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ABSTRACT 

 
Successful peg and hole insertion systems allow the peg to translate and rotate to 

accommodate contact forces that arise from different contact states between the peg and 

hole during assembly. Typically, a position or force controlled robotic insertion system is 

fitted with a specialized mechanically compliant wrist, known as a remote center 

compliance (RCC) device, to allow the system to accommodate the forces [1]. Using 

design principles similar to those developed for the RCC, a variable compliance control 

system is produced in this thesis.  This control system allows a dual seven degree of 

freedom robotic arm system to cooperatively perform rigid peg and hole assembly with 

human-like performance at a 100% success rate without the use of mechanically 

compliant attachments. Additionally, a novel finite state machine with visual feedback is 

developed to improve the positional accuracy of the robots’ impedance controllers and 

boost the reliability and performance of the entire system. Finally, a unique design 

process is developed to obtain the optimum variable compliance controller control law 

equations with respect to task success, reliability, and coupled robotic arm stability.  



 

 

viii 

TABLE OF CONTENTS 

LIST OF FIGURES ...........................................................................................................x 

LIST OF TABLES ......................................................................................................... xiii 

CHAPTER 1: INTRODUCTION.....................................................................................1 
1.1   The General Robotic Peg and Hole Problem and Proposed Solution......................1 
1.2   Goal..........................................................................................................................4 
1.3   Contribution .............................................................................................................4 
1.4   Scope of Research....................................................................................................5 
1.5   Thesis Organization .................................................................................................5 

CHAPTER 2: LITERATURE SURVEY.........................................................................7 
2.1   Passive Compliance: The RCC................................................................................8 
2.2   Active Compliance: Impedance Control................................................................14 
2.3   System Design for Peg and Hole Assembly ..........................................................21 
2.4   State of the Art Contribution .................................................................................25 

CHAPTER 3: HARDWARE OVERVIEW...................................................................27 

CHAPTER 4: IMPEDANCE CONTROLLER.............................................................31 
4.1   Impedance Controller Functionality ......................................................................33 
4.2   Impedance Controller Performance .......................................................................39 

CHAPTER 5: SYSTEM MODELING...........................................................................48 
5.1   Peg and Hole Kinematic Analysis .........................................................................48 
5.2   Coupled Impedance Control Stability Analysis.....................................................79 

CHAPTER 6: SYSTEM LEVEL CONTROLLERS....................................................90 
6.1   Vision System........................................................................................................90 
6.2   Visual Trajectory Compensation Controller..........................................................95 
6.3   Variable Compliance Controller ..........................................................................106 

CHAPTER 7: PARAMETER OPTIMIZATION.......................................................111 
7.1   Applying the Stability Criteria.............................................................................111 
7.2   System Assumptions and Dimensions.................................................................114 
7.3   Introduction to ModeFrontier ..............................................................................119 



 

 

ix 

7.4   Finding Optimum Parameters with ModeFrontier ..............................................121 
7.5   Defining Acceptable Compliance Ranges ...........................................................130 

CHAPTER 8: SYSTEM PERFORMANCE................................................................136 

CHAPTER 9: CONCLUSION......................................................................................145 
9.1   Review of Thesis .................................................................................................145 
9.2   Future Work.........................................................................................................146 

REFERENCES...............................................................................................................148 



 

 

x 

LIST OF FIGURES 
 
Figure 2.1.    Jamming and Wedging Failure Diagrams ....................................................11 

Figure 2-2.    Compliant Structure RCC. ...........................................................................12 

Figure 3-1.    Robot System Hardware Diagram. ..............................................................27 

Figure 3-2.    WAM Reading Simulink Model...................................................................29 

Figure 3-3.    WAM Writing Simulink Model....................................................................30 

Figure 4-1.    Basic Simulink Impedance Controller. .........................................................32 

Figure 4-2.    Compliance Center Location Definition. .....................................................37 

Figure 4-3.    Compliance Center Behavior Demonstration. .............................................38 

Figure 4-4.    Complete Simulink Impedance Controller. ..................................................39 

Figure 4-5.    Impedance Controller Trajectory Following Performance. .........................40 

Figure 4-6.    Impedance Controller Lateral Force vs. Displacement Relationship...........43 

Figure 4-7.    Impedance Controller Rotational Force vs. Displacement Relationship. ....44 

Figure 4-8.    Impedance Controller Gain vs. Physical Lateral Stiffness Plot. ..................46 

Figure 4-9.    Impedance Controller Gain vs. Physical Rotational Stiffness Plot..............47 

Figure 5-1.   Stages of Successful Peg and Hole Assembly. .............................................48 

Figure 5-2.    Chamferless Peg and Hole Insertion Strategy..............................................50 

Figure 5-3.    Peg and Hole Wiggle Angle.........................................................................54 

Figure 5-4.    Diagram of a Wedged Peg and Hole............................................................55 

Figure 5-5.    Minimum Friction Angle for Wedging ........................................................56 

Figure 5-6.    Lateral Displacement vs. Rotational Error...................................................58 

Figure 5-7.    Wedging Diagram ........................................................................................60 

Figure 5-8.    Jamming Diagram ........................................................................................61 



 

 

xi 

Figure 5-9.    Chamfer Crossing Diagram..........................................................................64 

Figure 5-10.  Chamfer Angle Variation.............................................................................66 

Figure 5-11.  Chamfer Crossing Free Body Diagram........................................................67 

Figure 5-12.  One-Point Contact Diagram.........................................................................72 

Figure 5-13.  Two-Point Contact Diagram ........................................................................75 

Figure 5-14.  Coupled Impedance Control SMD Model ...................................................82 

Figure 5-15.  Graphical Representation of Coupled Stability Constraints ........................88 

Figure 6-1.    Two Camera Placement Strategy .................................................................92 

Figure 6-2.    Images After Color Filtering........................................................................93 

Figure 6-3.    Simulink Image Processing Model ...............................................................94 

Figure 6-4.    Vision Integration Block Diagram...............................................................97 

Figure 6-5.    Simulink Visual PID Controller Simulation.................................................98 

Figure 6-6.    FSM Visual Compensation State Diagram ..................................................99 

Figure 6-7.    Error Compensation State Diagram ...........................................................100 

Figure 6-8.    Simulink FSM Visual Controller Simulation .............................................101 

Figure 6-9.    Visual Controller Step Response Comparison...........................................102 

Figure 6-10.  Visual Controller Trajectory Following Performance ...............................103 

Figure 6-11.  Actual System Trajectory Following Performance....................................106 

Figure 6-12.  Impedance Controller Stiffness Gain Diagram..........................................107 

Figure 6-13.  Variable Compliance Controller Block Diagram.......................................110 

Figure 6-14.  Complete Simulink System Controller .......................................................110 

Figure 7-1.    Coupled Stability Constraints on Experimental System ............................113 

Figure 7-2.    Experimental Peg and Hole Dimensions....................................................119 



 

 

xii 

Figure 7-3.    ModeFrontier Workflow Model.................................................................122 

Figure 7-4.    Spider Chart of Optimized Parameters ......................................................124 

Figure 7-5.    Parallel Coordinates Plot for All Experiments...........................................126 

Figure 7-6.    Filtered Parallel Coordinates Plot – Good Results.....................................127 

Figure 7-7.    Filtered Parallel Coordinates Plot – Desired RCC.....................................128 

Figure 7-8.    Filtered Parallel Coordinates Plot – Low Stiffness ....................................129 

Figure 7-9.    Contour Plot of Jamming Diagram Parameter Check................................131 

Figure 7-10.  Labeled Contour Plot .................................................................................132 

Figure 8-1.    Images From Successful Experimental Insertion.......................................137 

Figure 8-2.    Insertion Force History Comparison..........................................................138 

Figure 8-3.    Variable Compliance Controller Output ....................................................139 

Figure 8-4.    Free-space vs. Insertion Trajectory Following Performance .....................140 

Figure 8-5.    Insertion Force History from Position Controlled Failure .........................142 

Figure 8-6.    Images From Failed Experimental Insertion..............................................143 

Figure 8-7.    Insertion Force History from Jamming Failure..........................................144 

 



 

 

xiii 

LIST OF TABLES 
 
Table 4-1.  Trajectory Following Percent Error as a Function of Stiffness...................... 41 
 
Table 4-2.  Lateral Impedance Controller Gains and Physical Equivalents ......................45 

Table 4-3.  Rotational Impedance Controller Gains and Physical Equivalents.................47 

 



 

 

1 

CHAPTER 1 

INTRODUCTION 

 

This chapter presents a general discussion of the automated peg and hole 

assembly problem. Then, the research goals and contributions of this thesis are explained. 

This is followed by a description of the scope of the research presented and an overview 

of how the rest of the thesis is organized.  

 

1.1   The General Robotic Peg and Hole Problem and Proposed Solution 

 Robots have become increasingly common in the manufacturing environment. 

This is mostly due to the high level of speed, consistency, and reliability at which they 

can perform tasks for long periods of time. All of these factors can remarkably increase 

the efficiency of any type of factory, and spare humans from injuries due repetitive stress 

and fatigue. However, robots cannot currently be used to perform all kinds of assembly 

operations.  For example, tasks that require significant interaction with an external rigid 

environment, a human, or another robot are typically not considered for robotic 

automation. This is due to the error and external force rejection limitations of position-

based robot controllers, which are most common in manufacturing. As a result, it is 

desirable to design new ways in which robots can be applied to these types of 

applications. 

 The general peg and hole assembly problem embodies many aspects that are 

difficult for robots to perform. Among the most difficult are the varying position and 

external force constraints caused by different types of constrained motion that vary as a 
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function of insertion depth. Thus, designing a system that can perform general peg and 

hole assembly can most likely be applied to a broad range of assembly tasks that require 

the robot to work in an environment that is constrained by mechanical contact. In 

manufacturing, this is directly applicable to many types of two-part mating tasks that can 

be modeled as a variations of the peg and hole problem.  As a result, the peg and hole 

assembly problem has been widely studied and is used as a means to judge the 

performance of robotic manufacturing systems. This is why peg and hole assembly was 

chosen as the main focus of this thesis. 

The success of any peg and hole assembly system is determined by the internal 

forces generated as a result of the contact between the parts being assembled. How well 

the total system is able to accommodate these forces is a strong indication of the system’s 

probability of success. Positioning error and misalignment create reaction forces between 

the peg and the hole that can cause the parts, or their supports, to break, jam, or wedge, 

resulting in failure. To avoid these problems, mechanically compliant fixtures have been 

used to support the parts during assembly. These fixtures absorb errors by allowing the 

peg to physically deflect in the presence of contact forces. The most common type of 

compliant fixture is the remote center compliance (RCC) device [1]. The RCC is a 

compliant wrist that is attached to the peg’s manipulator to aid in peg and hole 

operations. While quite successful, the RCC exhibits several limitations which are 

discussed in more detail in section 2.1. 

When the peg and hole are to be assembled by a robotic system, there are 

additional complications. Robotic peg and hole assembly is an interactive process that 

requires a robotic manipulator to come into physical contact with its environment. This 
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can cause problems for the typical position controlled robots currently used in industry. 

Position control algorithms often lack robustness to large positional errors caused by 

interference or external contact, which can lead to large control forces and controller 

instability. Additionally, the inevitable end effector position error that results from less 

than infinite encoder resolution, drivetrain dynamics, and workspace inconsistencies can 

cause the assembly process to fail for the same physical reasons that justify the use of an 

RCC. Since this positional error is often inconsistent, the total system may be successful 

sometimes, but fail at other times even though the initial conditions for all the operations 

appear identical. This “fragile” quality associated with standard position controlled robots 

limits their applications in automated assembly. 

For a robot to interact with its environment, or another robot, the controller must 

maintain a predefined force relationship between the two systems. Impedance control is 

one method that accomplishes this task, and it allows the robot to respond to external 

disturbances in a controlled way. This style of control uses a linear relation between the 

position of the robot’s end effector and joint torques, which manifests behavior 

comparable to an end effector that is compliantly supported by linear lateral and 

rotational springs that can be varied by changing controller gain parameters. By 

dynamically modifying the compliance parameters of the robot’s impedance controller, 

the robot will exhibit all of the benefits of an RCC equipped system during peg and hole 

assembly, without any of the physical limitations. Also, the torque controlled nature of 

impedance control removes the position controlled “fragility” from the robotic system.  

The result is a robust, self-contained robotic system for peg and hole assembly tasks .   
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1.2   Goal 

The goal of this thesis research was to develop a reliable and highly stable dual 

seven degree of freedom (DOF) robot system to cooperatively perform rigid peg and hole 

assembly tasks with a very high probability of success and human-like performance.  

This was to be accomplished through the design of a variable compliance controller with 

visual feedback that exhibits behavior similar to fixed mechanical systems used for 

robotic peg and hole assembly in industry. The variables of compliance were to be 

optimized with respect to coupled robot controller stability and the physical mechanics of 

peg and hole assembly process to produce the desired system reliability and performance. 

   

1.3   Contribution 

The goal of this thesis was to produce a robust, robotic assembly system to 

perform peg and hole assembly with a greater probability of success than other systems 

by continuously varying each robot’s compliance to meet the requirements of the 

assembly process mechanics and controller stability. This research represents a new 

approach to the peg and hole assembly problem by combining classic design for 

manufacturing techniques with modern robotic and computational capabilities. Time 

tested RCC principles were improved and integrated into the robot controller to aid the 

assembly process without the use of additional force sensors. The proposed optimization 

technique can be applied to other robotic assembly systems to identify parameter values 

that increase the performance of the entire system. This technique provides a tangible 

methodology to fully design the compliance variables that were tuned by trial and error in 

the past, resulting in a fully engineered system.   
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1.4   Scope of Research 

The primary focus of this research was placed on the design and optimization 

process of the variable compliance controller that was unique to this system. This 

included the design of the compliance controller itself and the optimization process used 

to define its optimum controller parameters. Performing this work required the adaptation 

of many other areas of research that have already been well established. For example, the 

aim of this thesis was not to increase the state-of-the-art in impedance controllers, vision 

systems, peg and hole jamming analysis, or coupled system stability. Instead, each of 

these individual topics was modified and adapted to benefit the novel variable 

compliance controller, which was the true contribution of this work. The variable 

compliance controller increases the state-of-the-art of peg and hole assembly, and was the 

main focus of this thesis. The development of a controller network that uses visual 

feedback to perform peg and hole assembly with behavior that is analogous to a variable 

RCC was a completely new research topic.  As a result, the rest of this thesis will be 

dedicated to the development of this controller network. 

 

1.5   Thesis Organization 

Chapter 2 presents an overview of the current research that represents the state-of-

the-art in peg and hole assembly as well as adaptive impedance control systems. Chapter 

3 briefly describes the hardware used to research and develop the final system. Chapter 4 

describes the design and implementation of the variable impedance controller used to 

perform the robot control aspects of the final system. Chapter 5 derives the equations of 

the physical system model. This model is used to obtain the optimum control parameters 
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for the variable compliance controller when used to assemble the experimental peg and 

hole parts. Chapter 6 explains the design of the control computer based system level 

controllers, including the visual trajectory compensation controller and the variable 

compliance controller. The optimum parameters for the variable compliance controller 

are found using the modeFrontier software package in Chapter 7. Chapter 8 presents the 

performance of the completed system, and Chapter 9 concludes the thesis with a review 

and description of future work.   
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CHAPTER 2 

LITERATURE SURVEY 

 

Robots have become a major component of the manufacturing industry. Due to 

their accuracy and unparalleled repeatability, they are becoming more prominent as 

technology becomes more sophisticated.  New technologies are allowing robots to 

perform more and more tasks that were previously deemed too challenging for 

automation and reserved exclusively for human workers.  As a result, the goal of 

achieving human-like performance in general assembly tasks has become the target for a 

major section of manufacturing and robotics research. One of the most common areas of 

research is the peg and hole assembly task due to its far reaching applications through 

many manufacturing processes. Peg and hole assembly is typically performed in two 

independent stages, gross motion and fine motion. Gross motion refers to the large 

ballistic movements that move the peg from its starting position to a point very close to 

the hole. These motions are performed in free-space, without any interaction between the 

robot and its environment. Fine motion refers to the rest of the movement that actually 

performs the assembly of the two parts [1, 2]. This is the most studied part of the 

assembly process due to the challenges that arise from the interaction between the robot 

and its environment during rigidly constrained movements. The main objective of all fine 

motion research is to implement new hardware, software, or motion strategies to achieve 

human-like performance during the interaction phase of assembly, where good 

performance is defined by movements that are fast and robust to tight tolerances and 

robot positional uncertainty. This goal is particularly important because the tolerances of 
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the parts being assembled are often smaller than the resolution of the robot controllers 

[3].  

 

2.1   Passive Compliance: The RCC 

Most of the research done in the area of peg and hole problems appears to follow 

the same form. First, the desired peg and hole system is modeled in two or three 

dimensions so that contact forces resulting from different peg and hole contact 

configuration states can be predicted based on preexisting knowledge of the system’s 

geometry. For the specific case of a cylindrical peg and hole, it has been shown using 

screw theory that the three dimensional problem can essentially be solved using a two-

dimensional study [4]. The next step in typical research produces a piece of passive 

hardware, software, or a motion strategy to accommodate the predicted contact forces to 

facilitate successful assembly of the two parts in the presence of reasonable positioning 

errors. The first person to present a thorough study on this topic was Whitney in 1982 [5]. 

He developed a chamfered peg and hole contact model and presented a passive compliant 

wrist that could be attached to a robot to aid in assembly. This wrist was the first remote 

center compliance device, or RCC. He referred to the flexibility and stiffness designed 

into the RCC as “engineered compliance,” which implies that the stiffness of the system 

must be carefully designed and integrated into the robot as a system to produce desirable 

behavior. 

There are two different goals when designing the engineered compliance settings 

of a system. The first goal is called “consistent compliance,” which aspires to ensure that 

all contact forces remain bounded by leaving some directions of the robot’s movement 
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position controlled while the directions perpendicular to environmental constraints are 

force controlled.  The second and most researched goal is called “error corrective 

compliance,” which designs compliance values such that contact forces always push the 

peg and hole closer towards successful assembly [6]. This goal is the most useful when 

there is a specific final configuration that must be achieved for the system to be 

successful. Thus, error corrective compliance is the main focus of most peg and hole 

research. 

There is always a certain amount of inevitable compliance and positional 

uncertainty built into any robot due to flexibility of the robot links, back-drivability of the 

joints, backlash in the drivetrain, etc. Some work has been done to utilize these perceived 

shortcomings to facilitate peg and hole assembly. One such algorithm was proposed to 

find robot configurations that combine the individual joint uncertainties and compliances 

in such a way as to create an acceptable level of uncertainty and compliance at the end 

effector of the entire system [7]. While this approach is novel, it is unlikely that the 

available range and resolution of possible compliance outcomes would be sufficient to 

meet the goals of a specific task. Since there has been significant effort invested in 

modeling to be used as a guide for the selection of compliance parameters, it is naturally 

desirable to have a system capable of exactly performing the engineered compliant 

behavior when implementing a compliant system design.  

Additionally, the ability to accurately and consistently control the compliance of 

an assembly system is vital to its reliability. Whitney showed that the success of peg and 

hole assembly depends on how the parts interact with each other as they pass through 

different contact states during insertion. Each contact state presents different internal 
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forces which can cause two specific modes of failure as shown in figure 2-1. The first 

mode is called wedging. Wedging occurs when contact forces become compressive 

forces that store energy and hold a peg in its hole. To avoid this condition, the robot must 

minimize the angular error between the peg and its hole at all times. The second 

condition is called jamming, which occurs when the resultant insertion force is too far off 

of the insertion axis to allow the assembly to be completed. Jamming is avoided by 

allowing the peg and hole to rotate and correct for misalignment. This movement will 

change the relationship between the insertion force, lateral force, and reaction moment 

applied to the peg and change the direction of the single resultant force [1]. The RCC is 

essentially an error absorber that provides a specific six DOF (three lateral and three 

rotational) compliance for a peg and hole during assembly to allow the peg to move in 

response to reaction forces and avoid these failure conditions [1]. The RCC performs two 

functions to achieve this goal. First, it moves the peg’s center of compliance, or the 

“pivot” point on the peg at which it can independently rotate and translate, to a point that 

minimizes contact forces and errors by allowing the peg to more easily reposition itself 

relative to the hole. Second, the RCC physically allows the peg to rotate and translate 

about the center of compliance with a specific stiffness. By imposing a single center of 

compliance, the RCC allows the system to be largely governed by the general six element 

vector representation of the six DOF stiffness applied to the peg. This is a great benefit to 

the system designer since the number of relevant compliance variables drops from a full 

six-by-six matrix to a diagonalized compliance matrix with six non-zero terms [8]. This 

simplifies the compliance selection considerably and makes the design process more 

tangible and understandable for humans. 
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Figure 2-1. General diagrams of failure due to jamming (A) and wedging (B). 

 

There are two different generic types of RCCs presented in research literature. 

The first type is based on a series of three parallel platforms that are connected by 

flexible links. The upper platform connects to the robot’s wrist while the bottom platform 

connects to the peg that is to be inserted. This combination of linkages allows the center 

of compliance, which is typically located at the tip of the peg held by the RCC, to both 

rotate and translate as a reaction to contact forces. The second generic type of RCC is 

called the compliant structure RCC. This type of RCC is easily adapted to absorb errors 

in all six DOF so it is exclusively used in manufacturing. All commercial RCCs are 

compliant structures that utilize three or six shear pads to allow one side of the RCC to 

rotate and translate relative to the other. Shear pads are stacks of rubber and metal disks 

organized in alternating layers that deform laterally much more easily than they do 

axially in a compressive sense. This configuration allows the RCC to be easily modeled 
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for small deflections using a set of linear equations. Figure 2-2 shows a simplified 

example of a compliant structure RCC. 

 

 

Figure 2-2. A compliant structure RCC with three shear pads (shown as springs) at rest. 
The shear pads allow the bottom platform and its attached peg to rotate and translate 
relative to the top platform about the compliance center. 
 

While simple and currently used in some forms of manufacturing, the RCC still 

has many limitations.  One of the biggest limitations is a result of the mechanical nature 

of the RCC. Since it is a mechanical addition to the robot and not part of its control 

system, it cannot help if the positional errors are so large that the mating surfaces of the 

peg and hole do not initially meet during assembly. The mechanical nature of the device 

also limits the total amount of error that can be absorbed since a compliant structure can 

only deform a limited distance. Also, current RCCs have a fixed compliance center 

location, which means they must be redesigned for each application. The RCC is not 

designed to be used in any orientation other than vertically downward without significant 

counter-weighting and redesign due to the effects of gravity. Also, an RCC can only 

prevent jamming since wedging is heavily dependent on initial error that is controlled by 
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the robot controller and not the RCC. Despite the success of the RCC, all of these 

limitations leave a lot to be desired by a robotic assembly system.  

Some researchers have worked to create RCCs that are better suited for specific 

tasks. For example, Sturges and Laowattana developed the spatial remote center 

compliance (SRCC), which is a mechanical compliant wrist used to perform the peg and 

hole assembly of prismatic objects. This device differs from a typical RCC in that it 

allows an additional axial rotation of the peg to take place, which was designed to 

accommodate the non-axial symmetry of prismatic pegs [9, 10]. Another passive device, 

called the dynamic RCC, was designed to hold a peg during high-speed insertion. The 

purpose of this device was to stop the peg from bouncing along the chamfers of the hole 

after an impact. The dynamic RCC accomplished this by moving compliance center to 

the tip of the peg and reducing its virtual mass in the directions perpendicular to the walls 

of the hole [11]. Other RCC variants allow the user to manually adjust the position of the 

compliance center by inserting rods of varying stiffness into the shear pads of the RCC 

[12]. However, the vast majority of current research has shown that compliant control of 

the robot’s end effector is a more viable solution to the peg and hole problem. This 

method of compliantly controlling the end effector of a robot through its joint controller’s 

control law is called active compliance, as opposed to mechanical passive compliance. 

Though active compliance implies that all compliant behavior is controlled by the 

robot’s controller, some active compliance systems also employ mechanical components 

to achieve the desired behavior. One such controller was invented to control a light-

weight, human-like robot arm called the DLR light-weight robot III [13].  This robot used 

joint torque feedback based impedance control to shape the robot’s joint motor inertia 
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and equivalent potential energy using a system of state based controllers. This approach 

is called joint passivity control, and it allows the robot to be simultaneously controlled by 

joint torque and position using a single controller, resulting in high performance joint 

control from a weakly damped system. Another unique robot controller was implemented 

for the seven DOF MIA robot [14]. MIA stands for “Mechanical Impedance Adjuster” 

and it refers to a spring and brake system that is contained in each joint of the robot to 

mechanically apply impedance characteristics to the robot’s motion. This system 

demonstrated good results when interacting with humans, but it was quite complex. This 

complexity corresponds to low reliability and high cost, so the typical approach has been 

to impose compliant behavior using only the robot control strategy. 

 

2.2   Active Compliance: Impedance Control 

While the theory of back projection can be used to create an active compliance 

peg and hole assembly system that does not need feedback [15], active compliance is 

typically composed of a robust control strategy that allows the robot to interact with its 

environment in a controlled way using feedback from a sensor. There are many ways to 

achieve a controller that exhibits this kind of behavior. Raibert and Craig were among the 

first to do this with a hybrid force and position robot controller in 1981 [16]. Their 

system allowed the end effector of a robot to rigidly track position inputs in one direction 

and track desired force relationships in other directions using a force sensor mounted on 

the wrist of the robot. A similar control system defined a “configuration space” that 

limited forces and movements in some directions while allowing the robot to move freely 

in others. The resulting control strategy is similar to hybrid control with the exception 



 

 

15 

that it employs predictive “guarded moves” to move from one position to the next [17]. A 

more modern implementation of this system can be found in [18]. Whitney also 

developed a similar method of control in 1987. He called his system force feedback. 

Using force feedback, the robot is commanded with measured end effector force 

trajectories as an input instead of position or velocity commands [19]. Very successful 

variations of this algorithm are still currently used in manufacturing plants, such as Ford 

Motor Company, which uses a force controlled robot to assemble highly complex triple 

clutch transmissions [20]. However, force control naturally incurs a sensory delay, which 

typically makes these control systems relatively slow and increases the possibility of 

controller instability. 

Other systems have incorporated computer vision to help fill the gaps in force 

feedback systems.  One system, for example, implemented a visual PD controller to 

perform micro peg and hole assembly [21]. Due to the small scale of the assembly, a 

complex algorithm to retrieve depth information using focal length and an image 

Jacobian were used instead of taking force measurements. Other, more conventional 

systems used standard stereo vision along with six DOF robot arms to perform prismatic 

peg and hole assembly tasks [22]. Another less conventional system was developed to 

create object trajectories in image coordinates. These trajectories were then translated 

into Cartesian movements for the robots to follow without any feedback from other 

sensors [23].  A more practical system used computer vision to calibrate the tool of an 

assembly robot in an effort to reduce the positional uncertainty problem associated with 

peg and hole assembly [24]. These systems, and many others, all seem to use vision as a 

“look-then-act” system, in which measurements are taken and then applied to a trajectory 
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or a controller. These kinds of strategies do not use their vision systems to their greatest 

potential since the actual actions are performed without visual feedback. Thus, the 

resulting systems are not truly active. 

There is another class of active compliance that seeks to emulate passive 

compliant behavior through an active system. These systems employ a controller that 

regulates a constant interaction relationship between the robot and its environment 

through a single point of contact instead of working to regulate position or contact force. 

This relationship, otherwise known as the impedance of the system, is typically 

represented by a transfer function of the system. This transfer function can be either the 

ratio of Cartesian displacement to input force or the ratio of Cartesian velocity to input 

force for the given system. Robot controllers that fit into this category are called 

“impedance controllers.” One type of impedance controller, called the position based 

impedance controller, measures the interaction force at the end effector of the robot and 

adjusts its Cartesian trajectory input to increase or decrease the force exerted on the 

environment by the robot [25].  Instantaneous model impedance control is another control 

strategy that actively alters the robot’s motion to control the impedance characteristics of 

the system [26]. The force-impedance controller acts like a modified force controller to 

allow the robot to act as both a force limited manipulator and a position limited 

manipulator by changing the values of the robot’s incoming position trajectory based on 

end effector force measurements. This force controlled system is beneficial because it 

allows the desired impedance behavior to be obtained without any knowledge of the 

environment [27]. Another force tracking impedance controller has been proposed to 

control the robot’s trajectory to maintain a specified relationship between the force, 
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velocity, and acceleration error of the entire system. This technique actively compensates 

for uncertainties in the robot’s dynamics model using time-delayed information [28]. All 

of these systems act as impedance controllers by definition, though they are not what is 

typically intended by the term impedance control. 

The most widely used method of compliant control, or what is typically meant by 

the term impedance control, was developed by Hogan in 1985.  This method of 

impedance control actively enforces a desired stiffness and damping relationship between 

the robot and its environment [29]. This form of impedance control considers several 

factors to specify how a robot will react when an external force is applied to it.  An 

approximation of this impedance controller would be a state space controller with a three 

element state vector containing position, velocity, and desired output force, where the 

controller is capable of maintaining a relationship between all the variables instead of 

reacting to a single input.  This multiple input property has many advantages when a 

robot must interact with external forces applied by its environment.  Because the 

impedance controller maintains a stable and constant impedance relationship when a 

robot’s end effector comes into contact with an object, it is capable of performing both 

the gross and fine motion portions of assembly [29].  Additionally, impedance control 

does not require the inverse kinematics of the manipulator to be known to control the 

robot using Cartesian position inputs, which is helpful when using redundant robots for 

which the unique and direct inverse kinematics needed for real-time control may not 

exist. 

Implementing an impedance control algorithm is straight forward. However, 

selecting the impedance relationships necessary to complete a specific task has 
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manifested its own body of research. Fasse claims that impedance control has primarily 

been reserved for research environments because it is difficult to specify the correct 

system impedance to accomplish a specific task in a manufacturing environment. He also 

mentions that it would be difficult to vary the stiffness variables in an organized manner 

to facilitate the different phases of assembly [30]. Research on this topic has produced 

many different solutions to these problems. Fasse himself proposed a compliant system 

called spatial impedance control. Spatial impedance control divides the compliance 

variables into spatial and non-spatial parameters. Then reference frames are attached to 

both the end effector of the robot and its desired goal position so that a potential energy 

function can be defined. This function is minimized when the two frames are aligned, and 

the minimization process is a function of the compliance variables of the controller 

during each step of assembly. While spatial impedance control simplifies some aspects of 

the compliance selection process by creating a visual representation, the complex 

algorithms needed to implement the system are not desirable when programming a real-

time control system [30, 31]. 

Another design process has been proposed to produce a stable impedance 

controller for heavy and stiff industrial robots. This design approach is said to be all 

inclusive, as it takes all aspects of the controller design into consideration. The resulting 

system is an accurate impedance controller that can maintain stable impedance 

characteristics during all stages of an assembly process while allowing the industrial 

robots to work with very low stiffnesses [32]. However, the drawback of this complete 

design method is that it requires very detailed knowledge of the system, as even small 

uncertainties can cause stability problems for the intended industrial robots.  To address 
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this problem, machine learning has been implemented in many systems to allow the robot 

to compensate for small modeling errors. For example, one system consists of a model-

free machine learning algorithm that learns the proper values needed by a variable 

impedance control algorithm based on path integrals and optimal control principles.  

Using a reference trajectory, this system learns a gain schedule to increase the gains from 

a base low gain system when needed to extract the desired system performance [33].  

Kelly et al. created an adaptive impedance controller to address these same 

problems without using machine learning methods. They instead use an adaptive 

impedance controller to overcome problems that arise from unmodeled dynamics in a 

robot system. This is useful because the dynamic behavior of rigid manipulators is 

complex and non-linear, which makes it difficult to design a high-performance model-

based control strategy. When a robot is acting in a constrained environment, these 

unmodeled dynamics can cause unpredictable behavior. This adaptive impedance scheme 

uses joint position and velocity sensors in addition to an end effector force sensor to 

follow a constrained trajectory. This type of controller is capable of maintaining a 

constant relation between motion error and the force being applied by the robot’s end 

effector using only an initial estimate of the robot’s dynamic parameters because the 

controller creates an adaptive integration gain matrix from sensor feedback [34, 35].  

Controllers of this kind have been introduced to find a solution to the accuracy/robustness 

dilemma that occurs from the trade-off between output impedance accuracy and the 

overall robustness of the impedance controller to modeling errors.  Other closed loop 

hybrid impedance control systems that improve the robot’s dynamics model can be found 

in [25, 36]. While these types of model-improvement impedance control schemes 
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increase robot control accuracy, which is a large benefit, they do little to help the robot 

interact with its environment or successfully complete a task. 

Aside from the dynamic model correction type of impedance control, other 

adaptive impedance control systems have been developed to actively change impedance 

parameters to meet or maintain specific goals of the robotic system. One research group 

created a dual loop controller to produce their desired robot behavior. The inner loop of 

the controller was created using model reference adaptive control (MRAC), which 

basically linearizes the robot’s dynamics to compensate for them while following a 

trajectory in free space. This is used as a direct model of the system for the outer loop of 

the controller which produces a “virtual model” of the system. This virtual model can be 

strategically modified to achieve desired system behavior. This system allows the robot 

to be set to perform normally when needed, and if an obstacle is encountered, it is 

capable of responding with predefined mechanical impedance [37]. However their 

adaptability is focused on the performance of the robot as opposed to the success of the 

application.  

There have been a few other adaptable impedance control systems presented in 

literature to allow a robot to exhibit unique behavior, or operate with a different form of 

sensory feedback. One example was created to independently control the impedance of a 

robot over multiple points of contact when the robot touches its environment in more than 

one place. This controller was called the multi-priority Cartesian impedance controller 

and it would be useful to control a robotic hand as it grasps an object. In this application, 

the hand would have a separate desired impedance set for each point at which its fingers 

independently touch the object, allowing the designer to control how hard the hand can 
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squeeze the object without using force sensors or strain gauges [38].  Another type of 

impedance control uses feedback from a vision system to maintain the desired contact 

force relationships between the manipulator and any object [39]. The controller is known 

as virtual impedance control, and it works like regular impedance control. However it 

does not require any physical contact to provide the reaction forces of an external system. 

The controller instead works by drawing an imaginary boundary around objects of 

interest. If the vision system detects that the robot has crossed the imaginary boundary, 

then it begins to push back on the robot with a fixed impedance. This method has many 

applications, but it requires a high speed vision system with very good resolution to 

produce an effective system. Aside from the above examples, there are also specialized 

impedance control systems that actively vary control law parameters to exhibit better 

performance under tracking and stability [40], overcome harmful vibrations or dynamics 

[41], or minimize impedance force error [42]. While each of these controllers has its own 

benefits, all of them focus on obtaining desired behavior from the robot. However, they 

lack consideration of the behavior of the environment the robot is intended to interact 

with. This is a key requirement if the system will be performing a highly coupled task, 

such as cooperative assembly using two impedance controlled robots. 

 

2.3   System Design for Peg and Hole Assembly  

To integrate an impedance controller into a complete system that includes the 

dynamics of the peg, the hole, and the two manipulators, all aspects of the system must 

be taken into consideration. For this reason, there has also been a great deal of specialized 

research on the contact forces generated during peg and hole assembly. One example of 
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this research is the use of Lagrange’s impact model to derive a general impact equation to 

estimate the forces generated by an industrial manipulator performing peg and hole 

assembly [43]. Another method uses an impulse model to minimize the impact during a 

collision between a manipulator and its environment [44]. Other impact models have 

been developed to represent the collision of a robot with a free floating object, such as a 

satellite in outer space [45]. Accurate modeling of the impact forces generated during 

robot interaction can also give an estimate of the dynamics and frequencies encountered 

during the transition from a free-space to constrained environment. This type of data has 

been used to design a controller that minimizes and reacts to the forces generated during 

impact [46]. Another area of related research focuses on the dynamic properties of the 

friction forces that impede assembly [47]. These are all examples of ways in which the 

entire system was modeled during the design and integration of the impedance controller. 

However, system modeling can be utilized further to design more aspects of the control 

system.  

Once a controller has been designed, it is sometimes also necessary to design new 

techniques or motion strategies to perform the assembly task. For example, one algorithm 

generates different compliant assembly strategies for the beginning, middle, and end of 

an assembly process based on 28 possible geometric constraint conditions defined by a 

model of the assembly task [48].  This algorithm is essentially capable of providing a 

unique hybrid force-position controller for any possible contact geometry encountered 

during a task. Based on 17 predefined relative part geometries, a formal mating model is 

built to decide which compliance strategy and force constraints are to be used. Another 

algorithm creates a compliance and damping matrix that is programmed into a robotic 
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system offline to eliminate the possibility of error buildup within the system [49]. Using 

friction cones and Hooke’s law to model the elastic behavior of the system, they can 

ensure that any contact forces between the peg and hole will provide error-corrective 

behavior and guide the system towards success by absorbing errors. Similar studies have 

also been implemented using analysis by D’Alembert’s principle to model the energy 

interaction of the system [50].  

The most extensive system models have been created for the three dimensional 

contact forces that result from the simultaneous insertion of multiple pegs into 

corresponding holes. Several models have been produced for dual peg and hole insertion 

tasks [51, 52]. This work models all possible contact states between two coupled pegs 

and their corresponding two holes and attempts to define a control strategy that 

accomodates all of them. Another research group outlined a multiple peg and hole 

insertion task with three pegs arranged in an equilateral triangle shape [53]. They chose 

to reduce the problem to three degrees of freedom and approach the potential contact 

states in much the same way as other systems.   

Further study of the peg and hole system makes it possible to devise a general 

trajectory or motion plan to increase the likelihood of successful assembly by taking 

advantage of certain aspects of the system. For example, one approach is to model the 

compliant system using a technique called back propagation [54].  This method 

transforms the peg and hole into a simplified model of a point being moved into a hole 

that is narrower than the width of the peg. The trajectory of this point is created 

backwards from the point’s goal position back to the robot’s current position to plan the 

motion of the peg into the hole. Another similar approach is the back projection of the 
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peg’s allowable range [55]. Similar to the previous case, the algorithm begins with a peg 

almost completely in the hole, and within the bounds of an allowable angular range 

defined by the system’s geometry. Then a trajectory is mapped from this point to the 

peg’s starting point. Other algorithms instead choose to plan the ideal impedance 

parameters and trajectories for a given task to maximize a performance index [29], or to 

maintain favorable single-point contact states that reduce the positional error of the 

system [56]. These are all examples of how system modeling has been used to design all 

aspects of a peg and hole assembly system. However, they all seem to lack quantitative 

and measureable goals that are usually associated with an engineered system. For 

example, a performance index may be applicable to a task, but it is not simultaneously 

focused on the needs of the robot’s controller. Also, there is no way to specify the “best” 

trajectory from back propagation with respect to any goal, as any successful trajectory is 

deemed as good as another. This is why these approaches lack the design aspects needed 

to produce a truly engineered and optimized impedance control system. 

No matter what type of impedance controller has been designed, there are still 

other design parameters to be considered, such as the desired hardware configuration. Peg 

and hole assembly has been performed by many different configurations of robotic 

systems. Each of these systems must also be integrated into the design of the total system. 

One approach is to use two manipulators to perform peg and hole assembly without the 

use of fixtures [57]. The positive argument is that the system will be more easily 

adaptable to different tasks since there is no physical hardware specialized for any 

specific task. However, this particular system suffered from a complex force control 

algorithm that tried to characterize force conditions and move both arms to minimize the 
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resultant forces. This type of controller, contrary to the goal of the system, would be 

heavily specialized for each specific task. Other force controlled systems for assembly 

utilized simpler systems, such as a three DOF planar robot [58], with greater success. 

Other purely mechanical systems resorted to random vibrations to help clear jams and 

complete contact assembly tasks [59]. While demonstrated to be successful, there are 

definitely reliability concerns that would rule out this type of system as an option for any 

large scale manufacturing system. For each of these systems, the goal was to produce a 

universal peg and hole assembly system that could mate various parts without making 

any changes to the system. However, each of them resorted to specializing some piece of 

their hardware or software to accommodate the experimental task. Since this need to 

adapt automated systems to accomplish specific tasks is almost inevitable, it would 

instead be more realistic to design a system whose harware and controllers remain 

constant between different tasks with the exception of a few software parameters that 

could be easily defined and changed. 

 

2.4   State of the Art Contribution  

The peg and hole assembly system developed by this thesis aims to eliminate the 

peg and hole assembly and impedance controller design shortcomings mentioned above. 

The experimental system used in this thesis was composed of two redundant robotic arms 

that cooperatively perform assembly tasks using a new approach to adaptive impedance 

control. By creating an impedance controller with inputs to change the six DOF stiffness 

parameters and compliance center locations of the peg and hole attached to each robot, 

the system electronically exhibits the compliant behavior of a mechanical RCC without 
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any of its limitations. This allows the system models previously derived for mechanical 

RCCs to be directly applied to the new system during the design phase. Additionally, the 

robot controllers are completely self contained and do not rely on external force sensors 

or mechanical devices, which are proven to increase the response time and decrease the 

stability of the system. In conjunction with the robot impedance controllers, additional 

system-level vision and variable compliance controllers were simultaneously run to 

increase the positional accuracy of the system as well as assign the optimum impedance 

controller stiffness parameters with respect to quantitative goals for coupled system 

stability and wedging and jamming avoidance. Finally, the straight forward controller 

parameter design algorithm developed in this thesis allows the system’s impedance 

parameters to be designed with respect to the performance and success of the entire 

system based only on the geometry of the peg and hole to be assembled. The design and 

control processes used to obtain all of these benefits are unlike any other in published 

literature, so they constitute the contribution of this thesis to the state-of-the-art of peg 

and hole assembly. 
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CHAPTER 3 

HARDWARE OVERVIEW 

 

The system developed in this thesis is composed of equipment that was already 

present in the robotics research lab in UNM’s South Campus MTTC building. 

Specifically, the system is composed of two Barrett Technology Whole Arm 

Manipulators (WAMs), a vision system, reflective memory, and a control computer as 

shown in figure 3-1 below.   

 

 

Figure 3-1. Relevant hardware organization in the MTTC robotics research lab. Also 
shown are the individual coordinate systems attached to each WAM. 
 

Each WAM is a light-weight, seven DOF redundant robot arm. Though they are 

mounted on a one dimensional track which adds an eighth DOF to each arm, they will 

remain stationary for the experiments in this thesis. Each WAM communicates with an 
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individual Linux based target computer that runs compiled Simulink control programs. In 

this thesis, a specialized variable impedance controller was programmed in Simulink, 

compiled, and loaded onto each robot’s target computer. This controller is explained in 

detail in Chapter 6. In addition to communicating with each WAM, the target computers 

are also able to read from and write to specific memory addresses, called nodes, in the 

reflective memory system. This is where the WAMs write joint position and joint torque 

data to the control computer, and read Cartesian commands and compliance parameters 

from the control computer. The control computer hardware is typified by its 2.53 GHz 

Intel Core2 Quad processor and four gigabytes of memory. This computer simultaneously 

sends trajectory commands to each WAM, runs the trajectory compensation controller, 

and runs the variable compliance controller explained in Chapter 6. These controllers are 

programmed as Simulink models that run compiled user-defined functions. These 

functions communicate with the reflective memory and control the robots whenever a 

model “simulation” is run. This computer is responsible for receiving image data from 

two BASLER A602-fc cameras through FireWire connections and computing all 

commands to perform the peg and hole assembly.  

It is also worth noting that the Cartesian position commands sent to the WAMs 

are represented by homogeneous four-by-four transformation matrices. However, the 

trajectory and compensation vectors computed by the control computer are in quaternion 

representation due to its beneficial continuous representation of three dimensional 

rotations. Planning robot motion trajectories in quaternion representation reduces the 

possibility of singularities and allows cubic trajectories to be easily computed for the 

robots. This is beneficial in robotics as cubic trajectories provide smoother acceleration 
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and velocity behavior. Thus, each Simulink controller must also contain functions to 

convert between the two Cartesian position representations. 

To communicate with the robots through the reflective memory, a new Simulink 

block had to be written in the C programming language and compiled into a user defined 

function. This block uses a flag input to change its function. Its list of possible functions 

include opening and closing the memory interface, as well as writing and reading to and 

from different memory addresses allocated for each WAM. For example, the Simulink 

model shown in figure 3-2 is used by the control computer to read the current joint 

position, which is converted to a quaternion position of the end effector through forward 

kinematics, and joint torques from both WAMs in real-time. This particular model also 

keeps a running standard deviation of the individual joint torques to recognize if either 

WAM has collided with an immovable object.  

 

 

Figure 3-2. Simulink model that reads current joint positions and torques from each 
WAM in real-time. Notice the running standard deviation block attached to the joint 
torque output to monitor the system for contact with an immovable object. 
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In another implementation, the Simulink model in figure 3-3 shows the block 

configuration that intakes a quaternion Cartesian position command and stiffness 

parameters for each WAM and writes them to the reflective memory so that each target 

computer can execute the desired motion. 

 

 

Figure 3-3. Simulink model that converts quaternion trajectory points computed by the 
control computer to homogeneous four-by-four transformation matrices and writes them 
to the reflective memory with stiffness parameters to command each WAM. 
 

Last, the peg and hole end effectors used for the experiments are made from 

machined aluminum and are rigidly attached to the wrist of their respective WAM. The 

“peg” has also been fitted with a JR3 force and torque sensor. This sensor is not part of 

any controllers, but it is used to experimentally verify the performance of the system 

components in Chapters 4 and 8. The JR3 is connected to a data acquisition computer that 

records six DOF force and torque measurements every 0.01 seconds. This concludes the 

basic description of the hardware and interface that were used to create the overall system 

in this thesis. The detailed description and design process for each controller is presented 

in the following chapters. 
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CHAPTER 4 

IMPEDANCE CONTROLLER 

 

As described in Chapter 2, there are many different control strategy options for 

controlling a robot while it is in contact with its environment. The method used to control 

the WAM robots in this thesis is called impedance control. Impedance control allows a 

robot to interact with its environment by controlling the relationship between the 

impedance of the robot and the admittance of its environment through the interaction port 

located at the point of contact between them. To control this relationship in an organized 

way, the impedance controller simultaneously manages a relationship between the 

position and velocity of the robot’s end effector and the forces applied to it by the 

environment.  In addition to enabling the robots to reject disturbances in a predicatable 

way, impedance control also provides a means to control redundant robots, or those with 

more than six DOF, by eliminating the need to calculate the inverse kinematics of the 

robot. In this system, the impedance controller is implemented through a compiled 

Simulink model. This model is shown in figure 4-1. 
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Figure 4-1. Simulink model that represents the basic impedance control functions for each  
WAM. The inputs to the system are the current joint positions and the desired Cartesian 
position and rotation of the end effector. The output is a vector of joint torques needed to 
move the WAM from its current position to the desired position. The parameters that 
control the compliant behavior of the system are read from reflective memory along with 
the desired position and implemented in the stiffness control block.  
 

This model intakes the current joint positions of the WAM and the desired 

Cartesian position and rotation of the WAM’s end effector. The output from the 

impedance control model is a vector of joint torques that is sent to the WAM’s motor 

drive hardware to achieve the desired position while maintaining the desired stiffness and 

damping behavior of the robot. In addition to these impedance controller tasks, this 

model also writes the current joint positions, stiffness gains, and joint torques of each 

WAM to the reflective memory in real-time. It should be noted that the Cartesian goal 

position prescribed to each WAM is relative to its individual global coordinate system. 

There is no simple global coordinate system for the two robots, so their trajectories are 

controlled independently. 
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4.1   Impedance Controller Functionality 

This section presents the theory and implementation of the impedance controller 

models used to control the WAMs. When designing an impedance controller, the first 

step is to define a relationship between the force output by the controller and the resulting 

displacement of the end effector in Cartesian coordinates. This requires the target robot to 

have a special set of hardware chracteristics. More specifically, the target robot must 

have joints that are controlled by command torques , T ,  encoders that are capable of 

reading joint positions, θ , and the forward kinematics, L, of the robot must be known to 

relate the robot’s joint positions to the corresponding Cartesian end effector position, X, 

by the function ( )θLX = .  Assuming the target robot possesses these characteristics, the 

resulting impedance controller will be able to follow a desired cartesian trajectory with 

reasonable performance as well as interact with extenral forces from environmental 

contact in a controlled and predicatable way. An important benefit of these impedance 

control characteristics for peg and hole assembly is the ability to easily transition between 

gross and fine motion since there is only one control strategy needed to accomplish both 

types of movement.  

The quality of the system’s trajectory following performance is measured by 

Cartesian accuracy and is controlled by the effective stiffness of the controller. The 

effective stiffness is a controller gain that defines the desired relationship between 

Cartesian accuracy and control force applied to the end effector of the robot. If the 

effective stiffness is represented by K , the force applied to the end effector to move the 

robot or react to the environment is given by equation (4.1). 
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 [ ]XXKF −= 0   (4.1) 

 Where 0X is the initial position of the end effector and X is the desired position.  

 

Notice that this relationship is simply an adaptation of the equation for a linear 

spring, KxF = . This implies that the output robot behavior can be modeled as an end 

effector that is supported by a combination of six linear springs. Six springs are needed 

because the effective stiffness, K , is actually a six-by-one vector that represents the 

stiffness of the robot over all Cartesian six DOF. Next the Jacobian matrix, ( )θJ , must be 

computed. The Jacobian matrix is a constant matrix that relates a robot’s joint velocities 

to the Cartesian velocity of its end effector using the relation ( ) θθ dJdX = . From the 

virtual work principle, the joint torques necessary to create the desired force or 

displacement change can be found using the Jacobian matrix’s transpose in the equation 

( )FJT θ'= . Combining all of these equations into a single controller relation results in 

equation (4.2). This equation relates joint torque to the desired stiffness behavior and 

trajectory following performance of the robot and controller. 

 

 ( ) ( )[ ]θθ LXKJT −= 0'  (4.2) 

 

Similarly, a relationship between the force applied to the end effector of the 

WAM and its velocity can be defined. If the damping behavior of the robot can be 

represented by a coefficient, B , changing this value would modify how the robot would 
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respond to velocity errors during its movement. The relation between force and 

acceleration can be defined as equation (4.3). 

 

 [ ]VVBF −= 0  (4.3) 

Where 0V is the initial velocity of the end effector and V is the desired velocity.  

 

The definition of the Jacobian matrix can be rewritten to show that ( )ωθJV = . 

Using the same principle of virtual work as above, the actuator force can be related to a 

desired change in velocity with equation (4.4). 

 

  ( ) ( )[ ]ωθθ JVBJT −= 0'  (4.4) 

 

To complete the controller, a gravity compensation loop must be included to keep 

the robot from falling under its own weight. A null space controller must also be included 

to keep the robot from naturally favoring low friction joints during movment. This 

condition would result in awkward reaching geometry that would approach the joint 

limits of certain joints of the WAM after repeated movements. The impedance controller 

must aslo account for the inertial effects of the robot. All of these extra features require 

additional terms to be considered by the controller. To simplify this task, the robot is 

assumed to follow the constraints of rigid body motion. This allows the controller to use 

predefined mass and moment information about the links of the robot to compute the 

mass, M, and inertia, ( )θI  matrices for the controller. The mass and inertia informaiton 
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for this system is measured from CAD models of the WAM robots provided by their 

manufacturer. While there is likely some modeling error in these models, the resulting 

matrices have proved to be accurate enough to allow the impedance controller to perform 

reasonably well. Combining the position, velocity, inertial, and gravitational effects into a 

single control equation yields a single equation to define the torque needed by each joint 

of a robot to achieve a desired position and velocity from a current state. This final result 

is shown as equation (4.5). 
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 (4.5) 

Where ( )θS  is the position dependent torques, ( )ωV  is the velocity dependent torques, 

( )ωθ ,G  is the accelerative coupling terms, and ( )ωθ ,C  is the inertial coupling terms [29].  

 

All terms in equation (4.5) are constant physical or measured values. The two 

gains explained above, K  and B , are the two gains that will be changed to obtain the 

desired performance and behavior from the robot during peg and hole assembly. For this 

reason, these two parameters are connected to specific nodes of the reflective memory 

system. This allows the control computer to actively vary these parameters as needed to 

change the behavior of the system.  

One more parameter from the impedance controller is also connected to the 

system control computer through the reflective memory. During peg and hole insertion, 

the point on the peg at which it is allowed to translate and rotate is called the compliance 

center and it can play a key role in the behavior of the system during assembly. This 
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position is fixed for most systems, but the implementation of variable impedance control 

allows this point to be actively varied during insertion. This point is represented by a 

single parameter in the impedance controller and it defines the distance of the desired 

compliance center from the tip of the peg. This distance, L , can be varied by the control 

computer through the reflective memory and is shown in figure 4-2 below. 

 

 

Figure 4-2. The distance L is the distance from the tip of the peg to the desired 
compliance center. This is the point on the peg at which it is allowed to independently 
rotate and translate in response to applied forces. 
 

Modifying this length changes where the forward kinematics calculates the tip of 

the robot’s end effector to be. Since the impedance controller tries to maintain the 

position of the tip of the end effector in the presence of disturbances, this point is 

effectively where the peg is allowed to rotate. An example of how this parameter changes 

the behavior of the peg is shown in figure 4-3. In this figure, it is assumed that contact 

forces between the peg and the hole have generated a torque that is applied to the peg due 

to misalignment. Figure 4-3 demonstrates two types of behavior that could result from 

this torque depending on the compliance center location. 
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Figure 4-3. This figure demonstrates the behavior associated with different compliance 
center locations. (A) is generally considered to be the most beneficial for peg and hole 
assembly since it offers the most direct control over lateral and rotational positioning. (B) 
shows the typical location of the compliance center for a robot holding a peg in a 
mechanical fixture without a RCC. 
 

With this last piece of the impedance controller added to the Simulink model, 

everything needed to control the behavior of the peg during assembly to guarantee 

success is available to the control computer. The overall Simulink model that implements 

all aspects of the impedance control, gravity compensation, and null-space control is 

shown in figure 4-4. This model is compiled and sent to the WAM target computers 

where it is run at 500Hz. 
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Figure 4-4. This is the complete Simulink model that performs all functions of the 
impedance controller control law, including gravity compensation and nulspace control. 
This is the model that is compiled and sent to the target computer for each WAM. Notice 
the read and write blocks that interface with the reflective memory.  
 

4.2   Impedance Controller Performance 

Once the controller is completed and functioning, it is important to understand the 

performance of the system to gain insight into the effects of changing different controller 

parameters. Through experimentation, it has been found that varying the damping gain of 

the controller generally produces wild and unpredictable results. Thus, the design strategy 

will be to instead choose a single damping value and assign it to the controller offline and 

let it remain constant throughout assembly. The stiffness gains, on the other hand, 

produce very predictable changes in behavior as they are varied. For example, decreasing 

the stiffness gains will produce accurate and linearly decreasing control force output for a 

given Cartesian position error. However, lowering the stiffness of the impedance 

controller is analgous to hanging a mass from a weaker spring, which will cause the end 
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effector of the robot to “droop” more under its own weight. This makes the system work 

harder to follow a Cartesian trajectory. To demonstrate the relationship between 

controller stiffness and the total performance of the system, a desired Cartesian trajectory 

was sent to the impedance controller. The WAM was then programmed to follow the 

trajectory with different stiffness gains. As the WAM completed each trajectory, it wrote 

out a data structure that contained its actual Cartesian trajectory. This data was used to 

compare the trajectory following performance of the impedance controller for different 

stiffness levels. Figure 4-5 shows this information graphically. 

 

 

Figure 4-5. Comparison of the three-dimensional trajectory following performance of an 
impedance controlled WAM for different stiffness gains. The plots are categorized by 
error in each direction. Notice the additional error present in the Z direction as a result of 
the effects of gravity. 
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From this figure, it can be seen that the controller and WAM behave as one would 

expect. It can also be seen that while the minimum lateral stiffness gain of the impedance 

controller is theoretically zero, it should never be allowed to fall below 100 because the 

trajectory following performance of the WAM degrades significantly at lower stiffness 

levels. It can also be seen that there is little difference in performance for stiffness gains 

above 400. While increasing the lateral stiffness gains beyond 400 would increase the 

performance of the system, the visual feedback controller discussed in Chapter 6 can 

compensate for any relatively small errors. This enables the impedance controller to use 

any stiffness gain of 400 and higher and achieve very good tracking results. This is also 

evident in table 4-1, which shows the average trajectory following percent error for each 

stiffness gain in each direction. 

 

 
 
 
 
 
 
 
 
 
Table 4-1. Trajectory following percent error for each stiffness gain in each principal 
direction. Notice that acceptable performance is achieved with stiffness gains of 400 and 
higher, and there is essentially no appreciable performance increase for gains above 700.  
 

In section 4.1, it was mentioned that the behavior of the impedance controller 

could be approximated by a mass that is supported by a combination of six linear springs. 

This is an important assumption that justifies the two-dimensional approach to the 

physical system modeling performed in Chapter 5. To verify that the behavior of the 

 Percent Error in Each Direction (%) 
Stiffness Gain (K) X Y Z 

100 14.47 29.44 16.47 
400 2.97 9.09 4.68 
700 1.40 4.63 3.22 
1000 1.61 4.43 2.14 
1300 1.25 3.20 1.11 
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system can be approximated this way, the WAM holding the peg was commanded to 

move to a specific Cartesian position. Then a set of specific stiffness gains were sent to 

the impedance controller to define the six DOF stiffness of the end effector. The tip of the 

end effector was then displaced in the pure Z direction exactly ten centimeters at a 

constant velocity. As mentioned in Chapter 3, the peg end effector is equipped with a JR3 

force and torque sensor. This sensor was used to measure the actual force applied to the 

end effector by the impedance controller to impede the increasing positional error during 

this displacement. Then a plot of output force versus displacement was created to show 

that there is a linear relationship between the two values. The slope of this line is equal to 

the equivalent physical stiffness that a real spring would have to posess to impose the 

same behavior on the peg. It should be mentioned that the JR3 sensor is substantially 

stiffer than the impedance controlled WAM robot. So the small compliance due to the 

slight deflection needed for force measurement can be neglected in the results from these 

experiments. So we can assume that the measured system stiffness is entirely due to the 

output of the impedance controller. This process was completed for lateral stiffness 

values between 100 and 1000. An example of the results from this test for the case when 

the lateral stiffness gain is set to 500 is shown in figure 4-6. 
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Figure 4-6. With the impedance controller’s lateral stiffness gains set to 500 in all 
directions, the tip of the peg was displaced from its desired position in the pure axial 
direction while the JR3 measured the control force applied by the peg to resist the 
increasing positional error. Notice the linear force and lateral displacement error 
relationship that is analogous to the spring constant of a real linear spring.  
 

The behavior is clearly linear, so the linear spring approximation should be 

accurate for system modeling purposes. The stiffness gain vector also controls the 

rotational stiffness of the end effector relative to orientation errors about the X, Y, and Z 

axes. It would also be beneficial to show that this rotational stiffness behavior can be 

approximated by a linear rotational spring. To verify this assumption, a similar test was 

performed. The difference being that the displacement changed from a linear distance of 

ten centimeters, to a pure rotation of 30 degrees about the Y axis. The resulting torque 

applied to the end effector of the robot by the impedance controller as a function of 

rotational displacement error is shown in figure 4-7. 
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Figure 4-7. Similar to the previous test, the peg was displaced rotationally from its initial 
horizontal orientation and the torque applied by the robot to resist the increasing 
rotational error was measured. The rotational error and output torque relationship is also 
linear. 
 

This relationship has also proved to be linear, so the approximation of the peg’s 

rotational stiffness as a linear spring is also valid. It is also important to note that the 

stiffness gains of the impedance controller are not measured in values that correspond to 

a physical meaning, such as pounds per inch. They are instead dimensionless gain values. 

As mentioned above, force versus displacement testing was performed for many different 

gains. This allowed the relationship between controller gain values and the corresponding 

actual physical spring force output to be mapped using a table. The relationship was 

found by simply by dividing the peak force measured by the sensor by the peak 

displacement error. This is a valid method due to the linear relationship between force 

and displacement error. It is necessary to know this relationship for the system modeling 

in Chapter 5 since the behavior of the peg and hole interaction is governed by actual 
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spring forces, and not the stiffness gains applied to the controller to achieve them. The 

stiffness gains tested along with their corresponding equivalent physical stiffness values 

are shown in table 4-2. 

 

Lateral Stiffness Gain ( xK ) Physical Stiffness Equivalent ( )meter
N  

100 188.6 
200 247.8 
300 350.1 
400 411.9 
500 559.1 
600 638.3 
700 706.3 
1000 859.4 

 
Table 4-2. Table of impedance controller lateral stiffness gain values along with their 
equivalent physical stiffness values.  
 

If these values are plotted together, the result is shown in figure 4-8. This figure 

gives a visual representation of the relationship between increasing controller gains and 

the resulting increase in physical stiffness output by the WAM. 
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Figure 4-8. This plot demonstrates the linear and direct relationship between the 
impedance controller stiffness gain and the physical stiffness output by the system. 
 
 

Figure 4-8 shows that there is an approximate linear relationship between the 

impedance control gains and the output physical stiffness of the system. This is beneficial 

to the variable compliance system because it implies that changes in stiffness gains will 

result in predictable changes in peg and hole behavior. For example, if the system 

prescribes a small change in stiffness gains, it can be expected that the system will 

receive a corresponding small change in physical stiffness as well. Similarly, the same 

study can be performed for the rotational stiffness gains of the impedance controller. The 

relation between rotational gains and output rotational stiffness are shown in table 4-3 

and figure 4-9. 

 

 

 



 

 

47 

Rotational Stiffness Gain ( )θK  Physical Stiffness Equivalent ( )rad
mN −  

1 2.75 
2 3.79 
3 5.06 
4 6.12 
5 7.80 

 
Table 4-3. Table of impedance controller rotational stiffness gain values along with their 
equivalent physical stiffness values.  
 

 

Figure 4-9. This plot demonstrates the linear and direct relationship between the 
impedance controller rotational stiffness gain and the physical stiffness output by the 
system. 
 
 

There is also a linear relationship between increasing the impedance controller 

rotational stiffness gains and the resulting physical rotational stiffness output values. Now 

that it has been proven that the impedance controller performs adequately and its 

behavior can be modeled by the linear spring approximation, system modeling can be 

performed for the peg and hole assembly system in Chapter 5. 
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CHAPTER 5 

SYSTEM MODELING 

 

In this chapter, a set of governing equations is derived to model the behavior of 

the complete dual robot peg and hole insertion system. This is accomplished in two parts. 

First, a kinematic analysis of the peg and hole insertion problem is performed. Second, a 

coupled dual impedance controlled robot system stability analysis is performed. These 

equations are used to find both the optimum and the range of allowable impedance 

controller parameters in Chapter 7. Applying these parameters to the system controllers 

will guarantee that the completed system will perform the peg and hole assembly task 

successfully. 

 

5.1   Peg and Hole Kinematic Analysis 

 

Figure 5-1. Stages of successful peg and hole assembly. 1 is the approach, 2 is chamfer 
crossing, 3 is one-point contact, 4 is two-point contact, and 5 is line contact and 
successful assembly. 
 



 

 

49 

Figure 5-1 shows a typical two-dimensional progression of a peg as it is inserted 

into a hole during assembly. The analysis and diagrams presented in this thesis are two-

dimensional. Due to the axisymmetric properties of the experimental cylindrical peg and 

hole assembly task, the two-dimensional model accurately captures all of the kinematics 

of the three dimensional system. Phase one in figure 5-1 is the approach of the peg to the 

hole. This is the end of the gross motion phase of the robot’s movement that aligns the 

peg and hole for insertion. This phase defines the initial lateral and rotational error 

between the peg and hole, which plays a large role in the success of the insertion process. 

Phase two is known as chamfer crossing. During this phase, the peg slides past the rim of 

the hole towards its center along the peg’s chamfer to compensate for initial lateral 

positioning errors. The chamfer can be located on the peg, hole, or neither in the case of 

chamferless peg and hole insertion. During the chamferless case, the peg must be angled 

as it is inserted to mimic the behavior of the chamfer crossing phase. This process is 

shown in figure 5-2. Phase three from figure 5-1 represents the one-point contact 

condition, during which the peg slides past the rim of the hole with only a single point of 

contact that moves along the peg’s body. Phase four represents the two-point contact 

phase, during which two points on the peg’s body are in contact with the hole. The 

combined moment generated by the two opposing contact forces in this phase can correct 

the rotational error of the peg relative to the hole if the system’s compliance is designed 

properly. This is the critical phase of the assembly process because this is where failure is 

most likely to occur as many combinations of forces can result in wedging and jamming 

instead of error correction. Finally, phase five represents the completed assembly. 

Intuitively, it is noticed that each phase can only occur over a certain range of insertion 
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depth. This is a result of the physical geometry of the system, and it is used to signal the 

transition from one phase to the next during modeling.  

 

 

Figure 5-2. Example of a chamferless insertion strategy that requires the body of the peg 
to perform the chamfer crossing phase of assembly. 
 
 

The success of the assembly process depends on how the compliant robot system 

reacts to the contact forces generated during phases two, three, and four from figure 5-1. 

Accordingly, a two-dimensional analysis of each of these phases will be conducted in the 

rest of this section to define a set of governing equations to model the forces generated 

during peg and hole contact. Using this information, values for the planar lateral and 

rotational stiffnesses as well as the compliance center location can be defined to ensure 

that the system avoids wedging and jamming. Since wedging and jamming are the two 

most commonly modeled modes of failure for peg and hole assembly, it is assumed that if 

the likelihood of these problems is minimized, then the success rate of the entire insertion 

task is maximized.  

The initial positioning error of the peg relative to the hole, the geometry of the 

system, the forces generated from friction, and the compliance of the peg’s support are 
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the driving factors behind the success or failure of any peg and hole assembly system. 

Wedging occurs instantly upon the onset of two-point contact if the geometry of the peg 

and hole create contact forces that align to create a compressive force that deforms the 

peg instead of trying to better align it with the hole. Wedging is avoided by maintaining 

proper alignment of the peg and hole as two-point contact approaches. Jamming occurs 

when the axial force that pushes the peg into the hole is directed too far away from the 

axis of insertion to actually push the peg into the hole. Jamming is avoided by designing 

the compliance of the peg to allow it to translate and become aligned as a result of the 

moments generated during two-point contact. 

The system modeling performed in this section is based on the assembly model 

for compliantly supported rigid parts since the stiffness of the aluminum peg and hole is 

much higher than the positional and rotational stiffness of the impedance controlled 

WAM robots. As mentioned before, the success of peg and hole assembly rests on 

keeping the insertion force, peg, and hole properly aligned. By engineering the 

compliance of the complete system, it can be reasonably guaranteed that the rigid parts 

will be allowed to translate and rotate as needed to reject positional errors in the face of 

contact forces during assembly. To properly design the compliance required by each part 

of the system, the complete compliant system must be modeled using the geometry of the 

peg and hole. This is facilitated by the linear spring approximation that was proven in 

Chapter 4. In the desired system model, linear springs can act to impose a force on the 

peg as a reaction to translation or rotation of the parts during assembly. Since the peg and 

hole are allowed to translate and rotate in three dimensions, there are three rotations and 

three translations in which the peg and hole can move. Each of these degrees of freedom 
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must be assigned a virtual linear spring and be accounted for when organizing the 

compliance strategy for each part. 

Since the peg and hole can move in a six DOF space, they can be encountered by 

external forces that can be arbitrarily oriented in the same six DOF space. The compliant 

interaction of the peg and hole as they encounter these external forces can be represented 

with the following equation. 

 

 ]16[]66[]16[ xxx FKU =  (5.1) 

Where U is displacement, K is the stiffness matrix, and F is a vector of external forces. 

 

Using matrix dimensional analysis, it can be shown that designing the general 

stiffness of the system would require the selection of 36 variables. While this is possible 

and covered in published research, it is desirable to simplify this design process. As 

described in Chapter 2, this is partially accomplished by defining and maintaining a 

compliance center for the peg. This forces the above stiffness matrix to be diagonal, 

requiring only three translational and three rotational springs to completely define the 

behavior and the general compliance of the peg and hole. This simplification makes the 

modeling process much simpler since each plane of movement can essentially be defined 

by two springs, one translational and one rotational. To further simplify the modeling 

process, the compliance of the peg and hole must only be modeled in a single plane due 

to the axisymmetric geometry of the experimental system studied in this thesis. It is also 

worth noting that the following analysis is performed under the assumption that the 

assembly process is composed of relatively slow movements, which allows the insertion 
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to be studied as a quasi-static process. This allows each step of assembly to be considered 

to be in static equilibrium, which simplifies the study of the peg and hole’s interaction 

forces since high-speed impacts are not a factor. 

The derivation of the desired two-dimensional peg and hole system model begins 

by visualizing the necessary parameters of the system. The first item that needs to be 

identified is the clearance ratio of the peg and hole. This is a dimensionless value that 

quantitatively provides a measure of the clearance between the outer diameter of the peg 

and the inner diameter of the hole. This value is defined by the following equation. 
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(5.2) 

Where R is the inside radius of the hole and r is the outside radius of the peg. 

 

Wedging is primarily a function of the initial lateral and rotational error of the peg 

relative to the hole and the location of the peg’s compliance center. To begin the study of 

peg and hole wedging, the first step is to examine the “wiggle” angle available between 

the peg and hole when they are partially assembled as shown in the figure 5-3. From this 

diagram, a relation between the maximum amount of allowable angular error as a 

function of insertion depth can be made. This equation is shown below. 

 

 ( ) Rcl 2tan =θ   (5.3) 

Where l is the length of the peg that has been inserted into the hole. This length is given 

by )cos(θzl = for the system shown in figure 5-3. 
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This equation basically says that the total amount of lateral translation at the tip of 

the peg, which is a function of rotational error, cannot physically exceed the boundary of 

the clearance between the peg and the inside of the hole. A visual representation of the 

total amount of wiggle angle for a generic peg and hole is shown in figure 5-3. 

 

 

Figure 5-3. Diagram showing the wiggle angle of a peg that has been partially inserted 
into the hole. 
 

Equation (5.3) is an important tool for the prediction of wedging. This equation 

shows that the insertion depth and wiggle angle are inversely proportional, meaning that 

as the insertion depth increases, the total amount of allowable wiggle angle decreases. 

For increasingly large insertion depths, the wiggle angle decreases and the possibility of 

success also increases, as wedging and jamming are unlikely for the small rotational 

errors allowed by the large insertion depth. However, special attention must be paid to the 

case of small insertion depths. This is because small insertion depths allow a greater 

range of wiggle angle, which can easily lead to both wedging and jamming. First, 
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wedging results when the two contact forces generated during two-point contact are 

pointed at each other and become compressive, storing energy in the peg in the form of 

deformation. These contact forces are largely friction limited, so a force analysis can be 

conducted using the idea of a friction angle, which is the two-dimensional equivalent of a 

friction cone. Figure 5-4 shows a two-dimensional model of a peg and hole with a 

shallow insertion depth that have become wedged. 

 

 

Figure 5-4. Diagram showing a peg that has become wedged in its hole. The wedging is 
caused by the alignment of the two fiction forces that act to compress that peg rather than 
realign it with its hole. 
 

The friction angle,φ , creates the arcs shown as the shaded regions in figures 5-4 

and 5-5. The friction forces generated at the contact points must point away from the 

hole’s inner surface as a vector located somewhere within these arcs.  From the friction 

angle definition, it is known that ( ) μφ =tan , or conversely that ( )μφ 1tan−= . Using 

figure 5-5, this relation can be rewritten as the following equation. 
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( )

r
l

2
tan == φμ

 
(5.4) 

 

Rearranging the above equation results in the following.  

 

 rl 2μ=  (5.5) 

 

 

Figure 5-5. Diagram showing the minimum friction angle, φ , needed to cause the peg to 
become wedged in its hole. Using this information, the maximum rotational error that can 
be tolerated without the onset of wedging can be identified.  
 

This equation represents the smallest insertion depth, l, for which wedging is 

possible. As stated before, the possibility of wedging becomes negligible for moderate 

insertion depths. Using the equation derived earlier to determine the wiggle angle of the 

peg, the maximum rotational error that can be tolerated to avoid wedging can be found. 
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This maximum rotational error will act as the upper limit on the allowed rotation of the 

peg relative to the hole, θ . 

 

 Rcr 22 =θμ  (5.6) 
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This is the maximum amount of rotational error that is allowed to ensure that 

wedging does not occur. When the rotational error of the peg relative to the hole is 

smaller than this value, the friction angles are too small for the contact forces to align. 

Limits on the amount of allowable lateral error must also be defined since lateral error 

can cause the peg to translate laterally and simultaneously rotate about its compliance 

center. This will cause additional rotational error between the peg and hole. Generally, 

the maximum amount of allowable lateral error between the peg and hole cannot be 

greater than the sum of the radius of the hole and the lateral width of the chamfer, which 

is equal to the radius of the peg in this case. This limit is obvious since an error greater 

than this would cause the peg to miss the hole completely.  This limit is shown by the 

inequality represented by equation (5.8). Since only small insertion depths are being 

considered by this wedging study, this limit also represents the allowed initial lateral 

error, 0ε , of the peg after phase one of figure 5-1.  
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 ( ) RrRr +<<+− 0ε  (5.8) 

 

This general limit of the amount of lateral error possible must be refined further to 

limit the behavior of the system enough to avoid wedging. It was mentioned earlier that a 

compliantly supported peg will simultaneously rotate as it translates in response to 

reaction forces between the peg and hole unless the compliance center is located at the tip 

of the peg. Thus, translational reactions to contact forces will also affect the total 

rotational error of the peg relative to the hole. In figure 5-6, the horizontal translation of 

the tip of the peg, X, as it slides across the chamfer causes a moment about the center of 

compliance which increases the rotational error of the system.  

 

 

Figure 5-6. Coupled relation between increasing lateral displacement, X, and rotational 
error between the peg and the hole. 
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For this reason, the limit on the total amount of allowable rotational error must 

also account for the possible rotations that will arise from translations of the peg’s tip. 

Whitney showed this relationship to take the form of equation (5.9) for the case of 

shallow insertion depths [1]. 

 

 00 εθθ Stotal +=  (5.9) 

Where 

xK
KL

LS
θ+

=
2

and θK , xK  are the rotational and lateral stiffnesses respectively. 

 

Using the relations from equations (5.3) through (5.9), a two-dimensional plot can 

be created to visualize the possible combinations of initial lateral and rotational errors 

that will alleviate the concern of wedging. This plot is shown in figure 5-7. From this 

analysis, it has become apparent that wedging is primarily a function of the initial error of 

the peg relative to the hole. Thus, wedging avoidance actually becomes a design 

constraint for the accuracy of the visual compensation system and impedance controller 

more than compliance selection. As a result, the following diagram is used as a trajectory 

following performance goal for these controllers, but is not used to define the compliance 

settings of the system during fine motion insertion. In practice, the visual feedback 

system is able to actively align the peg and hole so accurately that wedging never 

becomes a concern.  
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Figure 5-7. Wedging diagram that sets boundaries for the amount of initial lateral and 
rotational error between the peg and hole that can be tolerated before wedging will result. 
These boundaries are a function of part geometry and friction. 
 

The region enclosed by the parallelogram in figure 5-7 indicates acceptable 

combinations of initial lateral and rotational error. The negatively sloped horizontal 

boundary lines are the result of the relation, S, between lateral error, compliance center 

location, and rotational error. For the case where the compliance center is located at the 

tip of the peg, these lines would be horizontal and the resulting plot would be rectangular. 

This is an indication that placing the compliance center of the peg at its tip is the best 

design decision with respect to wedging since that would result in the largest acceptable 

range of initial errors as shown by the wedging diagram. By removing the possible 

coupling between the translation and rotation of the peg due to interaction forces acting 

near its tip during chamfer crossing, the assembly process will be more likely to succeed 

in the face of initial positioning errors if the compliance center is located at the peg’s tip. 
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Now that the problem of wedging has been addressed, the focus of the rest of this 

study must be shifted to the avoidance of jamming. Jamming is caused by unfavorable 

combinations of forces that are applied to the peg and combine to produce a resultant 

force that is no longer acting close enough to the axis of insertion to push the peg into the 

hole. In this two-dimensional analysis, these forces consist of xF , zF , and M . Whitney 

produced the jamming diagram in figure 5-8 to graphically demonstrate the combinations 

of applied forces that can guarantee the avoidance of jamming [1]. These combinations 

are those that lie within the bounds of the parallelogram. This diagram is widely used in 

peg and hole assembly analysis, and it is adopted by this thesis. 

 

 

Figure 5-8. Jamming diagram used to set boundaries on the relation between insertion 
forces and reaction moments that will cause the peg to jam in its hole. The boundaries 
expand upward as a function of insertion depth as the peg advances into the hole, making 
success more likely as insertion depth increases. 
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Unlike the wedging diagram in figure 5-7, which had constant boundaries, the 

jamming diagram changes shape as a function of the insertion depth of the peg into the 

hole, l. This relationship is due to the variable λ , which partially defines the boundaries 

of the jamming diagram. This variable is defined by equation (5.10). 

 

 R
l
2μ

λ =
 

(5.10) 

 

Since the insertion depth is the only variable in equation (5.10), it can be seen that 

there is a direct relationship between λ and l. Thus, as the assembly process proceeds and 

the insertion depth increases, so doesλ . Looking back at figure 5-8, we can see that this 

increase also increases the height of the horizontal boundaries of the jamming diagram. 

The width of the vertical boundaries remains unchanged since they are a constant 

function of friction. This means that the likelihood of successful assembly increases as 

the peg is inserted farther into the hole, which is logical since the peg’s insertion forces 

are constrained to a more aligned position as the insertion depth increases due to the 

wiggle angle defined by equation (5.3). 

The jamming diagram defines the boundaries of the force and moment relations 

that lead to successful assembly. However, it does not provide any information on the 

values of the individual forces and moment applied to the peg during assembly. The 

equations needed predict the values of the individual forces and moment must be derived 

for each stage of assembly before the jamming diagram can be used. These applied 

forces, xF , zF , and M , are ultimately functions of the peg’s compliance variables, 
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positional error, and the geometry of the system. Since the geometry and positional error 

allowed by the visual controller are constants for any assembly task, the jamming 

diagram can be directly used to tune the peg’s compliance variables to achieve allowable 

combinations of forces that lie in the region of success in the jamming diagram. The 

production of contact forces is different for each stage of assembly. This requires the peg 

and hole system to be modeled separately for the three possible contact configurations; 

chamfer crossing, one-point contact, and two-point contact. 

Chamfer crossing is the state during which the peg slides along its chamfer after it 

makes initial contact with the rim of the hole when there is lateral error present. The 

equations for the forces generated during chamfer crossing when the system consists of a 

chamfered peg and non-chamfered hole are derived below. Figure 5-9 shows the general 

geometry of the chamfer crossing phase of assembly.  
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Figure 5-9. Peg and hole geometry during the chamfer crossing stage of peg and hole 
insertion. 
 

During chamfer crossing, the single point of contact between the peg and the hole 

is the source of the reaction forces and moments that act to correct the lateral and 

rotational error between the peg and the hole when the peg is compliantly supported. 

However, the main concern of this analysis is to find the acceptable forces that can be 

applied to the peg by the manipulator. This will guide the design of the impedance 

controller parameters needed by the WAM performing the insertion of the peg to 

successfully complete the assembly task. This is accomplished by calculating the 

positional errors of the peg and how much they deform the virtual one-dimensional 
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springs used to model the compliant support of the peg in this analysis. Accordingly, the 

peg’s error is measured by the position of the peg’s compliance center since this point 

defines how far the virtual springs must deform to accommodate the error. This is 

because the compliance center is the point on the peg on which the virtual springs 

directly act in the system model. Looking at the initial conditions of the peg and hole in 

figure 5-9, it can be seen that the rotational error is simply the rotational angle of the peg, 

θ , and lateral error is given by the function θε LU += 0 . If the instant shown in figure 5-

9 was the initial point of contact, then later equations would be defined using UU =0 and 

θθ =0  as shown in this figure.  Since this is the initial point of contact, it is assumed that 

the peg has not yet translated or rotated to accommodate positional errors. So the virtual 

springs supporting the peg have not yet deformed or produced any reaction to the contact 

forces applied to the peg at these initial lateral and rotational error values. Thus, any 

change in error from these initial conditions would result in a force applied to the 

compliance center of the peg by the two springs.  These initial conditions can be modeled 

by the following equation. 

 

 000 θε LU +=    (5.11) 

Where 0θ  is the initial rotational error. 

 



 

 

66 

 

Figure 5-10. Variation of chamfer angle with peg rotational error. 

 

To define an equation to relate the insertion depth of the peg to its resulting lateral 

position change, the design of the peg’s chamfer must be considered. Unlike the typical 

case of a flat-ended peg being inserted into a chamfered hole, this experimental system 

has chamfer angles that vary with the rotation of the peg relative to the hole. If figure 5-

10 is studied, the relation between insertion depth and lateral position change can be 

represented by equation (5.12).  

 

 
( )απθ −+

=
2tan

zX  (5.12) 

 

Using this relation, a comprehensive equation can be written to model the relation 

between lateral displacement and the resulting coupled rotation of the peg. This relation 

is given by equation (5.13). 
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( ) ( ) 0

2tan
sin ε

απθ
θ +

−+
−=

zLU

 
(5.13) 

 

However, two equations that represent θ  and U independently must be derived to 

find the equations of the forces applied to the peg as a function of both variables. To do 

this, equations representing the general forces present when the peg and hole are in quasi-

static equilibrium must be derived using statics. Figure 5-11 shows the forces being 

considered in this two-dimensional analysis. 

 

 

Figure 5-11. Free body diagram of the forces generated between the peg and hole during 
chamfer crossing. 
 

This problem is solved by considering the contact forces and the forces applied by 

the virtual springs separately. As mentioned earlier, the contact forces between the peg 

and the hole are friction limited, thus they can be written as a function of the friction 

between the two pieces. This is accomplished with equations (5.14) and (5.15). 
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( ) ( )( )απθμαπθ −+−−+= 2cos2sin1 Nff

 
(5.14) 

 
( ) ( )( )απθμαπθ −++−+= 2sin2cos2 Nff

 
(5.15) 

 

Since these two friction forces are the only external forces exerted onto the peg by 

the environment during chamfer crossing, these are the only equations necessary to 

completely model the contact forces and the forces applied to the peg by the virtual 

springs of the robot’s impedance controller. It is also worth noting that the moment 

applied to the tip of the peg is also a function of the friction forces acting about the 

compliance center of the peg by some distance that is a function of the lateral error and 

rotation of the peg. This small distance acts as the moment arms for the horizontal and 

vertical components of the friction force. Thus, the lateral and insertion forces and 

moment applied to the peg are given by equations (5.16) through (5.18).   

 

 1fFx −=  (5.16) 

 2fFz =  (5.17) 

 

( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−+
−−+−= )sin(

2tan
)cos( 021 θ

απθ
εθ LzRfzLfM

 

(5.18)

 

 

However, if it is assumed that the initial lateral and rotational errors are small, 

which is a valid assumption based on the requirements of the wedging diagram, the 

moment equation becomes much more simple as it can be closely approximated by 
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equation (5.19). This will greatly reduce the complexity of future equations representing 

θ  as a function of insertion depth. 

 

 rfM 2=  (5.19) 

 

The forces applied to the peg by the impedance controller of the robot are simply 

a function of the lateral and rotational displacements that result from the contact forces. 

This is because we have chosen to model the impedance controller behavior as a set of 

passive linear spring. These applied forces are represented by equations (5.20) and (5.21). 

Note that the insertion force, zF , is applied to the peg by the controller and is largely 

constant and not a function of the peg and hole interaction. Thus, it should be considered 

to be large enough to overcome the vertical component of the friction force, 2f , but it 

does not need to be solved to complete the static analysis model.  

 

 ( )UUKF xx −−= 0  (5.20) 

 ( ) ( )00 θθθ −−−= KUULKM x  (5.21) 

 

Combining equations (5.11) , (5.13)-(5.15), (5.19), and (5.21) derived for the 

chamfer crossing model results in the individual equation for the peg’s rotational error as 

a function of insertion depth. This equation is shown as (5.22). 
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( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )απθμαπθαπθμαπθ

απθμαπθαπθμαπθ
απθ

θθ
θ −++−+−−+−−++

−++−+−−+−−+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+
+=

2sin2cos2cos2sin

2sin2cos2cos2sin
2tan

20 LrKKLK

rLzK

xx

x

 

(5.22) 

Applying the assumption of small rotational error, this equation can be simplified 

further since the chamfer angle on the peg can be assumed to remain approximately 

constant as it will not vary considerably for small rotations. Thus, the equation for the 

rotation of the peg as a function of insertion depth becomes the following.

  

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )απμαπαπμαπ

απμαπαπμαπ
απ

θθ
θ −+−−−−−+

−+−−−−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+=

2sin2cos2cos2sin

2sin2cos2cos2sin
2tan

20
LrKKLK

rLzK

xx

x

 

(5.23) 

 

Similarly, an equation to model the lateral displacement of the peg during 

chamfer crossing as a function of insertion depth can be defined. This equation is shown 

below. 

 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )απμαπαπμαπ

απμαπ
απ

θ

θ

−+−−−−−+

−−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+=

2sin2cos2cos2sin

2cos2sin
2tan

20
LrKKLK

zK

UU
xx

 

(5.24) 

 



 

 

71 

If we plug equations (5.23) and (5.24) into equations (5.16) through (5.21), we 

can obtain an equation for the required insertion force, zF , applied lateral force, xF , and 

applied moment, M , as a function of insertion depth during chamfer crossing. These 

equations are given below. 

 

 

( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )( )απμαπαπμαπ

απαπμαπ

θ

θ

−+−−−−−+

⎟
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⎞

⎜
⎜

⎝

⎛

−
−+−

=
2sin2cos2cos2sin

2tan2sin2cos

2 LrKKLK

zKK

F
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x

z

 

(5.25) 
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 (5.26) 
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(5.27) 

 

Using these three equations, the ratios of the forces applied to the peg can be 

estimated to determine where they fall on the jamming diagram. In particular, we are 

interested in the ratios 
zrF

M

 
and 

z

x

F
F . Looking closely at these equations, it can be seen 

that they are only a function of insertion depth, compliance parameters, the coefficient of 

friction, and the chamfer angle of the peg. Since acceptable ranges for each of these ratios 
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is known for every insertion depth a priori based on the physical geometry of the peg and 

hole, these equations can be used to select acceptable ranges of the compliance 

parameters for each insertion depth. Keeping the compliance parameters of the 

impedance controller within these ranges during assembly will create an insertion system 

that is theoretically immune to wedging and jamming. Since chamfer crossing is only 

possible when at least some part of the peg’s chamfer is located outside of the hole, we 

know that equations (5.25)-(5.27) are valid as long as the insertion depth is not greater 

than the height of the chamfer. Next, the case of one-point contact is considered by the 

quasi-static peg and hole model. Figure 5-12 below shows the two-dimensional model of 

the one-point contact case. 

 

 

Figure 5-12. Peg and hole geometry and free body diagram for the one-point contact 
phase of assembly. 
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Using the one-point contact geometry model, the same force analysis must be 

performed. Following the same process used to study the chamfer crossing phase, the 

equation for the lateral displacement of the peg’s center of compliance can be found for 

the case when the peg has fully entered the hole. This equation is shown below. 

 

 )sin()sin( θθ zLcRU −+=  (5.28) 

 

For the one-point contact case, there is a single equation to model the relation 

between the lateral and rotational error of the peg relative to the hole. This equation is 

shown below. 

 

 ( ) θθθε lLcRUU +−+−=− 000  (5.29) 

 

Using the same equations to represent the peg’s contact and applied forces as in 

(5.16) through (5.21), the independent equations for the rotation and lateral displacement 

of the peg can be found for the one-point contact case. These equations are given below. 

 

 

( )( )
( )( ) θ

θ

μ
θθεμθ

KlLrlLK
KLcRrlLK

x

x

+−−−
++−−−

= 000

 
(5.30) 

 

( )
( )( ) θ

θ

μ
θε

KlLrlLK
LcRKUU

x +−−−
+−

−= 00
0

 
(5.31) 
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Substituting equations (5.30) and (5.31) into equations (5.16) through (5.21), 

results in an equation for the required insertion force, zF , applied lateral force, xF , and 

applied moment, M , as a function of insertion depth during the one-point contact stage 

of assembly. These equations are given below. 
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θ

μ
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(5.32) 
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(5.33) 
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(5.34) 

 

These equations can then be used to select compliance parameters that alleviate 

the possibility of wedging and jamming for insertion depths in which the one-point 

contact state is dominant. To finish the peg and hole modeling process, the same analysis 

must be performed for the case of two-point contact. The geometry of the two-point 

contact case is shown in figure 5-13 below. 
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Figure 5-13. Peg and hole geometry and free body diagram for the two-point contact 
phase of assembly.  
 

Unlike the previous two cases, an equilibrium force analysis does not need to be 

performed to find the equations for the rotation and translation of the peg as a function of 

insertion depth for the two-point contact case. This is because the system is fully 

constrained geometrically. The two-point contact analysis instead begins with the 

equation derived earlier to represent the wiggle angle for a peg that has been inserted a 

variable depth into its hole. This equation is reproduced below. 

 

 Rcl 2)tan( =θ  (5.35) 

 

After rearranging and modifying this equation so that it more accurately reflects 

the constraints imposed on the peg by the hole’s wall for all θ , the equation becomes the 

following. 
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( ) ( )θθ costan

2
rlR +=

 
(5.36)  

 

From equation (5.35), it can be shown that as insertion depth increases, the 

amount of possible rotational error decreases.  Since this analysis is being performed for 

the two-point contact phase of assembly, it can reasonably be assumed that the peg has 

been inserted a substantial distance into the hole by this assembly phase. This means that 

only small rotational errors are possible during this stage of assembly. Applying the small 

rotational error assumption transforms equation (5.35) into equation (5.37) shown below. 

 

 l
Rc2

=θ
 

(5.37) 

 

Substituting equation (5.37) into equation (5.29) from the one-point contact 

analysis results in an equation that relates the lateral and rotational error of the peg during 

the two-point contact stage of assembly. This equation is shown below. 

 

 ( )θθε −++=− 000 LcRUU  (5.38) 

 

A different approach must also be used to find the equations that model the 

required insertion force, zF , applied lateral force, xF , and applied moment, M , as a 

function of insertion depth for the two-point contact case. This is because there are new 

force equilibrium equations to account for the additional support location acting on the 
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peg where it has come into contact with the hole for a second time. Using figure 5-13, the 

following equilibrium equations can be found. 

 

 12 ffFx −=  (5.39) 

 ( )21 ffFz += μ  (5.40) 

 ( )121 ffrlfM −−= μ  (5.41) 

 

Combining equations (5.19), (5.20), (5.37), and (5.38) with the above equilibrium 

equations for the two-point contact case will result in two equations for the lateral force 

and moment equations of the peg. These two equations are shown below. 

 

 
( )cRK
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⎛ −−= 00 εθ

 
(5.42) 

 
( ) ( )cRLK

z
RcKLKM xx ++⎟
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⎞

⎜
⎝
⎛ −+= 00

2 2 εθθ
 

(5.43) 

 

Finding the insertion force, zF , is a little more involved since it must be 

compatible with the force and moment produced by equations (5.42) and (5.43).  

Equations (5.39) through (5.41) can be combined to yield the following compatibility 

equation for the three forces of interest. 
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( )λμλ +−±= 1

z

x

z F
F

rF
M

 
(5.44) 

Where 
μ

λ
r
l

2
=  from equation (5.10).

 

 

Substituting equations (5.42) and (5.43) into this compatibility equation and 

solving for zF  yields the following equation to model the required insertion force as a 

function of insertion depth for the two-point contact state. 
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(5.45) 
 
 

Two-point contact only occurs after the peg has been inserted far enough into the 

hole to reach both sides of the hole for a given rotation angle. Using a simplified force 

analysis, Whitney showed that in general, two-point contact will begin at the following 

insertion depth [1]. 

 

 0
int2

2
θ

Rcl postart ≅−  (5.46)
 

 

He also states that two-point contact can be shown to terminate around the 

following insertion depth. At this point, the two-point contact turns into line contact, 
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where the peg is resting flat against the inner wall of the hole as shown in phase five of 

figure 5-1. 

 ( ) int2
0

0
int2 postart

x
poend l

cRK
Kl −− −

+
≅

ε
θθ

 
(5.47)

 

 

This is the last equation needed to model the peg and hole system with respect to 

the jamming diagram. This model will allow the designer to select compliance values that 

theoretically guarantee successful assembly.  Combining this jamming diagram analysis 

with the results from the modeFrontier impedance controller parameter optimization 

performed in section 7.4 will produce a range of each compliance variable for which 

successful assembly is guaranteed. The complete design process and an overview of the 

modeFrontier optimization software is provided in Chapter 7. 

 

5.2   Coupled Impedance Control Stability Analysis 

The previous section derived the peg and hole model that will be used to design 

the stiffness parameters for the impedance controller of the WAM holding the peg to 

guarantee wedging and jamming will not occur. However, the effects these stiffness 

changes have on the overall stability of the coupled system that results from the 

interaction of two impedance controlled robots should also be considered. For this 

analysis, the physical equivalence conjecture will be applied to the coupled system. This 

conjecture says that the impedance controller, which behaves as a spring-mass-damper 

system, must follow the same stability requirements of an equivalent physical spring-

mass-damper system. The following section uses this method to perform a robustness 
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analysis for an equivalent physical system that embodies the stiffness settings chosen to 

accommodate the peg and hole assembly process.  The first step in this analysis is the 

creation of a one dimensional spring-mass-damper model that represents the dynamics of 

the coupled system. There are many approaches to the design of this model that can be 

chosen depending on the complexity and number of system properties needed to 

accurately represent the behavior of the robotic system. In this case, a linear two DOF 

spring-mass-damper model will be designed to model the behavior of the coupled system. 

For the case of a linear system, Colgate [62] proved that the system must have a 

positive real driving point impedance at any interaction port at which the impedance 

controller interacts with a passive linear environment to be guaranteed to be stable. One 

approach to impedance controller stiffness design that satisfies this requirement is to 

simply make the robot considerably more stiff than everything the robot will be 

interacting with, allowing the robot to reject error through higher control forces. 

However, this will not be a viable solution in this experimental system as two robots are 

to be working together. In this configuration, both robots cannot be significantly stiffer 

than each other, so a more intensive design process must be performed.  

The hardware used in the MTTC robotics research lab consists of two WAM 

robots that will be working together to insert a peg into a hole. To analyze the stability of 

this system using the techniques developed by Hogan and Colgate [62], a linear physical 

system must be created to model the coupled system that occurs during assembly when 

the two robots are interacting with each other.  The resulting model is shown in figure 5-

14. In this figure, 1M represents the effective mass of the robot’s peg end effector as it is 

seen by the impedance controller. In other words, the value defined for this mass should 
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represent the total mass experienced by the impedance controller after the effects of 

inertia and gravity compensation have been added to the control system. 1B  represents the 

physical damping that results from joint friction and inertia that are inevitable as the 

insertion robot is moving. This damper is located behind the mass since it acts to slow 

movement in the physical system. 1K represents the stiffness of the entire WAM 

drivetrain, to include backlash and backdrivability. This is placed in front of the mass 

since it acts to push to the end effector of the insertion WAM as seen by the controller.  

E is the impedance control force that is applied to the peg by the WAM as it is inserted 

into the hole. This is where the variable compliance controller acts to modify the stiffness 

of the system associated with the robot’s motion. The control force, E , is a function of 

the impedance controller. In its most simple implementation, E takes the following form. 

 

 ( ) ( )0202 VVBXXKE EE −−−−=  (5.48) 

 

Since it is assumed that the coupled robotic system can be approximated by the 

linear model shown in figure 5-14, equation (5.48) represents the only impedance control 

terms that can affect the stability of the coupled system. It is also worth noting that it is 

beneficial to separate the physical stiffness and damping values from those virtually 

imposed by the impedance controller. This models the fact that there are others factors 

working in the system that the controller must compensate for, such as the uncontrolled 

compliance of the robot’s hardware. This allows the design process to accommodate the 

natural behavior of the coupled system to obtain better performance from the system. To 
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model the passive environment created by the other WAM holding the hole, the right side 

of the linear model consists of a mass that is compliantly supported by a spring and 

damper that are imposed by the second impedance controller. These variables are 2M , 

2K , and 2B respectively. The general behavior of the second WAM is the reason it was 

modeled differently. Unlike the WAM holding the peg that moves to perform the 

insertion, the passive half of the system is only capable of remaining as stationary as 

possible and absorbing forces from the peg. It can only be displaced from its initial 

position and return to it. The force acting on the passive system, F , is the reaction force 

that is generated during contact. The one dimensional model of the coupled system is 

illustrated in figure 5-14. 

 

 

Figure 5-14. Spring-mass-damper physical equivalence model of the coupled dual 
impedance controlled robot system. 
 

To analyze the stability of the system, a transfer function that represents the 

dynamics of the system must be developed. This can take on two forms, either a ratio of 
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the Cartesian position to input force or it can also be in the form of Cartesian velocity to 

input force, which is the transfer function used in this case. Figure 5-14 is a two degree of 

freedom system since each mass can remain still while the other moves. This means that 

two separate equations are needed to define the behavior of the system. These equations 

of motion for each mass were found using the free-body diagram superposition method. 

The Laplace transforms of the two equations of motion are shown below.  

 

 ( ) )()( 11
2

1121 sXKsMsBsXKE ++−−=  (5.49) 

 ( ) )()( 2
2

212211 sXsMKsBKsXKF +++−=  (5.50) 

 

After taking the inverse Laplace transform of the above equations and assuming 

that there are zero initial conditions, the following two equations that lie in the time 

domain will result. 

 

 11111121 XKXMXBXKE −−−−= &&&  (5.51) 

 2221222211 XMXKXBXKXKF &&& −−−−=  (5.52) 

 

Using these equations, it is easy to find the state equations for the one 

dimensional system. First, the following variable definitions are made to relate the 

acceleration, velocity, and position of each mass. 
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Then the state variables are chosen to be 1X , 1V , 2X , and 2V . Using these 

selections, the time domain equations of motion become the following.  

 

 11111121 XKVMVBXKE −−−−= &  (5.53) 

 2221222211 VMXKVBXKXKF &−−−−=  (5.54) 

 

Writing these equations in vector matrix form gives the state representation of the 

system. 
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 (5.55) 

 

Now that the system has been modeled, the control equation stated in equation 

(5.48) can be applied to find the transfer function that relates the net force input into the 

system to the system’s output velocity. The reason this transfer function was chosen, as 
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opposed to finding the transfer function of net force to displacement, is due to the 

velocity controlled nature of the impedance controller. As mentioned in section 4.1, 

impedance control is based around the Jacobian matrix, which relates joint velocity to 

Cartesian velocity. So the velocity transfer function should provide a better model of the 

actual robot dynamics from the impedance controller perspective. The focus of this study 

is to consider the coupled effects of the system once the two robots have come into 

contact with each other. As a result, the system will be studied from the reference frame 

of the hole, which will only have a velocity output after contact has been established 

between the peg and hole. The resulting transfer function is shown below. 
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(5.56) 

 

Even though the one dimensional model derived earlier applies directly to the 

state of contact between the robots, it must be shown that the system, including the 

selected impedance parameters, satisfies the conditions for both free-space and coupled 

stability to prove that the system is globally stable.  Colgate and Hogan clearly derived 

these conditions for stability. They proved that in order for the system to be stable under 

free-space operation, the poles of the above transfer function must lie in the left half 

plane. They also proved that in order for the controlled system to be stable when coupled 

to a passive environment, the transfer function must also be positive definite.  Applying 

each of the constraints to the above transfer function yields a set of inequalities that will 
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be used to guide the selection of the impedance controller variables. It is also worth 

noting that because the WAM manipulating the hole is always set to some nominal 

stiffness and damping coefficients that do not vary, the only variables in the coupled 

system model become the stiffness and damping impedance control parameters of the 

WAM guiding the peg into the hole.  These stiffness parameters are the same variables 

that were used in the previous section to guarantee successful assembly. Thus, a set of 

stiffness and damping values that satisfy both sets of constraints will result in a coupled 

assembly system the guarantees successful assembly and controller stability. This is 

essentially the analysis that will be performed Chapter 7. 

Appling the left hand plane pole position constraint to the denominator of the 

transfer function results in the following constraints that must be satisfied by the 

impedance controller’s virtual stiffness and damping. Satisfying these constraints will 

guarantee the stability of the system when it is operating in free-space, or when the 

contact force, F , is zero between the peg and hole. 
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Applying the positive definite function condition to the transfer function produces 

the following constraints on the impedance control variables. These constraints must be 

satisfied to guarantee that the system will also remain stable when the two masses in the 

model are coupled and a contact force is being exerted on the insertion WAM’s 

impedance controller.  
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Similar to the wedging and jamming diagrams shown in the previous section, 

these inequalities can be plotted on a single two-dimensional plane to visualize the effects 

of each constraint. The axes of this stability constraint plot correspond to the impedance 

controller’s stiffness and damping parameters, EK and EB . The completed plot will 

enclose an area that represents all of the possible combinations of stiffness and damping 

parameters that can be chosen to meet the requirements of a globally stable system. To 

show what a plot of the two-dimensional constraints would look like, an example system 

with the following parameters as related to figure 5-14 will be studied. 
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If each of the constraining equations (5.57) through (5.62) are plotted for these 

variables as functions of the impedance controller’s stiffness and damping values, the 

following plot of the boundaries placed on the parameters by each condition is the 

produced. There is an obvious and large area on the plot that corresponds to combinations 

of damping and stiffness that satisfy all of the stability requirements of the system. This 

area is cross hatched in the plot in figure 5-15.  

 

 

Figure 5-15. Graphical representation of the constraints imposed on the stiffness and 
damping gains of the peg’s impedance controller by the coupled system stability criteria. 
The shaded region represents the acceptable combinations of stiffness and damping. 
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These ranges of acceptable stiffness and damping gains are then tested using the 

peg and hole analysis from the previous section to find combinations of the variables that 

also provide guaranteed avoidance of jamming in addition to coupled stability. The 

acceptable combinations of variables that satisfy both sets of requirements are then 

programmed into the variable compliance controller developed in the next chapter. This 

enables the system to vary the stiffness of the peg between acceptable combinations of 

variables as needed during assembly to avoid wedging and jamming. This process is 

described in more detail in the following chapter.  
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CHAPTER 6 

SYSTEM LEVEL CONTROLLERS 

 

In this chapter, the design and performance of the system level controllers that run 

on the main control computer are presented. These include the visual trajectory 

compensation controller and the variable compliance controller. The following section 

provides an overview of the of the computer vision system that provides sensory 

feedback to the trajectory compensation controller. 

 

6.1   Vision System 

To provide the feedback information needed by the trajectory compensation 

controller, the vision system needs to be capable of performing three tasks. First, it must 

be able to recognize which object is the peg and which is the hole within its field of view. 

It must then find and track the pixel coordinates that correspond to the X and Y position 

of the tip of each part within the camera’s image plane since this is the most important 

part to be aligned during assembly. Finally, the vision system must also measure the 

orientation of the parts in the image plane to allow the bodies of the peg and hole to be 

aligned along the axis of insertion. The system designed to provide this visual feedback 

was designed to be as simple as possible. This was done for two reasons. First, there are 

many different forms of stereo triangulation and multi-camera projection that are capable 

of providing this type of information. However, each of these systems must be carefully 

calibrated to achieve the sub-millimeter accuracy that is beneficial to the peg and hole 

assembly system. The calibration process can be tedious and must be redone every time 
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the cameras are moved in any way. Eliminating this setup step is a huge advantage in the 

MTTC robotics research lab since its equipment is moved from day to day to 

accommodate different research projects. Second, and most important, eliminating the 

complexity associated with more cameras or triangulation algorithms increases the speed 

at which visual information is output to the controller. The compiled code that makes up 

the system level controllers runs at a speed close to 100Hz, while well designed 

triangulation algorithms typically hover around the 20Hz range with the available 

computing power of the control computer. This is a huge bottleneck that notably affects 

the performance of the system. Simplifying the vision system increases the bottleneck 

speed to about 80Hz, which allows the controllers to compensate for system errors four 

times faster. 

The general goal of the vision system is to monitor all six DOF of the peg and 

hole. However, the axisymmetric peg and hole studied in this thesis eliminates the need 

to monitor the rotation of the parts about the axis of insertion since any changes to this 

DOF will not affect the performance of the system. As a result, the vision system needs to 

only be able to provide five DOF measurements to the controllers for feedback. The 

minimum number of cameras required to provide this five DOF information is two. 

Increasing the number of cameras increases the demand on the FireWire based image 

acquisition hardware and slows the system, so it is beneficial to keep the number of 

cameras to a minimum. This is accomplished in the experimental system by placing the 

cameras so that each can capture three DOF, with one DOF being redundant between 

them. In this case, the redundant information is the position of the parts in the X direction. 
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The two cameras required by the system are placed so that each camera views a different, 

but orthogonal plane as shown in figure 6-1 below. 

 

 

Figure 6-1. Two-camera placement strategy relative to the coordinate system attached to 
the WAM holding the peg. This camera placement strategy provides the necessary five 
DOF visual information to the system level controllers. 
 

Now that the desired orientation for the minimum set of cameras has been 

achieved, the design and programming of the image processing algorithm can begin. The 

first step to be accomplished by the vision system during image processing is the 

recognition of the peg and hole in each image. This requires each camera to read an RGB 

color image and input the data into the system. It was also chosen to limit the resolution 

of the images produced by the cameras to 320x240 to increase the speed at which the 

cameras could update the visual information, and also the speed at which the control 

computer could process it. Once each camera has input its data into the system, the 

images are run through a simple color filter that enhances one color channel while 
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filtering out the remaining two unwanted color channels. This method is fast and easily 

facilitates the color recognition of each part. Accordingly, the object recognition phase 

has been simplified by using a color coding system that colors the peg with red vinyl 

adhesive tape and the hole with blue. The filtered data is then passed through a 

thresholding block that eliminates any pixels that could be false color matches. This 

block outputs a value of one to an image matrix if the color is a match and a zero if it is 

not. The output of the thresholding block is a 320x240 binary image that is processed by 

a blob analysis block that recognizes the large color mass left in the image after filtering. 

This block approximates the blob with an ellipse and outputs the pixel coordinates of the 

centroid of the blob, its orientation relative to the positive X axis in the image plane, and 

the length of its major axis. Using this geometric information, another block calculates 

the pixel coordinates of the tip of the peg and hole, which are the two points that must be 

aligned during the approach phase of assembly. Figure 6-2 below shows the input color 

image along with the two binary images produced by the red and blue filters.  

 

 

Figure 6-2. Binary images produced by the vision system after color filtering with the 
calculated pixel coordinate location of the tip of each part marked by an “X”. The figure 
on the right shows the actual color image that was input into the system by the camera. 
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This simple vision system is capable of providing all the data needed by the 

system level controllers at a speed that is notably faster than other vision systems that are 

based on triangulation. Since the relative position information produced by the vision 

system is represented in pixel coordinates, as opposed to Cartesian coordinates, a form of 

visual servoing that is capable of working with pixel based measurements must be 

adopted. This proved to be quite advantageous as the pixel based system offers sub-

millimeter accuracy for the camera placement strategy used in this experimental setup. 

The visual servoing controller for trajectory compensation developed for this system is 

explained in the following section. The completed Simulink model that intakes image 

data from two cameras and outputs the [ ]ZY RRZYX ,,,  measurements for the peg and hole 

is shown in figure 6-3 below. 

 

 

Figure 6-3. Simulink model that performs all image acquisition and processing to provide 
the relevant positional measurements to the control system. 
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6.2   Visual Trajectory Compensation Controller 

The WAM robots are controlled by an impedance controller as described in 

Chapter 4. This system operates much like a feed forward control loop, as the appropriate 

joint torques to execute a desired command are calculated by the controller and sent to 

the robots at each time step of two milliseconds. While this type of control is great for 

stability and controlling the interaction between the robot and its environment, there is no 

closed loop system to ensure that the end effector of the WAM accurately follows the 

desired Cartesian trajectory. Also, impedance control fundamentally imposes a tradeoff 

between positional accuracy and the compliance of the end effector. For example, a robot 

running an impedance controller with a very low stiffness struggles to generate enough 

control force to rigidly follow a trajectory as it stretches away from its base. This is 

because the stiffness control gain would not be large enough to generate substantial 

forces to compensate for small errors. The trajectory following problem becomes even 

more difficult in this system where the stiffnesses are continuously varying, effectively 

also continuously varying the amount the end effector of the robot droops due to gravity 

and modeling errors. The compliance afforded to the system can often make up for some 

of this positional uncertainty in the case of chamfered peg and hole assembly by allowing 

the peg and hole to correct themselves as a result of contact forces. However, a high level 

of trajectory following accuracy is beneficial since relatively large initial positional and 

rotational errors, 0ε  and 0θ  respectively, were shown to be the primary cause of wedging 

and jamming in the previous chapter. 

To boost the positional accuracy of the complete system, visual feedback has been 

added to provide closed loop behavior to the impedance controller.  This could have been 
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accomplished in a number of ways, but the strategy chosen here was to modify the 

Cartesian trajectory of each WAM to account for robot droop and align the peg and hole 

during the approach phase of assembly. This requires the vision system to recognize the 

relative positions of the tip of the peg and hole as well as their respective rotations. Then, 

a controller takes the error between the pixel coordinate and rotation measurements and 

compensates the trajectory input to each WAM, essentially “bumping” the end effector of 

the robots in the correct direction to completely align them.  

The goal of the closed loop system is to eliminate all of the positional error to 

exactly align the peg and the hole. This implies that the steady-state characteristics of the 

controller are more important than the transient behavior, assuming that the controller 

responds with reasonable speed. For this reason, two types of controllers were 

considered: PID and Finite State Machine (FSM). Though both controllers will produce 

similar results, they work in fundamentally different ways. The PID controller accepts the 

desired trajectory input and pixel coordinate error signal and computes a new trajectory 

to send to the WAMs on the fly to achieve the desired trajectory. However, the FSM 

builds and continuously modifies a cumulative six DOF compensation vector that is 

added to each desired six DOF trajectory input as it is sent to the impedance controller to 

achieve the desired trajectory. Since the peg typically only travels a short distance along a 

straight line and the hole is held still during assembly, the compensation vector for each 

robot becomes relatively constant as the controller runs. This is because the vector is 

essentially compensating for the robot’s kinematic modeling error that is due to small 

uncertainties in its mass and inertia properties.  These modeling errors are also constant 

for small movements. 
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The basic closed loop structure of the trajectory compensation system is the same 

no matter which type of compensation controller is implemented. The block diagram 

representing the closed loop control system is shown in figure 6-4 below. In this figure, 

( )sA  represents impedance controller of the WAM holding the peg while ( )sB  

represents the impedance controller of the WAM holding the hole. These two systems 

essentially interact to form their own closed loop system that is governed by the transfer 

function of the spring-mass-damper model found in section 5.2. The vision controller 

must precede this system to intercept and modify the incoming desired trajectory data to 

compensate for the positional errors of the system. The error signal is continually 

generated at 80Hz from the vision system, as opposed to other forms of time delayed 

sensors, so there is no direct feedback from the physical system’s output. 

 

 

Figure 6-4. Block diagram showing the relation of the trajectory compensation system to 
the impedance control system. ( )sA  represents the output motion of the peg and ( )sB  
represents the reaction to the movement caused by contact with the hole. 
 
 

The first type of controller considered for use was the PID, or proportional-plus-

integral-plus-derivative, controller. This type of controller was chosen because it offers 

very good transient and steady-state tracking behavior due to its derivative and integral 

actions, respectively. Using the transfer function of the spring-mass-damper model from 
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section 5.2 as the plant, the Simulink block diagram shown in figure 6-5 was created to 

model the behavior of the PID controller in response to both a step and sinusoidal input. 

The PID controller was designed using the Matlab control system design toolbox and 

tuned for optimum performance with respect to steady-state error, stability, and control 

“chatter.” The performance of this system is shown and compared to that of the FSM 

controller in the following paragraphs. 

 

 

Figure 6-5. Simulink block diagram used to simulate the performance of the PID 
compensation controller in response to a step input. The transfer function representing the 
behavior of the coupled system was derived in section 5.2.  
 

The second type of controller considered for the visual feedback compensation 

loop is fundamentally different than the first. The FSM controller operates by accepting 

input error data, classifying it based on magnitude criteria, then transitioning the system 

into the appropriate state to add or remove compensation from the system, at which point 

the controller returns to its initial state to accept more data. The FSM designed for this 

system is shown in state diagram in figure 6-6. In this FSM, t is the time step of the 

model, tmax is the total time length of the robot’s planned trajectory, T is the running 

standard deviation of the joint torque values, and cth is the contact threshold, which 

identifies how much the joint torque standard deviation should change to signify that the 

assembly process has been completed.  
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Figure 6-6. State diagram showing the logic and transitions of the visual finite state 
machine trajectory compensation controller for a single WAM.  
 

This controller starts in the “Next Desired Position” state, in which the next 

desired Cartesian goal point for the robot is input into the system from the desired 

trajectory. If the trajectory has not already run longer than it was planned, the goal point 

is sent to the impedance controller of the WAM. Then the controller executes the 

command and moves the WAM to the new position. If the vision system detects that 

there is no error between the alignment of the peg and hole, the system moves to a state 

where no additional compensation is added to the system, and the next trajectory point is 

input into the system. If, however, the vision system detects that there is positional error 

between the peg and the hole, the system instead moves to the “modify compensation” 

state. In this state, each element of the system’s continuously modified six DOF 

compensation vector, which is initially set to be a zero vector, is either increased or 

decreased to correct the system’s error. The FSM model of this compensation block is 
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shown in figure 6-7. This state essentially classifies the error as greater than or less than 

several error threshold values, eth , and increases or decreases the compensation vector a 

fixed amount that is proportional to the size “class” of the error. This compensation 

vector is then added to the next desired goal point that is input to the impedance 

controller to compensate for the errors present in the previous step. 

 

 

Figure 6-7. State diagram showing the transitions and logic of the compensation vector 
modification block. 
 

As the WAM is following the trajectory, it is also writing its joint torque readings 

to the reflective memory where they are available to the control computer, which keeps a 

running standard deviation for each joint. The FSM controller will check this data for a 

sudden spike in the standard deviations, which implies that a joint instantaneously has to 

work harder than before to follow the trajectory, indicating the peg has contacted the 

back of the hole and the assembly is complete. The control computer then transitions to 

another state that instructs both WAMs to remain idle so they do not generate excessive 

force between the peg and the back of the hole.  
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Another Simulink model was created to test the step and sinusoidal input response 

performance of the FSM controller. The FSM structure was implemented using an 

embedded Matlab code because it runs slightly faster than the comparable Matlab 

Stateflow models. The completed simulation model is shown in figure 6-8. 

 

 

Figure 6-8. Simulink model used to simulate the performance of the finite state machine 
in response to a step input for the transfer function derived in section 5.2. 
 

 Now that the simulation models were completed, the performance of each 

controller could be compared. To run simulations, however, model parameters such as 

mass and stiffness had to be defined to complete the coupled system’s transfer function 

used for the plant of this simulation. The following example parameters, which 

correspond to the spring-mass-damper coupled system approximation in figure 5-14, 

were chosen and substituted into the transfer function.  
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With the transfer function completed, the simulations could be performed. The 

first performance test measured the response of each controller to a step input. The results 

of each controller are shown in figure 6-9. 

 

 

Figure 6-9. Step response of the PID trajectory compensation controller versus the step 
response of the FSM compensation system. 
 

Both controllers behaved as expected. The PID controller has very good transient 

response with a 0.00888 second rise time. However it also demonstrates 10.5% overshoot 

and settles with some steady state error. The FSM on the other hand, essentially operates 

as a proportional-plus-integral (PI) controller because the cumulative compensation 

method that continuously adds compensation to the system that is proportional to the 

error signal essentially implements PI behavior. As a result, the FSM controller has 

slower rise time due to its lack of derivative action. However, the FSM demonstrates 0% 
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percent overshoot and no steady state error. Both of these factors, coupled with its 

reasonable rise time, mean that the FSM controller is the better choice for this system. 

The next test demonstrated the ability of each controller to follow a transient 

input, which was modeled by a sinusoidal input. The results of each controller for this 

test are shown in figure 6-10 below. 

 

 

Figure 6-10. Transient trajectory following performance of the PID trajectory 
compensation controller and FSM compensation system for a sinusoidal input. 
 

The same conclusion can be drawn from this simulation. While the PID controller 

has a slight advantage in transient response, the FSM controller is the clear winner in 

steady-state error, which was the most important design goal. Due to these simulations, 

the FSM controller was the design implemented in the final system. The FSM controller 
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has another advantage over the PID controller that does not show in these tests. This 

advantage is the fact that unlike the PID controller, an FSM cannot be unstable. This is 

due to the strictly bounded compensation allowed by the system’s programming. There 

has been limited research on the stability of state machine controller design. Gore 

presented two concepts that indicate a stable FSM design in one article. The first stability 

concept says that changes made to the behavior of a single state in the total state machine 

should not affect the implementation of the rest of the system. The second concept is 

similar to the idea of mesh size in numerical computation. This idea states that the state 

machine should be designed such that every state is used during a run and there are 

sufficient interfaces to move to each state [60].  In another paper, Tarraf et al. used a 

mathematical model of the finite state machine to determine the stability of the controller 

using a linear algorithm that checked the system for three properties. These properties 

were finite gain input-output stability, external stability, and incremental input-output 

stability. Each of these requirements focuses on the need of the system to handle inputs 

consistently and in a bounded way [61]. The FSM presented in this section fulfills all of 

these requirements, so it is assumed that it will remain stable for all cases. Thus, the 

stability of the entire system will not depend on any of the visual feedback components of 

the controller. This greatly simplifies the optimization and design problem by removing 

variables from the system. 

One final test was run to physically prove the benefits of adding the visual 

feedback loop to the impedance controller. The WAM holding the peg was commanded 

to move the tip of the peg to a height of 158 millimeters above its base. The hole end 

effector of the other WAM was placed such that its center was exactly at a height equal to 
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the target 158 millimeters, but located about ten centimeters in the positive X direction 

away from the peg’s starting position. A horizontal trajectory was then sent to the WAM 

to command it to move towards the hole. While the WAM was moving, it also output a 

structure containing its actual trajectory to Matlab. If all of the parameters of the 

impedance controller perfectly modeled the physical WAM system, it would be able to 

perfectly follow this trajectory and insert the peg into the hole without help from the 

visual compensation system. However, the impedance controlled system actually does 

not reach its target height as a result of modeling error and the moderate stiffness gain 

applied to the impedance controller. This test is most concerned with the ability of the 

system to compensate for the vertical position errors due to the effects of gravity, since 

the impedance controller was proven to perform more accurately in the other directions in 

chapter 4. While the uncompensated peg may only be 1.5 millimeters below its goal 

height in this test, it was shown in Chapter 5 that small initial errors in alignment between 

the peg and hole can cause them to wedge almost instantly. Once the visual compensation 

loop was turned on, the system compensates for the droop in the WAM due to the 

impedance controller error and the peg is able to very accurately follow its target 

trajectory and align itself with the hole. The results from this test are shown in figure 6-

11. 
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Figure 6-11. Actual trajectory following performance of the WAM in the most difficult 
vertical direction with and without visual compensation as a function of motion time. 
 

6.3   Variable Compliance Controller 

After the vision system has aligned the peg and hole and the compensation 

vectors have settled at a near constant value, the system will transition to another state 

that performs the fine motion assembly using a variable compliance controller without 

visual feedback. During this phase of assembly, the WAM holding the peg is be 

commanded to move along a short cubic trajectory following the axis of insertion while 

the WAM holding the hole is compliantly held at a constant position with a constant 

stiffness. This is because the assembly process is based on the equations derived for a 

compliantly supported rigid peg being inserted into a rigid hole in Chapter 5.  The hole’s 

fixed compliance is used to predictably generate reaction forces to correct the 

compliantly supported peg’s positional error during assembly.  The compliance of the 

peg, however, is varied as it is being inserted into the hole to change how the system 
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reacts to contact forces. Generally, high lateral stiffness is assigned along the axis of 

insertion while the stiffness gains in all other directions are left low to allow the parts to 

passively slide away from the commanded trajectory in the directions normal to the wall 

of the hole as shown in figure 6-12. This behavior allows the system to accommodate 

contact forces and avoid jamming. Additionally, the rotational stiffnesses are varied 

simultaneously with the changes in lateral stiffness to maintain the correct force and 

moment relationships described in by the jamming diagram in Chapter 5. This is 

described in more detail in Chapter 7.  

 

 

Figure 6-12. Example of the stiffness gains that are set for both the peg and the hole 
during assembly.  The length of the vectors indicates the strength of the stiffness along 
that direction. 
 

Qualitatively considering the peg and hole insertion problem makes it is easy to 

see why varying the compliance of the peg will increase the chances of a successful 

assembly. As a human inserts a peg into a hole, they will naturally allow that peg to 

follow its own self-corrective path into the hole. For example, if a peg moving with a 
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moderately stiff compliance comes into contact with the wall of the hole, it naturally 

wants to “glance” off of the constraint and redirect its tip away from its initial direction of 

movement to move along the wall and complete the assembly process. In this instant, the 

stiffness of the peg’s support should decrease to accommodate these reaction forces and 

allow this motion to take place. However, once the peg has momentarily realigned itself 

with the hole, it is beneficial to return to the original, higher stiffness to ensure that the 

peg remains in the control of its support and not that of the hole. 

Based on the logic of the above description, the desired goal system must be able 

to temporarily relax the compliance of the peg as errors build due to misalignment. This 

requires a system to be designed that can impose this behavior on a WAM. Due to the 

simple behavior of the desired system, a basic proportional controller has been 

implemented to actively change the stiffness gains of the impedance controller based on 

the magnitude of an error signal generated by the peg and hole misalignment. However, 

there are many options available for the source of this error signal. The original controller 

design used the vision system to generate an error signal based on the visually 

measureable rotational misalignment between the peg and hole in each camera frame. 

However, this turned out to be an unreliable error source due to the success of the FSM 

visual compensation system. The peg and hole are often aligned so well that the error 

signal was on the order of thousandths of a radian. Combining such small numerical 

values with the relatively noisy signal produced by any vision system caused 

unpredictable compliance control. Combine this issue with the fact that the vision system 

is about six times slower than the impedance controller and it becomes obvious that a 

better error source is to be desired. The most accurate and fastest sensors available to the 
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control system are the joint encoders on each WAM, so it was thought that these sensors 

would produce the best error signal. 

Chapter 4 described the impedance controller’s relation between Cartesian 

position error and output controller force. This is the basis used for the construction of the 

error signal for the variable compliance controller. Along the axis of insertion, the 

compliance controller assigns a constant and relatively high stiffness to the peg as 

explained earlier. This means that as the peg follows its cubic trajectory into the hole 

along this axis, it should be closely tracking the desired positions. If there is any 

positional error along the axis of insertion, it will combine with the high stiffness to 

directly produce large insertion forces to correct the positional error of the tip of the peg. 

Large insertion forces imply that the peg and hole are on the verge of wedging and 

jamming since a portion of the WAMs effort is now being stored in the peg and hole in 

the form of elastic deformation. Increasing the compliance of the system by decreasing 

stiffness gains in the non-axial directions will allow the internal forces between the peg 

and hole to translate and realign the parts, causing the insertion force, and its 

corresponding axial positional error to decrease.  Using this method, an error signal can 

be accurately and quickly produced for the variable compliance controller based on the 

positional error between the actual position of the WAM and its desired trajectory along 

the axis of insertion. A block diagram of this controller is shown in figure 6-13. The 

control law equations that relate displacement error to lateral and rotational stiffness gain 

change within the “Compute Stiffness Parameters” block are given by equations (7.1) and 

(7.2). They are derived as a homogeneous part of the optimization process and are 

presented in section 7.5 of the following chapter. 
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Figure 6-13. Block diagram representation of the proportional variable compliance 
controller. Changes in compliance are proportional to positional error between the peg’s 
desired and actual positions along the axis of insertion. 
 

Now that the basic control structure is completed, the final task of the design 

process is to define the optimum stiffness gains for the peg to use as a starting point. 

Also, the amount the stiffness gains are allowed to decrease must also be derived and 

programmed into the variable compliance control law. This is important since there is a 

lower limit to the peg’s compliance as described in the design process covered in the 

following chapter. The Simulink model of the complete system-level control structure is 

shown in figure 6-14. During operation, this control loop compensates for trajectory 

errors and computes new stiffness parameters at a rate of 80-100Hz. 

 

 

Figure 6-14. Complete Simulink model that performs all system-level control computer 
functions when run.  
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CHAPTER 7 

PARAMETER OPTIMIZATION 

 

In this chapter, the complete system model developed in Chapter 5 is used to 

optimize the variable impedance control parameters with respect to success, measured by 

the jamming diagram, and system stability. The range of acceptable stiffness values is 

also defined to prevent the variable compliance controller from moving the combination 

of compliance variables to an unacceptable level. The final result of this chapter will be 

the control law equations that are input into the variable compliance controller to perform 

the experimental peg and hole assembly task. 

 

7.1   Applying the Stability Criteria 

Now that the structure of the cooperative robotic insertion system and the 

theoretical model to predict its behavior had been completed, the impedance controller 

parameters, which are the only variables in the system, could be selected to impose the 

desired behavior on the system. The first step in the design process was the consideration 

of the constraints imposed on the stiffness and damping impedance controller gains by 

the coupled system stability analysis presented in section 5.2. This was accomplished by 

plotting equations (5.57) through (5.62) for the physical parameters of the known 

experimental system. These physical parameters include the effective mass of the end 

effector of each robot, the effective stiffness and damping of the uncontrolled robot 

mechanics plus the controlled impedance controller output force supporting the hole end 

effector, and the amount of uncontrolled stiffness and damping associated with the 



 

 

112 

insertion robot’s mechanics. The numerical values of these parameters are shown below. 

1M  and 2M were chosen based on the actual mass of the two end effectors. 2K  and 

2B represent the total output of the impedance controller of the passive robot, which is set 

to have medium compliance and remain constant. It is assumed that the impedance 

controller force output of the passive robot is much larger than the effects of its 

mechanical stiffness and damping. So the values 2K  and 2B  are simply the impedance 

controller stiffness and damping gains. Last, 1K was chosen to mirror the stiffness of the 

passive robot on which the peg is acting since this stiffness most likely dominates any 

stiffness inherited by insertion WAM’s hardware. 1B  was chosen to be the minimum 

value since there is little damping contributed to the system by hardware and friction in 

comparison to the effects of the impedance controller output. 

 

 kgMMasspeg 5.01 ==  4001 =K  11 =B  

 kgMMasshole 2.02 ==  4002 =K  52 =B  

 

Substitution of these values into the coupled stability equations (5.57) through 

(5.62) and plotting results in figure 7-1. This figure defines a clear region of successful 

stiffness and damping gains for the “peg” to guarantee a stable system when the two 

robots are in contact with each other. Notice, two additional constraints were added to 

this plot. These lines represent the minimum reasonable values of stiffness and damping 

for the specific WAM impedance control systems developed in this thesis. As shown 

earlier, choosing a stiffness gain below 100 would produce unreasonably poor trajectory 
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following performance. Also, a negative damping gain is not a logical possibility for 

impedance control and would lead to terminal instability, so the minimum damping limit 

is set at 0. 

 

 

Figure 7-1. Constraints imposed on the stiffness and damping parameters of the 
experimental system by the coupled stability criteria. The plot on the left is the output 
from Matlab, while the plot on the right has been colored differently to better show the 
stiffness and damping boundaries. The bold, red, horizontal line represents to range of 
acceptable stiffness values that correspond to the damping ratio chosen during the design 
process.  
 

The plot on the left is the output from the Matlab script that plots the constraints 

for the given input values. The plot on the right is the same plot, but with a black 

background that attempts to make the boundaries more visible. In this plot, the shaded 

region represents the acceptable combinations stiffness and damping values that satisfy 

the constraints of coupled system stability. Analyzing this figure allows specific stiffness 

and damping values to be considered for application in the target impedance controller. 

While stiffness gains can be altered continuously throughout a single robot motion 

without affecting the expected performance of the WAM, changing the damping gains 

while the WAM is in motion can produce very unpredictable behavior. This is why the 
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design process will instead choose the best damping gain and leave it constant throughout 

the insertion trajectory. Looking at the plot in figure 7-1 enables the designer to see that 

choosing a damping gain of 5 is the best choice for two reasons. First, it is located in the 

middle of the acceptable damping values, so it is less likely to result in an under-damped 

or over-damped system. Second, this damping gain corresponds to the greatest range of 

acceptable stiffness gains as represented by the thick red horizontal line in figure 7-1, 

resulting in the greatest freedom of choice over this parameter. Thus, from this coupled 

stability analysis, the following conclusions can be drawn. Note that the maximum 

allowable stiffness value was rounded down to 700 to keep the system from operating on 

the edge of stability. 

 

 5=EB  

 700100 ≤≤ EK  

 

7.2   System Assumptions and Dimensions  

Now that the damping gain for the insertion WAM’s impedance controller and a 

range of acceptable stiffness gains has been established, the next step is to find the 

optimum single stiffness gain for the insertion WAM with respect to the success of the 

peg and hole assembly task. This is accomplished using the peg and hole assembly 

analysis performed in section 5.1. This analysis of the experimental peg and hole system 

will define the optimum stiffness gains as well as the optimum location of the compliance 

center of the peg, which is the final design parameter. Keep in mind that the impedance 
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controller stiffness gain, EK , is a six-by-one vector representing the six DOF stiffness of 

the system in the following format. 

 

 ]'[ zyxZYXE RRRKKKK =  

 

The two-dimensional peg and hole analysis allows the three pairs of coupled 

lateral and rotational stiffnesses to be defined by analyzing different planes of movement. 

To find the complete stiffness vector, two assumptions need to be made. First, it is known 

that the insertion is occurring horizontally in the experimental insertion. This implies that 

XK  is the longitudinal stiffness, which must be kept significantly stiffer than the other 

stiffness directions to assure that the peg is always moving towards completion. For this 

reason, XK  was set to be set near the maximum stiffness allowed by the stability criteria 

and remain constant as shown below. 

 

 700=XK  

 

Also, due to the axisymmetric properties of the cylindrical peg used in this 

experiment, the rotation in the “roll” direction has no effect on the performance of the 

system since no amount of rotation in this direction will make a difference in the 

system’s geometry. Thus, this stiffness should also be set to a constant. However, it will 

be set to a low stiffness so that it will not provide any resistance to the necessary rotations 

in the other two directions. Thus, xR was defined by the following. 
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 1=xR  

 

Also as a result of the axisymmetric geometry of the experimental system, it can 

be assumed that the other two sets of coupled stiffnesses, ),( YY RK  and ),( ZZ RK , can be 

treated equally since they define the lateral and rotational stiffnesses on two different 

planes, and the axisymmetric nature of the problem says that any two planes about the 

longitudinal axis of the peg are equal. Thus the following assumptions can be made for 

the two-dimensional peg and hole analysis. 

 

 xZY KKK ==  
 
Where xK is the lateral stiffness in the two-dimensional analysis and not XK , the stiffness 
applied along the Cartesian X direction. 
 

 θKRR zy ==  
 

As explained in Chapter 5, chamfer crossing and one-point contact are heavily 

dependent on the initial conditions of the peg’s positional error with respect to the hole. 

Since the insertion system used in this thesis is constantly running a controller that 

actively aligns the peg and hole with essentially no measurable error, the effects of 

chamfer crossing and one-point contact are negligible. For the same reason, the system 

easily satisfies the initial requirements of the wedging diagram, so it is also not a concern 

for the controller gain design process. Accordingly, the two-dimensional analysis used to 

define the controller stiffness gains will be governed exclusively by the more critical two-

point contact equations. Two-point contact is the most problematic stage of assembly 
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since jamming and wedging can only occur during this stage.  Thus, the stiffness 

parameters of the insertion WAM will be optimized with respect to equations (5.42)-

(5.45) as they are related through the jamming diagram shown in figure 5-8. 

Before this analysis can begin, the physical parameters of the peg and hole system 

must be defined and plugged into the governing equations. The first and most important 

parameter needed is the coefficient of friction between the peg and the hole. The peg is 

constructed from machined aluminum, but it is covered with colored vinyl adhesive tape 

that has been applied to facilitate computer vision recognition. The inside of the hole it is 

being inserted into is constructed from machined aluminum and has no covering. To 

measure the actual coefficient of friction between the two surfaces, the force sensor 

attached to the peg was oriented such that the “Z” measurement axis was perfectly 

horizontal and the “X” measurement axis was perfectly vertical in the normal plane. 

Starting with the peg and hole in contact and at rest, a constant force was applied 

vertically downward and a horizontal force was slowly added until the peg had finished 

sliding along the hole. Using the readings from the force sensor, the coefficient of friction 

was estimated using the following equation.    

    

 

45.0max ==
constx

z

F
F

μ
 

 

The maximum coefficient of friction measured during the experiment was used to 

design the system to the worst case parameters. Since all contact forces generated by peg 

and hole contact are friction limited, designing to the highest friction coefficient possible 
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ensures that the system will be successful for all possible contact forces. This is because 

less friction corresponds to smaller contact forces that are easier to accommodate than 

larger forces. Also, it is worth mentioning that this coefficient is quite reasonable and 

corresponds to many tabulated values of friction between aluminum and plastic. 

Similarly, the values of initial lateral and rotational error between the peg and hole had to 

be experimentally defined. Due to the peg and hole alignment controller, these values are 

typically near zero. However, to account for the worst case scenario with the greatest 

amount of misalignment, the alignment controller was run ten times. The experimental 

controller also kept running maximum measurements of the lateral and rotational error 

between the peg and the hole.  After the experiments were finished, the maximum errors 

allowed by the system over ten runs were the following values. 

 

 rad04.00 =θ  

 meters0032.00 =ε  

 

The final parameters needed for the peg and hole analysis are the physical 

dimensions of the peg and hole. These dimensions were simply measured from the 

physical parts and are shown in figure 7-2. 
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Figure 7-2. Actual peg and hole dimensions from the hardware used during the physical 
insertion experiments. 
 
 
7.3   Introduction to modeFrontier 

ModeFrontier is an optimization software package that allows the user to define 

visual workflow models that represent input variables, system equations, and output 

values for a given system. The software is able to substitute different combinations of 

input variables into the system equations, and find those that optimize the output values 

with respect to user defined goals. ModeFrontier was chosen to perform the optimization 

described in the introduction paragraph of this chapter because of two key features. The 

first is modeFrontier’s ability to solve multi-objective optimization problems. As 

presented in section 7.4, the optimization task required for this thesis will require three 
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variables to be optimized with respect to two different goals. This type of optimization 

problem is difficult because there is often no single optimum solution with respect to both 

goals, meaning that a set of parameters that optimize one goal may produce poor results 

with respect to the other.  ModeFrontier was designed to handle these situations by 

outputting all solutions that fall on the Pareto frontier, or a series of solutions that cannot 

be optimized with respect to one goal any further without hurting the system with respect 

to the other goal. This allows the designer to make an informed choice with respect to the 

trade-offs between multiple candidate answers [63].  

The second desirable feature of modeFrontier is its ability to find robust 

solutions, or those with low sensitivity to changes in the input parameters [63]. This is 

necessary because the optimized variables in this chapter are the impedance control 

parameters that will be input into the variable compliance controller shown in figure 6-13 

to achieve the optimum conditions to avoid jamming. This controller will actively 

increase or decrease the impedance control parameters from the optimum values. Stable 

solutions will ensure that small changes in parameters will not cause large system 

changes with respect to the optimization goal behavior, or the jamming diagram in this 

case. It should also be noted that the modeFrontier analysis presented in section 7.4 is 

performed offline and on a computer that is isolated from the rest of the system hardware. 

Its results are a continuation of the system modeling process from Chapter 5, as 

modeFrontier provides a reliable method to combine all the information available to 

describe the system and provide optimum values of the impedance controller parameters 

xK , θK  and L with respect to specific design goals. These optimum values are used to 

partially define the control equations (7.1) and (7.2) that are programmed into the 
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variable compliance controller that runs on the system control computer during assembly. 

This is why the modeFrontier computer is not included in the system hardware diagram 

shown in figure 3-1. 

 

7.4   Finding Optimum Parameters with ModeFrontier 

Now that all the information needed to solve the equations for xF , zF , and 

M applied to the peg during assembly has been defined, the only remaining variables in 

the system are the impedance controller parameters xK , θK  and L . Since the jamming 

diagram is a function of the forces applied to the peg, and the forces are a function of the 

impedance controller variables, the governing equations are essentially a set of equations 

that relate the impedance controller parameters to the likelihood of the system jamming 

during insertion. The jamming diagram implies that the peg and hole are least likely to 

jam when the applied force ratios 
zrF

M

 
and 

z

x

F
F

 
are closest to zero and near the center of 

the diagram. Defining impedance control parameters that put the peg and hole system in 

the center of the jamming diagram and furthest away from its boundaries was the design 

goal of this section. Thus, the optimized impedance controller parameters are those that 

minimize the absolute values of the ratios 
zrF

M

 
and 

z

x

F
F

. Since the system of equations is 

clearly defined with three variables that can be varied independently to achieve two 

minimization goals, modeFrontier was easily implemented to find the impedance 

controller parameters that are optimized with respect to avoiding jamming during two-

point contact. 
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As explained in section 7.3, modeFrontier is a software package that allows the 

user to build a visual “workflow” model of a series of equations to find a solution that has 

been optimized with respect to the desired goals. The workflow model used to optimize 

the impedance controller variables is shown in figure 7-3 below. 

 

 

Figure 7-3. ModeFrontier workflow model representation of the two-point contact 
jamming diagram used for parameter optimization. 
 

In this model, the green icons along the left side of the model represent the 

parameters that are input into the system. The first three icons, xK , tK , and L  represent 

the three impedance control variables that are to be optimized. Since their exact values 

are unknown, they are entered into the model as ranges of possible values. ModeFrontier 

then simultaneously varies them within their given ranges to find the combination that 

best meets the system optimization goals. The range of each optimization variable is 

shown below. The range of xK  was defined using the coupled stability analysis. The 

range of the rotational stiffness, θKKt = , is defined as all the possible rotational 
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stiffnesses that are allowed by the controller as defined in Chapter 4. Finally, the range of 

L , the position of the compliance center on the peg, is defined to not exceed the length 

of the peg.  

 

 700100 ≤≤ xK  

 80.775.2 ≤≤ θK  

 1016.00 ≤≤ L  

 

The remaining input variables, such as friction and insertion depth, are held 

constant and they are marked with a “K” on their icons. In section 5.1, it was explained 

that two-point contact can only begin beyond a specific insertion depth, which can be 

calculated as shown below.  

 

 
metersmRcl postart 0127.0

04.0
000508.02

0
int2 ≈==− θ  

 

Since jamming becomes less likely the farther the peg is inserted into the hole, the 

shallowest possible insertion depth for two-point contact was chosen for optimization to 

again assume the worst case conditions during assembly. All of these inputs are fed into a 

calculator node that calculates the ratios 
zrF

M

 
and 

z

x

F
F

 based on the input variables using 

equations (5.42) through (5.45). These ratios are output from the calculator node under 
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the names “yaxis” and “xaxis” referring to their relation to the jamming diagram.  

ModeFrontier is then set to run the MOGA-II (Multi-Objective Genetic Algorithm) 

optimization algorithm, which essentially tries all combinations of the variables 

necessary to find the combination that best meets the optimization goals, which are to 

minimize the absolute values of 
zrF

M

 
and 

z

x

F
F

. Running the optimization model takes 

about five minutes and produces data from around one-hundred different combinations of 

variables. For this case, there was only a small Pareto frontier as the combinations of 

variables that minimized one goal often minimized the other. This made is easy to choose 

the best combination of variables with respect to both goals. If this optimum combination 

is opened in modeFrontier, the spider chart in figure 7-4 is displayed. 

 

 

Figure 7-4. Spider chart representation of the three optimal parameter settings for the 
peg’s impedance controller with respect to jamming avoidance using the ranges of 
variables that also satisfy the coupled stability constraints. 
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Looking at the spider chart reveals the optimum impedance controller parameters 

to be the following.  

 

 m
NK

optimumx 344≈  
radian

mNK
optimum

−
= 78.5θ  metersLoptimum 01.0=  

 

In addition to the optimum parameters, modeFrontier can also provide the 

designer with more intuitive information based on the results from the different 

experimental trials the software had to run to find the single solution. This is best 

explained through the use of a parallel coordinates plot that can be generated for the 

optimization process. What this specialized visualization does is plot a single line for 

each experimental trial that was run by modeFrontier during optimization. Each line 

connects the specific values of the three variables of interest that were chosen for that run 

and the resulting “xaxis” and “yaxis” values they produced. The parallel coordinates 

figure showing all 100 runs of the optimization process is shown in figure 7-5. 
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Figure 7-5. Complete parallel coordinates representation of all 100 optimization 
experiments. 
 
 

While this all-inclusive plot may be too crowded to make sense of, the results can 

be filtered to only show the runs that are meaningful to the understanding of the optimum 

solutions. For example, the rightmost two columns represent the xaxis and yaxis 

variables. Since the combinations of variables that produce small values for these two 

results are all that the designer would be interested in, the results that did not meet this 

goal can be filtered out of the plot. This produces the plot shown in figure 7-6. 
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Figure 7-6. Filtered parallel coordinates plot that only shows the experiments that 
produced desirable results with respect to the system’s position on the jamming diagram. 
 

From this plot, it is obvious that most of the successful combinations of variables 

included a small value for L , which is shown in the center column. It is commonly cited 

in literature, and explained earlier in this thesis, that the best place to locate the 

compliance center is at the tip of the peg, or when 0=L , because it decouples the lateral 

and rotational movement of the peg as a result of contact forces. The results from 

modeFrontier also prove this hypothesis. Taking this into consideration, all of the trials 

that used anything but the smallest values for L can be filtered out of the plot since these 

combinations will not be relevant to the final parameters chosen to program the peg’s 

impedance controller. This filtered plot is shown in figure 7-7. 
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Figure 7-7. Parallel coordinates plot that has been further filtered to only show the 
experiments that utilized the desired compliance center location near the tip of the peg. 
 

The two leftmost columns are left to analyze. These columns represent the 

rotational (far left) and lateral stiffness values for the peg. Looking at the slopes of the 

lines connecting these two columns reveals that there are two general trends for 

successful parameter definition. One trend shows the successful combination of low 

rotational stiffness and high lateral stiffness as shown by the large number of lines with 

steep, positive slopes. The second trend shows that combinations of intermediate 

rotational and lateral stiffnesses are also successful as shown by the number of horizontal 

or near-horizontal lines connecting these columns.  Since the goal of the peg and hole 

system designed in this thesis was to create a compliant system, as opposed to a stiff, 

position controlled system, it would also make sense to filter out the combinations of 

variables that included high stiffness variables and follow the second trend. After 

applying this filter, the result is the final parallel coordinates plot is shown in figure 7-8. 
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Figure 7-8. Filtered parallel coordinates plot of the experiments that obtained good results 
using relatively low stiffness parameters.  
 

Figure 7-8 shows that combinations of low and intermediate stiffness values 

produce the best results while the compliance center is located near the tip of the peg and 

the rotational and lateral stiffness gains are held in constant proportion. This 

generalization is supported by the intermediate values of the overall optimum solution 

presented on the spider chart earlier, and gives the following strategy for varying the 

stiffness gains during assembly. From modeFrontier, the optimum stiffness settings are 

known. It is also known that if the rotational and lateral stiffness settings need to be 

varied as the peg encounters near-jamming forces, they should be decreased 

simultaneously and proportionally. This is shown by the varying heights of the horizontal 

and near-horizontal lines relating the different successful combinations of lateral and 

rotational stiffness gains in the parallel coordinates plot. 
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The last piece of information needed to completely program the variable 

compliance controller is how far the stiffness gains can be decreased before situations 

arise in which the jamming diagram is no longer satisfied. ModeFrontier only found the 

optimum values and provided insight into the interaction of the optimization variables, 

but it did not directly tell us which combinations of variables would be likely to fail. This 

design problem is considered in the following section. 

 

Section 7.5   Defining Acceptable Compliance Ranges 

To obtain this last piece of information, another impedance controller stiffness 

parameter test needed to be conducted. To perform this test, a Matlab script was written 

to intake all of the possible input constant values and ranges entered into the 

modeFrontier calculator. Then, the script tests every possible combination of lateral and 

rotational stiffness gains against the jamming diagram for the case where the compliance 

center is located at the tip of the peg. The script starts with a matrix of zeros that 

represents each combination of lateral and rotational stiffness by a constant position in 

the matrix. If the jamming diagram shows that the combination successfully avoids 

jamming, the script adds a value of one to the position in the matrix that represents that 

specific combination. If the combination fails, nothing is added to the position. This 

analysis is then repeated for every possible insertion depth. It is worth noting that this 

script also includes the equations for xF , zF , and mF  during chamfer crossing and one-

point contact since they are the applicable equations for the beginning of the insertion. 

The script automatically switches its modeling equations from chamfer crossing to one-

point contact after the insertion depth is greater than the chamfer height. It then switches 
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from one-point contact to two-point contact at the transition point found earlier.  Thus, 

this script tests the system for jamming for all possible contact cases and all insertion 

depths. The output is a matrix where higher values are assigned to the stiffness 

combinations that succeeded most often, and low values indicate stiffness combinations 

that failed for different contact conditions. A contour map of this matrix can then be 

plotted to give a visual representation of stiffness ranges that are acceptable for use in the 

peg’s impedance controller to always avoid jamming. The resulting plot is shown in the 

figure 7-9 below. 

 

 

Figure 7-9. Contour plot output by the jamming diagram parameter checking script that 
tests all possible combinations of stable stiffness and damping parameters for successful 
assembly through jamming avoidance. Points that are blue (left-most) correspond to 
combinations of parameters that are never successful while points that are dark red (right-
most) correspond to parameter combinations that are always successful.  
 
 

A lot can be learned from this plot. The first insight is that combinations of high 

rotational stiffness and low lateral stiffness do not work for peg and hole insertion. The 
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second thing to notice is the almost linear “ridge” between the combinations that always 

work and those that never work. This supports the analysis from modeFrontier that 

emphasized the need for rotational and lateral stiffness to be varied simultaneously and in 

constant proportion, instead of independently, to maintain a successful combination of 

the two parameters. From this plot, it is reasonable to guess that the optimum proportion 

in which to vary these stiffness parameters follows the “slope” of the ridge in the contour 

plot, as this would produce the most compliant combinations of variables that still satisfy 

the jamming diagram boundaries for all contact cases. This is demonstrated in figure 7-

10, which shows the above contour plot that has been labeled to illustrate the final 

stiffness variation strategy. 

 

 

Figure 7-10. A copy of the contour plot from figure 7-9 that has been labeled with the 
optimized parameters found with modeFrontier, the minimum parameters allowed by the 
jamming diagram, and the range of desirable parameter combinations that the variable 
compliance controller can choose from while varying the compliance of the system. 
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In figure 7-10, the position of the optimized rotational and lateral stiffness 

combination that was produced by modeFrontier has been labeled. This point lies near 

the ridge in the contour plot. This is expected since this area represents the most 

compliant parameter combinations available that always satisfy the boundaries of the 

jamming diagram. Following this example, any variations made to the stiffness 

parameters during assembly should result in a combination that also lies near this ridge. 

As mentioned earlier, it is only beneficial to make the system more compliant from the 

optimized parameters, since increasing the stiffness of the WAM would most likely make 

any jamming problems worse. The best strategy to meet these goals while defining the 

range of compliance parameters available to the variable compliance controller is to plot 

a line with the same slope as the ridge, descending from the optimum parameters until it 

meets a minimum stiffness boundary. The limiting parameter in this case it the rotational 

stiffness, so this is where the line must terminate.  The resulting minimum compliance 

parameters are shown below. 

 

 m
NK x 200

min
≈

 
         

radian
mNK −

= 75.2
minθ            metersL 01.0=  

 

The line drawn in figure 7-10 represents all the possible stiffness combinations 

that can be input into the impedance controller of the peg’s WAM to guarantee successful 

insertion and system stability. The slope of this line is important because it indicates the 

proportion in which the lateral and rotational stiffness gains should be decreased from 

their optimum values to maintain a guaranteed successful system as insertion 
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displacement errors are experienced. To fully define this relationship, a limit on the 

maximum allowable insertion displacement error must be defined. From experimentation, 

it was found that setting this limit to 0.03 meters provides good behavior. This means the 

error between the desired position of the tip of the peg and its actual position must never 

exceed three centimeters.  

To define the behavior of the variable compliance controller, the optimum and 

minimum physical stiffnesses must be converted back into controller gains. This was 

done using tables 4.2 and 4.3 and linear interpolation. The results are shown below.   

 

 
294≈

optimumxK  68.3≈
optimum

Kθ  

 119
min
≈xK

 
1

min
≈θK   metersError 03.0max =  

 

Using these values, the adaptive compliance controller equations can be defined 

as a function of displacement error as shown below. These equation will constitute the 

control law of the variable compliance controller. 
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−
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These are the equations that are entered into the controller shown in the figure 6-

13 to vary the stiffness gains of the impedance controller as a function of insertion error. 

Someone could ask why the system would need to deviate from the optimum parameter 

values during assembly. While it is true that the optimum parameters theoretically 

guarantee successful assembly for the specific parameters input into modeFrontier, there 

are still many other factors that could negatively influence the system. In the vast 

majority of these cases, the solution to jamming is to make the system more compliant in 

the directions normal to the insertion motion’s constraints so that the peg and hole can 

more easily align themselves in the presence of contact forces. The stiffness controller is 

designed to maintain the optimum values until it detects that there is an error that could 

lead to jamming. Thus it is only in these situations that the parameters are commanded to 

temporarily change to compensate for modeling errors that would have otherwise led to 

jamming. 
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CHAPTER 8 

SYSTEM PERFORMANCE 

 

With the completion of the compliance parameter design, the entire system was 

ready to be physically run and tested. The stiffness control equations were input into the 

adaptive compliance controller and the desired compliance center location and damping 

gain were input into the impedance controller for the WAM holding the peg. The 

constant compliance parameters were also input into the impedance controller for the 

WAM holding the hole and at this point, the system was complete and could be run. 

Next, a trajectory was defined for each WAM that held the hole compliantly still while 

the peg followed a horizontal trajectory in the X-Z plane to perform the insertion. A small 

dead time was also programmed before the trajectory was set to begin to allow the peg 

and hole to align themselves as the finite state machine builds the trajectory 

compensation vectors. Once this was completed, the system is able to perform the 

assembly. Pictures of each stage of the successful assembly process are shown in figure 

8-1 below. 
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Figure 8-1. Images from different steps of a successful peg and hole insertion operation. 
The first panel shows the initial position of the peg and hole. Panel one shows the peg 
and hole after they have been aligned by the visual compensation system. Panels two 
through five refer to chamfer crossing, one-point contact, two-point contact, and 
successful assembly with line contact as described by figure 5-1. 
 

During the insertion shown in figure 8-1, the system was also recording force and 

torque measurement from the JR3 attached to the peg. As discussed in Chapter 5, the 

very good alignment performance of the visual compensation controller practically 

eliminates all insertion forces related to chamfer crossing and one-point contact. This was 

apparent in the insertion force history recorded during the robotic insertion, as there is 

only one measureable contact state in the data. One of the goals of this thesis was to 

achieve human-like performance for peg and hole insertion. To quantify the results of the 

robotic system relative to this goal, the peg end-effector was disconnected from the 

WAM and held by a human, who then manually performed the insertion of the peg into 

the hole, which was still compliantly supported by the other WAM. This insertion force 

history was also recorded and it was again found that the reaction forces due to chamfer 

crossing and one-point contact were almost non-existent. This could also be the result of 

performing relatively slow insertion in both cases, since faster insertion processes would 



 

 

138 

naturally incur larger impact forces for all states of assembly. While comparing insertion 

force histories, it was also deemed beneficial to show the correlation between the actual 

insertion force history measurements and the predicted insertion force history produced 

by equation (5.45). Figure 8-2 below shows the insertion force histories for the robotic 

insertion, human insertion, and predicted insertion.  

 

 

Figure 8-2. Recorded insertion force histories for peg and hole insertions performed by a 
human, WAM robot, and by a theoretical system. 
 

Figure 8-2 shows that the results of all systems are all quite close. All the values 

are of the same order of magnitude, with the peak insertion force being almost identical 

between the three insertion force histories. This can be taken to mean two things. First, 

these results validate the two-point contact system model from Chapter 5 that was used 

for optimization since it accurately reflects the behavior of the physical system. Second, 

this figure supports the claim that the goal of creating a robotic peg and hole insertion 
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system with human-like performance was achieved for this experimental case, since the 

system was successful and generated similar levels of insertion force  

 

While the insertion system was running, the Simulink system-level controller 

model was also recording data from the system. This included the values of the 

compensation vectors, the desired trajectory points, the actual trajectory points achieved 

by the WAM, and the stiffness gains being sent to the peg’s impedance controller. Using 

this data, it would be beneficial to verify that the system-level controllers behave like 

they were designed to. The trajectory compensation system has already been proven to 

work very well in Chapter 6, so the performance of the variable compliance controller 

should now be verified using the experimental data. To do this, the plot shown in figure 

8-3 was created from the data recorded by the system. This plot shows the insertion 

trajectory error and the corresponding changes in the stiffness parameters sent to the 

impedance controller as a function of insertion time.  

 

 

Figure 8-3. Relationship between stiffness gain compensation and the error between the 
desired and actual positions of the tip of the peg along the axis of insertion. 
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Figure 8-3 shows that there is almost always an error between the desired and 

actual positions of the tip of the peg during insertion. This is due to the contact forces 

between the peg and the hole that impede the progress of the insertion due to the small 

clearance between the parts. This assumption is supported by the otherwise near perfect 

free-space tracking performance of the impedance controlled WAM in the X direction 

when it is not performing insertion. A comparison of the trajectory following 

performance for free-space movements and insertion movements is given in figure 8-4.  

 

 

Figure 8-4. Comparison of the trajectory following performance of a WAM operating in 
free-space versus when it is performing peg and hole insertion in the X direction with 

700=XK . Notice the additional error imposed on the movement due to the peg and hole 
interaction. 

 

The histories of the stiffness gains as they are compensated to accommodate the 

positional error and its associated increase in insertion force are shown in figure 8-3. 

These histories show that the variable stiffness controller is behaving correctly. The first 

thing to notice is that the shapes of the gain histories for the lateral and rotational 
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stiffnesses are identical. This is expected since the system was designed to 

simultaneously raise and lower these stiffness parameters to maintain the proper force 

relations to avoid jamming. It should also be noticed that neither gain was lowered all the 

way to its minimum, which suggests that the predefined maximum insertion position 

error was well defined during the derivation of the variable compliance control equations. 

Last, it should also be noticed that the general trend of the system is to become more 

compliant as the peg progresses into the hole. This is also logical. The reason the system 

must become more compliant as the insertion progresses is because it must accommodate 

the contact forces that result from the constraints imposed on the peg by the inside of the 

hole. As the peg progresses farther into the hole, its motion becomes more constrained, as 

demonstrated by the wiggle angle and insertion depth relation. So the system must 

become more compliant as a result. It should also be noticed that the gains started to rise 

again towards the end of the assembly, indicating that the peg had transitioned from two-

point contact to less restrictive line-contact as the successful assembly stage was 

approached. This shows that the variable compliance controller was decreasing the 

compliance of the system to return to the optimum compliance settings as the jamming 

forces applied to the peg were also decreasing.  

Now that the system has been proven to be successful, it should also be shown 

that the insertion process is less reliable without it. After twenty-five runs with the system 

fully functioning, the system was successful 100% of the time. The peg and hole never 

jammed and the insertion was always completed. During other experiments, the WAM 

robots were run in a near position control state with lateral and rotational impedance 

controller stiffness gains set to a constant 2000 and 5, respectively. Not only did the 
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system fail every time, but it also developed insertion forces that were about five times 

larger than those developed by the variable compliance system. The insertion force 

history for a trial of this position controlled experiment is shown in figure 8-5. 

 

 

Figure 8-5. Insertion force history for the attempted position controlled peg and hole 
insertion with stiffnesses gains set to a constant [2000 2000 2000 5 5 5]. 

 

Next, the system was run with the visual trajectory compensation turned on, but 

the lateral and rotational stiffness gains were set to 400 and 4, respectively, and the 

variable compliance controller was turned off. Even with these reasonable gains that are 

only slightly beyond the system’s optimum, the system still failed four out of five times. 

At times when the initial conditions were perfect, the system did succeed, but this 

happened infrequently. This lends some credibility both to the variable compensation 

controller as well as the optimized parameters found with modeFrontier. An example of 
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the kind of behavior experienced with this setup during a jam is shown in the figure 8-6. 

In this figure, the peg is aligned with the hole due to the visual compensation system and 

it successfully makes it past the chamfer crossing and one-point contact states. However, 

a small rotational error that it most likely immeasurable has caused the peg to jam inside 

of the hole during two-point contact. Without the stiffness controller to increase the 

compliance of the system by decreasing the stiffness gains of the impedance controller, 

the peg is unable to advance any farther into the hole.   

 

 

Figure 8-6. Pictures from a failed peg and hole insertion process attempted without the 
variable compliance system. 
 

The JR3 force sensor was also recording the insertion force history during this 

failed attempt. This data is shown as a function of time in figure 8-7. Since the stiffness 

gains were set near the optimized parameters, the peak insertion force generated by the 

insertion WAM is only marginally higher than it was for the successful insertion 
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performed by the optimized system. However, it is obvious that this was an unsuccessful 

assembly attempt and that the parts had become jammed since the reaction forces were 

never accommodated by the system. This caused the insertion force to continue to grow 

as a function of increasing positional error along the axis of insertion in an attempt to 

force the peg into the hole. This instead created a commensurately larger moment that 

pushed the force relationship out of the jamming diagram’s boundaries and the system 

failed. This final experiment also proves the benefits of using the variable compliance 

controller for peg and hole assembly. 

   

 

Figure 8-7. Insertion force trajectory for a peg and hole insertion experiment that jammed 
before completion. This experiment was run without the variable compliance controller 
and with constant stiffness gains set to [700 400 400 1 4 4]. 
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CHAPTER 9 

CONCLUSION 

 

9.1   Review of Thesis  

Successful peg and hole assembly systems allow the peg to accommodate forces 

that arise from different contact states that naturally occur during insertion. Typically, 

robotic insertion systems are composed of a position or force controlled robot that are 

fitted with compliant RCC wrist to insert a peg into a hole that is temporarily fixed to the 

environment. Using similar design principles, a variable compliance control system was 

produced and utilized in a dual seven DOF robotic arm system that performed rigid peg 

and hole assembly with human-like performance and a success rate of 100% after twenty-

five experimental trials.  In addition to the variable compliance control system itself, a 

novel finite state machine with visual feedback was developed to modify each robot’s 

desired trajectory commands to compensate for the inevitable Cartesian position error 

associated with impedance control. Both of these components are unlike any other 

systems in published research, and they work together to satisfy the constraints of the 

wedging and jamming diagrams that dictate the success of peg and hole assembly. 

Finally, the unique use of jamming diagram concepts and coupled stability analysis with 

modeFrontier optimization represents a new design method that was proven to produce 

realistic impedance control parameters to meet a set of specific design goals. 
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9.2   Future Work 

The topic of future work can be divided into two categories: system adaptation 

and system extension. System adaptation would include changing certain aspects of the 

system developed in this thesis to allow it to complete other tasks. For example, the 

square peg and hole problem would require different system modeling equations along 

with a different vision and compliance control system due to the non-axisymmetric 

properties of the prismatic peg. Similarly, high-speed peg and hole systems would benefit 

from additional system modeling equations to account for high-frequency dynamics or 

impact modeling.  

System extension, on the other hand, implies changing some fundamental idea or 

function of the work. For example, a machine learning algorithm could be substituted for 

both the system modeling and optimization sections of the current design process. This 

would greatly simplify the system by eliminating the majority of the controller design 

work. The complete variable compliance system would operate as it is does now. 

However, it would need a learning period to establish the optimum and minimum 

impedance control parameters, as well as define the optimum proportions in which to 

vary the rotational and lateral stiffness parameters. This could be done using a 

reinforcement learning scheme that rewards lower insertion forces and successful 

assembly while varying the impedance controller variables. While this system lacks the 

ability to be 100% successful from the first time it is turned on, it would result in a 

system that needed no redesign to accomplish different tasks. 

Another example of system extension would be the application of this type of 

system to the problem of disassembly. Much like the peg and hole problem, robotic 
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disassembly would require the robot to work in a very constrained environment with a 

specific impedance required to remove parts. While the problem of task planning would 

need to be solved by another body of research, the design for interaction and robot 

control could be performed in much the same way as this work.  
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