟𝑢𝑐𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑑𝑢𝑟𝑖𝑛𝑔 𝑚𝑜𝑛𝑡ℎ 𝑗
𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑟𝑢𝑐𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖

× 12  Eq. 2.2 

where i represents the vehicle class from 4 to 13 and j the month of the year from 1 

(January) to 12 (December). 

The sum of the monthly distribution factors of all months must equal 12. Also, MEPDG 

includes default monthly distribution factors which is a Level 3 input and is based on the 

LTPP database. 

Hourly Distribution Factors 

The hourly distribution factors (HDF) represent the percentage of the AADTT within 

each hour of the day. The sum of the percentage of average daily truck traffic for each 

hour within the whole day must equal 100%. Usually, hourly distribution factors are 

computed by using truck traffic data obtained from continuous 24-hours duration 

counting programs. 

The following formula is applied to calculate the hourly distribution factors: 

𝐻𝐷𝐹𝑖 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑟𝑢𝑐𝑘 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑑𝑢𝑟𝑖𝑛𝑔 ℎ𝑜𝑢𝑟 𝑖
𝑇𝑜𝑡𝑎𝑙 𝐴𝐴𝐷𝑇𝑇

× 100  Eq. 2.3 

where i represents each hour of the day from 0 (00:00) to 23 (23:00). 

The MEPDG includes default truck hourly distribution factors (Level 3) that are based on 

the LTPP database. 
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Traffic Growth Factors 

Traffic growth factors represent the percentage of the previous year AADTT that the 

current year average daily truck traffic is expected to increase. The best way to estimate 

the traffic growth factors at a particular site is by collecting continuous traffic count data. 

The data should be reliable and the differences from year to year should be due to 

growth. Also traffic growth factors can be obtained from short duration count data but are 

not as accurate. 

In the computation of growth factors, it is recommended to use data from the same 

location collected during several years. Thus, error due to the inaccuracy of the AADTT 

estimate tends to self-correct.  

The three different traffic growth functions used in MEPDG to forecast the growth or 

decay of truck traffic over time are described as follows (MEPDG Documentation, 2004): 

 No Growth Model: 

𝐴𝐴𝐷𝑇𝑇𝑋 = 1.0 × 𝐴𝐴𝐷𝑇𝑇𝐵𝑌    Eq. 2.4 

 Linear Growth Model: 

𝐴𝐴𝐷𝑇𝑇𝑋 = 𝐺𝑅 × 𝐴𝐺𝐸 + 𝐴𝐴𝐷𝑇𝑇𝐵𝑌         Eq. 2.5 

 Compound Growth Model: 

𝐴𝐴𝐷𝑇𝑇𝑋 = 𝐴𝐷𝑇𝑇𝐵𝑌 × 𝐺𝑅𝐴𝐺𝐸           Eq. 2.6 

where AADTTX is the annual average daily truck traffic at age X, AADTTBY is the base 

year annual average daily truck traffic, AGE is the number of years of forecasting, and 

GR is the traffic growth rate. The Design Guide allows users to choose a common growth 

function for all truck classes, or different functions for the different truck classes. 
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2.1.4.3 Axle Load Distribution Factors 

The axle load distribution factors or axle load spectra represent the percentage of the total 

axle applications within each load interval for a specific axle type (single, tandem, 

tridem, and quad) and vehicle class (classes 4 through 13).  

For single axles the load intervals are defined from 3,000 to 40,000 lb at 1,000 lb 

intervals; for tandem axles from 6,000 to 80,000 lb at 2,000 lb intervals; and for tridem 

and quad axles from 12,000 to 102,000 lb at 3,000 lb intervals. 

The following equation is used to compute the axle load distribution factors: 

𝐴𝐿𝐷𝐹𝑖𝑗𝑘 = 𝑁𝑜.  𝑜𝑓 𝑎𝑥𝑙𝑒𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖,   𝑚𝑜𝑛𝑡ℎ 𝑗,   𝑎𝑛𝑑 𝑙𝑜𝑎𝑑 𝑟𝑎𝑛𝑔𝑒 𝑘
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑎𝑥𝑙𝑒𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖 𝑎𝑛𝑑 𝑚𝑜𝑛𝑡ℎ 𝑗

× 100       Eq. 2.7 

Where i represents the vehicle class (4 through 13), j the month (1 through 12) and k the 

load range (3,000 to 40,000 lb at 1,000 lb intervals for single axles). This is done for each 

axle type (single, tandem, tridem, and quad).  

MEPDG allows users to input the axle load distribution factors for each axle type (single, 

tandem, tridem, and quad) within each load interval and for all truck classes (classes 4 to 

13) and months of the year (January to December). But also, MEPDG includes default 

axle load distribution factors for each axle type and truck class that can be used as Level 

3 inputs. MEPDG assumes the axle load spectra to be constant during the pavement 

design life. 

2.1.4.4 General Traffic Inputs 

Most of these inputs, except the number of axles by axle type per truck class and the 

wheelbase, define the axle load configuration for calculating the pavement response 

(MEPDG Documentation, 2004). They are explained as follows: 
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 Mean Wheel Location: It is the distance from the outer edge of the right wheel to 

the pavement marking. 

 Traffic Wander Standard Deviation: This is the standard deviation of the lateral 

traffic wander (fluctuation of the wheel path around the mean location). 

These last two inputs are used to determine the number of axle load applications 

over a same point for predicting distress and performance. 

 Design Lane Width: It is the distance between the lane markings on either side of 

the design lane. 

 Axle Configuration: This input includes several values such as the average axle 

width, the dual tire spacing, and the axle spacing. It is needed to describe the 

configuration of the typical tire and axle loads. 

 Number of Axles by Axle Type per Truck Class: This input represents the 

average number of axles of each axle type (single, tandem, tridem, and quad) for 

each truck class (Classes 4 to 13). 

 Wheelbase: It includes the average axle spacing, and the percentage of trucks in 

classes 8 through 13 with the short, medium, and long axle spacing.  

The last two inputs are used in the traffic volume calculations. 

 Tire Dimensions and Inflation Pressures for performance prediction models. 

2.1.5 Quality Control Procedures for Weigh-in-Motion Data 

Weigh-in-motion monitoring sites provide large datasets including date and time for most 

vehicles crossing the WIM sensors, counts of each vehicle’s axles, and measurements of 

the individual axle loads and spacings. By processing this information we can get very 
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important characteristics of the traffic flow such as annual average daily traffic for each 

vehicle class, time histories of gross vehicle weights by class, frequency distributions of 

the traffic by vehicle class and axle load spectra.  

The quality of collected WIM data is affected by many factors such as the site selection, 

the pavement condition, the system calibration, the system monitoring, the sensor 

technology and the driver behavior. Therefore, data errors are captured and quality 

control techniques are essential for ensuring good quality WIM data. 

State agencies use proprietary software or develop their own software to validate WIM 

data. These programs flag any individual vehicle record that does not accomplish certain 

user defined rules and generate summary reports on flagged vehicles. 

A multitude of possible validation rules were developed under the Transportation Pooled-

Fund Study SPR-2 (182) titled “Traffic Data Editing Procedures: Traffic Data Quality 

(TDQ)” (Flinner et al, 1995). This project planned to develop standard software for 

traffic data quality control (TDQ), but it could not meet yet all the expected objectives 

because of funding constraints. 

There are two commonly used procedures to test the quality of weight data collected from 

WIM stations: the steering axle load test and the gross vehicle weight test (Traffic 

Monitoring Guide, 2001). The first method is the steering axle load test which is 

performed by checking whether or not the steering axle weights of class 9 trucks fall in 

the range of 8,000 to 12,000 lbs. The second one is the gross vehicle weight test which is 

performed by checking whether the gross vehicle weights are in the range of 28,000 to 

36,000 lbs for unloaded class 9 trucks and 72,000 to 80,000 lbs for loaded class 9 trucks. 
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2.1.6 Recent Studies 

After describing and analyzing the different traffic inputs required for accurate analysis 

and design of pavements, we proceed to review the most significant research and studies 

related to this topic that have been performed recently: 

 

Ramachandran, A. N., Taylor, K. L., Stone, J. R., and Sajjadi, S. S. (2011) performed 

research to check the quality of the WIM data collected by the North Carolina 

Department of Transportation after the data had been converted from the vendor format 

to the ASCII text format. The quality control procedures identify incomplete datasets, out 

of range values for individual vehicle classes, misclassified vehicles, and other possible 

data problems. The NCDOT requires that all data with quality problems be excluded 

from datasets used for planning and design. These quality control checks and methods are 

mainly based on the LTPP procedure and they were programmed in Access by using SQL 

queries in linked Access database tables including visual interpretation of the data to 

apply local knowledge. The program is a collection of auto-applied rules as shown in 

Tables 2.2 and 2.3 that identify invalid entries for the fields checked and that 

automatically exclude erroneous records into the exclusion tables. Weight QC is 

performed first because weight measurements are more likely to cause error than class 

data. The output of the QC database application is a table of accepted data for use in 

MEPDG and a table of excluded data for each data type. Weight plots sorted by class 4 

through 13 are also outputs of the program that provide a graphical representation of how 

trucks are loaded and allow the user to identify appropriate peaks at weight ranges that 

correspond to empty and fully loaded conditions as recommended in Table 2.4. Data 
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collected immediately after installation, calibration, and validation of new sensors were 

used to ensure high quality data to support MEPDG development. After applying quality 

control to twelve consecutive months of data for 45 WIM stations, the results confirmed 

that NCDOT equipment provided reliable WIM data to develop Level 1 and Level 2 

traffic inputs for MEPDG.  Vehicle class and weight checks generate 0.97% and 6.42% 

anomalies respectively, most of them caused due to vehicle misclassifications. Finally, 

the authors recommend incorporating the following improvements to the QC procedure: 

 Explore statistical data sampling methods to reduce the size of databases 

to a manageable extent. 

 Assign a severity level (high, medium, or low) to data which are 

potentially invalid based on QC rules. 

 Create a more robust database in Oracle or Microsoft SQL Server for long 

term WIM data storage and analysis. 

 

Tran, N. H., and Hall, K. D. (2007a) performed research for the Arkansas State Highway 

and Transportation Department (AHTD) to develop statewide truck traffic volume 

adjustment factors (class, monthly, and hourly distribution factors) and evaluate the 

significance of these inputs. The AHTD performs a traffic-monitoring program in 

accordance with the guidelines of the 2001 Traffic Monitoring Guide, so weigh-in-

motion (WIM) stations collect continuously traffic volume, vehicle classification, and 

vehicle weight data throughout the state. Therefore, the AHTD provided classification 

data in the C-record format found in the TMG, collected at 55 WIM sites. But the traffic 

records were evaluated according to the quality control procedures recommended by 
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LTPP and FHWA, and only 23 WIM sites provided suitable classification records due to 

missing and inaccurate data. Software was created to process the vehicle classification 

data and develop the corresponding statewide monthly, hourly, and class distribution 

factors for the state of Arkansas. The statewide vehicle class, monthly, and hourly 

distribution factors were developed based on classification data collected at WIM 

stations, while the default values provided in MEPDG were based on LTPP data collected 

throughout the US. Then, they did analyses in MEPDG showing that site-specific class 

distribution factors have a significant effect on predicted pavement performance, 

compared with predictions generated by default distribution values. MEPDG software 

was configured for these analyses, with an assumed 20 years design life, national 

calibration parameters for pavement performance prediction models without adjustment, 

and new flexible pavement with AADTT of 10,000. Total rutting and fatigue cracking are 

the two predicted distresses considered in this study. However, the effect of using site-

specific monthly and hourly distribution factors on predicted pavement performance was 

not significant. Therefore, they recommended using site-specific class distribution factors 

with default monthly and hourly distribution factors in MEPDG. Also, they encouraged 

state agencies to review and update statewide class distribution factors frequently. 

 

Tran, N. H., and Hall, K. D. (2007b) also conducted research sponsored by the Arkansas 

State Highway and Transportation Department (AHTD) to develop statewide axle load 

spectra and evaluate its importance in MEPDG. The AHTD performs a traffic-monitoring 

program in accordance with the guidelines of the 2001 Traffic Monitoring Guide, so 

WIM stations collect continuously traffic volume, vehicle classification, and vehicle 
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weight data throughout the state. Therefore, the AHTD provided weight data in the 

weight record file format (W-record) from only 10 weigh-in-motion stations, because 

most of the WIM sites did not collect complete and accurate data and did not pass the 

quality control procedure recommended by LTPP and FHWA. A computer program was 

developed to process the vehicle weight data from the 10 WIM sites and generate 

statewide axle load spectra for single, tandem, and tridem axles for the state of Arkansas. 

There were not enough quad axle data. The statewide axle load spectra were developed 

on the basis of weight data collected at WIM stations, while the default values provided 

in MEPDG were developed on the basis of LTPP data collected throughout the US. In 

this study, analyses were performed to determine the differences between both inputs. 

MEPDG software was configured with an assumed 20 year design life, national 

calibration parameters for pavement performance prediction models without adjustment, 

and new flexible pavement with AADTT of 10,000. Total rutting and fatigue cracking 

were the two predicted distresses considered in this study. Sensitivity analysis showed 

important differences in predicted pavement performance resulting from the statewide 

and MEPDG default axle load spectra. Thus, they highly recommended the development 

of state-specific axle load spectra and their frequent update. 

 

Smith, B. C., and Diefenderfer, B. K. (2010) determined and analyzed the differences in 

the distresses predicted by MEPDG between site-specific and default traffic inputs for 

flexible pavements in Virginia. A continuous 1-week period for each month for twelve 

consecutive months of data from eight interstate weigh-in-motion sites in Virginia was 

used to develop axle load spectra, monthly adjustment factors, vehicle class distribution 
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factors, and number of axles per truck. A MATLAB program was developed to process 

the raw WIM data and before accuracy and quality control is performed in accordance 

with the 2001 Traffic Monitoring Guide, so bad records are removed. A typical pavement 

section from Virginia was selected, and the distresses predicted by MEPDG using these 

site-specific traffic inputs were compared to those obtained using default traffic inputs. 

Longitudinal cracking, fatigue cracking, asphalt rutting, and total rutting were the main 

load-related distresses compared by using a normalized difference statistic and the 

coefficient of variation for each traffic input and pavement distress model. Also, the 

predicted time to failure for each pavement condition using site-specific traffic data 

inputs was compared to the predicted time to failure using the default traffic data inputs. 

Overall, the results showed that the effect of the site-specific traffic inputs was not very 

important. However, when total rutting is considered, the predicted time to failure using 

site-specific axle load spectra was found to be significant for all sites when compared to 

the default axle load spectra.  Therefore, it is recommended that the state highway 

agencies collect and develop site-specific axle load spectra inputs for analysis of flexible 

pavements, and default inputs can be used for the remaining parameters. Because each 

state has a particular local combination of traffic, materials, climate, and pavement 

structures, each agency may need to perform a similar study in order to get their own 

conclusions. 

 

Ishak, S., Shin, H. C., Sridhar, B. K., and Zhang, Z. (2010) studied the traffic data 

requirements of MEPDG for future implementation in Louisiana. They developed the 

truck axle load spectra from WIM data and proposed improvements in the current data 
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collection techniques. Currently, traffic loading data is collected using portable WIM 

stations in Louisiana, which collect data continuously for two consecutive days. Quartz 

piezoelectric sensors are used in these stations to collect weight data. Since they are 

temperature sensitive and not regularly calibrated, error can cause overestimation or 

underestimation of axle load spectra. The quality of data collected from permanent and 

portable WIM sites was assured by performing two QC tests. The first test is the steering 

axle load test which is performed by checking whether or not the steering axle weights of 

class 9 trucks fall in the range of 8,000 to 12,000 lbs. The second one is the gross vehicle 

weight test which is performed by checking whether the gross vehicle weights were in the 

range of 28,000 to 36,000 lbs for unloaded class 9 trucks and 72,000 to 80,000 lbs for 

loaded class 9 trucks. Only 51 sites out of 96 passed both quality tests, and therefore, they 

were used to develop single, tandem, and tridem axle load spectra. Cluster analysis was 

used to group the WIM sites with similar vehicle class distribution in order to reduce the 

number of axle load spectra proposed. The degree of similarity between two different 

distributions from two sites was measured by the sum of squared differences. If this value 

is small, the two distributions are very similar and can be clustered and combined into 

one group. For each group, one vehicle class distribution and one axle load spectra was 

developed. The dominant vehicle class for single and tandem axle loads was 9, while the 

majority of tridem axles belonged to vehicle class 10. The developed single axle load 

spectra were very similar to the default values. Both developed tandem and tridem axle 

load spectra were significantly different from the default values. The truck traffic 

classification (TTC) instead of the roadway functional classification was recommended 

for grouping the WIM sites. The researchers recommended collection of traffic data 
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during longer monitoring periods and more frequent calibration of WIM stations. Also, a 

strategic plan for installing more permanent WIM sites was encouraged.   

 

Haider, S. W., Harichandran, R. S., and Dwaikat, M. B. (2010) performed research to 

investigate the impact of uncertainty in axle load spectra on the performance of both 

flexible and rigid pavements and their design reliabilities. The characterization of traffic 

loading is very important in pavement design. Indeed, axle load spectra are one of the 

most critical inputs in the new MEPDG and have a significant impact on the predicted 

pavement performance. The weigh-in-motion data necessary to develop axle load spectra 

often presents an uncertain quality due to inaccuracy and systematic bias. This inaccuracy 

depends upon the sensor technology, and systematic bias is introduced by calibration 

error and its drift over time. This study provided an overview of WIM data accuracy and 

calibration and the impact of these inherent uncertainties on the pavement design process. 

A typical axle load spectra from the specific pavement sections of the LTPP study was 

adopted as reference. A bimodal distribution was fitted to the reference axle load spectra, 

and the corresponding cumulative distribution function was obtained. The error 

distribution was simulated by assuming different values of systematic error (bias) and 

random error (accuracy). Monte Carlo simulation was used to generate axle load spectra 

for different combinations of random and systematic errors. The simulated axle load 

spectra that included measurement errors were used to predict pavement performance 

through correlation. This direct correlation process was validated using MEPDG. The 

results showed that cracking is the distress most impacted by variations of axle load 

spectra, while rutting is moderately affected. For both flexible and rigid pavements, 
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cracking performance was significantly affected in particular by negative weight 

measurement bias. In order to assess the impact of measurement errors on the reliability 

of designed pavements, each distress type was predicted at 95% reliability using the 

MEPDG procedure for the axle load spectra generated previously. The MEPDG 

reliability analysis can compensate for this negative measurement bias for most of the 

distresses by providing conservative estimates, but a lower threshold is needed for the 

case of cracking. 

2.2 Local Calibration of the MEPDG  

2.2.1 Introduction 

The new Mechanistic-Empirical Pavement Design Guide (MEPDG) for new and 

rehabilitated pavement structures is based on both mechanistic and empirical principles.  

The design procedure assumes that pavement can be modeled as a multi-layered elastic 

structure and performs a time-stepping process. At every time step, structural analysis is 

done to estimate critical stresses and strains within the structure; then, empirical models 

are used to compute incremental distresses such as rutting, cracking, and roughness based 

on the stresses and strains calculated previously. This cycle is repeated through the 

pavement design life (MEPDG Documentation, 2004). 

The pavement distress prediction models, also called transfer functions, are key 

components of the mechanistic-empirical procedure. Calibration of these models with 

local data sets is necessary to obtain an acceptable correlation between levels of distress 

observed in the field and those levels predicted with the MEPDG. The validation of the 

performance prediction models is a very important step to establish confidence before 

adopting them for design purposes. Calibration is the mathematical process in which the 
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total residual error (difference between observed and predicted values of distress) is 

minimized. Validation is the process to confirm that the calibrated model can predict 

distresses accurately for other cases not used in the calibration (AASHTO Guide for Local 

Calibration of MEPDG, 2010).  

The calibration-validation process requires the use of precision and bias statistics. The 

concept of accuracy, or the exactness of a prediction to the actual value, encompasses 

both precision and bias. A prediction model is said to be precise when it can give 

repeated estimates that correlate strongly with the observed values. On the other hand, a 

model that is biased systematically over-predicts or under-predicts observed distresses; 

this means the prediction is consistently higher or lower than the observed value as 

distinct from random error (AASHTO Guide for Local Calibration of MEPDG, 2010). 

The standard error of the estimate is a statistic that measures the amount of dispersion of 

the data points around the line of equality between the observed and predicted values of 

distress. In calibration, the total standard error of a pavement performance model presents 

four major components: measurement error, input error, model or lack-of-fit error, and 

pure error. The measurement error is caused by inaccuracies in the measure of distress 

along the pavement sections used in the calibration process. The input error is caused by 

variations in laboratory and field measurements when estimating the MEPDG inputs. 

Pure error is the random or normal variation due to replication. The model or lack-of-fit 

error is the portion of the total variance caused by inadequate theory and algorithms or 

incorrect model form. Understanding the contribution of each of these variance sources to 

the total standard error is critical in order to have the greatest effectiveness in the 

calibration refinement process (AASHTO Guide for Local Calibration of MEPDG, 2010). 
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Local calibration is performed to reduce bias and increase precision of the MEPDG 

prediction models. A biased model consistently produces over-designed or under-

designed pavements with important cost consequences. A model with lack of precision 

leads to inconsistency in design effectiveness. Validation of the MEPDG prediction 

models is necessary to ensure that the calibrated models produce robust and accurate 

predictions of pavement distresses for cases other than those used in calibration. 

Typically, the split sample approach 80/20 is used with 80 percent of the data used for 

calibration and 20 percent used for validation (randomly chosen). Successful validation 

requires that the bias and precision statistics of the validation data sets are similar to those 

obtained from calibration (AASHTO Guide for Local Calibration of MEPDG, 2010). 

The performance models of MEPDG were calibrated at a global scale using a 

representative number of pavement sections from the Long Term Pavement Performance 

(LTPP) program throughout North America. Local calibration factors are included in the 

MEPDG to consider the differences in construction practices, maintenance policies, and 

material specifications across the United States. The objective of the local calibration 

process is to find appropriate calibration factors such that significant bias is eliminated, 

standard error is minimized, and precision maximized. This will consequently reduce 

construction and maintenance costs at the same reliability level (AASHTO Guide for 

Local Calibration of MEPDG, 2010). 

2.2.2 Distress or Performance Indicators in the MEPDG 

The following indicators of distress and performance of flexible pavements are predicted 

by the MEPDG, and therefore, their definitions are provided next (AASHTO Guide for 

Local Calibration of MEPDG, 2010): 
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 Rutting or Rut Depth: It is a longitudinal depression of the surface in the wheel 

path due to plastic or permanent deformation in each layer of the pavement 

(asphalt concrete, granular base, and subgrade). It is measured in the field as the 

maximum vertical distance between the transverse profile of the pavement surface 

and a wire-line across the lane width. The unit of rutting in the MEPDG is inches. 

A reasonable standard error of the estimate for total rutting is 0.10 in. 

 Alligator Cracking: It is a series of interconnected cracks with a characteristic 

"alligator" pattern that initiate at the bottom of the asphalt concrete (AC) layer 

caused by fatigue. Alligator cracks initially start as multiple short cracks in the 

wheel path that eventually become interconnected under a continued traffic 

loading. The unit of alligator cracking in MEPDG is percent of total lane area. 

The MEPDG does not predict the severity of alligator cracking, but includes low, 

medium, and high in the definition. A reasonable standard error of the estimate 

for alligator cracking is 7%. 

 Longitudinal Cracking: It is a series of cracks parallel to the pavement centerline 

that occur within the wheel path caused by fatigue. It initiates as short 

longitudinal cracks at the surface of the AC pavement that eventually become 

connected under continued loading. The unit of longitudinal cracking in MEPDG 

is feet per mile. The MEPDG does not predict severity of the longitudinal cracks, 

but includes low, medium, and high in the definition. A reasonable standard error 

of the estimate is 600 ft/mi. 

 Transverse Cracking: Non-load related cracking that is perpendicular to the 

pavement centerline and caused by low temperatures or thermal cycling. The unit 
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of transverse cracking in the MEPDG is feet per mile or spacing of transverse 

cracks in feet. A reasonable standard error of the estimate is 250 ft/mi. 

2.2.3 Recent Studies 

The most significant research related to this topic that has been performed recently is 

described next: 

 

Hoegh, K., Khazanovich, L., and Jensen, M. (2010) conducted research to evaluate and 

calibrate the MEPDG rutting prediction model using 12 hot mix asphalt (HMA) 

pavement sections from the full-scale pavement research facility MnROAD in 

Minnesota. This research project involved the following objectives: identify pavement 

sections where performance data is known, obtain MEPDG inputs for these MnROAD 

sections, run MEPDG to predict rutting, compare predicted and measured rutting at every 

section, and finally adjust the parameters of the MEPDG rutting model to reduce error. 

All data collected at the MnROAD facility is entered into a database for the Minnesota 

Department of Transportation (MnDOT). Rutting was measured by MnROAD staff three 

times per year manually using the straightedge method. Trenches were cut at the 

MnROAD sections to study the level of rutting occurring in individual layers of the 

pavement. It was observed that most of the rutting occurred in the HMA while the 

granular base and the subgrade were unaffected. The sections were subjected to the same 

environmental and traffic loading, but the following design variables were different: 

asphalt binder grade, mix design, air void content, HMA thickness, type and thickness of 

the base. MEPDG version 1.0 was used to predict the rutting performance of the test 

sections. The design guide calculates the rutting due to the asphalt concrete (AC) layer, 
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the granular base, and the subgrade; the summation of the three is the total rutting in the 

pavement: 

Total_Rutting = Rutting_AC + Rutting_Base + Rutting_Subgrade  Eq. 2.8 

The measured total rutting was compared to the MEPDG predicted value for all 

MnROAD pavement sections and it was observed that the predicted total rutting was 

always greater than the measured total rutting. In some sections, the predicted AC rutting 

was similar to the measured total rutting. Considering that forensic studies found that 

most of the measured rutting occurred in the AC layer, the MEPDG predicts accurately 

the rutting due to the AC, but the base and subgrade predictive models overestimate total 

rutting, and therefore, they should be modified. It was noticed that during the first month 

of the pavement design life, the MEPDG consistently predicts a huge accumulation of 

rutting in the base and subgrade layers which is not realistic. Therefore, it was 

recommended to subtract the base and subgrade rutting accumulated during the first 

month of pavement life from the MEPDG rutting prediction: 

Total_Rutting = Rutting_AC + (Rutting_Base - Rutting_Base_1st_month) +                             

(Rutting_Subgrade - Rutting_Subgrade_1st_month)         Eq. 2.9 

With the application of the locally calibrated rutting prediction model, bias and the 

residual error were reduced significantly. 

 

Li, J., Pierce, L. M., and Uhlmeyer, J. (2009) performed calibration of the MEPDG new 

flexible pavement distress models to Washington State local conditions using data 

obtained from the Washington State Pavement Management System (WSPMS). The 

sensitivity of required input data was analyzed as well. This paper proposes an 
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implementation plan for MEPDG that could replace the 1993 AASHTO Design Guide in 

Washington State Department of Transportation (WSDOT). Level 2 MEPDG inputs of 

traffic, climate, and pavement structure data were collected from a variety of sources. 

MEPDG software did not work properly when dynamic modulus data was used for mix 

design inputs (Level 1). More than 30 years of distress data were available from the 

WSPMS. The split-sample and the jackknife testing approaches were combined in the 

calibration process. The sensitivity of the design parameters was checked by varying the 

inputs and performing iterative runs. The following key observations were made: 

 AC rutting is mostly influenced by climate, traffic loading, AC thickness and base 

type. 

 Longitudinal cracking is strongly influenced by PG binder and AC thickness. 

 Alligator cracking is mainly affected by the stiffness of the hot mix asphalt 

(HMA). 

 Temperature is the most important factor in transverse cracking prediction. 

 Roughness is influenced by climate, traffic loading, and base type. 

From analyses, it was observed that default MEPDG tends to underpredict AC rutting, 

longitudinal cracking, and alligator cracking. Trenches in WSDOT routes have shown 

that very limited rutting occurs in the subgrade, therefore, the corresponding calibration 

coefficients were set to 0. The MEPDG transverse cracking prediction under default 

settings matched the WSPMS performance data, and thus, it is not necessary to calibrate 

this model. An elasticity analysis was conducted to describe the effects of the different 

calibration factors on the pavement distress predictions. Elasticity is an econometric 

parameter which is defined as follows: 
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𝐸𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠
𝐶𝑖 = 𝜕(𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠) 𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠⁄

𝜕(𝐶𝑖) 𝐶𝑖⁄     Eq. 2.10 

where ECi
distress is the elasticity of the calibration factor Ci for the associated distress. The 

elasticity can be zero, positive, or negative. Zero indicates that the calibration factor has 

no influence on the prediction, positive implies that the estimation increases as the factor 

increases, and negative means that the prediction decreases as the factor increases. The 

results showed the following conclusions: in the rutting model, the calibration factors βr2 

and βr3 have more impact than βr1; in the AC fatigue model, βf2 and βf3 are more 

influential than βf1; C2 is the most important factor in longitudinal cracking and C1 in 

alligator cracking. During the calibration process, the user varies the calibration factors 

until the MEPDG distress prediction matches the actual pavement performance. Only one 

pavement section can be evaluated at a time in MEPDG software, therefore, few sections 

are carefully chosen to represent a larger group of WSDOT's pavements. The calibration 

factors were adjusted in order of high to low elasticity. The set of calibration factors with 

the least error between the MEPDG prediction and the WSPMS measurements on all 

calibration and validation sections was selected as the final result: 

 Rutting:   βr1 = 1.05; βr2 = 1.109; βr3 = 1.1; βs1 = 0. 

 Fatigue:   βf1 = 0.96; βf2 = 0.97; βf3 = 1.03. 

 Longitudinal Cracking: C1 = 6.42; C2 = 3.596; C3 = 0; C4 = 1,000. 

 Alligator Cracking:  C1 = 1.071; C2 = 1; C3 = 6,000. 

The IRI model could not be calibrated because of bugs in the MEPDG software. These 

calibration factors can be used to predict more accurately flexible pavement performance. 
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Banerjee, A., Aguiar-Moya, J. P., and Prozzi, J. A. (2009) carried out an extensive local 

effort with the objective of calibrating the MEPDG permanent deformation performance 

model for five different regions in the state of Texas. The focus of this study was to find a 

set of two calibration factors of the asphalt concrete (AC) permanent deformation model 

per region by minimizing the sum of squared errors (SSE) between observed and 

predicted pavement distresses. A joint optimization approach was adopted to obtain Level 

2 calibration factors for every region. At the end all of them would be averaged to come 

up with a set of Level 3 calibration factors for the state of Texas. If this approach were 

used with all the pavement sections at once, the results obtained would be more accurate, 

but the computational process would required more time. A total of 18 sections were 

obtained from the LTPP database. These experiments were representative of five regions 

with different environmental conditions: wet-warm, wet-cold, dry-warm, dry-cold, and 

mixed. The number is not sufficient and the researchers recommend monitoring at least 

100 new sections and storing the data in the Texas Flexible Pavement Database. The data 

required to simulate the 18 pavement sections in the MEPDG (traffic, layers, materials, 

and performance) was obtained from the LTPP database. The MEPDG analysis was 

initiated with default calibration parameters and then adjusted such that the difference 

between the observed and the predicted distress values is reduced progressively. The 

optimal solution minimizes the SSE. For this calibration, the factor βr2 was kept constant. 

The calibration coefficient βr1 that captures the influence of the HMA layer thickness and 

βr3 that captures the impact of the number of load repetitions were optimized. The 

calibration factor βs1 controlling the rutting in the subgrade was preset to regional 

defaults (0.3 for West Texas and 0.7 for East Texas) that were determined on the basis of 
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average moisture content of the subgrade soil. It was observed that the distress 

predictions were more sensitive to βr3 than βr1, and for this reason a higher precision was 

used for βr3. The final Level 3 calibration coefficients obtained for the state of Texas 

were: βr1 = 2.39, βr3 = 0.856, and βs1 = 0.5. The standard error of the calibrated 

permanent deformation model was found to be less than 0.1 in. which is a good result. 

 

Muthadi, N. R., and Kim, Y. R. (2008) performed research to calibrate the MEPDG 

permanent deformation and alligator cracking models for local materials, conditions, and 

practices used in flexible pavements in North Carolina. A total of 53 pavement sections 

were selected: 30 from the LTPP database (16 new flexible and 14 rehabilitated) and 23 

from the North Carolina Department of Transportation (NCDOT) databases. The data 

collection effort included the gathering of MEPDG inputs related to materials, traffic, 

climate, and pavement structure. The performance data obtained from the Pavement 

Management Unit used a nonnumeric rating format which consisted of none, low, 

medium, or severe level of distress. This data was converted to MEPDG format to be able 

to compare measured and predicted distress values. The first step of the local calibration 

process was to perform verification runs on the pavement sections with default MEPDG 

models. It was observed that NCDOT sections introduced significant error and 

inconsistency because of their nonnumeric distress measurement technique. Thus, only 

LTPP sections were used in the calibration of the permanent deformation model. The 

second step was to calibrate the model coefficients to reduce the bias and the standard 

error. For the permanent deformation model, the Microsoft Excel Solver program was 

used to optimize the coefficients βr1, βGB, and βSG (βr2 and βr3 were not calibrated) 
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separately for each layer. Since pavement trenches and cores were not available, the total 

measured rutting was distributed to each layer according to the ratio of predicted total 

rutting to the predicted permanent deformation in each layer. For the bottom-up cracking 

model, the coefficients C1 and C2 of the corresponding transfer function were optimized 

using Microsoft Excel Solver. Both LTPP and NCDOT sections were used for the 

alligator cracking calibration. In the final step, validation was performed to check for the 

reasonableness of the performance predictions. The split-sample approach was used 

where 80% of the sections were randomly selected for calibration and 20% were kept 

aside for validation. The following calibration factors were obtained and proposed to use 

until a more robust calibration process with more sections is achieved in the future: 

 Rutting:  βr1 = 1.017, βr2 = 1, βr3 = 1, βGB = 0.778, βSG = 0.818. 

 Alligator Cracking: C1 = 0.437; C2 = 0.151; C3 = 6,000. 

The standard error of the calibrated permanent deformation model was reduced from 

0.154 to 0.109. Similarly, the standard error of the calibrated alligator cracking model 

was reduced from 6.02 to 3.64. The last model presented a poor precision perhaps 

because the NCDOT sections were included in its calibration. The researchers 

recommended the use of the LTPP distress identification manual for the measurement of 

distress in the pavement sections.  

 

Hall, K. D., Xiao, D. X., and Wang, K. C. (2010) conducted the calibration and validation 

of the MEPDG performance prediction models to local traffic, climate, materials, and 

practices in Arkansas. A total of 26 pavement sections were obtained from two sources: 

the LTPP database and the Pavement Management System (PMS) of the Arkansas State 



35 
 

Highway and Transportation Department (AHTD). All pavement sections were 

distributed across the five different regions of Arkansas. The PMS sections had a 

construction date later than 1996 when the Superpave HMA mixture design system was 

implemented. 20 sites (80%) were randomly selected for calibration and the other 6 

(20%) were preserved for validation. The data required such as traffic, climate, structure, 

materials, and pavement performance were collected from LTPP and AHTD databases.  

Verification runs were performed with default calibration coefficients and it was 

observed that measured and predicted distresses did not match well for longitudinal and 

alligator cracking. The calibration coefficients were obtained by minimizing the sum of 

squared error between predicted and measured distresses. The Microsoft Excel Solver 

function was used to optimize the coefficients of the alligator cracking and longitudinal 

cracking models. Iterative runs of MEPDG were performed with different combinations 

of coefficients to optimize the rutting model. It was assumed that rutting would occur 

only in the HMA layer and in the subgrade, thus the coefficient βGB for the granular base 

was not calibrated. The transverse cracking model was not calibrated because its MEPDG 

prediction is zero when properly selected Performance-Graded (PG) binders are used. 

The IRI model was not calibrated either because it is a function of other predicted 

distresses. The following calibration coefficients were obtained: 

 Rutting:    βr1 = 1.2, βr2 = 1, βr3 = 0.8, βbase = 1, βsubgrade = 0.50. 

 Alligator Cracking:   C1 = 0.688, C2 = 0.294, C3 = 6000. 

 Longitudinal Cracking: C1 = 3.016, C2 = 0.216, C3 = 0, C4 = 1000. 
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The calibrated models were validated by running MEPDG on the remaining sites and it is 

evident that local calibration reduces the difference between predicted and measured 

distress. 

The methodology, procedures, and analyses necessary to accomplish the goals of this 

study are described in detail in the next chapters. 
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Table 2.1 Definition of the vehicle classes (Traffic Monitoring Guide, 2001) 

FHWA Vehicle Class Description 

1 Motorcycles 

2 Passenger Cars 

3 Two Axles and Four Tire Single Units 

4 Buses 

5 Two Axles and Six Tire Single Units 

6 Three Axle Single Units 

7 Four or More Axle Single Units 

8 Four or Less Axle Single Trailers 

9 Five Axle Single Trailers 

10 Six or More Axle Single Trailers 

11 Five or Less Axle Multi-Trailers 

12 Six Axle Multi-Trailers 

13 Seven or More Axle Multi-Trailers 
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Table 2.2 Quality Control Rules List for Weight Data (Ramachandran et al, 2011) 

Order Description of the problem Criteria 

1 Any field with a null value Field Value ≠ Null 

2 Invalid hour HOUR ≠ (0 - 23) 

3 Invalid month MONTH ≠ (1 – 12) 

4 Invalid vehicle class code VHCL_CLASS ≠ (4 - 13) 

5 Invalid FIPS Code STATE_CD ≠ 37 (North Carolina) 

6 Invalid station ID STATION_ID ≠ Expected station 
identifier 
 

7 Invalid direction for station DRCTN_CD ≠ Valid values for station 

8 Invalid lane number for station TRVL_LN_NBR ≠ Valid values for 
station 
 

9 Invalid year YEAR ≠ Valid year for date range 
captured 
 

10 Invalid day DAY ≠ Valid date for the MONTH 

11 Hour without any weight records. A 
full day of data may not be 
available for all lanes 
 

Manual audit of hours without weight 
records 

12 Axle count inconsistent with 
number of axle spacings 
 

AXLE_COUNT ≠ (# of spacings +1) 

13 Axle count inconsistent with 
number of axle weights 
 
 

AXLE_COUNT ≠ # of axle weights 

14 GVW is inconsistent with sum of 
axle weights 
 

TOTAL_WGHT ≠ Sum of axle weights 

15 Axle weight is out of acceptable 
range 
 

441 lb (200 kg) < (X)_WGHT < 44,100 lb 
(20,003.4 kg) 

16 Axle spacing is out of acceptable 
range 
 

1.97 ft (0.6 m) < (X)_(Y)_SPACING < 
49.2 ft (15 m) 
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Table 2.2 (cont.) Quality Control Rules List for Weight Data (Ramachandran et al, 2011) 

17 Sum of axle spacings exceeds 
maximum wheelbase 
 

Sum of axle spacings > 98.2 ft (29.93 m) 

18 Review Average DOW volumes by 
month for unusual patterns 
 

A pattern deviates significantly from other 
months 

19 Review GVW plots by class by 
month for unusual patterns 

A pattern deviates significantly from other 
months 
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Table 2.3 Quality Control Rules List for Class Data (Ramachandran et al, 2011) 

Order Description of the problem Criteria 

1 Any field with a null value Field Value = Null 

2 Invalid month MONTH ≠ (1 – 12) 

3 Invalid hour HOUR ≠ (0 – 23) 

4 Total lane volume exceeds max. 
limit 
 

TOTAL_VOL > 3000 

5 Invalid FIPS Code STATE_CD ≠ 37 (North Carolina) 

6 Invalid station ID STATION_ID ≠ Expected station 
identifier 
 

7 Invalid direction for station DRCTN_CD ≠ Valid values for station 

8 Invalid lane number for station TRVL_LN_NBR ≠ Valid values for 
station 
 

9 Invalid year YEAR ≠ Valid year for date range 
captured 
 

10 Invalid day DAY ≠ Valid date for the MONTH 

11 A full day of data is not available 
for a day for all lanes 
 

Manual audit of hours and days 

12 Class volume exceeds maximum 
limit 
 

CLS_CNT_## = TOTAL_VOL 

13 1AM total lane volume exceeds 
1PM total lane volume 
 

HOUR(1) TOTAL_VOL > HOUR(13) 
TOTAL_VOL 

14 Static total lane volume for four 
consecutive hours 
 

HOUR(X) TOTAL_VOL = 
HOUR(X+1,+2,+3) TOTAL_VOL 

15 Review Avg. DOW volumes by 
month for unusual patterns 
 

A pattern deviates significantly from other 
months 

16 Review Class Distribution by 
month for unusual patterns 
 

A pattern deviates significantly from other 
months 
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Table 2.3 (cont.) Quality Control Rules List for Class Data (Ramachandran et al, 2011) 

17 Review Class % Distributions for 
unusual patterns 

The summary data exhibits an unusual 
pattern 
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Table 2.4 Gross Vehicle Weight Ranges for Peaks (Ramachandran et al, 2011) 

Vehicle Class Typical Weight Ranges for Peaks (lbs) 

4 One peak at 20,000 

5 One peak at 10,000 

6 One peak at 20,000 to 25,000 and Other at 45,000 to 55,000 

7 One peak at 50,000 to 60,000 

8 One peak at 30,000 to 35,000 

9 One peak at 30,000 to 35,000 and Other at 70,000 to 80,000 

10 One peak at 40,000 to 45,000 and Other at 75,000 to 85,000 

11 One peak at 55,000 to 60,000 

12 One peak at 55,000 to 65,000 

13 Straight Line (Constant weight range with very low frequency of trucks) 
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Chapter 3  

CHARACTERIZATION OF TRAFFIC LOAD FOR MEPDG 

 

3.1 Introduction 

Traffic is one of the most important inputs required for the design and analysis of 

pavements. It represents the magnitude and frequency of the loads applied during the 

pavement design life. The 1993 AASHTO Guide for Pavement Design characterized 

traffic using the number of equivalent single axle loads (ESALs) which is the number of 

standard axle loads applied during the pavement design life. However, MEPDG uses a 

more complex approach that requires a larger number of traffic inputs. One of these 

inputs is the axle load spectra which can be only obtained from weigh-in-motion data. 

Therefore, it is critical for highway state agencies to collect and process high quality 

WIM data (Guide for Design of Pavement Structures, 1993). 

WIM systems are installed in suitable road sections to collect classification and weight 

traffic data which are stored in C-files and W-files respectively. Classification data 

consists of a tabulation containing the total number of vehicles that pass through the 

WIM site in every lane and every direction during every hour of the day, and the 

distribution of these vehicles by FHWA vehicle class. In addition, for each truck passing, 

these equipment record a tabulation formed with the FHWA vehicle class and the 

number, spacing, and weight of axles, which constitutes the weight data. 

There are different technologies for WIM systems such as load cells, bending plates, 

kistler lineas, and piezo sensors. The dynamic weight measured by these systems is not 
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the same as the actual static weight, because there is an error associated with any measure 

and also a systematic bias whether the equipment is not well calibrated. Each one of them 

has a particular accuracy. Unlike random error that may distort the weight measurement 

on any one occasion but balances out on the average, systematic bias produces a 

significant distortion from the actual value that is consistently positive or negative. 

The equipment required to collect weigh-in-motion data is very expensive and often state 

highway agencies and their traffic monitoring programs are subjected to budget 

constraints. This usually results in lack of calibration of their WIM sites which directly 

leads to weight measurement bias and its consequences on the quality of data. Moreover, 

the type of sensor, the pavement condition, and the temperature in the case of piezo 

systems are factors affecting considerably the accuracy and reliability of WIM sites. 

Therefore, it is very important to provide state highway agencies with a procedure to 

evaluate the quality of WIM data for determining when a particular WIM site requires 

calibration, and to develop the required traffic data inputs for the future implementation 

of the MEPDG. Quality of weigh-in-motion data affects axle load spectra, and thus, there 

is a need to evaluate the effect of WIM data quality on mechanistic-empirical pavement 

design. 

The following objectives are pursued within this chapter: 

 Develop a set of subroutines to perform quality control of weigh-in-motion data 

and to obtain traffic inputs required for the future implementation of MEPDG. 

 Determine the influence of weigh-in-motion data quality and axle load spectra on 

pavement design and predicted performance. 
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3.2 Weigh-in-Motion Data in New Mexico 

Currently, thirteen WIM stations are collecting weight and classification data throughout 

New Mexico. These WIM sites are operated by NMDOT. Three of them use bending 

plate systems, and the remaining use piezoelectric sensors. Figure 3.1 shows the location 

and Table 3.1 the type of technology of each of the WIM sites.  

The condition of the road surface, the calibration of the system, and the temperature in 

the case of piezoelectric sensors are factors that significantly affect the weight 

measurement. The three bending plate systems are being calibrated semiannually, while 

the remaining WIM sites are calibrated annually due to budget constraints. The data 

collected in the thirteen operative WIM sites during the year 2010 are used for these 

analyses. 

3.3 Quality Control Rules and Algorithms 

A series of validation rules are defined to check whether the weigh-in-motion data is 

consistent and acceptable from a quality point of view. A set of fourteen rules for 

classification data and another set of fifteen rules for weight data are implemented by 

means of subroutines developed in Microsoft Excel Visual Basic Application. This 

program allows importing the desired C-files and W-files and when it is run every single 

record has to pass each of these rules in order to be valid. If any of the rules are not 

fulfilled then an “ERROR” flag appears, and the user can remove that particular invalid 

record. 

The fourteen rules used to check the quality of classification data are described below 

(Ramachandran et al, 2011): 

1. The record belongs to a C-file, e.g. if Record Type ≠ C then “ERROR”. 
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2. The record belongs to New Mexico, e.g. if State Code ≠ 35 then “ERROR”. 

3. The WIM site id is unique and correct, e.g. if Station Code ≠ 21020 then 

“ERROR”. 

4. The direction is correct, e.g. if Direction ≠ 1 or 5 then “ERROR”. 

5. The lane number is correct, e.g. if Lane Number ≠ 1 to 4 then “ERROR”. 

6. The year is unique and correct, e.g. if Year ≠ 10 then “ERROR”. 

7. The month is correct, e.g. if Month ≠ 1 to 12 then “ERROR”. 

8. The day is correct, e.g. if Day ≠ 1 to 31 then “ERROR”. 

9. The time is correct, e.g. if Hour ≠ 0 to 23 then “ERROR”. 

10. The total hourly volume per lane does not exceed the maximum limit, e.g. if Total 

Hourly Lane Volume > 3000 then “ERROR”. 

11. The total volume in the outside lanes collected between 1 am and 2 am does not 

exceed the same volume collected from 1 pm to 2 pm, e.g. if Hour 1 Total Lane 

Volume > Hour 13 Total Lane Volume then “ERROR”. 

12. The total outside lanes volume is not constant for four consecutive hours, e.g. if 

Hour X Total Lane Volume = Hour X+1 Total Lane Volume = Hour X+2 Total 

Lane Volume = Hour X+3 Total Lane Volume then “ERROR”. 

13. The percentage of motorcycles is less than 5%, e.g. if % Motorcycles > 5 then 

“ERROR”. 

14. The percentage of unclassified vehicles (classes 14 and 15) is less than 5%, e.g. if 

Percentage of Unclassified Vehicles > 5 then “ERROR”. 

The fifteen rules used to check the quality of weight data are described below 

(Ramachandran et al, 2011): 
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1. The year is unique and correct, e.g. if Year ≠ 10 then “ERROR”. 

2. The month is correct, e.g. if Month ≠ 1 to 12 then “ERROR”. 

3. The day is correct, e.g. if Day ≠ 1 to 31 then “ERROR”. 

4. The time is correct, e.g. if Hour ≠ 0 to 23 then “ERROR”. 

5. The WIM site id is correct, e.g. if Station Code ≠ 21020 then “ERROR”. 

6. The direction is correct, e.g. if Direction ≠ 1 or 5 then “ERROR”. 

7. The lane number is correct, e.g. if Lane Number ≠ 1 to 4 then “ERROR”. 

8. The vehicle class is correct, e.g. if Vehicle Class ≠ 4 to 13 then “ERROR”. 

9. The number of axles is consistent with the number of axle spaces, e.g. if Number 

of Axles ≠ Number of Axle Spaces + 1 then “ERROR”. 

10. The number of axles is consistent with the number of axle weights, e.g. if 

Number of Axles ≠ Number of Axle Weights then “ERROR”. 

11. The gross vehicle weight is consistent with the sum of axle weights, e.g. if Sum 

of Axle Weights ≠ GVW then “ERROR”. 

12. The number of axles is consistent with the vehicle class, e.g. if Number of Axles 

≠ Range of Axles for that vehicle class then “ERROR”. 

13. The sum of axle spaces is consistent with the maximum length, e.g. if Sum of 

Axle Spaces > 115 ft (35 m) then “ERROR”. 

14. The axle weights are within acceptable range, e.g. if Axle Weight ≠ 440 lbs (200 

kg) to 33,000 lbs (15,000 kg) then “ERROR”. 

15. The axle spaces are within acceptable range, e.g. if Axle Spacing ≠ 2 ft (0.6 m) to 

50 ft (15 m) then “ERROR”. 
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The maximum vehicle length, axle weight, and axle spacing are based on the maximum 

values allowed by the Guide for Vehicle Weights and Dimensions to which an additional 

percentage of the original value is added to account for overloaded and oversized trucks 

(Guide for Vehicle Weights and Dimensions, 2001). 

Finally, other algorithms are developed to make this program able to calculate the 

following frequency distributions which are critical for quality control of weigh-in-

motion data: 

• Gross Vehicle Weight Frequency Distribution by Class. 

• Front Steering Axle Weight Frequency Distribution by Class. 

In the last step of this process, the gross vehicle weight and steering axle weight 

frequency distributions are subjected to the following criteria provided by the TMG 

(Traffic Monitoring Guide, 2001): 

• The class 9 gross vehicle weight distribution must have a peak due to unloaded 

vehicles within the range of 30,000 lbs (13,500 kg) to 40,000 lbs (18,000 kg) and 

another peak due to loaded trucks within the range of 70,000 lbs (31,500 kg) to 

80,000 lbs (37,000 kg). 

• The class 9 front steering axle weight distribution must have the majority of axles 

within the range of 8,000 lbs (3,600 kg) to 12,000 lbs (5,400 kg). 

3.4 Quality Control Analysis 

Both sets of quality control rules are applied to the weigh-in-motion data. All WIM sites 

have less than 1% of invalid weight records, except Tucumcari that presents almost 6%. 

The classification data does not present any invalid records. Table 3.2 shows the total 

number of trucks recorded in each WIM site during 2010, and the corresponding number 
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and percentage of erroneous data. The invalid records are removed, and the program 

calculates the gross vehicle weight and front steering axle weight frequency distributions. 

The gross vehicle weight frequency distributions for class 9 vehicles are plotted in 

Figures 3.1 (a) and 3.1 (b) for functional roadway classes 1 and 2, respectively. This 

vehicle class comprises almost 70% of the total traffic stream. The graph is divided in 

two parts according to the functional class of the roads where the WIM sites are located. 

Only the three bending plate systems (San Ysidro, Cuba and Bloomfield) present a 

distribution with peaks for unloaded and loaded trucks in the middle of the ranges 

recommended by the TMG. The remaining piezoelectric sites only have one single peak 

which indicates that these WIM sites are assigning either a too low or too high weight to 

every truck passing, probably due to a malfunction of the system. Although the site at 

Rincon presents two peaks, these are out of range, and thus, it is not acceptable (Traffic 

Monitoring Guide, 2001). 

The front steering axle weight frequency distributions for class 9 vehicles are shown in 

Figures 3.2 (a) and 3.2 (b) for functional roadway classes 1 and 2, respectively. The 

graph is divided in two parts by functional class as well. For the case of San Ysidro, 

Cuba, and Bloomfield (bending plates), and also Hatchita and Tucumcari, most of the 

frequencies fall within the range recommended by the TMG. The curves of the remaining 

piezoelectric systems are out of the acceptable range (Traffic Monitoring Guide, 2001). 

These results denote that the piezo sites are not providing good weigh-in-motion data, 

perhaps due to the lack of calibration or the effect of surface condition and temperature in 

piezoelectric sensors. On the other hand, San Ysidro, Cuba and Bloomfield are collecting 
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acceptable WIM data. Only these bending plate systems fulfill the two criteria 

recommended by the TMG, and therefore, are used to develop axle load spectra. 

3.5 Development of Traffic Volume MEPDG Inputs 

Two subroutines have been created in Visual Basic Application to process classification 

WIM data. These subroutines first import the C-file, and then process all classification 

data to calculate several traffic volume inputs and distributions that are required in the 

MEPDG. The outputs of these scripts are listed next: 

 Average Daily Traffic (ADT) 

 Average Daily Truck Traffic (ADTT) 

 Percentage of Trucks 

 Directional Distribution 

 Lane Distribution 

 Vehicle Class Distribution 

 Truck Class Distribution 

 Monthly Distribution by Vehicle Class 

 Vehicle Hourly Distribution 

 Truck Hourly Distribution 

These subroutines are applied to the classification data collected during all of 2010 by the 

thirteen operative WIM sites. Table 3.3 includes the average daily traffic, the average 

daily truck traffic, and the percentage of trucks. The average daily traffic ranges from 

2,000 vehicles per day to 34,000 depending on the functional class of the road, and the 

percentage of trucks varies from 17% up to 61%. 
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The vehicle class distribution of each WIM station is shown in Figures 3.3 (a) and 3.3 (b) 

for functional roadway classes 1 and 2, respectively. In general, classes 5 and 9 comprise 

around 80% of the total truck traffic stream, being the individual contribution of these 

two classes around 40% for functional class 2 roads. But for the case of functional class 

1, only class 9 comprises almost 80% of the total heavy traffic. This indicates consistency 

of data since rural interstates usually are supposed to present larger trucks. The pattern 

observed at Rincon is unusual presenting 60% of class 5 vehicles and 25% of class 9 

trucks; perhaps there is a problem with the classifier of this WIM station. 

The directional distributions are shown in Figures 3.4 (a) and 3.4 (b) for functional 

roadway classes 1 and 2, respectively. The directional distribution factor is around 50% 

at all WIM sites except Lemitar, a trend to be expected on rural highways. This means 

that the weigh-in-motion equipment worked correctly in both directions. The case of 

Lemitar would require further examination to determine whether there is more volume in 

one direction than in the other. 

Similarly, Figures 3.5 (a) and 3.5 (b) show the lane distribution of WIM sites for 

functional roadway classes 1 and 2, respectively. The lane distribution factors are around 

45% for the outside lanes and 5% for the inside lanes. This is a typical pattern in New 

Mexico rural highways. The interpretation is that the weigh-in-motion equipment worked 

properly in every lane during the year and the data should be consistent. 

The monthly volume distributions of Hatchita, Tucumcari, Tularosa, and San Ysidro sites 

are plotted in Figures 3.6 (a) and 3.6 (b) for functional roadway classes 1 and 2, 

respectively. Only these four stations had collected twelve months of data during 2010. It 
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seems that the months of July and August present traffic slightly higher than the average. 

This is a feature typically observed. 

Also, the hourly volume distributions of Hatchita, Tucumcari, Tularosa, and San Ysidro 

are shown in Figures 3.7 (a) and 3.7 (b) respectively for functional roadway classes 1 and 

2. The distributions are very similar in the four cases presenting maximum traffic 

between 9 am and 4 pm, a pattern which is common in New Mexico. 

3.6 Development of Axle Load Spectra 

Weigh-in-motion data is processed in order to obtain axle load spectra - one of the most 

important inputs to the MEPDG. This process is external to the Design Guide. TrafLoad 

v1.0.8 is software for processing and analyzing WIM data that was created under 

NCHRP Project 1-39. In this case TrafLoad cannot import successfully New Mexico 

WIM data, and therefore is not effective to produce axle load spectra (TrafLoad's User 

Manual, 2004). 

Therefore, an algorithm has been implemented in Visual Basic Application to process 

WIM data and to compute the corresponding axle load spectra. This algorithm is based 

on the spacing between axles and the weight of each axle. A limit spacing value is 

defined such that when there are two, three or four consecutive axles separated by a 

distance smaller than the limit spacing value, then these axles are considered as tandem, 

tridem or quad respectively. A single axle is separated from the surrounding axles by a 

distance greater than the limit spacing. 

The aforementioned subroutines are used to obtain the axle load spectra for single, 

tandem, tridem and quad axles. Figures 3.8 (a), 3.8 (b) and 3.8 (c) show respectively the 

single, tandem and tridem axle load spectra. San Ysidro, Cuba and Bloomfield sites 
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present very similar axle load spectra since the three WIM stations are located on the 

same highway. These axle load spectra are used in the next sections to evaluate the effect 

of weight measurement bias on the pavement performance predicted by MEPDG. 

3.7 Simulating the Weight Measurement Bias 

The weight measured in dynamic conditions by a WIM system is not the actual static 

weight. There is always some error. Part of this error is random due to the inherent 

deviation associated with any measurement process. Also, error can be produced by bias 

in the apparatus due to lack of calibration. The systematic bias results in a positive or 

negative consistent deviation for any weight measured and can be quantified as a 

percentage of the actual value.  

A subroutine has been developed in Visual Basic Application to simulate the systematic 

bias in a weigh-in-motion site due to lack of calibration. This subroutine increases or 

decreases the weight data collected at the WIM site by a given percentage. The algorithm 

is used to apply a positive and negative bias of 10%, 20%, and 30% to the weigh-in-

motion data, and thus to the axle load spectra of San Ysidro, Cuba, and Bloomfield WIM 

sites. 

The single, tandem and tridem axle load spectra at San Ysidro for the cases of no bias and 

positive and negative 20% bias are respectively plotted in Figures 3.9 (a), 3.9 (b) and 3.9 

(c). As expected, a positive bias produces a displacement of the curve to the right and a 

negative bias a displacement to the left. The displacement of the curve is larger for the 

heaviest axles since the increase or decrease applied is a percentage of the weight. 
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3.8 Prediction of Pavement Performance 

The MEPDG version 1.100 is used to predict the pavement performance of typical 

sections on US-550 which are located close to the San Ysidro, Cuba, and Bloomfield 

WIM sites. These data are obtained from the Long Term Pavement Performance (LTPP) 

online database. The simulations are carried out for a design life that goes from the road 

construction date to the year 2011 (LTPP Database Reference Manual, 2006). 

All inputs are kept constant except the axle load spectra which are varied to evaluate the 

influence of positive and negative 10%, 20%, and 30% bias on the predicted pavement 

distresses. Table 3.4 contains the percentage of variation of total rutting, asphalt concrete 

rutting, and IRI due to bias with respect to the initial no bias case. The values obtained 

for San Ysidro, Cuba, and Bloomfield are averaged. 

As in the previous table, the percentage of distress variation due to 10%, 20%, and 30% 

positive and negative bias is calculated for longitudinal, alligator, and transverse cracking 

and included in Table 3.5. In both tables, the percentage of variation per one percent bias 

is calculated from the average values of the three WIM sites. The effect of weight 

measurement bias on predicted distresses are analyzed thoroughly in the next section. 

3.9 Influence on Pavement Performance 

The sensitivity of total and AC permanent deformation to weight measurement bias is 

plotted in Figures 3.10 (a) and 3.10 (b), respectively. The sensitivity of both rutting 

distresses is exactly the same, and equal for the three WIM sites. A positive or negative 

bias of 1% results in an increase or decrease in the predicted rutting of 1%, respectively. 

Also, it is interesting that the relationship between bias and variation of rutting is linear. 
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In this case the effect of weight measurement error on predicted permanent deformation 

is considerable but not critical. 

Longitudinal cracking is the only distress producing failure of the pavement sections 

corresponding to the San Ysidro and Bloomfield sites. Figures 3.11 (a) and 3.11 (b) show 

the variation of longitudinal and alligator cracking versus weight measurement bias. In 

these two distresses, the relationship between cracking and bias is nonlinear in such a 

way that the influence of positive bias triples that of negative bias. A negative weight 

measurement bias of 1% produces an average decrease in longitudinal cracking of 3.69%, 

while a positive bias of 1% results in an average increase of 9.21%. Similarly, a negative 

bias of 1% results in an average decrease in alligator cracking of 3.08% and a positive 

bias of 1% produces an average increase of 5.94%. As shown, weight measurement bias 

affects dramatically the predicted longitudinal and alligator cracking. Therefore, 

erroneous weigh-in-motion data can lead to overestimated and underestimated pavement 

thickness, and thus, to unnecessary costs of construction and maintenance. 

The influence of weight measurement bias on transverse cracking and IRI can be 

analyzed in Figures 3.12 (a) and 3.12 (b). As expected, weight measurement bias has no 

effect on transverse cracking because this type of distress depends upon temperature 

rather than load. Similarly, the effect of bias on the international roughness index is 

negligible since 1% bias produces a variation of 0.1%. 
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Figure 3.1 Location of WIM sites in New Mexico 
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Table 3.1 WIM sites location and type of technology 

 

Site Name 

Site 

Code 

 

County 

Road 

Name 

 

Milepost 

Type of 

Technology 

HATCHITA 

VADO 

RINCON 

LEMITAR 

RATON * 

GALLUP 

TUCUMCARI 

LOGAN * 

HOBBS 

TULAROSA 

ROSWELL 

SAN ANTONIO 

SAN YSIDRO 

CUBA  

BLOOMFIELD 

4 

74 

300 

252 

B28 

111 

B20 

100 

202 

919 

916 

915 

103 

102 

155 

Grant 

Doña Ana 

Doña Ana 

Socorro 

Colfax 

McKinley 

Quay 

Quay 

Lea 

Otero 

Roosevelt 

Socorro 

Sandoval 

Sandoval 

San Juan 

I-10 

I-10 

I-25 

I-25 

I-25 

I-40 

I-40 

US-54 

US-62/180 

US-70 

US-70 

US-380 

US-550 

US-550 

US-550 

50.05 

155.6 

37.2 

158.8 

445 

10.7 

340.9 

328 

84 

231.65 

354.3 

15.7 

24.738 

71.051 

121.5 

Piezo 

Piezo 

Piezo 

Piezo 

Piezo 

Piezo 

Piezo 

Piezo 

Piezo 

Piezo 

Piezo 

Piezo 

Bending Plate 

Bending Plate 

Bending Plate 

 * These sites are currently not operating 
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Table 3.2 Number and percentage of invalid records 

WIM 

Site 

Months 

of Data 

Total Number of 

Trucks Weighed 

Invalid 

Records 

% of Invalid 

Records 

HATCHITA 

VADO 

RINCON 

LEMITAR 

GALLUP 

TUCUMCARI 

HOBBS 

TULAROSA 

ROSWELL 

SAN ANTONIO 

SAN YSIDRO 

CUBA 

BLOOMFIELD 

12 

4 

2 

3 

10 

12 

7 

12 

7 

2 

12 

11 

11 

1,962,777 

925,353 

163,000 

72,879 

2,069,164 

1,885,748 

242,717 

370,163 

119,488 

3,809 

359,120 

255,719 

307,603 

23,930 

3,789 

251 

388 

498 

111,676 

929 

645 

287 

14 

706 

158 

1,565 

1.22 % 

0.41 % 

0.15 % 

0.53 % 

0.02 % 

5,92 % 

0.38 % 

0.17 % 

0.24 % 

0.37 % 

0.20 % 

0.06 % 

0.51 % 
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Table 3.3 Traffic volume and percentage of trucks 

WIM 

Site 

Average Daily 

Traffic (ADT) 

Average Daily Truck 

Traffic (ADTT) 

Percentage of 

Trucks 

HATCHITA 

VADO 

RINCON 

LEMITAR 

GALLUP 

TUCUMCARI 

HOBBS 

TULAROSA 

ROSWELL 

SAN ANTONIO 

SAN YSIDRO 

CUBA 

BLOOMFIELD 

12,655 

34,444 

6,466 

7,453 

17,387 

11,767 

3,503 

6,677 

1,969 

3,077 

5,176 

4,357 

5,045 

6,719 

8,524 

2,989 

1,160 

10,704 

6,204 

1,477 

1,021 

733 

539 

1,168 

1,019 

1,288 

53.09 % 

24.75 % 

46.22 % 

15.56 % 

61.56 % 

52.72 % 

42.17 % 

15.30 % 

37.24 % 

17.53 % 

22.56 % 

23.40 % 

25.54 % 

 

 

 

 

 

 

 

 



60 
 

Table 3.4 Variation of predicted rutting and IRI due to weight measurement bias 

TOTAL RUTTING (% variation) 

WIM site | % bias -30 -20 -10 0 10 20 30 

SAN YSIDRO 

CUBA 

BLOOMFIELD 

Average 

-29.02 

-30.04 

-29.75 

-29.61 

-19.61 

-20.18 

-19.83 

-19.87 

-9.80 

-9.87 

-9.92 

-9.86 

0.00 

0.00 

0.00 

0.00 

9.80 

9.87 

10.33 

10.00 

19.22 

19.73 

19.83 

19.59 

29.41 

29.60 

29.75 

29.59 

% variation / % bias 0.99 0.99 0.99   1.00 0.98 0.99 

AC RUTTING (% variation) 

WIM site | % bias -30 -20 -10 0 10 20 30 

SAN YSIDRO 

CUBA 

BLOOMFIELD 

Average 

-28.70 

-29.63 

-30.00 

-29.44 

-19.13 

-19.75 

-20.00 

-19.63 

-9.57 

-9.88 

-10.00 

-9.81 

0.00 

0.00 

0.00 

0.00 

9.57 

9.88 

10.00 

9.81 

19.13 

19.75 

20.00 

19.63 

29.57 

29.63 

30.00 

29.73 

% variation / % bias 0.98 0.98 0.98   0.98 0.98 0.99 

IRI (% variation) 

WIM site | % bias -30 -20 -10 0 10 20 30 

SAN YSIDRO 

CUBA 

BLOOMFIELD 

Average 

-3.04 

-2.25 

-2.40 

-2.56 

-2.11 

-1.52 

-1.48 

-1.70 

-1.10 

-0.80 

-0.55 

-0.82 

0.00 

0.00 

0.00 

0.00 

1.18 

0.72 

1.29 

1.07 

2.36 

1.44 

2.31 

2.04 

3.72 

2.17 

3.32 

3.07 

% variation / % bias 0.09 0.09 0.08   0.11 0.10 0.10 
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Table 3.5 Variation of predicted cracking due to weight measurement bias 

LONGITUDINAL CRACKING (% variation) 

WIM site | % bias -30 -20 -10 0 10 20 30 

SAN YSIDRO 

CUBA 

BLOOMFIELD 

Average 

-86.09 

-88.00 

-87.90 

-87.33 

-70.65 

-73.58 

-73.27 

-72.50 

-43.05 

-46.63 

-46.42 

-45.37 

0.00 

0.00 

0.00 

0.00 

68.71 

77.89 

76.54 

74.38 

154.60 

198.95 

191.36 

181.64 

259.92 

381.05 

358.64 

333.20 

% variation / % bias 2.91 3.63 4.54   7.44 9.08 11.11 

ALLIGATOR CRACKING (% variation) 

WIM site | % bias -30 -20 -10 0 10 20 30 

SAN YSIDRO 

CUBA 

BLOOMFIELD 

Average 

-77.48 

-77.54 

-78.41 

-77.81 

-60.79 

-60.92 

-61.81 

-61.17 

-35.43 

-35.62 

-36.56 

-35.87 

0.00 

0.00 

0.00 

0.00 

49.61 

50.00 

51.98 

50.53 

117.32 

116.15 

120.70 

118.06 

203.94 

202.31 

212.33 

206.19 

% variation / % bias 2.59 3.06 3.59   5.05 5.90 6.87 

TRANSVERSE CRACKING (% variation) 

WIM site | % bias -30 -20 -10 0 10 20 30 

SAN YSIDRO 

CUBA 

BLOOMFIELD 

Average 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

% variation / % bias 0 0 0   0 0 0 
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Figure 3.2 Class 9 gross vehicle weight frequency distribution: a) functional class 1, 
b) functional class 2 
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Figure 3.3 Class 9 steering axle weight frequency distribution: a) functional class 1, 
b) functional class 2 
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Figure 3.4 Vehicle class distribution: a) functional class 1, b) functional class 2 
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Figure 3.5 Directional distribution: a) functional class 1, b) functional class 2 
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Figure 3.6 Lane distribution: a) functional class 1, b) functional class 2 
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Figure 3.7 Monthly distribution: a) functional class 1, b) functional class 2 
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Figure 3.8 Hourly distribution: a) functional class 1, b) functional class 2 
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Figure 3.9 Axle load spectra of selected WIM sites: a) single class 9, b) tandem class 9, 

c) tridem class 10 
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Figure 3.10 Effect of bias on axle load spectra at San Ysidro site: 
a) single class 9, b) tandem class 9, c) tridem class 10 
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Figure 3.11 Influence of weight measurement bias on predicted rutting: 
a) total rutting, b) AC rutting 
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Figure 3.12 Influence of weight measurement bias on predicted cracking: 
a) longitudinal cracking, b) alligator cracking 
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Figure 3.13 Influence of weight measurement bias on cracking and IRI: 
a) transverse cracking, b) IRI 
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Chapter 4  

LOCAL CALIBRATION OF THE MEPDG FOR FLEXIBLE 

PAVEMENT IN NEW MEXICO 

 

4.1 Introduction 

The pavement distress prediction models of the new Mechanistic-Empirical Pavement 

Design Guide (MEPDG) were calibrated at a national level using pavement sections from 

the Long Term Pavement Performance (LTPP) database across North America. As a 

result, the default configuration of the MEPDG predicts the average performance of a 

flexible pavement in the United States but fails to predict accurately its performance at a 

particular location. Therefore, the calibration coefficients of these empirical models 

should be adjusted specifically for each state so differences in construction practices, 

maintenance policies, and material specifications from one location to another are 

considered. 

The final goal of the local calibration process is to determine a set of calibration 

coefficients that eliminates bias and increases precision of the pavement performance 

models. The consequences are higher reliability levels in the design and the reduction of 

construction and maintenance costs. The local calibration process has two main steps: 

calibration and validation. Calibration is the mathematical process involving local 

pavement data sets in which the residual error (difference between MEPDG predicted and 

field observed values of distress) is minimized. Validation is necessary to confirm that 

the calibrated model can perform accurate predictions for cases other than those used in 

the calibration. 
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In this chapter, the following objectives are pursued: 

• Collect data of all MEPDG inputs (traffic, climate, and materials) for a sufficient 

number of pavement sections throughout New Mexico. 

• Determine for every distress model a set of calibration coefficients that minimize 

the residual error (difference between observed and predicted distresses). 

• Validate the effectiveness of these calibration coefficients for a number of 

pavement sections that were not included in the local calibration process. 

4.2 Pavement Sections for Calibration 

The internal databases of New Mexico Department of Transportation (NMDOT) are the 

first source considered for collecting the traffic, climate, structure, materials, and 

performance data necessary to obtain a sufficient number of local pavement sections. 

Indeed, all these databases have been consolidated in the new NMDOT Flexible 

Pavement Database created at the University of New Mexico. A total of 29 sections are 

completed for a variety of roads across the state but their use is discarded because the 

corresponding distress data is inconsistent and unreliable. The reason for this is that 

NMDOT measures pavement performance with qualitative ratings rather than with 

quantitative measures of distress (depth of rutting or length of cracks). Nonetheless, these 

sections are kept aside in case that better performance data is obtained in the future. This 

leaves the LTPP database as the only source of data.  

However, the LTPP database created under the Strategic Highway Research Program 

(SHRP) contains extensive amounts of data and is consistent and reliable being the main 

resource used by most state agencies in their calibration efforts. There are 11 complete 

flexible experiments within the state of New Mexico. The code, location, functional class, 
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construction date, and type of each of these sections are contained in Table 4.1. As 

shown, six sections are new flexible pavements while the other five are rehabilitated 

asphalt concrete pavements. Figure 4.1 shows the location of these sections across New 

Mexico (LTPP Database Reference Manual, 2006).  

4.3 Data Collection 

4.3.1 Traffic Data 

The traffic information necessary to run the MEPDG is obtained from the following 

LTPP database tables: 

 TRF_BASIC: Location and number of lanes. 

 TRF_MEPDG_AADTT_LTPP_LN: Annual average daily truck traffic. 

 TRF_MONITOR_LTPP_LN: AADTT and vehicle class distribution. 

 TRF_MEPDG_VEH_CLASS_DIST: Vehicle class distribution. 

 TRF_MEPDG_MONTHLY_ADJ_FACTORS: Monthly distribution factors. 

 TRF_MONITOR_AXLE_DISTRIB: Axle load spectra. 

 TRF_MEPDG_AX_PER_TRUCK: Number of axles of each type per truck class. 

The directional distribution, the lane distribution, and the truck growth rate are obtained 

from NMDOT sources. Default values are used for other traffic inputs. Table 4.2 shows 

the AADTT for each section, the truck growth rate at the beginning of the design life, and 

the percentage of class 5, 8 and 9 trucks. 

4.3.2 Climatic Data 

The climatic data is obtained by interpolating the MEPDG weather files at the location of 

each section. The ground water table depth is assumed to be 100 ft as suggested by 
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NMDOT. The following LTPP tables are used to collect the coordinates and elevation of 

each section: 

 CLM_SITE_VWS_LINK: Weather stations. 

 CLM_VWS_OWS_LINK: Weather stations and distance to LTPP sections. 

 CLM_OWS_LOCATION: Longitude, latitude and elevation. 

Table 4.3 contains the coordinates and elevation where the climatic data is interpolated 

and the ground water table depth. 

4.3.3 Structural Data 

The number of layers, and the thickness and type of each pavement layer are included in 

Table 4.4. This information has been collected from the following LTPP tables: 

 INV_ID: Location and elevation of sections. 

 INV_AGE: Date of construction. 

 INV_MAJOR_IMPROV: Date, thickness and type of rehabilitation. 

 INV_LAYER: Number of layers, thickness and type of each layer. 

4.3.4 Materials Data 

In the flexible pavement sections used in this study, there are mainly three types of 

materials: asphalt concrete, engineered granular soil, and natural soil. The properties of 

these materials are extracted from the following LTPP tables: 

 INV_GRADATION: Gradation analysis of layers. 

 INV_PMA_ASPHALT: Binder grade of asphalt. 

 INV_PMA_ORIG_MIX: Asphalt content and air voids of mixture. 

 INV_UNBOUND: Properties of unbound granular soil. 
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 INV_SUBGRADE: Properties of natural soil. 

 TST_AG04: Gradation of AC mixture aggregates. 

 TST_AC05: Asphalt content, air voids, and specific gravity of mixture. 

 TST_SS04_UG08: AASHTO class of soil. 

 TST_SS01_UG01_UG02: Gradation of soil. 

 TST_UG04_SS03: Plasticity index (PI) and liquid limit (LL). 

 TST_UG05_SS05: Moisture content and maximum dry unit weight. 

Table 4.5 contains the binder grade, asphalt content, air voids percent, unit weight, and 

aggregate gradation of the AC mixtures used in these sections. Tables 4.6 and 4.7 shows 

the AASHTO class, PI, LL, sieve analysis, maximum dry unit weight, optimum 

gravimetric water content, and R-value of the soils used for the granular base and the 

subgrade respectively. 

4.3.5 Performance Data 

Measures of total rutting, alligator cracking, longitudinal cracking, transverse cracking 

and international roughness index (IRI) at the LTPP sections are obtained from the 

following tables: 

 MON_T_PROFILE_INDEX_SECTION: Total rutting. 

 MON_DIS_AC_REV: Alligator, longitudinal, and transverse cracking. 

 MON_PROFILE_MASTER: IRI. 

Tables 4.8, 4.9, and 4.10 contains the measurements of total rutting, alligator cracking, 

and longitudinal cracking respectively that were taken between 1989 and 2007 at the 

LTPP experiments. 
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4.4 Calibration-Validation Methodology 

Calibration of the performance prediction models is achieved by varying the coefficients 

such that the residual sum of squared errors is reduced. The distress values measured in 

the field are compared to those predicted by the MEPDG and the residual error is 

calculated at five particular times per section equally distributed through the pavement 

design life. 

The possibility of using numerical nonlinear optimization techniques was explored but its 

application would be too difficult since the MEPDG prediction of distress is a very 

complex iterative process. Therefore, the only way to proceed is to run the MEPDG 

multiple times for different combinations of the calibration coefficients and calculate the 

corresponding sum of squared errors. 

The split-sample approach is used in the calibration-validation process: 9 out of 11 LTPP 

sections are chosen randomly for use in the calibration of each distress model while the 

other 2 sections are kept aside to check whether the calibrated pavement performance 

model can reduce the error in the MEPDG prediction of distress for cases different to 

those used during calibration. 

4.5 Permanent Deformation Model 

4.5.1 Prediction of Permanent Deformation in the MEPDG 

This section describes the empirical model used in the MEPDG to predict the permanent 

deformation occurring in the pavement layers (MEPDG Documentation, 2004). 

The plastic strain of the asphalt concrete layer is given by the following equations: 

𝜀𝑝
𝜀𝑟

= 𝑘𝑧  𝛽𝑟1  10𝑘1  𝑇𝑘2 𝛽𝑟2  𝑁𝑘3 𝛽𝑟3        Eq. 4.1 
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𝑘𝑧 = (𝐶1 + 𝐶2 𝑑) 0.328196𝑑    Eq. 4.2 

𝐶1 = −0.1039 ℎ𝐴𝐶2 + 2.4868 ℎ𝐴𝐶 − 17.342   Eq. 4.3 

𝐶2 = 0.0172 ℎ𝐴𝐶2 − 1.7331 ℎ𝐴𝐶 + 27.428   Eq. 4.4 

where  εp = Plastic strain of the asphalt concrete layer (in/in) 

εr = Resilient strain of the asphalt concrete layer (in/in) 

T = Asphalt concrete layer temperature (°F) 

N = Number of axle load repetitions 

d = Depth of the point where strain is being determined (in) 

hAC = Thickness of the asphalt concrete layer (in) 

k1 = -3.35412, k2 = 1.5606, k3 = 0.4791 

βr1, βr2, βr3 = calibration coefficients to be optimized 

This plastic strain value multiplied by the AC thickness provides the permanent 

deformation occurring at the asphalt concrete layer. The permanent deformation for 

granular bases and the subgrade is obtained using the following formula: 

𝛿𝑎 = 𝛽𝑠1  𝑘1  𝜀𝑣  ℎ  𝜀0
𝜀𝑟

  𝑒−�
𝜌
𝑁�

𝛽

   Eq. 4.5 

where  δa = Permanent deformation of the unbound layer (in) 

N = Number of axle load repetitions 

εv = Average vertical strain in the unbound layer (in/in) 

h = Thickness of the unbound layer (in) 

εr = Resilient strain in the unbound layer (in/in) 

ε0, β, ρ = Material properties 

k1 = 2.03 for granular base and 1.35 for subgrade 

βs1 = Calibration coefficient to optimize for both base and subgrade 
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The total permanent deformation of the section is the summation of the permanent 

deformation occurring in every single layer: 

𝑃𝐷 = � 𝜀𝑝𝑖   ℎ𝑖
𝑙𝑎𝑦𝑒𝑟𝑠

𝑖=1

 

=  ℎ𝐴𝐶  𝜀𝑟  𝑘𝑧  𝛽𝑟1  10𝑘1  𝑇𝑘2 𝛽𝑟2  𝑁𝑘3 𝛽𝑟3 

+ 𝛽𝐺𝐵  𝑘𝐺𝐵  𝜀𝑣  ℎ𝐺𝐵   𝜀0
𝜀𝑟

  𝑒−�
𝜌
𝑁�

𝛽

𝐺𝐵
       Eq. 4.6 

+ 𝛽𝑆𝐺  𝑘𝑆𝐺  𝜀𝑣  ℎ𝑆𝐺   
𝜀0
𝜀𝑟

  𝑒−�
𝜌
𝑁�

𝛽

𝑆𝐺
  

where  PD = Total permanent deformation (in) 

εp
i = Total plastic strain of layer i (in/in) 

hi = Thickness of layer i (in) 

In the previous equation, there are five calibration coefficients: βr1, βr2, and βr3 for the 

asphalt concrete layer, βGB for the granular base layer, and βSG for the subgrade. These 

coefficients cannot be calibrated separately for each layer since individual rutting data of 

each pavement layer is not available. Therefore, only the total permanent deformation 

prediction can be calibrated. Measurement of rutting at each pavement layer would 

require cutting trenches in the pavement sections but it would make the local calibration 

process much easier and more accurate.  

4.5.2 Calibration of the Permanent Deformation Model 

LTPP sections 2006 and 6033 are chosen randomly to be kept aside for validation while 

the nine remaining sections are used in the calibration process. 

In the total rutting equation, βr2 and βr3 are respectively exponents to the AC temperature 

and the number of axle loads which are large numbers. Therefore, βr2 and βr3 are 
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nonlinear calibration coefficients and the two most sensitive parameters of this model. 

The remaining calibration coefficients βr1, βGB, and βSG are linear calibration factors. 

It is decided to optimize βr2 and βr3 in a first iterative run. This is done by varying and 

permuting the two nonlinear calibration coefficients while the other three, βr1, βGB, and 

βSG are set to the default value 1.0. The residual sum of squared errors which is the target 

to reduce is calculated for every set of βr2 and βr3 values. 

Table 4.11 contains the sets of calibration coefficients considered in this first step and the 

corresponding sum of squared errors (SSE) and mean residual error (MRE) per section. 

As shown, the set of calibration coefficients βr2 = 0.9 and βr3 = 1.2 reduces the SSE from 

0.9107 to 0.6724. Similarly the MRE per section is reduced from 0.1060 to 0.0911. 

In a second iterative run, the calibration coefficients βr2 and βr3 are fixed to 0.9 and 1.2 

respectively, while the values of βr1, βGB, and βSG are varied and permuted. Table 4.12 

shows the SSE and the MRE per section for every set of coefficients. It is observed that 

the set βr1 = 1.0, βr2 = 0.9, βr3 = 1.2, βGB = 0.8, and βSG = 0.8 reduces the sum of squared 

errors to 0.6217 and the mean residual error per section to 0.0876. 

A total of 476 MEPDG runs were initially made but more were performed in order to 

refine the calibration coefficients and reduce the SSE even more.  

Figure 4.2 plots measured total rutting versus predicted total rutting with default MEPDG 

settings. There is significant bias. Most of the data points fall on the right side of the line 

of equality suggesting that MEPDG tends to under-predict rutting. 

With calibration, bias is eliminated. Now the line of equality is around the middle of the 

scatterplot. This is evident from Figure 4.3 which plots the measured total rutting versus 

the corresponding prediction with calibrated MEPDG. 
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4.5.3 Validation of the Permanent Deformation Model 

Validation of the calibrated permanent deformation model requires running the MEPDG 

for LTPP sections 2006 and 6033 using the new set of calibration coefficients. Then, the 

corresponding SSE and MRE are calculated to check whether the new model reduces the 

residual error for the validation sections as well. 

Figures 4.4 (a) and 4.4 (b) compare the field measurements of total rutting and the 

uncalibrated and calibrated MEPDG predictions through the pavement design life of 

sections 2006 and 6033, respectively. The new model improves the MEPDG prediction 

for section 2006 but it does not for section 6033. The SSE of these two sections increases 

from 0.3291 to 0.5121. If the squared error of the validation sections is added to that of 

the calibration sections, the new model still reduces the SSE from 1.2398 to 1.1338. This 

validation is considered acceptable, but more sections are needed for a better calibration. 

4.6 Alligator (Bottom-Up) Cracking Model 

4.6.1 Prediction of Alligator Cracking in the MEPDG 

The approach used in the MEPDG to model fatigue cracking is based on the calculation 

of fatigue damage at the surface for top-down (longitudinal) cracking and at the bottom 

of the asphaltic layer for bottom-up (alligator) cracking (MEPDG Documentation, 2004). 

The fatigue damage is estimated using the following relationship known as Miner’s Law:  

𝐷 = �
𝑛𝑖
𝑁𝑖

𝑇

𝑖=1

 

where  D = Fatigue damage 

T = Total number of periods 

Eq. 4.7 
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ni = Actual number of axle load repetitions applied during period i 

Ni = Number of load repetitions to fatigue cracking 

The following mathematical relationship is used for predicting the number of load 

repetitions to fatigue cracking: 

𝑁𝑓 = 0.00432 𝐶 𝛽𝑓1 𝑘1  �1
𝜀𝑡
�
𝑘2 𝛽𝑓2

 �1
𝐸
�
𝑘3 𝛽𝑓3

   Eq. 4.8 

𝐶 = 10𝑀     Eq. 4.9 

𝑀 = 4.84 � 𝑉𝑏
𝑉𝑎+𝑉𝑏

− 0.69�    Eq. 4.10 

where  Nf = Number of load repetitions to fatigue cracking 

  εt = Tensile strain at the critical location (in/in) 

  E = Stiffness modulus of the asphalt concrete (psi) 

  k1 = 0.007566, k2 = 3.9492, k3 = 1.281 

Vb = Effective binder content (%) 

  Va = Percent of air voids (%) 

  βf1, βf2, βf3 = Calibration coefficients to be optimized 

The critical location may be at the surface for top-down cracking or at the bottom of the 

asphalt concrete layer for bottom-up cracking. The final transfer function provides 

bottom-up fatigue cracking from the fatigue damage and is expressed as: 

𝐹𝐶𝑏𝑜𝑡𝑡𝑜𝑚 = 1
60

 � 𝐶3
1+𝑒𝐶1 𝐶′1+𝐶2 𝐶′2 𝑙𝑜𝑔10(100 𝐷)�          Eq. 4.11 

𝐶′2 = −2.40874 − 39.748 (1 + ℎ𝐴𝐶)−2.856           Eq. 4.12 

𝐶′1 = −2 𝐶′2     Eq. 4.13 

where  FCbottom = Bottom-up fatigue cracking (% of the lane area)  

  D = Bottom-up fatigue damage 
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  hAC = Thickness of the asphalt concrete layer 

  C1, C2, C3 = Calibration coefficients to be optimized 

4.6.2 Calibration of the Alligator Cracking Model 

Sections 1002 and 1022 are randomly chosen for validation. The remaining nine sections 

are used in the calibration process. 

The coefficients βf1, βf2, and βf3 of the fatigue damage prediction equation cannot be 

calibrated because there is no available data to compare with. Calibration of these factors 

would require performing lab testing on the asphalt concrete mixtures used in the sections 

to determine the number of load repetitions necessary to initiate fatigue cracking. 

Therefore, the calibration coefficients βf1, βf2, and βf3 are set to default value 1.0. 

In the bottom-up cracking transfer function, the calibration coefficients C1 and C2 are 

varied and permuted in order to find a combination of values that will reduce the SSE. 

The coefficient C3 is fixed at the default value 6000. Table 4.13 shows the sum of 

squared errors and the mean residual error per section for several sets of calibration 

coefficients. It is found that C1 = 0.625 and C2 = 0.25 reduces the SSE from 1383.58 to 

1227.87 and the MRE per section from 4.13 to 3.89. 

The calibration is refined by varying the three coefficients and performing more MEPDG 

runs. The combination of coefficients C1 = 0.73, C2 = 0.09, and C3 = 7200 further 

reduces the SSE to 1133.13 and the MRE to 3.74. 

The graph predicted versus measured alligator cracking before calibration is plotted in 

Figure 4.5. It is observed that the alligator cracking predicted by MEPDG with default 

settings is almost zero. The measurements vary from zero to some high values. It seems 

that MEPDG tends to under-predict alligator cracking as well. 
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Figure 4.6 compares predicted versus measured alligator cracking after performing 

calibration. It is shown that the calibration process brings many data points closer to the 

line of equality. Prediction can still be improved with additional MEPDG runs. 

4.6.3 Validation of the Alligator Cracking Model 

In the validation process, sections 1002 and 1022 are run in the MEPDG with the 

calibrated alligator cracking model. Figures 4.7 (a) and 4.7 (b) compare the uncalibrated 

and calibrated MEPDG predictions with the measurements taken in the field during the 

design life of sections 1002 and 1022, respectively. Default MEPDG does not predict any 

alligator cracking at all for section 1002, in consequence the new calibration coefficients 

improve the prediction of future distress. In the case of section 1022, it seems that the 

default MEPDG prediction is more accurate but probably the new model will match 

better the distress measured in the future. The SSE of these two sections increases from 

0.61 to 46.92 with the new model. But considering the eleven sections, the new 

calibration coefficients reduce the SSE from 1384.19 to 1180.05. 

4.7 Longitudinal (Top-Down) Cracking Model 

4.7.1 Prediction of Longitudinal Cracking in the MEPDG 

The approach used in the MEPDG to predict longitudinal cracking is based on the 

estimation of the fatigue damage that was described previously in detail (MEPDG 

Documentation, 2004). The next transfer function calculates the longitudinal fatigue 

cracking: 

𝐹𝐶𝑡𝑜𝑝 = 10.56 � 𝐶3
1+𝑒𝐶1−𝐶2 𝑙𝑜𝑔10(100 𝐷)�       Eq. 4.14 

where  FCtop = Top-down fatigue cracking (ft/mile) 
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D = Top-down fatigue damage 

C1, C2, C3 = Calibration coefficients to be optimized 

4.7.2 Calibration of the Longitudinal Cracking Model 

Sections 1003 and 6035 are reserved for validation. In the calibration of the longitudinal 

cracking model, the numerator of the corresponding transfer function (C3) is kept 

constant at the default value 1000. The calibration coefficients C1 and C2 are varied and 

the MEPDG is run for different combinations of these parameters. 

Table 4.14 shows the SSE and the MRE per section for different values of the C1 and C2 

coefficients. The calibration coefficients C1 = 5 and C2 = 2.25 reduce the SSE from 

34,814,457.96 to 33,612,603.89 and the MRE from 655.60 to 644.18. The improvement 

is not significant, and therefore, more MEPDG runs are performed varying the three 

coefficients. Finally, the set C1 = 5.5, C2 = 2.56, and C3 = 1000 reduces the SSE to 

26,601,745.13 and the MRE to 573.08. 

Figures 4.8 and 4.9 illustrate the predicted versus measured longitudinal cracking values 

before and after calibration, respectively. Even though the top-down cracking data is too 

scattered, calibration still brings some data points closer to the line of equality, and thus, 

bias is reduced.  

4.7.3 Validation of the Longitudinal Cracking Model 

Sections 1003 and 6035 are run with the calibrated longitudinal cracking model for 

validation. Figures 4.10 (a) and 4.10 (b) compare the uncalibrated and calibrated MEPDG 

predictions with the values measured in the field for sections 1003 and 6035, 

respectively. The new calibration factors improve the longitudinal cracking prediction of 

both sections. The SSE is reduced from 27,816,784.48 to 17,759,263.90 for the validation 
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sections and from 62,631,242.44 to 44,361,009.03 for the eleven LTPP sections. This 

validation is considered successful. 
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Table 4.1 LTPP flexible pavement sections in New Mexico 

State 

Code 

SHRP 

Id 
Road Milepoint 

Functional 

Class 

Type of 

Experiment 

Construction 

Date * 

35 

35 

35 

35 

35 

35 

35 

35 

35 

35 

35 

1002 

1003 

1005 

1022 

1112 

2006 

2007 

2118 

6033 

6035 

6401 

US-70 

US-70 

I-25 

US-550 

US-62 

US-550 

US-550 

I-40 

I-25 

I-40 

I-40 

310.1 

320.9 

263.8 

125.1 

81.3 

89.5 

106.2 

346.2 

159.3 

96.7 

107.7 

2 

2 

1 

2 

2 

2 

2 

1 

1 

1 

1 

GPS-6A 

GPS-1 

GPS-1 

GPS-1 

GPS-1 

GPS-2 

GPS-6A 

GPS-2 

GPS-6A 

GPS-6A 

GPS-6A 

May, 1985 

May, 1983 

Sep, 1983 

Sep, 1986 

May, 1984 

Jun, 1982 

Jun, 1981 

Dec, 1979 

May, 1981 

May, 1985 

May, 1984 

 GPS-1: Asphalt Concrete on Unbound Granular Base 
 GPS-2: Asphalt Concrete on Bound Granular Base 
 GPS-6A: Existing AC Overlay on AC Pavement 
 * This is the date of last major improvement in the case of rehabilitated sections. 
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Figure 4.1 LTPP sections in New Mexico 
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Table 4.2 AADTT, truck growth, and classes 5, 8 and 9 at LTPP sections 

SHRP 

Id 

Traffic Open 

Date 

Initial two-

way AADTT 

Growth 

Rate (%) * 

Class 5 

(%) 

Class 8 

(%) 

Class 9 

(%) 

351002 

351003 

351005 

351022 

351112 

352006 

352007 

352118 

356033 

356035 

356401 

Jun, 1985 

Jun, 1983 

Oct, 1983 

Oct, 1986 

Jun, 1984 

Jul, 1982 

Jul, 1981 

Jan, 1980 

Jun, 1981 

Jun, 1985 

Jun, 1984 

736 

735 

2971 

911 

559 

844 

563 

831 

1885 

540 

1760 

0.1 

0.1 

0.3 

1.0 

3.2 

0.4 

2.8 

7.3 

0.5 

10.4 

4.7 

14.5 

14.5 

23.4 

30.4 

32.9 

23.5 

36.8 

4.8 

39.9 

16.4 

9.2 

13.1 

13.1 

17.0 

13.5 

9.9 

17.7 

10.0 

5.6 

17.9 

7.1 

5.4 

67.7 

67.7 

47.9 

42.6 

44.5 

42.8 

39.6 

79.2 

32.6 

71.6 

75.9 

 * The truck growth rate is assumed to be compound. 
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Table 4.3 Coordinates, elevation, and ground water table depth of LTPP sections 

SHRP 

Id 

Latitude 

(dd.mm) 

Longitude 

(dd.mm) 

Elevation 

(ft) 

GWT Depth 

(ft) 

351002 

351003 

351005 

351022 

351112 

352006 

352007 

352118 

356033 

356035 

356401 

33.22 

33.23 

35.31 

36.22 

32.38 

36.11 

36.15 

35.10 

34.12 

35.50 

35.20 

-104.55 

-104.44 

-106.14 

-107.50 

-103.31 

-107.20 

-107.36 

-103.29 

-106.55 

-107.39 

-107.29 

3800 

3800 

5523 

6727 

3760 

6742 

7021 

3927 

4662 

6200 

5893 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 
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Table 4.4 Layer system of LTPP sections 

SHRP 

Id 
Type and Thickness of Layers 

351002 

351003 

351005 

351022 

351112 

352006 

352007 

352118 

356033 

356035 

356401 

AC Overlay (3.9 in); AC Existing (5.2 in); GB (5 in); SG (semi-infinite) 

AC (7.6 in); GB (5 in); SG (semi-infinite) 

AC (9.1 in); GB (7 in); SG (semi-infinite) 

AC (6.6 in); GB (10 in); SG (semi-infinite) 

AC (5.6 in); GB (4 in); SG (semi-infinite) 

AC (6.1 in); GB (11.5 in); SG (semi-infinite) 

AC Overlay (2.1 in); AC Existing (7.1 in); GB (6 in); SG (semi-infinite) 

AC (11.1 in); GB (18 in); SG (semi-infinite) 

AC Overlay (3.1 in); AC Existing (4.8 in); GB (4 in); GB (8 in); SG (semi-infinite) 

AC Overlay (3.1 in); AC Existing (5.1 in); GB (16 in); SG (semi-infinite) 

AC Overlay (3.7 in); AC Existing (3.5 in); GB (12 in); SG (semi-infinite) 

 AC: Asphalt Concrete, GB: Granular Base, SG: Subgrade 
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Table 4.5 Asphalt concrete properties of LTPP sections 

SHRP 

Id 

Binder 

Viscosity Grade 

Effective Binder 

Content (%) 

Air Voids 

(%) 

Total Unit 

Weight (pcf) 

351002 

351003 

351005 

351022 

351112 

352006 

352007 

352118 

356033 

356035 

356401 

Pen 85-100 

Pen 85-100 

Pen 85-100 

Pen 85-100 

Pen 85-100 

AC 10 

Pen 85-100 

Pen 120-150 

Pen 85-100 

Pen 85-100 

Pen 85-100 

5.5 

5.9 

5.3 

5.9 

5.05 

5.5 

6.1 

4.8 

6.1 

5.5 

5.4 

4.1 

4.8 

3.9 

3.7 

4.4 

5.8 

4.6 

4.4 

3.2 

8.1 

4 

143.65 

143.8 

146 

147 

151.63 

142.7 

145.95 

147.8 

143.8 

149 

153 

SHRP 

Id 

Cum. Retained 

3/4 in (%) 

Cum. Retained 

3/8 in (%) 

Cum. Retained 

#4 (%) 

Passing 

#200 (%) 

351002 

351003 

351005 

351022 

351112 

352006 

352007 

352118 

356033 

356035 

356401 

0 

0 

0 

0 

0 

3.5 

0 

6 

0 

0 

1 

20 

23 

27 

26 

20 

41 

30.5 

35.5 

21.7 

30 

20 

43 

39.5 

48 

44 

36.5 

56 

44 

51 

43.3 

50 

42 

5.8 

10.2 

6 

6 

7.75 

7.85 

5 

5 

6 

3 

8.5 
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Table 4.6 Granular base properties of LTPP sections 

SHRP 

Id 

AASHTO 

Class 

 

PI 

 

LL 

Passing 

#4 (%) 

Passing 

#40 (%) 

Passing 

#200 (%) 

γdry 

(pcf) 

wopt 

(%) 

R- 

value* 

351002 

351003 

351005 

351022 

351112 

352006 

352007 

352118 

356033 

356033 

356035 

356401 

A-1-a 

A-2-4 

A-1-a 

A-1-b 

Gravel 

A-2-4 

A-3 

A-1-a 

A-1-b 

A-1-a 

Gravel 

A-1-b 

0.5 

10.5 

0 

0 

5.5 

0 

1.5 

0 

1 

1 

0 

6.5 

12 

28.5 

6 

6 

23.5 

14 

22 

6 

11 

21 

6 

23.5 

42 

41 

49.5 

59.5 

70 

99 

99 

42.5 

59 

62.5 

59.5 

47.5 

23.5 

18.5 

21 

35 

48.5 

88.5 

77.5 

21.5 

23 

24.5 

23.5 

20.5 

12.3 

12.3 

6.1 

9.3 

16.8 

14.4 

28.4 

6.9 

8 

11.2 

8 

12.8 

131.0 

139.5 

135 

138 

121 

122.5 

122 

138.5 

119 

131.5 

133 

142 

8.5 

6 

7.4 

6 

10 

10.5 

10 

5.5 

11.5 

7.5 

8 

5 

- 

- 

61 

- 

61 

54 

- 

- 

77 

75 

- 

- 

 The layer modulus is estimated from ICM inputs (Level 3). 
* The layer modulus is estimated from the R-value (Level 2). 
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Table 4.7 Subgrade properties of LTPP sections 

SHRP 

Id 

AASHTO 

Class 

 

PI 

 

LL 

Passing 

#4 (%) 

Passing 

#40 (%) 

Passing 

#200 (%) 

γdry 

(pcf) 

wopt 

(%) 

R- 

value* 

351002 

351003 

351005 

351022 

351112 

352006 

352007 

352118 

356033 

356035 

356401 

A-1-b 

A-2-4 

A-2-4 

A-2-4 

A-2-4 

A-2-4 

A-4 

A-2-4 

A-2-4 

A-4 

A-2-4 

2.5 

6 

3 

2 

0 

0 

5 

2 

2.5 

3.5 

2 

23 

23.5 

22.5 

19.5 

0 

14 

21 

14 

22 

23 

14 

52.5 

52.5 

95.5 

97.5 

99.5 

100 

93 

93.5 

79 

91 

98.5 

32 

34.5 

73.5 

73.5 

84 

82.5 

83 

85.5 

60.5 

78 

96 

21.4 

27.6 

28.7 

8.4 

13.7 

25.6 

37 

21.4 

41 

43.7 

23.1 

120.5 

130 

118 

122 

106 

122.5 

123 

114.5 

126 

121 

120 

11.5 

9.5 

14 

11.5 

12.5 

10 

9.3 

12.5 

9.5 

11.5 

11.5 

48 

- 

30 

49 

59 

53 

52 

51 

71 

24 

37 

 The layer modulus is estimated from ICM inputs (Level 3). 
* The layer modulus is estimated from the R-value (Level 2). 
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Table 4.8 Total rutting (in) measured in LTPP sections 

Yr 
SHRP Id 

1002 1003 1005 1022 1112 2006 2007 2118 6033 6035 6401 

89 0.1969 0.1969 0.6299 0.1969 0.1969 0.4724 0.2362 
 

0.2362 0.4724 0.2756 

90 
       

0.1969 0.2756 0.3543 0.3150 

91 0.1575 0.1969 0.6693 0.1575 0.1969 0.6299 0.1969 0.1575 0.2362 0.3543 0.3543 

92 
  

0.5512 0.1969 
 

0.4724 
  

0.2362 0.3937 0.3937 

93 0.1969 0.1181 
  

0.1575 
  

0.1575 
   

94 
           

95 0.3937 0.1969 0.6693 0.2756 0.2165 
 

0.1969 0.2362 0.2756 0.4331 0.4331 

96 
           

97 0.3543 0.1575 0.6693 0.2362 0.1969 
 

0.1575 0.2756 0.5118 0.4331 0.4724 

98 
           

99 0.3543 0.1969 0.7283 0.1969 0.1969 
 

0.1575 0.3150 0.4724 
 

0.4724 

00 
    

0.1969 
  

0.3543 
   

01 0.3543 
 

0.8268 
 

0.2362 
   

0.0394 
  

02 0.2756 
 

0.7480 
 

0.1772 
  

0.2756 
   

03 
  

0.8268 
 

0.1969 
      

04 
    

0.1969 
   

0.1969 
  

05 
  

0.8268 
        

06 
           

07 
       

0.3543 0.2362 
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Table 4.9 Alligator cracking (%) measured in LTPP sections 

Yr 
SHRP Id 

1002 1003 1005 1022 1112 2006 2007 2118 6033 6035 6401 

1991 0.00 0.00 0.00 0.00 0.00 0.00   0.00 0.00   3.17 

1992         

 

            

1993                       

1994 0.00 0.00 0.00 0.00 0.00   0.00 0.00 13.00 9.95 1.26 

1995   1.77     0.00             

1996         0.00             

1997 0.00 0.02 0.00 0.00 0.00   0.00 0.12 13.00 7.07 4.24 

1998                       

1999 0.05 0.00 0.00 0.00 0.00   0.61 0.27 13.00   6.51 

2000         0.00             

2001               3.97 12.63     

2002 0.75   0.00   0.00     0.00 25.70     

2003         0.00             

2004         0.00       0.00     

2005     0.00                 

2006                       

2007               0.00 0.00     
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Table 4.10 Longitudinal cracking (ft/mi) measured in LTPP sections 

Yr 
SHRP Id 

1002 1003 1005 1022 1112 2006 2007 2118 6033 6035 6401 

1989                       

1990                       

1991 0.00 706.77 0.00 0.00 0.00 0.00   0.00 5442.83   1773.86 

1992         

 

            

1993                       

1994 0.00 491.97 0.00 0.00 0.00   398.43 0.00 381.10 1087.87 5855.12 

1995   225.20     0.00             

1996         0.00             

1997 48.50 460.79 0.00 0.00 0.00   845.35 76.22 401.89 543.94 2885.98 

1998                       

1999 0.00 363.78 0.00 0.00 0.00   696.38 69.29 381.10   1739.21 

2000         0.00             

2001               0.00 381.10     

2002 69.29   0.00   0.00     0.00       

2003         0.00             

2004         0.00       0.00     

2005     0.00                 

2006                       

2007               0.00 0.00     
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Table 4.11 SSE and MRE of the rutting model for different βr2 and βr3 

Set # βr2 βr3 SSE MRE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.8 

0.8 

0.8 

0.8 

0.8 

0.9 

0.9 

0.9 

0.9 

0.9 

1 

1 

1 

1 

1 

1.1 

1.1 

1.1 

1.1 

1.1 

1.2 

1.2 

1.2 

1.2 

1.2 

0.8 

0.9 

1 

1.1 

1.2 

0.8 

0.9 

1 

1.1 

1.2 

0.8 

0.9 

1 

1.1 

1.2 

0.8 

0.9 

1 

1.1 

1.2 

0.8 

0.9 

1 

1.1 

1.2 

2.0613 

1.9586 

1.7671 

1.4305 

0.9309 

1.9448 

1.7495 

1.4121 

0.9248 

0.6724 

1.7237 

1.3834 

0.9107 

0.7289 

3.3398 

1.3433 

0.8906 

0.8148 

3.7853 

21.9508 

0.8685 

0.9518 

4.4849 

24.3645 

110.2678 

0.1595 

0.1555 

0.1477 

0.1329 

0.1072 

0.1550 

0.1470 

0.1320 

0.1069 

0.0911 

0.1459 

0.1307 

0.1060 

0.0949 

0.2031 

0.1288 

0.4719 

0.1003 

0.2162 

0.5206 

0.1035 

0.1084 

0.2353 

0.5484 

1.1668 
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Table 4.12 SSE and MRE of the rutting model for different βr1, βGB, and βSG 

Set # βr1 βr2 βr3 βGB βSG SSE MRE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

0.8 

0.8 

0.8 

1 

1 

1 

1.2 

1.2 

1.2 

0.8 

0.8 

0.8 

1 

1 

1 

1.2 

1.2 

1.2 

0.8 

0.8 

0.8 

1 

1 

1 

1.2 

1.2 

1.2 

0.8 

1 

1.2 

0.8 

1 

1.2 

0.8 

1 

1.2 

0.8 

1 

1.2 

0.8 

1 

1.2 

0.8 

1 

1.2 

0.8 

1 

1.2 

0.8 

1 

1.2 

0.8 

1 

1.2 

0.7150 

0.6510 

0.6335 

0.6944 

0.6500 

0.6524 

0.6823 

0.6596 

0.6818 

0.6217 

0.6391 

0.7033 

0.6352 

0.6724 

0.7564 

0.6592 

0.7163 

0.8202 

0.6899 

0.7890 

0.9350 

0.7376 

0.8566 

1.0225 

0.7961 

0.9348 

1.1203 

0.0940 

0.0896 

0.0884 

0.0926 

0.0896 

0.0897 

0.0918 

0.0902 

0.0917 

0.0876 

0.0888 

0.0932 

0.0886 

0.0911 

0.0966 

0.0902 

0.4232 

0.1006 

0.0923 

0.0987 

0.1074 

0.0954 

0.1028 

0.1124 

0.0991 

0.1074 

0.1176 
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Table 4.13 SSE and MRE of the alligator cracking model for different C1 and C2 

Set # C1 C2 C3 SSE MRE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.625 

0.625 

0.625 

0.625 

0.625 

1 

1 

1 

1 

1 

1.5 

1.5 

1.5 

1.5 

1.5 

2 

2 

2 

2 

2 

0.25 

0.625 

1 

1.5 

2 

0.25 

0.625 

1 

1.5 

2 

0.25 

0.625 

1 

1.5 

2 

0.25 

0.625 

1 

1.5 

2 

0.25 

0.625 

1 

1.5 

2 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

8355.94 

7447.21 

8579.38 

11181.53 

14527.67 

1227.87 

1400.68 

1547.42 

1833.23 

2383.02 

1335.85 

1370.69 

1383.58 

1395.21 

1414.60 

1401.18 

1403.89 

1405.28 

1405.64 

1405.69 

1407.68 

1407.68 

1407.68 

1407.68 

1407.68 

10.16 

9.59 

10.29 

11.75 

13.39 

3.89 

4.16 

4.37 

4.76 

5.42 

4.06 

4.11 

4.13 

4.15 

4.18 

4.16 

4.16 

4.17 

4.17 

4.17 

4.17 

4.17 

4.17 

4.17 

4.17 
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Table 4.14 SSE and MRE of the longitudinal cracking model for different C1 and C2 

Set # C1 C2 C3 SSE MRE 

1 1 0.3 1000 277,227,886.44 1850.02 

2 1 1 1000 491,663,106.44 2463.72 

3 1 2.25 1000 1,003,746,096.80 3520.22 

4 1 3.5 1000 1,319,859,564.48 4036.65 

5 1 5 1000 1,548,756,568.03 4372.69 

6 3 0.3 1000 40,133,542.18 703.90 

7 3 1 1000 40,118,158.96 703.77 

8 3 2.25 1000 222,374,099.13 1656.91 

9 3 3.5 1000 640,972,187.17 2813.05 

10 3 5 1000 953,108,144.95 3430.27 

11 5 0.3 1000 47,770,755.93 767.96 

12 5 1 1000 43,879,446.01 736.02 

13 5 2.25 1000 33,612,603.89 644.18 

14 5 3.5 1000 164,075,443.56 1423.24 

15 5 5 1000 585,830,659.05 2689.33 

16 7 0.3 1000 50,320,260.83 788.19 

17 7 1 1000 49,690,503.44 783.24 

18 7 2.25 1000 45,177,197.42 746.82 

19 7 3.5 1000 34,814,457.96 655.60 

20 7 5 1000 189,775,193.08 1530.65 

21 10 0.3 1000 50,734,102.16 791.42 

22 10 1 1000 50,702,029.07 791.17 

23 10 2.25 1000 50,445,318.17 789.17 

24 10 3.5 1000 48,883,159.46 776.85 

25 10 5 1000 39,310,112.68 696.64 

 

 



104 
 

 
Figure 4.2 Predicted versus measured total rutting before calibration 

 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Pr
ed

ic
te

d 
To

ta
l R

ut
tin

g 
(in

) 

Measured Total Rutting (in) 

Uncalibrated (1,1,1,1,1) 
Linear (Line of Equality) 



105 
 

 
Figure 4.3 Predicted versus measured total rutting after calibration 
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Figure 4.4 Validation of the calibrated permanent deformation model: a) LTPP section 

2006, b) LTPP section 6033 
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Figure 4.5 Predicted versus measured alligator cracking before calibration 
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Figure 4.6 Predicted versus measured alligator cracking after calibration 
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Figure 4.7 Validation of the calibrated alligator cracking model: a) LTPP section 1002, 

b) LTPP section 1022 
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Figure 4.8 Predicted versus measured longitudinal cracking before calibration 
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Figure 4.9 Predicted versus measured longitudinal cracking after calibration 
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Figure 4.10 Validation of the calibrated longitudinal cracking model: a) LTPP section 

1003, b) LTPP section 6035 
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Chapter 5  

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 General 

In the first stage of this study, a procedure based on the 2001 Traffic Monitoring Guide is 

developed to check the quality of the WIM data collected in New Mexico. Results show 

that only 3 out of 15 WIM sites have collected reliable data. Axle load spectra and other 

MEPDG traffic inputs are developed using a set of subroutines that support the 

implementation of MEPDG in New Mexico. The influence of axle load spectra on 

MEPDG distress prediction is analyzed for the three WIM sections providing good data. 

The MEPDG traffic inputs obtained are used for the local calibration of the MEPDG 

under New Mexico conditions. Detailed data of traffic, climate, and materials are 

collected for 29 pavement sections in New Mexico, but their respective distress data are 

qualitative ratings that cannot be used for calibration. Therefore, only 11 sections from 

the LTPP database located in New Mexico can be used in this study. The calibration 

coefficients of the rutting, alligator cracking, and longitudinal cracking models are 

optimized by reducing the residual sum of squared errors. These calibration factors 

reduce the difference between MEPDG predictions and field measurements, and thus, 

they are recommended for flexible pavement design in New Mexico. 

5.2 Conclusions 

From the traffic loading characterization, the following conclusions can be made: 

 The criteria based on gross vehicle weight and steering axle weight frequency 

distributions allow successfully evaluating the quality of WIM data. In New 
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Mexico, piezoelectric systems are not collecting reliable data, and therefore, 

calibration of these WIM sites is required. Bending plate systems are providing 

high-quality WIM data. 

 Several subroutines have been created in Visual Basic Application for Microsoft 

Excel to process WIM data and develop successfully the traffic inputs required by 

the Mechanistic-Empirical Pavement Design Guide (MEPDG). 

 It is recommended using these sets of subroutines for checking the quality of 

WIM data and developing the traffic inputs required in the MEPDG. 

 Positive and negative bias of the weight measured at WIM sites can be simulated 

respectively by increasing and decreasing by a percentage the weight data 

collected. Positive bias results in a displacement of the axle load spectra to the 

right, while negative bias moves the axle load spectra to the left. 

 The influence of weight measurement bias on predicted pavement performance 

can be analyzed using the axle load spectra for the cases of no bias, positive bias, 

and negative bias in the MEPDG in order to predict the corresponding distresses. 

 The effect of weight measurement bias on predicted rutting is considerable but not 

critical. However, bias of weight data affects dramatically predicted longitudinal 

and alligator cracking (1% of bias can result in an increase of 9% in longitudinal 

cracking and 6% in alligator cracking). The influence of weight measurement bias 

on transverse cracking and IRI can be neglected.  

 It is determinant to collect accurate and reliable WIM data since error in its 

measurement can lead to overestimate or underestimate the pavement thickness, 

and thus, to unnecessary costs of construction or maintenance. 
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The next conclusions are related to the local calibration of the MEPDG for flexible 

pavements in New Mexico: 

 The qualitative distress ratings collected by the New Mexico Department of 

Transportation (NMDOT) are not useful for local calibration of the MEPDG 

because this data is not consistent and reliable. Therefore, there are only 11 LTPP 

sections that can be used in the calibration process. 

 Initial verification runs suggest that there is significant bias in the permanent 

deformation prediction of default MEPDG. Only total rutting can be calibrated 

since there is no rut depth data for individual layers. Local calibration of the 

rutting calibration coefficients βr1, βr2, βr3, βGB, and βSG is successfully achieved. 

The standard error of the estimate is low and bias is eliminated. 

 The plot showing measured versus predicted alligator cracking before calibration 

indicates that the default MEPDG prediction does not match the observed values 

particularly well. Many field measurements have a value of zero which makes the 

local calibration process of this particular distress more difficult. Nonetheless, the 

alligator cracking calibration coefficients C1, C2, and C3 are optimized such that 

the sum of squared errors is reduced and thus many data points are brought closer 

to the line of equality. 

 The longitudinal cracking model is even more challenging because many data 

points fall very close to the origin (the values are almost zero). Calibration of the 

longitudinal cracking coefficients C1, C2, and C3 does not produce as good results 

as those obtained for rutting and alligator cracking. However, the positive effect 
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of calibration is noticed with some points moving closer to the line of equality and 

the sum of squared errors being reduced. 

5.3 Recommendations 

For improving the characterization of traffic loading in mechanistic-empirical pavement 

design, the following recommendations are provided: 

1) It is strongly encouraged to calibrate WIM sites at least twice a year in order to 

collect reliable weight data. 

For most efficient and successful calibration of the MEPDG in New Mexico, the 

following recommendations should be implemented: 

1) Local calibration requires a few more data sets in addition to LTPP sections. The 

NMDOT should establish at least 30 pavement sections for local calibration of the 

MEPDG. These sections should be new flexible pavements constructed with 

practices, techniques and materials currently used in the state. The new pavement 

sections should be located in segments near to WIM sites so the traffic loading 

can be accurately characterized. The 30 pavement sections should be distributed 

among different climatic regions (from cold to warm weather) and different 

functional class roads (from low to high traffic). 

2) Measurements of distress data (rutting, alligator cracking, longitudinal cracking, 

thermal cracking, and IRI) must be collected every year at every section during its 

pavement design life following the Distress Identification Manual for the Long 

Term Pavement Performance Program. Eventually, these pavement sections will 

become damaged and rehabilitation will be carried out though an AC overlay. 
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Then, the monitoring effort should continue and local calibration of the MEPDG 

for rehabilitated pavements should be performed in the same manner. 

3) Permanent deformation should be measured at every layer of the pavement 

section by performing trenches and/or cores. This will allow a much more precise 

and consistent calibration of the rutting model. 

4) Creep compliance and thermal contraction coefficients of the asphalt concrete 

mixtures should be determined in the lab for the pavement sections. This will 

make local calibration of the thermal cracking model possible. 
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