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Contributions to linear models
Lack-of-fit tests and linear model with singular covariance matrices

by

Yong Lin

B.S. in Statistics, Henan University of Finance and Law, 2007

Ph.D, Statistics, University of New Mexico, 2012

Abstract

Linear models are statistical models that are linear in their parameters. This class of

models include traditional regression, ANOVA, ACOVA, mixed models and even many

time series models. They can be extended into generalized linear models in which case the

parameters are still linear, but they are not linearly associated with the dependent variables.

This dissertation contributes in two directions.

First, it proposes and studies new lack-of-fit tests. Su and Wei (1991) proposed a

lack-of-fit test based on partial sums of residuals. They computed P values using an

unusual bootstrapping simulation. However, the simulation can not be performed for even

moderate numbers of predictor variables because it is prohibitively time consuming. I

examine the nature of their bootstrap simulation and argue that it reduces the power of Su

and Wei’s test. I modify their test for linear models and propose two lack-of-fit tests based

on partial sums of residuals. I find the non-normal limiting distributions for both tests and
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small sample corrections that enable more precise calculation of 0.05 cut-offs. Empirical

sizes and powers are studied for both tests in small samples.

In the second contribution, I studied the linear model with singular covariance matrix.

In these models, frequently there exists estimable functions of β that are known with

probability 1. Traditional methods of analysis employ a psuedo-covariance matrix that

gives BLUEs and tests that are appropriate for the actual covariance matrix V . Contrary

to traditional methods of adjusting V , I decompose β into known and unknown parts and

adjust X to allow estimation and testing of the unknown part of β. Specifically, I adjust

this model, Y = Xβ + e, to get an equivalent model, Y − Xβ0 = Xvγ + e, where

Xβ0 is a known vector, then perform estimation and tests on this equivalent model. The

equivalence of the models is studied.

KEY WORD: Linear model; Lack-of-fit test; Partial sums of residuals; Asymptotic dis-

tribution; Singular covariance matrix.
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Chapter 1

Introduction

1.1 Notation

A standard linear model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ2I, (1.1)

where Y is an n × 1 vector of observable random values, X is an n × p known model

matrix, β is a p×1 vector of unknown parameters, and e is an n×1 vector of independent,

unobservable errors.

Bold face math characters stand for matrices and vectors. For any matrix A, C(A) de-

notes the column space of A and r(A) is the rank of A; A− and A+ denote a generalized

inverse and the Moore-Penrose pseudoinverse of A respectively. MA is the perpendic-

ular projection operator onto the column space C(A). SSE and MSE denote the sum of

squared error and the mean squared errors of a particular model, respectively. I is an n×n

identity matrix. Jk is vector with k 1s and Jk
k is a k × k matrix of 1s.
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Chapter 1. Introduction

1.2 Overview of the problems

Linear models are models that are linear in their parameters, such as regression, ANOVA,

ACOVA, Mixed models, even many time series models. I am interested in two particular

problems in linear model theory. They are lack-of-fit testing and linear models with sin-

gular covariance matrices. This section briefly introduces the background of the problems

and the contributions of this dissertation.

1.2.1 Lack-of-fit tests

Lack-of-fit tests, also known as goodness-of-fit tests, are techniques to check whether the

proposed models have valid mean structures. The classical approaches extend model (1.1)

to a model

Y = X̃γ + e, E(e) = 0, Cov(e) = σ2I, (1.2)

such that C(X) ⊂ C(X̃). Then a test statistic (usually a F test) is constructed to com-

pare the differences between model (1.1) and the extended model (1.2). Three classical

approaches to this problem are clustering, partitioning and smooth tests. Clustering lack-

of-fit tests extend C(X) to C(X̃) by clustering data into groups in which covariates are

exact replications or near replications, partitioning method divides the data into subsets

and fit models like (1.1) to each subset, whereas smooth tests expands C(X) to C(X̃)

by incorporating smooth functions of the predictors. These method are discussed in more

detail in the Chapter 2.

Su and Wei (1991), on the other hand, proposed an alternative approach. They revisited

the idea of examining residuals. In linear models, their test statistic considers a process

of summing residuals over successively larger covariate space. This dissertation proposes

and examines two lack-of-fit tests that are based on Su and Wei’s test.

2



Chapter 1. Introduction

1.2.2 Linear models with singular covariance matrices

The general Gauss-Markov model is

Y = Xβ + e, E(e) = 0, Cov(e) = σ2V . (1.3)

Here, no assumptions are made on r(X). If V is singular and C(X) ⊂ C(V ), estimation

and tests can be obtained using the same formulas as if V is nonsingular. This dissertation

focuses on the most difficult cases wherein C(X) 6⊂ C(V ) which forces V to be singular.

Under this condition, there exist nontrivial linear functions of Q′Xβ that are known with

probability 1 (perfectly) where C(Q) = C(V )⊥.

To treat C(X) 6⊂ C(V ), traditional methods obtain estimates and tests by replacing

model (1.3) with a model involving a pseudo covariance matrix

Y = Xβ + e, E(e) = 0, Cov(e) = σ2T , (1.4)

where T = V + XUX ′ for some nonnegative definite U such that C(X) ⊂ C(T ).

Different from the traditional methods, this dissertation proposes a more intuitive ap-

proach by decomposing β into the sum of two orthogonal parts, β = β0 + β1, where

β0 is known. The unknown component of Xβ is shown to be Xβ1 ≡ Xvγ, where

C(Xv) = C(X) ∩ C(V ). Replace model (1.3) with

Y − Xβ0 = Xvγ + e, E(e) = 0, Cov(e) = σ2V , (1.5)

for which C(Xv) ⊂ C(V ) and Xβ0 is known with probability 1. Then estimation and

tests are obtained under model (1.5) for which the simplifying assumption C(Xv) ⊂

C(V ) holds. This dissertation shows that this alternative method also provides the usual

estimates and tests.

3



Chapter 1. Introduction

1.3 Outline of the dissertation

Chapter 2, presents a review of classical approaches to lack-of-fit tests. Su and Wei

(1991)’s test is examined in detail.

In Chapter 3, the two new lack-of-fit tests are proposed. Their large sample distribu-

tions and small sample adjustments are studied. Also, simulation studies of the sizes and

powers are provided.

In Chapter 4, methods for dealing with linear models having singular covariance ma-

trices are reviewed and our new method to estimation and testing in this condition is de-

veloped.

Chapter 5 outlines anticipated future work.

4



Chapter 2

Review of lack-of-fit techniques

In this dissertation, I am interested in the lack-of-fit test proposed by Su and Wei (1991)

that sums residuals over successively larger covariate space. This approach is different

from the classical approaches that involve extending null model (1.1) to a larger model

(1.2).

In this Chapter, Su and Wei’s test is reviewed in detail. For the completeness of this

dissertation, I begin with the reviews of two initial works of clustering and smooth tests.

2.1 Classical approaches to lack-of-fit testing

Sun (2010) reviewed classical lack-of-fit tests. They are Fisher (1922)’s test, Neyman

(1937)’s test, Green(1971)’s test, Shillington(1979)’s test, Neill and Johnson(1985)’s test,

Christensen (1989)’s test, Joglekar, Schuenemeyer and LaRiccia (1989)’s test, Christensen

(1991)’s test, Eubank and Hart(1992)’s test, Aerts Claeskens and Hart (2000)’s test, Fan

and Huang (2001)’s test and Su and Yang (2006)’s test. I present a brief review of Fisher’s

5



Chapter 2. Review of lack-of-fit techniques

exact test and Neyman’s smooth test. Reviews of Utts (1982) and Eubank and Spiegelman

(1990) are in the Appendix C to complement Sun’s work.

2.1.1 Fisher’s exact replicates test

Fisher (1922) proposed a lack-of-fit test for simple linear regression in which the covariate

has exact replicates. Considering n pairs of observations x and y, we suppose that there

are k distinct values in x, i.e., k clusters of x’s, and the number of observations for which

x = xi is ni for i = 1, ..., k. Obviously, n =
∑k

i=1 ni. A simple regression model for these

data can be written as

yij = [1xi]

β0

β1

+ eij, (2.1)

where yij and eij are the response and error associated with jth replicate in ith cluster. In

each cluster, write

Y i = [yi1, ..., yini
]′, X i = [Jni

, xiJni
], and ei = [ei1, ..., ein1 ]

′.

Model (2.1) can be formulated as

Y = Xβ + e, (2.2)

with

Y =


Y 1

...

Y k

 , X =


X1

...

Xk

 , and e =


e1

...

ek

 .

To check the adequacy of model (2.2), Fisher considered obtaining a more accurate fit and

comparing the result with the fit from model (2.2). To begin with, he assumed the mean

for each cluster is known and fitted model like (2.2) to each cluster,

Y i = X iγi + ei, (2.3)

6



Chapter 2. Review of lack-of-fit techniques

where γi = [γ0, γ1]
′. Since C(X i) = C(Jni), model (2.3) is equivalent to

Y i = µiJni
+ ei. (2.4)

where µi the group mean of ith cluster. The estimate of µi from least square estimate is

simply ȳi = J ′
ni

Y i/ni. Standardizing ȳi to zi =
√

n(ȳi − µi)/σ gives us k i.i.d. standard

normal random variables and
k∑

i=1

z2
i =

∑k
i=1 ni(ȳi − µi)

2

σ2
∼ χ2

(k).

Here, σ2 can be estimated by the MSE from model (2.4). The sum of squares of lack-of-fit

of the model (2.2) can be measured using
∑k

i=1 ni(ȳi − ŷi)
2, where ŷi is the estimate of

the kth cluster mean from model (2.2). Fisher’s test statistic is

χ2 =

∑k
i=1 ni(ȳi − ŷi)

2∑k
i=1

∑ni

j=1(yij − ȳi)2/(n− k)

L→ χ2
(k−1).

Later on, the degree of freedom k − 1 is further corrected with k − 2 and Fisher’s χ2 test

is transferred into a F statistic which follows an exact F distribution,

F =

∑k
i=1 ni(ȳi − ŷi)

2/k − 2∑k
i=1

∑ni

j=1(yij − ȳi)2/(n− k)
∼ F(k−2,n−k). (2.5)

Sun (2010) pointed out that Fisher compared the original regression model with a largest

model that is equivalent to a one-way ANOVA model with k treatment. With the same row

structure of the original data, he formulated Fisher’s exact test in term of testing model

(2.2) against

Y = X̃γ + e, (2.6)

where

X̃ =



Jn1 0 · · · 0 0

0 Jn2 · · · 0 0

0 0
. . . 0 0

0 0 · · · Jnk−1
0

0 0 · · · 0 Jnk


.
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Chapter 2. Review of lack-of-fit techniques

Clearly C(X) ⊂ C(X̃). The SSEs of the two models are:

SSE(2.2) = Y ′(I − MX)Y and SSE(2.6) = Y ′(I − MX̃)Y ,

and the F statistic is

F =
[SSE(2.2)− SSE(2.6)]/[r(X̃)− r(X)]

[SSE(2.6)]/[n− r(X̃)]
=

Y ′(MX̃ − MX)Y /(k − 2)

Y ′(I − MX̃)Y /(n− k)
.

After some algebra, it can be shown that

Y ′(MX̃ − MX)Y =
k∑

i=1

ni(ȳi − ŷi)
2 and Y ′(I − MX)Y =

k∑
i=1

ni∑
j=1

(yij − ȳi)
2.

Hence, Fisher’s exact test is equivalent to the classical F test for testing model (2.6) against

model (2.2). When exact replicates are not available, people proposed methods that parti-

tion data into near replicates or subsets within which the data has the same features. Actu-

ally, the clustering method is a special case of partitioning where each subset is a cluster.

Green (1971); Utts (1982); Miller, Neill and Sherfey (1988); Joglekar, Schuenemeyer and

LaRiccia (1989); Christensen (1989, 1991) and Su and Yang (2006) all suggested different

methods of partitioning data.

2.1.2 Neyman’s smooth test

Neyman (1937), proposed a lack-of-fit test for a completely specified distribution with the

attractive feature of focusing power towards smooth alternatives. Although his original

test is less directly related to linear models, it is closely related to my future works. For

completeness, it is necessary to start from the original test. The original test considers

testing a probability density function (PDF) f(x, β), where β = [β1, ..., βq]
′ is a q × 1

vector of parameters. The alternative PDF is defined as

f ∗(x, β, θ) = C(θ, β) exp

{
k∑

j=1

θjhj(x; β)

}
f(x; β), (2.7)

8



Chapter 2. Review of lack-of-fit techniques

where θ = [θ1, ..., θk]
′ is a vector of k parameters, C(θ, β) is a constant that normalizes

f ∗(x, β, θ) to a PDF and the hj(x; β)s are a set of Legendre polynomials functions. The

parameter k is a small integer and these smooth functions hj(x; β)s are chosen subjectively

to maximize the power of testing a certain class of alternative hypothesis. The lack-of-fit

test is equivalent to testing

H0 : θ = 0, against Ha : θ 6= 0.

Let l(θ̂) and l(0) be the log-likelihoods under the MLE and null hypothesis respectively.

The above hypothesis can be tested using the likelihood ratio test,

2(l(θ̂)− l(0))
L→ χ2

(k).

Alternatively, Neyman recommended to estimate the sample mean of hj(xi, β)s by

h̄j =
1

n

n∑
i=1

hj(xi, β̂)

and test the above hypothesis using

Φ2 = n
k∑

j=1

h̄2
j
L→ χ2

(k).

Although the original Neyman (1937)’s test is not designed for linear regressions, its

idea is well applicable. Sun (2010) considered a simple linear regression in the form of

model (1.1) with X = [Jn, x], where x = [x1, ..., xn]′. The more general alternative

distribution is obtained by extending model (1.1) to model (1.2) with

X̃ = [X, Hk] and γ = [β, δ]′,

where Hk is an n×k matrix of smooth functions, β = [β0, β1]
′, δ is a vector of k unknown

parameters and

Hk =


ϕ1(x1) ϕ2(x1) · · · ϕk(x1)

ϕ1(x2) ϕ2(x2) · · · ϕk(x2)
...

...
...

...

ϕ1(xn) ϕ2(xn) · · · ϕk(xn)

 .

9



Chapter 2. Review of lack-of-fit techniques

Here ϕi(x)s are known and fixed functions from R → R. Theoretically, the alternative

density function approaches the true density function when k = ∞. However, in applica-

tion k is chosen from the set {1, . . . , n− 2}. To emphasize the smooth functions in (1.2),

rewrite it as

Y = Xβ + Hkγk + e. (2.8)

The lack-of-fit test can be performed using the usually F test as in Fisher’s exact test. Let

r(X, Hk) = r1 and r(X) = r2.

F =
[SSE(1.1)− SSE(2.8)]/(r1 − r2)

SSE(2.8)/(n− r1)
=

Y ′(MX,Hk
−MX)Y /(r1 − r2)

Y ′(I −MX,Hk
)Y /(n− r1)

,

which follows F (r1 − r2, n − r1) under H0. The large values of F indicates the inade-

quacy of model (1.1). Sun (2010) discussed the case of simple linear regression, but this

method can be easily extended into linear models with multiple covariates. The key point

is how to choose the amount k and type of the smooth functions ϕi(·)s. Apparently these

choices have crucial effects on the performance of the test. For example, Fourier series are

powerful in detecting the lack-of-fit of periodic terms, while Wavelets are good at picking

up the local lack-of-fit in the proposed models. Originally, Neyman suggested k to be a

predetermined integer. Here, with a fixed k, the test is consistent against some but not

all alternatives, so later on, people become more interested in data driven versions of k.

This data driven k is used to control the over fitting or smoothness of the extended model.

Alternatively, people maximize k and introduce additional smooth parameter to control

the smoothness of the extended model. Eubank and Spiegelman (1990); Eubank and Hart

(1992); Aerts, Claeskens and Hart (2000); Simonoff and Tsai (1999); Fan and Huang

(2001) and Christensen (2010) all proposed different approaches to extend Neyman’s test

to linear regression, but they all involve comparing model (1.1) with model (2.8).

10



Chapter 2. Review of lack-of-fit techniques

2.2 Lack-of-fit techniques using partial sum of residuals

Su and Wei (1991) proposed a lack-of-fit test based on measuring the difference between

the partial sum process of observed residuals and that of null model. Large difference

between the two processes provides evidence to reject H0. In application, the P value

of their test is calculated by comparing the empirical process and bootstrap approximated

null process. Stute, Manteiga and Quindimil (1998); Lin, Wei and Ying (2002); Hosmer

and Hjort (2002); Stute, Thies and Zhu (1998); Diebolt and Zuber (1999); Koul and Stute

(1999); Koul, Baillie, and Surgailis (2004) all adopted similar approaches to different

problems.

Besides S-W’s test there are other tests that use partial sums, for example, Fan and

Huang (2001)’s test and Christensen and Sun (2010)’s test but they are based on a differ-

ent idea going back to Cramér-Von Mises’s (CVM’s) lack-of-fit test of density functions.

Fan (1996) examined the inefficiency of CVM’s test and proposed an alternative approach

based on power consideration. His idea involves transforming the problem of testing den-

sity functions to testing the mean vector of a high dimension multivariate normal distribu-

tion. To shrink its dimension, he proposed a partial-sum type test. Later on Fan and Huang

(2001) extended Fan (1996)’s method to regression models by testing E(ê) = 0, which

is also the mean vector of a multivariate normal distribution. Christensen and Sun (2010)

examined F-H’s test under the linear models and recast their approach to classical smooth

tests.

In this Section, S-W’s test and bootstrap simulation method are examined under the

context of linear models. A review of Lin, Wei and Ying (2002) is presented in the Ap-

pendix C. C-S’s test and F-H’s are related to my future research but less related to my

proposed test, so these reviews are postponed to the Appendix C. The remaining literature

related to S-W’s method either study the mathematical aspect of S-W’s partial sum process

11
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or applying S-W’s test to more complicate problems. Thus these reviews are not shown.

2.2.1 Su and Wei’s test

Su and Wei (1991) proposed a lack-of-fit test for generalized linear models based on sum-

ming residuals over successively larger subsets of the covariate space. Specifically, for

linear model (1.1) they consider the random process in p dimensions,

Wn(t) =
1√
n

n∑
i=1

[yi − x′iβ̂n]I(xi ≤ t),

where yi and x′i are the ith rows of Y n and Xn, respectively, β̂n is the least square estimate

(LSE) of β, t = (t1, ..., tp)
′ ∈ Rp, I is the indicator function, the inequality xi ≤ t stands

for xij ≤ tj for all j = 1, ..., p. S-W proposed the lack-of-fit test statistic

Gn = sup
t∈Rp

|Wn(t)| .

Under H0, the process Wn(t) is expected to fluctuate around 0. Getting a large value of

Gn provides evidence to reject model (1.1).

Wn(t) is a jump process, so the suprema occurs at one of the finite number of jumps.

Moreover, the indicator function in Wn(t) creates a partial ordering of the residuals. Gn

is the maximum value of Wn(t) taken over all the full orderings that agree with the partial

ordering. To calculate the statistic Gn, S-W replace supt∈Rd |Wn(t)| by maxt∈S |Wn(t)|

where S is the product of the sets Sk for k = 1, . . . , p, where Sk consists of all elements

in the kth column of Xn. S contains as many as np vectors. To evaluate the significance

of Gn, S-W proposed a bootstrapping method to simulate the null distribution of Gn, and

then obtain the P values. To better understand their methods, write

Wn(t) =
1√
n

J ′I(t)(Y n −Xnβ̂n) =
1√
n

J ′I(t)ên,

12
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where I(t) is a diagonal matrix with ith diagonal element equal to I(xi ≤ t). To approxi-

mate the process W (t), S-W bootstrap a response vector Y s
n as

Y s
n = Xnβ̂n + D(Zs)ên,

where D(Zs) is a diagonal matrix whose elements are a random sample of standard nor-

mals.

The approximated process replaces the original data Y n with bootstrapped data Y s
n,

and β̂n with β̂
s

n, the LSE of the parameter based on Y s
n and Xn. Specifically,

β̂
s

n = (X ′
nXn)−1X ′

nY
s
n

= β̂n + (X ′
nXn)−1XnD(Zs)(ên).

The approximated process W s
n(t) can be expressed as:

W s
n(t) =

1√
n

J ′I(t)(Y s
n −Xnβ̂

s

n)

=
1√
n

J ′I(t) [D(Zs)ên −MXnD(Zs)ên]

=
1√
n

J ′I(t)(I −MXn)D(Zs)ên.

After some algebra, we get the same result as in their paper,

W s
n(t) =

1√
n

n∑
i=1

Zs
i (yi−x′iβ̂n)

{
I(xi ≤ t)−

{
n∑

i=1

x′iI(xi ≤ t)

}
(

n∑
i=1

xix
′
i)
−1xi

}
.

(2.9)

Note that,

Wn(t) =
1√
n

J ′I(t)(I −MXn)ên.

Here W s
n(t) approximates Wn(t) by introducing the multiplicative random white noise

D(Zs). Stute (1997) shows Wn(t)
L→ σW (t), where W (t) is a normal process with

mean 0. The bootstrap relies on having W s
n(t)

L→ σW (t). Hence, one can infer Gn
L→ σG

13
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and Gs
n

L→ G, where Gs
n = supt∈Rd |W s

n(t)|. Finally, simulates from Gs
n approximate

simulations from σG. The P value of the test statistic Gn is computed by evaluating the

percentage of Gs
n values exceeding Gn.

It is useful to examine how these ideas work in a simplified special case. Consider

V1, V2, . . . , Vn, independent identical distributed (iid) with E(Vi) = µ, V ar(Vi) = σ2 and

Zi, Z2, . . . , Zn iid with E(Zi) = 0, V ar(Zi) = 1. In the null case of µ = 0,

1

σ
√

n

n∑
i=1

Vi
L→ N(0, 1).

Multiplying by the white noise variable,
∑n

i=1 ZiVi/σ
√

n
L→ N(0, 1). This follows be-

cause the ZiVis are iid with E(ZiVi) = 0, V ar(ZiVi) = σ2. However, in the non-null

case,
1

σ
√

n
E

[ n∑
i=2

Vi

]
→∞, V ar

[
1

σ
√

n

n∑
i=1

Vi

]
= 1,

whereas
1

σ
√

n
E

[ n∑
i=1

ZiVi

]
= 0, V ar

[
1

σ
√

n

n∑
i=1

ZiVi

]
= 1 + µ2/σ2.

Not only does the bootstrap contain more noise than using the asymptotic distribution be-

cause it approximates σG by Gs
n under the null model but under the alternative it simulates

a process with more variability than σG, thus reducing its power. More over, S-W’s simu-

lation can be prohibitively time consuming even for moderate sized regression problems.

Recall S-W’s partial ordering, for data with 46 observations, p = 3, and 500 simulation

samples, my R program for the test took as much as 2 hours to perform.

Numerous authors have examined aspects of the partial sum process Wn(t). Stute

(1997) carefully studied the asymptotic convergence of Wn(t) to a tied down Gaussian

process. (With an intercept in the model, the sum of all residuals is zero.) However, these

results provide no relief from the computational burden. Stute, Manteiga and Quindimil

(1998) approximated the process using a bootstrap simulation method different from S-

W’s but with results similar to S-W’s bootstrap method. Lin, Wei and Ying (2002) studied
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the process but used a total ordering determined by one variable. They extended the S-

W test by considering different methods of partitioning and other ways of aggregating

residuals such as moving averages. Hosmer and Hjort (2002) proposed a related test for

logistic regression using a weighted partial sum of residuals over partitions of the estimated

logits. For other related tests, see, Stute, Thies and Zhu, (1998); Diebolt and Zuber (1999);

Koul and Stute (1999); Koul, Baillie and Surgailis (2004). One similarity is that these

papers all approximate the partial sum process by a Gaussian process and typically report

P values using simulations.
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Chapter 3

Lack-of-fit test using partial sum of

residuals

In this Chapter, I propose two new lack-of-fit tests based on modifications of S-W’s test

and study their asymptotic distributions. Small sample adjustments to the proposed tests

are in Section 3.2. Simulation studies of the power and sizes of the tests are presented in

Section 3.3 and Section 3.4.

In this Chapter and the related proof in the Appendix A, which emphasizes the asymp-

totic theory, I add the subscript n to all key matrices in model (1.1). For example, X , Y ,

e, I , β are replaced with Xn, Y n, en, In and βn, respectively.

3.1 My proposed tests

S-W’s simulation technique is based on Wn(t) converging to a limiting process that clearly

depends on the variance σ2 and I show in Section 2.2.1 that this approximation, mixing σ2
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Chapter 3. Lack-of-fit test using partial sum of residuals

into Wn(t), lowers the power of the test. Instead I estimate σ2 separately, standardize Gn

and find an asymptotic distribution directly.

To obtain asymptotic results, the range of the maximum needs to converge to infinity

more slowly than the sample size, so I maximize the partial sums between 1 and ñ where

ñ ≡ ñ(n) ≤ n goes to infinity as n goes to infinity. This is a pretty standard device, see

Fan and Huang (2001) and Christensen and Sun (2010). I also standardize Gn using σ̂n, a

consistent estimate of σ with σ̂2
n/σ

2 − 1 = Op(n
−1/2). Under these conditions, S-W’s test

statistic reduces to

Tn =
1√
ñ

max
1≤m≤ñ

∣∣∣∣∣
m∑

i=1

yi − x′iβ̂n

σ̂n

∣∣∣∣∣ . (3.1)

In addition, I propose an alternative test statistic that puts more weight on terms lower in

the ordering,

Pn = max
1≤m≤ñ

1√
m

∣∣∣∣∣
m∑

i=1

yi − x′iβ̂n

σ̂n

∣∣∣∣∣ . (3.2)

The difference between Tn and Pn is that Tn averages the partial sum of residuals using ñ

while Pn uses the number of residuals in the partial sum. The factor 1/
√

m in Pn puts more

weight on the terms with lower orderings, so when the lack of fit occurs in the first few

residuals of the partial sums, Tn is expected to be less sensitive than Pn. The asymptotic

properties of the proposed tests are studied in the following two subsections.

Note that, yis and xis in the proposed statistics are after ordering. My method of im-

posing total ordering on the xis and maximize partial sums of the residuals are postponed

to Section 3.3.

3.1.1 First test

The test statistic Tn presented in (3.1) uses the residuals. Replacing them with the in-

dependent homoscedastic errors, and replacing σ̂n with σ, it is relatively easy to find the
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asymptotic distribution of

T̃n ≡
1√
ñ

max
1≤m≤ñ

∣∣∣∣∣
m∑

i=1

ei

σ

∣∣∣∣∣ ,
for any choice of ñ ≤ n that goes to infinity. The main problem is that the residuals

êi = yi − x′iβ̂n used in Tn are dependent. A lesser problem is that σ is unknown. To

obtain convergence, the residual dependence needs to be mild and the estimate of σ needs

to be consistent. Specifically, I assume:

Conditions

(a) 1
n
X ′

nXn converges in probability to A, where A is some positive define matrix.

(b) σ̂n = σ + Op(1/
√

n).

Condition (a) holds if the xis are generated at random from a distribution with finite

variances. If E(xi) = µ and Cov(xi) = Σ, then E(xix
′
i) = Σ + µµ′ and 1

n
X ′

nXn
p→

Σ+µµ′. Condition (b) holds if σ̂n is a
√

n consistent estimate of σ. Theoretically, any σ̂n

that converges in probability to σ will give the asymptotic distribution, but to get a faster

convergence rate for the test statistic, σ̂n needs to be root n convergence.

Condition (a) ensures that β̂n

p→ β but the convergence needs to occur at a rate faster

than the increase of the range of the maximum in Tn, so as to relieve the dependence

problem. In the proof, I show it suffices to take ñ = dn/log log n1+δe, for δ > 0. The value

ñ restricts the number of residuals in the partial sum process. In practice, this restriction

does not have much effect on the test statistic which is often dominated by the first few

residuals of the partial sum. In simulations, I found that δ = 2 has relatively slower

convergence to the limiting distribution but improves the power for the test as compared

to δ = 3, the value used by F-H.

There is no obvious way of writing Tn = unT̃n + Rn, where un
p→ 1 and Rn

p→ 0,

which would be a simple way to show that Tn and T̃n have the same asymptotic distribu-
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tion. Instead, I bound Tn by:

T̃n − Sn(u) ≤ σ̂n

σ
Tn ≤ T̃n + Sn(v),

where Sn(u) ≡
∣∣∣∑u

i=1 x′i(β̂n − β)
∣∣∣ /σ√ñ, u and v are two numbers no greater than ñ.

Under conditions (a) and (b), I show that both Sn(u) and Sn(v) converge in probability to

0 so that Tn has the same limiting distribution as T̃n. I obtain

Theorem 1 If conditions (a) and (b) in Section 3.1 are satisfied, Tn
L→ T, where

Pr[T < t] =
4

π

∞∑
m=0

(−1)m

2m + 1
exp(−(2m + 1)2π2/8t2) for t > 0.

A detailed proof is in the Appendix A. In applications, it suffices to approximate the

asymptotic distribution by summing m from 0 to 10.
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3.1.2 Second test

To put more weight on terms lower in the ordering I replace ñ in the divisor of Tn with the

number of residuals in the partial sum,

Pn = max
1≤m≤ñ

1√
m

∣∣∣∣∣
m∑

i=1

êi

σ̂n

∣∣∣∣∣ .
I expect this test to be more sensitive to lack-of-fit at lower order terms. To obtain the

limiting distribution, I normalize Pn as

Qn = añPn − bñ,

where añ =
√

2 log log ñ, and bñ = (añ)2 + log añ − log(
√

2π), with ñ < n going to

infinity. As before, replacing the residuals and σ̂n with the independent homoscedas-

tic errors and σ, it is easy to find the limiting distribution. Specifically, with P̃n =

max1≤m≤ñ |
∑m

i=1 ei| /σ
√

m, I can find the limiting distribution of

Q̃n = añP̃n − bñ.

To deal with the dependent êis, restrict ñ to dn/(log log n)2+δe for δ > 0. In extensive sim-

ulations, several different choices of ñs are compared and I found ñ = dn/(log log n)3e

most appropriate as it improves the empirical power while maintaining relatively fast con-

vergence to the asymptotic distribution. To show that Qn has the same asymptotic distri-

bution as Q̃n, write

Q̃n − añS̃n(u) ≤ añ
σ̂n

σ
Pn − bñ ≤ Q̃n + añS̃n(v),

where now S̃n(u) =
∣∣∣∑u

i=1 x′i(β̂n − β)
∣∣∣ /σ√u for any u ≤ ñ. In the Appendix A, I show

añS̃n(u)
p→ 0, so añσ̂nPn/σ− bñ has the same limiting distribution as Q̃n. I also establish

that Qn and añσ̂nPn/σ − bñ have the same asymptotic distribution.

Theorem 2 If conditions (a) and (b) of Section 3.1 are satisfied, Qn
L→ Q where Pr[Q <

t] = exp [− exp(−t)] .
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The proof is in the Appendix A. The limiting distribution for Qn is the same as for the tests

given by F-H and C-S in a different problem, but requires slightly different normalizing

constants.

Theorems 1 and 2 both require condition (a) which is violated in overparameterized

ANOVA models. However, I am interested in

1√
ñ

max
1≤m≤ñ

∣∣∣∣ m∑
i=1

êi

σ̂n

∣∣∣∣ and max
1≤m≤ñ

∣∣∣∣ 1√
m̃

m∑
i=1

êi

σ̂n

∣∣∣∣
and the residuals do not depend on whether the model is overparameterized. Since any

linear model can be reparameterized into a regression model, if a regression version of

the model satisfies conditions (a) and (b), the theorems hold. In particular, for a one way

ANOVA, I need each group sample size Ni to have Ni/n → δi with 0 < δi < ∞.

3.1.3 Estimation of σ2

The validity of Theorems 1 and 2 requires condition (b). The MSE from model (1.1)

satisfies this but the tests work better if the estimate of σ does not inflate too much when

H0 is false. With an ordering imposed on the data, C-S proposed a consistent estimate of

σ2 obtained from an extended model:

Y n = Xnβ + Γkγk + e,

where Γk is a n × k discrete Fourier (sine and cosine) transformation matrix and γk is a

k× 1 vector of unknown parameters. I adopt C-S’s estimate of σ2 which is the MSE from

this extended model, specifically

σ̂2
n = Y T

n (In −MXn,Γk
)Y n

/
[n− r(Xn,Γk)].

C-S suggest using k = dn/10(log log n)2e. By Lemma 3 of C-S, σ̂2
n = σ + Op(1/

√
n)

whenever k/n → c where 0 ≤ c < 1. Simulations suggest that this provides my tests with

higher power than using the MSE of model (1.1).
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3.2 Small sample adjustments

The sizes of the tests depend on the quality of the asymptotic approximation. In both

Tn and Qn, the mild dependence in the residuals hurts the convergence rate. This can

be improved by choosing an appropriate ñ. In simulations, I studied the empirical size

and power of my tests with four different choices of ñ : ñ0 = dn/(log log n)2.5e, ñ1 =

dn/(log log n)3e, ñ2 = dn/(log log n)3.5e and ñ3 = dn/(log log n)4e. I concluded that

ñ1 is best for the power of my tests while achieving a reasonable rate of convergence.

The convergence can be further improved by adding a constant cn that converges to 0 as

n → ∞. Note that Qn normalized Pn by multiplying añ and adding bñ, where bñ → ∞.

Applying Theorem 2.2 of Eicker (1979), if añ/a
′
ñ → 1, bñ− b′ñ → 0 and añPn− bñ

L→ Q,

then a′ñPn − b′ñ
L→ Q. So to improve the convergence, I can modify either añ or bñ.

From extensive simulation, I found that modifying bñ is preferable to modifying añ and

without changing añ, I want b′ñ less than bñ. The modified Qn after proper adjustment is

Qn + bñ − b′ñ ≡ Qn + c2n. Using the same idea, a different constant c1n is added to Tn.

Based on the chosen ñ and extensive simulations, I found an appropriate adjustment for

my first test to be Tn + c1n where

c1n = log

(
log (δ1n)

(log log n)4 + 1

)
and

δ1n =


0.839 + 0.08q + 0.1545q2 + 2.583n̂ n < 40,

0.190 + 2.995q − 4.71 log(q) + 2.788n̂ 40 ≤ n < 100,

5.504 + 0.828q + 2.834n̂ n ≥ 100.

Here n̂ = (log log n)3, q = r(X) − 1. As n → ∞, n̂ → ∞, and it is easy to show that

c1n → 0.

My second test is adjusted as Qn + c2n, where

c2n = log

(
log (δ2n)

(log log n)2.5 + 1

)
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and

δ2n =



log(0.977 + 0.599q + 0.212q̃ + 1.16n̂− 0.194qn̂) n < 55,

−205.89 + 55q + 7.19q2 + 102.8− 26.4qn̂ 55 ≤ n < 100,

−309.8 + 37.74q + 1.26q2 + 98.5n̂ 100 ≤ n < 500,

−492.6 + 22q + 120.6n̂ n ≥ 500,

Clearly, as n →∞, c2n → 0.

Similar techniques have been used in other large sample tests. For a statistic similar

to my Qn, C-S adjusted their test by raising the additive normalizing constant bñ by a

additional power c in the log function. They found a sophisticated expression for this c

through extensive simulation. Their method is essentially the same as adding a constant

that converges to 0 as n → ∞. F-H’s test also includes a hidden adjustment for small

samples.

3.3 Ordering

The ordering of the data can have a great influence on the power of test statistics based on

partial sums of residuals. S-W’s test is based on a partial ordering of residuals. Residuals

associated with lower covariates values are lower in the partial ordering. Using this order-

ing method, S-W’s test is powerful for detecting lack-of-fit that occurs at lower covariates

values. This is a very flexible approach, especially when the model contains multiple co-

variates. For example, with two covariates, the supremum over this partial ordering will

equal or exceed the maximum when ordering the residuals according to either of the two

covariates marginally. However, this flexibility for multiple covariates is paid for in com-

putational time which increases exponentially as the number of predictors increases.

The problem with the S-W simulation is the partial ordering of their data. If I com-

pletely order the data, their simulation method becomes a viable alternative to using the
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asymptotic distribution to define tests. However, as mentioned earlier, the validity of the

simulation presupposes asymptotic convergence.

I first considered ordering the residuals according to the Mahablanobis distance of

the predictor variables. Unfortunately, this ordering did not yield rapid convergence and

the convergence rates differed for predictors from different distributions. I believe this is

caused by using the sample mean as the center of the distribution. For example, with a sin-

gle covariate, if x is from a symmetrical distribution, Mahablanobis distance assigns both

tails of x lower orderings. However, if the data is right skewed, Mahablanobis distance

primarily assigns data associated with high values of x to lower orderings. To alleviate

this I considered centering at the midrange.

I tried several modifications of Mahablanobis distance with different center estimates

and I found an effective ordering method that stabilized the convergence rates. First, iden-

tify a set of columns X0
n that contains the covariates suspected of lack-of-fit. Compute

the midranges of each column of X0
n, say η = (η1, ..., ηk)

′. For the ith observation, define

di = (x0
i − η)′S−(x0

i − η), where S− is the generalized inverse of the usual covariance

matrix of X0. The observations are ordered from large to small values of di.

As in the proofs of Theorem 1 and Theorem 2, the convergence of Tn and Qn depends

partly on Sn and S̃n converging to 0, which in turn mildly depend on the behavior of the

predictors. Through extensive simulations I found that with an appropriate choice of ñ and

this ordering method, the predictors’ impact on the size of the test is negligible.

3.4 Simulations

In this Section I study the empirical sizes and powers of the proposed tests. Their empirical

powers are compared with S-W’s test in Section 2.2.1. The significant level is set to be
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0.05. For fitting simple linear regression, the results are based on 6000 simulations and the

sample size is n = 64. For multiple regression models, due to the extensive computation

required by S-W’s test, the results are based on 1800 simulations. I also took n = 50 and

restricted the number of predictor variables to 2, so that p = 3. For Theorems 1 and 2 to

hold, I need ñ < dn/(log log n)e, for Tn, and ñ < dn/(log log n)2e for Qn, with ñ → ∞

as n → ∞. The effects of different ñs were also studied and representative results are

presented. To simplify notation, denote Tn using ñj from Section 3.2 as Tnj and similarly

Qn using ñj as Qnj . For S-W’s test, I also present its performance using my complete

ordering in additional to their partial ordering. As mentioned earlier the simulation results

suggested that ñ1 improves the performance of my tests.

The sizes of Tn and Qn, after small sample adjustment, were studied separately by

simulating predictors from various distributions and fitting data with various models. In

Section 3.4.2 they are checked under 9 different sample sizes from n = 48 to n = 200.

Instead of S-W’s test, my tests’ empirical sizes are compared with another two tests that

have known exact or limiting distribution. Specifically, they are Fisher’s exact test men-

tioned in Section 2.1.1 and Christensen and Sun (2010)’s first test. Results are based on

20000 simulations and the significance level is 5%. The sizes of my tests are shown with

comparable size for C-S’s test and Fisher’s exact test.

My methods provide higher power and computation speed than S-W’s test. With p− 1

predictors and m bootstrap samples, computing the P value of S-W’s test involves Wn(t)

being evaluated np−1(m + 1) times. For n = 50, m = 500, p − 1 = 3, np−1(m + 1) is

6.26× 107. My method requires ñ1 = dn/(log log n)3e evaluations. Comparing to S-W’s

test, the computation time for my tests are significantly reduced by adopting a full ordering

method and using limiting distribution to evaluate P values.

In most cases, my two tests perform similarly. Since Qn puts more weight on the

residuals lower in the ordering, Tn is usually more powerful than Qn when the lack-of-fit

25



Chapter 3. Lack-of-fit test using partial sum of residuals

exists in a relatively long string of residuals of lower orders. On the other hand, when the

lack-of-fit appears only in the first few residuals of lower order, Qn is more powerful.

3.4.1 Power of the tests

To begin with, I examine lack-of-fit when fitting a simple linear regression yi = β0 +

xiβ1 + εi. Neither S-W’s test nor my tests require normality of the error terms, but for

convenience the εis are simulated from N(0, 2).

Through various simulations I found that ñ3 yields similar results to ñ2 and that ñ1

yields similar results to ñ0. Using ñ1 is noticeably more powerful than using ñ3. In the

following examples, to simplify the graphs, I only show the empirical powers for ñ1.

EXAMPLE 3.1. The independent variable x is simulated from a N(0, 1), and the dependent

variable y is drawn from the nonlinear model

y = 1 + exp(θx) + ε

Figure 3.1 shows that Tn1 is more powerful than Qn1 or either version of S-W’s tests. For

example, at θ = 0.75, Tn1 is around 9% more powerful than S-W’s test with my ordering

and 39% more powerful than S-W’s test with their original ordering. S-W’s test with my

ordering is more powerful than Qn1 which is more powerful than S-W’s original test. At

θ = 0.75, Qn1 is about 13% less powerful than S-W’s test with my ordering and 10% more

powerful than S-W’s original test.

EXAMPLE 3.2. The independent variable x is simulated from N(0, 1), and the dependent

variable y is drawn from a quadratic model that is linear in the parameter θ.

y = 1 + θx2 + ε.

The results of Example 3.2 are similar to Example 3.1 and not plotted. Tn1 outperforms the

other tests, S-W’s test with my ordering is more powerful than Qn1, and S-W’s original
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Figure 3.1: Lack-of-fit from Example 3.1

test is the weakest. The difference between Tn1 and S-W’s original test is larger in this

example.

EXAMPLE 3.3. The independent variable x is simulated from a U(−2, 2), and the depen-

dent variable y is drawn from the linear model

y = 1 + 2x + θ cos(x) + ε.

The results of Example 3.3 are a little different from Example 3.1. Here, the differences

between using ñ1 and ñ0 and between using ñ3 and ñ2 are more apparent. Tn1 and S-W’s

test with my ordering are the most powerful tests and they behave almost the same. Qn1,

and S-W’s original test are much weaker and they behave nearly the same.

EXAMPLE 3.4. The independent variable x is simulated from a U(0.1, 2) and the depen-

dent variable y is drawn from

y = 1 +
θ

x
+ ε.
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In this example, different ñs have little effect on Tn. For Qn, ñ0 and ñ1 are more powerful

than ñ2 and ñ3. Figure 3.2 shows that empirical powers for Tn1 and Qn1 are close to each

other and both outperform either version of S-W’s tests. S-W’s original test is still the least

powerful. At θ = 0.8, Tn1 and Qn1 are about 25% more powerful than S-W’s test with my

ordering and 35% more powerful than S-W’s original test.
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Figure 3.2: Lack-of-fit from Example 3.4

If x is simulated from U(0.01, 2), the curvature of plotting y against x will be more

apparent near 0, and the lack-of-fit will quickly appear at the first few data points. As

expected, Qn1 is more powerful than Tn1. At θ = 0.2, Qn1 is about 12% more powerful

than Tn1. (Graph is not shown.)

Now compare the power of my tests with S-W’s tests for fitting multiple regression

models. The fitted model is

y = β0 + β1x1 + β2x2 + ε.

Recall that S-W’s original test is not viable for moderate to large p.
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EXAMPLE 3.5. The independent variables x1 and x2 are independently simulated from

N(0, 1) and the dependent variable y is the same as Example 3.1,

y = 1 + exp(θx1) + ε

and variable x2 is independent of y. If I correctly identify the lack-of-fit as likely to come
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Figure 3.3: Lack-of-fit from Example 3.5: my ordering based on x1

from x1, Figure 3.3 shows that Qn1 is more powerful than Tn1 which is much more pow-
erful than either version of S-W’s tests. Although adding a noisy predictor into the fitted
model, Qn1 and Tn1 are almost as powerful as in Example 3.1, compared to which Qn1

loses almost no power and Tn1 mildly decreases in power. However, both versions of
S-W’s test have their powers significantly reduced.
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Figure 3.4: Lack-of-fit from Example 3.6: my ordering based on x1

In fact, S-W’s original test has almost no power. I believe this is due partly to the fact

that S-W’s ordering is no longer efficient when some of the predictors in the fitted model

are weakly related to the dependent variable. Even for S-W’s test with my ordering, the

power reduction is large. If I order the data according to x1 and x2 jointly, my tests

moderately decrease in power, but are still more powerful than S-W’s tests. (Graph is not

shown.) A similar example with x1 and x2 weakly dependent using my ordering based on

both x1 and x2 is postponed to Example 3.7.

EXAMPLE 3.6. The variable x1 is U(0.01, 2) independent of x2 which is N(0, 1) and the

dependent variable y is the same as in Example 3.4,

y = 1 +
θ

x1

+ ε.

I again identify the lack-of-fit as likely to come from x1. Unlike Example 3.4, x1 is simu-

lated from U(0.01, 2) instead of U(0.1, 2). Figure 3.4 shows that Tn1 is still more powerful

than S-W’s tests and the differences between my test Tn1 and S-W’s tests are dramatic. Qn1
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is clearly more powerful than Tn1, especially for θ < 0.4. At θ = 0.2, Qn1 is about 30%

more powerful than Tn1, 260% more powerful than S-W’s test with my ordering and 760%

more powerful than S-W’s original test.

EXAMPLE 3.7. The variables x1 and x2 are N(0, 1) with a correlation 0.3 and the depen-

dent variable y is as in Example 3.4. Here I correctly identify the lack-of-fit as likely to

come from both x1 and x2 and use my ordering. Figure 3.5 shows the powers.
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Figure 3.5: Lack-of-fit from Example 3.7: my ordering based on x1 and x2

Compared to Figure 3.3, Qn1, Tn1 and S-W’s test with my ordering all decrease in

power. S-W’s original test on the other hand mildly increases in power. Qn1 and Tn1 now

behave close to each other and both are still more powerful than S-W’s test with either

ordering. S-W’s original test remains the weakest. Note that, in this example the sizes for

S-W’s tests are inflated to around 0.06.
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3.4.2 Size of the tests

This Section studies the empirical sizes of my proposed tests. In each of following exam-

ples, multiple cases are considered.

EXAMPLE 3.8. Independent variable x is simulated from N(0, 1). The fitted model is

yi = β0 + xiβ1 + εi. The dependent variable are drawn from three distributions

(a) y = 10 + ε, (b) y = 1 + ε, and (c) y = 1 + 2x + ε,

where εis are independently simulated from N(0, 2). The following three sets of graphs
show that the performances of my two tests are similar to C-S’s test 1 and Fisher’s exact
test and all of them are consistently around 0.05. Also, the three different scenarios almost
give the same feature.
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Figure 3.6: Sizes comparison from Example 3.8 (a)
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Figure 3.7: Sizes comparison from Example 3.8 (b)

 Empirical Size of Test 1 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

04
0.

08

 Empirical Size of Test 2 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

04
0.

08

 Empirical Size of CS test 1 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

04
0.

08

 Empirical Size of Exact F test

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

04
0.

08

Figure 3.8: Sizes comparison from Example 3.8 (c)

EXAMPLE 3.9. The dependent variable is drawn from y = 1 + 2x + ε. The fitted model is

the same as in Example 3.8 and I modify the ways of simulating predictors. Three different

distributions are considered. They are (a) N(0, 10), (b) a strong skewed distribution with
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outliers 1/U(0.1, 2) and mild skewed distribution exp(5). Simulation results show that the

size of my first proposed test is a little less than but close to 0.05 level. The empirical sizes

for my second test are consistent for these three cases.
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Figure 3.9: Sizes comparison from Example 3.9 (a)
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Figure 3.10: Sizes comparison from Example 3.9 (b)
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Figure 3.11: Sizes comparison from Example 3.9 (c)

EXAMPLE 3.10. Similar to Example 3.9, x is simulated from three distributions, (a)

N(0, 1), (b) exp(5) and (c) U(0, 2).
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Figure 3.12: Sizes comparison from Example 3.10 (a)
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The dependent variable is simulated from y = 1 + ε. However, this time a over param-
eterized model yi = β0 + β1xi + β2x

2
i + εi is fitted to the data.
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Figure 3.13: Sizes comparison from Example 3.10 (b)
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Figure 3.14: Sizes comparison from Example 3.10 (c)

This is an important concern; C-S pointed out that the size of F-H’s test is greatly
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reduced when true model is a simple linear model but fitted with an additional quadratic

term. The sizes for all four tests show more differences than the previous examples. Espe-

cially, in Example 3.10 (c), the size of my test 1 is a little below 0.04 but close to 0.05 when

n = 200. In the meanwhile, the size of C-S’s test 1 shows the same level of variations,

whereas the sizes for my test 2 and Fisher’s exact test are consistently around 0.05.

EXAMPLE 3.11. Use same setting as in 3.10, but the fitted model is y = β0+β1x+β2x
2+

β3x
3 + ε. The simulation result is similar to Example 3.8 and Example 3.9. (Graphs are

not shown)

EXAMPLE 3.12. Keep the same setting as Example 3.11, but fit the data with a nonlinear

function of x. That is yi = β0 + β1xi + β2/xi. The simulation result is similar to previous

examples. (Graphs are not shown)

EXAMPLE 3.13. Continuation of Example 3.12, the fitted model is y = β0 + β1x +

β2 cos(x). The simulation result is similar to previous examples. (Graphs are not shown)
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EXAMPLE 3.14. Continuation of Example 3.12 with fitted model simulated from y =

β0 + β1x + β2x
2 + β3x + β4x

2. The simulation result is similar to previous examples. My

tests are consistent around 0.05. This time the results are shown for evidence.
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Figure 3.15: Sizes comparison from Example 3.14 (a)

 Empirical Size of Test 1 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

02
0.

06
0.

1

 Empirical Size of Test 2 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

02
0.

06
0.

1

 Empirical Size of CS test 1 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

02
0.

06
0.

1

 Empirical Size of Exact F 
test

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

02
0.

06
0.

1

Figure 3.16: Sizes comparison from Example 3.14 (b)
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Figure 3.17: Sizes comparison from Example 3.14 (c)

 Empirical Size of Test 1 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

02
0.

06
0.

1

 Empirical Size of Test 2 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

02
0.

06
0.

1

 Empirical Size of CS test 1 

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

02
0.

06
0.

1

 Empirical Size of Exact F test

Sample Size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
n 

0 50 100 150 200

0
0.

02
0.

06
0.

1

Figure 3.18: Sizes comparison from Example 3.15

EXAMPLE 3.15. Use the same setting as in Example 3.14 but the independent variable x

is simulated from distributions with large variance. They are (a) U(−200, 200), and (b)

N(0, 50). The results are similar in these two cases. Here I only show the result of case
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Chapter 3. Lack-of-fit test using partial sum of residuals

(a). The figure shows that, the sizes of my test 1 is around 0.04 and the size of my test 2

is a about in between 0.05 and 0.04. They are not as consistent as Fisher’s test and CS’s

test 1, but still acceptable.

3.5 Summary

I studied the limiting behavior of S-W’s test under linear models and a complete order-

ing of the data. I proposed two tests based on using the asymptotic distributions of the

maximized partial sum of residuals to check the goodness-of-fit of the fitted model. My

tests do not rely on simulating the partial sum process to evaluate the P values. Instead,

I found the limiting null distributions of my test statistics, and adjusted them for small

sample accuracy. The empirical power studies show that my first proposed test has high

power when the fitted model is a simple concave or convex function while the second test

is powerful to detect lack-of-fit that occurs at the lower orderings. The size of my test are

checked in various cases and shown to have consistency. I hope to extended my tests to

generalized linear models.
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Chapter 4

Linear models that allow perfect

estimation

The Gauss-Markov model (1.3) with singular V allows perfect estimation which means

a function of β can be learned with probability one. Since the initial work by Goldman

and Zelen (1964), this problem has been studied by many authors, see, for example Albert

(1973), Kreijger and Neudecker (1977); Rao (1967, 1968); Harville (1981); Puntanen and

Styan (1989); Kempthorne (1989). In this Chapter, I proposed a new way of dealing with

general Gauss-Markov models like (1.3) with C(X) 6⊂ C(V ). Traditional approach is

briefly reviewed Section 4.1. Section 4.2 outlines some historical background and dis-

cusses perfect estimation. Section 4.3 introduces methods for when only part of Xβ is

perfectly estimable. In Section 4.4, I develop hypothesis tests based on the findings in

Section 4.3. A general overview of the traditional approach is presented in the Appendix

D.
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Chapter 4. Linear models that allow perfect estimation

4.1 The problem

The analysis of model (1.3) depends crucially on whether the column space of X , C(X),

has the property C(X) ⊂ C(V ) or C(X) 6⊂ C(V ). When C(X) ⊂ C(V ), with proba-

bility one that Y ∈ C(V ) and the analysis can proceed almost as if V is positive definite.

In particular, the BLUE of Xβ is simply

Xβ̂ = X(X ′V −X)−X ′V −Y

with probability one. Under multivariate normality, the test of an estimable hypothesis

λ′β = 0, where λ′ = ρ′X for some vector ρ, or of an equivalent reduced model (cf.

Christensen, 2002, Section 3.3) Y = X0δ + e with C(X0) ⊂ C(X) has F statistic

(Xβ̂ −X0δ̂)′V −(Xβ̂ −X0δ̂)/[r(X)− r(X0)]

(Y −Xβ̂)′V −(Y −Xβ̂)/[r(V )− r(X)]
.

These results hold for any choice of the generalized inverse. Moreover, both results look

like (and are) similar to results for V positive definite. One simply reduces the vector

space in question to C(V ) rather than Rn except that observing Y 6∈ C(V ) would cause

us to reject model (1.3).

It turns out that equally simple formulae work when C(X) 6⊂ C(V ). Let

T = V + XUX ′

where U is nonnegative definite having C(X) ⊂ C(T ) so that C(X, V ) = C(T ). In

particular, U = I gives such a matrix T . Then the BLUE of Xβ in model (1.3) is

Xβ̂ = X(X ′T−X)−X ′T−Y

and the F statistic is

(Xβ̂ −X0δ̂)′T−(Xβ̂ −X0δ̂)/[r(X)− r(X0)]

(Y −Xβ̂)′T−(Y −Xβ̂)/[r(T )− r(X)]
.
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Chapter 4. Linear models that allow perfect estimation

While these formulae look simple, there is much more here than meets the eye. Why do

such T matrices give the correct answers and what about the well known fact that when

C(X) 6⊂ C(V ) there are some linear functions of Xβ that are known perfectly, i.e., with

probability one?

Suppose a is a vector with a′V = 0 but a′X 6= 0. With C(X) 6⊂ C(V ) such

vectors exist. From model (1.3), a′Y has variance 0 so a′Y = a′Xβ a.s., and a′Xβ

is known perfectly. Whereas in the model (1.4) used to obtain BLUEs and F statistics

for model (1.3). The variance of a′Y reduces to σ2a′XUX ′a > 0. So in model (1.4),

things that are perfectly estimated in model (1.3) are no longer perfectly estimated. Model

(1.4) can be viewed as a model with two independent error terms, e = e1 + e2, where

Cov(e1) = σ2V and Cov(e2) = σ2XUX ′. For unbiased estimation e2 could just as

well be zero because Pr[e2 ∈ C(X)] = 1 and variability in the estimation space C(X) is

ignored by unbiased estimates.

The approach I take to examine model (1.3) is unique. When C(X) 6⊂ C(V ), I isolate

what can be known about Xβ perfectly and then fit a reduced model (1.5). This model

contains all the relevant variability for estimating Xβ. My approach emphasizes the role

of perfect estimation and avoids the incorporation of an unintuitive pseudo-covariance

matrix T . I think my approach allows a clearer understanding of the issues involved in

fitting linear models with C(X) 6⊂ C(V ). In the following Sections of this chapter, I

begin with some historical background and a discussion of perfect estimation. This leads

us to fitting model (1.5) and showing that the simple intuitive procedures involved in fitting

(1.5) lead to the appropriate procedures for fitting model (1.3) and agree with the simple

but mysterious procedures of fitting model (1.4). Obviously if model (1.5) is equivalent

to model (1.3) when C(X) 6⊂ C(V ), it better produce the same BLUEs and F tests as

models (1.3) and (1.4).

One potential application of results on linear models with singular covariance matrices
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Chapter 4. Linear models that allow perfect estimation

is for modeling the residuals of model (1.1). In that case, fitting model (1.1) with least

squares gives residuals ê ≡ (I − MX)Y . A linear model for the residuals has

ê = Γξ + ẽ E(ẽ) = 0, Cov(ẽ) = σ2(I − MX).

This is essentially what Fan and Huang (2001) do when they apply Fourier transforms

to the residuals of a linear model but they ignore the covariance structure and use least

squares estimates. If C(Γ) 6⊂ C(I − MX), the nontrivial parameter MXΓξ is known

with probability 1. (I generally prefer incorporating Γξ into model (1.1) to get model (2.8)

rather than fitting models to the residuals.)

4.2 Historical review

The general Gauss-Markov model (1.3) has been well studied. Although most studies

focus on nonsingular V , the possibility of singular covariances still draws attention. Chris-

tensen (2002) classifies the linear model into 4 categories, depending on the assumptions

made about V :

(a) V is the identity matrix,

(b) V is positive definite,

(c) V is nonnegative definite with C(X) ⊂ C(V ), and

(d) V is nonnegative definite.

These categories are increasingly general. Groß (2004) gave a survey of important results

for linear models with possibly singular covariance matrixes. Rao (1967, 1968) provided

necessary and sufficient conditions for the equivalence of the Ordinary Least Square Esti-

mate (OLSE) and the Best Linear Unbiased Estimate (BLUE) of Xβ. His two conditions
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Chapter 4. Linear models that allow perfect estimation

are: X ′V Z = 0, or V = aI + XBX ′ + ZEZ ′ in which C(Z) = C(X)⊥ and B,

E are symmetric with a, B, E chosen so that V is nonnegative definite. Kreijger and

Neudecker (1977) introduced a method of linear estimation under the parameter restric-

tions determined by the singularity of V . They use G′ = (I − V V +). In this way,

G′Xβ = G′Y with probability 1 and G′Xβ is nontrivial only if G′X 6= 0. Any other

generalized inverse for V , say V − has the same two properties. Harville (1981) intro-

duced ways to find minimum-variance unbiased estimates of estimable functions ρ′Xβ

under singular covariance matrixes. He suggests finding a matrix Q where Q′V = 0 and

r(Q) = n − r(V ), so that b = Q′Y = Q′Xβ with probability 1. Then he forces the

estimator c + a′Y of ρ′Xβ to depend on b. With this method, he shows the proposed es-

timator is the minimum variance unbiased estimator of ρ′Xβ. Puntanen and Scott (1996)

showed that the BLUE of Xβ is [I − V N(NV N)−N ]Y for any choice of general in-

verse (NV N)−, where V can be deficient in rank, and N is the perpendicular projection

operator onto C(X)⊥. They also show that the covariance matrix of the BLUE of Xβ is

0 if and only if C(V ) ∩ C(X) = {0}. Puntanen and Styan (1989) reviewed conditions

for the OLSE to be BLUE, see also Christensen (1990), Harville (1990) and Kempthorne

(1989). I focus on cases with V singular and C(X) 6⊂ C(V ). My interest is in the role

of perfect estimation, i.e., linear functions of β that are known with probability one, and

how perfect estimation relates to estimating other functions of β and testing.

Theorem 3 If C(X) 6⊂ C(V ), there exist nontrivial estimable functions that can be es-

timated perfectly. These functions are the linear functions of Q′Xβ where Q is a full

column rank matrix with C(Q) = C(V )⊥.

This result is well known. The key feature is choosing Q with C(Q) = C(V )⊥. My Q′

is obviously equivalent to Harville’s (1981) Q′ and Kreijger and Neudecker’s (1977) G′

matrix, except that I specify full column rank. Zyskind (1967) and Zyskind and Martin

(1969) choose Q to be a matrix whose columns are orthonormal eigenvectors of V with
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Chapter 4. Linear models that allow perfect estimation

respect to the eigenvalue 0. This leads to QQ′ = I − MV .

The existence of perfectly estimable functions depends on the fact that C(X) 6⊂

C(V ), so that Q′X 6= 0. Actually, the contrapositive is more obvious, if Q′X = 0

then

C(X) ⊂ C(Q)⊥ =
[
C(V )⊥

]⊥
= C(V ).

Because Q′X 6= 0, the estimable function Q′Xβ nontrivial.

Since E[Q′(Y −Xβ)] = 0 and Cov[Q′(Y −Xβ)] = 0, I have

Pr[Q′(Y −Xβ) = 0] = 1 and Q′Y = Q′Xβ, a.s.

Therefore, whenever C(X) 6⊂ C(V ), there exist nontrivial estimable functions of β that

can be perfectly estimated. Moreover, with Cov(Q′Y ) = σ2Q′V Q = 0, my choice of Q

with full column rank implies that among linear functions of Y only linear functions of

Q′Y will have 0 covariance matrices, so only linear functions of Q′Xβ will be estimated

perfectly.

My approach differs from the traditional approach that obtains estimates and tests by

replacing the covariance matrix V with a pseudo-covariance matrix T such that C(X) ⊂

C(T ). I appeal to what I think is a more intuitive method based on adjusting X . After

adjusting for the part of the analysis that is known perfectly, the remainder of the analysis

is performed with the methods that apply when C(X) ⊂ C(V ). My procedures provide

an alternative way of dealing with difficult aspects of models when V is singular.

4.3 Partly Perfect Estimation

Puntanen and Scott (1996) show that the BLUE Xβ̂ has Cov(Xβ̂) = 0 if and only

if Xβ is known perfectly if and only if C(X)∩C(V ) = {0}. Note that for nontrivial X

and V , C(X) ∩ C(V ) = {0} implies C(X) 6⊂ C(V ).
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When C(X) ∩ C(V ) 6= {0} and C(X) 6⊂ C(V ), Xβ cannot be known perfectly,

but some functions of Xβ can be estimated perfectly. If this happens, write β = β0 + β1

with β0 ∈ C(X ′Q) and β1 ⊥ C(X ′Q). I show that Xβ0 is known, so that I need

only estimate Xβ1 to learn everything about Xβ. Since C(X ′Q) = C(X ′QQ′) =

C([X ′(I −MV )]), the decomposition does not really depend on the choice of Q.

In fact, β0 is known, not just Xβ0. By the definition of β0 as part of a unique orthog-

onal decomposition, with probability one,

β0 = MX′Qβ = X ′Q[Q′XX ′Q]−Q′Xβ = X ′Q[Q′XX ′Q]−Q′Y .

Note that β0 is always identifiable (estimable) even though β may not be. Since the

perpendicular projection operator does not depend on the choice of generalized inverse,

neither does β0, and with probability one, it does not depend on Q.

Let Xv satisfy C(Xv) = C(X) ∩ C(V ). I now estimate Xβ1. Notice that β1 ⊥

C(X ′Q) ⇔ Q′Xβ1 = 0 ⇔ Xβ1 ⊥ C(Q) ⇔ Xβ1 ∈ C(V ) ⇔ Xβ1 ∈ C(Xv) ⇔

Xβ1 = Xvγ for some γ. Since Xβ0 is fixed and known, it follows that E(Y − Xβ0) =

Xβ1 ∈ C(Xv) and Cov(Y − Xβ0) = σ2V , so I can estimate Xβ1 by fitting model

(1.5), i.e.,

Y −Xβ0 = Xvγ + e, E(e) = 0, Cov(e) = σ2V .

The generalized least squares estimate and BLUE of Xvγ is

Xvγ̂ = Xv(X
′
vV

−Xv)
−X ′

vV
−(Y −Xβ0).

Under normality, tests for model (1.5) are also relatively easy to construct and all the nice

properties of linear models like (1.3) under the condition C(X) ⊂ C(V ) apply to model

(1.5).

Intuitively, P ′(Xβ0 + Xvγ̂) is a reasonable way to estimate an arbitrary estimable

function P ′Xβ in model (1.1). The following theorem, proven in the Appendix B, estab-

lishes that this is also the BLUE.
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Theorem 4 Every representation of a BLUE in model (1.3) for ρ′Xβ uniquely determines

a BLUE for ρ′Xvγ in model (1.5) and vice versa.

Although the definition of Xv is simple, it is worth noting ways to find it. In some low-

dimensional examples, finding Xv from X and V is fairly easy. Otherwise, C(Xv) =

C(XŨ ), where C(Ũ ) = C[X ′(I −MV )]⊥ ≡ C(X ′Q)⊥ because β1 ∈ C(X ′Q)⊥ =

C(Ũ ) ⇔ Xβ1 ∈ C(XŨ ). One direction is immediate. The other follows from writing

Xβ1 = XŨγ and premultiplying by Q′, see also Rao and Mitra (1971, p.118). Note that

r(Xv) = r(X)+ r(V )− r(X, V ). Additionally, Christensen (2002 Section 10.4), estab-

lishes that a basis for Xv is any basis for the orthocomplement of C(I−MX , I − MV ),

i.e., C(Xv) = C(I − MX , I −MV )⊥.

EXAMPLE 4.1. Consider a three sample model yi = µi + εi, i = 1, 2, 3 with correlated

observations. The correlation between the first and the third observations is −1. The

second observation is uncorrelated with the other two. The key matrices for model (1.3)

are

Y =


y1

y2

y3

 , X =


1 0 0

0 1 0

0 0 1

 , V =


1 0 −1

0 1 0

−1 0 1

 .

Clearly C(V ) is a singular matrix and C(X) 6⊂ C(V ), so I can apply my method.

C(Xv) = C




1 0

0 1

−1 0




and it is easy to find Q and C(Q′X) as

Q =


1

0

1

 , C(X ′Q) = C




1

0

1


 .
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It follows that with β = [µ1, µ2, µ3]
′,

β0 =


µ1+µ3

2

0

µ1+µ3

2

 , β1 =


µ1−µ3

2

µ2

µ3−µ1

2

 ,

so

Xβ0 =


µ1+µ3

2

0

µ1+µ3

2

 =


y1+y3

2

0

y1+y3

2

 a.s.,

and model (1.5) becomes

Y −Xβ0 =


y1−y3

2

y2

y3−y1

2

 = Xvγ + e =


1 0

0 1

−1 0


γ1

γ2

+ e.

where

γ1 ≡
µ1 − µ3

2
, γ2 ≡ µ2.

Notice that now C(Xv) ⊂ C(V ), so I can apply standard methods, e.g., Christensen

(2002, p. 233), to get the BLUE of γ1, γ2 :

γ̂1 =
y1 − y3

2
, γ̂2 = y2.

According to Theorem 4, (y1 − y3)/2 and y2 are, respectively, the BLUE of (µ1 − µ3)/2

and µ2 in both the original model (1.3) and the adjusted model (1.5). Also Xβ̂ ≡

Xβ0 + Xvγ̂ = [y1 y2 y3]
′. Actually, in this example C(V X) ⊂ C(X) so the least

square estimate of µ is the BLUE in the original model (1.3) which also implies µ̂i = yi.

It is interesting that µ1 + µ3 can be estimated perfectly.

49



Chapter 4. Linear models that allow perfect estimation

4.4 Testing a Linear Hypothesis

In model (1.3) with multivariate normal errors, when C(X) 6⊂ C(V ) I can con-

struct hypothesis tests using model (1.5). If Xβ is known, there is nothing left to test,

so I restrict attention to general Gauss-Markov models that satisfy C(X) 6⊂ C(V ) and

C(X) ∩ C(V ) 6= {0}.

Consider testing a vector estimable linear hypothesis H0 : P ′Xβ = d, under

Y = Xβ + e, e ∼ N(0, σ2V ).

A standard way to test H0 involves finding the corresponding reduced model which is

Y −Xb̃ = X0η + e, e ∼ N(0, σ2V ), (4.1)

where C(X0) ⊂ C(X) and P ′Xb̃ = d for known b̃, c.f. Christensen (2002, Section 3.3).

Here I need to check d ∈ C(P ′X) or the hypothesis makes no sense. I now go a step

further to find the reduced model relative to model (1.5) that is determined by P ′Xβ = d.

Under the conditions C(X) 6⊂ C(V ) and C(X) ∩ C(V ) 6= {0}, I adjust the model

for forms that can be estimated perfectly. As in Section 4.2, write β = β0 + β1 with

β0 ∈ C(X ′Q) and β1 ⊥ C(X ′Q), where β0 is known with probability 1. The null

hypothesis can be rewritten H0 : P ′X(β0 + β1) = d or H0 : P ′Xβ1 = d− P ′Xβ0. If

d − P ′Xβ0 6∈ C(P ′Xv) then P ′Xβ = d must be false. Let d − P ′Xβ0 ≡ k, so the

null hypothesis is H0 : P ′Xβ1 = k. Since Xβ1 ≡ Xvγ, I have P ′Xβ1 ≡ P ′Xvγ and

the null hypothesis becomes P ′Xvγ = k in model (1.5) which is clearly still estimable.

The full model (1.5) reduces to

(Y −Xβ0)−Xvb = Wγ0 + e, (4.2)

where b is any solution to P ′Xvb = k and C(W ) ⊂ C(Ṽ ), specifically, C(W ) =

C(XvU ) where C(U ) = C(X ′
vP )⊥ as in Christensen (2002, p.233). With

A = Xv(X
′
vV

−Xv)
−X ′

vV
−, A0 = W (W ′V −W )−W ′V −,
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I know that the BLUE of Xvγ is A(Y −Xβ0) and the BLUE of Wγ0 is A0(Y −Xβ0−

Xvb).

To test the reduced model assume multivariate normal errors and use the standard

method of comparing sums of squared error (SSE). Define SSE and SSE0 for models

(1.5) and (4.2) as

SSE = (Y −Xβ0)
′(I −A)′V −(I −A)(Y −Xβ0)

= (Y −Xβ0 −Xvb)′(I −A)′V −(I −A)(Y −Xβ0 −Xvb)

and

SSE0 = (Y −Xβ0 −Xvb)′(I −A0)
′V −(I −A0)(Y −Xβ0 −Xvb)

and denote

C ≡ (I −A)′V −(I −A); C0 ≡ (I −A0)
′V −(I −A0).

Under model (1.5), the usual test statistic has a noncentral F distribution,

F ∗ =
(SSE0 − SSE)/tr[(C0 −C)V ]

SSE/tr(CV )
, (4.3)

and

F ∗ ∼ F (tr[(C0 −C)V ], tr(CV ), γ ′X ′
v(C0 −C)Xvγ/2σ2)

whereas under H0: γ ′X ′
v(C0 − C)Xvγ = 0, a central F distribution is appropriate.

If Y 6∈ C(X, V ), the full model is wrong. In testing the null model, I also reject if

Y −Xβ0 6∈ C(V ). Finally, I establish that F ∗ can be computed directly from the model

(1.5) BLUEs.

Theorem 5 Under models (1.3) and (1.5) the distribution in (4.3) holds. Under H0 :

P ′Xβ = d or model (4.2),

F ∗ =
(SSE0 − SSE)/tr[(C0 −C)V ]

SSE/tr(CV )
∼ F (tr[(C0 −C)V ], tr(CV ), 0)
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which reduces to

F ∗ =
(P ′Xβ̂ − d)′[P ′Xv(X

′
vV

−Xv)
−X ′

vP ]−(P ′Xβ̂ − d)/r(X ′
vP )

(Y −Xβ0 −Xvγ̂)′V −(Y −Xβ0 −Xvγ̂)/[r(V )− r(Xv)]

∼ F (r(X ′
vP ), r(V )− r(Xv), 0).

PROOF: See Appendix B.

This testing method is equivalent to the method of constructing test statistics by re-

placing V with a pseudo-covariance matrix T = V + XUX ′, where C(X) ⊂ C(T ), cf.

Christensen (2002, Section 10.3) and the Appendix B.

EXAMPLE 4.1. This is a two sample problem with the first two observations having

variance 1 but the third has variance 0. The key matrices are

X =


1 0

1 0

0 1

 , V =


1 0 0

0 1 0

0 0 0

 , Q =


0

0

1

 .

With β = [µ1, µ2]
′ and

Q′X =
[

0 1
]
,

let us consider an hypothesis test of H0 : ρ′Xβ = d, where ρ′ = [1
2
, 1

2
,−1]. The full

model (1.5) is

Y − Xβ0 =


y1

y2

y3 − y3

 =


y1

y2

0

 = Xvγ + e =


1

1

0

γ + e,

where Xβ1 = Xvγ and γ ≡ µ1. The null hypothesis can be rewritten as H0 : ρ′Xvγ =

k. Here k = d− ρ′Xβ0 = d + y3. The reduced model (4.2) now becomes

Y −Xβ0 −Xvb = Wγ0 + e,
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where

Y −Xβ0 =


y1

y2

0

 , b = k, W =


0

0

0

 .

After some algebra

A =


1
2

1
2

0

1
2

1
2

0

0 0 0

 , A0 =


0 0 0

0 0 0

0 0 0

 , C =


1
2

−1
2

0

−1
2

1
2

0

0 0 0

 , C0 =


1 0 0

0 1 0

0 0 0

 .

With K = [k, k, 0]′,

SSE = (Y −Xβ0 −K)′C(Y −Xβ0 −K) =
1

2
(y1 − y2)

2

SSE0 = (Y −Xβ0 −K)′C0(Y −Xβ0 −K) = (y1 − k)2 + (y2 − k)2,

and

tr[(C0 −C)V ] = 1, tr(CV ) = 1.

Thus,

F ∗ =
(SSE0 − SSE)/tr((C0 −C)V )

SSE/tr(CV )
=

(y1 − k)2 + (y2 − k)2 − (y1 − y2)
2/2

(y1 − y2)2/2

=
(y1 + y2 − 2k)2/2

(y1 − y2)2/2
.

Recall k = d − ρ′Xβ0 = d + y3, so F ∗ = (y1 + y2 − 2d − 2y3)
2/(y1 − y2)

2. If F ∗ is

greater than the 1− α percentile of F (1, 1, 0), H0 is rejected at level α.

Alternatively, I can compute the test statistic using the BLUEs. It is easy to check[
ρ′Xβ̂ − d

]
=

(
y1 + y2

2
− y3 − d

)
=

(
y1 + y2

2
− k

)
and [

ρ′Xv(X
′
vV

−Xv)
−X ′

vρ

]−
=

[
1 · 1

2
· 1
]−

= 2,
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so the numerator of F ∗ equals (y1 + y2 − 2k)2/2r(X ′
vρ). Clearly the degrees of freedom

involve r(X ′
vρ) = 1, r(V ) = 2, r(Xv) = 1, which agree with the previous method.

Thence the results of the two methods agree.

4.5 Summary

In general Gauss-Markov models like (1.3) with C(X) 6⊂ C(V ), there exist estimable

functions of β that are known with probability 1. Specifically these are linear functions

of Q′Xβ where Q is a full column rank matrix with C(Q) = C(V )⊥. Many traditional

methods for handling these problems adjust V by finding a matrix T to act as a pseudo-

covariance matrix with C(X) ⊂ C(T ) that gives BLUEs and tests that are appropriate

for V . Contrary to traditional methods of adjusting V , I decompose β into known and

unknown parts and adjust X to allow estimation and testing of the unknown part of β.

Specifically, I adjust model (1.3), Y = Xβ + e, to get an equivalent model (1.5), Y −

Xβ0 = Xvγ + e, where Xβ0 is a known vector, then perform estimation and tests on

model (1.5). In the Appendix B I show the equivalence of model (1.5) and model (1.3) for

estimation and testing.
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Future Work

I have two major directions of interests following this dissertation. My first direction is

that tests studied in this dissertation can be extended into generalized linear models. There

are three approaches. First approach is to extend my first proposed test T1n directly to

generalized linear models. The proof of asymptotic distribution is promising, but careful

studies of small sample adjustments are required. The second approach is similar to F-

H’s method. I consider proposing test based on Fourier transformation of standardized

residuals in generalized linear models. The third approach is to use a partial sum of the

components in score test based on smooth test. The second direction is that the bootstrap

method that S-W used to evaluate P values brings my attention to the questions that when

and how bootstrap methods can be safely used.

A brief discussion of each future direction is presented in the following Sections.
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5.1 Lack-of-fit test using generalized linear model resid-

uals

The beauty of linear model lies in its simplicity in estimation and convenience of checking

models using residuals. However, in generalized linear models, the parameters are usually

estimated using likelihood, quasi-likelihood or by solving other estimating equations. The

residuals are not prevalent used for model checking in generalized linear models. Accord-

ing to Pierce and Schafer (1986), they are not even clearly defined.

Pierce and Schafer (1986) discussed the appropriateness of using deviance-based resid-

uals to provide insights of the model fittings such as examining effects of potential new

covariates, or detecting nonlinear functions of existing covariates. Let y1, ..., yn be a sam-

ple of independent response variables each with density f(yi, θi) and link function g(·)

such that θi = g(x′iβ). Here xi is a vector of p covariates associated with ith response

yi and β is a vector of p unknown coefficients. Three types of residuals approximately

normal distributed are considered. They are linear residuals, transformed linear residu-

als and deviance contributions. Here, linear residuals standardize response variable with

estimated mean and standard deviation and for ith observation, it is

rl
i(yi, x

′
iβ̂) = {yi − µ̂(yi)}/σ̂(yi),

where µ(yi) = E(yi), and σ(yi) is the standard deviation of yi. Transformed residuals first

transform the response variables and then standardize them, that is

rt
i(yi, x

′
iβ̂) = {t(yi)− µ̂(t(yi))}/σ̂(t(yi)),

where t(·) is a transformation function which is used to correct the skewness of yis, so that

residuals rt(yi, θi)s converge faster. McCullaph and Nelder (1983) called them Anscombe

residuals. The third, deviance contribution,

rD
i (yi, x

′
iβ̂) = sgn(yi − θ̂i){2d(yi, θ̂i)}1/2,
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where θ̂i is the maximum likelihood estimate of θi, and d(yi, θ̂i) is the unite deviance.

McCullagh and Nelder (1983) further adjusted deviance residuals to standard normal dis-

tribution. Specifically, that is

rAD
i (yi, x

′
iβ̂) = rD(yi, θ̂i) + ρ3(θ̂i)/6,

where ρ3(θi) = Eθi
{[(yi − µ̂(yi))/σ̂(yi)]

3}. The main idea is to apply discrete Fourier

transformation to Anscombe residuals and adjusted deviance residuals. In this way, the

transformed residuals compress lack-of-fit signals into lower frequencies, so that the pro-

posed tests can perform well.

Denotes the normalized residuals (either rAD
i or rt

i) in a generalized linear model as

ẽis for i = 1, ..., n. Applying Fourier transformation, we have

ê∗2j−1 = (2/n)1/2

n∑
i=1

cos(2πij/n)ẽi,

ê∗2j−1 = (2/n)1/2

n∑
i=1

sin(2πij/n)ẽi,

for j = 1, ..., [n/2]. My proposed test statistic is similar in form of Fan and Huang’s

statistic, that is

Tf1 = max
1≤m≤ñ

1
√

2mσ̂e
4

m∑
i=1

(ê∗2i − σ̂2
e).

where ñ → ∞ as n → ∞ and ñ/n → 0. Note that here σ̂e are standard deviation of

the transformed residuals. After standardization and Fourier transformation, residuals ê∗i s

have mean of 0 and standard deviation 1. Hence, I might just replace σ̂e with 1, but to make

the test robustly converge I will also consider an appropriate estimate of it. After suitable

normalization, I expect the statistic to have an extreme value distribution. However, a new

set of proofs for asymptotic convergence need to be developed and ẽi can not be treated

as if it is from standard normal distribution. For example, the asymptotical normality

approximations for residuals in generalized linear models require two type asymptotic

situations, the sample size n → ∞ and an index m → ∞. Here, the m could be the
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the number of trials in a Binomial distribution, or Poisson mean, Gamma distribution’s

shape parameter. Because of the requirement for m convergence, I will first consider

Binomial underlining distribution with fairly a large number of trials, say m > 10 and

Poisson distribution with a fairly large mean. (Although the convergence requires m →

∞, in application, a moderate m is enough.) In the end, I may even apply it to Bernoulli

distribution, since in theory, to prove covergence, I only need the transformed residuals to

be asymptotically independent, identical distributed with mean 0 and variance 1.

Besides convergence, to make test Tf1 efficient, an appropriate ordering method needs

to be proposed. Using the key matrices in linear model (2.8), F-H’s test involves fitting

model

Y − Xβ̂ = (I − MX)Y = Hγ + ε,

where H is orthonormal matrix of Fourier series. F-H’s test is efficient only if (I −

MX)H is smooth. However, in generalized linear model, such clear form is not available.

So additional studies on finding efficient ordering methods are required.

Finally, small sample performance of the proposed tests needs to be studied, especially

for the cases with multiple predictors.

5.2 Smooth test using partial sums

Neyman’s smooth test of density function is originally proposed in Neyman (1937) and

further developed by many people over the years, for example Barton (1953, 1955, 1956);

Hamdan (1962, 1963, 1964); Thomas and Pierce (1979); Bargal and Thomas (1983);

Rayner and Best (1986, 1988, 1989). The ones that are close to my new ideas are by

Rayner and Best who frequently adopt orthonormal functions to make components of score

test identifiable and independent.
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Denotes yis for i = 1, ..., n as independent random variables from distribution

f(yi; θi) = exp

[
yiθi − b(θi)

a(φi)
− c(yi, φi)

]
,

with unknown θi and known nuisance parameter φi. a(·), b(·) and c(·) are known functions.

This is a typical density function of exponential family. The mean of yi, µi = µ(yi), is a

function of θi which is linked to covariates by function g(·). That is

g(µi) = x′iβ, (5.1)

where xi is a vector of p covariates associated with yi and β is a vector of p unknown

parameters. Using the idea of smooth test, this distribution function is embedded within

an alternative density function

fk(yi, η, θi)C(η, θi) exp

{
k∑

j=1

ηjhj(yi; θi)

}
f(yi; θi),

where η = (η1, η2, ..., ηk)
′ is a vector of k parameters. C(η, θi) is a normalizing constant

and hj(yi; θi) is a set of orthonormal functions on f(yi; θi), satisfying∫ ∞

−∞
hp(yi, θi)hq(yi, θi)f(yi, θi)dyi = δpq,

where δpq = 1 if p = q and 0 otherwise. Hypothesis of lack-of-fit test is

H0 : η = 0, against Ha : η 6= 0.

To test it, one can use score test, which is based on the statistic

Ŝ =
k∑

j=1

V̂ 2
j with V̂j =

n∑
i=1

1√
n

hj(yi, θ̂i),

where θ̂i is the maximum likelihood estimate of θi. Recall that θis are linked with β by

g(·), so the MLE of θi is estimated by plugging in the MLE of β. The V̂js for j = 1, ..., k

are components of Ŝk. Intuitively large value of Ŝk provides evidence against the null
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hypothesis. For cases without nuisance parameter, as n → ∞, V̂ 2
j converges to χ2

(1) and

Sk converge to χ2
(k).

The key point is to select k. Simulation studies show that for different choices of ks

the score test may lead to different results. Rayner (1986) suggested performing multiple

times of tests using different ks. However, this procedure involves multiple looks of the

data without considering adjustments to significant levels. This may lead to inconsistent

size and making the test less objective than it could be.

My ideas of resolving this issue are in two folds. Frist, using Rayner and Best (1986,

2009)’s (orthogonal polynomial function) hj(·)s, I can proposed test statistic based on

partial sums of the normalized (with mean 0 and standard deviation 1) V̂j or V̂ 2
j . Denote

the mean and standard deviation of V̂j as µ(V̂j) and σ(V̂i). Similarly, for V̂ 2
j they are µ(V̂ 2

j )

and σ(V̂ 2
j ). My proposed test statistics could be

Tf2 = max
1≤k≤ñ

1√
k

k∑
j=1

(V̂j − µ̂(V̂j))/σ(V̂j)

and

Tf3 = max
1≤k≤ñ

1√
k

k∑
j=1

(V̂ 2
j − µ̂(V̂ 2

j ))/(σ̂V̂ 2
j ),

This is a promising approach as orthogonal functions of lower order have priority to be

included in the partial sum and given higher weights. A power comparison between the

two tests and Rayner and Best (1986, 2009)’s test using different ks will be performed.

An alternative approach is to use a different set of orthogonal functions, for example,

Fourier series. However, difficulties exist in formulating such orthogonal functions. I will

try to resolve it in a following study.

Regards to the difficulties of finding such orthonormal functions hj(·)s, I consider

proposing an alternative test for testing the mean function when the link function is as-

60



Chapter 5. Future Work

sumed correct. Formulate the link function (5.1) in matrices form

G = Xβ, (5.2)

where

G =


g(y1, θ1)

...

g(yn, θn)

 , X =


x′1
...

x′n

 , β =


β1

...

βn

 .

The the smooth alternatives is obtained by extending (5.2) to

G = Xβ + Hkγk, (5.3)

where Hk is a n×k matrix of orthonormal Fourier series and γk is a vector of k unknown

parameters. Lack-of-fit test is again transformed into testing

γk = 0 and γk 6= 0.

Let l0 = l(β̂) be the log-likelihood of model with mean function (5.2), and lk = lk(β̂, γ̂k)

be the log-likelihood of model with mean function (5.3). For a fixed k, the above hypoth-

esis can be tested using likelihood ratio method. The test statistic is

χ̃2
k = 2(lk(β̂, γ̂k)− l(β̂))

L→ χ2
(k).

Now, let wk = 2(lk−lk−1), for i = 1, ..., ñ, where ñ is function of n satisfying ñ < n. Here

wis for i = 1, ..., ñ are asymptotically independent with a χ2
(1) distribution. My proposed

test statistic is

Tf4 = max
1≤k≤ñ

1√
k

k∑
i=1

(wi − µ̂(wi))/σ̂(wi).

After suitably normalization, the normalized tests are expected to have an extreme value

distribution. I believe this is a natural extension of Christensen and Sun (2010)’s test to

generalized linear models.
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5.3 Bootstrapping confidence interval

The name of “bootstrap” is first brought into the realm of statistics by Efron (1979) with

pointing out ideas of bootstrap methods had already been around for many years. Since

then, there are a large amount of literatures focusing on understanding, improving and

applying bootstrap methods to specific problems.

With the quick development of computing power and availability of statistical soft-

erware such as R, S-plus, SAS and ect., bootstrap methods are more available to non-

statistics researchers for calculating confidence intervals. The most popular types of boot-

strap confidence intervals are the studentized bootstrap interval, the bootstrap percentile in-

terval, bias correction bootstrap percentile (BC) and accelerate bootstrap percentile(BCa).

However, when people talk about ”bootstrap”, most people think of percentile method

and tend to use it without considering possible limitations. There are two situations under

which people tend to use bootstrap confidence intervals. First, the study with small sample

size. Second, complicate problems.

However, the dilemma is that bootstrap methods are based on large sample approxi-

mations. Once it is applied in small sample, the large sample condition is violated. So,

when people apply bootstrap in small sample, it is usually more of a faith rather than

actually applying it with consideration of the statistical mechanism and the limitation.

Also, for complicate problems, especially when finding large sample approximation of

the confidence interval is hopeless, bootstrap methods become life saving straws. Many

applications simply re-sample the data and repeat the estimation procedures in each boot-

strap sample without checking the large sample convergence. Although bootstrap method

is robust in many cases, the validity of bootstrap in complicate problems should not be

overlooked. Moreover, there are published literatures, for example Rigby (2009), treated

bootstrap as sampling with replacement and commented “Where statistical modeling is
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applied, the CI should be estimated using bootstrap”. Hence we feel it is necessary to

clarify the concept of bootstrap methods and emphasize their limitations.

In this paper, we will start with a quick review of assumptions and limitations of each

of the four prevalent methods. we will study the bootstrap accuracy in samples with sizes

such as 5, 10 and 15. A comparison of the performances of the four methods will be

provided in small sample. Also, we will reiterate the importance of checking the large

sample convergence of the bootstrap methods when they are applied in complicate prob-

lems. Counter examples that use bootstrap methods to approximate P values of lack-of-fit

test but do not produce asymptotic consistent results will be provided.
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Proof of theorems for Chapter 3

A.1 Lemma1

To prove Theorem 1, I need the following lemma. Throughout conditions (a) and (b) of

Section 3.1 are assumed

Lemma 1.
√

n ‖ β̂n − β ‖ /an is bounded a.s, where an =
√

2 log log n.

PROOF. To show
√

n ‖ β̂n − β ‖ /an is bounded, define An = X ′
nXn/n. Under

condition (a), An → A as n →∞. By Amemiya (1990), for j ∈ {1, 2, ...p}, λj(n) → λj

as n → ∞, where λj(n) is the jth smallest eigenvalue of An, and λj is the jth smallest

eigenvalue of A.

Since A is a positive definite matrix, all λjs are finite positive values. Koval′ (2002)

corollary 1, showed that if

lim
n→∞

nλ1(n) = ∞, lim supn→∞
(n + 1)λ1(n + 1)

nλ1(n)
< ∞,
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and log log nλ1(n) ∼ log log nλp(n), as n →∞,

it follows that

lim sup
n→∞

(
nλ1(n)

2σ2 log log nλ1(n)

)1/2

‖ β̂n − β ‖= 1 with probability 1,

It is easy to check that the first two conditions are met. The third is less apparent. To check

the third condition,

log log nλ1(n) ∼ log log nλp(n) iff
log log nλ1(n)

log log nλp(n)
− 1 → 0

However,

log log nλ1(n)

log log nλp(n)
− 1 =

log log nλ1(n)− log log nλp(n)

log log nλp(n)
=

log [log nλ1(n)/ log nλp(n)]

log log nλp(n)
.

The last term on the right goes to 0 since the denominator goes to infinity, whereas the

numerator goes to 0 because

log nλ1(n)

log nλp(n)
=

log n + log λ1(n)

log n + log λp(n)
→ 1.

The three conditions are satisfied, hence

lim sup
n→∞

(
nλ1(n)

2 log log nλ1(n)

)1/2

‖ β̂n − β ‖= σ with probability 1,

and
√

n ‖ β̂n − β ‖ /an is bounded a.s. because log n ∼ log nλ1(n). �

A.2 Lemma 2

Lemma 2. Under assumption (a),
∣∣∣∑u(ñ)

i=1 x′i(β̂n − β)
∣∣∣ /σ√ñ converges in probability to

0 as n →∞, for any integers u(ñ) ∈ {1, 2..., ñ}, where ñ = dn/(log log n)1+δe.
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PROOF. By Cauchy- Schwartz,

1√
ñ

∣∣∣∣∣∣
u(ñ)∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣∣∣ ≤ 1√
ñ

u(ñ)∑
i=1

∣∣∣∣x′i(β̂n − β)

σ

∣∣∣∣
≤ 1√

ñσ

u(ñ)∑
i=1

‖ xi ‖ · ‖ β̂n − β ‖

≤ 1√
ñσ

ñ∑
i=1

‖ xi ‖ · ‖ β̂n − β ‖,

which is equivolent to[√
2ñ√
n

√
log log n

][
1

ñ

ñ∑
i=1

‖ xi ‖

][ √
n√

2σ2 log log n
‖ β̂n − β ‖

]
.

By assumption (a),
∑n

i=1 ‖ xi ‖2 /n = tr(XX ′)/n which converges to tr(A). It

follows that 0 ≤
∑n

i=1 ‖ xi ‖ /n <
∑n

i=1 max(1, ‖ xi ‖2)/n <
∑n

i=1(1+ ‖ xi ‖2

)/n → 1+ tr(A), so the second term converges to a constant. By Lemma 1, the third term
√

n ‖ β̂n − β ‖ /
√

2σ2 log log n is bounded. If the first term
√

2ñ log log n/n converges

to 0, as n → ∞, the whole term converges to 0. If ñ = n/(log log n)1+δ for δ > 0,√
2ñ log log n/n =

√
2/
√

(log log n)δ → 0, as n →∞. �

A.3 Proof of Theorem 1

PROOF OF THEOREM 1. First suppose both β and σ are known, then ei = yi − x′iβ for

i ∈ {1, ..., n} are independently distributed with E(ei) = 0 and V ar(ei) = σ2. By Erdös

and Kac (1945), as ñ →∞,

1√
ñ

max
1≤m≤ñ

∣∣∣∣∣
m∑

i=1

yi − x′iβ

σ

∣∣∣∣∣ L→ T,

where T has a distribution with cdf

Pr[T < t] =
4

π

∞∑
m=0

(−1)m

2m + 1
exp(−(2m + 1)2π2/8t2) for t > 0.
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Let β̂n be the least square estimator of β and let

k ∈
{

j :

∣∣∣∣∣
j∑

i=1

yi − x′iβ̂n

σ

∣∣∣∣∣ = max
1≤m≤ñ

∣∣∣∣∣
m∑

i=1

yi − x′iβ̂n

σ

∣∣∣∣∣
}

,

so that,

1√
ñ

max
1≤m≤ñ

∣∣∣∣ m∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣ =
1√
ñ

∣∣∣∣ k∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣
=

1√
ñ

∣∣∣∣ k∑
i=1

yi − x′iβ

σ
−

k∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
≤ 1√

ñ

∣∣∣∣ k∑
i=1

yi − x′iβ

σ

∣∣∣∣+ 1√
ñ

∣∣∣∣ k∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
≤ 1√

ñ
max

1≤m≤ñ

∣∣∣∣ m∑
i=1

yi − x′iβ

σ

∣∣∣∣+ 1√
ñ

∣∣∣∣ k∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣.

Also let

q ∈
{

j :

∣∣∣∣ j∑
i=1

yi − x′iβ

σ

∣∣∣∣ = max
1≤m≤ñ

∣∣∣∣ m∑
i=1

yi − x′iβ

σ

∣∣∣∣}.

Then have

1√
ñ

max
1≤m≤ñ

∣∣∣∣ m∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣ ≥ 1√
ñ

∣∣∣∣ q∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣
=

1√
ñ

∣∣∣∣ q∑
i=1

yi − x′iβ

σ
−

q∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
≥ 1√

ñ

∣∣∣∣ q∑
i=1

yi − x′iβ

σ

∣∣∣∣− 1√
ñ

∣∣∣∣ q∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
=

1√
ñ

max
1≤m≤ñ

∣∣∣∣ m∑
i=1

yi − x′iβ

σ

∣∣∣∣− 1√
ñ

∣∣∣∣ q∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣.
By Lemma 2, both

∣∣∣∑q
i=1 x′i(β̂n − β)

∣∣∣ /σ√ñ and
∣∣∣∑k

i=1 x′i(β̂n − β)
∣∣∣ /σ√ñ converge in

probability to 0 as n → ∞, therefore max1≤m≤ñ

∣∣∣∑m
i=1 yi − x′iβ̂n

∣∣∣ /σ√ñ has the same

limiting distribution as max1≤m≤ñ |
∑m

i=1 yi − x′iβ| /σ
√

ñ.
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Finally write

Tn =
1√
ñ

max
1≤m≤ñ

∣∣∣∣∣
m∑

i=1

yi − x′iβ̂n

σ̂n

∣∣∣∣∣ =
σ

σ̂n

√
ñ

max
1≤m≤ñ

∣∣∣∣∣
m∑

i=1

yi − x′iβ̂n

σ

∣∣∣∣∣ .
By condition (b), σ/σ̂n

p→ 1, hence Tn
L→ T . �

Note that, in the proof, the order of the xis irrelevant. Under the null model the asymp-

totic distribution of the test statistic depends on xis only through assumption (a). Any

permutation of the rows of Xn will not change the validity of assumption (a). However,

simulation studies show that when sample sizes are small, the ordering affects the size of

test statistics, hence my small sample adjustments.

A.4 Lemma 3

To prove Theorem 2, I need Lemma 3.

Lemma 3. If condition (a) is satisfied,

añ max
1≤m≤ñ

∣∣∣∣ 1√
m

m∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣ p→ 0, as ñ→∞,

where añ =
√

2 log log ñ and ñ = dn/(log log n)2+δe, for δ > 0.

PROOF. Let

h ∈ {j :

j∑
i=1

∣∣∣x′i(β̂ − β)
∣∣∣ ‖ /

√
j = max

1≤m≤ñ

m∑
i=1

∣∣∣x′i(β̂ − β)
∣∣∣ /√m}
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. By Cauchy-Schwartz

añ max
1≤m≤ñ

∣∣∣∣ 1√
m

m∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣ = añ
1√
h

∣∣∣∣ h∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
≤ añ

1√
h

h∑
i=1

∣∣∣∣x′i(β̂n − β)

σ

∣∣∣∣
≤

[
añan

√
h

σ
√

n

][
1

h

h∑
i=1

‖ xi ‖
][√

n

an

‖ β̂n − β ‖
]
.

By Lemma 1, the third term
√

n ‖ β̂n − β ‖ /an is bounded a.s. For the second term, if

h < ∞, then
∑h

i=1 ‖ xi ‖ /h is bounded or if h →∞, by assumption (a),
∑h

i=1 ‖ xi ‖ /h

is again bounded. If the first term converges to 0, then the right hand side converges in

probability to 0. However, anañ

√
h/σ

√
n ≤ a2

n

√
ñ/σ

√
n = 2/σ(log log n)δ/2 → 0, hence

Lemma 3 is proved. �

A.5 Proof of Theorem 2

PROOF OF THEOREM 2. First suppose both β and σ are known. Applying the Darling-

Erdös theorem (Darling and Erdös, 1956),

añ max
1≤m≤ñ

1√
m

∣∣∣∣ m∑
i=1

yi − x′iβ

σ2

∣∣∣∣− bñ
L→ Q as ñ →∞,

where añ =
√

2 log log ñ, bñ = (añ)2 + log añ − log(
√

2π), and Q has an extreme value

distribution whose cdf is

Pr [Q < t] = exp [− exp(−t)] .

Let

k∗ ∈
{

j :
1√
j

∣∣∣∣ j∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣ = max
1≤m≤ñ

1√
m

∣∣∣∣ m∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣}.
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So that

añ max
1≤m≤ñ

1√
m

∣∣∣∣ m∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣ = añ
1√
k∗

∣∣∣∣ k∗∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣
= añ

1√
k∗

∣∣∣∣ k∗∑
i=1

yi − x′iβ

σ
−

k∗∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
≤ añ

1√
k∗

∣∣∣∣ k∗∑
i=1

yi − x′iβ

σ

∣∣∣∣+ añ
1√
k∗

∣∣∣∣ k∗∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
≤ añ max

1≤m≤ñ

1√
m

∣∣∣∣ m∑
i=1

yi − x′iβ

σ

∣∣∣∣+ añ
1√
k∗

∣∣∣∣ k∗∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣.

Now, let q∗ ∈
{

j :
1√
j

∣∣∣∣ j∑
i=1

yi − x′iβ

σ

∣∣∣∣ = max
1≤m≤ñ

1√
m

∣∣∣∣ m∑
i=1

yi − x′iβ

σ

∣∣∣∣}.

I have

añ max
1≤m≤ñ

1√
m

∣∣∣∣ m∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣ ≥ añ
1√
q∗

∣∣∣∣ q∗∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣
= añ

1√
q∗

∣∣∣∣ q∗∑
i=1

yi − x′iβ

σ
−

q∗∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
≥ añ

1√
q∗

∣∣∣∣ q∗∑
i=1

yi − x′iβ

σ

∣∣∣∣− añ
1√
q∗

∣∣∣∣ q∗∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣
= añ max

1≤m≤ñ

1√
m

∣∣∣∣ m∑
i=1

yi − x′iβ

σ

∣∣∣∣− añ
1√
q∗

∣∣∣∣ q∗∑
i=1

x′i(β̂n − β)

σ

∣∣∣∣.

By Lemma 3, both

añ

∣∣∣∣∣
q∗∑

i=1

x′i(β̂n − β)

∣∣∣∣∣ /σ√q∗ and añ

∣∣∣∣∣
k∗∑
i=1

x′i(β̂n − β)

∣∣∣∣∣ /σ√k∗

converge in probability to 0, as n →∞, therefore

añ max
1≤m≤ñ

∣∣∣∣∣
m∑

i=1

(
yi − x′iβ̂n

)
/σ
√

m

∣∣∣∣∣− bñ and añ max
1≤m≤ñ

∣∣∣∣∣
m∑

i=1

(yi − x′iβ) /σ
√

m

∣∣∣∣∣− bñ
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have the same limiting distribution. Also

Qn = añ
σ

σ̂n

max
1≤m≤ñ

1√
m

∣∣∣∣ m∑
i=1

yi − x′iβ̂n

σ

∣∣∣∣− bñ

can be written as

Qn =
σ

σ̂n

(
añ max

1≤m≤ñ

∣∣∣∣∣
m∑

i=1

(
yi − x′iβ̂n

)/
σ
√

m

∣∣∣∣∣− bñ

)
+

(
σ

σ̂n

bñ − bñ

)
.

Under condition (b), σ/σ̂n
p→ 1 as n → ∞, so that the first term converges in law to Q.

The second term converges in probability to 0, because by condition (b) and the choice of

ñ, σ/σ̂n − 1 converges to 0 faster than bñ converges to infinity. �
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Proof of theorems for Chpater 4

B.1 Proof of Theorem 4

PROOF OF THEOREM 4: Any linear unbiased estimate of ρ′Xβ in model (1.3), say

a′Y , has a′Xβ = ρ′Xβ for any β, so a′Xβ0 = ρ′Xβ0 and a′(Y −Xβ0) determines

a linear unbiased estimate of ρ′Xvγ in model (1.5) with the same variance in model (1.5)

as a′Y has in model (1.3). Thus the BLUE of ρ′Xβ in model (1.3) must have variance

no less than the BLUE of ρ′Xvγ in model (1.5).

Conversely, if c′(Y −Xβ0) is unbiased for ρ′Xvγ in model (1.5), c′(Y −Xβ0) +

ρ′Xβ0 ≡ c̃′Y is unbiased for ρ′Xβ in model (1.3) and has the same variance, so the

variance of the BLUE of ρ′Xvγ in model (1.5) must have variance no less than the BLUE

of ρ′Xβ in model (1.3).

Since the variance of the BLUE of ρ′Xvγ in model (1.5) equals the variance of the

BLUE of ρ′Xβ in model (1.3), finding the BLUE in model (1.5) determines the BLUE in

model (1.3) and vice versa.
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B.2 Proof of Theorem 5

PROOF OF THEOREM 5: To prove this, I first check that F ∗ follows a noncentral F dis-

tribution. Christensen (2002, Section 10.3) gives a procedure for testing models like (4.1)

when b̃ = 0 using T = V + XUX ′. This can be generalized to models with b̃ 6= 0 just

like other such tests, see Christensen (2002, Chapter 3). To test P ′Xβ = d or equiva-

lently P ′Xvγ = k in model (1.5), apply the procedure to model (4.2) by taking T = V .

Standard arguments (modified in a manner similar to what follows) establish that the non-

centrality parameter is 0 if and only if the null hypothesis (model) is true.

To show that F ∗ can be computed using BLUEs from model (1.3), show

(a) SSE = (Y − Xβ0 − Xvγ̂)′V −(Y − Xβ0 − Xvγ̂)

(b) SSE0 − SSE = (P ′Xβ̂ − d)′[P ′Xv(X
′
vV

−Xv)
−X ′

vP ]−(P ′Xβ̂ − d)

(c) tr(CV ) = r(V )− r(Xv)

(d) tr(C0Xv −CV ) = r(X ′
vP )

First, define matrices based on Christensen (2002, p.232). Pick E, D so that V E = ED.

Here D = Diag(di), where the dis are all positive eigenvalues of V and r(V ) = m. Also

E is a matrix of orthonormal columns with the ith column an eigenvector corresponding

to di. Define D1/2 ≡ Diag(
√

di). Write

Q̃ ≡ ED1/2 Q̃
− ≡ D−1/2E′.

Useful facts are

(1) C(V ) = C(E) = C(Q̃), (2) MV = Q̃Q̃−, (3) V = Q̃Q̃
′
,

(4) V − = Q̃
−′Q̃

−
, (5) Q̃

−
Q̃ = Im = Q̃

′
Q̃
−′.
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Since C(Xv) ⊂ C(V ) and MV = Q̃Q̃
−

, I can write Xv = Q̃Q̃
−
Xv. Let b be any

solution to P ′Xvb = d− P ′Xβ0,

Proof of (a):

SSE = [(I −A)(Y −Xβ0 −Xvb)]′V −[(I −A)(Y −Xβ0 −Xvb)]

and recall that A(Y −Xβ0) is Xvγ̂, the BLUE of Xvγ, so

(I −A)(Y −Xβ0 −Xvb) = (I −A)(Y −Xβ0)− (I −A)Xvb

= (Y −Xβ0 −Xvγ̂)− 0.

Hence (a) is proved.

Proof of (b):

SSE = (Y −Xβ0 −Xvb)′(I −A)′V −(I −A)(Y −Xβ0 −Xvb)

= [(Y −Xβ0 −Xvb)′(I −A)′Q̃
−′][Q̃

−
(I −A)(Y −Xβ0 − X̃b)]

= [Q̃
−
(Y −Xβ0 −Xvb)]′(I −M

Q̃
−

Xv
)[Q̃

−
(Y −Xβ0 −Xvb)],

The last equality follows because Q̃
−
(I −A) = (I −M

Q̃
−

Xv
)Q̃

−
. With the same argu-

ment,

SSE0 = [Q̃
−
(Y −Xβ0 −Xvb)]′(I −M

Q̃
−

W
)[Q̃

−
(Y −Xβ0 −Xvb)].

As in Christensen (2002, Prop 3.3.2),

SSE0 − SSE

= [Q̃
−
(Y −Xβ0 −Xvb)]′(M

Q̃
−

Xv
−M

Q̃
−

W
)[Q̃

−
(Y −Xβ0 −Xvb)]

= [Q̃
−
(Y −Xβ0 −Xvb)]′(M

M
Q̃
−

Xv
Q̃
′
P

)[Q̃
−
(Y −Xβ0 −Xvb)]

= [P ′Q̃M
Q̃
−

Xv
Q̃
−
(Y −Xβ0 −Xvb)]′(P ′Q̃M

Q̃
−

Xv
Q̃
′
P )

−

×[P ′Q̃M
Q̃

−
Xv

Q̃
−
(Y − Xβ0 − Xvb)].
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Consider the first and last terms, recalling that d− P ′Xβ0 = P ′Xvb,

P ′Q̃M
Q̃
−

Xv
Q̃
−
(Y −Xβ0 −Xvb) = P ′MV A(Y −Xβ0 −Xvb)

= P ′A(Y −Xβ0 − V 0b)

= P ′V 0γ̂ − (d− P ′Xβ0)

= P ′Xβ̂ − d

and the middle term is

(P ′Q̃M
Q̃
−

Xv
Q̃
′
P )− = [P ′Xv(X

′
V V −Xv)

−X ′
vP ]−

so SSE0 − SSE = (P ′Xβ̂ − d)′[P ′Xv(X
′
vV

−Xv)
−X ′

vP ]−(P ′Xβ̂ − d).

Proof of (c): By Christensen (2002, Corollary 10.3.5) with T = V ,

tr[CV ] = tr[V −(I −A)V ]

= tr[Q̃
−′Q̃

−
(I −A)Q̃Q̃

′
]

= tr[Q̃
′
Q̃
−′Q̃

−
(I −A)Q̃]

= tr[Im −M
Q̃
−

Xv
].

So tr(CV ) = tr[Im −M
Q̃
−

X̃
] = m − r(Q̃

−
Xv) = r(V ) − r(Q̃

−
Xv). Note also

that r(Q̃
−
Xv) = r(D−1/2E′Xv) = r(E′Xv) = r(EE′Xv) = r(MV Xv) = r(Xv).

Thus tr(CV ) = r(V )− r(Xv).

Proof of (d): Similar arguments give tr(C0V ) = tr(I −M
Q̃
−

W
). So

tr(C0V )− tr(CV ) = tr(M
Q̃
−

Xv
−M

Q̃
−

W
) = tr(M

M
Q̃
−

Xv
Q̃
′
P

)

and

tr(M
M

Q̃
−

Xv
Q̃
′
P

) = r(M
Q̃
−

Xv
Q̃
′
P ) = r(X ′

vQ̃
−′Q̃

′
P ) = r(X ′

vMV P ) = r(X ′
vP ).

Thus tr(C0V −CV ) = r(X ′
vP ). �

75



Appendix B. Proof of theorems for Chpater 4

B.3 Proof equivolence of tests

EQUIVALENCE OF TESTS: Consider testing model (1.3) against its reduced model (4.1).

The traditional method constructs a test statistic by defining

Ã = X(X ′T−X)−X ′T− and Ã0 = X0(X
′
0T

−
0 X0)

−X ′
0T

−
0 ,

where

T = V + XBX ′ and T 0 = V + X0B0X
′
0

for some nonnegative definite matrix B and B0 such that C(X) ⊂ C(T ) and C(X0) ⊂

C(T 0). ÃY is the BLUE of Xβ in model (1.3) and Ã0(Y −Xb̃) is the BLUE of X0η

in model (4.1). The SSE in model (1.3) and its reduced model are

SSE1 = (Y −Xb̃)′(I − Ã)′T−(I − Ã)(Y −Xb̃),

SSE1
0 = (Y −Xb̃)′(I − Ã0)

′T−
0 (I − Ã0)(Y −Xb̃).

Denote C1 ≡ (I − Ã)′T−(I − Ã) and C1
0 ≡ (I − Ã0)

′T−(I − Ã0).

To prove the equivalence of my testing method and this traditional method, it suffices to

show (a) SSE1 = SSE, (b) SSE1
0 = SSE0, (c) tr(CV ) = tr(C1T ) and (d) tr(C0V ) =

tr(C1
0T ).

Proof of (a): The SSE1 for model (1.3) is, by Christensen (2002, Theorem 10.3.1),

(Y −Xb̃)′(I − Ã)′T−(I − Ã)(Y −Xb̃) = Y ′(I − Ã)′T−(I − Ã)Y

= Y ′(I − Ã)′V −(I − Ã)Y

where ÃY is the BLUE of Xβ. However, the BLUE of Xβ is also

ÃY = Xβ0 + Xvγ̂ = Xβ0 + A(Y −Xβ0),

so (I − Ã)Y = (I −A)(Y −Xβ0) and SSE1 = SSE.
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Proof of (b): In (I − Ã0)(Y −Xb̃), Xb̃ + Ã0(Y −Xb̃) is the BLUE of E(Y ) in

model (4.1). In model (4.2) the BLUE of E(Y ) is Xβ0 +Xvb+A0(Y −Xβ0−Xvb),

so

(I − Ã0)(Y −Xb̃) = (I −A0)(Y −Xβ0 −Xvb)

and SSE1
0 = SSE0.

Proof of (c): To show tr(CV ) = tr(C1T ), it suffices to show r(T ) − r(X) =

r(V )− r(Xv).

C(T ) = C(X, V )

= C(Xv)⊕ C(Xv)
⊥
C(V ) ⊕ C(Xv)

⊥
C(X)

= C(V )⊕ C(Xv)
⊥
C(X).

So r(T ) = r(V ) + r(C(Xv)
⊥
C(X)). Also, C(X) = C(Xv) ⊕ C(Xv)

⊥
C(X) and r(X) =

r(Xv) + r(C(Xv)
⊥
C(X)). Thus r(T )− r(X) = r(V )− r(Xv).

Proof of (d) Arguments similar to (c) give tr(C0V ) = tr(C1
0T ).

Thus, the traditional testing method is equivalent to this testing method. �
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Review of lack-of-fit tests

C.1 Utts’s test

Utts (1982) proposed a lack-of-fit test, known as Rainbow test which can be used to check

the adequacy of regression models with p covariates. Considering testing the lack-of-fit

of model (1.1), his method involves fitting the“same model” twice, once respect to the

full dataset of n observations and the other time to a sub dataset of n1 observations. For

k = 1, 2, in each dataset write

Y k =


yk1

...

yknk

 , Xk =


x′k1

...

x′knk

 and ek =


ek1

...

eknk

 ,

where yki, xki and eki are the ith response, covariates and error corresponding to the kth

subset data. Here n2 = n− n1. The model for the full dataset isY 1

Y 2

 =

X1

X2

β1 +

e1

e2

 (C.1)
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and for the sub dataset, it is

Y 1 = X1β2 + e1. (C.2)

Here both β1 and β2 are vectors of p unknown parameters. Let

Y = [Y 1, Y 2]
′, X = [X1, X2]

′ and e = [e1, e2]
′,

the SSEs for model (C.1) and model (C.2) are

SSE(C.1) = Y ′(I −MX)Y and SSE(C.2) = Y ′
1(In1 −MX1)Y 1.

To test the lack-of-fit of model (C.1), Utts proposed an F statistic based on comparing

model (C.1) and model (C.2). That is

F1 =
SSE(C.2)− SSE(C.1)/n2

SSE(C.2)/n1 − p
∼ F(n2, n1−p).

Large values of F1 indicate inadequacy of model (C.1).

Utts’s approach seems different from the classical methods that involve extending the

null model to a larger model. However, it is exactly partitioning lack-of-fit test and the

extended model is obtained by fitting the rest of dataset (n2 observations) exactly. Consider

such an extended model

Y = X̃γ + e, (C.3)

where

X̃ =

 X1 0

0 In1

 , γ =

 β2

β3

 ,

and β3 is a vector of n2 unknown parameters. Clearly C(X) ⊂ C(X̃) and the SSE of

model (C.3) is

SSE(C.3) = Y ′(I −M X̃)Y .
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The classical lack-of-fit test is

F2 =
SSE(C.3)− SSE(C.1)/n2

SSE(C.3)/n1 − p
=

Y ′(M X̃ −MX)Y /n2

Y ′(I −M X̃)Y /n1 − p
∼ F(n2, n1−p).

Note that

M X̃ =

MX1 0

0 In2

 and I −M X̃ =

In1 −MX1 0

0 0

 .

It follows that

SSE(C.3) = Y ′(I −M X̃)Y = Y ′
1(In1 −MX1)Y 1 = SSE(C.2).

Hence, F1 = F2 and Utts’s test is equivalent to the classical lack-of-fit test of extended

model (C.3) against null model (C.1).

Utts’s test involves partitioning the data into two parts. The key issue is how to par-

tition the data. It apparently can affect the test’s performance. In application, the author

suggested partitioning the data according to the leverage scores. In this article, he used the

half of dataset with lower leverage scores as sub dataset. Apparently, this method can be

extended by considering other partitioning methods.

C.2 Eubank and Spiegelman’s test

Eubank and Spiegelman (1990) proposed a lack-of-fit test for model (1.1) with

X = [X1, ..., Xn]′ and X i = [1, xi]
′,

where x1 ≤ x2, ...,≤ xn. They considered an extended model, similar to model (2.8) with

H satisfying

H ′H = nI and H ′X = 0.
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Here H/
√

n is an orthonomal matrix and MH = HH ′/n. The lack-of-fit test of model

(1.1) is performed through testing model (2.8) on

H0 : γ = 0, and Ha : γ 6= 0. (C.4)

With γ̂ ≡ H ′Y /n, for a fixed k, (C.4) can be tested using a χ2 test,

nγ̂ ′γ̂ ∼ χ2(k).

This test involves comparing model (1.1) and model (2.8). To see that write the sum of

square error of model ( 2.8 ) as

SSE = Y ′ (I −MX,H) Y

= Y ′ (I −MX −MH) Y

= Y ′(I −MX)Y − Y ′HH ′Y /n.

Here Y ′(I − MX)Y is the SSE of the model (1.1). Thus, nγ̂ ′γ̂ = Y ′HH ′Y is the

difference of SSEs between model (1.1) and model (2.8).

However, using a pre-specified k dimension H matrix, the test is only consistent

against some but not all alternatives. The authors suggested a more general approach.

They began with fitting residuals from model (1.1),

ê = H2γ2 + e2, (C.5)

where H2 is a n× k2 matrix of smooth functions and tij(·) is the ith row and jth column

of H2. The hypothesis (C.4) is approximated by

H0 : γ2 = 0, versus Ha : γ2 6= 0, (C.6)

where γ2 is a vector of k2 parameters. Then a test is considered by standardizing γ̂ ′2γ̂2,

that is

T ∗ES = n
(
γ̂ ′2γ̂2 − σ2p/n

)
/σ2
√

2p
L→ N(0, 1) (C.7)
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Intuitively, the H0 of (C.6) is rejected for large values of T ∗ES. To obtain the test that are

consistent against all alternatives, one needs to let k2 vary. The key point is to select

the type of smooth functions and the value k2, which is used to control the over fitting

(smoothness) of the extended model (C.5). The authors, on the other hand, set k2 to be as

large as n − 2 and control the smoothness of extended model by fitting residuals êis with

a cubic smooth spline, which minimizes

n∑
i=1

(êi − rλ(xi))
2 + λ

∫ 1

0

r′′λ(x)2dx. λ > 0, (C.8)

Here,

rλ(xi) = β̂0 + β̂1xi +
n∑

j=3

t′jêtj(xi)/n(1 + λθj),

where β̂ = [β̂0, β̂1]
′ is LSE of β from model (1.1), tj(·)s for j = 3, ..., n are vectors of n

natural spine basis functions with

tj = [tj(x1), ..., tj(xn)]′ and t′jJn = t′jti = nδij,

where δij = 1 for i = j, 0 otherwise. Also, θjs satisfy 0 < θ3 ≤ ... ≤ θn and λ is a smooth

parameter that controls the smoothness of the function rλ(·). Defined the jth column of

H2 as tj/
√

n(1 + λθj) and

ê− rλ = (I −MX)Y − (MXY + MH2(I − MX)Y ).

Since X ′H = 0,

MH2(I − MX)Y = MH2Y

and es = ê− rλ = (I − 2MX −MH2)Y = (Y − 2Xβ̂ − Ĥ2γ̂). Hence, minimizing

(C.8) not only penalize the smoothness of rλ(·), but also force Xβ̂ to be a biased estimate.

The fitted function of rλ(xi) is

r̂λ(xi) =
n∑

j=3

t′jrtj(xi)
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and the sum of square of fitted value is

n∑
i=1

r̂2
λ(xi) = n

n∑
j=3

γ̂2
j /(1 + λθj) = t′jêtj(xi)/n(1 + λθj).

The smooth spline version of test (C.7 ) is

TES =
(∑n

j=1 h2
λ(xj)− σ2

∑n
j=3(1 + λθj)

−2
)
/σ2

(
2
∑n

j=3(1 + λθj)
−4
)1/2

. (C.9)

The author showed that if h(n) = 1/(nλ1/8)1/2,

TES
L→ N(||g||2(

√
2C)1/2σ2, 1)

as

n →∞, λ → 0 and nλ →∞.

Here xjs are assumed from a continuous positive density w. f and g are in Hilbert space

L2(w)/{1, x}, f and f ′ are absolutely continuous, f ′′ is square integrable and C is set to

be

C = (

∫ ∞

0

(1 + x4)−4dx)(

∫ 1

0

w(t)1/4dt)/π.

In calculation,
n∑

j=3

(1 + λθj)
−4 and

n∑
j=3

(1 + λθj)
−4

are approximated by

((j − 2)π)4(

∫ 1

0

w(t)1/4dt)−4,

θj is approximated by

((j − 1.5)π)4(

∫ 1

0

w(t)1/4dt)−4

and
∫ 1

0
w(t)1/4 can be approximated using a density estimator. σ can be replace by a

appropriate estimate using nonparametric techniques. The key point is to select λ. The

author suggested using cross-validation. Also, as the author pointed out, the power of the

test seems relatively insensitive to the choice of λ, but this statement is inconclusive.
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C.3 Fan’s test

Fan (1996) proposed a lack-of-fit test of density functions. Let xis for i = 1, ..., n be a

iid sample from a specific distribution with unknown cumulative density function (CDF)

F (x). The hypothesis is

H0 : F (x) = F0(x), versus Ha : F (x) 6= F0(x). (C.10)

Intuitively, testing the adequacy of F0(x) can be performed by checking the distance be-

tween F0(x) and the empirical CDF F̂n(x). Two popular tests based on empirical CDFs

are Kolmogorove-Smirnov test (KS test), and the Cramér-Von Mises test (CVM test):

T̂KS =
√

n sup
x
|F̂n(x)− F0(x)|,

and

T̂CV M = n

∫
{F̂n(x)− F0(x)}2dF0(x).

However, these procedures have been known as inefficient in detecting the local features

of proposed models, for example, high frequency components and local bumps. In this

paper, Fan showed the inefficiency of CVM test and proposed an alternative approach

based on power consideration. He transformed the test of CDF into the test of the mean

vector of multivariate normal distribution. In test (C.10), under H0, F0(x) is uniformly

distributed, whereas under Ha, F0(x) is not uniformly distributed as x is no longer from

the distribution F0(·). Hence (C.10) is equivalent to

H0 : F (x) ∼ uniform(0, 1) versus H1 : F (x) 6∼ uniform(0, 1). (C.11)

Applying the Fourier transformation to F (x) gives us,

θ2j−1 =

∫ 1

0

cos(2πjx)d(F (x)) and θ2j =

∫ 1

0

sin(2πjx)d(F (x)),

for j = 1, 2, ....∞. Apparently, if F (x) = x, we have θj = 0. Hence, testing (C.11) is

equivalent to testing

H0 : θj = 0, versus H1 : θj 6= 0, (C.12)
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for j = 1, ...∞. Let θ̂j be the corresponding empirical estimate of θj for j = 1, ...∞. Using

the results from Eubank and Lariccia (1992), rewrite CVM test as

T̂CV M =
n

2π2

∞∑
j=1

j−2(θ̂2
2j−1 + θ̂2

2j). (C.13)

It has been shown that these Fourier terms can efficiently transfer the empirical CDF into

high frequency terms (larger j) and low frequency terms (smaller j). The term 1/j2 greatly

weights down the high frequency terms, making the test procedure almost uses only the

first few coefficients. Thus, Fan argued that this is why CVM test is ineffective, and pro-

posed an alternative approach based on Neyman’s most powerful test. Under H0, one can

show that these Fourier series are asymptotically independent and normally distributed,

with

θ̂j
L→ N(θj, n

−1),

for j = 1, ..., N, where N/n → 0. This leads the problem to consider a multivariate

normal distribution with θ̂ ∼ N(θ, n−1IN) and (C.12) is approximated by

H0 : θ = 0, versus Ha : θ 6= 0. (C.14)

The difficulty is that θ is of high dimension and testing all dimensions of θ is difficult.

Then the key point is how to select a meaningful part of summation from equation (C.13)

to boost the power of the test. The author proposed several approaches. They are adaptive

Neyman’s test, hard thresholding test and soft thresholding test.

In an easy scenario, where the specific alternative of (C.14) is θ = θa, as m →∞, the

power of Neyman’s test is approximately equal to

1− Φ

(
z1−α −

1√
2m

m∑
j=1

θ2
j0

)
,

where θj0 is the jth component of θ0. To achieve the highest power in the above function

(maximize the above function) one needs to maximize 1√
2m

∑m
j=1 θ2

j0. This in turn suggests
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selecting

m̂ = argmax
m:1≤m≤n

{
1√
2m

m∑
j=1

(θ̂2
j − 1)

}
.

Note that 1√
2m

∑m
j=1(θ̂

2
j − 1) is a unbiased estimate of 1√

2m

∑m
j=1 θ2

j0. Naturally, Fan’s test

takes the form of

T ∗AN = max
1≤m≤n

{
1√
2m

m∑
j=1

(θ̂2
j − 1)

}
and H0 is rejected for large values of T ∗AN .

By Darling Erdös theorem, TAN = anT
∗
AN − bn, with an =

√
2 log log n and bn =

a2
n + log an − 0.5 log(4π), approximates an extreme value distribution,

P (TAN < x)
L→ exp(exp(−x)), as n →∞.

However, if the signals of CDF concentrate on high frequency terms, adaptive Neyman’s

test suffers a significant decrease in power. To improve it under this situation, Fan proposed

a threshold (hard) value leading the test statistic to

T̂ ∗H =
n∑

j=1

θ̂2
j I(|θ̂j| > δ).

By Theorem 4 of Donoho and Johnstone (1994), δ needs to be close to
√

2 log n. For better

performance the author suggested using

δ =
√

2 log(nan), with an = c(log n)−d,

for some positive constants c and d. Normalizing T̂ ∗H with its mean and variance, the testing

procedure is

T̂H = σ−1
n,H(T̂ ∗H − µn,H)

L→ N(0, 1)

where

µn,H =
√

2/πa−1
n δ(1 + δ−2) and σn,H =

√
2/πa−1

n δ3(1 + 3δ−2)
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are the asymptotic mean and variance of T̂ ∗H .

The soft-thresholding function is introduced by Bickel (1983). However, in practice

the soft-thresholding having slow converging problems. So it is not introduced here. For

more information, please check Bickel (1983) and Fan (1991).

Note that, both soft and hard thresholding methods are less related to the partial sum

process that mentioned in this dissertation. However, it is necessary to add them as a

counter part which makes up the inefficiency of adaptive Neyman’s test.

C.4 Fan and Huang’s test

Fan and Huang (2001) extended the Fan (1996)’s lack-of-fit test of density function to

regression models. Under null model (1.1), the residuals vector is

ê ∼ N(0, (I −MX)σ2).

A quick and simple diagnostic is to plot residuals against each predictor for systematic

departures from 0. Conditional on equal variance assumption, this technique can be more

objectively presented by performing hypothesis test of

H0 : E(ê) = 0, versus Ha : E(ê) 6= 0, (C.15)

which is testing the mean of multivariate normal distribution. The issue is E(ê) is a vector

that has the same amount of parameters as sample size. Hence, it is impossible to test

all dimensions. In order to make it work, the dimension of the test needs to be shrunken

to a manageable number while reserving as much useful information as possible. Using

the similar idea as in Fan (1996), they applied a discrete Fourier transformation to these

residuals. Specifically, the Fourier transformed residuals are

ê∗2j−1 = (2/n)1/2

n∑
i=1

cos(2πij/n)êi,
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ê∗2j−1 = (2/n)1/2

n∑
i=1

sin(2πij/n)êi,

for j = 1, ..., [n/2]. The test (C.15) is equivalent to

H0 : E(ê∗) = 0, versus Ha : E(ê∗) 6= 0. (C.16)

The high dimension problem still exist, but fortunately, the Fourier transformation may

compresses useful signals into lower frequencies so that it is appropriate to only work

with the low frequency terms. Using the test form in Fan (1996), the author offered an

“objective” way of selecting the subset of testing parameters by defining their test as

T ∗AN = max
1≤m≤ñ

1
√

2mσ̂
4

m∑
i=1

(ê∗2i − σ̂2).

According to Darling Erdös theorem, normalizing T ∗AN as

TAN = añT
∗
AN − bñ,

with añ =
√

2 log log ñ and bñ = a2
ñ + log añ − 0.5 log(4π),

P r[TAN < t]
L→ exp(− exp(−t)).

The hidden benefit of Fourier transformation is the rate of convergency. To apply Darling

Erdös theorem the terms in the partial sums are assumed to be independent. Fourier trans-

formation orthogonalizes the residual vector so that ê∗i s are more linear independent with

each other than êis. When lack-of-fit appears, one would expect both T ∗AN and TAN to take

large values.

F-H’s test T ∗AN considers summing up to ñ = n Fourier transformed residuals. How-

ever, in F-H’s proof and simulation studies, they set ñ = n/(log log n)4 as the upper bound

and argued that in application it does not make much difference from using ñ = n. While

partially agreed with this argument that the performance of the test is insensitive to mild

changes in ñ, C-S pointed out that the limiting theorem does not apply if ñ = n. Additional

discussion of ñ is postponed to the next section.
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C.5 Christensen and Sun’s test

Christensen and Sun (2010) proposed tests by recasting F-H’s test back to smooth test.

They pointed out that F-H’s method involves fitting a two-stage model. To see that, define

Γm as a matrix generated by normalizing the columns of Φ, where Φ = [φ2, ..., φm] are

vectors of Fourier series with

φ2q =

[
cos(2πq

1

n
), ..., cos(2πq

n

n
)

]

φ2q+1 =

[
sin(2πq

1

n
), ..., sin(2πq

n

n
)

]
.

φ1 = [1, ..., 1]′ is redundant in models with intercept. F-H’s transformed residuals vector

is

ê∗ = Γmê = Γm(Y −Xβ̂).

Note that the column φjs are independent with each other. So we have Γ′mΓm = Im and

define

Mm ≡ MΓm = ΓmΓ′m.

The key component in F-H’s test, ê∗′ê∗, involves fitting residuals. That is

Y −Xβ̂ = Γmγm + e. (C.17)

The sum square error for this model is

SSE = ê′(I −Mm)ê = ê′ê− ê′Mmê.

Here ê′Mmê = ê∗′ê∗ and ê′ê is the SSE of the model (1.1). Hence ê∗′ê∗ is the difference

between the SSE of the model (1.1) and the model (C.17). This SSE is the outcome of a

two-stage fitting (first fit (1.1) to estimate β̂ and then fit model (C.17)). C-S proposed an

alternative method which requires only one stage fitting of

Y − Xβ = Γmγm + e. (C.18)
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They rewrote model (C.18) as

Y = Xβ0 + (I −MX)Γmγ + e.

The SSE of this model is

SSE = Y ′(I − MX − M(I−MX)Γm)Y

= Y ′(I −MX)Y − Y ′M (I−MX)ΓmY .

Here Y ′(I −M)Y is the SSE of model (1.1) and Y ′M (I−MX)ΓmY is the difference

between the SSE of (1.1) and the model (C.18). This method is quite similar to the ones

that compare the performance of full model and reduced model. Replacing
∑m

i=1 ê∗2i in

F-H’s test with Y ′M (I−MX)ΓmY , C-S proposed their first test statistic

T̂cs1,ñ = max
2≤m≤ñ

{√
rm

2

Y ′M (1−MX)ΓmY /rm − σ̂2

σ̂2

}
,

where rm ≡ r[(I − MX)Γm]. Similar to F-H’s test, after normalization with arñ
=

√
2 log log rñ and brñ

= a2
rñ

+ log arñ
− log(2

√
2π),

Ŵcs1 = arñ
T̂cs1,ñ − brñ

,

approximates an extreme value distribution.

C-S’s second approach is to directly estimate Γ′me. F-H estimated

Γ′me = Γ′m(Y −Xβ)

by plugging in the least square estimate of β. An alternative approach of improving F-H’s

test is through directly estimation of e∗ = Γ′me. C-S multiplied Γ′m to the left of null

model to get

Γ′mY = Γ′mXβ + Γ′me. (C.19)

In this way Γ′me can be estimated using least square method directly,

ẽm = (Im −MΓ′
mX)Γ′mY .
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With some algebra steps, the sum of square is

ẽ′mẽm = Y ′(Mm −MMmX)Y ,

for m = 1, 2, ..., ñ, leading C-S’s second test to

T̃cs2,ñ = max
1≤m≤ñ

{√
r̃m

2

Y ′(Mm −MMmX)Y /r̃m − σ̂2

σ̂2

}
,

where r̃m denotes the rank of C(Mm −MMmX). With the similar but different normal-

izing terms

ar̃ñ
=
√

2 log log(r̃ñ) and br̃ñ
= a2

r̃ñ
+ log ar̃ñ

− log(2
√

2π),

the normalized test statistic

W̃cs2,ñ = ar̃ñ
T̃2,ñ − br̃ñ

converges to the same extreme value distribution. In application, different small sample

adjustments are made to bñ and br̃ñ
, so that the tests can achieve right size even in small

sample settings.

There are also other differences between C-S’s test and F-H’s test. For example, the

estimates of variance in F-H’s test and C-S’s tests are different, but these estimates are all

root n convergence and chosen to optimize the tests’ powers. The upper bounds for the

number of partial sums ñ ∈ [1, ..., n] are also different for C-S and F-H’s test. Intuitively,

large ñ offers more flexibilities to the test. However, in application, different ñs only

make mild differences. F-H’s test use ñ = n/(log log n)4, whereas C-S argued that such

a small ñ put too much constrains on the test, so they adopt n/(log log n)3. By extensive

simulations studies, C-S concluded that their test 1 is usually of high power and test 2 is

of high power only when the fitted model is simple linear regression.

A hidden issue for both F-H’s test and C-S’s test is their ordering methods. The goal

of ordering is to make the residual sequence {ei} smooth so that large Fourier coefficients
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concentrate on low frequencies. For simple linear regression, one can just order data

increasingly according to the covariate. However, for multivariate regression, it is hard

to provide an unified solution. C-S’s test 1 involves fitting model (C.18) and F-H’s test

involves fitting model (C.17). Hence for C-S’s test 1, to achieve the optimal efficiency, Γm

needs to be a smooth function, while for F-H’s, it requires (I − MX)Γm to be a smooth

function. In application, F-H suggested using score variation,

SFH,i = λ1(ζ
′
1xi)

2 + ... + λp(ζ
′
pxi)

2 = x′iSxi.

While C-S considered several ordering methods, for example, using Mahalanobis distance,

SCS1,i =
1

λ1

(ζ ′1xi)
2 + ... +

1

λp

(ζ ′pxi)
2 = x′iS

−1xi

or jth principle component

SCS2,j =
1

λj

(ζ ′1xi)
2.

Here S is the sample covariance matrix of X, with λj and ζj as the corresponding eigen-

values and eignevectors of jth covariate. C-S argued that F-H’s test should consider mak-

ing (I − MX)Γm smooth, hence their ordering may be inappropriate. However, in appli-

cation, it is hard to tell which one is the better ordering strategy. One certain thing is that

the ordering should be taken according to a selection of covariates that are relevant to the

response variable.

C.6 Lin, Wei, Ying’s method

Lin, Wei, Ying (2002) considered graphical examination of specific model assumptions,

for example, functional form of covariates. Although their method is not formally lack-of-

fit test, it is an interesting extension of of S-W’s test.
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In linear model (1.1), using the definition in Section (2.2.1), S-W’s test considered a

process of partial sum of residuals

Wsw(t) =
n∑

i=1

I(xi ≤ t)êi.

The authors pointed out the graphical checking lack-of-fit using this process is difficult for

visualization. Even if considering the partial sum process respect to a specific covariate,

Wsw(t) is dominated by small covariate values and the graph of this process provides little

information about the cause of the lack-of-fit. On the other hand, lowess fit of the raw

residual provides information about the cause of the possible lack-of-fit, but provides little

guidance on it that if the departure is large enough to reject the adequacy assumption of

the proposed model. Alternatively the author considered a moving sum process respect

each of the covariate,

Wj(t, b) =
n∑

i=1

I(t− b ≤ xij ≤ t)êi,

where b is some arbitrary number and Wj(t, b) can take nonzero values for t between

mini xij + b and maxi xij. In general, this process represents a sum of residuals with

blocks of size b. For b = ∞, this process is equivalent to S-W’s process with respect to jth

covariate. To approximate the null process, they modified S-W’s bootstrap process (2.9)

by replacing the indication function I(xij < t) with I(t− b < xij < t), that is

Ŵj(t) =
1√
n

n∑
i=1

Zs
i êi

{
I(t− b ≤ xij ≤ t)−{

n∑
i=1

xijI(t− b ≤ xij ≤ t)}(
n∑

i=1

x2
ij)
−1xij

}
,

where Zs
i for i = 1, ..., n is a random sample from N(0, 1). P values are evaluated using

S-W’s approach. The author claimed that if b is chosen to be roughly in the range of

the lower half of the covariate values, this test is slightly more powerful than S-W’s test.

Since the block b is fixed before the analysis, when the data are not evenly distributed

along the covariate, this moving sum process contains more variation and does not mimic

the lowess fit of raw residuals. The authors then proposed a moving average process in
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which the number of residuals in each block is further adjusted. That is

W a
j (t, b) =

√
n
∑n

i=1 I(t− b ≤ xij ≤ t)êi∑n
i=1 I(t− b ≤ xij ≤ t)

,

for

min
i

xij + b ≤ t ≤ max
i

xij.

This moving average process is approximated by

Ŵ a
j (t)/n−1

n∑
i=1

I(t− b ≤ xij ≤ t).

P values are evaluated using the same way as before. The author concluded that this

process provides more information about lack-of-fit as it closely mimic the lowess fit of

the residuals.

When use these graphic methods in exploring lack-of-fit of proposed model, the au-

thor recommend generate multiple graphs for different bs, for example large b provides

information about global lack-of-fit whereas a small b is sensitive in identifying the local

lack-of-fit. However, for formal lack-of-fit test, the authors suggested b to be pre-specified.

Theoretically, b can be any specific constant or a data-dependent quantity that become con-

stant as n →∞. The optimal choice of b is still an open problem.
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Linear model with singular covariance

matrix

D.1 Traditional method

Chapter 4, presents an alternative method of dealing with linear models with singular

covariance matrices. The most relevant approach is the traditional method which involves

replacing model (1.3) with model (1.4). This traditional method is detailed explained in

Christensen (2010). In this section, a brief overview of important results and steps of

traditional method is presented.

There are several important statements that lead to the traditional method of analysis

on models with singular covariance matrices and C(X) 6⊂ C(V ) : (a) if V is singular

and C(X) ⊂ C(V ), estimation and test can be carried out as if C(X) ⊂ C(V ); (b) one

can find a matrix U such that C(X) ⊂ C(T ), where T = X ′UX; (c) the BLUEs from

model (1.3) and model (1.4) are equivalent.

Statement (a) is shown in Christensen (2010) Theorem 10.1.2. Whereas statement
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(b) can be easily proved by showing (I). C(X) ⊂ C(T ) ⇔ TT−X = X and (II).

T = V + XX− ⇒ TT−X = X.

For (I), if C(X) ⊂ C(T ), then X = TB for some B. It follows that

TT−X = TT−TB = TB = X.

The other side of the proof is self-explained. Hence (I) is proved. For (II), write TT−T =

T , so that

(I − T−T )T = 0 and (I − T−T )TT− = 0.

Multiply the above two equation together, we have

0 = (I − TT−)TT−T (I − TT−)′

= (I − TT−)T (I − TT−)′

= (I − TT−)V (I − TT−)′ + (I − TT−)XX ′(I − TT−)′.

Since the last two term is the sum of two nonnegative definite matrices, we have (I −

TT−)X = 0. Thus (II) is shown. This is the Exercise 10.3 in Christensen (2010). Case

(c) is the theorem of 10.1.3 in Christensen (2010).

96



References

[1] Aerts, M., Claeskens, G., and Hart, J. D. (2000), Testing Lack of Fit in Multiple
Regression. Biometrika, 87, 405-424.

[2] Amemiya, Y. (1990). On the Convergence of the Ordered Roots of a Sequence of
Determinantal Equations. Linear Algebra and its Applications, 127, 531-542.

[3] Bargal, A.I. (1986). Smooth Tests of Fit for Censored Gamma Samples. Communica-
tion in Statistics, 15, 537-549.

[4] Barton, D.E. (1953). On Neyman’s smooth test of goodness of fit and its power with
respect to a particular system of alternatives. Scandinavian Actuarial Journal, 36, 24-
63.

[5] Barton, D.E. (1955). A form of Neyman’s Φ2 test of goodness of fit applicable to
grouped and discrete data. Scandinavian Actuarial Journal, 38, 1-16.

[6] Barton, D.E. (1956). Neyman’s Φ2 test of goodness of fit when the null hypothesis is
composite. Scandinavian Actuarial Journal, 39, 216-245.

[7] Christensen, R. (1989). Lack-of-Fit Tests Based on Near or Exact Replicates, The
Annals of Statistics, 17, 673-683.

[8] Christensen R (1990). Comment on Puntanen and Styan (1989). The American Statis-
tician, 44, 191-192.

[9] Christensen, R. (1991). Small-Sample Characterizations of Near Replicate Lack-of-
Fit Tests. Journal of the American Statistical Association, 86, 752- 756.

[10] Christensen R (2010) Plane answers to complex questions: the theory of linear mod-
els. Springer, New York.

[11] Christensen, R., and Sun, S.K, (2010), Alternative Goodness-of-Fit Tests for Linear
Models, Journal of the American Statistical Association, 105, 291-301.

97



References

[12] Darling, D. A., and Erdös, P. (1956), A Limit Theorem for the Maximum of Nor-
malized Sums of Independent Random Variables, Duke Mathematical Journal, 23,
143-155.

[13] Eubank, R. and Spiegelman, C. (1990), Testing the Goodness of-Fit of a Linear
Model via Nonparametric Regression Techniques. Journal of the American Statisti-
cal Association, 85, 387-392.

[14] Eubank, R. L., and Hart, J. D. (1992). Testing Goodness-of-Fit in Regression via
Order Selection Criteria, The Annals of Statistics, 20, 1412-1425.

[15] Eicker, F. (1979), The Asymptotic Distribution of the Suprema of the Standardized
Empirical Processes, The Annals of Statistics, 7, 116-138.

[16] Erdös, P., and Kac M. (1946), On Certain Limit Theorems of the Theory of proba-
bility, Bulletin of American Mathematical Society, 52, 292-302.

[17] Fan, J.Q., and Huang L.S. (2001), Goodness-of-Fit Tests for Parametric Regression
Models, Journal of the American Statistical Association, 96, 640-652.

[18] Fisher, R. A. (1922). The Goodness of Fit of Regression Formulae and the Distribu-
tion of Regression Coefficients. Journal of the Royal Statistical So- ciety, 85, 597-612.

[19] Green, J. R. (1971), Testing Departure from a Regression, Without Using Replica-
tion, Technometrics, 13, 609-615.

[20] Groß, J (2004), The General Gauss-Markov Model with Possibly Singular Dispersion
Matrix. Statistical Papers, 45, 311-336.

[21] Hamdan, M.A. (1963). The Number and Width of Classes in the Chi-square Test.
Journal of American Statistics Association, 58, 678-689.

[22] Hamdan, M.A. (1964), A Smooth Test of Goodness-of-Fit Based on the Walsh Func-
tions. Austrilia Journal of Statist, 6, 130-136.

[23] Hamdan, M.A. (1974). The Use of Orthogonal Polynomials and Orthonormal Func-
tions in the Calculation of the Noncentrality Parameter of Chi-squared, Communica-
tion in Statistics, 3, 157-166.

[24] Harville DA (1981), Unbiased and Minimum-Variance Unbiased Estimation of Es-
timable Functions for Fixed Linear Models with Arbitrary Covariance Structure. An-
nals of Statistics 9:633-637.

[25] Harville DA (1990), Comment on Puntanen and Styan (1989). The American Statis-
tician, 44, 192.

98



References

[26] Hosmer, W. D., and Hjort, N. L., (2002), Goodness-of-fit Processes for Logistic
Regression: Simulation Results, Statistics in Medicine, 21, 2723-2738.

[27] Koul, H.L., and Stute W (1999), Nonparametric Check for Time Series, The Annals
of Statistics, 27, 204-236.

[28] Koul, H.L., Baillie, R.T, and Surgailis, D. (2004), “Regression Model Fitting with a
Long Memory Covariate Process,” Econometric Theory, 20, 485-512.

[29] Koval′, V.A. (2002), The Law of the Iterated Logarithm for Matrix-Normed Sums
of Independent Random Variables and Its Applications, Mathematical Notes, 72, 331-
336.

[30] Kempthorne O (1989) Comment on Puntanen and Styan (1989). The American
Statistician, 43, 161-162.

[31] Kreijger RG, Neudecker H (1977) Exact linear restrictions on parameters in the gen-
eral linear model with a singular covariance matrix. Journal of American Statistics
Association, 72, 430-432.

[32] Joglekar, G., Schuenemeyer, J. H., and LaRiccia, V. (1989). Lack-of-Fit Testing
When Replicates Are Not Available. The American Statistican, 43, 135-143.

[33] Lin, D.Y., Wei, L.J., and Ying, Z. (2002), Model-Checking Techniques Based on
Cumulative Residuals, Biometrics, 58, 1-12.

[34] McCullaph, P. and Nelder, J. A. (1983). Generalized Linear Models. Chapman and
Hall, London.

[35] Miller, F.R., Neill, J. W., and Sherfey, B. W. (1998). Maximin Clusters for Near
Replicate Regression Lack of Fit Tests. The Annals of Statistics, 26, 1411-1433.

[36] Neill, J. W., and Johnson, D. E. (1985). Testing Linear Regression Function Ade-
quacy without Replication. The Annals of Statistics, 13, 1482-1489.

[37] Neyman, J. (1937). Smooth Test for Goodness of Fit. Skandinavisk Aktu- arietid-
skrift, 20, 149-199.

[38] Pierce, D. and Schafer, D., Residuals in Generalized Linear Models, Journal of the
American Statistical Association, 396,977-986.

[39] Puntanen S, Scott AJ (1996) Some further remarks on the singular linear model.
Linear Algebra Application, 237/238, 313-327.

99



References

[40] Puntanen S, Styan GPH (1989) The Equality of The Ordinary Least Squares Es-
timator and The Best Linear Unbiased Estimator (with discussion). The American
Statistician, 43, 153-164.

[41] Rao CR (1967) Least Squares Theory Using an Estimated Dispersion Matrix and
Its Application to Measurement of Signals. Proc Fifth Berkeley Symp 1, 355-372.
University of California Press.

[42] Rao CR (1968) A Note on A Previous Lemma in The Theory of Least Squares and
Some Further Results. Scandinavian Journal of Statistics, 30, 259-266.

[43] Rao CR, Mitra SK (1971) Generalized Inverse of Matrices and Its Applications. Wi-
ley, New York.

[44] Rayner, J.C.W. and Best, D.J. (1986). Neyman-Type Smooth Tests For Location-
Scale Families. Biometrika 73, 437-446.

[45] Rayner,J .C.W. and Best, D.J. (1988). Smooth Tests of Goodness of Fit for Regulard
Istributions. Communication in Statistics, 17, 3235-3267.

[46] Rayner, J.C.W. and Best, D.J. (1989). Smooth Tests of Goodness of Fit. Oxford Uni-
versity Press, New York.

[47] Rigby, A (2009) Statistical Recommendations for Papers Submitted to Develop-
mental Medicine and Child Neurology. Development Medicine and Child Neurology,
52:299-304.

[48] Shillington, E. R. (1979). “Testing Lack of Fit in Regression without Replication,”
The Canadian Journal of Statistics, 7:137-146.

[49] Stute, W. (1997) Nonparametric Model Checks for Regression, The Annals of Statis-
tics, 25:613-641.

[50] Stute, W., Thies S., and Zhu L.X. (1998), Model Checks for Regression: An Innova-
tion Process Approach, The Annals of Statistics, 26, 1916-1934.

[51] Stute, W., Gonzalez Manteiga, W. and Presedo Quindimil, M. (1998), Bootstrap Ap-
proximations in Model Checks for Regression, Journal of the American Statistical
Association, 93, 141-149.

[52] Stute, W., and Zhu, L.X. (2002), Model Checks for Generalized Linear Models,
Scandinavian Journal of Statistics, 29, 535-545.

[53] Su, J.Q., and Wei, L.T. (1991), A Lack-of-Fit Test for the Mean Function in a Gen-
eralized Linear Model, Journal of the American Statistical Association, 86, 420-426.

100



References

[54] Su, Z., and Yang, S. S. (2006). A Note on Lack-of-Fit Tests for Linear Models With-
out Replication. Journal of the American Statistical Association, 101, 205-210.

[55] Sun, S.K. (2010) Alternative Goodness-of-Fit for Linear Model. Dissertation.

[56] Thomas,D .R. and Pierce, D.A. (1979), Neyman’ss Mooth Goodness-of-Fit Test
When the Hypothesis is Composite. Journal American Statistics Association, 74, 441-
445.

[57] Utts, J. M. (1982). The Rainbow Test for Lack of Fit in Regression. Communications
in Statistics, 11, 2801-2815.

[58] Zyskind G (1967) On Canonical Forms, Non-Negative Covariance Matrices and Best
and Simple Least Square Linear Estimators in Linear Models. The Annals of Mathe-
matical Statistics, 38, 1092-1109.

[59] Zyskind G, Martin FB (1969) On Best Linear Estimation and General Gauss-Markov
Theorem in Linear Models with Arbitrary Nonegative Covariance Structure. SIAM
Journal on Applied Mathematics, 17, 1190-1202.

101


	Contributions to linear models : lack-of-fit test and linear model with singular covariance matrices
	Recommended Citation

	diss_approval_pdf
	diss_title_pdf
	thesis (1).pdf

	Member 8: 
	Member 7: 
	Member 6: 
	Member 5: 
	Member 4: 
	Member 3: Michael Sonkson
	Member 2: Erik Erhardt
	Member 1: Edward Bedrick 
	Chair: Ronald Christensen
	Department: Department of Mathematics and Statistics
	Candidate: Yong Lin
	previous degrees: B.A. in Statistics, Henan University of Finance and Law 2007
	date: December, 2012
	degree: Doctor of Philosophy
Statistics 
	name: Yong Lin
	title: CONTRIBUTIONS TO LINEAR MODELS
Lack-of-fit tests
and 
linear model with singular covariance matrices


