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Abstract

Short mean free paths are characteristic of charged particles. High energy charged particles often

have highly forward peaked scattering cross sections. Transport problems involving such charged

particles are also highly optically thick. When problems simultaneously have forward peaked scat-

tering and high optical thickness, their solution, using standard iterative methods, becomes very

difficult and inefficient. In this dissertation, we explore Fokker-Planck-based acceleration for solv-

ing such problems.
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Chapter 1

Introduction

Modeling of transport with forward-peaked scattering operators is encountered in several applica-

tions related to plasma physics, radiation shielding, X-ray machine design, astrophysics etc. [7].

Such problems are characterized by extremely small mean free paths with nearly singular differ-

ential scattering cross sections in the forward direction. The energy loss per collision is also very

small [7]. The discrete ordinates method [19] is quite accurate in modeling such transport problems

but these physical characteristics render convergence of standard iterative procedures arbitrarily

slow [32].

Standard acceleration techniques to improve convergence such as diffusion synthetic acceleration

(DSA) [2] and nonlinear diffusion acceleration (NDA) [5] are quite ineffective in accelerating such

problems with forward-peaked scattering due to their inability to accurately model higher order

error moments with significant magnitudes [32]. When we accelerate such problems with DSA, we

assume that any error moment higher than the first moment is zero even when the error moment

is actually nonzero. This is as good as not accelerating the higher moments. Such acceleration

methods are ineffective [32].

1



Standard synthetic acceleration [14] techniques essentially break the solution down into higher-

order transport sweep [19], and a lower-order error-correction solve [1]. Sometimes, the scheme is

broken down into several stages where the first stage is still the higher-order transport sweep but

the error-correction stage is broken down into several sub-stages [18, 1]. In this dissertation, we will

develop and test a synthetic acceleration method - Fokker-Planck synthetic acceleration (FPSA)

- where the lower-order approximation (Fokker-Planck) for the error-correction stage is obtained

using asymptotic analysis [3, 30, 26]. We call this approach of acceleration asymptotics-based ac-

celeration.

1.1 Literature Review

Attempts have been made in the past to accelerate such problems primarily keeping electrons trans-

port as the subject of convergence acceleration. In 1988, Valougeorgis, Williams, and Larsen [32]

presented their work on stability analysis of PL acceleration schemes applied to anisotropic neutron

transport problems. The cross sections used in this paper were fictitious but the paper presented a

framework for theoretical development and testing of future methods to accelerate transport prob-

lems with anisotropic scattering.

Morel and Manteuffel presented their angular multigrid method for solution of problems with high

anisotropy in [24]. The angular multigrid method proved to be effective in 1D with a maximum

spectral radius of 0.6. The method however had to be modified later to preserve stability for

problems with higher spatial dimensions [31]. Pautz, Morel, and Adams modified this method to

preserve stability in [25] and extended the angular multigrid method to 2D. Turcksin and Morel
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integrated diffusion synthetic acceleration and angular multigrid to develop their diffusion synthetic

acceleration-angular multigrid method in [31].

Khattab and Larsen presented with their modified PL acceleration method that used a modified

form of PL equations with modified scattering cross section moments in [13]. Very few other famous

attempts have been noted to accelerate the solution of such problems with high anisotropy.

Several innovations have been made to approximate the transport equation such that a fair amount

of accuracy is preserved. Most prominent of these is the Fokker-Planck approximation. The Fokker-

Planck approximation assumes extremely forward-peaked scattering with small scattering angles

and energy loss. Under such conditions, Fokker-Planck equation is an asymptotic limit of the

Boltzmann equation [26].

Renormalization techniques [3] are applied for generating higher order approximations to the scat-

tering operator in the Fokker-Planck limit. These equations, with higher order truncations, are

called Generalized-Fokker-Planck equations (GFP). Several authors - Pomraning, Prinja, Larsen,

Leakes have presented their work on this approximation in [27, 30, 17].

Boltzmann-Fokker-Planck (BFP) approximation can model forward-peaked scattering fairly well

[15]. The BFP approximation decomposes the scattering kernel into smooth and singular parts

[7]. After decomposing the scattering kernel into smooth and singular components, we model the

smooth component using Legendre expansion and singular component using Fokker-Planck. This

method has proven to be quite useful [7]. It is tricky to choose the optimal decomposition [31].

One may use data-mining algorithms to train a model to choose the right decomposition given a
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specific set of scattering cross-section data.

1.2 Basic Idea and Purpose

It is noteworthy that problems with forward-peaked scattering kernels require acceleration of all

relevant moments. This calls for an acceleration scheme that accelerates the angular flux itself. We

need a good low-order approximation for the angular flux. For problems that are highly forward-

peaked, the Fokker-Planck approxmation can be good. Therefore, we want to use Fokker-Planck

as a preconditioner. In this dissertation, we will introduce the idea of Fokker-Planck Synthetic

Acceleration (FPSA) and evaluate its effectiveness.

In the next chapter, we introduce the transport equation and the Fokker-Planck equation. In Ch.

3, we introduce the idea of acceleration and describe the FPSA method. In Ch. 4, we will discuss

angularly discrete Fourier analysis for FPSA, and its numerical implementation. In Ch. 5 we

present numerical experiments. Finally, we will conclude with Ch. 6.
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Chapter 2

Transport Equation

Modeling of distribution of radiation in physical systems begins with development of a general

mathematical framework. Transport theory provides this framework via transport equation. The

transport equation was first derived by Ludwig Boltzmann more than a century ago. The equation

was used to describe the kinetic behavior of gases, and is still used for that purpose. The same

equation is used describe the transport of neutral and charged particles.

This integro-differential equation accounts for the number of particles entering, number of particles

leaving, the number of particles created, and the number of particles extinguished (absorbed) in

the phase-space volume of interest over time. Analytical solution of the transport equation is

not possible in most realistic situations. Numerical solution methods are usually employed. The

solution of this equation can require a significant amount of computational effort and mathematical

skill as its solution can be a complex function of seven independent variables space (3), direction

(2), time (1) and energy (1). In this chapter, we introduce the transport equation in slab geometry,

standard source iteration to solve the transport equation, and synthetic acceleration for source

iteration. We will also present Fourier analysis for source iteration and see how it can be arbitrarily
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slow to converge.

2.1 Transport Equation in Slab Geometry

In this section, we will introduce the steady state, slab geometry, one group, fixed source, transport

equation with anisotropic scattering. This equation, even in its reduced form, is a 2D equation

with dependence on space and angle. Several standard derivations of the transport equation and

its reduction to the desired form exist [19, 29]. We begin by writing the transport equation in its

full 7D form [29]:

1

v

∂ψ(r, Ω̂, E, t)

∂t
+ Ω̂.∇ψ(r, Ω̂, E, t) + σt(r, E, t)ψ(r, Ω̂, E, t)

= Q(r, Ω̂, E, t) +

∫ ∞
0

dE′
∫ 4π

0
dΩ′σs(r, Ω̂′.Ω̂, E

′ → E, t)ψ(r, Ω̂′, E, t)

(2.1)

Here, t represents time. E and E′ represent initial and after-scatter energies of the particle respec-

tively. Particle position in space is represented by r, and Ω̂ and Ω̂′ are the initial and after-scatter

unit vectors in directions of flight respectively. Further, Ω̂ and Ω̂′ are characterized by azimuthal

angle, ω, and cosine of polar angle, µ on the unit sphere. We represent external source by Q. Here,

ψ is the angular flux which represents the total number of particles per unit phase space element.

The phase space element is characterized by a volume dV about position r, cone of directions dΩ

about Ω̂, energy dE between E and E+dE, and time dt between t and dt. The units of angular flux

are particles
eV.Sr.cm2.s

. Finally, the total and scattering cross sections have been represented by σt(r, E, t)

and σs(r, Ω̂′.Ω̂, E
′ → E, t)) respectively.

In order to reduce the transport equation to its steady state form, we let the rate of change of

angular flux be zero. Therefore, the above equation becomes:
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Ω̂.∇ψ(r, Ω̂, E) + σt(r, E)ψ(r, Ω̂, E) = Q(r, Ω̂, E)

+

∫ ∞
0

dE′
∫ 4π

0
dΩ′σs(r, Ω̂′.Ω̂, E

′ → E)ψ(r, Ω̂′, E)

(2.2)

We get the mono-energetic transport equation by assuming that all scattering interactions are

elastic and that the kinetic energy of particles does not change after scattering. Mathematically,

this is represented by introduction of a delta function in the representation of quantities defined in

the above equation as [29]:

σs(r, Ω̂′.Ω̂, E → E′) = σs(r, Ω̂′.Ω̂)δ(E′ − E0), (2.3)

Q(r, Ω̂, E) = Q(r, Ω̂)δ(E − E0), (2.4)

ψ(r, Ω̂, E) = ψ(r, Ω̂)δ(E − E0). (2.5)

Here, E0 is the characteristic energy of the particle. Upon application of the definitions above, we

obtain the following monoenergetic, steady state transport equation:

Ω̂.∇ψ(r, Ω̂, E0) + σt(r, E0)ψ(r, Ω̂, E0) = Q(r, Ω̂, E0)

+

∫ 4π

0
dΩ′σs(r, Ω̂′.Ω̂, E0)ψ(r, Ω̂′, E0)

(2.6)

Further, we drop E0 from the above equation since it is invariant for a given calculation to obtain:

Ω̂.∇ψ(r, Ω̂) + σt(r)ψ(r, Ω̂) = Q(r, Ω̂)

+

∫ 4π

0
dΩ′σs(r, Ω̂′.Ω̂)ψ(r, Ω̂′)

(2.7)

In most cases, scattering is assumed to be rotationally invariant. Moreover, since the scattering

cross-section depends on µ0 = Ω̂′.Ω̂, we can write scattering cross-section in Legendre polynomial

expansion as:
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σs(r, µ0) =
L∑
l=0

2l + 1

4π
σs,lPl(µ0), (2.8)

where, σs,l is the lth moment of the scattering cross-section:

σs,l =

∫ 1

−1
dµ0σs(µ0)Pl(µ0), (2.9)

with, Pl(µ0) is the lth order Legendre polynomial, L is the order of expansion. For exact repre-

sentation of the scattering cross-section, L =∞. The Legendre polynomials are represented using

spherical harmonics as:

Pl(µ0) =
4π

2l + 1

l∑
m=−l

Yl,m(Ω̂)Y ∗l,m(Ω̂′). (2.10)

Here ∗ denotes the complex conjugate. For 0 ≤ |m| ≤ l < ∞, the spherical harmonic function

Yl,m(Ω̂) is written using the associated Legendre polynomials as [29]:

Yl,m(Ω̂) = Yl,m(µ, ω) = al,mP
|m|
l (µ)eimω. (2.11)

Here, P
|m|
l (µ) is the associated Legendre polynomial:

P
|m|
l (µ) = (1− µ2)

|m|
2

(
d|m|

d|m|µ

)
Pl(µ), (2.12)

with,

al,m = (−1)
m+|m|

2

(
2l + 1

4π

(l − |m|)!
(l + |m|)!

)
. (2.13)

Therefore, we rewrite the scattering cross sections in spherical harmonics as:

σs(r, µ0) =

L∑
l=0

l∑
m=−l

σs,lYl,m(Ω̂)(r)Y ∗l,m(Ω̂′), (2.14)
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Likewise, the scattering integral can be rewritten as:

∫ 4π

0
dΩ′σs(r, Ω̂′.Ω̂)ψ(r, Ω̂) =

∫ 4π

0
dΩ′

L∑
l=0

l∑
m=−l

σs,lYl,m(Ω̂)Y ∗l,m(Ω̂′)ψ(r, Ω̂′) (2.15)

Rearranging the above equation and rewriting the integral in terms of polar and azimuthal com-

ponents returns:

∫ 4π

0
dΩ′σs(r, Ω̂′.Ω̂)ψ(r, Ω̂) =

L∑
l=0

l∑
m=−l

σs,lYl,m(Ω̂)

∫ 1

−1

∫ 2π

0
dω′dµ′Y ∗l,m(Ω̂′)ψ(r, Ω̂′) (2.16)

Now, assuming cartesian coordinates, we have:

r = xî+ yĵ + zk̂, (2.17)

Ω̂ = Ωxî+ Ωy ĵ + Ωzk̂, (2.18)

=
√

1− µ2(cosωî+ sinωĵ + µk̂, (2.19)

dΩ = dµdω. (2.20)

Then, we may write the streaming term of the transport equation as:

Ω̂.∇ψ(r, Ω̂) =

(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Ωz

∂

∂z

)
ψ(x, y, z, µ, ω). (2.21)

Substituting the definition of the streaming term from Eq. (2.21), and Eq. (2.17) along with the

definition of scattering integral from Eq. (2.16) in Eq. (2.6), we obtain the following equation:

[√
1− µ2

(
cosω

∂

∂x
+ sinω

∂

∂y

)
+ µ

∂

∂z

]
ψ(x, y, z, µ, ω) + σt(x, y, z)ψ(x, y, z, µ, ω)

=
L∑
l=0

l∑
m=−l

σs,lYl,m(Ω̂)

∫ 1

−1

∫ 2π

0
dω′dµ′Y ∗l,m(Ω̂′)ψ(x, y, z, µ′, ω′) +Q(x, y, z, µ, ω).

(2.22)
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Now, we reduce the above equation to a 1D equation, in space, by assuming the system to be a

planar slab with finite dimensions only along the z direction. This returns the following equation

[29]:

µ
∂ψ

∂z
(z, µ, ω)+σt(z)ψ(z, µ, ω) =

L∑
l=0

l∑
m=−l

σs,lYl,m(Ω̂)

∫ 1

−1

∫ 2π

0
dω′dµ′Y ∗l,m(Ω̂′)ψ(z, µ′, ω′)+Q(z, µ, ω).

(2.23)

Finally, in order to obtain the steady state, slab geometry, one-group, fixed source transport equa-

tion, we assume azimuthal symmetry. We eliminate the azimuthal angle dependence by integrating

Eq. (2.23) over 0 ≤ ω ≤ 2π. Therefore,

∫ 2π

0
dω

(
µ
∂ψ

∂z
(z, µ, ω) + σt(z)ψ(z, µ, ω) =

L∑
l=0

l∑
m=−l

σs,lYl,m(Ω̂)

∫ 1

−1

∫ 2π

0
dω′dµ′Y ∗l,m(Ω̂′)ψ(z, µ′, ω′) +Q(z, µ, ω)

)
,

(2.24)

returns:

µ
∂ψ

∂z
(z, µ)+σt(z)ψ(z, µ) =

L∑
l=0

l∑
m=−l

σs,l

∫ 2π

0
dωYl,m(Ω̂)

∫ 1

−1

∫ 2π

0
dω′dµ′Y ∗l,m(Ω̂′)ψ(z, µ′, ω′)+Q(z, µ).

(2.25)

Now using Eq. (2.11) we have,

∫ 2π

0
dωYl,m(Ω̂) =

∫ 2π

0
dωal,mP

|m|
l (µ)eimω (2.26)

= 2π

(
2l + 1

4π

) 1
2

Pl(µ)δm,0. (2.27)

Evaluating the double integral in Eq. (2.25) and restricting m to 0 because of azimuthal symmetry,

we have:
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∫ 1

−1

∫ 2π

0
dω′dµ′Y ∗l,m(Ω̂′)ψ(z, Ω̂′) =

∫ 1

−1

∫ 2π

0
dω′dµ′Y ∗l,0(Ω̂′)ψ(z, Ω̂′) (2.28)

=

∫ 1

−1

∫ 2π

0
dω′dµ′

(
2l + 1

4π

) 1
2

Pl(µ
′)ψ(z, µ′, ω′) (2.29)

=

(
2l + 1

4π

) 1
2
∫ 1

−1
dµ′Pl(µ

′)ψ(z, µ′). (2.30)

Now substituting Eq. (2.27) and Eq. (2.30) in Eq. (2.25), we obtain the following final slab

geometry equation:

µ
∂ψ(z, µ)

∂z
+ σt(z)ψ(z, µ) =

L∑
l=0

2l + 1

2
Pl(µ)σs,l(z)φl(z) +Q(z, µ), (2.31)

where, φl(z) are the moments of angular flux:

φl(z) =

1∫
−1

dµ′Pl(µ
′)ψ(z, µ′). (2.32)

In order to write the steady-state, mono-energetic, slab geometry transport equation in its con-

tinuous, integro-differential form, we go back to Eq. (2.7). Noting that r will reduce to z, Ω̂ will

reduce to µ and Ω̂.Ω̂′ will reduce to µ0. The integration limits will transform to −1 and 1 from 0

and 4π, we write the exact slab geometry equation as:

µ
∂ψ(z, µ)

∂z
+ σt(z)ψ(z, µ) = 2π

1∫
−1

dµ′σs(µ0)ψ(z, µ′) +Q(z, µ), (2.33)

2.2 Source Iteration

Source iteration is one of the most basic iterative method used to solve the SN equations. It is

equivalent to Richardson iteration. In order to describe source iteration [1, 19, 33], we begin by

rewriting the transport equation, Eq. (2.31), in its operator form:
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Lψ(z, µ) = Sψ(z, µ) + q(z, µ) (2.34)

where,

L = µ
∂

∂z
+ σt(z), (2.35)

S =

L∑
l=0

(2l + 1)

2
Pl(µ)σs,l(z)

1∫
−1

dµ′Pl(µ
′), (2.36)

and,

q(z, µ) =
Q(z, µ)

2
. (2.37)

We will now lag the angular flux in the scattering term on the right hand side of the transport

equation by one iteration and iterate until the relevant Legendre moments of angular flux converge

in the L∞ norm (L2 norm can also be chosen without any loss of generality). We have the following

equation:

Lψm+1(z, µ) = Sψm(z, µ) + q(z, µ), (2.38)

which can be rewritten as:

ψm+1(z, µ) = L−1Sψm(z, µ) + L−1q(z, µ), (2.39)

to see what source iteration exactly does. Source iteration can be shown to be equivalent to

Richardson iteration [1]. We begin by applying L−1 to Eq. (2.38):

L−1Lψm+1(z, µ) = L−1Sψm(z, µ) + L−1q(z, µ). (2.40)
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Now, define new operators as follows:

A = I − L−1S, and q̂(z, µ) = L−1q(z, µ). (2.41)

Now using the definition in Eq. (2.41) with Eq. (2.40), we obtain:

ψm+1(z, µ) = (I −A)ψm(z, µ) + q̂(z, µ). (2.42)

This is Richardson iteration for the problem, Aψ(z, µ) = q(z, µ). Now, using Eq. (2.41), we know

that I − A = L−1S. This means we can rewrite Eq. (2.42) as Eq. (2.39) which represents source

iteration. Therefore, we now know that source iteration and Richardson iteration are mathemati-

cally equivalent. Source iteration is a stationary method. One of the biggest flaws of this method is

that it is slow to converge for thick, and diffusive problems with forward-peaked scattering kernels

as we will now demonstrate using Fourier analysis.

2.2.1 Fourier Analysis for Source Iteration

We begin by subtracting Eq. (2.38) from Eq. (2.34). By doing so, we get the following error

equation:

Lεm+1(z, µ) = Sεm(z, µ), (2.43)

where, εm(z, µ) = ψ(z, µ) − ψm(z, µ) is the error in the angular flux after mth iteration. Now, we

write out the operators in their full form to obtain:

µ
∂εm+1(z, µ)

∂z
+ σt(z)ε

m+1(z, µ) =

L∑
l=0

2l + 1

2
Pl(µ)σs,l(z)

1∫
−1

dµ′Pl(µ
′)εm(z, µ). (2.44)

For analysis, we assume constant material properties. We drop spatial dependence of material

cross-sections to obtain:
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µ
∂εm+1(z, µ)

∂z
+ σtε

m+1(z, µ) =
L∑
l=0

2l + 1

2
Pl(µ)σs,l

1∫
−1

dµ′Pl(µ
′)εm(z, µ). (2.45)

Now, we separate the error components into their angle and space dependent components by writing

εm+1(z, µ) and εm(z, µ) as Fourier integral [1]:

εm+1(z, µ) =

∫ ∞
−∞

dλε̂m+1
λ (µ)eiλσtz, (2.46)

where, λ is the wave number. Substituting this form of error into the error equation, Eq. (2.44),

we get:

∫ ∞
−∞

dλ

µ∂ε̂m+1
λ (µ)eiλσtz

∂z
+ σtε̂

m+1
λ (µ)eiλσtz =

L∑
l=0

2l + 1

2
Pl(µ)σs,l

1∫
−1

dµ′Pl(µ
′)ε̂mλ (µ)eiλσtz

 .

(2.47)

Upon carrying out necessary simplifications and noting that Fourier modes, eiλσtz, are linearly

independent for all λ, we obtain:

(1 + iλµ)σtε̂
m+1
λ (µ) =

L∑
l=0

2l + 1

2
Pl(µ)σs,l

1∫
−1

dµ′Pl(µ
′)ε̂mλ (µ) (2.48)

We define lth Legendre moment of angle-dependent component of error and lth Legendre moment

of error respectively as:

ε̂ml =

1∫
−1

dµ′Pl(µ
′)ε̂mλ (µ′), εml =

1∫
−1

dµ′Pl(µ
′)εm. (2.49)

Dropping λ and µ in notation of ε̂ in Eq. (2.48) for convenience, and using Eq. (2.49), we get:

(1 + iλµσt)σtε̂
m+1 =

L∑
l=0

2l + 1

2
Pl(µ)σs,lε̂

m
l . (2.50)
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Then, rearranging the equation and taking nth Legendre moment of Eq. (2.50), we obtain the

following:

∫ 1

−1
dµPn(µ)ε̂m+1

λ =

∫ 1

−1
dµPn(µ)

L∑
l=0

σs,l
σt

2l + 1

2

Pl(µ)

1 + iλµσt
ε̂ml . (2.51)

Further rearranging and using Eq. (2.49) in the above equation returns:

ε̂m+1
l =

L∑
l=0

σs,l
σt

2l + 1

2

∫ 1

−1
dµ
Pn(µ)Pl(µ)

1 + iλµσt
ε̂ml . (2.52)

We note that Eq. (2.52) represents the following matrix equation:

[ε̂m+1
l ] = A(λ)[ε̂ml ], (2.53)

where, [ε̂ml ] is a vector of scalar flux moment error at iteration m, and,

A(λ) =

L∑
l=0

σs,l
σt

2l + 1

2

∫ 1

−1
dµ
Pn(µ)Pl(µ)

1 + iλµσt
, (2.54)

is the iteration matrix. We note that we can rewrite Eq. (2.53) in terms of the error in the first

guess:

[ε̂m+1
l ] = Am(λ)[ε̂0l ]. (2.55)

Now, we note that the absolute value of the maximum eigenvalue of the iteration matrix is called

the spectral radius:

ρ(λ) = max(|Λl(A(λ)|), (2.56)

where, Λl(A(λ)) are the eigenvalues of A(λ) where l = 1, 2, ..., L. Spectral radius measures the

upper bound of a consistent matrix norm of the iteration matrix [10].
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ρ(λ) ≥ ||(A(λ)||. (2.57)

Using the Schwarz inequality [10] and Eq. (2.55) we note that the spectral radius of the iteration

matrix, A(λ), will dictate the convergence rate of the iterative scheme [1]. The spectral radius of

the iterative method:

ρ = max
−∞<λ<∞

||A(λ)|| ≤ max
−∞<λ<∞

ρ(λ). (2.58)

If spectral radius is greater than unity, the scheme is unstable. If it is 1 exactly unity, it will neither

converge nor diverge. We see convergence when the spectral radius is less than unity.

Eigenvalues of the iteration matrix obtained above for λ = 0 are
σs,l
σt

for l = 0, 1, 2, .... Therefore,

when scattering kernel is forward-peaked, the eigenvalues of the iteration matrix are close together,

and slowly reducing. Moreover, as
σs,l
σt

gets arbitrarily close to unity, the iterative method becomes

arbitrarily slow to converge.

Example

Now that we have seen what Fourier analysis for source iteration returns, we look at an example

in order to understand it further. Consider a problem with parameters given in Table 2.2.1. For

this problem, the spectral radius lies at λ = 0 as seen in Fig. 2.2.1. The eigenvalues at λ = 0 are

given in Table 2.2.1. We can see how the spectral radius is
σs,0
σt

and eigenvalues at λ = 0 are
σs,l
σt

as

we saw during our analysis.
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Parameter Value

Legendre Expansion Order (L) 1

σt 1 cm−1

σs,0 999/1000 cm−1

σs,1 1/3 cm−1

Table 2.1: Parameters for Fourier Analysis

Number Eigenvalue

1 999/1000
2 1/3

Table 2.2: Eigenvalues for λ = 0

Figure 2.1: Spectral Radius Measurement from Fourier Analysis of Source Iteration
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2.3 Synthetic Acceleration Basics

We know that it is expensive to obtain a transport solution in optically thick media using standard

iteration techniques. In order to remedy that, we introduce a lower order (less expensive and fairly

accurate) error approximation into our iteration scheme and synthetically accelerate the conver-

gence of transport solution. This synthetic acceleration is equivalent to preconditioning. In a way,

synthetic acceleration is like physics based preconditioning since we choose our lower order equa-

tion based on the form of error which, in turn, depends on the physics of the problem. In the this

section, we describe basic synthetic acceleration approach, then we go on to show its equivalence

with preconditioning.

Kopp came up with the idea of synthetic acceleration for source iteration in 1963 [14]. To accelerate

the solution, the iterative scheme is broken into multiple stages. Standard methods consist of two

stages. The first stage is a single iteration of source iteration (transport sweep). The second stage is

an error-correction stage that uses an approximation of the transport equation for error estimation.

The purpose of this second stage is to accelerate convergence of the iterative scheme.

In its operator form, source iteration is given by Eq. (2.38). In the context of synthetic acceleration

for transport solve, after dropping notation for z and µ dependence for convenience, the first stage

becomes [1]:

ψm+ 1
2 = L−1Sψm + L−1q, (2.59)

where, ψm+ 1
2 is the post (m+1)th sweep angular flux iterate. We use the index m+ 1

2 to emphasize

the fact that the sweep is only the first stage of the solution algorithm and that the second stage
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is still to be executed.

We want to obtain a significantly more accurate prediction of ψ than ψm+ 1
2 . Theoretically, this

can be accomplished by adding a second stage to the solution process - error-correction stage. To

derive this, first, we subtract Eq. (2.59) from Eq. (2.34), where Eq. (2.34) represents the exact

solution. We have:

L(ψ − ψm+ 1
2 ) = S(ψ − ψm). (2.60)

Now, we add and subtract ψm+ 1
2 in the scattering term on the right hand side of the (2.60) and

rearrange terms to obtain:

L(ψ − ψm+ 1
2 ) = S(ψ − ψm+ 1

2 ) + S(ψm+ 1
2 − ψm). (2.61)

Further, we can rearrange (2.61) to obtain the following equation for exact solution in terms of

iteration residual, ψm+ 1
2 − ψm:

ψ = ψm+ 1
2 + (L− S)−1S(ψm+ 1

2 − ψm). (2.62)

From Eq. (2.62), in order to obtain the solution, we would have to invert the (L − S) operator

exactly. This essentially means that we would have to solve the entire transport problem before

actually solving it iteratively. Therefore, instead of doing that, we find an approximation to the

(L−S) operator of the transport equation that is relatively easy to invert. We call this operator F .

Using this approximation with (2.62), we get the following synthetic acceleration equation (2.62):
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ψm+ 1
2 = L−1Sψm + L−1q, (2.63)

ψm+1 = ψm+ 1
2 + F−1S(ψm+ 1

2 − ψm). (2.64)

Note, here, that S is still the corresponds to the scattering operator of the transport equation.

Depending on what we choose for our approximation operator, F , we get different synthetic accel-

eration schemes. For example, if we choose a P5 representation of the (L−S), we get a P5 synthetic

acceleration scheme.

Thus, in general, a synthetic acceleration scheme is as follows:

1. Initialize problem - define all the problem parameters.

2. Evaluate: ψm+ 1
2 = L−1Sψm + L−1q.

3. Calculate: S(ψm+ 1
2 − ψm).

4. Find: F−1S(ψm+ 1
2 − ψm).

5. Evaluate: ψm+1 = ψm+ 1
2 + F−1S(ψm+ 1

2 − ψm).

6. Check for convergence and loop back to step 2.

Now that we have described what we mean by synthetic acceleration, we demonstrate its equivalence

with preconditioning in the next section.

2.3.1 Preconditioning and Synthetic Acceleration Equivalence

In order to demonstrate how easily the idea of synthetic acceleration can be applied to solution

methods other than source iteration, we prove mathematical equivalence between synthetic ac-

celeration, and preconditioning. The procedure closely follows that in [1]. Using Eq. (2.42), we

have,
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ψm+ 1
2 = (I −A)ψm + q̂, (2.65)

where, A, and q̂ are according to Eq. (2.41). Now, substitute the definition of ψm+ 1
2 from Eq.

(2.65) into Eq. (2.64) to obtain:

ψm+1 = (I −A)ψm + q̂ + F−1S ((I −A)ψm + q̂ − ψm) . (2.66)

We can further simplify (2.66) by noting that

ψm+1 = ψm + (I + F−1S)(−Aψm + q̂). (2.67)

If we define,

P = I + F−1S, (2.68)

we can write Eq. (2.67) as the preconditioned Richardson iteration form of the synthetic acceleration

equation:

ψm+1 = (I − PA)ψm + P q̂. (2.69)

Thus we now know that synthetic acceleration and preconditioning are equivalent while source

iteration and Richardson iteration are equivalent. Therefore, when we do our analysis for source

iteration, we are implicitly doing it for Richardson iteration also. Ideas from synthetic acceleration

can seamlessly be integrated into preconditioning for linear solvers.
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2.4 Summary

In this chapter, we derived the transport equation, described source iteration, demonstrated Fourier

analysis for source iteration. We saw that the slowest converging mode for source iteration is the

flat (zero-frequency) mode. For this particular mode, the eigenvalues of error are
σs,l
σt

. Thus when

the scattering kernel is highly forward-peaked, attenuating only the first eigenvalue is not enough

in order to achieve acceleration. We must attenuate a majority of eigenvalues (if not all) in order

to achieve acceleration. This means we must correct for a majority of angular-flux moments in

order to achieve acceleration. This calls for an angular-flux based acceleration scheme rather than

a moment-based scheme. We also went over the basics of synthetic acceleration and demonstrated

how a generic synthetic acceleration scheme would work. We also saw how synthetic acceleration

for source iteration is equivalent to preconditioning for Richardson iteration.

In the next chapter we will systematically derive a lower-order equation for approximating the

error. We will describe the FPSA algorithm and present PN -based analysis for FPSA.
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Chapter 3

Fokker-Planck Synthetic Acceleration

In the previous chapter we saw how to synthetically accelerate source iteration. In this chapter,

we will look at how to systematically derive a lower order approximation to the error equation

using asymptotics [3, 26, 30]. We will use this equation in the error-correction stage of our iterative

method and then analyze it using Fourier analysis. Since the error equation has the same form

as the transport equation, the scattering kernel of the error equation is the same as that of the

transport equation. Moreover because the material parameters remain the same as the transport

equation, convergence characteristics of the error equations will be identical to those of the transport

equation. Here, we will derive the limit of error equation as the scattering kernel gets extremely

forward-peaked. In other words, the average scattering angle for particles is arbitrarily close to

unity.

3.1 Asymptotic Limit of the Error Equation

In this section, we will derive the limit of the error equation as the average scattering angle, µ0 → 1.

This limit is called the Fokker-Planck limit and the equation we get is called the Fokker-Planck

equation.
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First, we explicitly write down the exact error equation in its continuous form by using Eq. (2.33):

µ
∂ε(z, µ)

∂z
+ (σa(z) + σs(z))ε(z, µ) = 2π

1∫
−1

dµ′σs(µ0)Pl(µ
′)ε(z, µ′), (3.1)

where,

σs(z) =

∫ 1

−1
dµ0σs(z, µ0). (3.2)

and,

σs(z, µ0) = 2π
∞∑
l=0

2l + 1

4π
Pl(µ0)σs,l(z) =

∞∑
l=0

2l + 1

2
Pl(µ0)σs,l(z). (3.3)

Note the absence of a source in the error equation as compared to the transport equation. This

is because when we subtract the exact transport equation from the iteration equation, the source

gets canceled out as we saw in Ch. 2. Moreover we will ignore iteration indices since they are

not relevant to this derivation (they would only be relevant if the material properties changed

over iterations but that is not the case here). Now, we introduce the following normalization for

scattering cross-section moments:

σs,l(z) = σs(z)fl(z), (3.4)

where,

fl(z) =

∫ 1

−1
dµ0f(z, µ0)Pl(µ0). (3.5)

Upon introduction of Eq. (3.3), and (3.4) in Eq. (3.1) becomes:

µ
∂ε(z, µ)

∂z
+ σa(z)ε(z, µ) = σs(z)

∞∑
l=0

2l + 1

2
Pl(µ)fl(z)

1∫
−1

dµ′Pl(µ
′)ε(z, µ′)− σs(z)ε(z, µ). (3.6)
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Now, we assume that f(z, µ0) is significant only for µ0 → 1. This means scattering cross-section

and moments are insignificant away from µ0. Therefore, we can Taylor-expand Pl(µ0) about unity.

We retain the first two terms to get [30]:

Pl(µ0) ≈ 1− dPl(µ0)

dµ0

∣∣∣
µ0=1

(1− µ0) (3.7)

Now, recall Legendre equation:

(1− µ2)
∂2Pl(µ)

∂µ2
− 2µ

∂Pl(µ)

∂µ
= −l(l + 1)Pl(µ). (3.8)

Evaluating Eq. (3.8) at µ = 1, and using the fact that Pl(1) = 1,∀l, for µ0 → 1, we get:

Pl(1) ≈ 1− l(l + 1)

2
(1− µ0). (3.9)

Inserting the relation from Eq. (3.9) in Eq. (3.5), and dropping the z’s for convenience in our

quantities, for µ0 → 1, we have:

fl =

∫ 1

−1
dµ0f(µ0)

(
1− l(l + 1)

2
(1− µ0)

)
, (3.10)

which becomes:

fl =

∫ 1

−1
dµ0f(µ0)−

∫ 1

−1
dµ0

l(l + 1)

2
f(µ0) +

∫ 1

−1
dµ0

l(l + 1)

2
µ0f(µ0). (3.11)

We note that
∫ 1
−1 dµ0f(µ0) = 1 due to normalization. Using that and simplifying Eq. (3.11), for

µ0 → 1, we get:

fl = 1− l(l + 1)

2
(1− µ0) , (3.12)

where,
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µ0 =

∫ 1

−1
dµ0µ0f(µ0). (3.13)

Now, we insert relation from Eq. (3.12) into the right hand side of Eq. (3.6), we get right hand

side:

RHS = σs(z)
∞∑
l=0

2l + 1

2
Pl(µ)

(
1− l(l + 1)

2
(1− µ0)

) 1∫
−1

dµ′Pl(µ
′)ε(z, µ′)− σs(z)ε(z, µ). (3.14)

Upon simplifying and rearranging terms in Eq. (3.14), we get:

RHS = σs(z)

∞∑
l=0

2l + 1

2
Pl(µ)

1∫
−1

dµ′Pl(µ
′)ε(z, µ′)− σs(z)ε(z, µ)

−σs(z)(1− µ0)
∞∑
l=0

2l + 1

2

l(l + 1)

2
Pl(µ)

1∫
−1

dµ′Pl(µ
′)ε(z, µ′).

(3.15)

Now, using the Legendre equation for substituting the differential Laplacian for l(l+1)Pl(µ) in Eq.

(3.15), and defining the momentum transfer crosssection as σtr = σs(z)(1− µ0), we get:

RHS = σs(z)
∞∑
l=0

2l + 1

2
Pl(µ)

1∫
−1

dµ′Pl(µ
′)ε(z, µ′)− σs(z)ε(z, µ)

+
σtr(z)

2

∞∑
l=0

2l + 1

2

∂

∂µ
(1− µ2)

∂

∂µ
Pl(µ)

1∫
−1

dµ′Pl(µ
′)ε(z, µ′).

(3.16)

Now, using the definition of error moments from Eq. (2.49), we have:

RHS = σs(z)
∞∑
l=0

2l + 1

2
Pl(µ)εl(z)− σs(z)ε(z, µ)

+
σtr(z)

2

∞∑
l=0

2l + 1

2

∂

∂µ
(1− µ2)

∂

∂µ
Pl(µ)εl(z).

(3.17)

Simple rearrangement of Eq. (3.17) returns:
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RHS = σs(z)

∞∑
l=0

2l + 1

2
Pl(µ)εl(z)− σs(z)ε(z, µ)

+
σtr(z)

2

∂

∂µ
(1− µ2)

∂

∂µ

∞∑
l=0

2l + 1

2
Pl(µ)εl(z).

(3.18)

Finally, we note that:

ε(z) =
∞∑
l=0

2l + 1

2
Pl(µ)εl(z), (3.19)

and substitute it in Eq. (3.18) and substitute RHS in Eq. (3.6) to get Fokker-Planck form of the

error equation:

µ
∂ε(z, µ)

∂z
+ σa(z)ε(z, µ) =

σtr(z)

2

∂

∂µ
(1− µ2)

∂

∂µ
ε(z, µ). (3.20)

This is the Fokker-Planck approximation. Now, note in Eq. (3.19) that we use an infinite series

expansion for defining angle-dependent error. If enough error moments are not taken into account,

the scattering terms in Eq. (3.18) will cancel out and the Fokker-Planck approximation will have

residual terms. In other words, we do not get Fokker-Planck approximation if enough moments are

not taken into account for the continuous form of transport equation. In case we have discretized

the angular domain using SN method, we define the angular flux by the same number of moments

in both the scattering terms which means they always cancel. So in discrete case, the Fokker-Planck

approximation will always be valid as long as the scattering kernel has a Fokker-Planck limit. We

will study the validity of the Fokker-Planck approximation for different scattering kernels next.

3.1.1 Validity of Fokker-Planck Approximation for Different Scattering Kernels

In order to see whether a given scattering kernel has a valid Fokker-Planck limit [30, 26, 4, 16], we

closely follow class notes from [28]. We go back to Eq. (3.7) and keep higher order terms in Taylor

expansion :
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Pl(1) =
∞∑
j=0

(−1)j

j!
(1− µ0)jP

(j)
l (1), (3.21)

where,

P
(j)
l (1) =

djPl(µ0)

dµj0

∣∣∣
µ0=1

. (3.22)

Substituting Eq. (3.21) in Eq. (3.5), and doing necessary simplifications, we get:

fl(z) =

∞∑
j=0

(−1)j

j!
P

(j)
l (1)Ij , (3.23)

where,

Ij =

∫ 1

−1
dµ0(1− µ0)jf(z, µ0). (3.24)

Now, we note that,

P
(0)
l (1) = 1, (3.25)

P
(j)
l (1) =

1

2jj!

j−1∏
i=0

(l(l + 1)− i(i+ 1)) . (3.26)

Then, inserting these definitions in Eq. (3.23), and inserting that in Eq. (3.6), we get:

µ
∂ε(z, µ)

∂z
+ σa(z)ε(z, µ) = σs(z)

∞∑
l=0

2l + 1

2
Pl(µ)

∞∑
j=0

(−1)j

j!2
P

(j)
l (1)Ijεl(z)− σs(z)ε(z, µ). (3.27)

Now, separating the j = 0 term returns from the expansion above, we get:

µ
∂ε(z, µ)

∂z
+ σa(z)ε(z, µ) = σs(z)

∞∑
l=0

2l + 1

2
Pl(µ)εl(z)

+σs(z)

∞∑
l=0

2l + 1

2
Pl(µ)

∞∑
j=1

(−1)j

2jj!2
P

(j)
l (1)Ijεl(z)− σs(z)ε(z, µ).

(3.28)
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Using the definition of error moments, the first and the last terms on the RHS cancel. After using

Eq. (3.26) and slightly rearranging of the middle term, we have:

RHS = σs(z)
∞∑
j=1

(−1)j

2jj!2
Ij

∞∑
l=0

2l + 1

2

j−1∏
i=0

(l(l + 1)− i(i+ 1))Pl(µ)εl(z). (3.29)

Using the Legendre equation we described previously, we get:

RHS = σs(z)
∞∑
j=1

1

2jj!2
Ij

∞∑
l=0

2l + 1

2

j−1∏
i=0

(LFP + i(i+ 1))Pl(µ)εl(z), (3.30)

with LFP being defined according to Eq. (3.8). Rearranging the above equation and using the

definition of error moments, we have:

RHS = σs(z)
∞∑
j=1

1

2jj!2
Ij

j−1∏
i=0

(LFP + i(i+ 1))
∞∑
l=0

2l + 1

2
Pl(µ)εl(z), (3.31)

and,

RHS = σs(z)
∞∑
j=1

1

2jj!2
Ij

j−1∏
i=0

(LFP + i(i+ 1))ε(z, µ), (3.32)

If we let:

Lj =
∞∑
j=1

1

2jj!2

j−1∏
i=0

(LFP + i(i+ 1)), (3.33)

we have:

RHS = σs(z)
∞∑
j=1

IjLjε(z, µ). (3.34)

Separating j = 1 term from the above equation and using the definition of LFP returns:

RHS =
σtr
2

 ∂

∂µ
(1− µ2)

∂ε(z, µ)

∂µ
+ 2

∞∑
j=2

In
I1
Ljε(z, µ)

 . (3.35)
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This means we get the Fokker-Planck approximation like we got before but with extra terms given

by:

LExtraFP ε(z, µ) = 2
∞∑
j=2

In
I1
Ljε(z, µ). (3.36)

Therefore, for the FP representation to be valid, if In
I1
→ 0 as µ0 → 0.

For forward-peaked scattering, scattering in backward direction is negligible. Therefore,

Ij =

∫ 1

−1
dµ0(1− µ0)jf(z, µ0) ≈ f0

∫ 1

0
dµ0(1− µ0)jPl(µ0) ≤ I2. (3.37)

Therefore, for a valid FP approximation, for the FP representation to be valid, if I2I1 → 0 as µ0 → 1.

Screened Rutherford Kernel

The screened Rutherford scattering kernel is widely used in modeling scattering behavior of elec-

trons [7]. For this kernel,

f(µ0) =
η(η + 1)

(1 + 2η − µ0)2
. (3.38)

According to [4],

µ0 = 1− 2ηln(
1

η
), (3.39)

and,

lim
µ0→1

I2

I1
= 1− 2

ln( 1
η )
→ 0. (3.40)

Note the logarithmic dependence on η in Eq. (3.40). This means the Fokker-Planck limit is only

marginally valid for the screened Rutherford scattering kernel. In other words, it is only truly valid
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when η is extremely small.

Exponential Kernel

Pomraning, Prinja and Vandenburg came up with this fictitious kernel, called the exponential

kernel, in [8]. For this exponential kernel,

f(µ0) =
e
− 1−µ0

γ

γ(1− e−
2
γ )
, (3.41)

where, γ << 1, µ0 = 1− γ. Moreover according to [28, 8]:

lim
µ0→1

I2

I1
= 2(1− µ0) = 0. (3.42)

The exponential kernel has a valid Fokker-Planck limit because I2
I1

goes to zero as µ0 goes to one

in the Fokker-Planck limit.

Henyey Greenstein Kernel

The Henyey-Greenstein kernel is widely used in modeling transport of photons in clouds. For this

kernel [26],

f(µ0) =
1− g2

2(1− gµ0 + g2)
3
2

, (3.43)

where, g is the asymmetry factor and f(µ0) becomes a valid representation of the Dirac delta

function as g → 1 [26]. This kernel does not have a valid Fokker-Planck limit because [4]:

lim
µ0→1

I2

I1
=
µ0 + 1

3
=

2

3
. (3.44)
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3.2 Fokker-Planck Synthetic Acceleration (FPSA)

We saw that for problems with forward-peaked scattering, Fokker-Planck can be a good approxi-

mation for the error. We will combine that with the idea of synthetic acceleration in this section.

We will only be using Fokker-Planck as an accelerator so there will be no loss of accuracy even

when the scattering kernel does not have a Fokker-Planck limit as long as the solution converges.

The speedup rate will depend on the validity of Fokker-Planck limit to some extent. In this section,

we will assume that F is the Fokker-Planck operator. The rest of the algorithm for FPSA is the

same as presented in previous chapter. We present analysis for FPSA next.

3.2.1 PL-based Fourier Analysis for FPSA

We begin by writing out the formulation for error equation. We know which physical quantities

depend on which independent variables so we will skip writing them out for those specific physical

quantities for convenience. We will assume constant material properties throughout this analysis.

Subtract the exact solution, ψ, from both sides of Eq. (2.63) to obtain:

ψm+1 − ψ = ψm+ 1
2 − ψ + F−1S(ψm+ 1

2 − ψm). (3.45)

The, we add and subtract the exact solution, ψ, in the scattering term on the right hand side to

obtain:

ψm+1 − ψ = ψm+ 1
2 − ψ + F−1S(ψm+ 1

2 − ψ + ψ − ψm). (3.46)

Further, we introduce error definitions. We have:

ψ − ψm+ 1
2 = εm+ 1

2 , ψ − ψm+ 1
2 = εm+ 1

2 , and ψ − ψm = εm. (3.47)
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Now, we substitute Eq. (3.47) into Eq. (3.46) to obtain:

−εm+1 = −εm+ 1
2 + F−1S(εm − εm+ 1

2 ). (3.48)

Multiplication of Eq. (3.48) with −1 yields the final form of the error equation:

εm+1 = εm+ 1
2 − F−1S(εm − εm+ 1

2 ). (3.49)

Since, here, our analysis is moment based, we introduce moments of error defined as follows:

εml =

1∫
−1

dµPl(µ)εm =
N∑
n=1

wnPl(µn)εm. (3.50)

Note that when we introduce the correction equation in terms of moments, our scattering operator

from (2.36), upon using the orthogonality property of Legendre polynomials, becomes:

S =

L∑
l=0

(2l + 1)

2
Pl(µ)σs,l. (3.51)

Now, take the moment of operator F−1S from (3.49):

T =

1∫
−1

dµPl(µ)F−1S. (3.52)

Using these new moment based definitions, we get the following equation in terms of error moments:

εm+1
l = ε

m+ 1
2

l − T (εml − ε
m+ 1

2
l ). (3.53)

Now that we have obtained the error equations, we analyze PL acceleration. First, we sketch out

general steps of analysis:

1. Obtain an expression for ε
m+ 1

2
l by doing Fourier analysis on source iteration.
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2. Obtain an expression for T (εml − ε
m+ 1

2
l ) by doing Fourier analysis on the error correction

equation.

3. Obtain the matrix equation that will return spectral radius of the PL accelerated solution

scheme.

Step 1: Obtain an expression for ε
m+ 1

2
l

This step is exactly the same as doing Fourier analysis for stand-alone source iteration. We did

that in the previous chapter. From Eq. (2.52), (2.53), and (2.54), we have:

ε̂
m+ 1

2
l =

L∑
l=0

σs,l
σt

2l + 1

2

∫ 1

−1
dµ
Pn(µ)Pl(µ)

1 + iλµσt
ε̂ml . (3.54)

We note that Eq. (3.54) represents the following matrix equation:

[ε̂
m+ 1

2
l ] = A[ε̂ml ], (3.55)

where,

A =
L∑
l=0

σs,l
σt

2l + 1

2

∫ 1

−1
dµ
Pn(µ)Pl(µ)

1 + iλµσt
, (3.56)

We multiply Eq. (3.55) by eiλσtz and use Eq. (3.50) to get:

[ε
m+ 1

2
l ] = A[εml ], (3.57)

Now that we have an equation for ε
m+ 1

2
l , we move on to the next step.

Step 2: Obtain an expression for T (εml − ε
m+ 1

2
l )
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We use the Fokker-Planck approximation to estimate error. In other words, T , in (3.50), will be

the inverse of the streaming-minus-scattering operator of the Fokker-Planck equation. We get the

following error correction equation:

µ
∂υm+1

∂z
+ σaυ

m+1 − σtr
2

∂

∂µ
(1− µ2)

∂υm+1

∂µ
=

L∑
l=0

2l + 1

2
Pl(µ)σs,l(ε

m
l − ε

m+ 1
2

l ) (3.58)

Now, we introduce Fourier mode assumption for error-estimate, υm+1:

υm+1 = υ̂m+1
λ (µ)eiλzσt . (3.59)

Upon introducing Eq. (3.50), and Eq. (3.59) in Eq. (3.58), we obtain:

µ
∂υ̂m+1

λ (µ)eiλzσt

∂z
+ σaυ̂

m+1
λ (µ)eiλzσt − σtr

2

∂

∂µ
(1− µ2)

∂υ̂m+1
λ (µ)eiλzσt

∂µ

=

L∑
l=0

2l + 1

2
Pl(µ)σs,l(e

iλσtz ε̂ml − eiλσtz ε̂
m+ 1

2
l ).

(3.60)

Upon simplifying Eq. (3.60), taking its Legendre moment, and using the orthogonality property of

Legendre polynomials, we get:

iλσt

1∫
−1

dµPl(µ)µυ̂m+1
λ (µ) + σa

1∫
−1

dµPl(µ)υ̂m+1
λ (µ)

−σtr
2

1∫
−1

dµ
∂

∂µ
(1− µ2)

∂υ̂m+1
λ (µ)

∂µ
= σs,l(ε̂

m
l − ε̂

m+ 1
2

l ).

(3.61)

Now, using the recurrence relation for Legendre polynomials on the first term of Eq. (3.61),

expanding υ̂m+1
λ (µ) in the third term of Eq. (3.61) using Legendre expansion, and dropping notation

for z dependence for moments for convenince, we get:
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l

2l + 1
iλσtυ̂

m+1
l−1 +

l + 1

2l + 1
iλσtυ̂

m+1
l+1 + σaυ̂

m+1
l − σtr

2

1∫
−1

dµ
∂

∂µ
(1− µ2)

∂

∂µ

∞∑
n=0

2l + 1

2
Pn(µ)υ̂m+1

n

= σs,l(ε̂
m
l − ε̂

m+ 1
2

l ).

(3.62)

Simple rearrangement of the third term in Eq. (3.62), followed by use of Legendre’s equation, Eq.

(3.8), and orthogonality property of Legendre polynomials returns:

l

2l + 1
iλσtυ̂

m+1
l−1 +

l + 1

2l + 1
iλσtυ̂

m+1
l+1 + σaυ̂

m+1
l +

σtr
2
l(l + 1)υ̂m+1

n = σs,l(ε̂
m
l − ε̂

m+ 1
2

l ), (3.63)

where,

υ̂ml =

1∫
−1

dµPl(µ)υ̂mλ (µ). (3.64)

Eq. (3.63) can be written in matrix form as:

[υ̂m+1
l ] = B−1XE[ε̂ml ] (3.65)

where,

X = diag(σs,l), (3.66)

E = I −A, (3.67)

Bl,l = σa +
σtr
2
l(l + 1), (3.68)

Bl,l+1 =
l + 1

2l + 1
iλσt, (3.69)

Bl−1,l =
l

2l + 1
iλσt. (3.70)

Here, for example, with L = 3,
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X =



σs,0 0 0 0

0 σs,1 0 0

0 0 σs,2 0

0 0 0 σs,3


, (3.71)

and,

B =



σa iλσt 0 0

1
3 iλσt σa + σtr

2
3 iλσt 0

0 2
5 iλσt σa + 3σtr

3
5 iλσt

0 0 3
7 iλσt σa + 6σtr


. (3.72)

Here, l = 0, 1, 2, 3 in rows 1, 2, 3, 4 respectively in X, and B. These matrices can be generalized for

arbitrary L.

Now that we have an expression for υ̂m+1
l , we effectively have an expression for T (εm − εm+ 1

2 )

because:

υ̂m+1
l eiλσtz = T (εm − εm+ 1

2 ). (3.73)

Now, we move on to the next step.

Step 3: Obtain the overall iteration matrix to calculate spectral radius

If we insert Fourier mode assumption from Eq. (3.59), and the definition of T (εm − εm+ 1
2 ) from

Eq. (3.73) into Eq. (3.53), we get,

ε̂m+1
l eiλσtz = ε̂

m+ 1
2

l eiλσtz − υ̂ml eiλσtz. (3.74)
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Using the relations obtained in previous two steps, Eq. (3.57) and Eq. (3.65), and substituting

relevant terms into Eq. (3.74), we get,

[εm+1
l ] = (A−B−1XE)[εml ]. (3.75)

Thus our iteration matrix becomes (A−B−1XE). We note that the spectral radius of this iteration

matrix will be the spectral radius of a FP preconditioned Richardson iteration.

3.2.2 PL Acceleration

We will first derive the PL equations. In order to do that, we recall the transport equation, Eq.

(2.31). We take the lth Legendre moment of the transport:

1∫
−1

Pl(µ)dµ

[
µ
∂ψ

∂z
+ σtψ =

∞∑
n=0

(2n+ 1)Pn(µ)σs,lφl + q

]
. (3.76)

Upon rearrangement of (3.76), we get:

∂

∂z

1∫
−1

µPl(µ)ψ + σt

1∫
−1

Pl(µ)ψ =
∞∑
l=0

(2l + 1)σs,lφl

1∫
−1

Pn(µ)Pl(µ)dµ+

1∫
−1

Pl(µ)qdµ. (3.77)

Using the recurrence relation, orthogonality property of Legendre polynomials [19], and moment

definitions from (2.32) we get the following form of Pl equations:

l

2l + 1

dφl−1

dz
+

l + 1

2l + 1

dφl+1

dz
+ (σt − σs,l)φl = ql, (3.78)

where, l = 0, 1, ..., L, and,

ql =

1∫
−1

Pl(µ)qdµ. (3.79)
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A set of L coupled equations must be solved to obtain the PL solution of the problem. One closure

to PL approximation is obtained by setting the derivative of (L + 1)th Legendre moment to zero.

Thus the last equation of the PL equation series takes the following form:

l

2l + 1

dφl−1

dz
+ (σt − σs,l)φl = ql, (3.80)

Now that we have derived the PL equations, we move on to see how they can be used in the

error-correction stage of the two stage iteration algorithm. In the next subsection, we will derive

iteration matrix for PL acceleration using Fourier analysis.

Fourier Analysis for PL Acceleration

For analysis of PL acceleration, we will use the same error notations and Fourier mode assumptions

as those used in the case of analysis of FPSA. The only thing different from FPSA will be the

equation used to calculate the error estimate. First, we recall general steps of analysis:

1. Obtain an expression for ε
m+ 1

2
l by doing Fourier analysis on source iteration.

2. Obtain an expression for T (εml − ε
m+ 1

2
l ) by doing Fourier analysis on the error correction

equation.

3. Obtain the matrix equation that will return spectral radius of the PL accelerated solution

scheme.

Step 1: Obtain an expression for εm+ 1
2

Since we are accelerating the same transport equation, the first step here is identical to that of

FPSA. We obtain the same matrix equation for εm+ 1
2 as we did at the end of first step of FPSA

analysis, Eq. (3.57). We move on to the next step.

39



Step 2: Obtain an expression for T (εml − ε
m+ 1

2
l )

We use the PL approximation to estimate error. Thus, in other words, T , in (3.50), will be the

inverse of the streaming-minus-scattering operator of the PL equations. We get the following from

of the error correction equation in terms of moments:

l

2l + 1

dυm+1
l−1

dz
+

l + 1

2l + 1

dυm+1
l+1

dz
+ (σt − σs,l)υm+1

l = σs,l (ε
m
l − εml ) , (3.81)

where, l = 0, 1, ..., L.

We introduce Fourier mode assumption for υml . We will also ignore the notation for z and µ to get:

υml = υ̂le
iλσtz. (3.82)

Upon substituting the Fourier mode assumption for υl, and εl into (3.81), and simplifying it by

carrying out relevant derivatives and canceling exponential term from both sides, we get:

l

2l + 1
iλσtυ̂

m+1
l−1 +

l + 1

2l + 1
iλσtυ̂

m+1
l+1 + (σt − σs,l)υ̂m+1

l = σs,l (ε̂
m
l − ε̂ml ) . (3.83)

with PL closure:

l

2l + 1
iλσtυ̂

m+1
l−1 + (σt − σs,l)υ̂m+1

l = σs,l (ε̂
m
l − ε̂ml ) . (3.84)

We get the following matrix equation using (3.83), and (3.84):

[υm+1
l ] = B−1XE[εml ], (3.85)

where,
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X = diag(σs,l), (3.86)

E = I −A, (3.87)

Bl,l = σa + σs,l, (3.88)

Bl,l+1 =
l + 1

2l + 1
iωσt, (3.89)

Bl−1,l =
l

2l + 1
iωσt. (3.90)

For example, with L = 3, we have:

X =



σs,0 0 0 0

0 σs,1 0 0

0 0 σs,2 0

0 0 0 σs,3


, (3.91)

and,

B =



σt − σs,0 iλσt 0 0

1
3 iλσt σt − σs,1 2

3 iλσt 0

0 2
5 iλσt σt − σs,2 3

5 iλσt

0 0 3
7 iλσt σt − σs,3


. (3.92)

Here, l = 0, 1, 2, 3 in rows 1, 2, 3, 4 respectively in X, and B. These matrices can be generalized for

arbitrary L and therefore, we have a general expression for T (εml − ε
m+ 1

2
l ), where,

T (εml − ε
m+ 1

2
l ) = υm+1

l eiλσtz. (3.93)

Now, we move on to the next step.

Step 3: Obtain the overall iteration matrix to calculate spectral radius
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This step is, again, identical to that for FPSA. We have the same form of iteration matrix as

for FPSA. Thus our iteration matrix becomes (A − B−1XE), and its spectral radius returns the

spectral radius of PL accelerated solution scheme.

3.2.3 FPSA as a Special Case of PL Acceleration

Notice from the Fourier analysis of FPSA and PL acceleration that the only difference between the

two schemes is in the diagonal term of the matrix, B, where:

BFPSA
l,l = σa +

σtr
2
l(l + 1) = σa +

σs,0 − σs,1
2

l(l + 1) (3.94)

BPL
l,l = σt − σs,l = σa + σs,0 − σs,l. (3.95)

Using the above equations from Fourier analyses of FPSA and PL acceleration, we note that FPSA

is a special case of PL acceleration when:

σs,l = σs,0 −
σs,0 − σs,1

2
l(l + 1). (3.96)

Another way of obtaining this equivalence relation is by recognizing that Legendre polynomials are

eigenfunctions of both Boltzmann scattering operator and the Fokker-Planck operator [15, 21]:

ΓBPl(µ) = (σs,l − σs,0)Pl(µ), (3.97)

ΓFPPl(µ) = −(σs,0 − σs,1)

2
l(l + 1)Pl(µ), (3.98)

and equating the eigenvalues of Fokker-Planck and the Boltzmann scattering operators:

σs,l − σs,0 = −(σs,0 − σs,1)

2
l(l + 1). (3.99)
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Simple rearrangement of Eq. (3.99) returns Eq. (3.96). Morel came up with a way of using modified

scattering cross-section moments with the transport operator to obtain the Fokker-Planck solution

by exploiting the above relation in [21].

3.3 Summary

In this chapter, we derived the limiting equation for the error equation as mean scattering angle

tends to unity. We also described the conditions under which the Fokker-Planck approximation is a

valid limit of the error equation in order to see where to expect FPSA to work well. We noted that

in case of continuous transport equation, we only obtain the Fokker-Planck limit (irrespective of

the scattering kernel) when sufficient number of Legendre moments are used to represent angular

flux. This ’sufficient number’ of moments is subjective and completely depends on the scattering

kernel used in the calculations. We also noted that the Fokker-Planck approximation is a valid

asymptotic limit for the exponential scattering kernel. For the screened Rutherford kernel, it is

only valid when the screening parameter, η is sufficiently small. The Henyey-Greenstein kernel does

not have the Fokker-Planck approximation as a valid asymptotic limit. Moreover, we introduced

FPSA and provided analysis for this method. We compared it to PL acceleration and derived the

conditions under which FPSA is equivalent to PL acceleration.
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Chapter 4

FPSA Fourier Analysis for

Accelerating SN Equations

We have seen in previous chapters that because our scattering kernel is forward-peaked, the flat

mode of error also has forward-peaked scattering. Asymptotic analysis returns Fokker-Planck ap-

proximation for error. Therefore, we use Fokker-Planck approximation for acceleration. We note

that because we estimate error itself (and not just a predetermined number of error moments) with

FPSA, all relevant error moments are accelerated.

The numerical implementation of FPSA can be tricky to analyze because depending on the dis-

cretization of the Fokker-Planck operator (angular derivative term of Fokker-Planck equation) all

error moments may or may not be preserved [22, 34]. For this reason, and for the reason that PN

based analysis of FPSA requires using extremely high precision calculations, we will present an

angularly discrete framework for analyzing FPSA.

In the next section, we will present spatial and angular discretization for the transport and Fokker-
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Planck equations. We present two ways to discretize the Fokker-Planck operator - weighted finite

difference (WFD), and moment preserving discretization (MPD). The WFD discretization only

preserves the first two moments while MPD can preserve upto N − 1 moments of the discrete

Fokker-Planck SN equations, where N is the SN order.

4.1 SN Equations with Linear Discontinuous (LD) Spatial Dis-

cretization

The discrete ordinates (SN ) method is one of the most widely used methods to solve the transport

equation. The SN method requires the transport equation to hold exactly for N distinct angles

[19]. Further, the scattering integral term is evaluated using a compatible quadrature rule. Angles

are chosen so that the angular flux moment integrals are evaluated accurately. Thus if we choose a

quadrature formula on interval −1 ≤ µ ≤ 1, with N ordinates, µn, and corresponding weights, wn,

we get a discrete ordinates approximation of order N [19]. In slab geometry the Gauss-Legendre

quadrature (GLQ) [9] is often used because GLQ evaluates polynomials of order 2N-1 exactly . We

will use the same.

4.1.1 SN Equations

In slab geometry, the discrete ordinates approximation is follows:

µn
∂ψ(z, µn)

∂z
+ σt(z)ψ(z, µn) =

L∑
l=0

2l + 1

2
Pl(µn)σs,l(z)φl(z) +Q(z, µn), (4.1)

with,
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φl(z) =
N∑
n=1

wnPl(µn)ψ(z, µn). (4.2)

These equations then form a system of SN equations:

µn
∂Ψ(z)

∂z
+ σt(z)Ψ(z) =

L∑
l=0

2l + 1

2
Pl(µn)σs,l(z)Φl(z) +QN (z), (4.3)

where,

Ψ(z) = [ψ(z, µn)]T , n = 1, 2, 3...N, (4.4)

is the angular flux vector,

Φl(z) = [φl(z)]
T , l = 1, 2, 3...L, (4.5)

is the moments vector and,

QN (z) = [Q(z, µn)]T , n = 1, 2, 3...N. (4.6)

is the angular source vector.

4.1.2 Linear Discontinuous Finite Element Discretization of SN Equations

We discretize the SN equations in space using linear-discontinuous finite element method. We

represent flux using linear discontinuous elements on the following mesh [11, 33]. An illustration of

the linear discontinuous angular flux for µ > 0 and µ < 0 is shown in Fig. 4.1 and 4.2 respectively,

for a one-dimensional, slab-geometry mesh. The angular fluxes on the left and right of a mesh cell

are denoted by L and R, respectively, and the open and closed circles indicate which angular fluxes

46



are used to introduce discontinuities between mesh cells. That is, for µ > 0 the incoming flux for

mesh cell i+ 1 is taken to be ψi,R, and for µ < 0, the incoming flux for cell i is taken to be ψi+1,L.

Figure 4.1: LD mesh for a slab µ > 0 [11]

Figure 4.2: LD mesh for a slab µ < 0 [11]

In order to derive the linear discontinuous discretization for SN equations, we begin by introducing

linear basis and weight functions [33]. We introduce the following approximation for angular flux

for ith element along z for the angular flux vector, Ψ̃i(z), as the following linear combination:

Ψ̃i(z) = Ψi,LBi,L(z) + Ψi,RBi,R(z), (4.7)

where, edge fluxes:
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Ψi(zi,L) = Ψi,L, (4.8)

Ψi(zi,R) = Ψi,R, (4.9)

and, Bi,L(z), and Bi,R(z) are linear basis functions in z defined as:

Bi,L(z) =
zi,R − z
zi,R − zi,L

, (4.10)

Bi,R(z) =
z − zi,L
zi,R − zi,L

. (4.11)

Therefore, note that:

Bi,L(zi,L) = 1, (4.12)

Bi,R(zi,L) = 0, (4.13)

Bi,L(zi,R) = 0, (4.14)

Bi,R(zi,R) = 1. (4.15)

Now, the weighted residual form for element i will have two equations:

∫ zi,R

zi,L

dzBi,L(z)

(
µn
∂Ψ̃i

∂z
+ σt(zi)Ψ̃i =

L∑
l=0

2l + 1

2
Pl(µn)σs,l(zi)Φl,i +QN (zi)

)
= 0, (4.16)

∫ zi,R

zi,L

dzBi,R(z)

(
µn
∂Ψ̃i

∂z
+ σt(zi)Ψ̃i =

L∑
l=0

2l + 1

2
Pl(µn)σs,l(zi)Φl,i +QN (zi)

)
= 0. (4.17)

Now, we insert the definition of ψ̃i,n from Eq. (4.7) into Eq. (4.16), and carry out the necessary

simplifications using Eq. (4.10) and Eq. (4.12), and use upwinding illustrated previously in Fig.

4.1 and 4.2, where, for −1 ≤ µn ≤ 0, we have,
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Ψi(zi,R) = Ψi+1,L. (4.18)

and, for 0 ≤ µn ≤ 1, we have,

Ψi(zi,L) = Ψi−1,R (4.19)

Now order quadrature such that 0 ≤ µn < 1 for n = 1, ...N2 , and −1 < µn ≤ 0 for n = N
2 + 1, ...N .

For n = 1, ...N2 , we have the following matrix equations:

 µn
2 + σt(zi)∆zi

3
µn
2 + σt(zi)∆zi

6

−µn
2 + σt(zi)∆zi

6
µn
2 + σt(zi)∆zi

3


Ψi,L

Ψi,R

 =

µnΨi−1,R,n

0

+

qi,L
qi,R



+

L∑
l=0

2l + 1

2
Pl(µn)σs,l(zi)

∆zi
3

∆zi
6

∆zi
6

∆zi
3


Φl,i,L

Φl,i,R,


(4.20)

where,

qi,L
qi,R

 =


∫ zi,R
zi,L

Bi,L(z)QN (zi)∫ zi,R
zi,L

Bi,R(z)QN (zi).

 (4.21)

Similarly, for n = N
2 + 1, ...N , we get the following:

−µn2 + σt(zi)∆zi
3

µn
2 + σt(zi)∆zi

6

−µn
2 + σt(zi)∆zi

6
−µn

2 + σt(zi)∆zi
3


Ψi,L

Ψi,R

 =

 0

−µnΨi+1,L

+

qi,L
qi,R



+
L∑
l=0

2l + 1

2
Pl(µn)σs,l(zi)

∆zi
3

∆zi
6

∆zi
6

∆zi
3


Φl,i,L

Φl,i,R,


(4.22)
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The equations (4.20) and (4.22) are solved the following way. For every angle µn > 0, we march

the left boundary to solve Eq. (4.20) for Ψi,L and Ψi,R in every mesh cell, updating the incoming

value of Ψi−1,R in Eq. (4.20) for the next cell to the right. Then, for all µn < 0, we start on the

right boundary and march from right-to-left to solve Eq. (4.22) for Ψi,L and Ψi,R in each mesh

cell, updating ψi+1,L for the next cell to the left. This is referred to as an SN sweep [19], and has

been represented in our previous discussions by the operator L−1. Alternatively, we can assemble

the matrix equations above for every angle and every mesh cell into a single linear system that

can be inverted either directly or iteratively. In practice, this is not usually the case, and the SN

equations are solved iteratively, without forming the full linear system directly. Krylov methods

(GMRES) are generally used to solve this linear system [12]. We will talk more about this in the

next chapter.

4.2 Angular Discretization of Fokker-Planck Operator

We saw how to do LD-SN discretization for the transport equation. The spatial discretization of the

FP equation is analogous to that of the transport. The only difference between the transport and

FP equations lies in how the scattering operator is represented. In this section, we will only describe

angular discretization of the Fokker-Planck operator. We begin with the WFD discretization.

4.2.1 Weighted Finite Difference

A weighted finite difference [22] approximation is used to represent the Fokker-Planck operator:

LFP =
σtr
2

∂

∂µ
(1− µ2)

∂ψ(z, µ)

∂µ
|µ=n ≈

σtr
2

αn+ 1
2
ψ̇n+ 1

2
− αn− 1

2
ψ̇n+ 1

2

wn
, (4.23)
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where, wn is the quadrature weight for nth angular cosine,

ψ̇n+ 1
2

=
ψn+1 − ψn
µn+1 − µn

, (4.24)

ψ̇n− 1
2

=
ψn − ψn−1

µn − µn−1
, (4.25)

and,

αn+ 1
2

= αn+ 1
2

+ Cµnwn, α 1
2

= 0, (4.26)

with, C =
∑N

n=1wn, is the normalization constant. Thus, we can write the angular Laplacian term

as:

LFP =
σtr
2

∂

∂µ
(1− µ2)

∂ψ(z, µn)

∂µ
≈ anψn+1 − bnψn + cnψn−1, (4.27)

where,

an =
σtr
2wn

αn+ 1
2

µn+1 − µn
, (4.28)

bn = − σtr
2wn

( αn+ 1
2

µn+1 − µn
+

αn− 1
2

µn − µn−1

)
, (4.29)

and,

cn =
σtr
2wn

αn− 1
2

µn − µn−1
, (4.30)

We can write the SN form of the Fokker-Planck equation in operator notation as:

H
∂Ψ

∂z
+ σaΨ−WΨ = QN , (4.31)
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where, H is diag(µn), Ψ is the vector of angular fluxes (which is evaluated at each spatial location

along the mesh), σa is diag(σa), QN is the source vector along each angle, and operator W is given

by:

Wn,n = − σtr
2wn

( αn+ 1
2

µn+1 − µn
+

αn− 1
2

µn − µn−1

)
, (4.32)

Wn,n+1 =
σtr
2wn

αn+ 1
2

µn+1 − µn
, (4.33)

Wn,n−1 =
σtr
2wn

αn− 1
2

µn − µn−1
. (4.34)

This particular angular discretization only preserves the zeroth and the first moment of the angular

flux [22]. This means that PN based Fourier analysis of FPSA will not necessarily match numerically

measured results. Now that we know how to discretize the angular Laplacian using WFD, we present

a method that allows us to preserve upto N moments of Fokker-Planck angular flux next.

4.2.2 Moment Preserving Discretization

MPD of the angular derivative term of the Fokker-Planck equation is based on [34]. In that paper,

Warsa and Prinja present a method which allows N angular flux moments of the Fokker-Planck

equation to be preserved. Note that it only preserves the angular flux moments of the Fokker-

Planck equation and must not be confused with the preservation of angular flux moments of the

transport equation. To describe their method in more detail, we recall the Fokker-Planck equation

and the Fokker-Planck angular differential operator. Then, we recognize that in one dimension, the

Legendre polynomials are eigenfunctions of the Fokker-Planck operator:

LFPPl(µ) = −l(l + 1)Pl(µ). (4.35)

Then we integrate by parts to show that for any function f(µ),

52



1∫
−1

LFPPl(µ)f(µ)dµ =

1∫
−1

Pl(µ)LFP f(µ)dµ. (4.36)

Now, upon substituting (4.35) in (4.36), we obtain the following relation:

1∫
−1

Pl(µ)LFP f(µ)dµ = −l(l + 1)

1∫
−1

Pl(µ)f(µ)dµ. (4.37)

Then, upon evaluating integrals using SN quadrature, we obtain the following:

N∑
m=1

wmPl(µm)LMPD
FP ψ = −l(l + 1)

N∑
m=1

wmPl(µm)ψm. (4.38)

Here, l = 0, ...N−1. (4.38) defines an equation system of N×N matrix for the angular flux vector,

Ψ of length N for each spatial node. Thus we have,

LMPD
FP Ψ = RΨ, (4.39)

where, LMPD
FP is the discrete form of LFP and, R = O−1G. The elements of O and G are given as

follows:

Oi,j = Pi−1(µj)wj , and Gi,j = −i(i− 1)Pi−1(µj)wj . (4.40)

Here, i, j = 1, 2...N . Using the relations derived above, we can write down the Fokker-Planck

equation with MPD in the following form:

H
∂

∂z
Ψ + σaΨ−

σtr(x)

2
RΨ = QN . (4.41)

Solving this form of the Fokker-Planck equation guarantees that at least N angular moments of the

angular flux will be preserved. This allows us obtain a more accurate solution to the Fokker-Planck

equation. While this allows us to obtain a more accurate Fokker-Planck solution, it is unclear as to
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how this would affect the convergence of the transport solution when this is used for acceleration.

We will do Fourier analysis in the next section.

4.3 Angularly Discrete Fourier Analysis for FPSA

In this section, we present angularly discrete Fourier analysis for FPSA. Each discretization of the

Fokker-Planck operator will have different iteration matrices. First, we look why we do angularly

discrete Fourier analysis.

4.3.1 Subtle Nuances About Angularly Discrete Transport and FP Equations

Firstly, as noted at the beginning of this chapter and in this section, different discretizations of

the Fokker-Planck operator preserve different number of moments. While WFD only preserves

zeroth and first Legendre moments of the angular flux, MPD preserves upto N Legendre moments.

The angluarly continuous Fourier analysis (PL-based analysis) presented in the previous chapter is

moment based and therefore, requires the numerical implementation to preserve all L moments in

order to get consistent spectral radius measurement.

Moreover, in the previous chapter, we noted that in case of continuous transport equation, we only

obtain the Fokker-Planck limit (irrespective of the scattering kernel) when ’sufficient number’ of

Legendre moments are used to represent angular flux. This, however, is not true in discrete (SN )

case. When we discretize the transport equation and represent it as SN equations (as discussed

earlier in this chapter), we are essentially predetermining the number of moments we will use to

represent angular flux. This means we represent the angular flux using N moments that are con-

sistently being calculated using SN equations. This means there are no residual terms even when

expansion order of the scattering kernel is low. There is always a valid Fokker-Planck limit for
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SN equations as long as the scattering kernel allows it. This creates a discrepancy between the

angularly continuous and angularly discrete Fourier analyses. This will play an important role in

explaining why PN -based and SN -based Fourier analyses differ at low scattering expansion orders.

The above mentioned reasoning also explains why it would be incorrect to use PN -based Fourier

analysis to analyze the FPSA algorithm for SN equations.

Other than that, by SN −PL equivalence [19], we know that when N = L+1, SN and PL equations

are equivalent. Taking this and Eq. (3.96) into account, we note that FPSA will converge in one

iteration when it is analytically equivalent to PL acceleration. In other words, when the cross-section

moments in the Boltzmann scattering operator are according to Eq. (3.96), we get convergence in

one iteration. Moreover, it would be a valid to think that the convergence will be rapid in case

the cross-section moments of the relevant transport problem are close to those obtained from Eq.

(3.96). However, in the case when we truncate scattering expansion arbitrarily and N is no longer

equal to L + 1, the FPSA-PL acceleration equivalence will no longer hold because of inconsistent

introduction of zero values for moments with N ≥ l > L due to truncation of the scattering

expansion. For example, consider a problem with L = 1, and N = 4. For BFPSA
l,l , we have:

BPL
1,1 = σt − σs,0, (4.42)

BPL
2,2 = σt − σs,1, (4.43)

BPL
3,3 = σt, (4.44)

BPL
4,4 = σt. (4.45)

For BFPSA
l,l , we have:
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BFPSA
1,1 = σt − σs,0, (4.46)

BFPSA
2,2 = σt − σs,1, (4.47)

BFPSA
3,3 = σt + 2σs,0 − 3σs,1, (4.48)

BFPSA
4,4 = σt + 5σs,0 − 6σs,1. (4.49)

Clearly, upon comparison of BPL
l,l , and BFPSA

l,l , we find that FPSA-PL acceleration equivalence can

no longer hold due to the difference values of BPL
l,l , and BFPSA

l,l , for N ≥ l > L, here, l = 2, and 3.

Next we look at Fourier analysis for FPSA with WFD for Fokker-Planck.

4.3.2 Analysis with WFD

The FPSA scheme, in its present form, is completely angularly discrete. Therefore we calculate our

solutions at discrete angular points. Moreover, we use these discrete points along with a weighted

finite difference discretization in order to resolve the angular derivative in the Fokker-Planck error

correction equation. This discrete finite difference based discretization preserves only first two

moments and not higher moments. Thus any continuous-in-angle approach to Fourier analysis for

this scheme is not expected to consistently represent error correction equation. In other words,

continuous-in-angle representation of the differential term in the Fokker-Planck equation and finite

difference based discrete-in-angle result in different moment values and therefore may represent the

error differently. Therefore we do not expect continuous-in-angle Fourier analysis and discrete-in-

angle numerical implementation to always be consistent. For this section, we will do discrete-in-

angle Fourier analysis. The following steps outline how it is done:

1. Obtain an expression for angle dependent error after one transport sweep.
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2. Obtain an expression for MS(εm − εm+ 1
2 ).

3. Obtain the overall matrix equation that represents the error growth of FPSA scheme and

calculate the spectral radius.

Step 1: Obtain and expression for εm+ 1
2

Since we have already seen some analysis in the previous chapters, we will skip the introduction

of Fourier mode assumption and simplification steps. We will also ignore notification of µ and z

dependence of relevant quantities for simplification. These quantities have been described at length

in Ch. 3. Now, we introduce the Fourier mode assumption into the error (transport) equation.

Then upon taking the nth Legendre moment of the equation, we get:

1∫
−1

dµPn(µ)

[
(iλσtµ+ σt)ε̂

m+ 1
2 =

L∑
l=0

2l + 1

2
Pl(µ)σs,lε̂

m
l

]
. (4.50)

Using orthogonality property on the right hand side of (4.50) returns:

1∫
−1

dµPl(µ)
[
(iλσtµ+ σt)ε̂

m+ 1
2

]
= σs,lε̂

m
l . (4.51)

Recall the Fourier anzats for εml and introduce it in (4.51), we get:

1∫
−1

dµPn(µ)

[
(iλσtµ+ σt)ε̂

m+ 1
2

l

]
= σs,l

1∫
−1

Pl(µ)ε̂ml . (4.52)

Each integral is now written in discrete weighted-sum form using Gauss quadrature. We have:

N∑
n=1

Pl(µn)wn

[
(iλσtµn + σt)ε̂

m+ 1
2

l

]
= σs,l

N∑
n=1

Pl(µn)wnε̂
m
l . (4.53)

We get the following matrix equation from (4.53):

[ε̂m+ 1
2 ] = A[ε̂m]. (4.54)
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where,

A = Y −1Z, (4.55)

and,

Yln = Pl(µn)wn(iλσtµn + σt) and Zln = σs,lPl(µn)wn. (4.56)

Here, A is the iteration matrix in discrete-in-angle from. This again returns
σs,0
σt

as the spectral

radius. Now that we have an expression for ε̂m+ 1
2 , we move on to the next step.

Step 2: Obtain an expression for MS(εm − εm+ 1
2 )

First, we rewrite the Fokker-Planck error-correction equation:

µ
∂υm+1

∂z
+ σaυ

m+1 − σtr
2

∂

∂µ
(1− µ2)

∂υm+1

∂µ
=

L∑
l=0

2l + 1

2
Pl(µ)σs,l(ε̂

m
l − ε̂

m+ 1
2

l ). (4.57)

Upon introduction of Fourier mode assumption for υ, definition of error moment, carrying out the

relevant spatial differentiation and simplifications, we obtain the following equation:

1∫
−1

dµPl(µ)

[
iλσtµ+ σa −

σtr
2

∂

∂µ
(1− µ2)

∂

∂µ

]
υ̂m+1 = σs,l

1∫
−1

Pl(µ)(ε̂ml − ε̂
m+ 1

2
l ). (4.58)

Now we introduce angularly discrete formulation where each integral is written in the form of a

weighted sum and the angular differential is written as a weighted finite difference [22] to obtain:

iλσt

N∑
n=1

Pl(µn)wnυ̂
m+1
n + σa

N∑
n=1

Pl(µn)wnυ̂
m+1
n

−
N∑
n=1

Pl(µn)wn
(
anυ̂

m+1
n+1 − bnυ̂

m+1
n + cnυ̂

m+1
n−1

)
= σs,l

N∑
n=1

Pl(µn)wn(ε̂m − ε̂m+ 1
2 ), (4.59)

where, an, bn, and cn are according to Eq. (4.28), (4.29), and (4.30).

From (4.59), we get the following matrix equation:
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[υ̂m+1] = B−1CD[ε̂m], (4.60)

where,

D = I −A, Cl,n = σs,lPl(µn)wn, and B = B1 +B2 +B3, (4.61)

with,

B1l,n = Pl(µn)wn (iλσtµn + σa + bn) , (4.62)

B2l,n+1 = Pl(µn)wnan, (4.63)

and,

B2l,n−1 = Pl(µn)wncn. (4.64)

Now that we have an expression for υ̂m+1, we can obtain the expression for MS(εm− εm+ 1
2 ), since

by definition,

υm+1 = υ̂m+1eiλσtz = MS(εm − εm+ 1
2 ). (4.65)

Now, we move on to the next step.

Step 3: Obtain the overall iteration matrix

Just like in the case of PL based analysis for FPSA, we get the following equation:

ε̂m+1 = ε̂m+ 1
2 − υ̂m+1. (4.66)

This returns the following equation:

[ε̂m+1] = (A−B−1CD)[ε̂m]. (4.67)
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Thus our iteration matrix is A − B−1CD whose spectral radius returns the spectral radius of the

accelerated scheme. Now that we have seen angularly discrete analysis for FPSA with WFD, we

will present angularly discrete analysis for FPSA with MPD.

4.3.3 Analysis with MPD

Angularly discrete Fourier analysis for MPD is done in the same way as we did for WFD. The only

difference will be how the Fokker-Planck operator is represented in the error-correction equation.

Formally, we follow the exact same three steps as for WFD:

1. Obtain an expression for angle dependent error after one transport sweep.

2. Obtain an expression for MS(εm − εm+ 1
2 ).

3. Obtain the overall matrix equation that represents the error growth of FPSA scheme and

calculate the spectral radius.

Step 1: Obtain and expression for εm+ 1
2

The expression for εm+ 1
2 will be exactly the same as that for WFD. Therefore, we represent it using

Eq. (4.54), (4.55), and (4.56). We move on to the next step.

Step 2: Obtain an expression for MS(εm − εm+ 1
2 )

We begin with Eq. (4.58):

1∫
−1

dµPl(µ)

[
iλσtµ+ σa −

σtr
2

∂

∂µ
(1− µ2)

∂

∂µ

]
υ̂m+1 = σs,l

1∫
−1

Pl(µ)(ε̂m − ε̂m+ 1
2 ). (4.68)

Now we introduce angularly discrete formulation where each integral is written in the form of a

weighted sum just like we did for WFD. However, here, the angular differential term is replaced by

−l(l + 1) using the Legendre equation [34] to obtain:
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iλσt

N∑
n=1

Pl(µn)wnυ̂
m+1
n + σa

N∑
n=1

Pl(µn)wnυ̂
m+1
n +

σtr
2
l(l + 1)

N∑
n=1

Pl(µn)wnυ̂
m+1
n

= σs,l

N∑
n=1

Pl(µn)wn(ε̂m − ε̂m+ 1
2 ). (4.69)

From (4.59), we get the following matrix equation:

[υ̂m+1] = B−1CD[ε̂m], (4.70)

where,

D = I −A, (4.71)

Cl,n = σs,lPl(µn)wn, (4.72)

and,

Bl,n = iλσtwnPl(µn)µn + σawnPl(µn) + l(l + 1)
σtr
2
wnPl(µn). (4.73)

Now that we have an expression for υ̂m+1, we can obtain the expression for MS(εm− εm+ 1
2 ), since

by definition,

υm+1 = υ̂m+1eiλσtz = MS(εm − εm+ 1
2 ). (4.74)

Now, we move on to the next step.

Step 3: Obtain the overall iteration matrix

Just like in the case of PL based analysis for FPSA, we get the following equation:
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ε̂m+1 = ε̂m+ 1
2 − υ̂m+1. (4.75)

This returns the following equation:

[ε̂m+1] = (A−B−1CD)[ε̂m]. (4.76)

Thus our iteration matrix is A−B−1CD whose spectral radius returns the spectral radius of FPSA

with MPD.

4.4 Spectral Radius Estimates

First, we will measure expected convergence rates using Fourier analysis presented in previous

section. We will do our study using three different scattering kernels - exponential kernel, screened

Rutherford kernel, and Henyey-Greenstein kernel. For each kernel, we will first keep L constant and

vary N . Then after, we will fix N and vary L. Finally, we will vary both N and L simultaneously

while making sure that N = L + 1. Other than that, we will vary the screening parameter [7], η,

for screened Rutherford kernel, asymmetry factor [26], g, for the Henyey-Greenstein kernel, and

parameter, ∆ [8] for the exponential kernel. We begin with screened Rutherford kernel.

4.4.1 Screened Rutherford Kernel (SRK)

For SRK, we choose C = 0.7805 and η = 2.836× 10−4, 2.836× 10−5, and 2.836× 10−6. We begin

by choosing η = 2.836×10−4. The scattering cross-section moments for these parameters are given

in Table 4.1. Note that we only present data for the first 16 moments. Higher moments can be

generated easily using any symbolic math application. We present it in Appendix A.
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Parameter Value

SN order 16, 32, 64
σa 1

σt 1376.667689 cm−1

σs,0 1375.667689 cm−1

σs,1 1370.072664 cm−1

σs,2 1361.213931 cm−1

σs,3 1349.856033 cm−1

σs,4 1336.498659 cm−1

σs,5 1321.507580 cm−1

σs,6 1305.167316 cm−1

σs,7 1287.707638 cm−1

σs,8 1269.318837 cm−1

σs,9 1250.161346 cm−1

σs,10 1230.372215 cm−1

σs,11 1210.069693 cm−1

σs,12 1189.356585 cm−1

σs,13 1168.322808 cm−1

σs,14 1147.047368 cm−1

σs,15 1125.599937 cm−1

Table 4.1: Problem Parameters - SRK - η = 2.836× 10−4

Keep L(= 15) Constant, and Vary N (= 16, 32, 64)

First, we will keep L constant and vary N . The plots obtained from Fourier analyses are presented

in Fig. 4.4, 4.4, 4.5, and 4.6. Numerical data obtained from Fourier analyses is also summarized

in Table 4.2.
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Figure 4.3: SRK - η = 2.836× 10−4 - Unaccelerated - L = 15

Figure 4.4: SRK - η = 2.836× 10−4 - FPSA - L = 15
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Figure 4.5: SRK - η = 2.836× 10−4 - FPSA - MPD - L = 15

Figure 4.6: SRK - η = 2.836× 10−4 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9992 0.5123
16 0.5123 0.3156
32 0.5123 0.4500
64 0.5123 0.4975

Table 4.2: Spectral Radius - SRK η = 2.836× 10−4 - L = 15

We see how since MPD preserves N moments, spectral radii are identical with analytical spectral

radius calculations. Spectral radii from WFD not preserve all relevant moments, therefore, we see

only marginal agreement with increasing N . We also note for WFD that increasing N results in

increased spectral radius. This is because increasing N represents improving representation of the

analytical transport and FP equations.

N (= 64) constant and vary L (= 1, 7, 15, 31, 63)

Now we will keep N constant and vary L. The plots obtained from Fourier analyses are presented

in Fig. 4.7, and 4.8. Moreover, the information obtained from Fourier analyses is summarized in

Table 4.3.
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Figure 4.7: SRK - η = 2.836× 10−4 - FPSA - MPD - N = 64
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Figure 4.8: SRK - η = 2.836× 10−4 - FPSA - WFD - N = 64

L FPSA-MPD ρ FPSA-WFD ρ

1 0.1945 0.1945
7 0.4075 0.4019
15 0.5123 0.4975
31 0.5163 0.4995
63 0.5163 0.4995

Table 4.3: Spectral Radius - SRK η = 2.836× 10−4 - N = 64

We note convergence in spectral radius with increasing L. This is because increasing L represents

convergence in scattering behavior of the transport equation.

Vary N , and L s.t. L = N-1

Now, we vary N and L together such that N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigen-

value plots obtained by Fourier analyses have been presented in Fig. 4.9, 4.10, 4.11 and 4.12. The
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spectral radius information is summarized in Table 4.4.

Figure 4.9: SRK - η = 2.836× 10−4 - FPSA - MPD - P1-S2 Error Modeled Accurately
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Figure 4.10: SRK - η = 2.836× 10−4 - FPSA - MPD

Figure 4.11: SRK - η = 2.836× 10−4 - FPSA - WFD - P1-S2 Error Modeled Accurately
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Figure 4.12: SRK - η = 2.836× 10−4 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 1.7594× 10−13 1.7594× 10−13

15 16 0.5123 0.3156
31 32 0.5163 0.4500
63 64 0.5163 0.4995
127 128 0.5163 0.5122

Table 4.4: Spectral Radius - SRK η = 2.836× 10−4

Note the near-zero spectral radius value for the L = 1, N = 2 run. This is because the first two

scattering moments are represented exactly by the Fokker-Planck operator. Therefore, as long as

N = 2, we get convergence in one iteration. Another way to look at this is through FPSA-PL

acceleration equivalence condition we described in Sec. 3.3. We note that Eq. (3.96) always holds

for the first two scattering moments. Therefore, for any cross-section kernel, L1 − S2 solution will

always have a zero spectral radius. Moreover we see increasing spectral radius until convergence
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with increasing L. This represents convergence in the quality of FP representation of transport

error with increasing L for the given scattering cross-section data.

Screening parameter - η = 2.836× 10−5

Next, we choose a smaller screening parameter - η = 2.836 × 10−5. The scattering cross-section

moments for this screening parameter is given in Table 4.5.

Parameter Value

SN order 16, 32, 64
σa 1

σt 13761.18804 cm−1

σs,0 13760.18804 cm−1

σs,1 13752.79625 cm−1

σs,2 13740.35284 cm−1

σs,3 13723.63610 cm−1

σs,4 13703.16340 cm−1

σs,5 13679.32132 cm−1

σs,6 13652.41778 cm−1

σs,7 13622.70811 cm−1

σs,8 13590.40995 cm−1

σs,9 13555.71257 cm−1

σs,10 13518.78311 cm−1

σs,11 13479.77096 cm−1

σs,12 13438.81090 cm−1

σs,13 13396.02553 cm−1

σs,14 13351.52706 cm−1

σs,15 13305.41882 cm−1

Table 4.5: Problem Parameters - SRK - η = 2.836× 10−5

L = 15; N = 16, 32, 64

Again, we keep L constant and vary N . The plots obtained from Fourier analyses are presented in

Fig. (4.13), (4.14), (4.15), and (4.16). Spectral radius data has been summarized in Table 4.6.
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Figure 4.13: SRK - η = 2.836× 10−5 - Unaccelerated - L = 15

Figure 4.14: SRK - η = 2.836× 10−5 - FPSA - L = 15
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Figure 4.15: SRK - η = 2.836× 10−5 - FPSA - MPD - L = 15

Figure 4.16: SRK - η = 2.836× 10−5 - FPSA - WFD - L = 15

74



N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9992 0.4706
16 0.4706 0.2123
32 0.4706 0.3793
64 0.4706 0.4466

Table 4.6: Spectral Radius - SRK η = 2.836× 10−5 - L = 15

We note similar behavior to what we saw for η = 2.836 × 10−4. However, one difference we see is

a reduction in the spectral radius. This can be attributed to the fact that reducing η results in

cross-section coming closer to actually having a Fokker-Planck limit. This means the Fokker-Planck

equation will represent the error equation more accurately with decreasing η.

N (= 64) constant and vary L (= 1, 7, 15, 31, 63)

Now, we keep N constant and vary L like before. The plots obtained from Fourier analyses are

presented in Fig. 4.17, and 4.18. The information obtained from Fourier analyses is summarized

in Table 4.7.
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Figure 4.17: SRK - η = 2.836× 10−5 - FPSA - MPD - N = 64
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Figure 4.18: SRK - η = 2.836× 10−5 - FPSA - WFD - N = 64

L FPSA-MPD ρ FPSA-WFD ρ

1 0.1978 0.1978
7 0.3307 0.3237
15 0.4706 0.4466
31 0.5697 0.4972
63 0.5877 0.4972

Table 4.7: Spectral Radius - SRK η = 2.836× 10−5 - N = 64

Again, note convergence in ρ with increasing L. We see exactly the same behavior as we saw before.

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. Eigenvalue plots obtained by Fourier analyses have been presented

in Fig. 4.19, 4.20, 4.21 and 4.22. The spectral radius information is summarized in Table 4.8.
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Figure 4.19: SRK - η = 2.836× 10−5 - FPSA - MPD - P1-S2 Error Modeled Accurately

Figure 4.20: SRK - η = 2.836× 10−5 - FPSA - MPD
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Figure 4.21: SRK - η = 2.836× 10−5 - FPSA - WFD - P1-S2 Error Modeled Accurately

Figure 4.22: SRK - η = 2.836× 10−5 - FPSA - WFD
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L N FPSA-MPD ρ FPSA-WFD ρ

1 2 1.268× 10−12 1.2683× 10−12

15 16 0.4706 0.2123
31 32 0.5697 0.3676
63 64 0.5877 0.4972
127 128 0.5877 0.5622

Table 4.8: Spectral Radius - SRK η = 2.836× 10−5

Increasing L results in increasing spectral radius until convergence of spectral radius in L just like

before. We also see a zero spectral radius for the L1 − S2 problem for the reasons we have already

discussed previously.

Screening parameter - η = 2.836× 10−6

Now we choose a smaller screening parameter - η = 2.836 × 10−6. The scattering cross-section

moments for this screening parameter is given in Table 4.9.

Parameter Value

SN order 16, 32, 64
σa 1

σt 1.376053926 ×105 cm−1

σs,0 1.376053925 ×105 cm−1

σs,1 1.375962036×105 cm−1

σs,2 1.375801671×105 cm−1

σs,3 1.375580632×105 cm−1

σs,4 1.375304120×105 cm−1

σs,5 1.374976030×105 cm−1

σs,6 1.374599480×105 cm−1

σs,7 1.374177065×105 cm−1

σs,8 1.373711006×105 cm−1

σs,9 1.373203248×105 cm−1

σs,10 1.372655515×105 cm−1

σs,11 1.372069359×105 cm−1

σs,12 1.371446189×105 cm−1

σs,13 1.370787293×105 cm−1

σs,14 1.370093861×105 cm−1

σs,15 1.369366996×105 cm−1

Table 4.9: Problem Parameters - SRK - η = 2.836× 10−6
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Keep L(= 15) Constant, and Vary N (= 16, 32, 64)

First, we keep L constant and vary N . The plots obtained from Fourier analyses are presented in

Fig. (4.23), (4.24), (4.25), and (4.26). Spectral radius data has been summarized in Table 4.10.

Figure 4.23: SRK - η = 2.836× 10−6 - Unaccelerated - L = 15

Figure 4.24: SRK - η = 2.836× 10−6 - FPSA - L = 15
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Figure 4.25: SRK - η = 2.836× 10−6 - FPSA - MPD - L = 15

Figure 4.26: SRK - η = 2.836× 10−6 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.4266
16 0.3906 0.3215
32 0.3982 0.4072
64 0.3921 0.3773

Table 4.10: Spectral Radius - SRK - η = 2.836× 10−6 - L = 15

We note the further decrease in spectral radius, for a given (low) L, than for the previous two η’s.

This is because the lower FP moments, now, represent the transport moments more closely.

N(= 64) constant and vary L(= 1, 7, 15, 31, 63)

Again, we will vary L while keeping N constant. The plots obtained from Fourier analyses are

presented in Fig. 4.27, and 4.28. The information obtained from Fourier analyses is summarized

in Table 4.11. We note convergence in ρ with increasing L.
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Figure 4.27: SRK - η = 2.836× 10−6 - FPSA - MPD - N = 64
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Figure 4.28: SRK - η = 2.836× 10−6 - FPSA - WFD - N = 64

L FPSA-MPD ρ FPSA-WFD ρ

1 0.1976 0.1920
7 0.2681 0.2807
15 0.3921 0.3773
31 0.5048 0.4356
63 0.5990 0.4018

Table 4.11: Spectral Radius - SRK η = 2.836× 10−6 - N = 64

The scattering kernel is so forward-peaked in this case that the number of flux moments (15) is

not enough to accurately represent the angular dependence of the angular flux. As we discussed

in previous section, in continuous case, there are residual terms that do not cancel out in the

derivation of Fokker-Planck equation if sufficient number of moments are not accounted for. These

residual terms do not exist in the discrete case, however. Therefore, the continuous FPSA analysis
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will be inherently inconsistent with the angularly-discrete case when sufficient number of moments

are not considered. This is the reason behind the behavior we see here.

Vary N , and L s.t. L = N − 1

Finally, we vary N and L together. Eigenvalue plots obtained by Fourier analyses have been

presented in Fig. 4.29, 4.30, 4.31 and 4.22. The spectral radius information is summarized in Table

4.12.

Figure 4.29: SRK - η = 2.836× 10−6 - FPSA - MPD - P1-S2 Error Modeled Accurately
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Figure 4.30: SRK - η = 2.836× 10−6 - FPSA - MPD

Figure 4.31: SRK - η = 2.836× 10−6 - FPSA - WFD - P1-S2 Error Modeled Accurately
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Figure 4.32: SRK - η = 2.836× 10−6 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 3.1132× 10−12 1.2683× 10−12

15 16 0.3906 0.3215
31 32 0.5048 0.2727
63 64 0.5990 0.4018
127 128 0.6395 0.5205

Table 4.12: Spectral Radius - SRK η = 2.836× 10−6

We see similar behavior as before. However, here, we see a high spectral radius value for the highest

represented L. This is a result of higher error moments not being represented accurately by FP.

In summary we see that for screened Rutherford kernel, FPSA can potentially provide a good speed

up (at least with respect to number of iteration to convergence) irrespective of N , L and η.
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4.4.2 Exponential Kernel (EK)

Now, we look at the the exponential kernel. we choose parameter ∆ [8] to be 10−6, and 10−9. We

calculate σs,0 using Screened Rutherford Kernel where σs,0 = 13761.95103. Like for the screened

Rutherford kernel, run convergence rate calculations where we keep L constant while increasing N .

We will also vary L and N together such that L = N − 1. However, we will not present data where

we keep N constant and increase L for convenience.

∆ = 10−6

First we choose ∆ = 10−6. The scattering cross-section moments for these parameters are given in

Table 4.13. Note that we only present data for the first 16 moments. Higher moments are presented

in Appendix B.

Parameter Value

SN order 16, 32, 64
σa 1

σt 13762.95103 cm−1

σs,0 13761.95103 cm−1

σs,1 13761.93727 cm−1

σs,2 13761.90975 cm−1

σs,3 13761.85470 cm−1

σs,4 13761.81341 cm−1

σs,5 13761.75837 cm−1

σs,6 13761.67579 cm−1

σs,7 13761.60699 cm−1

σs,8 13761.52442 cm−1

σs,9 13761.41432 cm−1

σs,10 13761.31799 cm−1

σs,11 13761.20790 cm−1

σs,12 13761.07029 cm−1

σs,13 13760.94644 cm−1

σs,14 13760.80883 cm−1

σs,15 13760.64370 cm−1

Table 4.13: Problem Parameters - EK - ∆ = 10−6
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Keep L (= 15) Constant, and Vary N(= 16, 32, 64)

We keep L constant and vary N . The plots obtained from Fourier analyses are presented in Fig.

4.33, 4.34, 4.35, and 4.36. The information obtained from Fourier analyses is summarized in Table

4.14.

Figure 4.33: EK - ∆ = 10−6 - Unaccelerated - L = 15

Figure 4.34: EK - ∆ = 10−6 - FPSA - L = 15
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Figure 4.35: EK - ∆ = 10−6 - FPSA - MPD - L = 15

Figure 4.36: EK - ∆ = 10−6 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.4291
16 0.1053 0.3135
32 0.4203 0.4204
64 0.4279 0.4288

Table 4.14: Spectral Radius - EK ∆ = 10−6 - L = 15

We see converging spectral radius with N . Moreover, they converge to the analytical spectral radius

because EK has a valid FP limit.

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigenvalue plots

obtained by Fourier analyses have been presented in Fig. 4.37, 4.39, 4.39 and 4.40. The spectral

radius information is summarized in Table 4.15.

Figure 4.37: EK - ∆ = 10−6 - FPSA - MPD - P1-S2 Error Modeled Accurately
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Figure 4.38: EK - ∆ = 10−6 - FPSA - MPD

Figure 4.39: EK - ∆ = 10−6 - FPSA - WFD - P1-S2 Error Modeled Accurately
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Figure 4.40: EK - ∆ = 10−6 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 2.9131× 10−12 2.9131× 10−12

15 16 0.1053 0.3135
31 32 0.2230 0.5131
63 64 0.2882 0.6142
127 128 0.3143 0.6352

Table 4.15: Spectral Radius - EK ∆ = 10−6

We see an increasing spectral radius with increasing L just like for SRK. The spectral radii are

significantly different for MPD and WFD because, for this particular cross-section set because of

the difference in the number of FP moments accurately represented by MPD and WFD.
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∆ = 10−9

Now, we choose parameter ∆ [8] to be 10−9. Note that as ∆→ 0, transport limits to FP because the

exponential kernel has a valid FP limit. The scattering cross-section moments for these parameters

are given in Table 4.16. Note that we only present data for the first 16 moments. Higher moments

are presented in Appendix B.

Parameter Value

SN order 16, 32, 64
σa 1

σt 13762.95103 cm−1

σs,0 13761.95103 cm−1

σs,1 13761.95102 cm−1

σs,2 13761.95099 cm−1

σs,3 13761.95094 cm−1

σs,4 13761.95089 cm−1

σs,5 13761.95084 cm−1

σs,6 13761.95076 cm−1

σs,7 13761.95069 cm−1

σs,8 13761.95061 cm−1

σs,9 13761.95050 cm−1

σs,10 13761.95040 cm−1

σs,11 13761.95029 cm−1

σs,12 13761.95015 cm−1

σs,13 13761.95003 cm−1

σs,14 13761.94989 cm−1

σs,15 13761.94972 cm−1

Table 4.16: Problem Parameters - EK - ∆ = 10−9

Keep L(= 15) Constant, and Vary N(= 16, 32, 64)

First, we keep L constant and vary N . The plots obtained from Fourier analyses are presented in

Fig. 4.41, 4.42, 4.43, and 4.44. The information obtained from Fourier analyses is summarized in

Table 4.17.
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Figure 4.41: EK - ∆ = 10−9 - Unaccelerated - L = 15

Figure 4.42: EK - ∆ = 10−9 - FPSA - L = 15
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Figure 4.43: EK - ∆ = 10−9 - FPSA - MPD - L = 15

Figure 4.44: EK - ∆ = 10−9 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.4291

16 1.8898 ×10−4 5.503 ×10−4

32 0.4206 0.4206
64 0.4303 0.4303

Table 4.17: Spectral Radius - EK ∆ = 10−6 - L = 15

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigenvalue plots

obtained by Fourier analyses have been presented in 4.45 and 4.40. The spectral radius information

is summarized in Table 4.18.

Figure 4.45: EK - ∆ = 10−9 - FPSA - MPD
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Figure 4.46: EK - ∆ = 10−9 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 1.8800× 10−12 1.8800× 10−12

15 16 1.8898 ×10−4 5.5038 ×10−4

31 32 0.0010 0.0020
63 64 0.0047 0.0076
127 128 0.0210 0.0289

Table 4.18: Spectral Radius - EK ∆ = 10−9

We note the extremely small spectral radii with simultaneous increase of N and L such that

N = L + 1. This is attributed to the fact that the FP approximation, in this case, represents

transport error accurately in limit ∆→ 0 because EK has a valid FP limit.
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4.4.3 Henyey-Greenstein Kernel (HGK)

The Henyey-Greenstein kernel famously does not have a Fokker-Planck limit [4] as g → 1. First,

we choose the asymmetry parameter, g = 0.5 and 0.9999. The scattering cross-section moments for

these parameters are given in Table 4.19. Note that we only present data for the first 16 moments.

Parameter Value

SN order 16, 32, 64
σa 0.00001

σt 1.00001 cm−1

σs,0 1.0 cm−1

σs,1 0.5000000000 cm−1

σs,2 0.2500000000 cm−1

σs,3 0.1250000000 cm−1

σs,4 0.6250000000e-1 cm−1

σs,5 0.3125000000e-1 cm−1

σs,6 0.1562500000e-1 cm−1

σs,7 0.7812500000e-2 cm−1

σs,8 0.3906250000e-2 cm−1

σs,9 0.1953125000e-2 cm−1

σs,10 0.9765625000e-3 cm−1

σs,11 0.4882812500e-3 cm−1

σs,12 0.2441406250e-3 cm−1

σs,13 0.1220703125e-3 cm−1

σs,14 0.6103515625e-4 cm−1

σs,15 0.3051757812e-4 cm−1

Table 4.19: Problem Parameters - HGK - g = 0.5

Keep L(= 15) Constant, and Vary N(= 16, 32, 64)

First, we keep L constant and vary N . The plots obtained from Fourier analyses are presented in

Fig. 4.47, 4.48, 4.49, and 4.50. The information obtained from Fourier analyses is summarized in

Table 4.20.
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Figure 4.47: EK - g = 0.5 - Unaccelerated - L = 15

Figure 4.48: HGK - g = 0.5 - FPSA - L = 15
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Figure 4.49: HGK - g = 0.5 - FPSA - MPD - L = 15

Figure 4.50: HGK - g = 0.5 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.4966
16 0.1249 0.1234
32 0.1249 0.1246
64 0.1249 0.1248
128 0.1249 0.1249

Table 4.20: Spectral Radius - HGK - g = 0.5 - L = 15

Note the drastic difference between the angularly continuous and angularly discrete spectral radii.

The scattering kerner, here, does not have a valid FP limit which results in inconsistency between

continuous and discrete representation of transport and FP equation. This is the reason behind

the difference in spectral radii.

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigenvalue plots

obtained by Fourier analyses have been presented in Fig. 4.51 and. The spectral radius information

is summarized in Table 4.21.
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Figure 4.51: Spectral Radius - HGK - g = 5 - FPSA - MPD

Figure 4.52: HGK - g = 0.5 - FPSA - WFD
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L N FPSA-MPD ρ FPSA-WFD ρ

1 2 8.5543× 10−12 8.5543× 10−12

15 16 0.1249 0.1234
31 32 0.1249 0.1246
63 64 0.1249 0.1248
127 128 0.1249 0.1249

Table 4.21: Spectral Radius - HGK - g = 0.5

We note that for the cross-section set, here, the higher cross-section moments reduce to sufficiently

low magnitudes for them to have any significant effect on the spectral radii with increasing L.

Therefore, we don’t see the spectral radius increase with increasing L. Next we look at a much

more Forward-Peaked scattering cross-section.

g = 0.9999

Now, we choose parameter g = 0.9999. The scattering cross-section moments for these parameters

are given in Table 4.22.
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Parameter Value

SN order 16, 32, 64
σa 0.00001

σt 1.00001 cm−1

σs,0 1.0 cm−1

σs,1 0.9999000000000000 cm−1

σs,2 0.9998000100000000 cm−1

σs,3 0.9997000299990000 cm−1

σs,4 0.9996000599960001 cm−1

σs,5 0.9995000999900005 cm−1

σs,6 0.9994001499800015 cm−1

σs,7 0.9993002099650035 cm−1

σs,8 0.9992002799440070 cm−1

σs,9 0.9991003599160126 cm−1

σs,10 0.9990004498800210 cm−1

σs,11 0.9989005498350330 cm−1

σs,12 0.9988006597800495 cm−1

σs,13 0.9987007797140715 cm−1

σs,14 0.9986009096361001 cm−1

σs,15 0.9985010495451365 cm−1

Table 4.22: Problem Parameters - HGK - g = 0.9999

Keep L(= 15) Constant, and Vary N(= 16, 32, 64)

First, we vary N while keeping L constant. The plots obtained from Fourier analyses are presented

in Fig. 4.53, 4.54, 4.55, and 4.56. The information obtained from Fourier analyses is summarized

in Table 4.23.
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Figure 4.53: HGK - g = 0.9999 - Unaccelerated - L = 15

Figure 4.54: HGK - g = 0.9999 - FPSA - L = 15
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Figure 4.55: HGK - g = 0.9999 - FPSA - MPD - L = 15

Figure 4.56: HGK - g = 0.9999 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.8709
16 0.8709 0.7466
32 0.8709 0.8469
64 0.8709 0.8669

Table 4.23: Spectral Radius - HGK - g = 0.9999 - L = 15

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigenvalue

plots obtained by Fourier analyses have been presented in Fig. 4.57 and 4.58. The spectral radius

information is summarized in Table 4.24.

Figure 4.57: Spectral Radius - HGK - g = 0.9999 - FPSA - MPD
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Figure 4.58: HGK - g = 0.9999 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 1.8692× 10−12 6.4026× 10−12

15 16 0.8709 0.7466
31 32 0.9338 0.8671
63 64 0.9624 0.9291
127 128 0.9719 0.9579

Table 4.24: Spectral Radius - HGK - g = 0.9999

Note the sudden increasse in spectral radius for this particular cross-section set. This is because

Henyey-Greenstein kernel does not have a valid FP limit. This means, the FP approximation does

not attenuate transport error moments effectively for source iteration.

To summarize this section, we saw how spectral radius evolves with increasing L, and N for various

scattering kernels and corresponding parameters. We note that FP approximation can potentially
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be used to precondition SN equations with SRK and EK. For HGK, FP may not necessarily be an

effective preconditioner in case of source iteration. For GMRES, however, this may or may not be

the case. We will evaluate the performance of GMRES and FP-preconditioned GMRES solves for

fully discretized (LD-SN ) transport equation in the next chapter.

4.5 Summary

In this chapter, we present all the relevant derivations for numerical implementation, testing, and

assessment FPSA. We discretized the transport and FP equations in angle and space. We also

presented an SN -based framework for assessing FPSA. We presented spectral radius predictions for

FPSA with SRK, EK, and HGK. We note that Fourier analysis predicts FPSA to perform well with

SRK, and EK but not with HGK. This is attributed to the conditions under which the FP-limit is

valid for different scattering cross-section kernels. In the next chapter, we will present numerical

data obtained by analysis of FPSA with different scattering kernels and compare solution run-times

of accelerated and unaccelerated solves.
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Chapter 5

Numerical Experiments

In this chapter, we will talk about the numerical implementation of FPSA. We compare conver-

gence rates and runtimes for unaccelerated and FPSA-accelerated transport solutions. We will use

source iteration, and GMRES for solving the transport equation. We will do our study using three

different scattering kernels - exponential kernel, screened Rutherford kernel, and Henyey-Greenstein

kernel.

5.1 Solution Setup

In order to setup the problem up such that Krylov methods can be used, we write the matrix system

in its operator form. We write spatially-discretized SN equations in operator form by introducing

mass matrix, Mm, which results from the linear-discontinuous finite element discretization from

previous chapter, discrete-to-moment operator, D, to convert the angular flux vector into the

moment vector, cross-section operator, Σ that holds relevant scattering cross-section moments in

the correct order, and a moment-to-discrete operator, M , to the moment vector into the angular

flux vector. We rewrite the operator S in Eq. (2.34) as MMmΣD. L will again represent the
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streaming-plus-removal operator but this time it will be discretized in space and angle.

Lψ = MMmΣDψ + q. (5.1)

We write the transport equation in the standard linear system form, Ax = b, where x is the solution

vector, b is the source, and A is the global matrix representing the discretized system. We rearrange

Eq. (5.1):

Lψ −MMmΣDψ = q. (5.2)

Now, we multiply Eq. (5.2) by DL−1 to obtain:

DL−1Lψ −DL−1MMmΣDψ = DL−1q, (5.3)

which reduces to:

(I −DL−1MMmΣ)φ = DL−1q. (5.4)

Eq. (5.4) is analogous to the standard linear system form of the transport equation, where:

A = (I −DL−1MMmΣ), (5.5)

x = φ, (5.6)

b = DL−1q. (5.7)

We can apply any linear solver to Eq. (5.4) in order to obtain an estimate of φ. Obviously, some

solvers may be more effective than others. Source iteration, as we showed in previous chapters, will

be extremely slow to converge for problems with highly forward-peaked scattering kernel. Other,

113



more sophisticated Krylov methods, like GMRES, often, but not always converge more rapidly than

source iteration. Geometric multigrid method (in space) is not expected to be useful because the

transport equation we are solving is not elliptic, however, it may be useful if we use the second order

even-parity (elliptic) form or Self-Adjoint-Angular-Flux form of the transport equation. Angular

multigrid has been attempted and it has proven to be effective [24]. We have implemented transport

solve using source iteration and GMRES. We have verified our implementations thoroughly but we

do will not present verification data here for convenience.

In order to solve the Fokker-Planck error equation, we will use GMRES and direct inversion. The

spatial discretization of the Fokker-Planck error equation is analogous to that of the transport

equation. The standard linear system form of the Fokker-Planck error equation is also analogous

to that of the transport equation.

5.1.1 Comparison of Measured and Theoretical Spectral Radii

Here, we will compare the measured [1] and theoretical (from discrete-in-angle Fourier analysis)

spectral radii. We will do analysis for SRK, EK and HGK. We choose L = 15, N = 16. We

use a slab of length, 100 cm, discretize it using 100 elements. We will use vacuum boundaries for

numerical measurements of spectral radius. The spectral radii have been presented in Table 5.1.

Kernel/Parameter ρMPD
FPSA-FA ρMPD

FPSA-Measured ρWFD
FPSA-FA ρWFD

FPSA-Measured

SRK/η = 2.85× 10−5 0.4706 0.4706 0.2121 0.2120

SRK/η = 2.85× 10−6 0.3906 0.3898 0.3213 0.3215

EK/∆ = 10−4 0.2101 0.1975 0.6299 0.6301

EK/∆ = 10−5 0.1932 0.1954 0.6246 0.6327
HGK/g = 0.9 0.4304 0.4303 0.4177 0.4177

HGK/g = 0.9999 0.8709 0.8688 0.7439 0.7369

Table 5.1: Comparison of Numerical and Theoretical Spectral Radii

114



We obtain similar theoretical and measured spectral radii values for various scattering kernels with

varying parameters. The numbers are not exactly the same because the numerical implementation

does measurements on a finite slab with vacuum boundaries. As long as we get good-enough

agreement between theoretical and numerical spectral radii, like we do here, we can say that our

analysis is accurate.

5.2 Efficiency Study

In this section we will assess how the reduction in spectral radius (as seen in previous chapter)

results in reduction in runtime of source iteration (SI) and GMRES solves. We run all problems

using MATLAB [20] and track runtime using the tic-toc functionality in MATLAB. We will place

tic and toc before and after the solver function calls respectively. This means we will not include

the stiffness matrix generation time in our calculation. We will only account for the solver runtime.

Specifically, choose problems with L = 15, and N = 16, 32. We use beam and vacuum boundaries.

We will have a unit distributed source for problems with vacuum boundaries and a unit beam source

with the beam boundary. We will do this for SRK with η = 2.83 × 10−5, for EK with ∆ = 10−5,

and for HGK with g = 0.9999. We will solve the Fokker-Planck error equation (invert the precon-

ditioner) using LU factorization via factorize object [6] in MATLAB, and GMRES [20, 33].

First, we compare unpreconditioned SI and GMRES solves. In order to compare these solves, we

choose η = 2.83× 10−5, L = 15, N = 16, H = 1cm, K = 100, tol = 10−10. We do this to contrast

source iteration and GMRES solves. Table 5.2 and 5.3 present this data. It is clear that GMRES

is far superior to source iteration for forward-peaked transport problems.
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BC/Source Restart GMRES SI

Vacuum/Distributed 168160
50 3305
100 2445
150 1875
200 1540

Beam/Zero did not converge
50 2602
100 2200
150 1895
200 1735

Table 5.2: SRK - Number of Iterations

BC/Source Restart GMRES SI

Vacuum/Distributed 3197.49
50 64.97
100 50.41
150 37.76
200 32.71

Beam/Zero did not converge
50 50.68
100 43.99
150 41.29
200 36.11

Table 5.3: SRK - Solver Runtime [s]

For problems with extremely forward-peaked scattering and with beam sources, there can be dif-

ferences between measured and theoretical spectral radius values. The measured spectral radius

values may be greater than unity even when the theoretical value aren’t. This is due inadequate

representation of delta function (scattering and/or source) in the numerical implementation. This

precision issue can be remedied by using Galerkin quadrature [23], which integrates delta functions

exactly. We have not implemented it here so we see that problems with beam sources diverge with

SI.

Next, we will compare solution rutimes and iteration counts. We will compare these for unpre-
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conditioned GMRES, FPSA-preconditioned SI, and FPSA-preconditioned GMRES solves. We will

not include unpreconditioned source iteration in this study because its ineffectiveness with highly

forward-peaked transport problems has already been demonstrated quite elaborately . We will

arbitrarily choose our restart parameter for this study to be 150.

Screened Rutherford Kernel

We will compare efficiency data for SRK in this section. We will choose a slab of unit length

discretized using hundred elements. We will choose η = 2.83 × 10−5 and σa = 1. Scattering

cross-section moments are calculated using SRK. Finally, L = 15, and N = 16 and 32. Number of

iterations and overall runtime data has been presented in Table 5.4, 5.5, 5.6, and 5.7.

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 1487 9 6 14 10
15/32 1499 9 7 14 12

Factorize 15/16 9 7 14 10
15/32 9 8 14 12

Table 5.4: SRK - Vacuum Boundaries/Unit Distributed Source - Number of Iterations

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 28.75 8.79 6.15 12.01 5.98
15/32 28.12 36.76 18.36 54.13 19.77

Factorize 15/16 1.62 2.45 0.3373 0.2501
15/32 2.75 4.73 0.4244 0.3392

Table 5.5: SRK - Vacuum Boundaries/Unit Distributed Source - Runtime [s]

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 1357 12 8 21 13
15/32 1335 13 10 23 19

Factorize 15/16 12 9 21 13
15/32 13 11 23 19

Table 5.6: SRK - Beam Source - Number of Iterations
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FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 26.54 11.39 6.975 9.69 5.403
15/32 27 42.59 20.50 58.3 20.26

Factorize 15/16 1.687 2.547 0.4475 0.3074
15/32 2.927 5.061 0.611 0.4828

Table 5.7: SRK - Beam Source - Runtime [s]

We observe a significant decrease (almost three orders of magnitude compared to unpreconditioned

GMRES and five orders of magnitude compared to SI) in the number of transport-iterations required

for convergence due to preconditioning. We also observe a decrease in overall solver runtimes due

to preconditioning when FP-solve is done using LU factorization (by upto two orders of magnitude

compared to unpreconditioned GMRES). The FP-solve, however, can be extremely expensive and

render this preconditioner ineffective with respect to problem’s overall runtime if iterative solution

schemes are used without proper preconditioning. Here, the number of iterations required for

one FP-solve using GMRES was of the same order as an unpreconditioned transport solve using

GMRES. It is imperative that we find an effective preconditioner for FP-solves. We will look into

this in future. The potential, however, of using FP as preconditioner for transport solves is amply

evident from the data presented in this section. Next, we look at efficiency data for similar problems

with the exponential kernel.

Exponential Kernel

We calculate scattering cross-section moments using EK for ∆ = 10−5. The zeroth moment is

calculated using SRK like we did in the previous section. The study, here, is done exactly like we

did in the case of SRK. The same parameters are used as we used for SRK except for scattering

cross-section moments. Number of iterations and overall runtime data has been presented in Table

5.8, 5.9, 5.10, and 5.11.
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FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 2217 7 8 9 15
15/32 2256 10 9 17 19

Factorize 15/16 7 9 9 15
15/32 10 10 17 19

Table 5.8: EK - Vacuum Boundaries/Unit Distributed Source - Number of Iterations

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 51.73 10.32 13.34 11.91 18.49
15/32 56.10 31.14 25.06 42.82 27.85

Factorize 15/16 2.3754 4.5586 0.3762 0.454
15/32 4.155 8.463 0.6098 0.6424

Table 5.9: EK - Vacuum Boundaries/Unit Distributed Source - Runtime [s]

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 2086 9 10 12 35
15/32 1932 14 12 24 28

Factorize 15/16 14 13 12 35
15/32 14 13 24 28

Table 5.10: EK - Beam Source - Number of Iterations

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 39.55 9.45 11.63 8.335 19.42
15/32 36.14 24.89 18.57 34.74 24.87

Factorize 15/16 2.842 6.657 0.2929 0.6853
15/32 2.898 6.799 0.6329 0.6585

Table 5.11: EK - Beam Source - Runtime [s]

We see similar behavior to what we saw in the case of SRK. The solver runtimes differ due to differ-

ence in rate at which FP-solve converges for this particular problem. Again, we note a significant

decrease in number of iterations but a decrease in solver runtime strongly depends on the efficiency

of the FP-solve. Next we will look at the Henyey-Greenstein kernel.
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Henyey-Greenstein Kernel

In this section, we let the asymmetry parameter, g = 0.9999. The study is carried out in the same

way as the previously for SRK and EK. For this section, we will choose σa = 0.00001 cm−1. The

scattering cross-section moments are calculated using HGK. We will choose slab length of 50 cm

disretized using 200 elements. Number of iterations and overall runtime data has been presented

in Table 5.12, 5.13, 5.14, and 5.15.

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 1150 10 7 28 18
15/32 1461 14 12 32 31

Factorize 15/16 10 8 28 18
15/32 14 13 32 31

Table 5.12: HGK - Vacuum Boundaries/Unit Distributed Source - Number of Iterations

Invert FP L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 83.66 288.1 160.9 931.9 373.4
15/32 102.5 1055 572.7 2618 1428

Factorize 15/16 6.390 12.27 2.193 1.385
15/32 11.75 28.820 2.651 2.5778

Table 5.13: HGK - Vacuum Boundaries/Unit Distributed Source - Runtime [s]

Invert FP L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 597 16 12 29 17
15/32 1634 21 19 32 31

Factorize 15/16 12 9 29 17
15/32 17 16 32 31

Table 5.14: HGK - Beam Source - Number of Iterations
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FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 42.29 479.9 331.2 1040 285.7
15/32 115.1 1804 990.6 2408 1315

Factorize 15/16 6.795 12.41 2.131 1.316
15/32 12.59 29.69 2.945 2.452

Table 5.15: HGK - Beam Source - Runtime [s]

We note that, just like for SRK and EK, preconditioned schemes have significantly less iteration

counts. However depending on how the Fokker-Planck error equation is solved, the preconditioning

may or may not be effective with respect to runtime reduction. Solving the FP equation with

GMRES renders FPSA scheme unviable, however use of factorization reduces to overall runtime

significantly.

5.3 Summary

In this chapter we described how to numerically solve the transport equation. We ran several

numerical experiments and assessed the speed-ups in iteration count and solver runtime. We saw

that preconditioning transport solve using FP resulted in reduction in iteration count by upto

three orders (when compared to unpreconditioned GMRES solves). The overall runtime, however,

depended completely on how efficiently the FP preconditioner was solved. Direct factorization

resulted in a runtime reduction by upto two orders of magnitude. We noted that FP can be a very

effective preconditioner for transport solves with highly forward-peaked scattering. However, we

must develop an effective solver for FP-solve itself in order to make this an attractive preconditioning

method.
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Chapter 6

Conclusion and Future Work

We began this dissertation with a basic literature review and introducing the problem at hand.

We then went on to provide background required for development of the method presented in this

thesis - we went over the transport equation, derived its basic mono-energetic, slab-geometry form.

We then described basic source iteration and presented how it can be arbitrarily slow using Fourier

analysis. Further, we introduced the idea of synthetic acceleration and demonstrated its equiva-

lence with preconditioning. The first two chapters thoroughly introduced the problem at hand and

basic background required to solve it.

In the third chapter, we introduced FPSA. First, we derived the limit of error equation as average

scattering angle approached zero. This returned the Fokker-Planck approximation. This led us to

the idea of using the Fokker-Planck approximation as a preconditioner (it has already been used

widely as an approximation to the transport equation; now we want to accelerate transport using

Fokker-Planck). Further we went on to describe where the Fokker-Planck approximation is a valid

limit of the transport equation. We introduced the idea of FPSA in this chapter. We presented a

PN based Fourier analysis framework in order to assess FPSA. We also presented how FPSA was
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equivalent to PL acceleration. Under the specific constraint presented in Sec. 3.3, where FPSA

became equivalent to PL acceleration, we expect convergence of transport in one iteration.

In the fourth chapter, we described spatial (LD) and angular (SN ) discretization for the transport

equation and the Fokker-Planck equation. We went over WFD and MPD discretizations for the

angular Laplacian term in the FP equation. Towards the end of this chapter, we presented an

SN based framework for analysis of FPSA with WFD and MPD and all the convergence rate

predictions for SRK, EK, and HGK under with varying parameters - L, N , η, ∆, and g. The fifth

chapter constituted the fully numerical part of this dissertation. We also presented a speed-up study

towards the end of the chapter for screened Rutherford kernel, exponential kernel, and the Henyey-

Greenstein kernel. Essentially, in Ch. 4, and 5, we presented an in-depth study on the viability of

using FP as preconditioner for transport problems with highly forward-peaked scattering. In this

chapter, we will present our conclusions.

6.1 Conclusion

Information presented in the previous five chapters leads us to believe that a forward-peaked scat-

tering kernel presents significant difficulties in obtaining an efficient solution. Standard techniques

including SI and unpreconditioned GMRES can be slow to converge and even diverge. Fokker-

Planck approximation is an effective preconditioning tool to accelerate such problems. However, it

is imperative that we develop an effective preconditioner to make Fokker-Planck solves efficient.
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6.2 Future Work

In future, we would like to develop effective preconditioning techniques for Fokker-Planck solves.

We were unable to include that in this dissertation. We have been looking, specifically, at nonlinear

techniques for Fokker-Planck solve but nothing conclusively effective has been observed yet. There-

fore this was not included in this dissertation. It would be an extremely interesting problem to solve.

Other than that, we note the high spectral radius for FPSA with SI. We note that for kernels with

no Fokker-Planck limit, we must incorporate higher order FP operators in our approximation of

the error equation. We want to use Generalized Fokker-Planck equation to approximate the error

equation. We expect extremely good convergence rates at least with GMRES. The problem, here

also would be the solve time of GFP equation since this time we solve a coupled set of equations

[17]. If we go this route, we would definitely need an efficient solution technique for the GFP solve.

Other than that we wish to extend and analyze the FPSA technique to multi-D, energy-dependent

problems. We would also like to develop a moment-preserving discretization for the angular Lapla-

cian term of the Fokker-Planck equation in multi-D settings.
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Appendix A

Screened Rutherford Scattering
Cross-section Moments

C = 0.7805; η = 2.836× 10−4; L = 127; l = 0, 1, ...L

σs,l = [1375.667689, 1370.072664, 1361.213931, 1349.856033, 1336.498659, 1321.507580, 1305.167316,

1287.707638, 1269.318837, 1250.161346, 1230.372215, 1210.069693, 1189.356585, 1168.322808, 1147.047368,

1125.599937, 1104.042120, 1082.428503, 1060.807519, 1039.222176, 1017.710679, 996.3069614, 975.0411392,

953.9399137, 933.0269180, 912.3230238, 891.8466119, 871.6138124, 851.6387190, 831.9335802, 812.5089707,

793.3739463, 774.5361826, 756.0021013, 737.7769840, 719.8650759, 702.2696799, 684.9932423, 668.0374310,

651.4032071, 635.0908903, 619.1002182, 603.4304017, 588.0801750, 573.0478416, 558.3313168, 543.9281667,

529.8356436, 516.0507192, 502.5701149, 489.3903292, 476.5076638, 463.9182469, 451.6180551, 439.6029328,

427.8686112, 416.4107251, 405.2248278, 394.3064060, 383.6508928, 373.2536796, 363.1101269, 353.2155749,

343.5653525, 334.1547857, 324.9792054, 316.0339545, 307.3143944, 298.8159108, 290.5339186, 282.4638676,

274.6012458, 266.9415843, 259.4804601, 252.2134994, 245.1363807, 238.2448371, 231.5346582, 225.0016926,

218.6418492, 212.4510984, 206.4254742, 200.5610740, 194.8540605, 189.3006619, 183.8971723, 178.6399522,

173.5254291, 168.5500970, 163.7105166, 159.0033154, 154.4251873, 149.9728927, 145.6432574, 141.4331729,

137.3395954, 133.3595457, 129.4901081, 125.7284302, 122.0717219, 118.5172546, 115.0623609, 111.7044333,

108.4409232, 105.2693415, 102.1872553, 99.1922891, 96.2821230, 93.4544919, 90.7071847, 88.0380431,

85.4449608, 82.9258828, 80.4788041, 78.1017690, 75.7928699, 73.5502467, 71.3720855, 69.2566182,
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67.2021207, 65.2069129, 63.2693575, 61.3878584, 59.5608610, 57.7868503, 56.0643510, 54.3919255,

52.7681737].

C = 0.7805; η = 2.836× 10−5; L = 127; l = 0, 1, ...L

σs,l = [13760.18804, 13752.79625, 13740.35284, 13723.63610, 13703.16340, 13679.32132, 13652.41778,

13622.70811, 13590.40995, 13555.71257, 13518.78311, 13479.77096, 13438.81090, 13396.02553, 13351.52706,

13305.41882, 13257.79638, 13208.74850, 13158.35792, 13106.70201, 13053.85332, 12999.88004, 12944.84643,

12888.81313, 12831.83748, 12773.97383, 12715.27368, 12655.78600, 12595.55733, 12534.63200, 12473.05223,

12410.85833, 12348.08877, 12284.78032, 12220.96812, 12156.68584, 12091.96567, 12026.83848, 11961.33386,

11895.48018, 11829.30467, 11762.83347, 11696.09166, 11629.10336, 11561.89174, 11494.47907, 11426.88676,

11359.13541, 11291.24482, 11223.23408, 11155.12151, 11086.92478, 11018.66090, 10950.34622, 10881.99651,

10813.62695, 10745.25216, 10676.88621, 10608.54268, 10540.23461, 10471.97460, 10403.77475, 10335.64676,

10267.60186, 10199.65088, 10131.80426, 10064.07204, 9996.463883, 9928.989115, 9861.656697, 9794.475260,

9727.453109, 9660.598238, 9593.918336, 9527.420799, 9461.112740, 9395.000997, 9329.092143, 9263.392494,

9197.908118, 9132.644840, 9067.608253, 9002.803724, 8938.236402, 8873.911222, 8809.832914, 8746.006010,

8682.434848, 8619.123579, 8556.076173, 8493.296423, 8430.787952, 8368.554218, 8306.598519, 8244.923997,

8183.533641, 8122.430298, 8061.616669, 8001.095318, 7940.868679, 7880.939051, 7821.308610, 7761.979411,

7702.953388, 7644.232362, 7585.818041, 7527.712026, 7469.915813, 7412.430796, 7355.258269, 7298.399431,

7241.855389, 7185.627157, 7129.715664, 7074.121753, 7018.846184, 6963.889638, 6909.252717, 6854.935949,

6800.939788, 6747.264618, 6693.910754, 6640.878444, 6588.167872, 6535.779158, 6483.712364, 6431.967489,

6380.544478].

C = 0.7805; η = 2.836× 10−6; L = 127; l = 0, 1, ...L

σs,l = [1.376053925×105, 1.375962036×105, 1.375801671×105, 1.375580632×105, 1.375304120×105,

1.374976030×105, 1.374599480×105, 1.374177065×105, 1.373711006×105, 1.373203248×105, 1.372655515×105,
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1.372069359×105, 1.371446189×105, 1.370787293×105, 1.370093861×105, 1.369366996×105, 1.368607725×105,

1.367817010×105, 1.366995756×105, 1.366144814×105, 1.365264992×105, 1.364357053×105, 1.363421724×105,

1.362459699×105, 1.361471638×105, 1.360458174×105, 1.359419914×105, 1.358357438×105, 1.357271306×105,

1.356162055×105, 1.355030204×105, 1.353876252×105, 1.352700682×105, 1.351503960×105, 1.350286538×105,

1.349048852×105, 1.347791325×105, 1.346514370×105, 1.345218383×105, 1.343903752×105, 1.342570853×105,

1.341220052×105, 1.339851706×105, 1.338466160×105, 1.337063752×105, 1.335644811×105, 1.334209658×105,

1.332758606×105, 1.331291960×105, 1.329810018×105, 1.328313072×105, 1.326801406×105, 1.325275298×105,

1.323735021×105, 1.322180840×105, 1.320613015×105, 1.319031802×105, 1.317437450×105, 1.315830202×105,

1.314210299×105, 1.312577975×105, 1.310933459×105, 1.309276977×105, 1.307608750×105, 1.305928994×105,

1.304237923×105, 1.302535743×105, 1.300822662×105, 1.299098878×105, 1.297364590×105, 1.295619991×105,

1.293865272×105, 1.292100620×105, 1.290326218×105, 1.288542247×105, 1.286748884×105, 1.284946304×105,

1.283134678×105, 1.281314174×105, 1.279484960×105, 1.277647197×105, 1.275801046×105, 1.273946665×105,

1.272084210×105, 1.270213833×105, 1.268335684×105, 1.266449912×105, 1.264556663×105, 1.262656080×105,

1.260748305×105, 1.258833476×105, 1.256911730×105, 1.254983204×105, 1.253048029×105, 1.251106336×105,

1.249158256×105, 1.247203914×105, 1.245243437×105, 1.243276947×105, 1.241304567×105, 1.239326416×105,

1.237342613×105, 1.235353274×105, 1.233358514×105, 1.231358447×105, 1.229353185×105, 1.227342836×105,

1.225327511×105, 1.223307316×105, 1.221282357×105, 1.219252738×105, 1.217218562×105, 1.215179931×105,

1.213136944×105, 1.211089700×105, 1.209038297×105, 1.206982830×105, 1.204923395×105, 1.202860085×105,

1.200792993×105, 1.198722209×105, 1.196647823×105, 1.194569925×105, 1.192488601×105, 1.190403938×105,

1.188316023×105, 1.186224938×105, 1.184130767×105].
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Appendix B

Exponential Kernel Scattering
Cross-section Moments

∆ = 10−6; L = 127; l = 0, 1, ...L

σs,l = [13761.95103687960, 13761.93727492856, 13761.90975106778, 13761.85470331868, 13761.81341774080,

13761.75837066604, 13761.67579974425, 13761.60699136524, 13761.52442217744, 13761.41432921141,

13761.31799935237, 13761.20790964787, 13761.07029626143, 13760.94644673881, 13760.80883860928,

13760.64370692158, 13760.49234004714, 13760.32721607954, 13760.13456870500, 13759.95568728571,

13759.76305056222, 13759.54289061045, 13759.33649794843, 13759.11635204636, 13758.86868312205,

13758.63478301448, 13758.38713200615, 13758.11195820898, 13757.85055494796, 13757.57540340062,

13757.27272932513, 13756.98382769755, 13756.68118067321, 13756.35101140867, 13756.03461669608,

13755.70447975140, 13755.34682088165, 13755.00293886010, 13754.64531804619, 13754.26017564948,

13753.88881258934, 13753.50371445161, 13753.09109510041, 13752.69225776618, 13752.27968934415,

13751.83960010495, 13751.41329575507, 13750.97326458214, 13750.50571301526, 13750.05194940188,

13749.58446350513, 13749.08945766447, 13748.60824303321, 13748.11331093316, 13747.59085936598,

13747.08220245570, 13746.55983316605, 13746.00994491270, 13745.47385495522, 13744.92405798261,

13744.34674257625, 13743.78322929609, 13743.20601463979, 13742.60128210613, 13742.01035572020,

13741.40573387183, 13740.77359472882, 13740.15526594613, 13739.52324788935, 13738.86371314685,

13738.21799316818, 13737.55859037837, 13736.87167153784, 13736.19857205539, 13735.51179649931,

129



13734.79750555346, 13734.09703875053, 13733.38290288595, 13732.64125231838, 13731.91343086897,

13731.17194764433, 13730.40295042915, 13729.64778749761, 13728.87897035161, 13728.08263995306,

13727.30014919368, 13726.50401205490, 13725.68036242695, 13724.87055798355, 13724.04711527003,

13723.19616085595, 13722.35905736146, 13721.50832398027, 13720.63007971222, 13719.76569228823,

13718.88768363504, 13717.98216493361, 13717.09050918992, 13716.18524114855, 13715.25246392228,

13714.33355595645, 13713.40104489837, 13712.44102554331, 13711.49488194016, 13710.53514472403,

13709.54790012322, 13708.57453795433, 13707.58759192550, 13706.57313944848, 13705.57257627170,

13704.55843926168, 13703.51679676397, 13702.48905062287, 13701.44774094881, 13700.37892677138,

13699.32401619471, 13698.25555265887, 13697.15958562757, 13696.07752962873, 13694.98193151791,

13693.85883094293, 13692.74964901937, 13691.62693610433, 13690.47672177962, 13689.34043391228,

13688.19062644716, 13687.01331864984, 13685.84994530254]

∆ = 10−9; L = 127; l = 0, 1, ...L

σs,l = [13761.95103687960, 13761.95102311765, 13761.95099559375, 13761.95094054594, 13761.95089926009,

13761.95084421229, 13761.95076164058, 13761.95069283083, 13761.95061025913, 13761.95050016352,

13761.95040382987, 13761.95029373427, 13761.95015611476, 13761.95003225721, 13761.94989463772,

13761.94972949431, 13761.94957811286, 13761.94941296948, 13761.94922030218, 13761.94904139683,

13761.94884872956, 13761.94862853837, 13761.94842210913, 13761.94820191797, 13761.94795420290,

13761.94772024977, 13761.94747253473, 13761.94719729578, 13761.94693581876, 13761.94666057985,

13761.94635781702, 13761.94606881612, 13761.94576605334, 13761.94543576663, 13761.94511924186,

13761.94478895521, 13761.94443114464, 13761.94408709600, 13761.94372928549, 13761.94334395106,

13761.94297237856, 13761.94258704419, 13761.94217418591, 13761.94177508955, 13761.94136223134,

13761.94092184921, 13761.94049522900, 13761.94005484695, 13761.93958694098, 13761.93913279693,
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13761.93866489105, 13761.93816946125, 13761.93768779337, 13761.93719236367, 13761.93666941004,

13761.93616021834, 13761.93563726483, 13761.93508678738, 13761.93455007187, 13761.93399959455,

13761.93342159330, 13761.93285735399, 13761.93227935287, 13761.93167382783, 13761.93108206473,

13761.93047653982, 13761.92984349100, 13761.92922420412, 13761.92859115543, 13761.92793058284,

13761.92728377219, 13761.92662319974, 13761.92593510338, 13761.92526076898, 13761.92457267278,

13761.92385705267, 13761.92315519452, 13761.92243957458, 13761.92169643073, 13761.92096704885,

13761.92022390519, 13761.91945323761, 13761.91869633201, 13761.91792566464, 13761.91712747335,

13761.91634304404, 13761.91554485298, 13761.91471913799, 13761.91390718499, 13761.91308147025,

13761.91222823157, 13761.91138875490, 13761.91053551649, 13761.90965475414, 13761.90878775381,

13761.90790699175, 13761.90699870574, 13761.90610418177, 13761.90519589607, 13761.90426008643,

13761.90333803883, 13761.90240222951, 13761.90143889625, 13761.90048932503, 13761.89952599211,

13761.89853513525, 13761.89755804043, 13761.89656718392, 13761.89554880348, 13761.89454418508,

13761.89352580500, 13761.89247990100, 13761.89144775904, 13761.89040185541, 13761.88932842786,

13761.88826876236, 13761.88719533520, 13761.88609438412, 13761.88500719509, 13761.88390624442,

13761.88277776983, 13761.88166305730, 13761.88053458314, 13761.87937858506, 13761.87823634905,

13761.87708035142, 13761.87589682987, 13761.87472707039]
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Appendix C

Henyey-Greenstein Scattering
Cross-section Moments

g = 0.5; L = 63; l = 1, 2, ...L

σs,l = [1., .5000000000000000, .2500000000000000, .1250000000000000, 0.6250000000000000e-1,

0.3125000000000000e-1, 0.1562500000000000e-1, 0.7812500000000000e-2, 0.3906250000000000e-2,

0.1953125000000000e-2, 0.9765625000000000e-3, 0.4882812500000000e-3, 0.2441406250000000e-3,

0.1220703125000000e-3, 0.6103515625000000e-4, 0.3051757812500000e-4, 0.1525878906250000e-4,

0.7629394531250000e-5, 0.3814697265625000e-5, 0.1907348632812500e-5, 9.536743164062500e(-7),

4.768371582031250e(-7), 2.384185791015625e(-7), 1.192092895507812e(-7), 5.960464477539062e(-

8), 2.980232238769531e(-8), 1.490116119384766e(-8), 7.450580596923828e(-9), 3.725290298461914e(-

9), 1.862645149230957e(-9), 9.313225746154785e(-10), 4.656612873077393e(-10), 2.328306436538696e(-

10), 1.164153218269348e(-10), 5.820766091346741e(-11), 2.910383045673370e(-11), 1.455191522836685e(-

11), 7.275957614183426e(-12), 3.637978807091713e(-12), 1.818989403545856e(-12), 9.094947017729282e(-

13), 4.547473508864641e(-13), 2.273736754432321e(-13), 1.136868377216160e(-13), 5.684341886080801e(-

14), 2.842170943040401e(-14), 1.421085471520200e(-14), 7.105427357601002e(-15), 3.552713678800501e(-

15), 1.776356839400250e(-15), 8.881784197001252e(-16), 4.440892098500626e(-16), 2.220446049250313e(-

16), 1.110223024625157e(-16), 5.551115123125783e(-17), 2.775557561562891e(-17), 1.387778780781446e(-

17), 6.938893903907228e(-18), 3.469446951953614e(-18), 1.734723475976807e(-18), 8.673617379884035e(-
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19), 4.336808689942018e(-19), 2.168404344971009e(-19), 1.084202172485504e(-19)]

g = 0.9999; L = 63; l = 1, 2, ...L

σs,l = [1., .9999000000000000, .9998000100000000, .9997000299990000, .9996000599960001, .9995000999900005,

.9994001499800015, .9993002099650035, .9992002799440070, .9991003599160126, .9990004498800210,

.9989005498350330, .9988006597800495, .9987007797140715, .9986009096361001, .9985010495451365,

.9984011994401820, .9983013593202379, .9982015291843059, .9981017090313875, .9980018988604843,

.9979020986705983, .9978023084607312, .9977025282298852, .9976027579770622, .9975029977012645,

.9974032474014943, .9973035070767542, .9972037767260465, .9971040563483739, .9970043459427391,

.9969046455081448, .9968049550435940, .9967052745480896, .9966056040206348, .9965059434602328,

.9964062928658867, .9963066522366001, .9962070215713765, .9961074008692193, .9960077901291324,

.9959081893501195, .9958085985311845, .9957090176713314, .9956094467695642, .9955098858248873,

.9954103348363048, .9953107938028212, .9952112627234409, .9951117415971685, .9950122304230088,

.9949127291999665, .9948132379270465, .9947137566032538, .9946142852275935, .9945148237990707,

.9944153723166908, .9943159307794592, .9942164991863812, .9941170775364626, .9940176658287089,

.9939182640621261, .9938188722357199, .9937194903484963]
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