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Abstract

In this thesis, we would look into the theory of arithmetic jet spaces and its applica-

tion in modular forms. The arithmetic jet spaces can be thought of as an analogue of

jet spaces in differential algebra. In the case of arithmetic jet spaces, a derivation is

replaced by p-derivation δ. This theory was initiated by A. Buium in [7]. The results

in the first chapter are concerning the connection between arithmetic jet spaces and

Witt vectors. Let R = Ẑur
p be the p-adic completion of the maximal unramified

extension of Zp. If A is an R-algebra and we denote JnA its n-th jet ring. Firstly, we

show the adjunction property which says that the arithmetic jet functor from rings to

rings is the left adjoint of the Witt vector functor. This property was also shown by

Borger in [3]. However, we give an explicit proof of this fact and the highlight of this

proof is the construction of a ring homomorphism P : A → Wn(JnA) which is the

analogue to the exponential map exp : A → A[t]/(tn+1) given by exp(a) =
∑n

i=0
∂ia
i!

ti.

If we denote by Dn(B) := B[t]/(tn+1) then we show that there is a family of ring

homomorphisms indexed by α ∈ Bn+1, Ψα : D1 ◦ Wn(B) → Wn ◦ D1(B) for any

vi



ring B and n. This gives yields the relation between a usual derivation ∂ and a

p-derivation δ given by ∂δx = pδ∂x + (∂x)p − xp−1∂x. This interaction is used to

analyse the ring homomorphisms η : TJnA → JnTA where T associates the tangent

ring to the ring A.

In the second chapter of the thesis, we apply the theory of arithmetic jet spaces

to modular forms. Let M denote the ring of modular forms over an affine open

embedding X ⊂ X1(N) where X1(N) is the modular curve that parametrises elliptic

curves and level N structures on it. Let M∞ be the direct limit of the jet rings of

M which we call the ring of δ-modular forms. Then from the universality property

of jet spaces, there are ring homomorphism En : Mn → R((q))ˆ[q′, ..., q(n)]b which are

prolongation of the given Fourier expansion map E : M → R((q)). Hence En is

the δ-Fourier expansion of M∞. Denote by S∞ = limn Im(En). If S∞ denote the

reduction mod p of S∞ then, one of our main results says that S∞ can be realised

as an Artin-Schrier extension over S∞ where S is the coordinate ring of X. If we

set all the indeterminates q′ = .. = q(n) = 0 then we obtain a ring homomorphism

M∞ → W where W is the ring of generalised p-adic modular forms. Our next result

shows that the image of the above homomorphism is p-adically dense in W. We also

classify the kernel of this homomorphism which is the p-adic closure of the δ-ideal

(f∂ − 1, f 1, δ(f∂ − 1), δf1, ..., ) where f∂ and f 1 are δ-modular forms with weights.

This should be viewed as δ-analogue of the Theorem of Swinnerton-Dyer and Serre

where the Fourier expansion over Fp of the modular forms has the kernel (Ep−1 − 1)

, Ep−1 is the Hasse invariant.

In the third chapter, we take the step to understand the ‘δ-Fourier expansion

principle’ and the action of the Hecke operators on the Fourier expansion of differen-

tial modular forms. We work on k[[q]][q′] which is the reduction mod p of R[[q]]ˆ[q′]b,

the “holomorphic subspace” of R((q))ˆ[q′]b. The definition of the Hecke operators away

from the prime p extends naturally from the classical definition of Hecke operators.
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At the prime p, we define Tκ(p) on a “δ-symmetric subspace” of δ-modular forms

using the definition of A. Buium introduced in [11]. Our main result states that there

is a one-to-one correspondence between the classical cusp forms which are eigenvec-

tors of all Hecke operators with “primitive” δ-modular forms whose δ-Fourier series

lies in k[[q]][q′] and are eigenvectors of all Hecke operators. This chapter should be

viewed as the first attempt to understand the structure of eigenforms on the Fourier

side of δ-modular forms.
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Chapter 1

Introduction

The theory of arithmetic differential geometry [10] draws inspiration from the princi-

ples of differential algebra. In differential algebra [5] one enlarges the usual algebraic

geometry by ‘adding’ differential equations to the algebraic equations. This ap-

proach has found several applications in diophantine geometry over function fields

e.g. [6, 25]. In the very similar spirit the consideration of arithmetic jet spaces

enlarge the regular algebraic geometry by considering “differential equations” which

are satisfied by numbers. Of course the derivation in the usual sense will not work.

But one looks for a suitable operator δ which can replace a derivation and yet retains

a lot of its flavor.

Just like in the case of differential algebra, given a scheme X over Z, we would like

to view X defined over a ring equipped with a derivation. But Z has no nontrivial

derivation to start with. Let us consider R = Ẑur
p ⊃ Z, the p-adic completion of

the maximal unramified extension of Zp. Then R is endowed with a unique lift of

frobenius φ acting as φ(ζn) = ζp
n on the roots of unity. Set

δx =
φ(x) − xp

p
;

then the map x → (x, δx) is a ring homomorphism between R → W1(R), where

1



Chapter 1. Introduction

W1(R) is the Witt ring of R of length 2. The foundation of the theory of arithmetic

jet spaces is to view δ as a “derivation” of a number with respect to the prime p.

Recall from differential algebra, that a derivation ∂ : F → F is a ring homomorphism

x → (x, ∂x) in F → F[ǫ]/(ǫ2) =: D1(F) where D1 means the “dual numbers”. In

other words, in the arithmetic case, we are viewing W1( ) as the analogue of the ring

of dual numbers D1( ).

Translating the ring axioms of W1( ), we find that a p-derivation δ : A → B

satisfies

δ(x + y) = δx + δy + Cp(x, y)

δ(xy) = xpδy + ypδx + pδxδy

where Cp(x, y) = xp+yp−(x+y)p

p
. The subset of constants of δ is Rδ = {0}∪{ζn | p ∤ n}.

Note that Rδ is a multiplicatively closed set and is not preserved under addition and

this is unlike the sub-ring of constants for the usual derivation.

Based on the above δ now viewed as a p-derivation, the arithmetic jet spaces

JnX → X → Spec R are defined in [10] in a way similar to the definition of jet

spaces JnX in differential algebra. The idea is to study JnX that would shed some

additional light on X itself.

By a prolongation sequence B∗ we mean a sequence of maps between rings Bn’s

B0 u

δ
// B1 // .... Bn−1 u

δ
// Bn // ...

where u is a ring homomorphism and δ is a p-derivation which satisfies

δ(x + y) = δx + δy + Cp(u(x), u(y))

δ(xy) = u(y)pδx + u(x)pδy + pδxδy

where Cp is defined as before.

2



Chapter 1. Introduction

Let Wn(B) be a p-typical Witt vector of length n + 1. Recall that there are two

homomorphisms, R, F : Wn(B) → Wn−1 where, R is called the restriction and F is

the Frobenius.

Let A and B be R-algebras where g : R → B is the given algebra map. Let

Homδ(A, Wn(B)) be the set of all ring homomorphisms γ from A to Wn(B) such

that the following diagram is commutative

A
γ // Wn(B)

R

OO

// Wn(R)

Wn(g)

OO

We will review the basic definitions and constructions of arithmetic jet spaces.

Let A be a finitely generated ring over R, where recall R is the completed, max-

imal, unramified extension of Zp. Then A = R[x]/(f) where x is a collection of

variables and f represent a collection of multivariate polynomial in x.

Then define the functor J1A from rings to sets as

J1A(B) = Homδ(A, W1(B)).

Then it is to easy to see that the above functor is representable by the ring

R[x,x′]/(f , δf) where x′ are new set of indeterminates. We again call this ring J1A

by a slight abuse of notation. By construction, there are two ring homomorphisms-

i) u : A → J1A induced by identifying x in J1A.

ii) φ : A → J1A defined by φ(a) = u(a)p + pδa where δ is induced from δx = x′.

Now we will define Jn inductively for n, provided Jn−1 is already defined. We

also have the two canonical maps (u, δ) : Jn−2A → Jn−1A where δ is the set theoretic

3



Chapter 1. Introduction

map satisfying

δ(x + y) = δx + δy + Cp(u(x), u(y))

δ(xy) = u(x)pδy + u(y)pδx + pδxδy

where Cp(x, y) = xp+yp−(x+y)p

p
.

A ring homomorphism (f, ∆) : Jn−1A → W1(B) will be called to satisfy (∗) if in

the following diagram

Jn−1A
f

∆
// B

Jn−2A

u δ

OO

we have ∆ ◦ u = f ◦ δ.

Then JnA is the functor from rings to sets defined as

JnA(B) = {(f, ∆) ∈ Homδ(J
n−1A,B) | (f, ∆) satisfies (∗)}

Then it is easy to see that the above functor is represented by JnA = R[x]/(f , ...δnf)

with the two canonical maps (u, δ) : Jn−1A → JnA and φ(a) = u(a)p + pδa is the

lift of the Frobenius like before.

Hence we obtain a prolongation sequence of rings as follows

A
u

δ
// J1A // ... Jn−1A

u

δ
// JnA // ...

Remark 1.0.1. Let X = Spec A be the affine scheme. Then we will denote JnX =

Spf ĴnA, where ĴnA is the p-adic completion of JnA. In other words, all our rings

will be “non-completed” whereas our spaces are completed

In the first chapter of this thesis, we prove the adjunction theorem which is the

following

Theorem 1.0.2. Hom (JnA,B) ≃ Homδ(A, Wn(B))

4



Chapter 1. Introduction

This result is also independently shown by Borger [2]. However, we give an explicit

proof of the above fact. Note that the above result resembles the adjunction property

in the case of differential algebra if we replaced Wn by Dn where Dn(B) = B[ǫ]/(ǫn+1).

The adjunction property is proved by constructing the universal map P : A →

Wn(JnA), P(a) = {P0(a), ..., Pn(a)} that satisfies

Pk(a) =
k−1∑

i=0

pk−1−i∑

j=1

pj−1

pk−i−1


 pk−i−1

j


 Pi(a)p(pk−i−1−j)(δPi(a))j (1.0.1)

for all k ≥ 1 and P0(a) = a. The map P is the analogue of the exponential map in

differential algebra, exp : A → Dn(JnA)

exp(a) =
n∑

i=0

∂i(a)

i!
ti (1.0.2)

since both of them are the image of 1 ∈ Hom (JnA, JnA) in

Homδ(A, Wn(JnA)) under the isomorphism in Theorem 1.0.2. Hence the coordinates

Pi(a) could be viewed as i-th order jets over the ‘mythical F1’.

Such a P opens up the possiblility to develop a theory analogous to deformation

theory where F[[t]] would be replaced by W(R). Such a theory should be viewed

as deformation theory over F1. This is indeed an on going research interest for the

author.

Also note that the above adjunction property leads to the fact that the n-th jet

space of A1 is Wn. This is a reinterpretation of Witt vectors through arithmetic jet

spaces where the complicated formulas defining the Witt vector could be hidden and

Wn can be viewed as a universal object since the jet spaces are.

We show the following fundamental property of Witt vectors:

Theorem 1.0.3. If B is p-adically complete then Wn(B) is also p-adically complete.

5



Chapter 1. Introduction

Theorem 1.0.3 enables us to give the adjunction property in the category of p-

adically complete formal schemes instead of affine ones.

JnX(Spf B) ≃ X̂(Spf Wn(B)) (1.0.3)

where ̂ denotes the p-adic completion. We seek such a formulation because the arith-

metic jet spaces JnX are formal schemes completed at the prime p. This completion

is necessary for a suitable behaviour with respect to localization.

We can summarise the analogy between the geometric and the arithmetic jet

spaces by the following

Geometric jetspace Arithmetic jetspace

Symbol JnA JnA

Adjunction property Hom (JnA,B) ≃ Hom (JnA,B) ≃

Hom∂(A, Dn(B)) Homδ(A, Wn(B))

Exponential A
exp
→ JnA[ǫ]/(ǫn+1) A

P
→ Wn(JnA)

exp(a) =
∑n

i=0
∂ia
i!

ǫi P(a) = (P0(a), ..., Pn(a))

Even though the apparent structure of a p-derivation δ and a usual derivation ∂

are different, they do interact with each other in a canonical way. We will show that

for each n there is a family of ring homomorphisms Ψα

Theorem 1.0.4. Ψα : D1 ◦ Wn(B) → Wn ◦ D1(B) for any ring B and α ∈ Bn+1.

If Ω denotes the sheaf of differentials of A over R then denote TA = Symm Ω,

the symmetric product of Ω. This maybe referred to as the tangent ring because it is

the ring of functions on the Tangent space TX where X = Spec A. Then Theorem

1.0.4 implies that there is a family of ring homomorphisms η : TJnA → JnTA. In

fact something more general in the sense of prolongation sequences is true and we

6



Chapter 1. Introduction

obtain the following commutation relation between a derivation ∂ and a p-derivation

δ

δ∂x = φ(∂x) − xp−1∂x (1.0.4)

This relation is defined in [10] but we show here that this relation follows due to Ψ

in Theorem 1.0.4

Before proceeding with explaining our next results let us recall a few basic facts

of modular curves and forms. We refer to [17] for detailed discussion. Consider the

modular curve Y1(N) defined over Z[1/N, ζN ] which is the representable object for

the functor from rings over Z[1/N, ζN ] to sets defined as: given a Z[1/N, ζN ]-ring

B, we consider the isomorphism classes of pairs (E, ι) where E is an elliptic curve

defined over B and ι : (Z/NZ)B ⊂ E is a level Γ1(N)-structure.

Let E → Y1(N) be the universal elliptic curve and e : Y1(N) → E be the identity

section. Denote by L = e∗ΩE/Y1(N) where ΩE/Y1(N) is the sheaf of relative 1-forms on

E. Let X1(N) denote the Deligne-Rapoport compactification of Y1(N) and take the

natural extension of L to X1(N), and call it L again.

Let X ⊂ X1(N) be an open embedding (not necessarily a proper open sub-

scheme). Consider the restriction of L on X and call it L again. Then over any

Z[1/N, ζN ]-algebra B, the modular forms of weight κ, denoted by MX(B, κ,N),

identifies with the space of global sections H0(XB, L⊗κ
B ), where XB is obtained by

base change and LB denotes the sheaf obtained by pullback. Denote

MX =
⊕

κ

MX(B, κ,N).

The cusp P = ∞ is a Z[1/N, ζN ] point on X1(N) and there is a natural Fourier ex-

pansion map E : MX → R((q)) associated to P . We will call such a tuple (X,L, P,E)

as a Fourier framed curve.

Recall another definition of modular forms. For any Z[1/N, ζN ]-algebra B, let

7



Chapter 1. Introduction

E/B denote an elliptic curve defined over B, ω ∈ H0(E, ΩE/B) a basis of the free

B-module H0(E, ΩE/B) and ι as above. By a modular form of weight κ we will under-

stand a rule f that associates to any tuple (E/B, ω, ι) an element f(E/B, ω, ι) ∈ B

which depends only on the isomorphism class of the tuple, commutes with base

change and satisfies

f(E/B, λω, ι) = λ−κf(E/B, ω, ι) (1.0.5)

for all λ ∈ B×. This definition identifies with the one given previously using the

global sections of higher tensor powers of L [22].

Now for p ∤ N , we choose a homomorphism Z[1/N, ζN ] → R and denote by

Y1(N)R, LR, PR the objects over R obtained by base change. The space of modular

forms M =
⊕

κ M(R, κ,N) is a remarkable space of functions and is one of the central

object of study in number theory. For example, M contains the normalized Eisenstein

forms E4, E6, Ep−1 belonging to the spaces M(R, 4, N),M(R, 6, N),M(R, p − 1, N)

respectively. Note that Ep−1 is a characteristic 0 lift of the Hasse invariant, a quantity

that measures super-singularity.

Let us consider the n-th jet of M , completed p-adically and call it Mn. Let

M∞ = lim
→

Mn.

We call M∞ as the ring of δ- modular forms. Clearly, M ⊂ M∞. But then the

question is, are there interesting new examples in M∞ that shed a new light on M?

Is there a nice theory of Fourier (Serre-Tate) expansion?

We will exhibit a few examples of new ‘objects’ that live in M∞ which have no

apparent counterpart in the world of classical modular forms. But firstly we would

like to define δ-modular forms of a given weight.

For any polynomial w ∈ Z[φ], w =
∑

aiφ
i define an element

8



Chapter 1. Introduction

χw(t) ∈ R[t, t−1, t′, ..., t(n)] by the formula

χw(t) = tw :=
∏

(φi(t))ai

Such a χw is a multiplicative δ-character [9]. Also let B∗ denote a prolongation se-

quence where Bns are p-adically complete for all n. By a δ-modular form of order ≤ n

and weight w we will understand a rule f that associates to any triple (E/B0, ω, ι, B∗)

an element f(E/B0, ω, ι, B∗) ∈ Bn, which depends on the isomorphism class of the

triple only, commutes with base change and satisfies

f(E/B0, λω, ι, B∗) = χw(λ)−1f(E/B0, ω, ι, B∗) (1.0.6)

The space of such δ-modular forms will be denoted by Mn(w). A Fourier framed

curve is called ordinary if there exists an element f ∈ M1(φ − 1) which is invertible

in the ring M1, such that E1(f) = 1.

We shall say f ∈ M∞ is isogeny covariant if for any triple (E/S0, ω, i, S∗) and

for any étale isogeny π : E ′ → E (of elliptic curves over S0) we have

f(E ′/S0, ω′, i′, S∗) = [deg π]−deg w/2f(E/S0, ω, i, S∗) (1.0.7)

where ω′ = π∗ω and deg w =
∑

ai.

Let

Ψ :=
1

p
log

qφ

qp
=

∑

n≥1

(−1)n−1n−1pn−1

(
q′

qp

)n

∈ R((q))ˆ[q′]ˆ (1.0.8)

Proposition 1.0.5. [9] There exists a unique form f 1 ∈ M1(−1− φ) whose Fourier

expansion is given by

E1(f 1) = Ψ.

Notation. Given a ring B, we will denote its reduction mod p by B.

9



Chapter 1. Introduction

Proposition 1.0.6. [1, 9, 10] Assume the reduction mod p of X, X, is contained

in the ordinary locus of the modular curve. Then there exists a unique form f∂ ∈

M1(φ − 1) which is invertible in the ring M1 such that

E1(f∂) = 1.

Furthermore its reduction mod p, f∂ ∈ M1(φ − 1) coincides with the image of the

Hasse invariant H ∈ M0(p − 1).

The δ-modular forms in Proposition 3.2.2 and 3.2.3 are isogeny covariant. The

forms f 1 and f∂ will play a central role in the second chapter of this thesis.

Since M comes with a Fourier expansion map E : M → R((q)), by universality

property of jet spaces as in Theorem 1.0.2, extends naturally to

En : Mn → R((q))ˆ[q′, , , q(n)]b=: Sn
for

where q(i)’s are new indeterminates. However, unlike the classical modular forms,

En is not injective. For example, f∂ − 1 and its higher p-derivatives δi(f∂ − 1) for

all i ≤ n − 1 are in the kernel of En. Although, if we restrict to δ-modular forms of

a fixed weight w, denoted Mn(w), then En is injective.

Denote by E∞ : M∞ → S∞
for where S∞

for = lim→ Sn
for and

Sn
for := R((q))ˆ[q′, ..., q(n)]ˆ the δ-Fourier expansion principle induced from En’s dis-

cussed above. Then by Proposition 3.2.3, we observe that (f∂ − 1, δ(f∂ − 1), ...) ⊂

Ker E∞. Set S∞ = Im(E∞ : M∞ → S∞
for). Then we will show that S∞ ≃

M
∞

(f∂−1,δ(f∂−1),...)
. But S∞ has more structure to it. It can be realised by a sequence of

Artin-Schrier extensions over S∞.

Definition 1.0.7. Let A be a k-algebra where k is a field. Let A ⊂ B a ring

extension, and Γ a profinite abelian group acting on B by A-automorphisms. We

say that B is a Γ-extension of A if one can write A and B as filtered unions of

10



Chapter 1. Introduction

finitely generated k-subalgebras, A =
⋃

Ai, B =
⋃

Bi, indexed by some partially

ordered set, with Ai ⊂ Bi, and one can write Γ as an inverse limit of finite abelian

groups, Γ = lim
←−

Γi, such that the Γ-action on B is induced by a system of compatible

Γi-actions on Bi and

BΓi

i = Ai

for all i. (Then, of course, we also have BΓ = A.) If in addition one can choose the

above data such that each Ai is smooth over k and each Bi is étale over Ai we say

that B is an ind-étale Γ-extension of A.

Theorem 1.0.8. Let X = Spec S be an ordinary Fourier-framed curve. Then the

ring S∞ is a quotient of an ind-etale Z×
p -extension of S∞.

Let π : S∞
for → R((q)) be the ring homomorphism obtained by setting π(q(n)) = 0

for all n ≥ 1. Then we will show that the image of π is p-adically dense in W where

W is Katz’s ring of generalised p-adic modular forms. Hence we have the following:

M∞ E∞

// S∞ ⊂ S∞
for

π

¦¦

M

OO

E
// W ⊂ R((q))b

OO

It is easy to see that setting q(n) to 0 is equivalent to setting φn(q) = qpn

. Hence

combining with Proposition 3.2.2 we can see that f 1 is in the kernel of π. Our main

result gives a complete characterisation of the kernel of π.

Theorem 1.0.9. Assume X = Spec S is a modular Fourier-framed curve with Ep−1

invertible on X. The following hold:

1) The inclusion S∞ ⊂ S∞
for has torsion free cokernel.

2) The kernel of M∞ → S∞
for is the p-adic closure of the ideal generated by the

elements

f∂ − 1, δ(f∂ − 1), δ2(f∂ − 1), ...

11



Chapter 1. Introduction

3) The kernel of S∞ → R((q))̂ is the p-adic closure of the ideal generated by the

images of the elements

f 1, δf1, δ2f 1, ...

4) The kernel of M∞ → R((q))̂ is the p-adic closure of the ideal generated by

the elements

f∂ − 1, f 1, δ(f∂ − 1), δf1, δ2(f∂ − 1), δ2f 1, ...

Conclusion 1 in Theorem 1.0.9 should be viewed as a “strong” δ-expansion prin-

ciple. Conclusions 2 and 4 should be viewed as δ-analogues of the Theorem of

Swinnerton-Dyer and Serre according to which the kernel of the Fourier expansion

map
⊕

κ≥0

M(Fp, κ,N) → Fp[[q]]

is generated by Ep−1 − 1;cf. [20],p. 459.

At the end of the second chapter, we show that there can not be a modular form

ǫ such that ǫp−1 = Ep−1 i.e. the (p − 1)-th root of Ep−1 is not a modular form. We

show this by using the irreducibility of the Igusa curve.

The third chapter is the joint work with A. Buium and the author in [14]. It

takes the step to understand the δ-Fourier expansion principle’ and the action of the

Hecke operators on the Fourier expansion of differential modular forms. We work

on k[[q]][q′] which is the reduction mod p of R[[q]]ˆ[q′]ˆ, which is the “holomorphic

subspace” of S1
for.

For n coprime to p and f ∈ R[[q]]ˆ[q′, ..., q(r)]b(or k[[q]][q′, ..., q(r)]) we define the

Hecke operator Tκ(n) for each integer κ as

Tκ(n)f := nκ−1
∑

A,B,D

D−κf(ζB
DqA/D, δ(ζB

DqA/D), ..., δr(ζB
DqA/D)). (1.0.9)

12



Chapter 1. Introduction

where A,B,D belong to the set

{(A,B,D); A,B,D ∈ Z≥0, AD = n, (A,N) = 1, B < D}

The above definition of Tκ(n) is a natural extension from the classical definition of

Hecke operators. However to find an analogue of the U operator in our case is a

challenging question. We use the definition of A. Buium introduced in [11] as the

analogue of the U operator. One draw back of this definition is that U is not defined

on the whole of S1
for but rather on a linear subspace called the δ-symmetric subspace.

Set

A := R[[s1, ..., sp]][s
′
1, ..., s

′
p, ..., s

(r)
1 , ..., s

(r)
p ]̂ ,

B := R[[q1, ..., qp]][q
′
1, ..., q

′
p, ..., q

(r)
1 , ..., q

(r)
p ]̂ .

where s1, ..., sp, s
′
1, ..., s

′
p, ... and q1, ..., qp, q

′
1, ..., q

′
p, ... are indeterminates. If S1, .., Sp

are the fundamental symmetric polynomials in q1, ..., qp then the natural algebra map

A → B, s
(i)
j 7→ δiSj,

is injective with torsion free cokernel [11].

An element G ∈ B will be called Taylor δ−symmetric if it is the image of some

element G(p) ∈ A (which is then unique) under the above map. An element f ∈

R[[q]][q′, ..., q(r) ]̂ will be called Taylor δ − p-symmetric if

Σpf :=

p∑

j=1

f(qj, ..., q
(r)
j ) ∈ B

is Taylor δ−symmetric.

We define Uf where f Taylor δ − p-symmetric

Uf := p−1(Σpf)(0, ..., 0, q, ..., 0, ..., 0, q(r))

which is an element in p−1R[[q]][q′, ..., q(r)]. The restriction of U to R[[q]] takes values

in R[[q]] and is equal to the classical Atkin’s operator

U(
∑

amqm) =
∑

ampq
m.

13



Chapter 1. Introduction

We also define the extension of the Frobenius operator V as

V f = f(qp, ..., δr(qp)) ∈ R[[q]][q′, ..., q(r)].

Hence for any κ ∈ Z and Taylor δ − p-symmetric f we may define

pTκ(p)f = pUf + pκV f.

Note that the restriction of pTκ(p) to R[[q]] is the classical Hecke operator Tk(p)

defined by

Tκ(p)(
∑

amqm) =
∑

apmqm + pκ−1
∑

amppm.

A series ϕ ∈ k((q)) will be called primitive if Uϕ = 0. A δ-series in

k((q))[q′, ..., q(r)] will be called primitive if its image in k((q)) under the specialization

q′ = ... = q(r) = 0 is primitive. One can define Hecke operators Tκ(n), pTκ(p) on

R((q))[q′, ..., q(r) ]̂ (where pTκ(p) is only “partially defined” i.e. defined on an appro-

priate subspace); cf. Chapter 3 for all the relevant details. These operators induce

operators Tκ(n), “pTκ(p)” on k((q))[q′, ..., q(r)] (where “pTκ(p)” is only “partially de-

fined” i.e. defined on an appropriate subspace; the “ ” signs are meant to remind us

that the operator Tκ(p) itself is not defined mod p).

The following is our main result; it is a consequence of Theorems 4.5.6 and 4.5.7

in Chapter 3. Assume κ ∈ Z≥0.

Theorem 1.0.10. There is a one-to-one correspondence between the following sets

of objects:

i) Series in qk[[q]] which are eigenvectors of all Hecke operators Tκ+2(n), Tκ+2(p),

(n, p) = 1, and which are Fourier expansions of classical modular forms over k of

weight ≡ κ + 2 mod p − 1;

ii) Primitive δ-series in k[[q]][q′] which are eigenvectors of all Hecke operators

nTκ(n), “pTκ(p)”, (n, p) = 1, and which are δ-Fourier expansions of δ-modular forms

of some order r ≥ 0 and weight w with deg(w) = κ.

14



Chapter 1. Introduction

This correspondence preserves the respective eigenvalues.

Remark 1.0.11. 1) As Theorems 4.5.6 and 4.5.7 will show the correspondence in

Theorem 1.0.10 is given, on a computational level, by an entirely explicit formula

(but note that the proof that this formula establishes the desired correspondence is

not merely computational.) The formula is as follows. If ϕ =
∑

m≥1 amqm ∈ k[[q]] is

a series as in i) of the Theorem then a1 6= 0 and the corresponding δ-series in ii) is

given by

ϕ♯,2 :=
∑

(n,p)=1

an

n
qn −

ap

a1

·

(∑

m≥1

amqmp

)
q′

qp
+ e ·

(∑

m≥1

amqmp2

)
·

(
q′

qp

)p

where e is 1 or 0 according as κ is 0 or > 0. (The upper index 2 in ϕ♯,2 is meant to

reflect the p2 exponent in the right hand side of the above equality; later in the body

of the thesis we will encounter a ϕ♯,1 series as well. The ♯ sign is meant to reflect the

link between these objects and the objects f ♯ introduced in [11].)

2) Theorem 1.0.10 provides a complete description of primitive δ-series mod p of

order 1 which are eigenvectors of all the Hecke operators and which are δ-Fourier

expansions of δ-modular forms of arbitrary order. It would be desirable to have such a

description in characteristic zero and/or for higher order δ-series. However note that

all known examples (so far) of δ-modular forms of order ≥ 2 which are eigenvectors

of all Hecke operators have the property that their δ-Fourier expansion reduced mod

p has order 1; by the way some of these forms play a key role in [11, 12, 13]. So

it is reasonable to ask if it is true that any δ-modular form of order ≥ 1 which is

an eigenvector of all the Hecke operators must have a δ-Fourier expansion whose

reduction mod p has order 1.

3) Note that in ii) of the above Theorem one can take the order to be r = 1 and

the weight to be w = κ. Also note that the δ-modular forms in ii) above have, a

priori, “singularities” at the cusps and at the supersingular points. Nevertheless, in

the special case when the classical modular forms in i) above come from newforms

15
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on Γ0(N) over Z of weight 2 one can choose the δ-modular forms in ii) of weight 0,

order 2, and without singularities at the cusps or at at the supersingular points; this

was done in [11] where the corresponding δ-modular forms were denoted (at least in

the “non-CL” case) by f ♯. These f ♯s played, by the way, a key role in the proof of

the main results in [13] about linear dependence relations among Heegner points. It

would be interesting to find analogues of the forms f ♯ in higher weights.

4) One of the subtleties of the above theory is related to the fact that the operator

“pTκ(p)” is not everywhere defined as mentioned before. The failure of this operator

to be everywhere defined is related to the failure of “the fundamental theorem of

symmetric polynomials” in the context of δ-functions; cf. [11, 12]. The domain of

definition of “pTκ(p)” will be the space of all δ-series for which the analogue of “the

fundamental theorem of symmetric polynomials” holds; these δ-series will be called

Taylor δ − p-symmetric. One of our main results will be a complete determination

of the space of Taylor δ − p-symmetric δ-series; cf. Theorems 4.3.1 and 4.3.2.

5) This chapter should be viewed as a first attempt to understand the structure

of eigenforms on the Fourier side. It is an on going research project to push this

further to characteristic 0 and for higher orders and to consequently develop a p-adic

analysis à la Katz [19, 22].
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Chapter 2

Interaction between Arithmetic

and Geometric Jet Spaces

We will first show that if B is p-adically closed then so is the Witt ring Wn(B).

Then in section 2.4 we show that Wn is the right adjoint of the jet space functor

Jn. In section 2.6, we construct a family of canonical ring homomorphism Ψ from

D1◦Wn(B) → Wn◦D1(B). We apply this fact to prolong derivatives from the base to

the entire of prolongation sequences. As a result we obtain the commutation relation

between a derivation and a p-derivation. In section 2.8, we record an important

property of “non-completed” jet ring as to how they behave with respect to taking

fractions. In section 2.9, we have also recorded another geometric insight as to how

the canonical lifts of points on the arithmetic jet space can be viewed as intersection

of pull-back of subschemes.

17
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2.1 Witt Vectors

Here we review the basic theory of Witt vectors. We refer to [21] for a detailed

exposition. Let N be the set of positive integers. We call a set S ⊂ N a truncation

set if n ∈ S and d is a divisor in n then d ∈ S. Then the big Witt ring WS(A) is the

ring structure endowed on AS such that the ghost map

w : WS(A) → AS

which takes (an)n∈S to (wn)n∈S where

wn =
∑

d|n
da

n
d

d (2.1.1)

is a natural transformation of functors from the category of rings to itself. As it

turns out [21], this ring structure is unique.

If T ⊂ S are truncation sets, then the forgetful map

RS
T : WS(A) → WT (A)

is a natural ring homomorphism and is called the restriction map. For any n ∈ N,

we can define a new truncation set

S/n = {d ∈ N | nd ∈ S}

Then there exists a natural ring homomorphism Fn : WS(A) → WS/n(A), called the

Frobenius such that the following diagram is commutative

WS(A) w //

Fn

²²

AS

F w
n

²²
WS/n(A) w

// AS/n

where (Fw
n ((xm)))d = xnd.

18
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Consider the truncation set S = {1, p, p2, ...} ⊂ N containing all the powers of p.

Then W(A) = WS(A) is called the ring of p − typical Witt vectors and Wn(A) =

W{1,p,...,pn}(A) are called the p-typical Witt vectors of length n + 1 in A.

Notation. For the rest of the section, we will denote the p-typical Witt vectors by

W. The restriction map R
{1,...,pn}
{1,...,pn−1} and the frobenius map Fp would now be short-

handed as R and F respectively. Also note that Fw
p is nothing but the left-shift

operator of sequences.

2.2 p-adic completeness of the Witt rings

We would show that if B is a p-adically complete ring then Wn(B) is also p-adically

complete. Consider the kernel of the reduction map Wn(B) → Wn( B
pkB

) and call it

Ik. An element in pνWn(B) is of the form pνx for some x = {x0, ..., xn} ∈ Wn(B).

pνx = {L0(x), ..., Ln(x)}

where Li’s satisfy
k∑

i=0

piLpn−i

i = pν(
k∑

i=0

pixpn−i

i )

for all k ≥ 0.

Lemma 2.2.1. lpi − i ≥ l for all i ≥ 1 and l ≥ 1

Proof. We have

pi−1 + pi−2 + ... + 1 ≥ 1 + ... + 1 = i

So l(p − 1)(pi−1+... + 1) ≥ i because both l, p − 1 ≥ 1

Hence l(pi − 1) ≥ i

Hence lpi − i ≥ l
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and this completes the proof.

Lemma 2.2.2. For 0 ≤ i ≤ n − 1, pn−i(ν − i) ≥ ν

Proof. The result follows from the following inequality

pn−i ≥ 1 ≥ 1 − i/ν

pn−iν ≥ ν − i

pn−i(ν − i) ≥ ν

and this completes the proof.

Lemma 2.2.3. If 0 ≤ m ≤ ν − n then pνWn(B) ⊂ Im.

Proof. Any element y ∈ pνWn(B) can be written as y = {L0(x), ..., Ln(x)} for

some x ∈ Wn(B). We will prove this by induction on n. In the case when n = 0

the result is true. Let us assume that it is true for n − 1. We know that Ln =

pν−n
∑k

i=0 pixpn−i

i −
∑n−1

i=0 pi−nLpn−i

i . By the induction hypothesis, vp(Li) ≥ ν − i.

vp(p
i−nLpn−i

i ) ≥ i − n + pn−i(ν − i)

≥ ν − n + i, by lemma 2.2.2

≥ ν − n

We have shown that vp(Ln) ≥ ν − n. Since all the components Li have valuation

greater than ν −n implies that the element {L0, ..., Ln} ∈ Im and this completes the

proof.

Lemma 2.2.4. If m > ν and m > n then pνWn(B) ⊃ Im
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Proof. It is sufficient to show that for any y0, ..., ym ∈ B there exists x0, ..., xn ∈ B

satisfying

L0(x0) = pmy0

L1(x0, x1) = pmy1

...

Ln(x0, ..., xn) = pmyn

We will prove this by induction. L0(x0) = pνx0 = pmy0 and hence x0 = pm−ν satisfies

the equation. Also we have vp(x0) ≥ m − ν. Let us assume that there are solutions

x0, ..., xk−1 satisfying Li = pmyi and also vp(xi) ≥ m − ν for all i ≤ k − 1. Define

xk =
k∑

i=0

Lpk−i

i

pk+ν−i
−

k∑

i=1

xpi

k−i

pi

vp

(
Lpk−i

i

pk+ν−i

)
≥ m(pk−i) − (k + ν − i) because each of the Li have valuations greater

than equal to m.

We claim that mpk−i − (k− i) ≥ m. If i = 0 then the both sides of the inequality

are 0 and hence the inequality is true. When i > 0, since we have m > n ≥ k and

pk−i ≥ 1, the above inequality is true again This shows that vp

(
Lpk−i

i

pk+ν−i

)
≥ m − ν.

For the other terms in the sum vp

(
xpi

k−i

pi

)
≥ pi(m − ν) assume the inductive

hypothesis of the valuation of xi’s. Since m − ν ≥ 1, by Lemma 2.2.1, we have

vp

(
xpi

k−i

pi

)
≥ m − ν. We have shown that all the terms in the definition of xk have

valuation greater than equal to m − ν, in particular, greater than equal to 0 and

hence xk ∈ B and it easily follows that xk is a solution for Lk(x0, ..., xk) = pmyk and

this completes the inductive step and hence the proof.

Theorem 2.2.5. If B is p-adically complete then Wn(B) is p-adically complete.
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Proof. Combining lemma 2.2.4 and lemma 2.2.3 we obtain

Iν+1 ⊂ pνWn(B) ⊂ Iν−1

for all ν > n. Hence we obtain the following diagram

Wn(B/pν+1B) // Wn(B)
pνWn(B)

// Wn(B/pν−1B)

Wn(B/pν+2B) //

OO

Wn(B)
pν+1Wn(B)

//

OO

Wn(B/pνB)

OO

where all the maps are surjections. Since the left and the right hand side have Wn(B)

as limit, we get that Wn(B) is p-adically complete.

2.3 The Right Adjointness of the arithmetic jet

functor

Let Wn(B) be a p-typical Witt vector of length n + 1. Recall that there are two

homomorphisms, R, F : Wn(B) → Wn−1 where, R is called the restriction and F is

the Frobenius. Also recall the ring R = Zur
p .

Remark 2.3.1. Notation wise, it might be a little confusing since R represents the

restriction map R : Wn(B) → Wn−1(B) and also R = Zur
p . But the usage would be

very clear from the context and we do no wish to change one of them as they both

are very standard.

Since R has a unique lift of Frobenius, this induces a unique ring homomorphism

R → Wn(R). Let A and B be R-algebras. Let Homδ(A, Wn(B)) be the set of all ring

homomorphisms γ : A → Wn(B) such that the following diagram is commutative

A
γ // Wn(B)

R

OO

// Wn(R)

Wn(g)

OO
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where g : R → B is the given algebra map of R.

We will review the basic definitions and constructions of arithmetic jet spaces.

Let A be a finitely generated ring over R, where recall R is the completed, maximal,

unramified extension of Zp. Then A = R[x]/(f) where x is a collection of variables

and f represent a collection of multivariate polynomial in x. Then define the functor

J1A from rings to sets as

J1A(B) = Homδ(A, W1(B)).

It is to easy to see that the above functor is representable by the ring R[x,x′]/(f , δf)

where x′ are new set of indeterminates. We call this ring J1A again by a slight abuse

of notation. By construction, there are two ring homomorphisms-

i) u : A → J1A induced by u(x) = x where the right hand side is the image of x

in J1A.

ii) φ : A → J1A defined by φ(a) = u(a)p + pδa where δ is induced from δx = x′.

Now we will define Jn inductively for n, provided Jn−1 is already defined. We

also have the two canonical maps (u, δ) : Jn−2A → Jn−1A where δ is the set theoretic

map satisfying

δ(x + y) = δx + δy + Cp(x, y)

δ(xy) = xpδy + ypδx + pδxδy

where Cp(x, y) = xp+yp−(x+y)p

p
.

A ring homomorphism (f, ∆) : Jn−1A → W1(B) will be said to satisfy (∗) if in

the following diagram

Jn−1A
f

∆
// B

Jn−2A

u δ

OO
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we have ∆ ◦ u = f ◦ δ. Then JnA is the functor from rings to sets defined as

JnA(B) = {(f, ∆) ∈ Homδ(J
n−1A,B) | (f, ∆) satisfies (∗)}

It is easy to see that the above functor is represented by JnA = R[x]/(f , ...δnf) with

the two canonical maps (u, δ) : Jn−1A → JnA and where φ(a) = u(a)p + pδa is the

lift of the Frobenius like before. Hence we obtain a sequence of rings as follows

A
u

δ
// J1A // ... Jn−1A

u

δ
// JnA // ...

Definition 2.3.2. Let X = Spec A be the affine scheme. Then we define JnX =

Spf ĴnA, where ĴnA is the p-adic completion of JnA. We will also denote JnX =

Spec JnA.

We will show that Jn( ) is the left adjoint of the Wn( ) functor, that is,

Hom (JnA, ) ≃ Homδ(A, Wn( )).

where A is finitely generated over R. The case when n = 1 is true by definition.

We will prove the adjointness of the two functors by induction. Consider the

following statements whose conjunction we call P (n − 1):

1) For all k ≤ n − 1, Hom (JkA,B)
Ψk

≃ Homδ(A, Wk(B)). Also define Pk :=

Ψk(1JkA) where 1JkA ∈ Hom (JkA, JkA) is the identity element. Also, let Ψ−1
k :

Homδ(A, Wk(B)) → Hom (JkA,B) be the inverse of Ψk, for all k ≤ n − 1.

2) If Hom (JkA, JkA) ≃ Homδ(A, Wk(J
kA)) then Ψ−1

k−1(R ◦ Ψk(1JkA)) = u and

Ψ−1
k−1(F ◦ Ψk(1JkA)) = φ.

Under the induction hypothesis, let Pn−1 = Ψn−1(1Jn−1A). Then Pn−1 : A →

Wn−1(J
nA) is the universal family for the isomorphism in 1) above.

We will prove P (n) in Theorem 2.3.24.
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Let R : Wk( ) → Wk−1( ) denote the restriction map and F : Wk( ) → Wk−1( )

the Frobenius.

Given any ring C, let w : Wk(C) → Ck+1 denote the ghost map for all k. Then

we can consider the following diagram

A
Pn−1 // Wn−1(J

n−1A)

Wn−1(u)×Wn−1(φ)

²²
Wn(JnA)

R×F //

w

²²

Wn−1(J
nA) × Wn−1(J

nA)

w×w
²²

(JnA)n R×F // (JnA)n−1 × (JnA)n−1

We will show that there exists a ring homomorphism Pn : A → Wn(JnA) which

makes the above diagram commutative in the following Proposition 2.3.6.

But before we show that for any finitely generated ring A in general, we will

prove existence in the case when A = R[x] where x is a collection of indeterminate

variables. Hence in this particular case, JnA = R[x, ...,x(n)]. Since R is torsion free,

implies that JnA is torsion free too.

Lemma 2.3.3. (R × F ) ◦ w is a monomorphism.

Proof. If (x0, ..., xn) ∈ Wn(JnA) then (R × F )(x0, ..., xn) = (x0, ..., xn−1) ×

(x1, ..., xn) which is injective. And w : Wn(JnA) → (JnA)n is injective too be-

cause JnA is torsion free. Hence their composition is injective and we are done.

Let Pn−1 : A → Wn−1(J
n−1A) be given by Pn−1(a) = (P0(a), ..., Pn−1(a)), for

all a ∈ A where P0, ...Pn−1 : A → Jn−1(A) are set-theoretic maps. Define Pn(a) ∈

JnA ⊗ Q,

Pn(a) =
n−1∑

i=0

pn−1−i∑

j=1

pj−1

pn−i−1


 pn−i−1

j


 Pi(a)p(pn−i−1−j)(δPi(a))j (2.3.1)
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The following Lemma proves that the coefficients in the above definition are integral.

Lemma 2.3.4. Pn(a) ∈ JnA.

Proof. We need to check that Pn(a) is p-integral. Hence it suffices to show

that the valuation, νp


 pj−1

pn−i−1


 pn−i−1

j





 ≥ 0 for all i and j. We know that

νp


 pn−i−1

j


 = n − i − 1 − νp(j) and hence

νp


 pj−1

pn−i−1


 pn−i−1

j





 = n − i − 1 − νp(j) + j − 1 − (n − i − 1)

= j − νp(j) − 1

≥ 0

and we are done.

Proposition 2.3.5. (R × F ) ◦ w surjects onto the image of (w × w) ◦ (Wn−1(u) ×

Wn−1(φ)) ◦ Pn−1. In particular we have,

((R × F ) ◦ w)(P0(a), ..., Pn(a)) = (w × w) ◦ (Wn−1(u) × Wn−1(φ)) ◦ Pn−1(a)

for all a ∈ A.

Proof. Note that

(w × w) ◦ (Wn−1(u) × Wn−1(φ)) ◦ Pn−1(a) =

(
k∑

i=0

piPi(a)pk−i

)n−1

k=0

×

(
k∑

i=0

pi(Pi(a)p + pδPi(a))pk−1−i

)n−1

k=0

On the other hand, we have

((R × F ) ◦ w)(P0(a), ..., Pn(a)) =

(
k∑

i=0

piPi(a)pk−i

)n−1

k=0

×

(
k∑

i=0

piPi(a)pk−i

)n

k=1
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Hence by comparing the ghost components, it is sufficient to show that,

n∑

i=0

piPi(a)pn−i

=
n−1∑

i=0

pi(Pi(a)p + pδPi(a))pn−1−i

The following computation proves the above claim.

n∑

i=0

piPi(a)pn−i

=
n−1∑

i=0

piPi(a)pn−i

+pn

n−1∑

i=0

pn−1−i∑

j=1

pj−1

pn−i−1


 pn−i−1

j


 Pi(a)p(pn−i−1−j)(δPi(a))j

=
n−1∑

i=0

piPi(a)pn−i

+
n−1∑

i=0

pipn−1−ip

pn−1−i∑

j=1

pj−1

pn−i−1


 pn−i−1

j


 Pi(a)p(pn−i−1−j)(δPi(a))j

=
n−1∑

i=0

pi(Pi(a)p)(pn−i−1)

+
n−1∑

i=0

pi

pn−1−i∑

j=1


 pn−i−1

j


 Pi(a)p(pn−i−1−j)(pδPi(a))j

=
n−1∑

i=0

pi
(
(Pi(a)p)(pn−i−1)

+

pn−1−i∑

j=1


 pn−i−1

j


Pi(a)p(pn−i−1−j)(pδPi(a))j




=
n−1∑

i=0

pi(Pi(a)p + pδPi(a))pn−1−i

By Lemma 2.3.3, (R × F ) ◦ w is a monomorphism. And by Proposition 2.3.5, it

makes sense to compose (w × w) ◦ (Wn−1(u) × Wn−1(φ)) ◦ Pn−1(a) with the inverse
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of (R × F ) ◦ w. Now define,

Pn(a) = ((R × F ) ◦ w)−1 ◦ (w × w) ◦ (Wn−1(RL) × Wn−1(φL)) ◦ Pn−1(a)

Since Pn is a composition of ring homomorphisms, we get that Pn is a ring homo-

morphism. Also in proposition 2.3.5 we have shown that, Pn(a) = (P0(a), ..., Pn(a)).

Hence we have proved the following,

Proposition 2.3.6. If A = R[x] then there exists a ring homomorphism Pn : A →

Wn(JnA) making the following diagrams commutative.

A
Pn−1 //

Pn

²²

Wn−1(J
n−1A)

Wn−1(φ)

²²
Wn−1(u)

²²
Wn(JnA)

R //

F
// Wn−1(J

nA)

Let φ : R → R be the unique lift of the Frobenius. Suppose E =
∑

I cIx
I be

a multivariate polynomial with coefficients in R and I running through an indexing

set. Define Eφ =
∑

I φ(cI)x
I . In other words, Eφ is obtained from E by twisting its

coefficients by φ. Let us rewrite Pn(a) as follows

Pk(a) = δPk−1(a) +
k−2∑

i=0

pk−1−i∑

j=1

pj−1

pk−i−1


 pk−i−1

j


Pi(a)p(pk−i−1−j)(δPi(a))j

Lemma 2.3.7. φL(E(a0, ..., ak)) = Eφ(E(ap
0 + pδa0, ..., a

p
k + pδak))

Proof. For any y ∈ JnA, we know φL(y) = yp + pδy. Hence

φL(E(a0, ..., ak)) =
∑

I

φL(cI)φL(a0, ..., ak)
I

=
∑

I

φ(cI)φL(a0, ..., ak)
I

= Eφ(E(ap
0 + pδa0, ..., a

p
k + pδak))
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Lemma 2.3.8. There exists a polynomial Ek with coefficients in R such that,

δPk(a) = Ek(P0(a), ..., Pk+1(a)) for all k.

Proof. We will prove this by induction. For k = 0, δP0(a) = P1(a) and hence

the result holds true. Suppose the lemma is true for k − 1, that is, δPi(a) =

Ei−1(P0(a), ..., Pi(a)) for all i ≤ k − 1. Then we know that, Pk+1(a) = δPk(a) +

H ′(P0(a), ..., Pk(a)) for some polynomial H ′, which implies, δPk(a) = Pk+1(a) −

H ′(P0(a), ..., Pk(a)) and this completes the proof.

Lemma 2.3.9. Let G be a polynomial with coefficients in R. Then there exists an

H such that, δG(P0(a), ..., Pk(a)) = H(P0(a), ..., Pk+1(a))

Proof. We know that

δG(P0(a), ..., Pk(a)) = φL(G(P0(a),...,Pk(a))−G(P0(a),...,Pk(a))p

p

= Gφ(P0(a)p+pδP0(a),...,Pk(a)p+pδPk(a))−G(P0(a),...,Pk(a))p

p

, by lemma 2.3.7.

By lemma 2.3.8, for all i, there exists Ei with coefficients in R such that δPi(a) =

Ei(P0(a), ..., Pi+1(a)). And hence substituting this in the above equation, we have

proved the result.

Lemma 2.3.10. For each k, there exists a polynomial Gk with coefficients in R such

that Pk(a) = δka + Gk(P0(a), ..., Pk−1(a))

Proof. We will proceed by induction on k. For k = 1, we know that P1(a) = δa

and hence the result is true. Suppose it is true for k−1. Then there exists a polyno-

mial Gk−1 with coefficients in R such that Pk−1(a) = δk−1a+Gk−1(P0(a), ..., Pk−2(a)).
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Then,

δPk−1(a) = δka + δGk−1(P0(a), ..., Pk−2(a)) +

Cp(δ
k−1a,Gk−1(P0(a), ..., Pk−2(a)))

= δka + δGk−1(P0(a), ..., Pk−2(a)) +

Cp(Pk−1(a) − Gk−1(P0(a), ..., Pk−2(a), Gk−1(P0(a), ..., Pk−2(a))).

By lemma 2.3.9,

δGk−1(P0(a), ..., Pk−2(a)) = H(P0(a), ..., Pk−1(a)) for some polynomial H. Hence

we get

δPk−1(a) = δka + G′(P0(a), ..., Pk−1(a))

Hence using the formula of Pk(a) we get,

Pk(a) = δPk−1(a) + H ′(P0(a), ..., Pk−1(a)), for some polynomial H ′.

= δka + G′(P0(a), ..., Pk−1(a)) + H ′(P0(a), ..., Pk−1(a)).

and this completes the proof.

Proposition 2.3.11. R[x, ..., x(n)] ≃ R[P0(x), ..., Pn(x)]

Proof. We will prove this by induction on n. When n = 1, we know that x = P0(x)

and hence the result holds true. Suppose true for n − 1, that is R[x, ..., x(n−1)] ≃

R[P0(x), ..., Pn−1(x)]. Then by the formula of Pn(x), we have Pn(x) = Q(x, ..., x(n))

where Q is a polynomial with coefficients in R.

By lemma 2.3.10, we know that x(n) = Pn(x) − Gn(P0(x), ..., Pn−1(x), for some

polynomial Gn with coefficients in R. Hence combining the above two, we conclude

that R[x, ..., x(n)] ≃ R[P0(x), ..., Pn(x)] and we are done.
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Lemma 2.3.12. If g ∈ (P0(f), ..., Pk−1(f)) then δg ∈ (P0(f), ..., Pk(f)).

Proof. It is sufficient to show that δPk−1(f) ∈ (P0(f), ..., Pk(f)). We will prove

this by induction. For k = 0, we know that P0(f) = f and δf = P1(f) and hence

the lemma is true. Now suppose the result is true for k − 1, that is δPk−2(f) ∈

(P0(f), ..., Pk−1(f)). Then Pk(f) = δPk−1(f) + h where h ∈ (P0(f), ..., Pk−1(f)),

which implies that δPk−1(f) ∈ (P0(f), ..., Pk(f)) and this completes the proof.

Lemma 2.3.13. Pk(f) = δkf + g where g ∈ (P0(f), ..., Pk−1(f)).

Proof. We will prove this by induction. For k = 1, we know that P1(f) = δf and

hence the result is true. Suppose true for k − 1, that is, Pk−1(f) = δk−1f + g where

g ∈ (P0(f), ..., Pk−2(f)). Then, Pk(f) = δPk−1(f)+h where h ∈ (P0(f), ..., Pk−1(f)).

Therefore, Pk(f) = δ(δk−1f + g) + h where g ∈ (P0(f), ..., Pk−2(f)). But by lemma

2.3.12, we conclude that δ(δk−1f + g) = δkf + g′ where g′ ∈ (P0(f), ..., Pk(f)) and

hence Pk(f) = δkf + g′ + h and g′ + h ∈ (P0(f), ..., Pk−1(f)) and this completes the

proof. .

Lemma 2.3.14. The following is an equality of ideals

(f, δf, ..., δkf) = (P0(f), ..., Pk(f))

Proof. We make the following :

Claim. (P0(f), ..., Pk(f)) ⊂ (f, ..., δkf).

We will prove this by induction. For k = 0, we know that P0(f) = f . Let us

assume the claim is true for k − 1, that is, Pk−1(f) ∈ (f, ..., δk−1f). Then Pk(f) =

δPk−1(f) + G where G ∈ (f, ..., δk−1f). Since Pk−1(f) ∈ (f, ..., δk−1f) implies that

δPk−1(f) ∈ (f, ...δk−1f, δkf) and hence Pk(f) ∈ (f, ...δkf).

Claim. (f, ..., δkf) ⊂ (P0(f), ..., Pk(f))
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By lemma 2.3.13 we have δkf = Pk(f) − g ∈ (P0(f), ..., Pk(f)) and this proves

the claim and also completes the proof.

Let f denote a collection of multivariate polynomials in x.

Proposition 2.3.15. R[x,x′,...,x(n)]
(f ,δf ,...,δnf)

≃ R[P0(x),...,Pn(x)]
(P0(f),...,Pn(f))

Proof. This follows immediately from the above lemma.

Proposition 2.3.16. Let A = R[x]
(f)

. There exists a homomorphism Pn : A →

Wn(JnA) making the following diagrams commutative.

A
Pn−1 //

Pn

²²

Wn−1(J
n−1A)

Wn−1(φ)

²²
Wn−1(u)

²²
Wn(JnA)

R //

F
// Wn−1(J

nA)

Proof. We define Pn(g(x)) := Pn(g(x)), where g(x) is a pre-image in R[x] of

g(x) ∈ A. We need to show that this is well defined. It is enough to show that if f is

a generator of the ideal (f), then Pn(f(x)) = 0, in other words, Pk(f(x)) ∈ (f , ..., f (n))

for all k. But this follows from Lemma 2.3.14. The commutativity of the above

diagram follows from the commutation of the outer diagram which is true by Lemma

2.3.6

R[x]
Pn−1 //

Pn

²²

((QQQQQQQQQQQQQQQQQ Wn−1(R[x, ...,x(n−1)])

Wn−1(φ)

²²

Wn−1(u)

²²

uujjjjjjjjjjjjjjj

A
Pn−1 //

Pn

²²

Wn−1(J
n−1A)

Wn−1(φ)

²²
Wn−1(u)

²²
Wn(JnA)

R //

F
// Wn−1(J

nA)

Wn(R[x, ...,x(n)])
R //

F
//

66mmmmmmmmmmmmm

Wn−1(R[x, ...,x(n)])

iiTTTTTTTTTTTTTTT
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Let C be any R-algebra and w = (w0, ..., wn) and w′ = (w0, ..., wn) be two

elements in Wn(C). Let the addition and the multiplication laws in the Witt ring

be given as

(w + w′)k = Qk ((w0, ...wk), (w
′
0, ..., w

′
k))

(w.w′)k = Lk ((w0, ..., wk), (w
′
0, ..., w

′
k))

Given a ring homomorphism γ : R[x] → Wn(B) such that γ(a) = (γ0(a), ..., γn(a)),

define the ring homomorphism,

ργ : R[P0(x), ..., Pn(x)] → B, by

ργ(Pi(x)) := γi(x)

We will show that ργ(Pi(g(x))) = γi(g(x)) for all i.

Lemma 2.3.17. ργ(Pi(x
m))) = γi(x

m) for all i and m.

Proof. We will prove this by induction on m. For m = 1, the result is true by

definition. Suppose true for m − 1. Then

ργ(Pi(x
m)) = ργ(Li((P0(x

m−1), ..., Pi(x
m−1)), (P0(x), ..., Pi(x))))

= Li((ργ(P0(x
m−1)), ..., ργ(Pi(x

m−1))), (ργ(P0(x)), ..., ργ(Pi(x))))

= Li((γ0(x
m−1), ..., γi(x

m−1)), (γ0(x), ..., γi(x)))

= γi(x
m)

and this completes the proof.

Lemma 2.3.18. If g(x) = cxi1
1 ...xik

k , where c ∈ R, then ργ(Pi(g(x))) = γi(g(x))
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Proof. We will prove this by induction on the number of indeterminates k.

ργ(Pi(c
k∏

j=1

x
ij
j )) = ργ(Li((P0(c

k−1∏

j=1

x
ij
j ), ...Pi(c

k−1∏

j=1

x
ij
j )), (P0(x

ik
k ), ..., Pi(x

ik
k ))))

= Li

(
(ρ(P0(c

k−1∏

j=1

x
ij
j )), ...ρ(Pi(c

k−1∏

j=1

x
ij
j ))), (ρ(P0(x

ik
k )), ..., ρ(Pi(x

ik
k )))

)

= Li((γ0(c
k−1∏

j=1

x
ij
j ), ..., γi(c

k−1∏

j=1

x
ij
j )), (γ0(x

ik
k ), ..., γi(x

ik
k )))

= γi(c
k∏

j=1

xik
j )

and this completes the proof.

Proposition 2.3.19. Let g(x) =
∑

I cIx
ji1
i1

...x
jik

ik
where I is a multi-indexing set.

Then, ργ(Pi(g(x))) = γi(g(x)).

Proof. Suppose g(x) has l summands. We will proceed by induction on the

number of summands of g. When the number of summands is 1, we have already

showed the claim in the above lemma. Assume the proposition is true for l − 1

summands then

ργ(Pi(g(x))) = ργ(Qi(P0(
∑

I\{i1,...,im}
cIx

ji1
i1

...x
jik

ik
), ..., Pi(

∑

I\{i1,...,im}
cIx

ji1
i1

...x
jik

ik
)),

(P0(ci1,...,imx
ji1
i1

...x
jim

im
), ..., Pi(ci1,...,imx

ji1
i1

...x
jim

im
)))

= Qi((ργ(P0(
∑

cIx
ji1
i1

...x
jik

ik
))..., ργ(P0(

∑
cIx

ji1
i1

...x
jik

ik
))),

(ργ(P0(ci1,...,imx
ji1
i1

...x
jim

im
)), ...ργ(P0(ci1,...,imx

ji1
i1

...x
jim

im
)))

= Qi((γ0(
∑

I\{i1,...,im}
cIx

ji1
i1

...x
jik

ik
), ..., γi(

∑

I\{i1,...,im}
cIx

ji1
i1

...x
jik

ik
))

(γ0(ci1,...,imx
ji1
i1

...x
jim

im
), ..., γi(ci1,...,imx

ji1
i1

...x
jim

im
)))

= γi(
∑

I\{i1,...,im}
cIx

ji1
i1

...x
jik

ik
+ ci1,...,imx

ji1
i1

...x
jim

im
)

= γi(g(x))
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and this completes the proof.

Corollary 2.3.20. If f(x) ∈ R[x] such that γ(f(x)) = 0, then ργ(Pi(x)) = 0.

Proof. γ(f(x)) = (γ0(f(x)), ..., γn(f(x))) = 0. Hence by Proposition 2.3.19,

ργ(Pi(x)) = γi(f(x)) = 0. for all i.

Corollary 2.3.21. If γ : R[x] → Wn(B) such that γ(f(x)) = 0, then

ργ : R[x, ..., x(n)] → B descends to a ring homomorphism, ργ : R[x,...,x(n)]
(f,...,δnf)

→ B.

Proof. This follows from R[x,...,x(n)]
(f,...,δnf)

≃ R[P0(x),...,Pn(x)]
(P0(f),...,Pn(f))

and, γ(f(x)) = 0 ⇒

ργ(Pi(f)) = 0.

Let A = R[x]
(f)

, then JnA = R[x,...,x(n)]
(f ,...δnf)

≃ R[P0(x),...,Pn(x)]
(P0(f),...,Pn(f))

. It follows immediately

from the above corollary that ργ descends to a ring homomorphism from JnA to B.

Definition 2.3.22. Define Θn : Hom (A, Wn(B)) → Hom (JnA,B) as Θn(γ) := ργ.

Definition 2.3.23. Define, Ψn : Hom (JnA,B) → Hom (A, Wn(B)) as

Ψn(ρ)(a) := (ρ(P0(a)), ..., ρ(Pn(a)))

Theorem 2.3.24. Θn ◦ Ψn = 1 and Ψn ◦ Θn = 1, in other words θn = Ψ−1
n . We

also have θn−1(R ◦ Ψn(1JnA)) = u, θn−1(F ◦ Ψn(1JnA)) = φ.

Proof. Let A = R[x]
(f)

. Given a ρ : JnA → B, then

Ψn(ρ)(x) = (ρ(P0(x)) , ..., ρ(Pn(x))) where x is the image of x in A. Hence we get

Θn(Ψn(ρ))(Pi(x)) = ρ(Pi(x)) for all i, but this is ρ itself, which proves, Θn ◦Ψn = 1.

On the other hand, given a γ : A → Wn(A), γ(a) = (γ0(a), ..., γn(a)) then,

Θn(γ)(Pi(x)) = γi(x) for all i by definition. Now

Ψn(Θn(γ))(x) = (Θn(γ)(P0(x)), ..., Θn(γ)(Pn(x)))

= (γ0(x), ..., γn(x))

= γ(x)
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and this proves the latter identity, Ψn ◦ Θn = 1.

The last part of the theorem follows from proposition 2.3.16.

Remark 2.3.25. We would like to remark that the above proof can be shortened if

one assumes that JnA is torsion free. However, this assumption would be a very

strong one as it could be very well that even if A is not torsion free, JnA could have

p-torsion. The following is an example- consider A = Z[x]
(xp)

then J1A = Z[x,x′]
(xp,pf)

where

f is a polynomial in x and x′. Here the image of f in J1A is a torsion element.

Corollary 2.3.26. If X = Ak then JnX ≃ Wk
n.

Proof. X = Spec R[x] where x represents k indeterminate variables. Then

Hom (Jn(R[x]), B) ≃ Hom (R[x], Wn(B)). But Hom (R[x], Wn(B)) ≃ Wn(B)k

and hence the result follows.

If B is a p-adically complete p-torsion free ring such that it has a perfect residue

field k then we know that B/pn+1B ≃ Wn(k) [26]. We obtain the following, which

shows the bijection between the k points of the jet-space with the Greenberg transform

of X.

Corollary 2.3.27. If X is a scheme over R then JnX(k) ≃ X(B/pn+1B).

If B is a p-adically complete ring, then we have Hom (ĴnA,B) ≃ Hom (JnA,B)

from the universality properties of completions. Also, if we further assume that A is

p-adically complete, then we obtain

Hom (ĴnA,B) ≃ Homδ(A, Wn(B))

which is an isomorphism in the category of p-adically complete rings because by

2.2.5, Wn(B) is p-adically complete.

Hence, given an affine scheme X, we have shown that

Hom(Spf B, JnX)) ≃ Hom(Spf Wn(B), X̂)
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where X̂ denotes the p-adic formal completion of X.

Definition 2.3.28. We will call a ring A a δ-ring if there exists a p-derivation

δ : A → A.

The following Proposition is an application of our map P.

Proposition 2.3.29. Let A be a δ-ring which is also p-torsion free, then its nilradical

is a δ-closed ideal, i.e, it is preserved under δ.

Proof. The derivation δ on A induces the ring homomorphism P : A → W1(A).

Hence if a ∈ A is nilpotent then P(a) is nilpotent too. Recall that the image of a by

Teichmuller lift A
[ ]
→ W1(A), a 7→ (a, 0, 0, ...), is also nilpotent in W1(A). There fore

P(a) − [a] is nilpotent. But P(a) − [a] = (0, δa) and we have (0, δa)N = 0 for some

N which implies that pN+1δaN = 0 ⇒ δaN = 0 because A is p-torsion free.

2.4 Prolongations of formal groups

Let X = Spf Â be an affine p-adic formal scheme where A is noetherian and finitely

generated and Â denotes its p-adic completion. Then A can be represented as A =

R[x]/(f); x represents the collection of finite number of indeterminates and (f) the

ideal generated by a collection of polnomials f . Then we define the p-adic jetspaces of

JnX as JnX = Spf ĴnA where JnA = R[x, ...,x(n)]/(f , ..., f (n)) as before. Consider

the p-adic formal group Ĝa = Spf R̂[x]. Then for any p-adically complete R-algebra

B, we have

Hom ( ̂Jn(R[x]), B) ≃ Hom (R̂[x], Wn(B))

But then Hom (R[x]b, Wn(B)) ≃ Wn(B) since it is sufficient to specify the image of

the generator x which implies that Hom ( ̂Jn(R[x]), ) ≃ Wn( ). Hence we obtain

JnĜa ≃ Wn
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as formal schemes. Note that the structure of JnĜa as a ring object is precisely that

of the structure of Witt vectors.

2.5 Morphisms between two compositions

Suppose we are in the category of R-algebras. Consider the functor D1 : Rings →

Rings where D1(B) = B[ǫ]/(ǫ2). D1 attaches the ring of dual numbers to a given

ring B. Then given α := (α0, ..., αn) ∈ Bn+1, we will construct a functorial homo-

morphism Ψα : D1 ◦ Wn(B) → Wn ◦ D1(B).

Proposition 2.5.1. Let B be torsion free. If α ∈ Wn(D1(B)) such that α2 = 0 then

α is of the form (α0ǫ, ..., αnǫ) where αi ∈ B for all i.

Proof. We will prove this by induction. Since B is torsion free implies that D1(B)

is torsion free too. Hence the ghost map w : Wn ◦D1(B) → D1(B)n+1 is injective. In

the case of n = 1 the result follows from an easy computation. Suppose the result is

true for n−1. Let α = (α0ǫ, ..., αn−1ǫ, β +αnǫ) be a square zero term in Wn ◦D1(B).

Then we have wn(α)2 = (pnβ + pnαn)2ǫ = 0. This equation gives us the solution of

β = 0 and we are done.

Proposition 2.5.2. (α0ǫ, ..., αnǫ) is an element in Wn ◦D1(B) whose square is zero.

Proof. It is sufficient to consider the case when B is torsion free. Then the result

follows from proposition 2.5.1.

Both D1 ◦Wn(B) and Wn ◦D1(B) are Wn(B) algebras. Hence giving a homomor-

phism from D1 ◦Wn(B)(= Wn(B)[ǫ]/(ǫ2)) to Wn ◦D(B) is equivalent to sending ǫ to

a square-zero element in Wn ◦ D(B). By proposition 2.5.2, the ring homomorphism

Ψα defined as Ψα(ǫ) := (α0ǫ, ..., αnǫ) for α ∈ Rn+1 gives us the following
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Proposition 2.5.3. There exists a family of canonical ring homomorphisms Ψα : D1◦

Wn(B) → Wn ◦D1(B), for α = (α1, ..., αn) ∈ B×n+1 such that Ψα(ǫ) = (α0ǫ, ..., αnǫ)

Example. In the case when n = 1 and α = (α0, α1) ∈ B2 one can easily check

that

Ψα((a0, a1) + (b0, b1)ǫ) = (a0 + α0b0ǫ, a1 + (α1b
p
0 + pb1α1 + αap−1

0 b0)ǫ). (2.5.1)

The following is a list of the first few terms where αi’s are chosen to be equal to

1,

b′0 = b0

b′1 =
∑1

i=0 pibpr−i
i − ap

i b
′
i

= bp
0 + pb1 − ap

0b0

= w1({bi}) − ap
0b0

b′2 =
∑2

i=0 pibpr−i
0 −

∑1
i=0 ap1−i

i b′i

= bp2

0 + pbp
1 + p2b2 − (ap

0b0 + a1b
p
0 + pa1b1 − ap

0a1b0)

= w2({bi}) − (ap
0b0 + a1b

p
0 + pa1b1 − ap

0a1b0)

Theorem 2.5.4. Let X = Spec A. Then there exists a morphism Ψ : An+1 ×

JnTX → TJnX.

Proof. For any ring B, note that

JnTX(Spec B) ≃ Hom (A, D1 ◦ Wn(B)) (2.5.2)

and

TJnX(Spec B) ≃ Hom (A, Wn ◦ D1(B)). (2.5.3)

Now define Ψ : (An+1 × JnTX)(Spec B) → TJnX(Spec B) as Ψ(α, χ) := (χ ◦ Ψα).

39



Chapter 2. Interaction between Arithmetic and Geometric Jet Spaces

2.6 Prolongation of derivatives

Let A = O(X) be the co-ordinate ring of the affine scheme X, smooth over R.

Assume X possesses a system T1, ..., Td of étale coordinates. Then recall from [10]

that

ĴnA := O(JnX) = A[T ′
1, ..., T

′
d, ..., T

(n)
1 , ..., T

(n)
d ]b (2.6.1)

For a scheme X = Spec A, let Ω be its sheaf of diffentials. Let TA = Symm Ω.

Then TY = Spec TA is the physical tangent scheme of X and TA is the co-ordinate

ring of functions of TX. Let B∗ be a prolongation sequence and let ∂ : A → B0 be

a derivation. Then we can canonically prolong the derivation as follows

Theorem 2.6.1. There exists a compatible system of derivatons ∂ making the fol-

lowing diagram commute:

JnA
∂ // Bn

J1A
∂ //

OO

B1

OO

A
∂ //

OO

B0

OO

Proof. Given a derivation A
∂
→ B0, we get a ring homomorphism TA → B0 by

universal property of the tangent ring. And with the universal property of the jet

spaces, we obtain

JnTA → Bn (2.6.2)

But there is a canonical morphism ψ : TJnA → JnTA hence by composing we obtain

JnTA // Bn

TJnA

OO
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Hence we obtain a morphism TJnA → Bn which by the universal property of the

tangent ring gives us the required derivation.

The above theorem can be diagrammatically represented as

JnA
∂ //

d

&&MMMMMMMMMM
Bn

TJnA

ξ
99rrrrrrrrrr

Jn−1A
∂ //

d

&&LLLLLLLLLL

OO

Bn−1

OO

TJn−1A

ξ
99ssssssssss

OO

JA
∂ //

d

&&MMMMMMMMMMM

OO

B1

OO

TJA

ξ
99ssssssssss

OO

A
∂ //

d

&&MMMMMMMMMMMM

OO

B0

OO

TA

ξ
99ssssssssss

OO

where the vertical arrows TJn−1A → TJnA are obtained from the canonical prolon-

gation sequence Jn−1A → JnA after applying the Tangent functor T to it. Now let

us reinterpret the above prolongation of derivatives for the sake of computation.

Let B0 → ... → Bn−1 (u,δ)
→ Bn... be a prolongation sequence. Then for each

n, the pair of maps (u, δ) can be interpreted as a ring homomorphism Bn−1 (u,δ)
→

W1(B
n). This induces the ring homomorphism D1(B

n−1)
(u,δ)
→ D1(W1(B

n)), and

hence composing with Ψ we get the following

D1(B
n−1)

(u,δ) // D1(W1(B
n))

Ψ
²²

W1(D1(B
n))

41



Chapter 2. Interaction between Arithmetic and Geometric Jet Spaces

Hence, we have created a new prolongation sequence D1(B
∗) from B∗. And from the

computation above we get

Ψ ◦ (u, δ)(a + bǫ) = (u(a) + u(b)ǫ, δa + (φ(b) + u(a)p−1u(b))ǫ) (2.6.3)

In particular,

(Ψ ◦ (u, δ))ǫ = (ǫ, ǫ) (2.6.4)

Hence if we start with a derivation (f, ∂) : A → B0, in other words a ring homomor-

phism (f, ∂) : A → D1(B
0) and since D1(B

∗) is a prolongation sequence, by universal

property, we have a morphism of prolongation sequences J∗A
(f,∂)
−→ D1(B

∗) satisfying

JnA
(f,∂) // D1(B

n) ǫ

Jn−1A
(f,∂)

//

δ

OO

D1(B
n−1)

δ

OO

ǫ

δ

OO

and (f, ∂)(x) = f(x) + (∂x)ǫ.

Proposition 2.6.2.

ξ(dx) = ∂(δx) = φ(∂x) − f(x)p−1∂x (2.6.5)

Proof. From the commutation of the above diagram we get

(f, ∂)(δx) = δ ◦ (f, ∂)(x)

f(δx) + ∂(δx)ǫ = δ(f(x) + (∂x)ǫ

= f(δx) + (φ(∂x) − f(x)p−1∂x)ǫ

and comparing the ǫ coordinate we get the required result.
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In particular, if we chose the prolongation sequence B∗ = {J∗TA} then we obtain

JnA
d //

d

$$IIIIIIIII
JnTA

TJnA

ξ
99sssssssss

JA
d //

d

$$IIIIIIIII

OO

J1TA

OO

TJA

ξ
99ttttttttt

OO

A
d //

d

$$IIIIIIIIII

OO

TA

OO

TA

ξ
99sssssssss

OO

where ξ satisfies by Proposition 2.6.5

ξ(dx) = φ(dx) − xp−1dx (2.6.6)

Recall from [10], 3.21 the following definition

(JnTA)+ :=
n∑

j=0

∑

f∈A

ĴnA(df)φj

⊂ ĴnTA (2.6.7)

Then (JnTA)+ is a free ĴnA module with basis

{(dTi)
φj

| 1 ≤ i ≤ d, 0 ≤ j ≤ n}

Proposition 2.6.3. The homomorphism ξ : T (ĴnA) → ĴnTA induces the isomor-

phism

ξ : T (ĴnA) ≃ (JnTA)+ (2.6.8)

Proof. We will prove this by iduction on n. For n = 0, it is clear as (J0TA)+ ≃

TA. From 2.6.5, for all i we obtain

ξ(d(δT
(n−1)
i )) = φ(ξ(d(T

(n−1)
i ))) − (T

(n−1)
i )p−1ξ(d(T

(n−1)
i ))
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But by induction ξ(d(T
(n−1)
i )) = (dTi)

φn−1
+ O(n − 2) which implies that

φ(ξ(d(T
(n−1)
i ))) = (dTi)

φn

+ O(n − 1) and we are done.

To rephrase what we have shown above

T (ĴnA) ≃ ĴnA[dT1, ..., d(T
(n−1)
1 ), ..., d(T

(n−1)
d )]

ξ
≃ ĴnA[dT1, ..., (dT1)

φn

, ..., (dTd)
φn

]

(2.6.9)

Hence, given a derivation ∂ : A → B0, in order to prolong it between {J∗A} and

B∗, it is sufficient to specify where the generators of TJnA go. For example, the

δ-conjugate operators ∂n in [10] are obtained by sending

i) d(T
(j)
i ) → 0, ∀ 0 ≤ i ≤ d, 1 ≤ j ≤ n − 1.

ii) d(T
(n)
i ) → φn∂T

(n)
i .

(2.6.10)

Condition ii) is equivalent to ∂n(φnTi) = pnφn∂Ti.

We could also define a new set of operators ∂+
n in the same spirit as above by

specifying

i) d(T
(j)
i ) → 0, ∀ 0 ≤ i ≤ d, 1 ≤ j ≤ n − 1.

ii) d(T
(n)
i ) → δn∂T

(n)
i .

(2.6.11)

Condition ii) is equivalent to ∂+
n (φn(Ti)) = pnδn∂Ti.

2.7 Base Change Property.

We record the following ”base-change” property of arithmetic jet spaces. One notes

that the arithmetic jetspace, if not p-adically completed, does not behave well under

localization. If X = Spec A and s ∈ A, consider the open subset Xs = Spec As ⊂ X.

Then by [10], J1(Xs) = Spec (J1A)sφ(s) 6= (J1X)s where recall that J1X = Spec J1A.
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Hence one can see that the non-completed jet-space apparently does not behave well

under the localisation, whereas it is so in the case of differential algebra [5].

However, unlike the geometric jet spaces, arithmetic jet spaces have more than

one canonical map between JnX → X, namely the Frobenius φ and its higher powers.

Once we take them into account, it is easy to see that the following is true.

Proposition 2.7.1. The following diagram is commutative

JnXsÄ _

²²

(π,φ,...,φn) // Xn+1
s
_Ä

²²
JnX

(π,φ,...,φn)
// Xn+1

Proof. Since JnXs = Spec A(s,φ(s),...,φn(s)) by [10], the result follows immediately.

2.8 Canonical lift as an intersection of subschemes

Recall from [10] that for a given p-torsion free ring B which has a lift of Frobenius,

one can define the lift of B points of a scheme X to B points of JnX

∇n : X(B) → JnX(B)

If X = An then for any x ∈ An(B) we have, ∇nx = (x, δx, ..., δnx). We will show that

the canonical lift of the point can be realised as an intersection of subschemes. We

will state it in an “intersection theory” setting. Consider the morphism JnX
(π,φ,...,φn)
−→

Xn+1.

Lemma 2.8.1.

φn(x) = pnx(n) + fn−1(x, ..., x(n−1)) (2.8.1)

where f(n−1) is a polynomial of order n − 1.
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Proof. We will prove this by induction. For n = 1 it is clear. Assuming true for

n − 1,

φn(x) = φ(pn−1x(n−1) + fn−2)

= pn−1φ(x(n−1)) + φ(fn−2)

= pn−1(px(n) + (x(n−1))p + φ(fn−2)

= pnx(n) + (pn−1(x(n−1))p + φ(fn−2))

Call fn−1 = pn−1(x(n−1))p + φ(fn−2) completes the proof.

Proposition 2.8.2. ∇nP = (π, φ, ..., φn)∗(P ) where P ∈ X(B).

Proof. Assume X = Spec A is affine and suppose A = R[x]/(f) where x repre-

sents a collection of indeterminates. Then

JnA = Spec R[x, ..., x(n)]/(f, ..., δnf). Suppose P ∈ X(B) is given by the evaluation

x = a, where a ∈ B. Then the pull-back of the cycle P = {x = a} via π, φ, ..., φn

yields the following set of equations

x = a

φ(x) = φ(a)
...

...

φn(x) = φn(a)

(2.8.2)

We claim that the above system of equations yield the desired solution. We will use

induction on n to prove. For n = 0, there is nothing more to prove. Assume true for

n − 1, that is, the first n equations listed above yields the solution

x = a

x′ = δa
...

...

x(n−1) = δn−1(a)

(2.8.3)
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Consider the final equation φn(x) = φn(a). By 2.8.1 we can rewrite it as

pnx(n) + f(x, ..., x(n−1)) = pnδna + f(a, ...δ(n−1)a) (2.8.4)

But by 2.8.3, we know that x = a, ..., x(n−1) = δn−1a which implies pnx(n) = pnδna

and since B is p torsion free, we obtain the solution x(n) = δna as required and this

completes the proof.
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Differential Modular Forms

In the first few sections (3.1 − 3.3) we present a review of the theory of modular

forms, differential modular forms and conjugate operators acting on them. Then we

present the result on ind-étale extension for an ordinary “framed” curve and its jet

space in section 3.4. In section 3.5 we first show that the tangent ring of the jet space

of the modular curve is isomorphic to the subring of differential modular forms of

even weight. Finally, we show the main result of this chapter, Theorem 3.5.13, which

shows how the ring of differential modular forms M∞ maps to the ring of generalized

p-adic modular forms W. In the end of this chapter, we show that there can not be

a modular form ǫ such that ǫp−1 = Ep−1, in other words, the (p − 1)-th root of Ep−1

is not a modular form.

3.1 Prolongation Sequences

Let C be the category of p-adic formal schemes. By a prolongation sequence X∗, we

will mean a sequence of morphisms in C

X0 ϕ0
← X1 ← ... ← Xn−1 ϕn−1

← Xn ← ... (3.1.1)
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together with p-derivations of ϕ∗
n such that

ϕ∗
n+1 ◦ δn = δn+1 ◦ ϕ∗

n (3.1.2)

where ϕ∗
n is the pull-back ring homomorphism on the structure sheaves OXn and

OXn+1 . These prolongation sequences form a category C∗ and we refer to [9] for a more

detailed and general discussion. However, for our purpose, we restrict ourselves with

prolongation sequences defined over (Spf R)∗ which is the prolongatiion sequence

Spf R ← Spf R ← ...

with the p-derivation δ defined by δx = φ(x)−xp

p
where φ : R → R is the unique lift

of frobenius.

Let X be a p-adic completion of a scheme. Then consider the prolongation

sequence J∗X = {JnX}n where JnX is the n-th jetspace of X. Consider the forgetful

functor C∗ → C given by X∗ → X0. Then for any prolongation sequence Z∗ we have

the following universal property

Proposition 3.1.1. HomC(Z0, X) ≃ HomC∗(Z∗, J∗X)

Recall from [9], that given a prolongation sequence Y ∗, one can consider a new

’shifted by m’ prolongation sequence Y ∗+m given by

Y m ← Y m+1 ← ...

Definition 3.1.2. A δ-morphism from X to Y of order ≤ m is a morphism f :

J∗+mX → J∗Y

Diagramatically, f denotes the following compatible sequences of morphisms be-
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tween p-adic formal schemes.

²² ²²
Jm+1X

f //

²²

J1Y

²²
JmX

f //

²²

Y

X

Let us denote by Homm(X,Y ) the space of all δ-morphism from X to Y of order

≤ m.

Definition 3.1.3. Define the ring of δ-functions of order ≤ m on X as O(JmX) :=

Homm(X, Â1).

Proposition 3.1.4. Giving an element f in Homm(X,Y ) is equivalent to attaching

to any prolongation sequence S∗ a map

fS∗ : X(S0) → Y (Sm)

which is functorial in S∗.

Proof. Given f ∈ Homm(X,Y ) we have

X(S0) := Hom (S0, X) ≃ Hom (Sm, JmX)

↓ ◦f

Hom (Sm, Y )

To obtain the inverse of the above association, given fS∗ : X(S0) → Y (Sm), chose

S∗ = J∗X. Then we have

fJ∗X : X(X) = Hom (X,X) → Hom (JmX,Y ) = Y (JmX)

and pick the image of the identity morphism in Hom (JmX,Y ) and call it f and

this is the required inverse and this completes the proof.
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3.2 A review of modular and δ-modular forms and

Katz’s ring

Before proceeding with explaining our next results let us recall a few basic facts of

modular curves and forms. We refer to [17] for detailed discussion. Consider the

modular curve Y1(N) defined over Z[1/N, ζN ] which is the representable object for

the functor from rings over Z[1/N, ζN ] to sets defined as: given a Z[1/N, ζN ]-ring

B, we consider the isomorphism classes of pairs (E, ι) where E is an elliptic curve

defined over B and ι : (Z/NZ)B ⊂ E is a level Γ1(N)-structure.

Let E → Y1(N) be the universal elliptic curve and let e : Y1(N) → E be the

identity section. Denote by L = e∗ΩE/Y1(N) where ΩE/Y1(N) is the sheaf of relative

1-forms on E. Let X1(N) denote the Deligne-Rapoport compactification of Y1(N)

and take the natural extension of L to X1(N), and call it L again.

Let X ⊂ X1(N) be an open embedding (not necessarily a proper open sub-

scheme). Consider the restriction of L on X and call it L again. Then over any

Z[1/N, ζN ]-algebra B, the modular forms of weight κ, denoted by MX(B, κ,N),

identifies with the space of global sections H0(XB, L⊗κ
B ), where LB denotes the sheaf

obtained by pullback. Denote

MX =
⊕

κ

MX(B, κ,N).

The cusp P = ∞ is a Z[1/N, ζN ] point on X1(N) and there is a natural Fourier

expansion map E : MX → R((q)) associated to P . The Fourier expansion E :

MX → R((q)) is defined by evaluating at the Tate(q) curve given by E(f) := f(q) =

f(Tate(q), ωcan, ιcan). This Fourier expansion map E is injective. We will call a tuple

(X,L, P,E) as a Fourier framed curve.

Recall another definition of modular forms. For any Z[1/N, ζN ]-algebra B, let

E/B denote an elliptic curve defined over B, ω ∈ H0(E, ΩE/B) a basis of the free
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B-module H0(E, ΩE/B) and ι as above. By a modular form of weight κ we will under-

stand a rule f that associates to any tuple (E/B, ω, ι) an element f(E/B, ω, ι) ∈ B

which depends only on the isomorphism class of the tuple, commutes with base

change and satisfies

f(E/B, λω, ι) = λ−κf(E/B, ω, ι) (3.2.1)

for all λ ∈ B×. This definition identifies with the one given previously using the

global sections of higher tensor powers of L [22].

Now for p ∤ N , we choose a homomorphism Z[1/N, ζN ] → R and denote by

Y1(N)R, LR, PR the objects over R obtained by base change. M contains the nor-

malized Eisenstein forms E4, E6, Ep−1 belonging to the spaces

M(R, 4, N),M(R, 6, N),M(R, p− 1, N) respectively. Note that Ep−1 is a character-

istic 0 lift of the Hasse invariant, a quantity that measures super-singularity.

A differential modular form of order n is a rule f which attaches to every tuple

(E/S0, ω, ι, S∗) an element of Sn where S∗ is a prolongation sequence of p-adically

complete rings while the other quantities in the tuple are as explained before. Then

f , similar in the classical case, need to satisfy

1) f(E/S0, ω, ι, S∗) depends only on the isomorphism class of the tuple only.

2) f commutes with base change u∗ : S∗ → S̃∗, then

f(E ⊗S0 S̃0/S̃0, u0∗ω, u0 × ι, S̃∗) = u∗(f(E/S0, ω, ι, S∗)) (3.2.2)

Let us denote the space of differential modular forms of order n by Mn.

Let us call Z = Spec M . Then Z parametrises (E/S0, ω, ι) upto isomorphism.

We reproduce the following Proposition from [10].

Proposition 3.2.1. Mn ≃ ĴnM
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Proof. We have

Ẑ(S0) ≃ Z(S0) ≃ {(E/S0, ω, ι)}/iso (3.2.3)

Then with f ∈ Mn and for any S∗ flat over R∗, we have a map

f : Z(S0) → Sn = Â1(Sn).

By Proposition 3.1.4, we obtain f ∈ Hom (JnX, Â1) = O(JnZ) ≃ ĴnM and this

completes the proof.

Let

M∞ = lim
→

Mn.

We call M∞ as the ring of δ- modular forms. Clearly, M ⊂ M∞. But then the

question is, are there interesting new examples in M∞ that shed a new light on M?

Is there a nice theory of Fourier (Serre-Tate) expansion?

We will exhibit a few examples of new ‘objects’ that live in M∞ which have no

apparent counterpart in the world of classical modular forms. But firstly we would

like to define δ-modular forms of a given weight.

For any polynomial w ∈ Z[φ], w =
∑

aiφ
i define element

χw(t) ∈ R[t, t−1, t′, ..., t(n)] by the formula

χw(t) = tw :=
∏

(φi(t))ai

Such a χw is a multiplicative δ-character [9]. By a δ-modular form of order ≤ n and

weight w we will understand a rule f that associates of any triple (E/B0, ω, ι, B∗)

an element f(E/B0, ω, ι, B∗) ∈ Bn, which depends on the isomorphism class of the

triple only, commutes with base change and satisfies

f(E/B0, λω, ι, B∗) = χw(λ)−1f(E/B0, ω, ι, B∗) (3.2.4)
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The space of such δ-modular forms will be denoted by Mn(w). A Fourier framed

curve is called ordinary if there exists an element f ∈ M1(φ − 1) which is invertible

in the ring M1, such that E1(f) = 1.

We shall say f ∈ M∞ is isogeny covariant if for any triple (E/S0, ω, i, S∗) and

for any étale isogeny π : E ′ → E (of elliptic curves over S0) we have

f(E ′/S0, ω′, i′, S∗) = [deg π]−deg w/2f(E/S0, ω, i, S∗) (3.2.5)

where ω′ = π∗ω and deg w =
∑

ai.

Let

Ψ :=
1

p
log

qφ

qp
=

∑

n≥1

(−1)n−1n−1pn−1

(
q′

qp

)n

∈ R((q))ˆ[q′]ˆ (3.2.6)

Proposition 3.2.2. [9] There exists a unique form f 1 ∈ M1(−1− φ) whose Fourier

expansion is given by

E1(f 1) = Ψ.

Given a ring B, we will denote its reduction mod p by B.

Proposition 3.2.3. [1, 9, 10] Assume the reduction mod p of X, X, is contained

in the ordinary locus of the modular curve. Then there exists a unique form f∂ ∈

M(φ − 1) which is invertible in the ring M1 such that

E1(f∂) = 1.

Furthermore its reduction mod p, f∂ ∈ M1(φ − 1) coincides with the image of the

Hasse invariant H ∈ M0(p − 1).

The δ-modular forms in Proposition 3.2.2 and 3.2.3 are isogeny covariant. Since

M comes with a Fourier expansion map E : M → R((q)), by universality property

of jet spaces as in Theorem 1.0.2, extends naturally to

En : Mn → R((q))ˆ[q′, , , q(n)]b=: Sn
for
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where q(i)’s are new indeterminates. However, unlike the classical modular forms,

En is not injective. For example, f∂ −1 and its higher p-derivatives δi(f∂ −1) for all

i ≤ n − 1 are in the kernel of En where f∂ is introduced in the following Theorem

3.2.3. Although, if we restrict to δ-modular forms of a fixed weight w, denoted

Mn(w), then En is injective.

3.3 Conjugate operators on modular forms

Recall the Euler derivation D : M → M defined as follows; Let x be a local generator

of L over any open set X ⊂ X1(N) such that L is trivial over X. Then any fn ∈ L⊗n

can be written in the form fn = ϕxn, ϕ ∈ Sn. Then D acts as

Dfn := x
d

dx
f (3.3.1)

Then a simple computation shows that Dfn = nfn. Hence the effect of D on fn is

independent of the trivialisation of the modular curve and therefore D glues over all

the trivialisation to give us a globally defined D : L⊗n → L⊗n, preserving the weight

of the modular form. Hence, for a general f ∈ M , one can uniquely write f as a sum

of fn’s, f =
∑

n fn. and hence one defines

Df :=
∑

n

Dfn =
∑

n

nfn (3.3.2)

Recall the Ramanujan modular form P ∈ M(2) which has the following Fourier

expansion

P (q) := E2(q) := 1 − 24
∑

m≥1


∑

d|m
d


 qm

and is of weight 2. Then PD is a derivation satisfying PD : L⊗n → L⊗n+2, that

is it takes a form of weight n and carries it to a form of weight n + 2. Recall the

conjugate operators in 2.6.10 introduced in [10]
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Proposition 3.3.1. If f ∈ M r(w) where w =
∑

i = 0raiφ
i is the weight of f . Then

(PD)j(f) = ajp
jP φj

f.

Proof. Write f = ϕx
Pr

i=0 aiφ
i

where ϕ ∈ Sr and since D is trivial on S := O(X).

Its conjugates would also be trivial on Sr for all r.

(PD)jf = ϕxa0 ...x̂ajφj ...xaφr

[(PD)j(φ
j(xaj))]

= ϕxa0 ...x̂ajφj ...xaφr

pjφj(PD(xaj))

= pjajP
φj

f

Let ∂ be the Serre operator which satisfies ∂ : L⊗n → L⊗n+2 and ∂∗ be the Theta

operator on modular forms whose effect on the Fourier expansion is given by

(∂∗f)(q) = θ(f(q)) (3.3.3)

where θ = q d
dq

. Then the above three operators are tied together by

∂∗ = ∂ + PD (3.3.4)

Proposition 3.3.2. If f ∈ M r(w) where w is as before then

E(∂jf) = θj(f(q)) − ajp
jf(q)P (q)φj

Proof. Combining Proposition 3.3.1 and 3.3.4, gives us the result.

3.4 Ind-étale extensions

We will first present a general result. Let X = Spec S be an affine smooth curve

over R and L an invertible sheaf on X. Now consider

V = Spec
(
⊕n∈ZL⊗n

)
→ X
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which is the physical line bundle attached to L with the zero section removed and

hence has a Gm-action on the fibers over X. Set

S := SX := O(X),

M := MX := O(V ) =
⊕

n∈Z
L⊗n

(3.4.1)

Also further assume that we are given an R-point P ∈ X(R). Set Sfor = R[[t]].

Assume we are given an isomorphism between Spf R[[t]] and the completion of X

along the image of P . Then we have an induced homomorphism E : S → Sfor which

is injective and the reduction mod p of this map Ē : S̄ → S̄for is also injective. We

will also assume that we are given an extension of the ring homomorphism E to

E : M → Sfor (3.4.2)

We summarize all the above data by calling a tuple X,L, P,E a framed curve. Con-

sider the following rings:

Sr := Sr
X := Or(X), r ≥ 0

M r := M r
X := Or(V ), r ≥ 0

S∞ := lim→ Sr,

M∞ := lim→ M r.

(3.4.3)

An element f ∈ M r is said to be of weight w ∈ W if, and only if, the induced

δ-function f : V (R) → R satisfies

f(λ · a) = λwf(a)

for all λ ∈ R×, a ∈ V (R), where (λ, a) 7→ λ ·a is the natural Gm-action R××V (R) →

V (R). We denote by M r(w) = M r
X(w) the R-module of all elements of M r = M r

X of
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weight w. If L is trivial on X and x is a basis of L then we have the identifications

M = S[x, x−1],

M r = Sr[x, x−1, x′, ..., x(r) ]̂ ,

M r(w) = Sr · xw ⊂ M r

By [10], Proposition 3.14, the reduction mod p of Sr, denoted Sr, are integral do-

mains, and the maps Sr → Sr+1 are injective. In particular the rings Sr are integral

domains and the maps Sr → Sr+1 are injective with torsion free cokernels. The anal-

ogous statements hold for M r. So, in particular, S∞ and M∞ are integral domains.

Let t′, t′′, ... and q′, q′′, ... be new variables and consider the prolongation sequence

(Sr
for)r≥0,

Sr
for = R[[t]][t′, ..., t(r) ]̂ ,

respectively

Sr
for = R((q))̂ [q′, ..., q(r) ]̂ .

We set

S∞
for := lim

→
Sr

for.

Then the expansion maps induce, by universality, morphisms of prolongation se-

quences,

Er : M r → Sr
for; (3.4.4)

the maps Er will be referred to as δ-expansion maps for M r. They induce a δ-

expansion map

E∞ : M∞ → S∞
for. (3.4.5)

We have the following δ-expansion principle for Sr:
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Proposition 3.4.1. The induced map

Er : Sr → Sr
for

is injective. In particular, Er : Sr → Sr
for, and hence the δ-expansion maps

Er : M r(w) → Sr
for

are injective, with torsion free cokernel.

(The words “torsion free”, without the specification “as an A-module”, will always

mean “torsion free as a Z-module”.)

Proof. It follows from [10], Proposition 4.43.

The rings Sr

Next, for a framed curve X = Spec S, we define

Sr := Im(Er : M r → Sr
for)

S∞ := lim→ Sr = Im(E∞ : M∞ → S∞
for).

(3.4.6)

The ring S∞ will later morally play the role of “coordinate ring of the δ-Igusa curve”.

The following is trivial to check (using the definitions and Proposition 3.4.1):

Proposition 3.4.2.

1) The homomorphisms Sr → Sr, S∞ → S∞ are injective. In particular the

homomorphisms Sr → Sr, S∞ → S∞ are injective with torsion free cokernel.

2) The homomorphisms Sr → Sr+1 are injective.
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Remark 3.4.3. The ring S∞ is not a priori an integral domain and the map S∞ → S∞
for

is not a priori injective. The ring S∞, however, has a natural quotient which is an

integral domain, namely:

S̃∞ := Im(M∞ → S∞
for). (3.4.7)

This ring is going to play a role in what follows. We will prove later that, in the

concrete setting of modular curves the map S∞ → S∞
for is injective (δ-expansion prin-

ciple) hence S∞ is an integral domain and the surjection S∞ → S̃∞ is an isomorphism.

Cf. Theorem 3.5.13.

Definition 3.4.4. A framed curve is called ordinary if there exists an invertible

f ∈ M1(φ − 1), such that E1(f) = 1.

Definition 3.4.5. Let A be a k-algebra where k is a field. Let A ⊂ B a ring

extension, and Γ a profinite abelian group acting on B by A-automorphisms. We

say that B is a Γ-extension of A if one can write A and B as filtered unions of

finitely generated k-subalgebras, A =
⋃

Ai, B =
⋃

Bi, indexed by some partially

ordered set, with Ai ⊂ Bi, and one can write Γ as an inverse limit of finite abelian

groups, Γ = lim
←−

Γi, such that the Γ-action on B is induced by a system of compatible

Γi-actions on Bi and

BΓi

i = Ai

for all i. (Then, of course, we also have BΓ = A.) If in addition one can choose the

above data such that each Ai is smooth over k and each Bi is étale over Ai we say

that B is an ind-étale Γ-extension of A.

Lemma 3.4.6.

1) Assume B is a Γ-extension of A and C := B/I is a quotient of B by an ideal

I. Then C is integral over A.
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2) Assume B is an ind-étale Γ-extension of A and let I be a prime ideal of B

such that I ∩ A = 0. Then C := B/I is an ind-étale Γ′-extension of A where Γ′ is a

closed subgroup of Γ.

Proof. Assertion 1 is clear. Let’s prove assertion 2. Using the notation in Defi-

nition 3.4.5 set Yi = Spec Bi, Vi := Spec Ai, Zi := Spec Ci, Ci := Bi/Bi ∩ I. Let

Γ′
i := {γ ∈ Γi; γZi = Zi}. By Lemma 3.4.7 below Ci is étale over Ai and C

Γ′

i

i = Ai

so one can take Γ′ := lim
←−

Γ′
i acting on C = lim

←−
Ci.

We have used the following “well known” lemma (whose proof will be “recalled”

for convenience):

Lemma 3.4.7. Let V be a smooth affine variety over a field k, let Y → V be a finite

étale map, and let G be a finite abelian group acting on Y such that Y/G = V . Let

Z ⊂ Y be a subvariety that dominates V and let G′ = {γ ∈ G; γZ = Z}. Then Z is

a connected component of Y (hence is étale over V ) and Z/G′ = V .

Proof. Since V is smooth the connected components Z1, ..., Zn of Y are irreducible

so Z is a connected component of Y , say Z = Z1. Since V is connected G acts

transitively on the set {Z1, ..., Zn} hence the stabilizers in G of the various Zis are

conjugate in G, hence they are equal, because G is abelian. So

O(V ) = O(Y )G = (O(Z1)× ...×O(Zn))G = (O(Z)G′

× ...×O(Z)G′

)G/G′

(3.4.8)

where O(Zi)
G′

≃ O(Z)G′

via any γ ∈ G such that γZ = Zi and G/G′ acts on the

product via the corresponding permutation representation. Since the last ring in

(3.4.8) contains O(Z)G′

embedded diagonally it follows that O(Z)G′

= O(V ).

For a framed curve X = Spec S, we define

Sr := Im(Er : M r → Sr
for)

S∞ := lim→ Sr = Im(E∞ : M∞ → S∞
for)

(3.4.9)
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The ring S∞ will later morally play the role of “coordinate ring of the δ-Igusa curve”.

Definition 3.4.8. We will call a ring A a δ-ring if there exists a p-derivation δ :

A → A.

We need a series of Lemmas. For the first two Lemmas we let A be a δ-ring and

we consider the prolongation sequence Br = A[z, z−1, z′, ..., z(r) ]̂ . We will denote an

element f to be of O(r) if f ∈ Br. Such an element f will be called an element of

order ≤ r.

Lemma 3.4.9. Let ϕ ∈ A. Then, for any n ≥ 1, we have

δn

(
zφ

z
− ϕ

)
= z−pn

(z(n))p − zpn+1−2pn

z(n) + O(n − 1) + pO(n + 1).

Proof. For ϕ = 0 this is [10], Lemma 5.19. Assume now ϕ arbitrary. One checks

by induction that

δn(z − ϕ) = δnz + U + pV,

where U = O(n − 1), V = O(n). Replacing z by zφ

z
we get

δn

(
zφ

z
− ϕ

)
= δn

(
zφ

z

)
+ U

(
zφ

z
, ..., δn−1

(
zφ

z

))
+ pV

(
zφ

z
, ..., δn

(
zφ

z

))
,

and we conclude by the case ϕ = 0 of the Lemma.

Lemma 3.4.10. Let λ = 1 + pna, a ∈ Z. Then

δn(λz) = z(n) + azpn

+ pO(n).

Proof. Follows by induction.

Lemma 3.4.11. Let Q be a ring of characteristic p and consider the Q-algebra Q′ :=

Q[u]/(up−u−G) where G ∈ Q. Consider the action of Z/pZ = {a ; a = 0, ..., p−1}

on Q[u] defined by a · u = u + a and consider the induced Z/pZ-action on Q′. Then

any Z/pZ-invariant element of Q′ is in Q.
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Proof. Let c ∈ Q′ be the class of u. Then Q′ is a free Q-module with basis

1, c, ..., cp−1. Assume
∑p−1

i=0 λic
i ∈ Q′ is Z/pZ-invariant, where λi ∈ Q. We want to

show that λi = 0 for i ≥ 1. We may assume λ0 = 0. Assume there is a s ≥ 1 such

that λs 6= 0 and let s be maximal with this property. Then

λs(c + 1)s + λs−1(c + 1)s−1 + ... = λsc
s + λs−1c

s−1 + ...

Picking out the coefficient of cs−1 we get sλs = 0 hence λs = 0, a contradiction.

Theorem 3.4.12. Let X = Spec S be an ordinary framed curve. Then the ring S∞

is a quotient of an ind-étale Z×
p -extension of S∞.

Proof. For r ≥ 1 set

N r :=
M r

(f − 1, δ(f − 1), ..., δr−1(f − 1))
.

Note that

Ei(δi−1(f − 1)) = δi−1(E1(f − 1)) = δi−1(0) = 0.

which implies that there are surjective homomorphisms N r → Sr, hence surjective

homomorphisms N r → Sr and therefore we obtain a surjective homomorphism at

the limit

lim
→

N r → lim
→

Sr = S∞. (3.4.10)

Now let X =
⋃

α Xα, Xα = Spec Sα, be an affine open covering such that L is trivial

on each Xα. Let xα be a basis of L on Xα and let zα = x−1
α . Set

Sr
α := Sr

Xα
= (Sr ⊗S Sα)̂

M r
α := M r

Xα
= (M r ⊗S Sα)̂

.

Then we have an identification

M r
α = Sr

α[zα, z−1
α , z′α, ..., z(r)

α ]̂ .
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Write f = ϕαxφ−1
α , with ϕα ∈ S1

α. Since f and x are invertible in M1
α, it follows

that ϕα is also invertible in M1
α. And since S1

α is an integral domain we have M1
α
×

=

S1
α
×
∪ {czn

α | c ∈ S1
α
×
, n ∈ Z} implies that ϕα ∈ S1

α
×
. Set N r

α = (N r ⊗S Sα)̂ ; hence

N r
α :=

Sr
α[zα, z−1

α , z′α, ..., z
(r)
α ]̂(

zφ
α

zα
− ϕα, δ

(
zφ
α

zα
− ϕα

)
, ..., δr−1

(
zφ
α

zα
− ϕα

))

For i ≥ 1 set ui,α := z
(i)
α

zpi

α

. Also, for r ≥ 1, set

Qr,0
α :=

Sr
α[zα, z−1

α ]

(zp−1
α − ϕα)

=
Sr

α[zα]

(zp−1
α − ϕα)

. (3.4.11)

(The latter equality is true because zα = ϕαz−p = ϕα

z2(p−1) z
p−2 = ϕ−1zp−2.) Then, by

Lemma 3.4.9 we have N1
α = Q1,0

α [u1,α] and

N r
α =

Qr,0
α [u1,α, ..., ur,α]

(up
1,α − u1,α − G0, ..., u

p
r−1,α − ur−1,α − Gr−2)

, r ≥ 2,

where G0 ∈ Qr,0
α , and

Gi ∈ Qr,i
α :=

Qr,0
α [u1,α, ..., ui,α]

(up
1,α − u1,α − G0, ..., u

p
i,α − ui,α − Gi−1)

, i ≥ 1.

Clearly the schemes Spec Qr,i
α , for various α’s naturally glue to give a scheme

Spec Qr,i; so Qr,i ⊗S Sα = Qr,i
α for all α. Note that we have

Qr,i
α =

Qr,i−1
α [ui,α]

(up
i,α − ui,α − Gi−1)

(3.4.12)

and natural inclusions

Qr,0
α ⊂ Qr,1

α ⊂ ... ⊂ Qr,r−1
α ⊂ N r

α = Qr,r−1
α [ur,α]. (3.4.13)

So we have natural homomorphisms

... → Qr,r−1
α → N r

α → Qr+1,r
α → N r+1

α → ...

which shows that, for each α,

(lim
→

r

N r) ⊗S Sα = lim
→

r

N r
α = lim

→

r

Qr,r−1
α = (lim

→

r

Qr,r−1) ⊗S Sα.
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These isomorphisms glue together to give an isomorphism

lim
→

N r = lim
→

Qr,r−1.

We are left to proving that lim→ Qr,r−1 is an ind-étale Z×
p -extension of S∞ = lim→ Sr.

Start by noting that the maps Qr,r−1
α → Qr+1,r

α are injective. Also Sr
α → Qr,r−1

α are

injective and étale; cf. (3.4.11) and (3.4.12). Now the group Γ = Z×
p acts on M r

α via

the rule γ · z
(i)
α = δi(γzα) for γ ∈ Γ. This induces a Γ-action on N r

α and hence a Γ-

action on N r
α. The latter factors through an action of Γr := (Z/pr+1Z)×. Moreover,

for i ≤ r − 1, Qr,i
α is Γr-stable and the Γr-action on Qr,i

α factors through a Γi-action.

For a fixed r we will prove by induction on 0 ≤ i ≤ r − 1 that

(Qr,i
α )Γi = Sr

α. (3.4.14)

This will end the proof of the Theorem; indeed from the above we trivially get that

the maps Qr,r−1 → Qr+1,r are injective, the maps Sr → Qr,r−1 are injective and étale,

and, with respect to the induced action,

(Qr,r−1)Γr−1 = Sr,

showing that lim→ Qr,r−1 is an ind-étale Z×
p -extension of S∞ = lim→ Sr.

Let us check (3.4.14). For i = 0 we proceed as follows. Let b ∈ Qr,0
α be the

class of zα and let Γ0 = F×
p = 〈ζ〉, ζ a primitive root. Then Qr,0

α is a free Sr
α-

module with basis 1, b, b2, ..., bp−2. If
∑p−2

l=0 λlb
l is Γ0-invariant (where λl ∈ Sr

α) then
∑p−2

l=0 λlζ
lbl =

∑p−2
l=0 λlb

l. Since ζ is primitive we get λ1 = ... = λp−2 = 0, and the

case i = 0 is proved.

Now assume (Qr,i−1
α )Γi−1 = Sr

α and let us prove (3.4.14). Recall the equation

3.4.12 and consider the subgroup

∆i := {γ0, ..., γp} ⊂ Γi, γa = 1 + pia + pi+1Z;
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so ∆i is isomorphic to Z/pZ via γa 7→ a. Note that ∆i acts trivially on Qr,i−1
α .

By Lemma 3.4.10 the ∆i-action on Qr,i
α corresponds to the Z/pZ-action induced by

a · ui = ui + a, so we are in the situation described in Lemma 3.4.11 and we may

conclude by that Lemma plus the equality (Qr,i−1
α )Γi−1 = Sr

α. This ends the proof of

(3.4.14) and hence of the Theorem.

3.5 Application to differential modular forms

Let a4, a6 be indeterminates. Set

∆ = −24(4a3
4 + 27a2

6)

j = 21233 a3
4

∆

i = 26 − j = −21036 a2
6

∆

b =
a2
6

a3
4

= −223−3 + 28j−1

(3.5.1)

Then we have R[j, j−1, i−1] = R[b, b−1, (4 + 27b)−1]. Let Yord be the locus in Y1(N)R

where the Eisenstein form Ep−1 ∈ M(Zp, p − 1, N) is invertible. Then b is an étale

coordinate on any open embedding Y ⊂ Yord [13] 4.31. Hence we obtain

Or(Y ) ≃ O(Y )[b′, ..., b(r)]ˆ (3.5.2)

Definition 3.5.1. Given a ring B and the module of Kahler R-differentials ΩB/R,

call TB = Symm ΩB/R

We record the following result.

Proposition 3.5.2. Suppose b is an étale coordinate of B. Then ΩB/R ≃ ΩR[b]/R⊗B.

Proof. Follows from application of the definition.

Corollary 3.5.3. Suppose b is an étale coordinate of B then TB ≃ B[db] where db

is the image of b in d : R[b] → ΩR[b]/R.

66



Chapter 3. Differential Modular Forms

Corollary 3.5.4. H0(Spec B, ΩSpec B/R) = B < db > where db is as before.

One can similarly define the ring of higher geometric jet spaces T nB. Then we

have the following lemma

Lemma 3.5.5. If R[x] → B is an étale morphism, then

T nB ≃ B[dx, ..., dnx]

where dx, ..., dnx are the new indeterminates.

Set

S := O(Y )

Sr := Or(Y )
(3.5.3)

Since b is an étale co-ordinate we get

Sr = S[b′, ..., b(r)]ˆ

TS = Symm ΩS/R = S[db]
(3.5.4)

Let E
π
→ Y1(N) be the universal elliptic curve and ω := π∗ΩE/S. Then ω⊗2 ≃

ΩY1(N)/R. Then Symm ω = S[x] is the space of modular forms on Y (N) where x is

a basis for ω

Lemma 3.5.6. db is a modular form of weight 2.

Proof. By Corollary 3.5.3 we can identify db ∈ H0(Y, ΩY/R) ≃ H0(Y, ω⊗2) and

this completes the proof.

Hence there exists an f ∈ S× such that

x2 = f(db) (3.5.5)

and we have TS →֒ Symm ω. Note that the injection is étale.
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TJnS
Ψα // JnTS // Jn(S[x])

JS

OO

TS

OO

Â Ä // S[x]

OO

S

ddJJJJJJJJJJJ

OO

S

OO

where Ψα is as in Theorem 2.5.4.

We will call w ∈ Z[φ] an even, positive weight if w can be expressed as w =
∑

i=0 2aiφ
i ∈ Z, ai ≥ 0. Let us denote the subset of all such w’s by 2W+. Recall

S = O(X).

Proposition 3.5.7. T (ĴnS) ≃
⊕

w∈2W+ Mn
X(w)

Proof. By [10],

⊕

w∈2W+

Mn
X(w) = ĴnS[x2, φ(x2), ..., φn(x2)] (3.5.6)

But φ(x2) = φ(f−1)φ(db) and since φ(f−1) is invertible, we obtain the isomorphism

⊕

w∈2W+

Mn
X(w) ≃ ĴnS[db, ..., φn(db)] ≃ T (ĴnS) (3.5.7)

and the last isomorphism above is because b is an étale coordinate of S and 2.6.3.

Review of the forms f 1, f∂

The references here are [9, 1, 10]. Set

Ψ :=
1

p
log

qφ

qp
:=

∑

n≥1

(−1)n−1n−1pn−1

(
q′

qp

)n

∈ S1
for = R((q))̂ [q′ ]̂ . (3.5.8)

In the next two Propositions X = Spec S is a modular framed curve, recall the

δ-expansion maps Er : M r → Sr
for, cf. (3.4.4).
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Proposition 3.5.8. [9] There exists a unique form f 1 ∈ M1(−1 − φ) such that

E1(f 1) = Ψ.

Proposition 3.5.9. [1, 9] Assume the reduction mod p of X, X, is contained in

the ordinary locus of the modular (respectively Shimura) curve. Then there exists a

unique form f∂ ∈ M1(φ − 1) which is invertible in the ring M1 such that

E1(f∂) = 1.

Furthermore its reduction mod p, f∂ ∈ M1(φ − 1), coincides with the image of the

Hasse invariant H ∈ M0(p − 1). In particular X is an ordinary framed curve in the

sense of Definition 3.4.4.

Let M r
{h} = M r[h−1]b. Define f ♭ ∈ M1(0) = S1 as f ♭ = xφ+1f 1. Then recall from

[10] that f ♭ can be rewritten in the following form

f ♭ = a0b
′ + f0 + ph1

where h1 ∈ M1
{a4}, f0 ∈ M0(−1 − p), b′ ∈ M1

{a4,a6} and a0 ∈ M0
{a6} is invertible.

Recall that we will denote an element of order leqr as O(r).

Lemma 3.5.10. For any k ∈ N, δkf ♭ = apk

0 δkb′ + O(k) + p O(k + 1)

Proof. We proceed by induction. For k = 0, f ♭ is precisely as in the statement of

the lemma. Now let us assume that the statement is true for k = i. We will show

that it is true for k = i + 1.

δi+1f ♭ = δ(api

0 δib′ + O(i) + p O(i + 1)

= δ(api

0 δib′) + δ(O(i)) + δ(p O(i + 1))

+
1

p
{(api

0 δib′)p + (O(i))p + (p O(i + 1))p

−(api

0 δib′ + O(i) + p O(i + 1))p}

69



Chapter 3. Differential Modular Forms

Both δ(O(i)) and 1
p
{(api

0 δib′)p +(O(i))p +(p O(i+1))p−(api

0 δib′+O(i)+p O(i+1))p}

are O(i + 1).

δi+1f ♭ = (api

0 )pδi+1b′ + (δib′)(δapi

o ) + pδ(api

0 )(δi+1b′)

+ ppδ(O(i + 1)) + (O(i + 1))pδp + p δ(O(i + 1))δp + O(i + 1)

Now (δib′)(δapi

0 ) and (O(i + 1))pδp are O(i + 1) hence

δi+1f ♭ = (api

0 )pδi+1b′ + p δ(api

0 )(δi+1b′) + p δ(O(i + 1)) + O(i + 1)

= api+1

0 δi+1b′ + O(i + 1) + p O(i + 2) [Since δ(O(i + 1)) and

δ(api

0 )(δi+1b′) are both O(i + 2)]

This concludes our proof.

Lemma 3.5.11. Any ordinary k-point of Y = Y1(N)R has an affine open neighbor-

hood X ⊂ Y such that Ep−1 is invertible on X, L is trivial on X and the natural

homomorphism

S →
Sr

(f ♭, δf ♭, ..., δr−1f ♭)

is an isomorphism.

Proof. Since Sr = S[b′, ..., b(n)]ˆ since b is the étale coordinate of S, we conclude

the proof by Lemma 3.5.10.

Review of Katz generalized p-adic modular functions

The references here are [23, 19].

Let B be a p-adically complete ring, p ≥ 5, and let N be an integer coprime to

p. Consider the functor

{p-adically complete B-algebras} → {sets} (3.5.9)
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that attaches to any A the set of isomorphism classes of triples (E/A,ϕ, ι), where

E is an elliptic curve over A, ϕ is a trivialization, and ι is an arithmetic level N

structure. Recall that a trivialization is an isomorphism between the formal group of

E and the formal group of the multiplicative group; an arithmetic level N structure

is defined as an inclusion of flat group schemes over B of µN into E[N ]. The functor

(3.5.9) is representable by a p-adically complete ring W(B,N). The elements of this

ring are called by Katz [23] generalized p-adic modular forms. Note that W(B,N) =

W(Zp, N)⊗̂B. Moreover there is a Z×
p -action on W(B,N) coming from the action

of Z×
p on the formal group of the multiplicative group. The fourier expansion E :

W → B̂((q)) of f ∈ W is defined as the evaluation of f at the Tate(q) curve given by

E(f) := f(q) = f(Tate(q), ϕcan, ιcan). E is injective and has a flat cokernel over B.

Also W(Zp, N) possesses a natural ring endomorphism Frob which reduces modulo

p to the p-power Frobenius endomorphism of W(Zp, N) ⊗ Z/pZ. So if R = Ẑur
p , as

usual, and if φ is the automorphism of R lifting Frobenius then Frob⊗̂φ is a lift of

Frobenius on

W := W(R,N) = W(Zp, N)⊗̂R

which we denote by φ0. Moreover the homomorphism W(R,N) → R((q))̂ commutes

with the action of φ0 where φ0 on R((q))̂ is defined by φ0(
∑

anq
n) :=

∑
φ(an)qnp.

The ring of modular forms M injects into W via, if f ∈ M then

f(E/A,ϕ, ι) := f(E/A,ϕ∗(dt/t + 1), ι) where dt/(t + 1) is the invariant differential

on Gfor
m whose pull back via ϕ is a differential on the Elliptic curve E.

For any Z[1/N, ζN ]-algebra B the space M(B, κ,N) of modular forms over B of

weight κ and level Γ1(N) has an embedding

M(B, κ,N) ⊂ W(B,N).

The space M(B, κ,N) is stable under the Z×
p -action on W(B,N) and λ ∈ Z×

p acts

on M(B, κ,N) via multiplication by λk. Recall that we denoted by Yord ⊂ Y =
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YR = Y1(N)R the locus in Y where the Eisenstein form Ep−1 ∈ M(Zp, p − 1, N) is

invertible. Then, since Ep−1 is invertible in W we get a homomorphism

MYord
=

⊕

k∈Z

L⊗k
Yord

→ W.

More generally, if X is any affine open subset of Yord then one can find g ∈ MYord
of

weight 0, g 6= 0, and a homomorphism

M := MX :=
⊕

κ∈Z

L⊗κ
X → Wg = W[1/g]. (3.5.10)

(So if X = Yord we may take g = 1.) Since g has weight 0, Ŵg has an induced

Z×
p -action and the homomorphism (3.5.10) is Z×

p -equivariant if λ ∈ Z×
p acts on each

L⊗k via multiplication by λk.

Finally recall Katz’s ring of divided congruences [19],

D := D(R,N) := {f ∈
⊕

κ≥0

M(R, κ,N) ⊗R K; E(f) ∈ R[[q]]},

where K := R[1/p]. This ring naturally embeds into Katz’s ring of holomorphic

generalized p-adic modular forms,

V := V(R,N) = {f ∈ W(R,N); E(f) ∈ R[[q]]},

and the image of D in V is p-adically dense. For simplicity we sometimes identify

D,V,W with subrings of R((q))̂ ; i.e. we view

D ⊂ V ⊂ W ⊂ R((q))̂ .

We will need the following:

Lemma 3.5.12. D + R[∆−1] is p-adically dense in W.

Proof. It is enough to check that V + R[∆−1] is p-adically dense in W.
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We first claim that for any f ∈ W there exists a sequence of polynomials Fn ∈ R[t]

in a variable t such that Fn+1 − Fn ∈ pnR[t] for n ≥ 0 and such that

f − Fn(∆−1) ∈ pnR((q))̂ + R[[q]].

To check the claim we construct Fn by induction. We may take F0 = 0. Now,

assuming Fn was constructed, write

f − Fn(∆−1) = pnG + pn+1H + S, G ∈
N∑

i=1

Rq−i, H ∈ R((q))̂ , S ∈ R[[q]].

Since ∆−1 − q−1 ∈ R[[q]] we can find a polynomial Γ ∈ R[t] of degree ≤ N such that

G − Γ(∆−1) ∈ R[[q]]. Then set Fn+1 := Fn + pnΓ which ends the inductive step of

our construction.

Now let Fn be as in our claim above and set F := lim Fn ∈ R[t]̂ . Then clearly

f − F (∆−1) ∈ R[[q]] ∩ W = V. This implies that V + R[∆−1] is p-adically dense in

W and we are done.

Theorem 3.5.13. Assume X = Spec S is a modular Fourier-framed curve with

Ep−1 invertible on X. The following hold:

1) The map S∞ → S∞
for is injective; in particular S∞ is an integral domain,

and the map S∞ → S̃∞ is an isomorphism. Moreover the ring S∞ is an ind-étale

Z×
p -extension of S∞.

2) The kernel of M∞ → S∞ is generated by

f∂ − 1, δ(f∂ − 1), δ2(f∂ − 1), ...

3) The kernel of S∞ → Wg is generated by the images of

f 1, δf1, δ2f 1, ...
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4) The kernel of M∞ → Wg is generated by the elements

f∂ − 1, f 1, δ(f∂ − 1), δf1, δ2(f∂ − 1), δ2f 1, ...

Proof of Theorem 3.5.13. We are going to use the notation in the proof of Theorem

3.4.12. In particular recall the rings Qr,r−1 which are finite étale extensions of Sr,

with

(Qr,r−1)Γr−1 = Sr. (3.5.11)

Note that assertion 4 follows from assertions 2 and 3.

We claim that in order to prove assertions 1 and 2 it is enough to show that all

the rings Qr,r−1 are integral domains. Indeed if this is so then

Q∞ := lim
→

Qr,r−1

is an integral domain. We have surjections

Q∞ → S∞ → S̃∞, (3.5.12)

where the last ring is an integral domain. Let I be the kernel of the composition

(3.5.12). Since the composition S∞ → Q∞ → S̃∞ is injective (cf. Proposition 3.4.1),

upon viewing S∞ as a subring of Q∞, it follows that I ∩ S∞ = 0. Since Q∞ is an

integral domain and an integral extension of S∞ it follows that I = 0. This forces the

surjections in (3.5.12) to be isomorphisms, and so assertions 1 and 2 of the Theorem

follow.

Next note that since Spec Qr,r−1 is étale and finite over Spec Sr and since the

latter is smooth over k, it follows that Spec Qr,r−1 is smooth over k so, in particular

its connected components are irreducible and they are finite and étale over Spec Sr.

So in order to prove that Qr,r−1 is an integral domain it is enough to prove that

Spec Qr,r−1 is connected.
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Consequently in order to prove the Theorem we need to prove connectivity of

Spec Qr,r−1 and assertion 3. We will prove these two facts simultaneously. To prove

either of these facts it is enough to prove that these facts hold for each of the open

sets of a given open cover of X. So we may assume, after shrinking X, that the

conclusion of Lemma 3.5.11 holds for X, in particular L is trivial on the whole of X

so f ♭ is defined and f 1 and f ♭ differ by a unit. Consider the scheme Spec T r defined

by the cartesian diagram

Spec T r → Spec Qr,r−1

↓ ↓

Spec S → Spec Sr

where the bottom horizontal arrow is defined by the surjection

Sr →
Sr

(f ♭, δf ♭, ..., δr−1f ♭)
= S,

cf. Lemma 3.5.11. The natural Z×
p -equivariant homomorphism M∞ → Ŵg maps

f 1, δf1, δ2f 1, ... into 0; cf. Proposition 3.5.8. So this homomorphism also maps

f ♭, δf ♭, δ2f ♭, ... into 0. One the other hand this homomorphism also maps f∂ −

1, δ(f∂−1), δ2(f∂−1), ... into 0. So we get an induced Z×
p -equivariant homomorphism

N r → Wg, hence (by restriction) we get a Z×
p -equivariant homomorphism Qr,r−1 →

Wg, and hence we get an induced Z×
p -equivariant homomorphism

T r =
Qr,r−1

(f ♭, ..., δr−1f ♭)
→ Wg.

Since Spec Wg is irreducible the closure Z of the image of Spec Wg → Spec T r

is contained in one of the connected components of Spec T r. Since Z dominates

Spec S and since Spec T r is finite and étale over Spec S, it follows that Z is a

connected component of Spec T r. Note that Z is a Z×
p -invariant subset of Spec T r,

hence Γr−1-invariant. Recall that by (3.5.11) Γr−1 acts transitively on the fibers of

Spec Qr,r−1 → Spec Sr. Hence Γr−1 acts transitively on the fibers of Spec T r →
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Spec S. Since each connected component of Spec T r surjects onto Spec S and since

Z is Γr−1-invariant it follows that Spec T r must be connected. Since Spec T r is

smooth over k and connected it follows that T r is an integral domain. Since Spec T r

is connected it must coincide with Z hence Spec Wg → Spec T r is dominant. Since

T r is an integral domain, T r → Wg is injective. So lim→ T r → Wg is injective. But

lim
→

T r = lim
→

Qr,r−1/(f ♭, δf ♭, δ2f ♭, ...) = S∞/(f ♭, δf ♭, δ2f ♭, ...).

This proves assertion 3.

On the other hand since each connected component of Spec Qr,r−1 surjects onto

Spec Sr and Spec T r is connected it follows that Spec Qr,r−1 itself is connected. This

ends the proof of the Theorem.

Corollary 3.5.14. Assume X = Spec S is a modular Fourier-framed curve with

Ep−1 invertible on X. The following hold:

1) The inclusion S∞ ⊂ S∞
for has torsion free cokernel.

2) The kernel of M∞ → S∞
for is the p-adic closure of the ideal generated by the

elements

f∂ − 1, δ(f∂ − 1), δ2(f∂ − 1), ...

3) The kernel of S∞ → R((q))̂ is the p-adic closure of the ideal generated by the

images of the elements

f 1, δf1, δ2f 1, ...

4) The kernel of M∞ → R((q))̂ is the p-adic closure of the ideal generated by

the elements

f∂ − 1, f 1, δ(f∂ − 1), δf1, δ2(f∂ − 1), δ2f 1, ...

Remark 3.5.15. Conclusion 1 in Corollary 3.5.14 should be viewed as a δ-expansion

principle. Conclusions 2 and 4 should be viewed as δ-analogues of the theorem of
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Swinnerton-Dyer and Serre according to which the kernel of the Fourier expansion

map
⊕

κ≥0

M(Fp, κ,N) → Fp[[q]]

is generated by Ep−1 − 1; cf. [20], p. 459.

Corollary 3.5.16. Assume X = Spec S is a modular Fourier-framed curve with

Ep−1 invertible on X. Let f(q) ∈ R((q)) be contained in the image of the map

M ⊗R K → K((q)). Then f(q) is contained in the image of the map M∞ → R((q))̂ .

Proof. Write f(q) = E( G
pν ) = G(q)

pν , where G ∈ M . The image of G in R((q)) ⊗

Z/pνZ is 0 so the image of G in S∞ ⊗ Z/pνZ is in the kernel of S∞ ⊗ Z/pνZ →

S∞
for ⊗ Z/pνZ. But the latter morphism is injective; indeed this is trivially checked

by induction on ν, using Theorem 3.5.13. It follows that the image of G in S∞⊗Z/pνZ

is 0, hence the image of G in S∞ belongs to pνS∞. Hence the image of G in R((q))̂

belongs to pν · Im(M∞ → R((q))̂ ). It follows that f(q) belongs to the image of

M∞ → R((q))̂ .

Recall that we denoted by Yord the locus in Y = Y1(N)R where Ep−1 is invertible.

Corollary 3.5.17. Consider the modular Fourier-framed curve X = Spec S = Yord.

Then the image of M∞ → R((q))̂ contains D and hence is p-adically dense in W.

Proof. By Corollary 3.5.16 the image of M∞ → R((q))̂ contains the ring D. But

this image also contains the ring R[∆−1]. We conclude by Lemma 3.5.12.

3.5.1 On (p − 1)-th root of Ep−1.

We will show that the p− 1-th root of Ep−1 does not belong to the modular forms of

X1(N). It will be useful to recall one of the possible constructions of the Igusa curve

I. Let L be the line bundle on X1(N)R such that the sections of the powers of L
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identify with the modular forms of various weights on Γ1(N); cf. [20] p. 450 where

L was denoted by ω. Let Ep−1 ∈ H0(X1(N)R, Lp−1) be the normalized Eisenstein

form of weight p − 1 and let (ss) be the supersingular locus on X1(N)R (i.e. the

zero locus of Ep−1). Let X ⊂ X1(N) be an open embedding such that L is trivial

on X. As usual, let x be a basis of L on X. Recall we have M = S[x, x−1]. Then

Ep−1 = ϕxp−1 where ϕ ∈ O(X). Let S = O(X). Define S! = Spec S[t]/(tp−1 − ϕ).

Let X! = Spec S!. If we denote the reduction mod p by X!, then X ! is birationally

equivalent to I (cf. [20], pp. 460, 461) and is the integral closure of X in the fraction

field of X !. Hence Spec S[t]/(tp−1 − ϕ) is irreducible since I is. Note that tp−1 − ϕ

are monic polynomials whose derivatives are invertible in S[t]/(tp−1 − ϕ).

Lemma 3.5.18. There exist no ǫ ∈ M̂ such that ǫp−1 = Ep−1.

Proof. We will prove this by contradiction. Suppose there exist an ǫ ∈ M̂

satisfying ǫp−1 = Ep−1. Then define an algebra homomorphism S[t]
tp−1−ϕ

= S! → M̂ =

̂S[x, x−1], by t → ǫx−1. Hence after reduction mod p, we have the following

Spec M
f //

²²

Spec S!

ψyyssssssssss

Spec S

Note that Spec M ≃ Spec S×Gm. Consider the restriction map of f (call it f again)

to Spec M × {closed point}. Hence we have the following commutative diagram

Spec S
f //

²²

Spec S!

ψyysssssssss

Spec S

The image of f can not be a point because ψ ◦ f is an isomorphism. Hence Spec S

must be isomorphic to Spec S! since it is irreducible. But that implies tp−1 − ϕ is

not irreducible which is a contradiction and we are done.
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Hecke Operators mod p

We will study the space of q-expansions of differential modular forms mod p under

the action of Hecke operators. But first, we need to extend the action of Hecke

operators from classical Fourier series to differential Fourier series in our context

which is done in Section 4.1. The relation between the coefficients of the eigen forms

under Hecke operators away from p is also established. The concept of δ-symmetry

is discussed and the space of δ-symmetric power series in k[[q]][q′] is computed. In

Section 4.3, we put together 4.1 and 4.2 and by comparing the coefficients we obtain

a multiplicity one theorem. In Section 4.4, we apply it in the case when the power

series in k[[q]][q′] is the image of a differential modular form.

4.1 Hecke operators away from p

4.1.1 Classical Hecke operators

Throughout the chapter the divisors of a given non-zero integer are always taken to

be positive, the greatest common divisor of two non-zero integers m,n is denoted by
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(m,n), and we use the convention (m,n) = n for m = 0, n 6= 0. Fix throughout the

chapter an integer N ≥ 4 and let ǫ : Z>0 → {0, 1} be the “trivial primitive character”

mod N defined by ǫ(A) = 1 if (A,N) = 1 and ǫ(A) = 0 otherwise.

For each integer n ≥ 1 and each integer N ≥ 4 consider the set

{(A,B,D); A,B,D ∈ Z≥0, AD = n, (A,N) = 1, B < D}

Triples A,B,D will always be assumed to be in the set above. Recall (cf., say,

[24]) the action of the n-th Hecke operator Tκ(n) on classical modular forms f =
∑

m≥0 amqm on Γ0(N) of weight κ ≥ 2 with complex coefficients am ∈ C given by

Tκ(n)f := nκ−1
∑

A,B,D D−κf(ζB
DqA/D)

=
∑

m≥0

(∑
A|(n,m) ǫ(A)Aκ−1amn

A2

)
qm.

Here q = e2π
√
−1z, ζD := e2π

√
−1/D.

4.1.2 Hecke operators Tκ(n) on δ-series

Now assume n and N are coprime to p and assume q, q′, q′′, ..., q(r), ... are indetermi-

nates.

Definition 4.1.1. For each integer κ ∈ Z the Hecke operator f 7→ Tκ(n)f on

R((q))[q′, ..., q(r) ]̂ is defined as follows. For f = f(q, q′, ..., q(r)),

Tκ(n)f := nκ−1
∑

A,B,D

D−κf(ζB
DqA/D, δ(ζB

DqA/D), ..., δr(ζB
DqA/D)). (4.1.1)
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Here ζD = ζ
n/D
n ∈ R where ζn ∈ R is a fixed primitive n-th root of unity and the

right hand side of (4.1.1) is a priori in the ring

R((qn))̂ [q′n, ..., q
(r)
n ]̂ , qn = q1/n. (4.1.2)

However, by [10] Proposition 3.13,

q′n, ..., q
(r)
n ∈ R[q, q−1, q′, ..., q(r) ]̂

hence the ring (4.1.2) equals

R((qn))̂ [q′, ..., q(r) ]̂ .

Since Tκ(n)f is invariant under the substitution q
(i)
n 7→ δi(ζnqn) it follows that

Tκ(n)f ∈ R((q))̂ [q′, ..., q(r) ]̂ . So the operators Tκ(n) send R((q))̂ [q′, ..., q(r) ]̂ into it-

self. As we shall see below for n ≥ 2 the operators Tκ(n) do not send R[[q]][q′, ..., q(r) ]̂

into itself. The operators Tκ(n) on R((q))[q′, ..., q(r) ]̂ induce operators still denoted

by Tκ(n) on k((q))[q′, ..., q(r)].

Recall the operator V on R((q))̂ defined by V (
∑

anq
n) =

∑
anq

pn. It induces

an operator still denoted by V on k((q)).

For r = 0, Tκ(n) commute with the operator V on R((q))̂ .

4.1.3 Order r = 1

We have the following formula for the Hecke action on δ-series of order 1:

Proposition 4.1.2. Assume that

f =
∑

m,m′

am,m′qm(q′)m′

(4.1.3)

where m ∈ Z, m′ ∈ Z≥0. Then we have the following congruence mod (p):

Tκ(n)f ≡
∑

m,m′


 ∑

A|(n,m)

n−m′

ǫ(A)Aκ+2m′−1amn

A2 −m′p,m′


 qm−m′p(q′)m′

. (4.1.4)
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Proof. Note that

δ(ζB
DqA/D) = 1

p
[φ(ζB

DqA/D) − (ζB
DqA/D)p]

= 1
p
[ζBp

D (qp + pq′)A/D − ζBp
D qAp/D]

≡ A
D

ζBp
D q(A−D)p/Dq′ mod (p).

(4.1.5)

Then the formula in the statement of the Proposition follows by a simple computa-

tion, using the fact that
D−1∑

B=0

ζm+m′p
D

is D or 0 according as D divides or does not divide m + m′p.

Corollary 4.1.3. Let

f =
∑

m′

fm′(q)

(
q′

qp

)m′

∈ k((q))[q′], fm′(q) ∈ k((q)). (4.1.6)

Then for any integer κ and any integer n ≥ 1 coprime to p we have:

Tκ(n)f =
∑

m′

n−m′

(Tκ+2m′(n)fm′(q))

(
q′

qp

)m′

.

In particular for λn ∈ k we have Tκ(n)f = λnf if and only if

Tκ+2m′(n)fm′ = nm′

λnfm′ for all m′ ≥ 0.

Proof. This follows immediately from Proposition 4.1.2.

Let us say that a series in k((q))[q′, ..., q(r)] is holomorphic at infinity if it belongs

to k[[q]][q′, ..., q(r)]. Also denote by vp the p-adic valuation on Z.

Corollary 4.1.4. Assume that, for a given κ ∈ Z the series f ∈ k[[q]][q′] has the

property that Tκ(n)f is holomorphic at infinity for all n ≥ 1 coprime to p. Then f
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has the form

f(q, q′) = ϕ0(q) +
∑

m′≥1

(V vp(m′)+1(ϕm′(q)))

(
q′

qp

)m′

, (4.1.7)

with

ϕ0 ∈ k[[q]], ϕm′(q) ∈ qm′/pvp(m′)

k[[q]] for m′ ≥ 1. (4.1.8)

Proof. Note that, since Tκ(1)f = f , f is holomorphic at infinity so equation

(4.1.8) follows from (4.1.7). Let f be the reduction mod p of a series as in (4.1.3).

It is enough to show if two integers m0 ≥ 1 and m′ ≥ 1 satisfy vp(m0) ≤ vp(m
′)

then am0,m′ = 0. Pick such integers m0,m
′ and set i = vp(m0), m0 = piµ, m′ = piµ′,

n = µ + pµ′. Clearly n is coprime to p. Picking out the coefficient of qpi−pi+1µ′

(q′)piµ′

in the equation in Proposition 4.1.2 we get

am0,m′ = apin−pi+1µ′,piµ′ = 0

and we are done.

Corollary 4.1.5. Let κ be an integer, let f ∈ k[[q]][q′] be holomorphic at infinity,

and assume that for any integer n ≥ 1 coprime to p we are given a λn ∈ k. Then

Tκ(n)f = λnf for all (n, p) = 1 if and only if f has the form (4.1.7) and

Tκ+2m′(n)ϕm′(q) = nm′

λnϕm′(q) for all m′ ≥ 0.

Proof. This follows directly from the previous corollaries plus the commutation

of Tκ(n) and V on k[[q]].

4.1.4 Order r = 2

Let us record the formula giving the Hecke action on δ-series of order 2. This formula

will not be used in the sequel.
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Proposition 4.1.6. If f =
∑

m,m,m′′ am,m′,m′′qm(q′)m′

(q′′)m′′

∈ R((q))[q′, q′′ ]̂ then

we have the following congruence mod p:

Tκ(n)f ≡
∑

Aκ−1
(

A
D

)m′+m′′

× am,m′,m′′ × qA(m+m′p+m′′p2)/D

×
(

q′

qp

)m′

×

[
q′′

qp2 + δ(A/D)
A/D

·
(

q′

qp

)p

+ 1
2

(
A
D
− 1

)
·
(

q′

qp

)2p
]m′′

where the sum in the right hand side runs through all m,m′,m′′, A,D with A ≥

1, AD = n, (A,N) = 1, D|m + m′p + m′′p2.

Proof. A computation similar to the one in the proof of Proposition 4.1.2.

Note that the formula in Proposition 4.1.6 acquires a simpler form for special ns.

Indeed assume n = ℓ is a prime. If ℓ ≡ 1 mod p then A
D
− 1 = 0 in k. If ℓ ≡ 1 mod

p2 then δ(A/D) = 0 in k. Finally if ℓ ≡ 1 mod p but ℓ 6≡ 1 mod p2 then δ(A/D) 6= 0

in k.

4.1.5 Frobenii

Consider the ring endomorphisms F, Fk, F/k of k((q))[q′, ..., q(r)] defined as follows:

F is the p-power Frobenius (the “absolute Frobenius”); Fk is the ring automor-

phism that acts as the p-power Frobenius on k and is the identity on the vari-

ables q, q′, ..., q(r); F/k is the ring endomorphism that is the identity on k and sends

q, q′, ..., q(r) into qp, (q′)p, ..., (q(r))p respectively (the “relative Frobenius”). So we have

F = Fk ◦ F/k = F/k ◦ Fk. Of course V = F/k on k((q)). Also clearly Tκ(n) commute

with F . By Proposition 4.1.2 Tκ(n) also commute with Fk on k((q))[q′]; so Tκ(n)

commute with F/k on k((q))[q′].
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4.2 Hecke operator at p

4.2.1 Taylor and Laurent δ-symmetry

Following [11] we consider the R−algebras

A := R[[s1, ..., sp]][s
−1
p ]̂ [s′1, ..., s

′
p, ..., s

(r)
1 , ..., s

(r)
p ]̂ ,

B := R[[q1, ..., qp]][q
−1
1 ...q−1

p ]̂ [q′1, ..., q
′
p, ..., q

(r)
1 , ..., q

(r)
p ]̂ ,

where s1, ..., sp, s
′
1, ..., s

′
p, ... and q1, ..., qp, q

′
1, ..., q

′
p, ... are indeterminates. In [11],

Lemma 9.10 we proved that the natural algebra map

A → B, s
(i)
j 7→ δiSj,

where S1, ..., Sp are the fundamental symmetric polynomials in q1, ..., qp, is injective

with torsion free cokernel. We will view this algebra map as an inclusion.

Definition 4.2.1. An element G ∈ B is called Laurent δ−symmetric [11] if it is

the image of some element G(p) ∈ A (which is then unique). An element f ∈

R((q))̂ [q′, ..., q(r) ]̂ will be called Laurent δ − p-symmetric if

Σpf :=

p∑

j=1

f(qj, ..., q
(r)
j ) ∈ B

is Laurent δ−symmetric.

In the same way one can consider the algebras

A := R[[s1, ..., sp]][s
′
1, ..., s

′
p, ..., s

(r)
1 , ..., s

(r)
p ]̂ ,

B := R[[q1, ..., qp]][q
′
1, ..., q

′
p, ..., q

(r)
1 , ..., q

(r)
p ]̂ .

As before the natural algebra map

A → B, s
(i)
j 7→ δiSj,

is injective with torsion free cokernel.
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Definition 4.2.2. An element G ∈ B will be called Taylor δ−symmetric if it is

the image of some element G(p) ∈ A (which is then unique). An element f ∈

R[[q]][q′, ..., q(r) ]̂ will be called Taylor δ − p-symmetric if

Σpf :=

p∑

j=1

f(qj, ..., q
(r)
j ) ∈ B

is Taylor δ−symmetric.

Clearly a Taylor δ − p-symmetric series is also Laurent δ − p-symmetric.

Remark 4.2.3. 1) Any element of R[[q]] (respectively R((q))) is Taylor (respectively

Laurent) δ − p-symmetric.

2) The Taylor (respectively Laurent) δ−p-symmetric elements in R[[q]][q′, ..., q(r) ]̂

(respectively R((q))̂ [q′, ..., q(r) ]̂ ) form a p-adically closed R-submodule.

3) If f is Taylor (respectively Laurent) δ − p-symmetric then φ(f) is Taylor

(respectively Laurent) δ − p-symmetric.

4) If f ∈ R[[q]][q′, ..., q(r) ]̂ (respectively f ∈ R((q))̂ [q′, ..., q(r) ]̂ ) and pf is Taylor

(respectively Laurent) δ−p-symmetric then f is Taylor (respectively Laurent) δ−p-

symmetric.

5) By 1)-4) any element f in R[[q]][q′, ..., q(r) ]̂ (respectively in R((q))̂ [q′, ..., q(r) ]̂ )

of the form

f =

∑m
i=0 φi(gi)

pν

where gi are in R[[q]] (respectively in R((q))) is Taylor (respectively Laurent) δ − p-

symmetric. In particular for any g in R[[q]] (respectively in R((q))) we have that

δg = φ(g)−gp

p
, and more generally φi(g)−gpi

p
are Taylor (respectively Laurent) δ − p-

symmetric.

6) Let F ∈ R[[T1, T2]]
g be a formal group law, and let ψ ∈ R[[T ]][T, ..., T (r) ]̂ be

86



Chapter 4. Hecke Operators mod p

such that

ψ(F(T1, T2), ..., δ
rF(T1, T2)) = ψ(T1, ..., T

(r)
1 ) + ψ(T2, ..., T

(r)
2 )

in the ring

R[[T1, T2]][T
′
1, T

′
2, , ..., T

(r)
1 , T

(r)
2 ]̂ .

(Such a ψ is called a δ-character of F.) Let ϕ(q) ∈ qR[[q]] and let

f := ψ(ϕ(q), ..., δr(ϕ(q))) ∈ R[[q]][q′, ..., q(r) ]̂ .

Then f is Taylor δ − p-symmetric. Cf the argument in [12].

Note that if F is defined over Zp then F posses a δ-character ψ of order r at most

the height of F mod p such that

ψ(T, 0, ..., 0) ∈ T + T pZp[[T ]];

cf. [?], proof of Proposition 4.26.

Applying the above considerations to the multiplicative formal group we get that

for any ϕ(q) ∈ qR((q)) the series

1

p
log

(
φ(ϕ(q) + 1)

(ϕ(q) + 1)p

)

is Taylor δ − p-symmetric. (Here, as usual, log(1 + T ) = T − T 2/2 + T 3/3 − ...)

7) The series

Ψ =
1

p
log

(
φ(q)

qp

)
(4.2.1)

is Laurent δ − p-symmetric; cf. [11], proof of Proposition 9.13.

8) In [11] we also defined the concept of δ-symmetric element in

R[[q1, ..., qp, ..., q
(r)
1 , ..., q(p)

p ]]
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(without the qualification “Taylor” or “Laurent”). We will not use this concept in

the present paper. But note that if a series is Taylor δ-symmetric then it is also δ-

symmetric in the sense of [11] (and Laurent δ-symmetric in the sense of the present

paper).

Definition 4.2.4. For any Taylor (respectively Laurent) δ − p-symmetric

f ∈ R[[q]][q′, ..., q(r) ]̂ (respectively f ∈ R((q))̂ [q′, ..., q(r) ]̂ )

we define

Uf := p−1(Σpf)(p)(0, ..., 0, q, ..., 0, ..., 0, q
(r))

which is an element in p−1R[[q]][q′, ..., q(r) ]̂ (respectively in p−1R((q))̂ [q′, ..., q(r) ]̂ ).

The operator pU takes R[[q]][q′, ..., q(r) ]̂ (respectively in R((q))̂ [q′, ..., q(r) ]̂ ) into

R[[q]][q′, ..., q(r) ]̂ (respectively in R((q))̂ [q′, ..., q(r) ]̂ ). On the other hand the restric-

tion of U to R((q))̂ (respectively R[[q]]) takes values in R((q))̂ (respectively R[[q]])

and is equal to the classical U -operator

U(
∑

amqm) =
∑

ampq
m.

Definition 4.2.5. Define for any f ∈ R((q))̂ [q′, ..., q(r) ]̂ the series

V f := f(qp, ..., δr(qp)) ∈ R((q))̂ [q′, ..., q(r) ]̂ .

So for any Taylor (respectively Laurent) δ − p-symmetric f in R[[q]][q′, ..., q(r) ]̂ (re-

spectively in R((q))̂ [q′, ..., q(r) ]̂ ) and any κ ∈ Z we may define

pTκ(p)f = pUf + pκV f

which is an element in pκR[[q]][q′, ..., q(r) ]̂ (respectively in pκR((q))̂ [q′, ..., q(r) ]̂ ).

The restriction of pTκ(p) to R((q)) is, of course, p times the “classical” Hecke

operator Tκ(p) on R((q)) defined by

Tκ(p)(
∑

amqm) =
∑

apmqm + pκ−1
∑

amqpm.

Recall:
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Proposition 4.2.6. [11] The series Ψ in (4.2.1) satisfies

pUΨ = Ψ, V Ψ = pΨ.

For the next definition recall that the homomorphism

A := A ⊗R k → B := B ⊗R k

is injective (in both situations described in the beginning of the section).

Definition 4.2.7. An element G ∈ B is called Taylor δ-symmetric mod p (respec-

tively Laurent δ−symmetric mod p) if it is the image of some element G(p) ∈ A (which

is then unique). An element f ∈ k[[q]][q′, ..., q(r) ]̂ (respectively f ∈ k((q))[q′, ..., q(r)])

will be called Taylor (respectively Laurent) δ − p-symmetric if

Σpf :=

p∑

j=1

f(qj, ..., q
(r)
j ) ∈ B

is Taylor δ−symmetric mod p (respectively Laurent δ-symmetric mod p).

Clearly any Taylor δ − p-symmetric series is Laurent δ − p-symmetric.

Remark 4.2.8. 1) The Taylor (respectively Laurent) δ − p-symmetric elements in

k[[q]][q′, ..., q(r)] (respectively in k((q))[q′, ..., q(r)]) form a k-subspace closed under Fk

and F (hence also under F/k).

2) If f ∈ R[[q]][q′, ..., q(r) ]̂ (respectively f ∈ R((q))̂ [q′, ..., q(r) ]̂ ) is congruent mod

p to a Taylor (respectively Laurent) δ − p-symmetric element then the image of f of

f in k[[q]][q′, ..., q(r)] (respectively in k((q))[q′, ..., q(r)]) Taylor (respectively Laurent)

δ − p-symmetric.

Definition 4.2.9. For any Taylor (respectively Laurent) δ − p-symmetric

f ∈ k[[q]][q′, ..., q(r) ]̂ (respectively k((q))[q′, ..., q(r)])

89



Chapter 4. Hecke Operators mod p

we may define

“pU”f := (Σpf)(p)(0, ..., 0, q, ..., 0, ..., 0, q
(r))

which is an element of k[[q]][q′, ..., q(r) ]̂ (respectively k((q))[q′, ..., q(r)]).

The operator “pU” clearly commutes with the operators F and Fk and hence it

also commutes with the operator F/k (cf. section 4.1.5). If

f ∈ R[[q]][q′, ..., q(r) ]̂ (respectively f ∈ R((q))̂ [q′, ..., q(r) ]̂ )

is Taylor (respectively Laurent) δ − p-symmetric and f is the reduction mod p of

f viewed as an element in k[[q]][q′, ..., q(r)] (respectively in k((q))[q′, ..., q(r)]) then

“pU”f is the reduction mod p of pUf ; this justifies the notation in “pU”f .

Note that the operator U : R((q))̂ → R((q))̂ induces an operator still denoted by

U , U : k((q)) → k((q)) (which is, of course, the classical U -operator Uf =
∑

ampq
m,

for f =
∑

amqm ∈ k((q))). On the other hand note that “pU”f = 0 for all f ∈ k((q)).

Finally note that if κ ≥ 1 then the operator Tκ(p) on R((q)) induces an operator

Tκ(p) on k((q)); if κ ≥ 2 then Tκ(p) on k((q)) coincides with U on k((q)).

Definition 4.2.10. Define the ring endomorphism V of

k[[q]][q′, ..., q(r)] (respectively k((q))[q′, ..., q(r)])

as the reduction mod p of the operator V over R. (Note that V (q′) = 0 and F/k(q
′) =

(q′)p so in particular V 6= F/k on k((q))[q′].) As in the case of characteristic zero,

for any κ ∈ Z≥0 and any Taylor (respectively Laurent) δ − p-symmetric series f in

k[[q]][q′, ..., q(r)] (respectively k((q))[q′, ..., q(r)]) we define

“pTκ(p)”f = “pU”f + pκ · V f

which is again an element of k[[q]][q′, ..., q(r)] (respectively k((q))[q′, ..., q(r)]). (Note

that pκ is 0 or 1 according as κ is > 0 or 0.)
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The operator V clearly commutes with F and Fk (and hence also with F/k). So

the operators “pTκ(p)” commute with F, Fk, F/k.

Also for f any Taylor (respectively Laurent) δ − p-symmetric series in

R[[q]][q′, ..., q(r) ]̂ (respectively R((q))̂ [q′, ..., q(r) ]̂ ) with reduction mod p f we have

that “pTκ(p)”f is the reduction mod p of pTκ(p)f which, again, justifies our notation.

4.3 Structure of Laurent and Taylor δ-symmetric

series

In what follows we address the problem of determining what series are Laurent

(respectively Taylor) δ − p-symmetric and determining the action of our operators

“pU” on them. We will use the following notation: for all ϕ =
∑

anq
n ∈ k((q)) we

define

ϕ(−1) := θp−2ϕ =
∑

(n,p)=1

an

n
qn ∈ k((q)) (4.3.1)

where θ = q d
dq

is the Serre theta operator.

Theorem 4.3.1. If an element f ∈ k[[q]][q′] is Taylor δ − p-symmetric then it has

the form

f = ϕ0(q) +
∑

s≥0

(V s+1(ϕps(q)))

(
q′

qp

)ps

∈ k((q))[q′] (4.3.2)

with ϕ0(q) ∈ k[[q]], ϕ1(q), ϕp(q), ϕp2(q), ... ∈ qk[[q]]

Conversely we will prove:

Theorem 4.3.2. Any element of the form

f = ϕ0(q) +
∑

s≥0

(V s+1(ϕps(q)))

(
q′

qp

)ps

∈ k((q))[q′]
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with ϕ0(q), ϕ1(q), ϕp(q), ϕp2(q), ... ∈ k((q)) is Laurent δ − p-symmetric and

“pU”f = −
∑

s≥0

V s(ϕ
(−1)
ps (q)) +

∑

s≥0

(V s+1(U(ϕps(q))))

(
q′

qp

)ps

.

If in addition f ∈ k[[q]][q′] (i.e. if ϕ0(q) ∈ k[[q]] and ϕ1(q), ϕp(q), ϕp2(q), ... ∈ qk[[q]]))

then f is Taylor δ − p-symmetric.

Corollary 4.3.3. Let f ∈ k((q))[q′] be Laurent δ − p-symmetric and let λp ∈ k.

Then “pTκ(p)”f = λp · f if and only if:

1) U(ϕps(q)) = λp · ϕps(q) for all s ≥ 0 and

2) pκ · V (ϕ0(q)) −
∑

s≥0 V s(ϕ
(−1)
ps (q)) = λp · ϕ0(q).

Corollary 4.3.4. If f ∈ k[[q]][q′] is Taylor δ − p-symmetric then the series “pU”f

and “pTκ(p)”f are again Taylor δ − p-symmetric.

We will first prove Theorem 4.3.2.

Lemma 4.3.5. For any n ∈ Z and s ∈ Z≥0 the element

f = qnps+1

(q′)ps

= q(n+1)ps+1

(
q′

qp

)ps

∈ k((q))[q′]

is Laurent δ−p-symmetric (and actually Taylor δ−p-symmetric if n ≥ 0.) Moreover

“pU”f =





q(n+1)ps
(

q′

qp

)ps

if p|n + 1

− q(n+1)ps

n+1
if p 6 |n + 1

Proof. It is enough to consider the case s = 0; the general case follows by applying

the p-power Frobenius.

For n = −1 note that

q−pq′ ≡ Ψ mod (p)
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and so q−pq′ is Laurent δ− p-symmetric because Ψ is Laurent δ− p-symmetric. Also

“pU”f = f because pUΨ = Ψ.

Assume now n 6= −1. We have

δ(qn+1) = 1
p
[(qp + pq′)n+1 − qp(n+1)]

= 1
p

[
p(n + 1)qpnq′ +

∑
j≥2

pj

j!
(n + 1)...(n − j + 2)qp(n+1−j)(q′)j

]

For j ≥ 2 (and since p ≥ 5) we have

vp

(
pj

j!

)
≥ j − vp(j!) ≥ j −

j

p − 1
> 1.

It follows that

δ(qn+1) = (n + 1)[qpnq′ + pFn+1(q, q
′)], Fn+1(q, q

′) ∈ R[q, q−1, q′]. (4.3.3)

In particular δ(qn+1) is divisible by n + 1 in R((q))̂ [q′ ]̂ and we have the following

congruence in R((q))̂ [q′ ]̂ :

1

n + 1
δ(qn+1) ≡ qnpq′ mod (p). (4.3.4)

By Remark 4.2.8, assertions 4) and 5), the left hand side of the latter congruence is

Laurent δ − p-symmetric (and also Taylor δ − p-symmetric if n ≥ 0) and hence qpnq′

is Laurent δ − p-symmetric (and also Taylor δ − p-symmetric if n ≥ 0).
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To compute “pU”f start with the following computation in R((q))̂ [q′ ]̂ :

p2(n + 1)U
(

δ(qn+1)
n+1

)
= pU(pδ(qn+1))

= pU(φ(qn+1)) − pU(qp(n+1))

= φ(pU(qn+1)) − pU(qp(n+1))

=




−pqn+1 if p 6 |n + 1

pφ(q
n+1

p ) − pqn+1 if p|n + 1

=




−pqn+1 if p 6 |n + 1

p2δ(q
n+1

p ) if p|n + 1

=




−pqn+1 if p 6 |n + 1

p2 n+1
p

[
qp(n+1

p
−1)q′ + pFn+1

p
(q, q′)

]
if p|n + 1

from which we get the following congruences mod p in R((q))̂ [q′ ]̂ :

pU(qpnq′) ≡ pU

(
δ(qn+1)

n + 1

)
≡





− qn+1

n+1
if p 6 |n + 1

qn+1−pq′ if p|n + 1.

and we are done.

Lemma 4.3.6. Consider the polynomials

s1, ..., sp, s
′
1, ..., s

′
p, D ∈ k[q1, ..., qp, q

′
1, ..., qp], D :=

∏

i<j

(qi − qj).

Then the polynomials

Dpq′1, ..., D
pq′p
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are linear combinations of

1, s′1, ..., s
′
p

with coefficients in k[q1, ..., qp].

Proof. For j = 1, ..., p let sij be obtained from si by setting qj = 0; so sij is the ith

fundamental symmetric polynomial in {q1, ..., qp}\{qj}. Taking δ in the equalities

q1 + ... + qp = s1, ..., q1...qp = sp

in R[q1, ..., qp, q
′
1, ..., q

′
p] and reducing mod p we get the following equalities in k[q1, ..., qp, q

′
1, ..., q

′
p]:

q′1 + ... + q′p = s′1 − γ1

sp
11q

′
1 + ... + sp

1pq
′
p = s′2 − γ2

...............................

sp
p−1,1q

′
1 + ... + sp

p−1,pq
′
p = s′p − γp

for some γ1, ..., γp ∈ k[q1, ..., qp]. View this as a linear system of equations with

unknowns q′1, ..., q
′
p. We shall be done if we prove that the determinant of the matrix

of this system is ±Dp. This follows by taking determinants in the obvious identity

of matrices




qp−1
1 −qp−2

1 ... 1

qp−1
2 −qp−2

2 ... 1

...

qp−1
p −qp−2

p ... 1







1 1 ... 1

s11 s12 ... s1p

...

sp−1,1 sp−1,2 ... sp−1,p




= (Dij)
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where

Dij =
∏

s 6=j

(qi − qs)

and noting that (Dij) is a diagonal matrix with determinant D2.

Lemma 4.3.7. Assume the notation of Lemma 4.3.6 and n ≥ 0. Then the element

p∑

i=1

qnp
i q′i ∈ k[[q1, ..., qp]][q

′
1, ..., q

′
p]

is a linear combination of

1, s′1, ..., s
′
p

with coefficients in the ideal

(s1, ..., sp)
[(n+1)/p]−1k[s1, ..., sp].

Proof. By Lemma 4.3.6 we can write

p∑

i=1

qnp
i q′i = A0 +

p∑

j=1

Ajs
′
j

where Aj ∈ k[q1, ..., qp, D
−1] for j = 0, ..., p. On the other hand, by (4.3.4)

∑p
i=1 qnp

i q′i

is the reduction mod p of

1

n + 1

p∑

i=1

δ(qn+1
i ) ∈ R[q1, ..., qp, q

′
1, ..., qp].

We claim that the following holds:

p∑

i=1

δ(qn+1
i ) ∈ (s1, ..., sp, s

′
1, ..., s

′
p)

[(n+1)/p]R[s1, ..., sp, s
′
1, ..., s

′
p]. (4.3.5)

Assuming (4.3.5) is true let us show how to conclude the proof of the Lemma. By

(4.3.5) we get that

p∑

i=1

qnp
i q′i ∈ (s1, ..., sp, s

′
1, ..., sp)

[(n+1)/p]k[s1, ..., sp, s
′
1, ..., s

′
p].
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So we have
p∑

i=1

qnp
i q′i =

∑
Bi1...ip(s

′
1)

i1 ...(s′p)
ip

where

Bi1...ip ∈ (s1, ..., sp)
[(n+1)/p]−i1−...−ipk[s1, ..., sp].

Since s′1, ..., s
′
p are algebraically independent over k[q1, ..., qp] we get

A0 = B0...0

A1 = B10...0

A2 = B010...0, etc

hence

Aj ∈ (s1, ..., sp)
[(n+1)/p]−1k[s1, ..., sp], j = 0, ..., p

which ends the proof of the Lemma.

To check (4.3.5) above note that

p∑

i=1

δ(qn+1
i ) = δ

(
p∑

i=1

qn+1
i

)
+

(∑p
i=1 qn+1

i

)p
−

∑p
i=1 q

(n+1)p
i

p
.

The second term in the right hand side of the above equation is a homogeneous poly-

nomial in q1, ..., qp of degree (n+1)p hence it is a weighted homogeneous polynomial

in s1, ..., sp of weight (n + 1)p where s1, ..., sp are given weights 1, ..., p respectively.

Hence this polynomial is a sum of monomials in s1, ..., sp of degree ≥ n+1. Similarly
∑p

i=1 qn+1
i is a sum of monomials in s1, ..., sp of degree ≥ [(n + 1)/p]. This implies

that δ(
∑p

i=1 qn+1
i ) is a sum of monomials in s1, ..., sp, s

′
1, ..., s

′
p of degree ≥ [(n+1)/p]

which proves (4.3.5).

Proof of Theorem 4.3.2. In view of Lemma 4.3.5 (which treats the case of mono-

mials) we see that in order to prove that f in the statement of the Theorem is Laurent
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(respectively Taylor) δ−p-symmetric it is enough to show that any series of the form

f =
∞∑

n=0

cnqpnq′ ∈ k[[q]][q′]

is Taylor δ − p-symmetric. By Lemma 4.3.7 we may write

p∑

i=1

qnp
i q′i = G0n +

p∑

j=1

Gjns
′
j

where

Gjn ∈ (s1, ..., sp)
[(n+1)/p]−1k[s1, ..., sp], j = 0, ..., p.

Since Gj :=
∑∞

n=0 cnGjn are convergent in k[[s1, ..., sp]] we have

p∑

i=1

f(qi) = G0 +

p∑

j=1

Gjs
′
j ∈ k[[s1, ..., sp]][s

′
1, ..., s

′
p]

which proves that f is Taylor δ − p-symmetric. The assertion about “pU”f follows

from Lemma 4.1.4 by taking limits.

Next we proceed to proving Theorem 4.3.1. We need some preliminaries. Let

Cp(q1, q2) :=
qp
1+qp

2−(q1+q2)p

p
∈ Z[q1, q2]. We start with a version of Lemma 4.3.6:

Lemma 4.3.8. Consider the elements σ = q1 + q2 ∈ k[q1, q2] and π = q1q2 ∈ k[q1, q2]

and let γ ∈ k[q1, q2] be the image of Cp(q1, q2) ∈ Z[q1, q2]. Then

q′1 =
π′ − qp

1σ
′ + qp

1γ

(q2 − q1)p
, q′2 = −

π′ − qp
2σ

′ + qp
2γ

(q2 − q1)p

in the ring

k[q1, q2, q
′
1, q

′
2,

1

q2 − q1

].

Proof. Applying δ to the defining equations of σ and π we get

q′1 + q′2 = σ′ − γ

qp
2q

′
1 + qp

1q
′
2 = π′
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and solve for q′1, q
′
2.

For the next Lemma let us denote by vq2−q1 : k((q1, q2))
× → Z the normalized

valuation on the fraction field k((q1, q2)) of k[[q1, q2]] attached to the irreducible series

q2 − q1 ∈ k[[q1, q2]]; in other words, if 0 6= F (q1, q2) ∈ k[[q1, q2]] then vq2−q1(F ) is the

maximum integer i such that (q2 − q1)
i divides F in k[[q1, q2]].

Lemma 4.3.9. Let Φ(q) =
∑∞

m=0 βmqm ∈ k[[q]], Φ 6∈ k, Supp Φ := {m ∈ Z≥0; βm 6=

0}. Then

vq2−q1(Φ(q2) − Φ(q1)) = pmin{vp(m);0 6=m∈Supp Φ}.

Proof. We have

Φ(q2) − Φ(q1) =
∑

(n,p)=1

∑∞
i=0 βnpi(qnpi

2 − qnpi

1 )

=
∑∞

i=0(q2 − q1)
pi

G(q1, q2)

where

Gi(q1, q2) =
∑

(n,p)=1

βnpi(q
(n−1)pi

2 + q
(n−2)pi

2 qpi

1 + ... + q
(n−1)pi

1 ).

Let i0 = min{vp(m); 0 6= m ∈ Supp Φ}. Then βnpi = 0 for all (n, p) = 1 and i < i0

and there exists n0, (n0, p) = 1 such that βn0pi0 6= 0. It is enough to show that

Gi0(q1, q2) is not divisible by q2 − q1 in k[[q1, q2]] equivalently that G(q, q) 6= 0. But

Gi0(q, q) =
∑

(n,p)=1

nβnpi0q
(n−1)pi0 6= 0.

Proof of Theorem 4.3.1. We proceed by induction on the degree deg(f) of f

viewed as a polynomial in q′ with coefficients in k[[q]]. If this degree is 0 we are done.

Assume now the degree is ≥ 1. We may assume f(0, 0) = 0.
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By hypothesis,

f(q1, q
′
1) + ... + f(qp, q

′
p) = G

in k[[q1, ..., qp]][q
′
1, ..., q

′
p], where G ∈ k[[s1, ..., sp]][s

′
1, ..., s

′
p]. Setting q3 = ... = qp = 0

and q′3 = ... = q′p = 0 we get

f(q1, q
′
1) + f(q2, q

′
2) = G(σ, π, 0, ..., 0, σ′, π′, 0, ..., 0). (4.3.6)

Note that k[[q1, q2]] is a finite k[[σ, π]]-algebra so σ′, π′ are algebraically independent

over k((q1, q2)). By Lemma 4.3.8 the left hand side of (4.3.6) is a polynomial H in

σ′, π′ with coefficients in k((q1, q2)). On the other hand since H is in the right hand

side of (4.3.6) H has coefficients in k[[q1, q2]]. Hence each non-zero coefficient of the

polynomial H has vq2−q1-adic valuation ≥ 0. Now write

f(q, q′) =
∑

m′

Φm′(q)(q′)m′

, Φm′ ∈ k[[q]].

Also write each m′ as m′ = n′pi′ with n′ not divisible by p. Using Lemma 4.3.8 we

have H =
∑

m′ Hm′ where

Hm′ =
Fm′

(q2 − q1)n′pi′+1
(4.3.7)

where Fm′ ∈ k((q1, q2))[σ
′, π′] is given by

Fm′ = Φm′(q1)
(
(π′)pi′

− qpi′+1

1 (σ′)pi′

+ qpi′+1

1 γpi′
)n′

+(−1)n′

Φm′(q2)
(
(π′)pi′

− qpi′+1

2 (σ′)pi′

+ qpi′+1

2 γpi′
)n′

.

Note that the coefficient of (π′)m′

in Fm′ is

Φm′(q1) + (−1)n′

Φm′(q2) (4.3.8)

while the coefficient of (π′)m′−pi′

(σ′)pi′

in Fm′ is

−n′
(
qpi′+1

1 Φm′(q1) + (−1)n′

qpi′+1

2 Φm′(q2)
)

. (4.3.9)
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Let now m′ = deg(f). If n′ is even the polynomial (4.3.8) has vq2−q1-adic valuation

0 which contradicts the fact that the non-zero coefficients of H have vq2−q1-adic

valuation ≥ 0. So n′ is odd. By Lemma 4.3.9 the vq2−q1-adic valuation of (4.3.8)

equals

pmin{vp(m);0 6=m∈Supp Φm′}, if Φm′ 6∈ k.

Also the vq2−q1-adic valuation of (4.3.9) equals

pmin{vp(m);m∈Supp(qpi′+1
Φm′ )} = pmin{vp(m+pi′+1);m∈Supp Φm′}.

By the fact that the non-zero coefficients of H have vq2−q1-adic valuation ≥ 0 we get

that

pmin{vp(m);0 6=m∈Supp Φm′} ≥ n′pi′+1 if Φm′ 6∈ k (4.3.10)

and

pmin{vp(m+pi′+1);m∈Supp Φm′} ≥ n′pi′+1. (4.3.11)

From (4.3.10) we get

vp(m) ≥ i′ + 1 for all 0 6= m ∈ Supp Φm′ , if Φm′ 6∈ k. (4.3.12)

We claim now that n′ = 1. Assume n′ ≥ 2. By (4.3.10)

vp(m) > i′ + 1 for all 0 6= m ∈ Supp Φm′ , if Φm′ 6∈ k.

Hence

vp(m + pi′+1) = i′ + 1 for all m ∈ Supp Φm′ .

By (4.3.11) pi′+1 ≥ 2pi′+1, a contradiction. This ends the proof that n′ = 1.

By (4.3.12)

Φm′(q)(q′)m′

= (V i′+1ϕ)(q′)pi′

for some ϕ ∈ k[[q]]. By Lemma 4.3.5 Φm′(q)(q′)m′

is Taylor δ−p-symmetric hence so

is f − Φm′(q)(q′)m′

which has smaller degree than f . We conclude by the induction

hypothesis.
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4.4 Multiplicity one

We begin by recalling the well known situation for series in k[[q]]. Then we proceed

with our main results about δ-series in k[[q]][q′].

Throughout this section we fix κ ∈ Z≥0.

Definition 4.4.1. A series ϕ ∈ qk[[q]] is said to be an eigenvector of all Hecke

operators Tκ+2(n), Tκ+2(p), (n, p) = 1, with eigenvalues λn, λp ∈ k if ϕ 6= 0 and the

following hold:





Tκ+2(n)ϕ = λn · ϕ, (n, p) = 1

Tκ+2(p)ϕ = λp · ϕ.

(4.4.1)

Of course the last equation in (4.4.1) is equivalent to

Uϕ = λp · ϕ.

Proposition 4.4.2. Assume ϕ ∈ qk[[q]] is an eigenvector of all Hecke operators

Tκ+2(n), Tκ+2(p), (n, p) = 1, with eigenvalues λn, λp ∈ k Then there exists γ ∈ k×

such that

ϕ(q) := γ ·
∑

(n,p)=1

∑

i≥0

λnλ
i

p · q
npi

. (4.4.2)

Proof. Pick out coefficient of q in the first equation (4.4.1) and the coefficient

of qm, m ≥ 1 in the second equation (4.4.1). (Here we use the convention that

00 = 1.)

Definition 4.4.3. A δ-series f = f(q, q′) ∈ k[[q]][q′] is said to be an eigenvector of

all Hecke operators nTκ(n), “pTκ(p)”, (n, p) = 1, with eigenvalues λn, λp ∈ k if f is
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Taylor δ − p-symmetric and satisfies





nTκ(n)f = λn · f, (n, p) = 1;

“pTκ(p)”f = λp · f.

(4.4.3)

Theorem 4.4.4. Assume f = f(q, q′) ∈ k[[q]][q′], f 6∈ k, is an eigenvector of all

Hecke operators nTκ(n), “pTκ(p)”, (n, p) = 1, with eigenvalues λn, λp ∈ k. Then

there exists ϕ = ϕ(q) ∈ qk[[q]] and c, ci ∈ k, i ≥ 0, with pκ · ci−1 = λp · ci for i ≫ 0,

such that ϕ is an eigenvector of all Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1,

with the same eigenvalues λn, λp and such that

f = c +
(∑

i≥0 ciF
i
/k

)
ϕ♯,2,

ϕ♯,2 := ϕ(−1) − λp · V (ϕ) q′

qp + pκ · V 2(ϕ)
(

q′

qp

)p

.

(4.4.4)

Remark 4.4.5. One can also write f in (4.4.4) as

f = c +
∑

i≥0 ci

[
V i(ϕ(−1)) − λp · V

i+1(ϕ)
(

q′

qp

)pi

+ pκ · V i+2(ϕ)
(

q′

qp

)pi+1
]

= c +
(∑

i≥0 ciV
i
)
ϕ(−1) +

∑
i≥0(p

κci−1 − λpci)V
i+1(ϕ)

(
q′

qp

)pi

,

where c−1 := 0. Note that the condition that pκ · ci−1 = λp · ci for i ≫ 0 insures that

the right hand side of the first equation in (4.4.4) is a polynomial in the variable q′.

Remark 4.4.6. Looking at the constant terms in (4.4.3) one sees that if c 6= 0 then





λn = n ·
∑

A|n ǫ(A)Aκ−1, (n, p) = 1;

λp = pκ.

(4.4.5)

Conversely we will prove:
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Theorem 4.4.7. Let κ ∈ Z≥0. Assume ϕ = ϕ(q) ∈ qk[[q]] is an eigenvector of all

Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1, with eigenvalues λn, λp ∈ k. Let ci ∈ k

for i ≥ 0 with pκ · ci−1 = λp · ci for i ≫ 0. Also let c be an arbitrary element in

k or 0 according as equations ( 4.4.5) hold or fail respectively. Let f ∈ k[[q]][q′] be

defined by Equation ( 4.4.4). Then f an eigenvector of all Hecke operators nTκ(n),

“pTκ(p)”, (n, p) = 1, with the same eigenvalues λn, λp.

Let k[F/k] be the k-algebra generated by F/k which is a commutative polynomial

ring in one variable. Note that k[[q]][q′] is a k[F/k]-module and the k-linear space of

series f(q, q′) ∈ k[[q]][q′] with f(0, 0) = 0 is a torsion free k[F/k]-submodule. Note

also that the ideal qk[[q]] is a torsion free module over the ring k[[F/k]] of power

series in F/k. Finally recall that a δ-series f(q, q′) ∈ k[[q]][q′] is called primitive if

U(f(q, 0)) = 0. Theorems 4.4.4 and 4.4.7 immediately imply:

Corollary 4.4.8. Fix λn ∈ k for (n, p) = 1 and λp ∈ k. Let F be the k-linear space

of all the δ-series f = f(q, q′) ∈ k[[q]][q′] with f(0, 0) = 0 which are either 0 or are

eigenvectors of all Hecke operators nTκ(n), “pTκ(p)”, (n, p) = 1, with eigenvalues

λn, λp ∈ k. We have F 6= 0 if and only if there exists an eigenvector ϕ ∈ qk[[q]] of

all Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1, with eigenvalues λn, λp. Assume

furthermore that this is the case and let ϕ♯,2 be defined as in (4.4.4). Then ϕ♯,2 belongs

to F and is a primitive δ-series; also any primitive δ-series in F is a k-multiple of

ϕ♯,2. Furthemore the following hold:

1) If κ > 0, λp = 0 then F is a free k[[F/k]]-submodule of k[[q]] of rank 1 with

basis ϕ♯,2 = ϕ(−1).

2) If either κ > 0, λp 6= 0 or κ = 0, λp = 0 then F is a free k[F/k]-submodule of

k[[q]][q′] of rank one with basis ϕ♯,2.

3) If κ = 0, λp 6= 0 then F is a free k[F/k]-submodule of k[[q]][q′] of rank 1 with
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basis

ϕ♯,1 :=

(∑

i≥0

(λp)
−iF i

/k

)
ϕ♯,2. (4.4.6)

Remark 4.4.9. Note that

ϕ♯,1 =

(∑

i≥0

(λp)
−iV i

)
ϕ(−1) − λp · V (ϕ) ·

q′

qp

and also that ϕ♯,1 is the unique element of qk[[q]] satisfying the equation

V (ϕ♯,1) − λpϕ
♯,1 + λpϕ

♯,2 = 0.

Proof of Theorem 4.4.4. For any series β(q) ∈ k[[q]] write

β(q) =
∑

m≥0

am(β)qm.

By Theorem 4.3.1 and Corollaries 4.1.5 and 4.3.3 f has the form (4.3.2) and

Tκ(n)ϕ0 = λn

n
· ϕ0, (n, p) = 1

Tκ+2ps(n)ϕps = λn · ϕps , (n, p) = 1, s ≥ 0

U(ϕps) = λp · ϕps , s ≥ 0

pκ · V (ϕ0) −
∑

s≥0 V s(ϕ
(−1)
ps ) = λp · ϕ0.

(4.4.7)

In particular the following equalities hold:

105



Chapter 4. Hecke Operators mod p

anps(ϕ0) = λn

n
· aps(ϕ0), (n, p) = 1, s ≥ 0,

an(ϕps) = λn · a1(ϕps), (n, p) = 1, s ≥ 0,

amp(ϕps) = λp · am(ϕps), m ≥ 1, s ≥ 0,

pκ · aps−1(ϕ0) − a1(ϕps) = λp · aps(ϕ0), s ≥ 0,

(4.4.8)

where by convention we set aps−1(ϕ0) = 0 if s = 0. Let c = a0(ϕ0) and ci = api(ϕ0)

for i ≥ 0. By (4.4.8) we get

anpi(ϕ0) = λn

n
· ci, (n, p) = 1, i ≥ 0

anpi(ϕps) = λnλ
i

p · (p
κ · cs−1 − λpcs), (n, p) = 1, i ≥ 0, s ≥ 0,

(4.4.9)

where c−1 := 0. Define ϕ by the equality (4.4.2) with γ = 1.

Assume first that there is an s ≥ 0 such that a1(ϕps) 6= 0. Then ϕps is a non-zero

multiple of ϕ so (4.4.1) follows from (4.4.7) and (4.4.4) follows from (4.4.9). Since f

is a polynomial in q′ we get that pκ · cs−1 − λpcs = 0 for s ≫ 0.

Assume now that a1(ϕps) = 0 for all s ≥ 0. Then ϕps = 0 for all s ≥ 0 hence

f = ϕ0. By the last equation in (4.4.7) and since ϕ0 6∈ k we get pκ = λp = 0. Then

the right hand side of (4.4.4) becomes

c +
∑

i≥0

∑

(n,p)=1

ci
λn

n
qnpi

. (4.4.10)

By the first equation in (4.4.9) we get that (4.4.10) equals ϕ0 = f ; so equation (4.4.4)

holds. Clearly Uϕ = 0 so the second equality in (4.4.1) holds. Finally, since ϕ0 6∈ k

we may write ϕ0 = F d
/kϕ̃0 with ϕ̃0 ∈ k[[q]] and d maximal with this property; in
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particular cd 6= 0. Note that θϕ̃0 = cdϕ. Also by (4.4.7) we have Tκ(n)ϕ̃0 = λn

n
ϕ̃0 for

(n, p) = 1. Hence

Tκ+2(n)ϕ = c−1
d Tκ+2(n)θϕ̃0 = c−1

d nθ(Tκ(n)ϕ̃0) = c−1
d λnθϕ̃0 = λnϕ

and so the first equality in (4.4.1) holds. This ends the proof.

Proof of Theorem 4.4.7. This follows directly from Corollary 4.1.3 and Theorem

4.3.2 using the following facts (which are direct consequences of the formulae for the

Hecke operators acting on Fourier coefficients (4.1.4)):

Tκ+2pi(n)ϕ = λn · ϕ, (n, p) = 1, i ≥ 0

Tκ(n)(ϕ(−1)) = λn

n
· ϕ, (n, p) = 1.

4.5 δ-modular forms

4.5.1 Review of classical modular forms

Start by recalling some basic facts about modular forms; cf. [17]. Let N > 4 be an

integer and let B be a Z[1/N, ζN ]-algebra. Let Y = Y1(N) be the affine modular

curve over B classifying pairs (E,α) consisting of elliptic curves E over B-algebras

plus a level Γ1(N) structure α : Z/NZ → E. Let Yord be the ordinary locus in Y

(i.e. the locus where the Eisenstein form Ep−1 is invertible). Let X be Y or Yord.

Let L be the line bundle on X, direct image of the sheaf of relative differentials on

the universal elliptic curve over X, and let

V = Spec

(⊕

κ∈Z

L⊗κ

)
→ X (4.5.1)
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be the Gm-torsor associated to L.

Set M = O(V ) =
⊕

κ∈Z
L⊗κ. Recall that there is a Fourier expansion map

E : M → B((q))

defined by the cusp Γ1(N) · ∞ [17], p. 112. Recall also that Y has a natural

compactification, X1(N), equipped with a natural line bundle, still denoted by

L, extending the line bundle L on Y , such that the space of classical modular

forms, M(Γ1(N), B, κ) ⊂ L⊗κ, on Γ1(N) of weight κ, defined over B identifies with

H0(X1(N), L⊗κ). Recall that the diamond operators act on M(Γ1(N), B, κ); the in-

variant elements form the space M(Γ0(N), B, κ) of classical modular forms on Γ0(N)

of weight κ defined over B. Recall the q-expansion principle: for any B as above

there is an induced injective Fourier expansion map E : M(Γ1(N), B, κ) → B[[q]] and

if B′ ⊂ B then M(Γ1(N), B′, κ) identifies with the group of all f ∈ M(Γ1(N), B, κ)

such that E(f) ∈ B′[[q]]. Recall also the following base change property: if B′ is any

B-algebra and either B′ is flat over B or κ ≥ 2 and N is invertible in B′ then the

map M(Γ1(N), B, κ) ⊗B B′ → M(Γ1(N), B′, κ) is an isomorphism; cf. [17], p.111.

4.5.2 δ-series from classical modular forms

Theorem 4.5.1. Let κ ∈ Z≥0 and let f(q) =
∑

m≥1 amqm ∈ qZp[[q]] be a series

satisfying a1 = 1 and





apin = apian for (n, p) = 1, i ≥ 0

api−1ap = api + pκ+1api−1 for i ≥ 2.
(4.5.2)

Let ϕ := f =
∑

m≥1 amqm ∈ qFp[[q]] be the reduction mod p of f(q). Then the series

f ♯,2 = f ♯,2(q, q′, q′′) :=
1

p
·
∑

n≥1

an

n
(pκφ2(q)n−apφ(q)n +pqn) ∈ Qp[[q, q

′, q′′]] (4.5.3)
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belongs to Zp[[q]][q
′, q′′ ]̂ and its reduction mod p equals

f ♯,2 = f ♯,2(q, q′, q′′) = ϕ(−1) − apV (ϕ)
q′

qp
+ pκ · V 2(ϕ)

(
q′

qp

)p

∈ Fp[[q]][q
′]. (4.5.4)

Proof. For κ = 0 the argument is in [13]; the case κ > 0 is entirely similar. (Note

that the form f
(0)
[ap] in [13] is congruent mod p to f itself.)

Remark 4.5.2. Note that conditions (4.5.2) imply that Uϕ = ap · ϕ.

Example 4.5.3. Let κ ∈ Z≥0 and let F ⊂ C be a number field with ring of integers

OF . Let

f(q) =
∑

m≥1

amqm ∈ qOF [[q]] (4.5.5)

be the Fourier expansion of a cusp form

f ∈ M(Γ0(N),OF , κ + 2).

Assume a1 = 1 and assume f(q) is an eigenvector for all the Hecke operators Tκ+2(n)

with n ≥ 1. Assume p is a rational prime that splits completely in F , consider

an embedding OF ⊂ Zp, view f(q) as an element of qZp[[q]], and let ϕ := f =
∑

m≥1 amqm ∈ qFp[[q]] is the reduction mod p of f(q). Then the equalities (4.5.2)

hold. So by Theorem 4.5.1 the series

f ♯,2 = f ♯,2(q, q′, q′′) :=
1

p
·
∑

n≥1

an

n
(pκφ2(q)n−apφ(q)n +pqn) ∈ Qp[[q, q

′, q′′]] (4.5.6)

belongs to Zp[[q]][q
′, q′′ ]̂ and its reduction mod p equals

f ♯,2 := f ♯,2(q, q′, q′′) = ϕ(−1) − apV (ϕ)
q′

qp
+ pκ · V 2(ϕ)

(
q′

qp

)p

∈ Fp[[q]][q
′]. (4.5.7)

Note also that Tκ+2(n)ϕ = an ·ϕ for (n, p) = 1 and Uϕ = ap ·ϕ. So by Theorem 4.4.7

f ♯,2 = ϕ♯,2 is an eigenvector of the Hecke operators nTκ(n), “pTκ(p)”, (n, p) = 1,

with eigenvalues an, ap. Also, by the same Theorem, if in addition ap 6= 0 and κ = 0,

then the series ϕ♯,1 in (4.4.6) is also an eigenvector of the Hecke operators nTκ(n),

“pTκ(p)”, (n, p) = 1, with eigenvalues an, ap.

109



Chapter 4. Hecke Operators mod p

Example 4.5.4. Consider the Ramanujan series

P (q) := E2(q) := 1 − 24
∑

m≥1


∑

d|m
d


 qm

and assume N is prime. Consider the series

g(q) := −
1

24
(P (q) − NP (qN)) =

N − 1

24
+ f(q) ∈ Z(p)[[q]],

where

f(q) =
∑

m≥1


∑

A|m
ǫ(A)A


 qm. (4.5.8)

Then g(q) is the Fourier expansion of a classical modular form in

M(Γ0(N), Z(p), 2) which is an eigenvector of the Hecke operators T2(n) for all n ≥ 1

with eigenvalues an :=
∑

A|n ǫ(A)A; cf. [17], Example 2.2.6, Proposition 3.5.1, and

Remark 3.5.2. Let ϕ := f =
∑

m≥1 amqm ∈ qFp[[q]] be the reduction mod p of f(q).

By [24], Theorem 9.17, the equalities (4.5.2) hold with κ = 0. So by Theorem 4.5.1

the series

f ♯,2 = f ♯,2(q, q′, q′′) :=
1

p
·
∑

n≥1

an

n
(φ2(q)n − apφ(q)n + pqn) ∈ Qp[[q, q

′, q′′]] (4.5.9)

belongs to Zp[[q]][q
′, q′′ ]̂ and its reduction mod p equals

f ♯,2 := f ♯,2(q, q′, q′′) = ϕ(−1) − apV (ϕ)
q′

qp
+ V 2(ϕ)

(
q′

qp

)p

∈ Fp[[q]][q
′]. (4.5.10)

Note also that T2(n)ϕ = an · ϕ for (n, p) = 1 and Uϕ = ap · ϕ. So by Theorem 4.4.7

f ♯,2 = ϕ♯,2 is an eigenvector of the Hecke operators nT0(n), “pT0(p)”, (n, p) = 1,

with eigenvalues an, ap. Also, by the same Theorem, if in addition ap 6= 0 and

κ = 0, then the series ϕ♯,1 in (4.4.6) is also an eigenvector of the Hecke operators

nTκ(n), “pTκ(p)”, (n, p) = 1, with eigenvalues an, ap. Note that if N ≡ 1 mod p then
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Equations 4.4.5 hold because





an =
∑

A|n ǫ(A)A ≡ n
∑

A|n ǫ(A)A−1, mod p for (n, p) = 1,

ap =
∑

A|p ǫ(A)A ≡ 1 mod p.

Note also that if N ≡ 1 mod p it follows that f(q) ≡ g(q) mod p so ϕ(q) is the

Fourier expansion of a modular form in M(Γ0(N), Fp, 2)

4.5.3 Application to δ-eigenforms

As noted in [15] the image of the Fourier expansion map M∞ → R((q))̂ is contained

in W; this is by the universality property of Or(V ) and by the fact that W possesses

a lift of Frobenius φ0 and hence it is naturally a δ-subring of R((q))̂ .

Proposition 4.5.5. The image of M r(w) in W consists of elements of weight deg(w).

Proof. It is easy to see that one may replace X in the statement above by an

open set of it. So one may assume L is free on X. Let x be a basis of L. Then any

element f ∈ M r(w) can be written as f = f0 · x
w where f0 ∈ Or(X). Now the image

of x in W has weight 1. Since φ0 on W preserves the elements of a given weight it

follows that the image of xw in W has weight deg(w). On the other hand f0 is a

p-adic limit of polynomials with R-coefficients in elements of the form δig0, where

g0 ∈ O(X). Again, since φ0 sends elements of weight 0 in W into elements of weight

0 the same is true for δ : W → W. Since the image of g0 in W has weight 0 so does

the image of δig0 in W and hence so does the image of f .

Next we state our main applications to “δ-eigenforms” (i.e. δ-modular forms

whose δ-Fourier expansions are “δ-eigenseries”). First we will prove:
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Theorem 4.5.6. Assume f = f(q, q′) ∈ k[[q]][q′] is not a p-th power in k[[q]][q′] and

assume f is the reduction mod p of the δ-Fourier expansion of a δ-modular form in

M r(w) with r ≥ 0, κ := deg(w) ≥ 0. Assume furthermore that f is an eigenvector

of all Hecke operators nTκ(n), “pTκ(p)”, (n, p) = 1, with eigenvalues λn, λp ∈ k.

Then there exists ϕ = ϕ(q) ∈ qk[[q]] which is the Fourier expansion of a modular

form in M(Γ1(N), k, κ′), κ′ ≥ 0, κ′ ≡ κ + 2 mod p − 1, and there exist c, ci ∈ k,

i ≥ 0, with pκ · ci−1 = λpci for i ≫ 0, such that ϕ is an eigenvector of all Hecke

operators Tκ+2(n), Tκ+2(p), (n, p) = 1, with the same eigenvalues λn, λp and such

that f satisfies ( 4.4.4).

Conversely we will prove:

Theorem 4.5.7. Assume ϕ ∈ qk[[q]] is the Fourier expansion of a modular form in

M(Γ1(N), k, κ′), κ′ ≥ 0, κ′ ≡ κ + 2 mod p − 1, and that ϕ is an eigenvector of all

Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1, with eigenvalues λn, λp ∈ k. Assume

X = Yord. Consider the series f = f(q, q′) ∈ k[[q]][q′] defined by the formula ( 4.4.4)

with c = 0, ci ∈ k for i ≥ 0, and ci = 0 for i ≫ 0. Then f is the δ-Fourier expansion

of a δ-modular form f ∈ M1(κ) and (by Theorem 4.4.7) is an eigenvector of all

Hecke operators nTκ(n), “Tκ(p)”, (n, p) = 1, with the same eigenvalues λn, λp.

Note that Theorems 4.5.6 and 4.5.7 imply Theorem 1.0.10 in the Introduction.

The one-to-one correspondence in Theorem 1.0.10 is given by ϕ 7→ ϕ♯,2 with ϕ♯,2

defined by (4.4.4).

4.5.4 Review of δ-modular forms [11, 15]

Let V be an affine smooth scheme over R and fix a closed embedding V ⊂ Am into

an affine space over R.
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Definition 4.5.8. A map f : V (R) → R is called a δ-function of order r on X [7]

if there exists a restricted power series Φ in m(r + 1) variables, with R-coefficients

such that

f(a) = Φ(a, δa, ..., δra),

for all a ∈ V (R) ⊂ Rm. We denote by Or(V ) the ring of δ-functions of order r on V .

(Recall that restricted means with coefficients converging p-adically to 0; also the

definition above does not depend on the embedding V ⊂ Am.) Composition with

δ defines p-derivations δ : Or(V ) → Or+1(V ). The rings Or(V ) have the following

universality property: for any R-algebra homomorphism u : O(V ) → A where A is

a p-adically complete δ-ring there are unique R-algebra maps ur : Or(V ) → A that

commute in the obvious sense with δ and prolong u.

Let now V be as in (4.5.1) with B = R and Z[1/N, ζN ] ⊂ R a fixed embedding.

Definition 4.5.9. [15] A δ−modular function of order r (on Γ1(N), holomorphic on

X) is a δ-function f : V (R) → R of order r.

Let W := Z[φ] be the ring generated by φ. For w =
∑

aiφ
i ∈ W (ai ∈ Z) set

deg(w) =
∑

ai ∈ Z; for λ ∈ R× we set λw :=
∏

φi(λ)ai .

Definition 4.5.10. A δ-modular form of weight w (of order r, on Γ1(N), holomorphic

on X) is a δ-modular function f : V (R) → R of order r such that

f(λ · a) = λwf(a),

for all λ ∈ R× and a ∈ V (R), where (λ, a) 7→ λ ·a is the natural action R××V (R) →

V (R).

We denote by M r := Or(V ) the ring of all δ-modular functions of order r and we

set M∞ :=
⋃

r≥0 M r. We denote by M r(w) the R-module of δ-modular forms of order
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r and weight w; cf. [15]. (In [11] the space M r(w) was denoted by M r(Γ1(N), R, w)

or M r
ord(Γ1(N), R, w) according as X is Y or Yord.) Note that M r(0) identifies with

Or(X) which, in its turn, embeds into Or(X1(N)).

By the universality property of the rings M r = Or(V ) there exists a unique δ-ring

homomorphism (the δ-Fourier expansion map)

E : M∞ → S∞
for :=

⋃

r≥0

R((q))[q′, ..., q(n) ]̂ , E(f) = f(q, q′, q′′, ...),

extending the Fourier expansion map E : M → R((q))̂ . We may also consider the

composition

M∞ → S∞
for

π
→ R((q))̂ , f 7→ f(q),

where the map π sends q′, q′′, ... into 0; we refer to this composition as the Fourier

expansion map.

Recall the “δ-expansion principle”:

Proposition 4.5.11. [11] The maps E : M r(w) → R((q))[q′, ..., q(r) ]̂ are injective

with torsion free cokernel; hence the induced maps E : M r(w)⊗k → k((q))[q′, ..., q(r)]

are injective.

Proof. This is [11], Lemma 6.1.

Recall also the following result:

Theorem 4.5.12. [11] If in Example 4.5.3 κ = 0, F = Q, and p ≫ 0 then the

series f ♯,2(q, q′, q′′) ∈ R[[q]][q′, q′′ ]̂ in ( 4.5.6) is the image of a (unique) δ-modular

form (still denoted by) f ♯,2 ∈ O2(X1(N)) ⊂ M2(0). If in addition f in Example

4.5.3 is of “CL type” then the series ϕ♯,1 ∈ k[[q]][q′] in that Example is the image of

a δ-modular form f ♯,1 ∈ O1(X1(N)) ⊂ M1(0).

Here by f being of CL type we mean that the Neron model of the elliptic curve over

Q associated to f via the Eichler-Shimura construction has good ordinary reduction
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and its base change to R is the canonical lift of this reduction; cf. [11, 13] for more

details.

Proof. Let f ♯ ∈ Or(X1(N)) be as in [11], Theorems 6.3 and 6.5; cf. also [13],

Lemma 4.18. So r is 1 or 2 according as f is or is not of CL type. Then Theorem

4.5.12 follows from [11], Theorems 6.3 and 6.5, by letting the δ-modular form f ♯,2 be

defined by

f ♯,2 :=





f ♯, if f is not of CL type,

φ(f ♯) − apf
♯, if f is of CL type,

and by letting

f ♯,1 := f ♯ if f is of CL type.

Remark 4.5.13. It is tempting to conjecture that if in Example 4.5.3 κ ≥ 0 is ar-

bitrary, F = Q, and p ≫ 0 then the series f ♯,2(q, q′, q′′) is the δ-Fourier expansion

of a δ-modular form f ♯,2 ∈ M r(κ) for some r ≥ 2. An appropriate variant of this

should also hold for arbitrary F . As we shall see, however, the situation is drastically

different with Example 4.5.4; cf. Theorem 4.5.17.

Recall the Serre derivation operator ∂ : M → M introduced by Serre and Katz

[22]. (Cf. also [10], p.254 for a review). Recall that ∂(L⊗n) ⊂ L⊗(n+2). Recall also

that if X is contained in Yord then one has the Ramanujan form P ∈ M0(2). By

[10], Propositions 3.43, 3.45, 3.56, there exists a unique sequence of R-derivations

∂j : M∞ → M∞, j ≥ 0, such that




∂j ◦ φs = 0 on M for j 6= s

∂j ◦ φj = pj · φj ◦ ∂ on M for j ≥ 0
(4.5.11)

These derivations then also have the property that



∂j = 0 on M j−1 for j ≥ 1

∂j ◦ δj = φj ◦ ∂ on M for j ≥ 0
(4.5.12)
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and that

∂j(M
r(w)) ⊂ M r(w + 2φj). (4.5.13)

Recall the Ramanujan theta operator θ = q d
dq

: R((q)) → R((q)). Then by [10],

Lemma 4.18, there is a unique sequence of R-derivations θj : S∞
for → S∞

for such that





θj ◦ φs = 0 on R((q)) for j 6= s

θj ◦ φj = pj · φj ◦ θ on R((q)) for j ≥ 0;
(4.5.14)

and such that





θj = 0 on R((q))[q′, ..., q(j−1) ]̂ for j ≥ 1

θj ◦ δj = φj ◦ θ on R((q)) for j ≥ 0.
(4.5.15)

Proposition 4.5.14. For any w =
∑r

i=0 aiφ
i ∈ W , any j ≥ 0, and any f ∈ M r(w)

the following formula holds in S∞
for:

E(∂jf) = θj(E(f)) − ajp
jE(f)E(P )φj

.

Proof. This was proved in [10], Proposition 8.42 in the case of “δ-Serre-Tate

expansions”; the case of δ-Fourier expansions is entirely similar. (The level 1 case of

this Proposition was proved in [1] using the structure of the ring of modular forms

of level 1.)

Proof of Theorem 4.5.6. By Theorem 4.4.4 all we have to show is that ϕ in that

Theorem is the Fourier expansion of a modular form in M(Γ1(N), k, κ′), κ′ ≡ κ + 2

mod p− 1. Since f is not a p-th power we may assume c0 = 1. Now if f(q, q′) is the

reduction mod p of the δ-Fourier expansion

E(f) = f(q, q′, ..., q(r)) ∈ S∞
for
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of a δ-modular form f ∈ M r(w) then, by Proposition 4.5.14, and Equations 4.4.4

and 4.5.15 we have the following congruences mod p in S∞
for:

E(∂1f) ≡ θ1(E(f))

≡ −λpV (ϕ)q−pθ1(δq)

≡ −λpV (ϕ)q−pφ(θq)

≡ −λpV (ϕ).

By Equation (4.5.13) we have that ∂1f ∈ M r(w + 2φ). So by Proposition 4.5.5

the image E(∂1f)(q, 0, ..., 0) of E(∂1f) in R((q))̂ is an element of weight κ + 2 in

W. So E(∂1f)(q, 0, ..., 0) is congruent mod p to the Fourier expansion of a classical

modular form of weight κ′ ≡ κ + 2 mod p − 1. So λpV (ϕ) is the Fourier expansion

of a modular form in M(Γ1(N), k, κ′). If λp 6= 0 then V (ϕ) is the Fourier expansion

of a modular form in M(Γ1(N), k, κ′) hence so is ϕ = UV ϕ (because U preserves

the weight [20], p.458). If λp = 0 then, by (4.4.2) we have ϕ =
∑

(n,p)=1 λnqn so

ϕ = θ(ϕ(−1)) = θ(ϕ0). Now ϕ0 is the image of E(f) in k[[q]] so, as above, by

Proposition 4.5.5, ϕ0 is the Fourier expansion of a modular form in M(Γ1(N), k, κ′′)

where κ′′ ≡ κ mod p−1. But θ sends Fourier expansions of modular forms of weight

κ′′ into Fourier expansions of modular forms of weight κ′′ + p + 1; cf. [20], p. 458.

So ϕ is the Fourier expansion of a modular form in M(Γ1(N), k, κ′′ + p + 1), and we

are done because κ′′ + p + 1 ≡ κ + 2 mod p − 1.

Proof of Theorem 4.5.7. Set κ′ = κ+2+(p−1)ν, ν ≥ 0. Since ϕ(−1)(q) = θp−2ϕ(q)

by get that ϕ(−1)(q) is the Fourier expansion of a modular form over k of weight

κ′+(p−2)(p+1) = κ+(p−1)(p+ν) hence V i(ϕ(−1)(q)) is the Fourier expansion of a

modular form over k of weight κ0,i := pi(κ+(p−1)(p+ν)); the latter lifts to a modular
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form Φ0,i ∈ M(Γ1(N), R, κ0,i) which can be viewed as an element in M0(κ0,i). Also

V i+1(ϕ) and V i+2(ϕ) are Fourier expansions of modular forms over k of weights

κ1,i := pi+1κ′ and κ2,i := pi+2κ′ so they lift to modular forms Φi,1 ∈ M(Γ1(N), R, κ1,i)

and Φ2,i ∈ M(Γ1(N), R, κ2,i) respectively. The latter can be viewed as elements of

M0(κ1,i) and M0(κ2,i) respectively. Finally note that f 1 · f∂ ∈ M1(−2) and the

Eisenstein form Ep−1 can be viewed as an element in M0(p − 1); its inverse is an

element in M0(1 − p). Let λp ∈ R be a lift of λp. Note that κ0,i ≡ κ mod p − 1;

set e0,i :=
κ−κ0,i

p−1
. Similarly κ1,i ≡ κ + 2 mod p − 1 and κ2,i ≡ κ + 2p mod p − 1; set

e1,i :=
κ+2−κ1,i

p−1
and e2,i :=

κ+2p−κ2,i

p−1
. Then, by Propositions 3.5.8 and 3.5.9 f is the

δ-Fourier expansion of the δ-modular form

∑

i≥0

ci

[
E

e0,i

p−1 · Φ0,i − λp · E
e1,i

p−1 · Φ1,i · (f
1 · f∂) + pκ · E

e2,i

p−1 · Φ2,i · (f
1 · f∂)p

]
(4.5.16)

which is an element of M1(κ). This ends the proof.

Example 4.5.15. We consider the special case of Example 4.5.3. Let

f(q) =
∑

m≥1

amqm ∈ qZ[[q]] (4.5.17)

be the Fourier expansion of a cusp form f ∈ M(Γ0(N), Z, 2). Assume a1 = 1 and

assume f(q) is an eigenvector for all the Hecke operators T2(n) with n ≥ 1. Assume

p is a prime and let ϕ := f =
∑

m≥1 amqm ∈ qFp[[q]] be the reduction mod p of f(q).

Then the equalities (4.5.2) hold with κ = 0. So by Theorem 4.5.1 the series

f ♯,2 = f ♯,2(q, q′, q′′) :=
1

p
·
∑

n≥1

an

n
(pκφ2(q)n−apφ(q)n +pqn) ∈ Qp[[q, q

′, q′′]] (4.5.18)

belongs to Zp[[q]][q
′, q′′ ]̂ and its reduction mod p equals

f ♯,2 := f ♯,2(q, q′, q′′) = ϕ(−1) − apV (ϕ)
q′

qp
+ V 2(ϕ)

(
q′

qp

)p

∈ Fp[[q]][q
′]. (4.5.19)

Note also that T2(n)ϕ = an · ϕ for (n, p) = 1 and Uϕ = ap · ϕ. So by Theorem

4.4.7 f ♯,2 is an eigenvector of the Hecke operators nT0(n), “pT0(p)”, (n, p) = 1, with
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eigenvalues an, ap. In addition, if p ≫ 0, by Theorem 4.5.12, the series f ♯,2(q, q′, q′′) in

(4.5.18) is the δ-Fourier expansion of a δ-modular form f ♯,2 ∈ O2(X1(N)) ⊂ M2(0).

On the other hand, as in the proof of Theorem 4.5.7, ϕ(−1)(q) is the Fourier ex-

pansion of a modular form over k of weight p2 − p; the latter lifts to a modular form

Φ0 ∈ M(Γ1(N), R, p2 − p) which can be viewed as an element in M0(p2 − p). Also

V (ϕ) and V 2(ϕ) are Fourier expansions of modular forms over k of weights 2p and

2p2 so they lift to modular forms Φ1 ∈ M(Γ1(N), R, 2p) and Φ2 ∈ M(Γ1(N), R, 2p2)

respectively. The latter can be viewed as elements of M0(2p) and M0(2p2) respec-

tively. Then f ♯,2(q, q′, q′′) is the δ-Fourier expansion of the δ-modular form

f ! := E−p
p−1 ·Φ0 − ap ·E

−2
p−1 ·Φ1 · (f

1 · f∂) + ·E−2p
p−1 ·Φ2 · (f

1 · f∂)p ∈ M1(0). (4.5.20)

Note now that f ♯,2 ∈ M2(0) and f ! ∈ M1(0) have the same δ-Fourier expansion and

the same weight. By Proposition 4.5.11 (the “δ-expansion principle”) we get the

following:

Corollary 4.5.16. In the notation of Example 4.5.15 we have the congruence f ♯,2 ≡

f ! mod p in M2(0).

Note that the right hand side of this congruence has order 1 and has a priori

“singularities” both at the cusps of X1(N) and at the supersingular points. In stark

contrast with that, the left hand side of the above congruence has no “singularity”

at either the cusps or the supersingular points.

Also in stark contrast with Theorem 4.5.12 we have the following consequence of

Theorem 4.5.6.

Theorem 4.5.17. Let f(q) be as in Example 4.5.4 and assume N 6≡ 1 mod p (for

instance p ≫ 0). Then the series f ♯(q, q′, q′′) in ( 4.5.10) is not the image of any

element in any space M r(w) with r ≥ 0, deg(w) = 0.
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Proof. Assume the notation of Example 4.5.4. By Theorem 4.5.6 it follows

that the image of f(q) in Fp[[q]] is the Fourier expansion of some modular form

f̂ ∈ M(Γ1(N), Fp, 2 + (p − 1)ν), ν ≥ 0. On the other hand, by Example 4.5.4 we

know that the image of g(q) in Fp[[q]] is the Fourier expansion of a modular form

ĝ ∈ M(Γ0(N), Fp, 2). It follows that the modular form

ĥ := Eν
p−1 · ĝ − f̂ ∈ M(Γ1(N), Fp, 2 + (p − 1)ν)

has Fourier expansion a constant γ := N−1
24

∈ F×
p . On the other hand γ, viewed as an

element in M(Γ0(N), Fp, 0) has Fourier expansion γ. By the Serre and Swinnerton-

Dyer Theorem [18], p.140, the difference ĥ − γ is divisible by Ep−1 − 1 in the ring
⊕

κ∈Z
M(Γ1(N), Fp, κ). It follows that the weights 2 + (p − 1)ν and 0 are congruent

mod p − 1, a contradiction.
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