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Abstract

In this thesis, we would look into the theory of arithmetic jet spaces and its applica-
tion in modular forms. The arithmetic jet spaces can be thought of as an analogue of
jet spaces in differential algebra. In the case of arithmetic jet spaces, a derivation is
replaced by p-derivation 0. This theory was initiated by A. Buium in [7]. The results
in the first chapter are concerning the connection between arithmetic jet spaces and
Witt vectors. Let R = Z}j\r be the p-adic completion of the maximal unramified
extension of Z,. If A is an R-algebra and we denote J" A its n-th jet ring. Firstly, we
show the adjunction property which says that the arithmetic jet functor from rings to
rings is the left adjoint of the Witt vector functor. This property was also shown by
Borger in [3]. However, we give an explicit proof of this fact and the highlight of this

proof is the construction of a ring homomorphism P : A — W, (J"A) which is the

analogue to the exponential map exp : A — A[t]/(t"*!) given by exp(a) = Y1, 2at’.

If we denote by D,(B) := B[t]/(t"*!) then we show that there is a family of ring
homomorphisms indexed by a € B"™, ¥, : D; o W,(B) — W, o D;(B) for any
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ring B and n. This gives yields the relation between a usual derivation 0 and a
p-derivation d given by ddx = pddx + (Ox)P — xP~'0x. This interaction is used to
analyse the ring homomorphisms n : T'J"A — J"T' A where T associates the tangent

ring to the ring A.

In the second chapter of the thesis, we apply the theory of arithmetic jet spaces
to modular forms. Let M denote the ring of modular forms over an affine open
embedding X C X;(N) where X;(N) is the modular curve that parametrises elliptic
curves and level N structures on it. Let M be the direct limit of the jet rings of
M which we call the ring of J-modular forms. Then from the universality property
of jet spaces, there are ring homomorphism E™ : M™ — R((q))|[d, ..., ¢™] which are
prolongation of the given Fourier expansion map F : M — R((q)). Hence E™ is
the d-Fourier expansion of M. Denote by S® = lim,, Im(E"). If S* denote the
reduction mod p of S™ then, one of our main results says that S can be realised
as an Artin-Schrier extension over S where S is the coordinate ring of X. If we
set all the indeterminates ¢’ = .. = ¢™ = 0 then we obtain a ring homomorphism
M — W where W is the ring of generalised p-adic modular forms. Our next result
shows that the image of the above homomorphism is p-adically dense in W. We also
classify the kernel of this homomorphism which is the p-adic closure of the d-ideal
(f7—1,f10(f2 —1),6f,....) where f% and f' are J-modular forms with weights.
This should be viewed as d-analogue of the Theorem of Swinnerton-Dyer and Serre
where the Fourier expansion over [F,, of the modular forms has the kernel (£,_; —1)

, E,_1 is the Hasse invariant.

In the third chapter, we take the step to understand the ‘0-Fourier expansion
principle” and the action of the Hecke operators on the Fourier expansion of differen-
tial modular forms. We work on k[[q]][¢'] which is the reduction mod p of R[[q][[¢],
the “holomorphic subspace” of R((q))[¢']. The definition of the Hecke operators away

from the prime p extends naturally from the classical definition of Hecke operators.

vil



At the prime p, we define T (p) on a “d-symmetric subspace” of d-modular forms
using the definition of A. Buium introduced in [11]. Our main result states that there
is a one-to-one correspondence between the classical cusp forms which are eigenvec-
tors of all Hecke operators with “primitive” d-modular forms whose d-Fourier series
lies in k[[g]][¢'] and are eigenvectors of all Hecke operators. This chapter should be
viewed as the first attempt to understand the structure of eigenforms on the Fourier

side of d-modular forms.
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Chapter 1

Introduction

The theory of arithmetic differential geometry [10] draws inspiration from the princi-
ples of differential algebra. In differential algebra [5] one enlarges the usual algebraic
geometry by ‘adding’ differential equations to the algebraic equations. This ap-
proach has found several applications in diophantine geometry over function fields
e.g. [6, 25]. In the very similar spirit the consideration of arithmetic jet spaces
enlarge the regular algebraic geometry by considering “differential equations” which
are satisfied by numbers. Of course the derivation in the usual sense will not work.
But one looks for a suitable operator § which can replace a derivation and yet retains

a lot of its flavor.

Just like in the case of differential algebra, given a scheme X over Z, we would like
to view X defined over a ring equipped with a derivation. But Z has no nontrivial
derivation to start with. Let us consider R = Z}’? D Z, the p-adic completion of
the maximal unramified extension of Z,. Then R is endowed with a unique lift of

frobenius ¢ acting as ¢((,) = (? on the roots of unity. Set

o Ola) —a”
p

then the map = — (x,0x) is a ring homomorphism between R — W;(R), where
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W (R) is the Witt ring of R of length 2. The foundation of the theory of arithmetic
jet spaces is to view ¢ as a “derivation” of a number with respect to the prime p.
Recall from differential algebra, that a derivation 0 : ¥ — JF is a ring homomorphism
r — (2,0z) in F — Fle|/(?) =: D1(F) where D; means the “dual numbers”. In
other words, in the arithmetic case, we are viewing Wy (_) as the analogue of the ring

of dual numbers Dy ().

Translating the ring axioms of W;(_), we find that a p-derivation § : A — B

satisfies

dr+y) = dz+dy+Cy(z,y)

dzy) = 2Py + yPox + pdxdy

where C)(z,y) = w. The subset of constants of § is R? = {0}U{¢, | p 1 n}.

Note that R% is a multiplicatively closed set and is not preserved under addition and

this is unlike the sub-ring of constants for the usual derivation.

Based on the above 0 now viewed as a p-derivation, the arithmetic jet spaces
J"X — X — Spec R are defined in [10] in a way similar to the definition of jet
spaces J,X in differential algebra. The idea is to study J"X that would shed some
additional light on X itself.

By a prolongation sequence B* we mean a sequence of maps between rings B™’s

BOL>31*>.... Bn71*“>Bn*>...

0 0

where u is a ring homomorphism and 9§ is a p-derivation which satisfies

r+y) = dx+dy+ Cphlu(x),u(y))

dzy) = u(y)Pér + u(x)Poy + pdxdy

where C), is defined as before.
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Let W, (B) be a p-typical Witt vector of length n + 1. Recall that there are two
homomorphisms, R, F': W,(B) — W,_; where, R is called the restriction and F' is

the Frobenius.

Let A and B be R-algebras where g : R — B is the given algebra map. Let
Homgs(A,W,(B)) be the set of all ring homomorphisms ~ from A to W, (B) such

that the following diagram is commutative

lQ
=
S

A
T Twn(g)
R

We will review the basic definitions and constructions of arithmetic jet spaces.

Let A be a finitely generated ring over R, where recall R is the completed, max-
imal, unramified extension of Z,. Then A = R[x|/(f) where x is a collection of

variables and f represent a collection of multivariate polynomial in x.

Then define the functor J'A from rings to sets as
J'A(B) = Homgs(A, W,(B)).

Then it is to easy to see that the above functor is representable by the ring
R[x,x']/(f, 5f) where x’ are new set of indeterminates. We again call this ring J'A

by a slight abuse of notation. By construction, there are two ring homomorphisms-
i) u: A — J'A induced by identifying x in J*A.
ii) ¢ : A — J'A defined by ¢(a) = u(a)? + pda where ¢ is induced from dx = x'.

Now we will define J" inductively for n, provided J" ! is already defined. We

also have the two canonical maps (u, d) : J" 24 — J" 1A where § is the set theoretic
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map satisfying

dr+y) = dz+dy+ Chu(x),u(y))
6(zy) = u(z)’dy + u(y)’dx + pdxdy

2P 4yP —(z4y)P

where Cy(z,y) = >

A ring homomorphism (f, A) : J*"'A — W, (B) will be called to satisfy (x) if in
the following diagram
J1A—-B
U,Té
Jn2A
we have Aou = fod.
Then J"A is the functor from rings to sets defined as

J'A(B) = {(f,A) € Homs(J"*A,B) | (f,A) satisfies (%)}

Then it is easy to see that the above functor is represented by J"A = R[x]/(f, ...0"f)
with the two canonical maps (u,d) : J* 1A — J"A and ¢(a) = u(a)? + pda is the
lift of the Frobenius like before.

Hence we obtain a prolongation sequence of rings as follows

u

)

A 7; JLA Jr14

JrA

Remark 1.0.1. Let X = Spec A be the affine scheme. Then we will denote J"X =
Spf ﬂ, where JnA is the p-adic completion of J"A. In other words, all our rings

will be “non-completed” whereas our spaces are completed

In the first chapter of this thesis, we prove the adjunction theorem which is the

following

Theorem 1.0.2. Hom (J"A, B) ~ Homs(A, W, (B))
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This result is also independently shown by Borger [2]. However, we give an explicit
proof of the above fact. Note that the above result resembles the adjunction property

in the case of differential algebra if we replaced W,, by D,, where D,,(B) = Ble]/(e"™1).

The adjunction property is proved by constructing the universal map P : A —

W, (J"A), P(a) ={Py(a),..., P,(a)} that satisfies

Py(a)??" " ) (5P(a)) (1.0.1)

for all £ > 1 and Py(a) = a. The map P is the analogue of the exponential map in
differential algebra, exp : A — D, (J"A)

— J'(a) ;
exp(a) = ZO Tt (1.0.2)
since both of them are the image of 1 € Hom (J"A, J"A) in
Homgs(A, W, (J"A)) under the isomorphism in Theorem 1.0.2. Hence the coordinates

Pi(a) could be viewed as i-th order jets over the ‘mythical F;’.

Such a P opens up the possiblility to develop a theory analogous to deformation
theory where F[[t]] would be replaced by W(R). Such a theory should be viewed
as deformation theory over IF;. This is indeed an on going research interest for the

author.

Also note that the above adjunction property leads to the fact that the n-th jet
space of Al is W,,. This is a reinterpretation of Witt vectors through arithmetic jet
spaces where the complicated formulas defining the Witt vector could be hidden and

W,, can be viewed as a universal object since the jet spaces are.

We show the following fundamental property of Witt vectors:

Theorem 1.0.3. If B is p-adically complete then W,,(B) is also p-adically complete.
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Theorem 1.0.3 enables us to give the adjunction property in the category of p-

adically complete formal schemes instead of affine ones.

J"X(Spf B) ~ X(Spf W,(B)) (1.0.3)

where ~ denotes the p-adic completion. We seek such a formulation because the arith-
metic jet spaces J"X are formal schemes completed at the prime p. This completion

is necessary for a suitable behaviour with respect to localization.

We can summarise the analogy between the geometric and the arithmetic jet

spaces by the following

Geometric jetspace

Arithmetic jetspace

Symbol

JnA

J"A

Adjunction property

Hom (J,A, B) ~
Homy(A,D,(B))

Hom (J"A, B) ~
Homs(A, W, (B))

Exponential

=2 o Alel /()

AL W, (JmA)

exp(a) = Y1, %€’ | Pla) = (Po(a), ..., Pa(a))

Even though the apparent structure of a p-derivation ¢ and a usual derivation 0
are different, they do interact with each other in a canonical way. We will show that

for each n there is a family of ring homomorphisms ¥,

Theorem 1.0.4. ¥, : Dy o W, (B) — W, oDy(B) for any ring B and o € B"*L.

If ©2 denotes the sheaf of differentials of A over R then denote TA = Symm €2,
the symmetric product of €2. This maybe referred to as the tangent ring because it is
the ring of functions on the Tangent space T'X where X = Spec A. Then Theorem
1.0.4 implies that there is a family of ring homomorphisms n : TJ"A — J"T'A. In

fact something more general in the sense of prolongation sequences is true and we
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obtain the following commutation relation between a derivation 0 and a p-derivation

J
60 = ¢(0x) — 2P Ox (1.0.4)

This relation is defined in [10] but we show here that this relation follows due to W
in Theorem 1.0.4

Before proceeding with explaining our next results let us recall a few basic facts
of modular curves and forms. We refer to [17] for detailed discussion. Consider the
modular curve Y3 (V) defined over Z[1/N, (x| which is the representable object for
the functor from rings over Z[1/N, (y] to sets defined as: given a Z[1/N, (y]-ring
B, we consider the isomorphism classes of pairs (E,¢) where E is an elliptic curve

defined over B and ¢ : (Z/NZ)g C E is a level I'y (N)-structure.

Let € — Y1(N) be the universal elliptic curve and e : Y1(INV) — € be the identity
section. Denote by L = e*Q¢ /v, (n) where €¢/y, () is the sheaf of relative 1-forms on
€. Let X;(N) denote the Deligne-Rapoport compactification of Y1 (N) and take the

natural extension of L to X;(/V), and call it L again.

Let X C X;(N) be an open embedding (not necessarily a proper open sub-
scheme). Consider the restriction of L on X and call it L again. Then over any
Z[1/N,(y]-algebra B, the modular forms of weight s, denoted by Mx(B,k,N),
identifies with the space of global sections H(Xp, LS"), where Xp is obtained by
base change and Lp denotes the sheaf obtained by pullback. Denote

My = P Mx(B, s, N).

The cusp P = oo is a Z[1/N, (x| point on X;(N) and there is a natural Fourier ex-
pansion map F : My — R((q)) associated to P. We will call such a tuple (X, L, P, E)

as a Fourier framed curve.

Recall another definition of modular forms. For any Z[1/N,(y]-algebra B, let
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E/B denote an elliptic curve defined over B, w € H(E,Qg/p) a basis of the free
B-module H(E, Q) and ¢ as above. By a modular form of weight x we will under-
stand a rule f that associates to any tuple (E/B,w,t) an element f(E/B,w,t) € B
which depends only on the isomorphism class of the tuple, commutes with base

change and satisfies
f(E/B, w,t) =X""f(E/B,w,t) (1.0.5)

for all A € B*. This definition identifies with the one given previously using the

global sections of higher tensor powers of L [22].

Now for p ¥ N, we choose a homomorphism Z[1/N,(x] — R and denote by
Y1(N)g, Lg, Pr the objects over R obtained by base change. The space of modular
forms M = @, M (R, k, N) is aremarkable space of functions and is one of the central
object of study in number theory. For example, M contains the normalized Eisenstein
forms FEy, Eg, E,—1 belonging to the spaces M(R,4,N), M(R,6,N),M(R,p—1,N)
respectively. Note that £, ; is a characteristic 0 lift of the Hasse invariant, a quantity

that measures super-singularity.

Let us consider the n-th jet of M, completed p-adically and call it M"™. Let
M = lim M".

We call M as the ring of §- modular forms. Clearly, M C M. But then the
question is, are there interesting new examples in M > that shed a new light on M?

Is there a nice theory of Fourier (Serre-Tate) expansion?

We will exhibit a few examples of new ‘objects’ that live in M which have no
apparent counterpart in the world of classical modular forms. But firstly we would

like to define -modular forms of a given weight.

For any polynomial w € Z[¢], w = >_ a;¢" define an element
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Yo(t) € Rt~ ¢, ..., t™] by the formula

Xult) =1 = [ J(&'(£)"

Such a x,, is a multiplicative d-character [9]. Also let B* denote a prolongation se-
quence where B"s are p-adically complete for all n. By a é-modular form of order < n
and weight w we will understand a rule f that associates to any triple (F/B°, w,t, B*)
an element f(E/B° w,t, B*) € B", which depends on the isomorphism class of the

triple only, commutes with base change and satisfies
f(E/B° A, i, B*) = xu(\) ' f(E/B®,w,t, BY) (1.0.6)

The space of such §-modular forms will be denoted by M"(w). A Fourier framed
curve is called ordinary if there exists an element f € M'(¢ — 1) which is invertible

in the ring M*!, such that E'(f) = 1.

We shall say f € M is isogeny covariant if for any triple (E/S% w,i,S*) and

for any étale isogeny 7 : B/ — E (of elliptic curves over S°) we have
f(E'/S°, Wi, 5%) = [deg m] =% “/2f(F/S° w,i,5%) (1.0.7)

/
where w' = 7w and deg w = ) a;.

Let

v oD = Sy (L) e R (103)

p qv =1 qv

Proposition 1.0.5. [9] There exists a unique form f! € M'(—1 — ¢) whose Fourier
expansion is given by

E\(f') =W

Notation. Given a ring B, we will denote its reduction mod p by B.
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Proposition 1.0.6. [1, 9, 10] Assume the reduction mod p of X, X, is contained
in the ordinary locus of the modular curve. Then there exists a unique form f? €

M*'(¢ — 1) which is invertible in the ring M such that
E'(f%) = 1.

Furthermore its reduction mod p, 2 € M (¢ — 1) coincides with the image of the
Hasse invariant H € M%(p — 1).

The 6-modular forms in Proposition 3.2.2 and 3.2.3 are isogeny covariant. The

forms f! and f? will play a central role in the second chapter of this thesis.

Since M comes with a Fourier expansion map E : M — R((q)), by universality

property of jet spaces as in Theorem 1.0.2, extends naturally to
E": M" — R((9)l¢",,q"] =: S,

where ¢(’s are new indeterminates. However, unlike the classical modular forms,
E™ is not injective. For example, f? — 1 and its higher p-derivatives §°(f? — 1) for
all # < n — 1 are in the kernel of E™. Although, if we restrict to d-modular forms of

a fixed weight w, denoted M"(w), then E™ is injective.

Denote by £ : M*> — 57 where S35, = lim_, S, and
or = R((¢)[d, -..,q™] the é-Fourier expansion principle induced from E™’s dis-
cussed above. Then by Proposition 3.2.3, we observe that (f7 —1,5(f% —1),...) C
Ker E*. Set §* = Im(E> : M* — S%.). Then we will show that §* ~

MOO
(F-16(f7=1),..
Artin-Schrier extensions over S.

- But S® has more structure to it. It can be realised by a sequence of

Definition 1.0.7. Let A be a k-algebra where k is a field. Let A C B a ring
extension, and I' a profinite abelian group acting on B by A-automorphisms. We

say that B is a I'-extension of A if one can write A and B as filtered unions of

10
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finitely generated k-subalgebras, A = |JA;, B = |J B;, indexed by some partially
ordered set, with A; C B;, and one can write [ as an inverse limit of finite abelian
groups, [' = th I[';, such that the I'-action on B is induced by a system of compatible
I';-actions on B; and

Bji = A,

(2

for all 4. (Then, of course, we also have B = A.) If in addition one can choose the
above data such that each A; is smooth over k and each B; is étale over A; we say

that B is an ind-étale I'-extension of A.
Theorem 1.0.8. Let X = Spec S be an ordinary Fourier-framed curve. Then the

ring S® is a quotient of an ind-etale Z, -extension of Se°.

Let m: %, — R((q)) be the ring homomorphism obtained by setting m(g™) =0
for all n > 1. Then we will show that the image of 7 is p-adically dense in W where

W is Katz’s ring of generalised p-adic modular forms. Hence we have the following:

M® LSC’O C S%r

"

M —5=W C R((¢q))

It is easy to see that setting ¢™ to 0 is equivalent to setting ¢"(q) = ¢*". Hence
combining with Proposition 3.2.2 we can see that f! is in the kernel of 7. Our main

result gives a complete characterisation of the kernel of .

Theorem 1.0.9. Assume X = Spec S is a modular Fourier-framed curve with E,_,

wwertible on X. The follouing hold:
1) The inclusion S™ C S has torsion free cokernel.

2) The kernel of M> — Stor 18 the p-adic closure of the ideal generated by the

elements

FO—1, 8(f2 = 1), (7 —1),...

11
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3) The kernel of S® — R((q))" is the p-adic closure of the ideal generated by the

images of the elements

froaft ot ft

4) The kernel of M — R((q))" is the p-adic closure of the ideal generated by

the elements

o1, fL a0 =), 6, S22 —1), 82f, ...

Conclusion 1 in Theorem 1.0.9 should be viewed as a “strong” d-expansion prin-
ciple. Conclusions 2 and 4 should be viewed as d-analogues of the Theorem of
Swinnerton-Dyer and Serre according to which the kernel of the Fourier expansion

map

@ M(Fy, £, N) — Fp[q]]

k>0

is generated by E,_; — 1;cf. [20],p. 459.

At the end of the second chapter, we show that there can not be a modular form
€ such that e#~!' = F, ; i.e. the (p — 1)-th root of E,_; is not a modular form. We

show this by using the irreducibility of the Igusa curve.

The third chapter is the joint work with A. Buium and the author in [14]. It
takes the step to understand the J-Fourier expansion principle’ and the action of the
Hecke operators on the Fourier expansion of differential modular forms. We work
on k[[q]][¢'] which is the reduction mod p of R[[g]][¢'], which is the “holomorphic

” 1
subspace” of Sy, .

For n coprime to p and f € R[[q]][¢,...,q"](or K[[q]][¢,...,q""]) we define the

Hecke operator T,,(n) for each integer x as

To(n)f=n"" " D f((Pq™P, 6(¢Cha™P), ... 6"(Cha™P)). (1.0.9)
A,B,D

12



Chapter 1. Introduction

where A, B, D belong to the set
{(A,B,D);A,B,D € Z>9, AD =n,(A,N)=1,B < D}

The above definition of Ty (n) is a natural extension from the classical definition of
Hecke operators. However to find an analogue of the U operator in our case is a
challenging question. We use the definition of A. Buium introduced in [11] as the
analogue of the U operator. One draw back of this definition is that U is not defined

on the whole of S}Or but rather on a linear subspace called the d-symmetric subspace.

Set

A = R[50, Spl][8hs s Sy ooy 8y s30T
B = R / / (r) (1)1~
: g, - apllldts s @y s ap ]
where 51, ..., 8p, 87, s 8y oo and 1,5 Gpy G5 -, Gy, - are indeterminates. If Sy, .., S,

are the fundamental symmetric polynomials in ¢y, ..., g, then the natural algebra map
A— B, ¥4,

J 77

is injective with torsion free cokernel [11].

An element G € B will be called Taylor §—symmetric if it is the image of some
element G,y € A (which is then unique) under the above map. An element f €

R[[q)]ld; ..., q"]" will be called Taylor § — p-symmetric if
P
Spf =) [, q) € B
j=1
is Taylor d—symmetric.

We define U f where f Taylor § — p-symmetric

Uf = p_l(zpf)(ov ---,O,C], iaS) O’ "'7O7q(T))

which is an element in p~' R[[¢]][¢, ..., ¢™]. The restriction of U to R[[g]] takes values
in R[[¢]] and is equal to the classical Atkin’s operator

U(Z amq™) = Z Ampq™.

13
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We also define the extension of the Frobenius operator V' as

V= f(d...0"(d") € Rlld)ld, ... q"].

Hence for any s € Z and Taylor 6 — p-symmetric f we may define

pTe(p)f =pUf +p"Vf.

Note that the restriction of pT,(p) to R|[q]] is the classical Hecke operator Tj(p)
defined by

Tn(p)(z amqm) = Z apmqm + pﬂil Z amppm'

A series ¢ € k((q)) will be called primitive if Up = 0. A §-series in
k((q)[d, .., q"] will be called primitive if its image in k((g)) under the specialization
¢ = .. =q" =0 is primitive. One can define Hecke operators T,(n), pTx(p) on
R((g)[d, -..,q"]" (where pT,(p) is only “partially defined” i.e. defined on an appro-
priate subspace); cf. Chapter 3 for all the relevant details. These operators induce
operators Ty.(n), “pTx(p)” on k((q))[d, ...,q""] (where “pT(p)” is only “partially de-

W

fined” i.e. defined on an appropriate subspace; the signs are meant to remind us

that the operator T (p) itself is not defined mod p).

The following is our main result; it is a consequence of Theorems 4.5.6 and 4.5.7

in Chapter 3. Assume K € Z>.

Theorem 1.0.10. There is a one-to-one correspondence between the following sets

of objects:

i) Series in qk|[q]] which are eigenvectors of all Hecke operators Ty 1o(n), Tei2(p),
(n,p) = 1, and which are Fourier expansions of classical modular forms over k of

weight = kK + 2 mod p — 1;

ii) Primitive 0-series in k[[q]|[¢'] which are eigenvectors of all Hecke operators
nT.(n), “PT.(p)”, (n,p) = 1, and which are 0-Fourier expansions of §-modular forms

of some order r > 0 and weight w with deg(w) = k.

14



Chapter 1. Introduction

This correspondence preserves the respective eigenvalues.

Remark 1.0.11. 1) As Theorems 4.5.6 and 4.5.7 will show the correspondence in
Theorem 1.0.10 is given, on a computational level, by an entirely explicit formula
(but note that the proof that this formula establishes the desired correspondence is
not merely computational.) The formula is as follows. If o =37 -, a,g™ € k[[q]] is
a series as in i) of the Theorem then a; # 0 and the corresponding d-series in ii) is
given by
8,2 an n  Op — mp? 7\
s D S (Zam‘-’ ) AR (Zamq ) 15
(n,p)=1 m>1 m>1

where e is 1 or 0 according as  is 0 or > 0. (The upper index 2 in ¢*? is meant to
reflect the p? exponent in the right hand side of the above equality; later in the body
of the thesis we will encounter a ¢*! series as well. The # sign is meant to reflect the

link between these objects and the objects f* introduced in [11].)

2) Theorem 1.0.10 provides a complete description of primitive d-series mod p of
order 1 which are eigenvectors of all the Hecke operators and which are §-Fourier
expansions of -modular forms of arbitrary order. It would be desirable to have such a
description in characteristic zero and/or for higher order d-series. However note that
all known examples (so far) of J-modular forms of order > 2 which are eigenvectors
of all Hecke operators have the property that their 6-Fourier expansion reduced mod
p has order 1; by the way some of these forms play a key role in [11, 12, 13]. So
it is reasonable to ask if it is true that any d-modular form of order > 1 which is
an eigenvector of all the Hecke operators must have a 0-Fourier expansion whose

reduction mod p has order 1.

3) Note that in ii) of the above Theorem one can take the order to be r = 1 and
the weight to be w = k. Also note that the J-modular forms in ii) above have, a
priori, “singularities” at the cusps and at the supersingular points. Nevertheless, in

the special case when the classical modular forms in i) above come from newforms

15
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on ['o(V) over Z of weight 2 one can choose the §-modular forms in ii) of weight 0,
order 2, and without singularities at the cusps or at at the supersingular points; this
was done in [11] where the corresponding §-modular forms were denoted (at least in
the “non-CL” case) by f* These fs played, by the way, a key role in the proof of
the main results in [13] about linear dependence relations among Heegner points. It

would be interesting to find analogues of the forms f* in higher weights.

4) One of the subtleties of the above theory is related to the fact that the operator
“pT(p)” is not everywhere defined as mentioned before. The failure of this operator
to be everywhere defined is related to the failure of “the fundamental theorem of
symmetric polynomials” in the context of d-functions; cf. [11, 12]. The domain of
definition of “pT, (p)” will be the space of all d-series for which the analogue of “the
fundamental theorem of symmetric polynomials” holds; these d-series will be called
Taylor 6 — p-symmetric. One of our main results will be a complete determination

of the space of Taylor § — p-symmetric d-series; cf. Theorems 4.3.1 and 4.3.2.

5) This chapter should be viewed as a first attempt to understand the structure
of eigenforms on the Fourier side. It is an on going research project to push this
further to characteristic 0 and for higher orders and to consequently develop a p-adic

analysis a la Katz [19, 22].

16



Chapter 2

Interaction between Arithmetic

and (GGeometric Jet Spaces

We will first show that if B is p-adically closed then so is the Witt ring W, (B).
Then in section 2.4 we show that W,, is the right adjoint of the jet space functor
J™. In section 2.6, we construct a family of canonical ring homomorphism ¥ from
Dy oW, (B) — W, 0D, (B). We apply this fact to prolong derivatives from the base to
the entire of prolongation sequences. As a result we obtain the commutation relation
between a derivation and a p-derivation. In section 2.8, we record an important
property of “non-completed” jet ring as to how they behave with respect to taking
fractions. In section 2.9, we have also recorded another geometric insight as to how
the canonical lifts of points on the arithmetic jet space can be viewed as intersection

of pull-back of subschemes.

17



Chapter 2. Interaction between Arithmetic and Geometric Jet Spaces
2.1 Witt Vectors

Here we review the basic theory of Witt vectors. We refer to [21] for a detailed
exposition. Let N be the set of positive integers. We call a set S C N a truncation
set if n € S and d is a divisor in n then d € S. Then the big Witt ring Wg(A) is the

ring structure endowed on A such that the ghost map
w: Wg(A) — A°
which takes (a,)nes to (wy)nes Where

w, =Y daj (2.1.1)

dn

is a natural transformation of functors from the category of rings to itself. As it

turns out [21], this ring structure is unique.

If T'C S are truncation sets, then the forgetful map

is a natural ring homomorphism and is called the restriction map. For any n € N,

we can define a new truncation set
S/n={deN|ndeS}

Then there exists a natural ring homomorphism £, : Wg(A) — Wg/,(A), called the

Frobenius such that the following diagram is commutative

WS(A) v AS

e

where (E¥((2m)))d = Tna-

18
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Consider the truncation set S = {1, p, p?, ...} C N containing all the powers of p.
Then W(A) = Wg(A) is called the ring of p — typical Witt vectors and W,,(A) =
Wi p, 1 (A) are called the p-typical Witt vectors of length n 41 in A.

Notation. For the rest of the section, we will denote the p-typical Witt vectors by

W. The restriction map RE and the frobenius map £}, would now be short-

77777 pnfl}
handed as R and F' respectively. Also note that F}" is nothing but the left-shift

operator of sequences.

2.2 p-adic completeness of the Witt rings

We would show that if B is a p-adically complete ring then W,,(B) is also p-adically
complete. Consider the kernel of the reduction map W, (B) — Wn(%) and call it
Ix. An element in p*W,,(B) is of the form p”x for some = = {xy, ..., x,,} € W, (B).

P’z = {Lo(@), ., Ln(x)}

where L;’s satisfy
k

k . .
Sz = (Y g )
=0

i=0
for all £ > 0.

Lemma 2.2.1. Ip' —i > 1 foralli>1 and 1 > 1
Proof. We have

Pl pi T4 41 14+ ... +1=4
Sol(p—1)(p~ .. +1)

Hence I(p" — 1)

Vv

vV

1 because both [,p—1>1

v

l

v

Hence Ip* —i [

19



Chapter 2. Interaction between Arithmetic and Geometric Jet Spaces

and this completes the proof. [

Lemma 2.2.2. For0<i<n-—1, p"‘(v—1)>v

Proof. The result follows from the following inequality

pht > 1 > 1—i/v
Py > v—1
Pl v—1) > v

and this completes the proof. [

Lemma 2.2.3. If0 <m < v —n then p"W,(B) C I,.

Proof. Any element y € p*W, (B) can be written as y = {Lo(x), ..., L,(z)} for
some z € W,(B). We will prove this by induction on n. In the case when n = 0
the result is true. Let us assume that it is true for n — 1. We know that L, =

p’" Zf:o plal - Z;:ol pi*"Lfnfi. By the induction hypothesis, v,(L;) > v — 1.

n—1

n—1

v L)z i nt T (v =)
> v —n-+1i, by lemma 2.2.2
> v—n

We have shown that v,(L,) > v — n. Since all the components L; have valuation
greater than v — n implies that the element {L, ..., L,} € I, and this completes the
proof. [

Lemma 2.2.4. If m > v and m > n then p"W,(B) D I,

20
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Proof. 1t is sufficient to show that for any vy, ..., y,, € B there exists xq, ...,x, € B

satisfying

Lo(zo) = p"yo

Li(xo,x1) = p"un

Ln(xﬂw“axn) = P Yn

MY gatisfies

We will prove this by induction. Lo(zg) = p”zo = p™yo and hence z¢ = p
the equation. Also we have v,(z9) > m — v. Let us assume that there are solutions

X, ..., Tx—1 satisfying L, = p™y; and also v,(x;) > m — v for all i < k — 1. Define

_ Ly | Ll
Tk = Z phtv=i Z %
=0 i=1
k—i
U 1% > m(p*~") — (k + v — i) because each of the L; have valuations greater

than equal to m.

We claim that mp*~¢ — (k — i) > m. If i = 0 then the both sides of the inequality
are 0 and hence the inequality is true. When 7 > 0, since we have m > n > k and
k—i
pF~ > 1, the above inequality is true again This shows that v, (%) >m —v.

pi
For the other terms in the sum v, (z’;ﬂ > p'(m — v) assume the inductive
v

hypothesis of the valuation of x;’s. Since m — v > 1, by Lemma 2.2.1, we have

pt
Up <% > m — v. We have shown that all the terms in the definition of x; have
valuation greater than equal to m — v, in particular, greater than equal to 0 and
hence x;, € B and it easily follows that zy, is a solution for Ly(zo, ..., xx) = p™yx and

this completes the inductive step and hence the proof. [

Theorem 2.2.5. If B is p-adically complete then W,,(B) is p-adically complete.
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Proof. Combining lemma 2.2.4 and lemma 2.2.3 we obtain
L/Jrl - pyWn<B> C [1/71

for all v > n. Hence we obtain the following diagram

v Wn B v—
wnw/{ H1p) s B w/f ')
W.,.(B/p"2B) — s W, (B/p"B)

where all the maps are surjections. Since the left and the right hand side have W, (B)
as limit, we get that W, (B) is p-adically complete. [

2.3 The Right Adjointness of the arithmetic jet

functor

Let W, (B) be a p-typical Witt vector of length n + 1. Recall that there are two
homomorphisms, R, F : W, (B) — W, _; where, R is called the restriction and F is
the Frobenius. Also recall the ring R = Z,".

Remark 2.3.1. Notation wise, it might be a little confusing since R represents the
restriction map R : W,(B) — W, _;(B) and also R = Z,". But the usage would be
very clear from the context and we do no wish to change one of them as they both

are very standard.

Since R has a unique lift of Frobenius, this induces a unique ring homomorphism
R — W, (R). Let A and B be R-algebras. Let Homgs(A, W, (B)) be the set of all ring

homomorphisms v : A — W, (B) such that the following diagram is commutative

A——~>W,(B)
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where g : R — B is the given algebra map of R.

We will review the basic definitions and constructions of arithmetic jet spaces.
Let A be a finitely generated ring over R, where recall R is the completed, maximal,
unramified extension of Z,. Then A = R[x|/(f) where x is a collection of variables
and f represent a collection of multivariate polynomial in x. Then define the functor

J'A from rings to sets as
JYA(B) = Homs(A, W,(B)).

It is to easy to see that the above functor is representable by the ring R[x,x'|/(f, of)
where x’ are new set of indeterminates. We call this ring J' A again by a slight abuse

of notation. By construction, there are two ring homomorphisms-

i) u: A — J'A induced by u(x) = x where the right hand side is the image of x
in JLA.

it) ¢ : A — J'A defined by ¢(a) = u(a)? + pda where § is induced from dx = x’.

Now we will define J" inductively for n, provided J"! is already defined. We
also have the two canonical maps (u,d) : J" 24 — J""' A where ¢ is the set theoretic

map satisfying

S(x+y) = dx+0y+ Cylz,y)
d(zy) = 2Péy+ yPox + pdxdy

2Py —(oy)?

where Cp(z,y) = >

A ring homomorphism (f,A) : J" 1A — W;(B) will be said to satisfy (x) if in
the following diagram
o S
JTA A B
o

J2A
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we have Aowu = fod. Then J"A is the functor from rings to sets defined as
J"A(B) = {(f,A) € Homs(J" *A, B) | (f, A) satisfies ()}

It is easy to see that the above functor is represented by J"A = R[x]/(f,...0"f) with
the two canonical maps (u,d) : J**A — J"A and where ¢(a) = u(a)? + pda is the

lift of the Frobenius like before. Hence we obtain a sequence of rings as follows

u

0

A Z JlA Jn—lA J"A

Definition 2.3.2. Let X = Spec A be the affine scheme. Then we define J"X =
Spf ﬁ, where J7A is the p-adic completion of J"A. We will also denote J"X =
Spec J"A.

We will show that J"(_) is the left adjoint of the W,,(_) functor, that is,
Hom (J"A,_) ~ Homs(A, W, (.)).
where A is finitely generated over R. The case when n = 1 is true by definition.

We will prove the adjointness of the two functors by induction. Consider the

following statements whose conjunction we call P(n — 1):

1) For all k < n — 1, Hom (J*A, B) = Homs(A, W, (B)). Also define Pj =
Wi (1 k4) where 15, € Hom (J¥A, J*A) is the identity element. Also, let W'
Homgs(A,Wy(B)) — Hom (J*A, B) be the inverse of Wy, for all k < n — 1.

2) If Hom (J*A, JEA) ~ Homgs(A, Wy (J*A)) then W' (Ro Wy (1,,)) = u and
UL (F 0 (Lea)) = ¢

Under the induction hypothesis, let P, 1 = ¥, _1(1ju-14). Then P, ; : A —

W,,—1(J™A) is the universal family for the isomorphism in 1) above.

We will prove P(n) in Theorem 2.3.24.

24



Chapter 2. Interaction between Arithmetic and Geometric Jet Spaces

Let R : Wy(-) — Wy_4(_) denote the restriction map and F' : Wy(_) — Wy_1(.)

the Frobenius.

Given any ring C, let w : W, (C) — C**1 denote the ghost map for all k. Then

we can consider the following diagram

A—0 W, (I A)

lwnl(u) Xwnfl(d))

RxF

W, (J7A) LW, (JmA) x W,_q (J"A)

wi lwxw

(J”A)n RxF (JnA)n—l x (JnA)n—l

We will show that there exists a ring homomorphism P, : A — W, (J"A) which

makes the above diagram commutative in the following Proposition 2.3.6.

But before we show that for any finitely generated ring A in general, we will
prove existence in the case when A = R[x] where x is a collection of indeterminate
variables. Hence in this particular case, J"A = R[x, ..., x(“)]. Since R is torsion free,

implies that J"A is torsion free too.

Lemma 2.3.3. (R x F') ow is a monomorphism.

Proof. If (zg,...,x,) € W,(J"A) then (R x F)(xg,...,xn) = (ZTo,..., Tp_1) X
(21, ...,x,) which is injective. And w : W, (J"A) — (J"A)" is injective too be-
cause J"A is torsion free. Hence their composition is injective and we are done.

]

Let P,y : A — W,_1(J"1A) be given by P,_1(a) = (Py(a), ..., P,_1(a)), for
all a € A where By, ...P, 1 : A — J"}(A) are set-theoretic maps. Define P,(a) €
J"A®Q,

Pay D (G (@) (23.1)
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The following Lemma proves that the coefficients in the above definition are integral.

Lemma 2.3.4. P,(a) € J"A.

Proof. We need to check that P,(a) is p-integral. Hence it suffices to show

o n—i—1
that the valuation, v, p,’fi—iil p > 0 for all 7 and 7. We know that
J
n—i—1
v | =n—1i—1—1v,(j) and hence
J
i pn—i—l
v | == | = n—i—-1l-y(+j-1-n—i-1)
J
= j—1(j) -1
> 0

and we are done. [

Proposition 2.3.5. (R x F') o w surjects onto the image of (w x w) o (W,,_1(u) x
W,—1(¢)) o P,,_1. In particular we have,

(R x F)ow)(Py(a),..., Pr(a)) = (w x w) o (W,_1(u) x W,_1(¢)) o Pr_1(a)

for all a € A.

Proof. Note that

(w xw) o (Wyy(u) x Wy1(9)) 0 Prafa) = (Z piP@'(a)pk_i> x

On the other hand, we have

(R x F)ow)(Py(a), .., P(a)) = (Zpig(@pk—i) X<Zpipi(a)pk_i>
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Hence by comparing the ghost components, it is sufficient to show that,

n—1

> PR =
1=0

1=0

> P (Bia)y + poPi(a)

The following computation proves the above claim.

> PP
=0

pi(a)p(p

> P (Pi(a) + poPi(a)”

=0

n—i—1

A (piP(a))

By Lemma 2.3.3, (R x F) o w is a monomorphism. And by Proposition 2.3.5, it

makes sense to compose (w x w) o (W,,_

1(u) x W,,_1(¢)) o P,—1(a) with the inverse
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of (R x F) ow. Now define,
Prla) = ((Rx F)ow) o (wxw)o(W,_1(Rr) x W,_1(¢1)) 0 Pr_i1(a)

Since P,, is a composition of ring homomorphisms, we get that P, is a ring homo-
morphism. Also in proposition 2.3.5 we have shown that, P, (a) = (Py(a), ..., P.(a)).

Hence we have proved the following,

Proposition 2.3.6. If A = R[x| then there exists a ring homomorphism P, : A —
W, (J"A) making the following diagrams commutative.

an71

A Wn_l(JnilA)
:Pni Wn—l(u)l lwn—l(qﬁ)
R
W, (J"A) = =W, (J"A)
F

]

Let ¢ : R — R be the unique lift of the Frobenius. Suppose E = Y, crz’ be
a multivariate polynomial with coefficients in R and I running through an indexing
set. Define E? = >, ¢(cr)x!. In other words, E¢ is obtained from E by twisting its

coefficients by ¢. Let us rewrite P,(a) as follows

Pk,(a) = 5Pk1 —|—

1 )
2 ) mwpe

1=0 J=

Lemma 2.3.7. ¢r(E(ag, ...,a;)) = E?(E(ah + pda, ..., a} + pday,))
Proof. For any y € J"A, we know ¢ (y) = y? 4+ pdy. Hence

¢L(E(ag, .;ar)) = > orler)drlag, ..., ax)"
= Z¢(CI)¢L(aOa---7ak)I

= E°(E(ah + pdag, ...,d} + péay,)) O
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Lemma 2.3.8. There exists a polynomial Ejy with coefficients in R such that,

dP(a) = Ex(Py(a), ..., Pryi(a)) for all k.

Proof. We will prove this by induction. For k = 0, dFPy(a) = P;(a) and hence
the result holds true. Suppose the lemma is true for k£ — 1, that is, 0P(a) =
E;_1(Po(a), ..., Pi(a)) for all i < k — 1. Then we know that, Pyi1(a) = dFPy(a) +
H'(Py(a), ..., Py(a)) for some polynomial H’, which implies, 6Py(a) = Pyy1(a) —
H'(Py(a), ..., Pr(a)) and this completes the proof. [

Lemma 2.3.9. Let G be a polynomial with coefficients in R. Then there exists an

H such that, 6G(Py(a), ..., P.(a)) = H(Py(a), ..., Prii(a))

Proof. We know that

5G(P0(a), - Pk(a)) _ oL (G(Py(a),..., Pk(a);—G(Po(a) ..... Py (a))P
—  GYU(B(a)P+pdPo(a),....Pr(a)P+pdPy(a)) =G (Po(a),.... Py (a))?
p

, by lemma 2.3.7.

By lemma 2.3.8, for all i, there exists F; with coefficients in R such that 6 P;(a) =
E;(Py(a),..., P+1(a)). And hence substituting this in the above equation, we have
proved the result. [

Lemma 2.3.10. For each k, there exists a polynomial Gy, with coefficients in R such

that P(a) = 6*a + Gp(Py(a), ..., Pr_1(a))

Proof. We will proceed by induction on k. For k = 1, we know that P;(a) = da
and hence the result is true. Suppose it is true for £k — 1. Then there exists a polyno-

mial G, with coefficients in R such that P,_;(a) = 6* ta+Gy_1(Ps(a), ..., Py_2(a)).
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Then,

6Pi_1(a) = 0%a+ 0Gr_1(Py(a), ..., Pe_s(a)) +
Cp(0*a, Gpa(Po(a), ..., Prs(a)))
= 0"a+6Gi_1(Po(a), ..., Pr_a(a)) +

Co(Poi(a) — Gr_r(Po(a), oo, Pos(a), Grr(Po(a), ..., Py_s(a))).

By lemma 2.3.9,

0Gr-1(Po(a), ..., Pr_o(a)) = H(Py(a), ..., Pr—1(a)) for some polynomial H. Hence
we get

(SPk_l(CL) = 5ka + G/(PQ(CL), ey Pk_l(a))

Hence using the formula of Py(a) we get,

Pi(a) = 0P_1(a)+ H'(Py(a),..., Py_1(a)), for some polynomial H'.
= 0"a+G'(Pyla), ..., Pr_1(a)) + H'(Py(a), ..., Pr_1(a)).

and this completes the proof. [J

Proposition 2.3.11. R[x,...,2™] ~ R[Py(z), ..., P.(7)]

Proof. We will prove this by induction on n. When n = 1, we know that z = Py(x)
and hence the result holds true. Suppose true for n — 1, that is Rz, ..., 2" V] ~
R[Py(z), ..., P,_1(x)]. Then by the formula of P,(x), we have P,(z) = Q(x, ..., 2™)

where () is a polynomial with coefficients in R.

By lemma 2.3.10, we know that ™ = P,(z) — G,(Py(z), ..., P,_1(z), for some
polynomial GG,, with coefficients in R. Hence combining the above two, we conclude

that R[z,...,2™] ~ R[Py(z), ..., P,(x)] and we are done. [
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Lemma 2.3.12. If g € (Po(f), ..., Pe—1([f)) then dg € (Po(f), ..., P:(f))-

Proof. 1t is sufficient to show that dP,_1(f) € (FPo(f),...., Pe(f)). We will prove
this by induction. For k = 0, we know that Py(f) = f and 0f = Py(f) and hence

the lemma is true. Now suppose the result is true for &k — 1, that is 6Py _o(f) €

(Po(f)y-.ry Pee1(f)). Then Py(f) = 0Py_1(f) + h where h € (Py(f),..., Pe—1(f)),
which implies that 6 P,_1(f) € (Py(f), ..., Px(f)) and this completes the proof. [

Lemma 2.3.13. Py(f) = 6%f + g where g € (Py(f), ..., Pe_1(f)).

Proof. We will prove this by induction. For £ = 1, we know that P;(f) =¢f and
hence the result is true. Suppose true for k — 1, that is, P,_1(f) = 6* "1 f + g where
g € (Po(f),...; Pe_2(f)). Then, Py(f) = 0Px_1(f)+h where h € (Po(f), ..., Pe_1(f))-
Therefore, P.(f) = 6(6* 1 f + g) + h where g € (Py(f), ..., Pr_2(f)). But by lemma
2.3.12, we conclude that §(6*71f + g) = 6*f + ¢’ where ¢’ € (Py(f), ..., P.(f)) and
hence Py(f) =0*f + ¢ +hand ¢ +h € (Py(f), ..., Pe_1(f)) and this completes the
proof. [

Lemma 2.3.14. The following is an equality of ideals

Proof. We make the following :

Claim. (Py(f), ..., Pu(f)) C (f, ..., 0% f).

We will prove this by induction. For k = 0, we know that Py(f) = f. Let us
assume the claim is true for k — 1, that is, P,_1(f) € (f,...,6F"1f). Then P.(f) =
6P _1(f) + G where G € (f,...,6F71f). Since P._1(f) € (f,...,0""1f) implies that
6P 1(f) € (f,...0" 1 f, 6% f) and hence Py.(f) € (f,...0% f).

Claim. (f,...;0%f) C (Py(f), ..., Pe(f))
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By lemma 2.3.13 we have 6*f = B(f) — g € (Py(f), ..., B.(f)) and this proves

the claim and also completes the proof. [

Let f denote a collection of multivariate polynomials in x.

R[x,x/,...,.x(1")] ~ R[Py(x),....Pn(x)]
(f,0f,...,0nf) — (Po(f),....Pa(f))

Proposition 2.3.15.

Proof. This follows immediately from the above lemma. [

Proposition 2.3.16. Let A = (f’)‘]. There exists a homomorphism P, : A —

W, (J"A) making the following diagrams commutative.

fpn—l

A W,_1(J"1A)

:Pnl Wnl(u)l \Lwnl(‘ﬁ)
R

W, (JrA) =2 W,_1(J"A)
F

Proof. We define P, (g(z)) := Pn(g(z)), where g(z) is a pre-image in R[x] of
@ € A. We need to show that this is well defined. It is enough to show that if f is
a generator of the ideal (f), then P, (f(x)) = 0, in other words, P (f(z)) € (£, ..., f™)
for all k. But this follows from Lemma 2.3.14. The commutativity of the above
diagram follows from the commutation of the outer diagram which is true by Lemma

2.3.6

R[x] W, _1(R[x, ...,x™ D))
/
\ W1 (J71A)
Pn Tn% Wr—1(u )J/ iWnﬂ(d)) Wrn—1(u) | | Wn-1(¢)
LA = ma
F
/ R \

W, (R[X, ..., x)]) W, _1(R[x, ..., x™)])
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Let C' be any R-algebra and w = (wy,...,w,) and w' = (wy,...,w,) be two
elements in W, (C). Let the addition and the multiplication laws in the Witt ring

be given as

(w+w)y = Qr (wo,...wr), (Wh, ..., w)))

(w-w/)k - Lk ((wOv”'7wk)7(w67""w;c)>

Given a ring homomorphism 7 : R[x] — W, (B) such that v(a) = (y(a), ..., (a)),

define the ring homomorphism,

py : R[Py(x), ..., P,(x)] — B, by
py(Fi(x)) = 7i(x)

We will show that p,(P;(g(x))) = 7:(g(x)) for all 4.

Lemma 2.3.17. p,(Pi(2™))) = vi(z™) for all i and m.

Proof. We will prove this by induction on m. For m = 1, the result is true by

definition. Suppose true for m — 1. Then

2(Li((Po(2™ 1),y Pi(a™ 1), (Po(2), ..., Pi(x))))
pr(Po(a™ 1)), s oy (Pi(a™ 1), (pr (Po()), ooy py(Fi(2))))
(@™ 1), 7i(=™ 1), (o (), - 7i(@)))

py(Ei(™)) =

hS)

and this completes the proof. [J

Lemma 2.3.18. If g(x) = cz''...2}, where ¢ € R, then p,(Pi(g9(x))) = %(g(x))

33



Chapter 2. Interaction between Arithmetic and Geometric Jet Spaces

Proof. We will prove this by induction on the number of indeterminates k.

pr(Pi(e]]2))

and this completes the proof. [

Proposition 2.3.19. Let g(x) =

L((Poe [T ) P TL 00 (Pola), o Piai))
L <<p<Po<cHx;ij>> Pie [T (o Pla )%---w(H(af?;’“))))
Li(ro(e T ot [T ) (e (e )
”yl(cHx;’“)
> c;xhl.. Zk’“ where [ is a multi-indexing set.

Then, p(P;(9(x))) = 7i(g9(x)).

Proof. Suppose g(x) has [ summands.

We will proceed by induction on the

number of summands of g. When the number of summands is 1, we have already

showed the claim in the above lemma. Assume the proposition is true for [ — 1

summands then

p+(Fi(9(x)))

I\{’Ll ..... ’Lm} I\{’il ----- lm}
(Po(ciy... Z-mxﬁl...:z:ginm),...,ﬂ(cl-l ,,,,, lmxfile;m)))

QP et ) P
(py(Poleiy., z'7n$ﬁl~-17jzm)) pW(PO(Cu ..... immfil...xgjnm)))

Qi((o( Z czxfllxzk"),,%( Z cszllek’“))

(Vo (Cir,im i) ooy Yi(Ciy i ™))

Jiy iy, Jiy Jim
¥i( E Cryt Ty Ciy i Ty T )
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and this completes the proof. [

Corollary 2.3.20. If f(z) € R[z] such that v(f(x)) =0, then p,(P;(z)) = 0.

Proof. ~(f(z)) = (v(f(x)),....;v(f(x))) = 0. Hence by Proposition 2.3.19,
py(Pi(z)) = vi(f(x)) =0. for all i. [

Corollary 2.3.21. If v : R[z] — W, (B) such that v(f(z)) = 0, then

py i R[z,...,2™] — B descends to a ring homomorphism, p., : Blzwx®™] g

. z,...,z(™) z),....Pn(x
Proof. This follows from I?Bc ffff ;5nf)] ~ 1?][3];(2;)? ..... }DIZ(%] and, 7(f(z)) = 0 =
py(Pi(f))=0. O

R[x] n Rx,..x™] _ R[Py(x),....Pn(x)] . .
Let A = R then J"A = e (Poo(f) ..... ) It follows immediately

from the above corollary that p., descends to a ring homomorphism from J"A to B.
Definition 2.3.22. Define ©,, : Hom (A, W,,(B)) — Hom (J"A, B) as ©,(y) := p.

Definition 2.3.23. Define, ¥,, : Hom (J"A, B) — Hom (A, W,(B)) as

Wn(p)(a) == (p(Fo(a)), ..., p(Pr(a)))

Theorem 2.3.24. ©,, 0V, = 1 and ¥,, 00, = 1, in other words 0,, = V1. We
also have 0, 1(Ro W, (1jna)) =u, O, 1(F oW, (ljna)) = 0.

Proof. Let A = I?T Given a p: J"A — B, then
U, (p)(X) = (p(Po(x)), ..., p(Pn(x))) where X is the image of x in A. Hence we get
O,V (p)(Pi(x)) = p(P( )) for all ¢, but this is p itself, which proves, ©,, 0¥, = 1.

On the other hand, given a v : A — W,(A), v(a) = (y(a),...,7(a)) then,
O,(7)(P;(x)) = vi(x) for all i by definition. Now

Un(©n(7))(x) = (Ou(7)(Fo(x)), -, On(7)(Pu(x)))
= ( ()7 "Yn( ))

= 7(x)
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and this proves the latter identity, ¥, 0 ©, = 1.

The last part of the theorem follows from proposition 2.3.16. [

Remark 2.3.25. We would like to remark that the above proof can be shortened if
one assumes that J"A is torsion free. However, this assumption would be a very
strong one as it could be very well that even if A is not torsion free, J"A could have

p-torsion. The following is an example- consider A = % then J'A = (ZI [f]f}}) where

f is a polynomial in z and 2’. Here the image of f in J'A is a torsion element.

Corollary 2.3.26. If X = AF then J"X ~ W*.

Proof. X = Spec R[x] where x represents k indeterminate variables. Then
Hom (J"(R[x]), B) ~ Hom (R[x],W,(B)). But Hom (R[x],W,(B)) ~ W,(B)*

and hence the result follows. [

If B is a p-adically complete p-torsion free ring such that it has a perfect residue
field £ then we know that B/p"™' B ~ W, (k) [26]. We obtain the following, which
shows the bijection between the k points of the jet-space with the Greenberg transform

of X.

Corollary 2.3.27. If X is a scheme over R then J"X (k) ~ X (B/p""'B).

If B is a p-adically complete ring, then we have Hom (J/"Tél, B)~ Hom (J"A, B)
from the universality properties of completions. Also, if we further assume that A is

p-adically complete, then we obtain
Hom (m, B) ~ Homs(A, W, (B))

which is an isomorphism in the category of p-adically complete rings because by

2.2.5, W, (B) is p-adically complete.
Hence, given an affine scheme X, we have shown that

Hom(Spf B, J"X)) ~ Hom(Spf W,(B),X)
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where X denotes the p-adic formal completion of X.

Definition 2.3.28. We will call a ring A a J-ring if there exists a p-derivation
b:A— A

The following Proposition is an application of our map P.

Proposition 2.3.29. Let A be a §-ring which is also p-torsion free, then its nilradical

is a o-closed ideal, i.e, it is preserved under 9.

Proof. The derivation 6 on A induces the ring homomorphism P : A — W, (A).
Hence if a € A is nilpotent then P(a) is nilpotent too. Recall that the image of a by
Teichmuller lift A 2 Wi (A), a (a,0,0,...), is also nilpotent in W;(A). There fore
P(a) — [a] is nilpotent. But P(a) — [a] = (0,da) and we have (0,da)™ = 0 for some

N which implies that pV*1da¥ =0 = da”" = 0 because A is p-torsion free. m

2.4 Prolongations of formal groups

Let X = Spf A be an affine p-adic formal scheme where A is noetherian and finitely
generated and A denotes its p-adic completion. Then A can be represented as A =
R[x]/(f); x represents the collection of finite number of indeterminates and (f) the
ideal generated by a collection of polnomials f. Then we define the p-adic jetspaces of
J"X as J'X = Spf JrA where J"A = R[x,...,x™]/(f,...,f®™) as before. Consider
the p-adic formal group G, = Spf ﬁ[;} Then for any p-adically complete R-algebra

B, we have

— —

Hom (J™"(R[z]), B) ~ Hom (R[z], W, (B))

But then Hom (R[z], W, (B)) ~ W, (B) since it is sufficient to specify the image of
the generator x which implies that Hom (J 7@!@]), _) ~ W, (). Hence we obtain

J"G, ~W,
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as formal schemes. Note that the structure of J"G, as a ring object is precisely that

of the structure of Witt vectors.

2.5 Morphisms between two compositions

Suppose we are in the category of R-algebras. Consider the functor D, : Rings —
Rings where D;(B) = Ble]/(¢?). D; attaches the ring of dual numbers to a given
ring B. Then given a = (ag, ..., a,) € B"", we will construct a functorial homo-

morphism V¥, : D; o W, (B) — W,, o Dy(B).

Proposition 2.5.1. Let B be torsion free. If & € W,,(D;(B)) such that o* = 0 then

« is of the form (ae, ..., a,€) where «; € B for all 4.

Proof. We will prove this by induction. Since B is torsion free implies that D;(B)
is torsion free too. Hence the ghost map w : W, 0Dy (B) — Dy (B)""! is injective. In
the case of n = 1 the result follows from an easy computation. Suppose the result is
true for n — 1. Let o = (ae, ..., 1€, B+ iu€) be a square zero term in W,, oDy (B).
Then we have w,(a)? = (p"3 + p"a,)*e = 0. This equation gives us the solution of

£ =0 and we are done. [

Proposition 2.5.2. (ayge, ..., aye€) is an element in W, oDy (B) whose square is zero.

Proof. 1t is sufficient to consider the case when B is torsion free. Then the result

follows from proposition 2.5.1.  [J

Both Dy, oW, (B) and W,, 0D, (B) are W, (B) algebras. Hence giving a homomor-
phism from D; o W,,(B)(= W, (B)[e]/(¢?)) to W,, o D(B) is equivalent to sending € to
a square-zero element in W,, o D(B). By proposition 2.5.2, the ring homomorphism

U, defined as U, (€) := (ape, ..., ape) for a € R gives us the following
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Proposition 2.5.3. There exists a family of canonical ring homomorphisms ¥, : D;o

W,.(B) — W,, 0Dy (B), for @ = (o, ..., a,) € B*"*! such that ¥, (€) = (age, ..., @n€)
Example. In the case when n = 1 and o = (ag,a1) € B? one can easily check
that

\I/a((ao, al) + (bo, 61)6) = (CLO + Oé()boE, a + (Oélb‘g —i—pbloq + Oéag_lb(])E). (251)

The following is a list of the first few terms where «;’s are chosen to be equal to
by = bo

by = 21‘1:0 pibfrii - afb;
= bf+ pbi — agbo
= wi({bi}) — agbo

by = Z?:o pibgr_i - Z;:O a; _Zbg
= 582 + pbh + p*by — (agbo + a1y + payby — agaibo)
= wa({b:}) — (agho + arbf + paiby — agaibo)
Theorem 2.5.4. Let X = Spec A. Then there exists a morphism U : A"l x
J"TX - TJ"X.
Proof. For any ring B, note that
J"T'X (Spec B) ~ Hom (A,D, o W, (B)) (2.5.2)
and
TJ"X (Spec B) ~ Hom (A, W,, o D{(B)). (2.5.3)

Now define ¥ : (A" x J"T'X)(Spec B) — TJ"X (Spec B) as ¥(a, ) := (x o ¥,).
[l
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2.6 Prolongation of derivatives

Let A = O(X) be the co-ordinate ring of the affine scheme X, smooth over R.
Assume X possesses a system 717, ..., Ty of étale coordinates. Then recall from [10]

that

JrA = 0(J"X) = A[TY, ... T}, .. T . T (2.6.1)

For a scheme X = Spec A, let € be its sheaf of diffentials. Let TA = Symm (.
Then TY = Spec T A is the physical tangent scheme of X and T'A is the co-ordinate
ring of functions of TX. Let B* be a prolongation sequence and let 9 : A — B° be

a derivation. Then we can canonically prolong the derivation as follows

Theorem 2.6.1. There exists a compatible system of derivatons 0 making the fol-
lowing diagram commute:

JrA -2 pn
A A

A2

|, ]

A—2>po

Proof. Given a derivation A % B°, we get a ring homomorphism TA — B° by
universal property of the tangent ring. And with the universal property of the jet

spaces, we obtain
J'"TA— B" (2.6.2)
But there is a canonical morphism ¢ : TJ"A — J"T A hence by composing we obtain

J'TA— B"

|

TJ"A
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Hence we obtain a morphism T J"A — B"™ which by the universal property of the

tangent ring gives us the required derivation. [J

The above theorem can be diagrammatically represented as

T A : B"
X /

TJ"A

where the vertical arrows T'J" 1A — T.J"A are obtained from the canonical prolon-
gation sequence J" 'A — J"A after applying the Tangent functor 7" to it. Now let

us reinterpret the above prolongation of derivatives for the sake of computation.

)

u,0 .
Let B — ... — B! (s B™... be a prolongation sequence. Then for each

. . . . u,0
n, the pair of maps (u,d) can be interpreted as a ring homomorphism B! (—>)

W1 (B™). This induces the ring homomorphism Dy (B" ') W Dy (W, (B™)), and
hence composing with U we get the following

Dy (B ) 2Ly (W, (B"))

£

Wi (IDy(B"))

41



Chapter 2. Interaction between Arithmetic and Geometric Jet Spaces

Hence, we have created a new prolongation sequence Dy (B*) from B*. And from the

computation above we get

Vo (u,6)(a+ be) = (u(a) + u(b)e, 5a + (¢(b) + ula)’u(b))e) (2.6.3)
In particular,

(Vo (u,d))e=(e¢) (2.6.4)

Hence if we start with a derivation (f,d) : A — B, in other words a ring homomor-

phism (f,9) : A — D;(B) and since D, (B*) is a prolongation sequence, by universal

. . ,0 .
property, we have a morphism of prolongation sequences J*A (#8) D, (B*) satisfying

,0
Joa—Y92 p (B )

g

n—1 A —~ n—1
I A DB

and (£,0)() = f(z) + (9)e.
Proposition 2.6.2.

£(dr) = 0(0x) = ¢(0z) — f(x)P 'ox (2.6.5)

Proof. From the commutation of the above diagram we get

(f,0)(0x) = do(f,0)(x)
f(oz)+0(dx)e = o(f(x)+ (Ox)e
= f(07) + (p(9r) — f(x)"~ " Dx)e

and comparing the € coordinate we get the required result. O]
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In particular, if we chose the prolongation sequence B* = {J*T'A} then we obtain

JVTA

where ¢ satisfies by Proposition 2.6.5
£(dr) = ¢(dx) — 2P tdx (2.6.6)

Recall from [10], 3.21 the following definition

(" TAY =Y S TAdN)Y € JTA (2.6.7)
j=0 fecA

Then (J"T'A)" is a free JmA module with basis
(A1) [1<i<d,0<j<n)

Proposition 2.6.3. The homomorphism ¢ : T(m) — J"TA induces the isomor-

phism

¢ T(JMA) = (J'TA)* (2.6.8)

Proof. We will prove this by iduction on n. For n = 0, it is clear as (JT A)* ~
TA. From 2.6.5, for all ¢ we obtain

(ST V)) = pe(A(T V) — (T D)y te(a(T" ™))
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But by induction £(d(T")) = (dT;)*" " + O(n — 2) which implies that
HE(A(T" ™)) = (dT})*" + O(n — 1) and we are done.  [J

To rephrase what we have shown above

T(JmA) ~ JoA[dTy, ..., AT, o, (T & JrA[T, ..., (A1) ..., (dT)%"]
(2.6.9)

Hence, given a derivation d : A — B in order to prolong it between {J*A} and
B*, it is sufficient to specify where the generators of T'J"A go. For example, the

d-conjugate operators O, in [10] are obtained by sending

NATY) — 0,v0<i<d 1<j<n-—1.
i) d(T™) — ¢roT™.

2

(2.6.10)

Condition i) is equivalent to 9, (¢™T;) = p"¢"IT;.

We could also define a new set of operators 0, in the same spirit as above by

specifying

N ATy — 0,V0<i<d 1<j<n-—1

(2.6.11)
i) d(T™) = sroT™.

Condition i7) is equivalent to 9, (¢™(T;)) = p"d"0T;.

2.7 Base Change Property.

We record the following ”base-change” property of arithmetic jet spaces. One notes
that the arithmetic jetspace, if not p-adically completed, does not behave well under
localization. If X = Spec A and s € A, consider the open subset X, = Spec A, C X.
Then by [10], §*(X;) = Spec (J*A)sp(s) # (J' X )s where recall that J' X = Spec J'A.
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Hence one can see that the non-completed jet-space apparently does not behave well

under the localisation, whereas it is so in the case of differential algebra [5].

However, unlike the geometric jet spaces, arithmetic jet spaces have more than
one canonical map between J"X — X, namely the Frobenius ¢ and its higher powers.

Once we take them into account, it is easy to see that the following is true.
Proposition 2.7.1. The following diagram is commutative

JnXs (7r?¢"“’¢n) X;7‘+1

| l

n - @9 n+1
J X (7T7¢7"'7¢n) X

Proof. Since J"X, = Spec A(s g(s),...4m(s)) by [10], the result follows immediately.
(]

2.8 Canonical lift as an intersection of subschemes

Recall from [10] that for a given p-torsion free ring B which has a lift of Frobenius,

one can define the lift of B points of a scheme X to B points of J"X
V" X(B)— J"X(B)

If X = A" then for any © € A"(B) we have, V"z = (z,d0x, ..., 0"x). We will show that

the canonical lift of the point can be realised as an intersection of subschemes. We

will state it in an “intersection theory” setting. Consider the morphism J"X (")

Xt
Lemma 2.8.1.
o"(z) = p"z™ + foi(z, ..., ") (2.8.1)

where f,—1) is a polynomial of order n — 1.
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Proof. We will prove this by induction. For n = 1 it is clear. Assuming true for

n—1,

¢"(x) = o(p" 2"V + fus)
= p" oY) + d(fa-2)
= p"—l(px(m + (x(n—l))p + O(fus)

= P+ (" @Y+ d(fuz))
Call f,_1 = p" (" V)P 4+ ¢(f._2) completes the proof. [
Proposition 2.8.2. V"P = (7, ¢, ..., ¢")"(P) where P € X (B).

Proof. Assume X = Spec A is affine and suppose A = Rz]/(f) where = repre-
sents a collection of indeterminates. Then
J'A = Spec Rlx,...,x™]/(f,...,6"f). Suppose P € X(B) is given by the evaluation
x = a, where a € B. Then the pull-back of the cycle P = {x = a} via m, ¢, ..., ¢"

yields the following set of equations

(2.8.2)

¢"(x) = ¢"(a)
We claim that the above system of equations yield the desired solution. We will use
induction on n to prove. For n = 0, there is nothing more to prove. Assume true for

n — 1, that is, the first n equations listed above yields the solution

(2.8.3)
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Consider the final equation ¢"(x) = ¢™(a). By 2.8.1 we can rewrite it as
P 4 f(,. 2 D) = 5" + fa, .60 Da) (2:8.4)

But by 2.8.3, we know that = a,...,2") = §"'a which implies p"z™ = p"i"a
and since B is p torsion free, we obtain the solution z(™ = §"a as required and this

completes the proof. [

47



Chapter 3

Differential Modular Forms

In the first few sections (3.1 — 3.3) we present a review of the theory of modular
forms, differential modular forms and conjugate operators acting on them. Then we
present the result on ind-étale extension for an ordinary “framed” curve and its jet
space in section 3.4. In section 3.5 we first show that the tangent ring of the jet space
of the modular curve is isomorphic to the subring of differential modular forms of
even weight. Finally, we show the main result of this chapter, Theorem 3.5.13, which
shows how the ring of differential modular forms M maps to the ring of generalized
p-adic modular forms W. In the end of this chapter, we show that there can not be
a modular form e such that e#~! = E, 1, in other words, the (p — 1)-th root of E, 4

i1s not a modular form.

3.1 Prolongation Sequences

Let € be the category of p-adic formal schemes. By a prolongation sequence X*, we

will mean a sequence of morphisms in C

D ERD GNP A G (3.1.1)
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together with p-derivations of ¢ such that

P41 0 0n = Ong1 0y, (3.1.2)

where ¢ is the pull-back ring homomorphism on the structure sheaves Ox» and
Oxn+1. These prolongation sequences form a category C* and we refer to [9] for a more
detailed and general discussion. However, for our purpose, we restrict ourselves with

prolongation sequences defined over (Spf R)* which is the prolongatiion sequence
Spf R+ Spf R« ...

with the p-derivation ¢ defined by dx = W where ¢ : R — R is the unique lift

of frobenius.

Let X be a p-adic completion of a scheme. Then consider the prolongation
sequence J*X = {J"X},, where J"X is the n-th jetspace of X. Consider the forgetful
functor €* — € given by X* — X° Then for any prolongation sequence Z* we have

the following universal property

Proposition 3.1.1. Home(Z°, X) ~ Home(Z*, J*X)

Recall from [9], that given a prolongation sequence Y*, one can consider a new

'shifted by m’ prolongation sequence Y**™ given by
Y™ e—ymtlh

Definition 3.1.2. A )-morphism from X to Y of order < m is a morphism f :
JHmX — JY

Diagramatically, f denotes the following compatible sequences of morphisms be-
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tween p-adic formal schemes.

v

gy L gy
J’IX Iy
X

Let us denote by Hom™(X,Y') the space of all d-morphism from X to Y of order

< m.

Definition 3.1.3. Define the ring of d-functions of order < m on X as O(J™X) :=
Hom™(X,A").

Proposition 3.1.4. Giving an element f in Hom™(X,Y) is equivalent to attaching

to any prolongation sequence S* a map
fse 1 X(S°) — Y(S™)

which is functorial in S*.

Proof. Given f € Hom™(X,Y') we have

X(S% := Hom (5°,X) ~ Hom (S™ J"X)
Lof
Hom (5™,Y)

To obtain the inverse of the above association, given fg- : X(S%) — Y(S™), chose

S* = J*X. Then we have
frx : X(X)=Hom (X, X) — Hom (J"X,Y)=Y(J"X)

and pick the image of the identity morphism in Hom (J™X,Y’) and call it f and

this is the required inverse and this completes the proof. O
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3.2 A review of modular and )-modular forms and

Katz’s ring

Before proceeding with explaining our next results let us recall a few basic facts of
modular curves and forms. We refer to [17] for detailed discussion. Consider the
modular curve Y;(N) defined over Z[1/N, (y] which is the representable object for
the functor from rings over Z[1/N,(y] to sets defined as: given a Z[1/N, (y]-ring
B, we consider the isomorphism classes of pairs (E,¢) where E is an elliptic curve

defined over B and ¢ : (Z/NZ)g C E is a level I'y (N)-structure.

Let € — Y3(IN) be the universal elliptic curve and let e : Y1(N) — & be the
identity section. Denote by L = e*Q¢/y,(n) Where Q¢ y;(n) is the sheaf of relative
1-forms on €. Let X;(N) denote the Deligne-Rapoport compactification of Y; (V)
and take the natural extension of L to X;(N), and call it L again.

Let X C X;(N) be an open embedding (not necessarily a proper open sub-
scheme). Consider the restriction of L on X and call it L again. Then over any
Z[1/N,(y]-algebra B, the modular forms of weight s, denoted by Mx(B,k,N),
identifies with the space of global sections H(Xp, L"), where Lp denotes the sheaf
obtained by pullback. Denote

My = @ Mx (B, k. N).

The cusp P = oo is a Z[1/N,(y] point on X;(NN) and there is a natural Fourier
expansion map £ : My — R((q)) associated to P. The Fourier expansion E :
Mx — R((q)) is defined by evaluating at the T'ate(q) curve given by E(f) := f(q) =
f(Tate(q), Wean, tean)- This Fourier expansion map F is injective. We will call a tuple

(X, L, P,E) as a Fourier framed curve.

Recall another definition of modular forms. For any Z[1/N, (y]-algebra B, let
E/B denote an elliptic curve defined over B, w € H(E,Qp/p) a basis of the free
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B-module H(E, Qp/p) and ¢ as above. By a modular form of weight x we will under-
stand a rule f that associates to any tuple (E/B,w,t) an element f(FE/B,w,.) € B
which depends only on the isomorphism class of the tuple, commutes with base

change and satisfies
f(E/B, Aw,t) = X""f(E/B,w,t) (3.2.1)

for all A € B*. This definition identifies with the one given previously using the
global sections of higher tensor powers of L [22].

Now for p ¥ N, we choose a homomorphism Z[1/N,(x] — R and denote by
Y1(N)g, Lr, Pr the objects over R obtained by base change. M contains the nor-
malized Eisenstein forms Fy, Eg, F,—1 belonging to the spaces
M(R,4,N),M(R,6,N),M(R,p—1,N) respectively. Note that E,_; is a character-

istic 0 lift of the Hasse invariant, a quantity that measures super-singularity.

A differential modular form of order n is a rule f which attaches to every tuple
(E/S% w,t,S*) an element of S™ where S* is a prolongation sequence of p-adically
complete rings while the other quantities in the tuple are as explained before. Then

f, similar in the classical case, need to satisfy
1) f(E/S° w,t,S*) depends only on the isomorphism class of the tuple only.

2) f commutes with base change u* : S* — S*. then
F(E ®g0 S°/5% u®w,u’ x 1,5%) = w*(f(E/S°,w,1,S")) (3.2.2)

Let us denote the space of differential modular forms of order n by M™.

Let us call Z = Spec M. Then Z parametrises (F/S° w,t) upto isomorphism.
We reproduce the following Proposition from [10].

—

Proposition 3.2.1. M" ~ J*M

52



Chapter 3. Differential Modular Forms

Proof. We have
Z(8%) ~ Z(8°) ~ {(E/S°,w, 1)} /iso (3.2.3)
Then with f € M™ and for any S* flat over R*, we have a map
f:2(8% — 5" = A(sm).
By Proposition 3.1.4, we obtain f € Hom (J"X,A') = O(J"Z) ~ JnM and this
completes the proof. O]

Let
M =Tlim M™".
We call M as the ring of §- modular forms. Clearly, M C M. But then the

question is, are there interesting new examples in M that shed a new light on M?

Is there a nice theory of Fourier (Serre-Tate) expansion?

We will exhibit a few examples of new ‘objects’ that live in M which have no
apparent counterpart in the world of classical modular forms. But firstly we would

like to define -modular forms of a given weight.

For any polynomial w € Z[¢],w = > a;¢" define element
Yu(t) € R[t, 71, ¢, ...,t™] by the formula

Xult) =t = [ J(@'(£)™

Such a y,, is a multiplicative o-character [9]. By a é-modular form of order < n and
weight w we will understand a rule f that associates of any triple (F/B° w,t, B¥)
an element f(E/B° w,t, B*) € B", which depends on the isomorphism class of the

triple only, commutes with base change and satisfies

f(E/B° \w,t, B*) = xo(A\) ' f(E/B°, w, 1, BY) (3.2.4)
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The space of such §-modular forms will be denoted by M"(w). A Fourier framed
curve is called ordinary if there exists an element f € M'(¢ — 1) which is invertible

in the ring M!, such that E'(f) = 1.

We shall say f € M is isogeny covariant if for any triple (E/S° w,4,S*) and

for any étale isogeny 7 : B/ — E (of elliptic curves over S°) we have
f(E')S W' i, 8%) = [deg 7] "% “/2 f(E/S°,w,i,S*) (3.2.5)
where v’ = 1w and deg w =) a;.
Let

@ I\ " o
D L D (j—) & R(())1d] (3.2.6)

p q° o1
Proposition 3.2.2. [9] There exists a unique form f! € M'(—1 — ¢) whose Fourier
expansion is given by
E\(f) = .
Given a ring B, we will denote its reduction mod p by B.

Proposition 3.2.3. [1, 9, 10] Assume the reduction mod p of X, X, is contained
in the ordinary locus of the modular curve. Then there exists a unique form f? €

M (¢ — 1) which is invertible in the ring M! such that
EY(f%) = 1.
Furthermore its reduction mod p, fo € M'(¢ — 1) coincides with the image of the

Hasse invariant H € M%(p — 1).

The d-modular forms in Proposition 3.2.2 and 3.2.3 are isogeny covariant. Since
M comes with a Fourier expansion map F : M — R((q)), by universality property

of jet spaces as in Theorem 1.0.2, extends naturally to

E":M" — R((Q))A[q/, ) q(n)]A: S}LOT
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where ¢("’s are new indeterminates. However, unlike the classical modular forms,
E™ is not injective. For example, f? — 1 and its higher p-derivatives §°(f? —1) for all
i < n —1 are in the kernel of E” where f? is introduced in the following Theorem
3.2.3. Although, if we restrict to d-modular forms of a fixed weight w, denoted
M™(w), then E™ is injective.

3.3 Conjugate operators on modular forms

Recall the Fuler derivation D : M — M defined as follows; Let x be a local generator
of L over any open set X C X;(N) such that L is trivial over X. Then any f,, € L®"

can be written in the form f, = px”, ¢ € S™. Then D acts as
Df d f (3.3.1)
= T— 3.
dx

Then a simple computation shows that Df,, = nf,. Hence the effect of D on f, is
independent of the trivialisation of the modular curve and therefore D glues over all
the trivialisation to give us a globally defined D : L®" — L®" preserving the weight

of the modular form. Hence, for a general f € M, one can uniquely write f as a sum

of fu’s, f =), fn- and hence one defines

Df:=> Dfy=> nfn (3.3.2)

n

Recall the Ramanujan modular form P € M(2) which has the following Fourier
expansion
P(q) = Ex(q):=1—-24 | Y d|q"
m>1 \ dm
and is of weight 2. Then PD is a derivation satisfying PD : L®" — L®"+2 that
is it takes a form of weight n and carries it to a form of weight n + 2. Recall the

conjugate operators in 2.6.10 introduced in [10]
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Proposition 3.3.1. If f € M"(w) where w =Y, = 0"a;¢" is the weight of f. Then

(PD);(f) = a;p’ P .

Proof. Write f = @zXi=0%?" where ¢ € S” and since D is trivial on S := O(X).

Its conjugates would also be trivial on S for all r.

(PD),f = pa..aw? .. [(PD);(¢/ (%))

= r®.. 3% % Pl (PD(x%))
= po,PYf O

Let O be the Serre operator which satisfies 0 : L®" — L®"*2 and 0* be the Theta

operator on modular forms whose effect on the Fourier expansion is given by

(0" f)(q) = 6(f(a)) (3.3.3)

where 0 = qdiq. Then the above three operators are tied together by
0"=0+ PD (3.3.4)
Proposition 3.3.2. If f € M"(w) where w is as before then

E(0;f) = 0;(f(0)) — a;p’ f() P(q)*

Proof. Combining Proposition 3.3.1 and 3.3.4, gives us the result. [

3.4 Ind-étale extensions

We will first present a general result. Let X = Spec S be an affine smooth curve

over R and L an invertible sheaf on X. Now consider

V = Spec (®nez L") — X
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which is the physical line bundle attached to L with the zero section removed and

hence has a G,,-action on the fibers over X. Set

S = SX = O(X),
(3.4.1)
M = My:=0V)=@,., L

Also further assume that we are given an R-point P € X (R). Set Sy, = R[[t]].
Assume we are given an isomorphism between Spf R[[t]] and the completion of X
along the image of P. Then we have an induced homomorphism £ : § — S, which
is injective and the reduction mod p of this map £ : S — S tor 18 also injective. We

will also assume that we are given an extension of the ring homomorphism E to
E: M — S (3.4.2)

We summarize all the above data by calling a tuple X, L, P, E a framed curve. Con-

sider the following rings:

STo= Sy =0"(X), r>0
M = My :=0"(V), r>0
(3.4.3)
S = lim_ 9",
M = lim_, M".

An element f € M" is said to be of weight w € W if, and only if, the induced
d-function f: V(R) — R satisfies

fx-a) = X"f(a)

forall A € R*, a € V(R), where (A, a) — A-a is the natural G,,-action R* x V(R) —
V(R). We denote by M"(w) = M%(w) the R-module of all elements of M" = M¥% of
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weight w. If L is trivial on X and x is a basis of L then we have the identifications

M = Sz, z7',

M'(w) = S"-a¥ C M

By [10], Proposition 3.14, the reduction mod p of S”, denoted S”, are integral do-
mains, and the maps S” — ST+ are injective. In particular the rings S” are integral
domains and the maps S™ — S™*! are injective with torsion free cokernels. The anal-
ogous statements hold for M". So, in particular, S and M are integral domains.

Let ¢/, t”,... and ¢,q",... be new variables and consider the prolongation sequence

(S;OT‘)T'ZO7
Sior = RIMENE, .. tT,

respectively
Stor = R((a)) [, "]

We set

S]?f)r = liln S;ZOT,.

Then the expansion maps induce, by universality, morphisms of prolongation se-

quences,
E":M" — S}, (3.4.4)

the maps E" will be referred to as d-expansion maps for M". They induce a -

ETPANSLON, Map
B M™ — Sp.. (3.4.5)

We have the following d-expansion principle for S”:
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Proposition 3.4.1. The induced map

ﬁ:?—ng;or

is injective. In particular, £": S — S% ., and hence the J-expansion maps
E": M"(w) — S%,,

are injective, with torsion free cokernel.

(The words “torsion free”, without the specification “as an A-module”, will always

mean “torsion free as a Z-module”.)

Proof. Tt follows from [10], Proposition 4.43. ]

The rings S”

Next, for a framed curve X = Spec S, we define

ST o= Im(E": M"— S%,)
(3.4.6)
§* = lim_§" = Im(E>: M> — S% ).

The ring S will later morally play the role of “coordinate ring of the d-Igusa curve”.

The following is trivial to check (using the definitions and Proposition 3.4.1):

Proposition 3.4.2.

1) The homomorphisms S* — Sr, S — §% are injective. In particular the

homomorphisms S™ — S", §°° — S are injective with torsion free cokernel.

2) The homomorphisms S” — S are injective.
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Remark 3.4.3. The ring S* is not a priori an integral domain and the map S® — For
is not a priori injective. The ring S, however, has a natural quotient which is an

integral domain, namely:

§% := Im(M> — S%,). (3.4.7)
This ring is going to play a role in what follows. We will prove later that, in the
concrete setting of modular curves the map S — S%, 1s Injective (0-expansion prin-
ciple) hence S* is an integral domain and the surjection S® — S is an isomorphism.

Cf. Theorem 3.5.13.

Definition 3.4.4. A framed curve is called ordinary if there exists an invertible

f € M'(¢— 1), such that E'(f) =1.

Definition 3.4.5. Let A be a k-algebra where k is a field. Let A C B a ring
extension, and I' a profinite abelian group acting on B by A-automorphisms. We
say that B is a I'-extension of A if one can write A and B as filtered unions of
finitely generated k-subalgebras, A = |JA;, B = |J B;, indexed by some partially
ordered set, with A; C B;, and one can write I as an inverse limit of finite abelian
groups, [' = @ I[';, such that the I'-action on B is induced by a system of compatible

I';-actions on B; and

7

for all 4. (Then, of course, we also have B' = A.) If in addition one can choose the
above data such that each A; is smooth over k and each B; is étale over A; we say

that B is an ind-étale I'-extension of A.

Lemma 3.4.6.

1) Assume B is a I'-extension of A and C' := B/I is a quotient of B by an ideal
I. Then C 1is integral over A.
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2) Assume B is an ind-étale T-extension of A and let I be a prime ideal of B
such that INA=0. Then C := B/I is an ind-étale I"-extension of A where I" is a

closed subgroup of T".

Proof. Assertion 1 is clear. Let’s prove assertion 2. Using the notation in Defi-
nition 3.4.5 set Y; = Spec B;, V; := Spec A;, Z; := Spec C;, C; := B;/B; N I. Let
I :={y el'y;vZ; = Z;}. By Lemma 3.4.7 below C; is étale over A; and C’Z-F; = A,

so one can take IV := lim I} acting on C' = lim C;. O
p— p—

We have used the following “well known” lemma (whose proof will be “recalled”

for convenience):

Lemma 3.4.7. Let V' be a smooth affine variety over a field k, let Y — V' be a finite
étale map, and let G be a finite abelian group acting on'Y such that Y/G = V. Let
Z CY be a subvariety that dominates V and let G' = {y € G;vZ = Z}. Then Z is
a connected component of Y (hence is étale over V) and Z/G' = V.

Proof. Since V' is smooth the connected components 71, ..., Z,, of Y are irreducible
so Z is a connected component of Y, say Z = Z;. Since V is connected G acts
transitively on the set {Z1, ..., Z,} hence the stabilizers in G of the various Z;s are

conjugate in GG, hence they are equal, because G is abelian. So
O(V) =0 = (0(Z1) x ... x O(Z,))% = (0(2)7 x ... x 0(2)F)¥ (3.4.8)

where O(Z;)% ~ O(2) via any v € G such that vZ = Z; and G/G" acts on the
product via the corresponding permutation representation. Since the last ring in

(3.4.8) contains O(Z)% embedded diagonally it follows that O(Z) = O(V). O

For a framed curve X = Spec S, we define

S" == Im(E": M" — S%,)
(3.4.9)
§% = lim_S§" =Im(E>: M* — S%.)
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The ring S*° will later morally play the role of “coordinate ring of the d-Igusa curve”.

Definition 3.4.8. We will call a ring A a J-ring if there exists a p-derivation 9§ :
A— A

We need a series of Lemmas. For the first two Lemmas we let A be a d-ring and
we consider the prolongation sequence B” = Alz,27%, 2/, ..., 2(7]". We will denote an
element f to be of O(r) if f € B". Such an element f will be called an element of

order < r.

Lemma 3.4.9. Let ¢ € A. Then, for any n > 1, we have

¢
" (% - 90) — 2P () T2 L O — 1) 4 pO(n + 1),

Proof. For ¢ = 0 this is [10], Lemma 5.19. Assume now ¢ arbitrary. One checks
by induction that
0"(z— ) =08"2+U+pV,

where U = O(n — 1), V = O(n). Replacing z by % we get
¢ ¢ ¢ @ @ ¢
o (Zee) = () (T (2) v (S (2)),
z z z z z z
and we conclude by the case ¢ = 0 of the Lemma. U

Lemma 3.4.10. Let A =1+ p"a, a € Z. Then

0" (\2) = 2™ + a2t + pO(n).

Proof. Follows by induction. [

Lemma 3.4.11. Let Q) be a ring of characteristic p and consider the Q-algebra Q)" :=
Q[u]/(uP —u—G) where G € Q. Consider the action of Z/pZ = {a ; a =0,...,p—1}
on Qlu| defined by @ -u = u+a and consider the induced Z/pZ-action on Q)'. Then
any Z/pZ-invariant element of Q' is in Q.
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Proof. Let ¢ € )" be the class of u. Then @' is a free ()-module with basis
1,c,...,cP~1. Assume Zf;g \ict € Q' is Z/pZ-invariant, where \; € Q. We want to
show that \; = 0 for ¢ > 1. We may assume \g = 0. Assume there is a s > 1 such

that A\s # 0 and let s be maximal with this property. Then

As(e+ 1)+ A q(c+ 1)+ o= A + A+

s—1

Picking out the coefficient of ¢*=" we get sA; = 0 hence \; = 0, a contradiction. [J

Theorem 3.4.12. Let X = Spec S be an ordinary framed curve. Then the ring S®

is a quotient of an ind-étale 7, -extension of S°°.

Proof. For r > 1 set
MT
(f_ 175<f - 1)7'-'757171(]0_ 1))

N" =

Note that
B0 (f ~ 1) = 8 (B~ 1) =5 (0) = 0.

which implies that there are surjective homomorphisms N” — S", hence surjective
homomorphisms N — S" and therefore we obtain a surjective homomorphism at

the limit
lim N™ — lim S” = S%. (3.4.10)

Now let X =, Xa, Xo = Spec S,, be an affine open covering such that L is trivial

on each X,. Let x, be a basis of L on X, and let 2, = z,!. Set

Srooi= S% = (5" ®sS,)

M = My, = (M@ Sa)
Then we have an identification

r __ Qr —1 / )~
M! = S [26, 251, 20y oy 28]
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Write f = p,227!, with ¢, € S.. Since f and x are invertible in M}, it follows
that ¢, is also invertible in M. And since S! is an integral domain we have M!™ =

S1*U{czt | c € SL*,n € Z} implies that o, € SL™. Set N7 = (N" ®g S.)"; hence

Stzas 23 2y oy 28]
NT = [27 a 72047 72 ]

CE e (E o) ()

For i > 1 set u; o 1= *= , set
. Stl2ar 23] St [2a]
QY = o w— (3.4.11)

(The latter equality is true because z, = Pg2~ 272 = 12P72)) Then, by

Lemma 3.4.9 we have NI = Q10[u; ,] and

QT’O[Ul ay e 7“7",04]

— __Pa
220D

NT = r>2
“ (uzlj,a — Ul,a — GO; sy r 1, — Up—1,00 — C¥7‘—2)7 7
where Gy € Q™ and
70 .
GieQy = Qo [t - i) i> 1.

P p )
(Ul,a — U1,q — Go, ..., Ui o — Uia — Gi-1)

Clearly the schemes Spec Q' for various a’s naturally glue to give a scheme

Spec Q™' so Q™ ®g S, = Q7' for all a. Note that we have

; Qr,i—l [uz a]
= = : 3.4.12
Qa (Uf,a — Uj,a — Gi—l) ( )
and natural inclusions
Qrlcrtc..cQrt NI =Qu  Hupal- (3.4.13)

So we have natural homomorphisms
r,r—1 IS r+1,r r+1
— Qv — NI' — Q) — N+l —
which shows that, for each «,

(thT) ®g Sa —thT—th” ! (th” D ®g Sa.
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These isomorphisms glue together to give an isomorphism
lim N™ = lim Q™" L.
We are left to proving that lim_, Q™" ! is an ind-étale Z;-extension of 5% = lim_, S".

Start by noting that the maps Q%! — Q"+ are injective. Also ST — Q="' are
injective and étale; cf. (3.4.11) and (3.4.12). Now the group I' = Z) acts on M, via
the rule v - 2 = §'(yz4) for v € T'. This induces a I'-action on N’ and hence a I'-
action on N7. The latter factors through an action of T, := (Z/p"+'Z)*. Moreover,
for i <r —1, Q%" is T',-stable and the I',-action on Q7 factors through a I';-action.

For a fixed r we will prove by induction on 0 <7 <r — 1 that

24

Q)" = Sk (3.4.14)

This will end the proof of the Theorem; indeed from the above we trivially get that
the maps Q"' — Q"+ are injective, the maps S” — Q™" ! are injective and étale,

and, with respect to the induced action,
(Qr,r—l)Fr,l _ ?

showing that lim_, Q™" ! is an ind-étale 4, -extension of 5% = lim_, S".

Let us check (3.4.14). For i = 0 we proceed as follows. Let b € Q7° be the

class of z, and let Ty = FX = (¢), ¢ a primitive root. Then Q" is a free Si-
module with basis 1,b, b2, ..., P2, If Zf;OQ Mb is To-invariant (where \; € S7) then
PENCY = P22\ Since ¢ s primitive we get Ay = ... = A\, o = 0, and the

case ¢ = 0 is proved.

Now assume (Q7"1)Fi-1 = S7 and let us prove (3.4.14). Recall the equation

3.4.12 and consider the subgroup

Ai={10, %} CTi, Ya=1+pa+ptZ
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so A, is isomorphic to Z/pZ via v, — a. Note that A; acts trivially on Qm"1.
By Lemma 3.4.10 the A;-action on Q%" corresponds to the Z/pZ-action induced by
a-u; = u; + a, so we are in the situation described in Lemma 3.4.11 and we may
conclude by that Lemma plus the equality (Q7*~1)T-1 = S*. This ends the proof of

(3.4.14) and hence of the Theorem. ]

3.5 Application to differential modular forms

Let a4, ag be indeterminates. Set

A = —2%4a3 +27a})
. _ ol2934]
;o= 2R (3.5.1)
; — 96 _ i _ 910369
i = j = x
b = Z_é — _22373 + 28]'71
4

Then we have R[j,771,i7] = R[b,b7", (4 + 27b)"!]. Let Y,,4 be the locus in Y;(N)g
where the Eisenstein form FE, € M(Z,,p — 1, N) is invertible. Then b is an étale

coordinate on any open embedding Y C Y,,4 [13] 4.31. Hence we obtain
O"(Y) ~ OV, ...,b™] (3.5.2)

Definition 3.5.1. Given a ring B and the module of Kahler R-differentials Q2p/g,
call 'B = Symm Qp/g

We record the following result.

Proposition 3.5.2. Suppose b is an étale coordinate of B. Then Qp/p ~ Qg /r®B.

Proof. Follows from application of the definition. O]

Corollary 3.5.3. Suppose b is an étale coordinate of B then T'B ~ B|db] where db
is the image of b in d : R[b] — Qgp)/&-
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Corollary 3.5.4. H°(Spec B, Qspec B/R) = B < db > where db is as before.

One can similarly define the ring of higher geometric jet spaces 7" B. Then we

have the following lemma

Lemma 3.5.5. If R[xz] — B is an étale morphism, then
T"B ~ Bldz, ..., d"z]

where dx, ...,d"x are the new indeterminates.

Set
S = 0)
(3.5.3)
ST o= 0"(Y)
Since b is an étale co-ordinate we get
Sto= S, .., b0
| ] (3.5.4)

TS = Symm Qgr = S[db]

Let € 5 Y;(N) be the universal elliptic curve and w := m,8e¢/s. Then w®? ~
Qyv,(v)/r- Then Symm w = S[z] is the space of modular forms on Y'(N) where z is

a basis for w

Lemma 3.5.6. db is a modular form of weight 2.

Proof. By Corollary 3.5.3 we can identify db € H(Y,Qy/g) ~ H°(Y,w®?) and
this completes the proof. O]

Hence there exists an f € S* such that
x* = f(db) (3.5.5)

and we have T'S — Symm w. Note that the injection is étale.
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TS Yo TS J™(S[x))

A

JS T8~ S|z]

N

where ¥, is as in Theorem 2.5.4.

We will call w € Z[p] an even, positive weight if w can be expressed as w =
> im0 2a;9" € Z, a; > 0. Let us denote the subset of all such w’s by 2W*. Recall
S =0(X).

—
n

Proposition 3.5.7. T'(J"S) ~ @, o+ M (w)

Proof. By [10],
P Mi(w) = TS[?, ¢(a?), ..., ¢" (2?)] (3.5.6)

But ¢(z?) = ¢(f~1)¢p(db) and since ¢(f~!) is invertible, we obtain the isomorphism

P Mi(w) = J"Sldb, ..., ¢"(db)] ~ T(J"S) (3.5.7)

we2W+
and the last isomorphism above is because b is an étale coordinate of S and 2.6.3.

]

Review of the forms f!, f¢

The references here are [9, 1, 10]. Set

1 q° w1 1 (4" e
V= —log— = ;(—1) Tt <q—p € Sjor = R((0))[¢]" (3.5.8)
In the next two Propositions X = Spec S is a modular framed curve, recall the

d-expansion maps E” : M" — S%_ . cf. (3.4.4).

for»
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Proposition 3.5.8. [9] There exists a unique form f' € M'(—1 — ¢) such that
BU(f) = w.

Proposition 3.5.9. [1, 9] Assume the reduction mod p of X, X, is contained in
the ordinary locus of the modular (respectively Shimura) curve. Then there exists a

unique form f? € M*'(¢ — 1) which is invertible in the ring M such that
B =1

Furthermore its reduction mod p, fo € M1(¢ — 1), coincides with the image of the
Hasse invariant H € M9(p — 1). In particular X is an ordinary framed curve in the

sense of Definition 3.4.4.

Let My, = M"[h™']. Define f> € M'(0) = S* as f* = 2®"' f. Then recall from

[10] that f” can be rewritten in the following form
17 = aob’ + fo + pha

where h; € M1a4}, fo € M°(=1 —p), b € M}

{as,a6} and ag € M{Oaﬁ} is invertible.

Recall that we will denote an element of order legr as O(r).

Lemma 3.5.10. For any k € N, 6*f* = agkékb' +O(k)+p O(k+1)

Proof. We proceed by induction. For k = 0, f° is precisely as in the statement of
the lemma. Now let us assume that the statement is true for £ = i. We will show

that it is true for k =7 + 1.

ST = §(al S +O0@) +p Oi + 1)
= §5(al ') + 5(0(1) + 5(p O(i + 1))
+ (@Y + (00 + (O + )Y

—(al' 5 + O(i) +p O(i + 1))P}
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Both §(0(i)) and 1{(a} 67+ (O(i))? + (p O(i+1))? — (ay &0 +O(i) +p O(i+1))"}
are O(i + 1).

P = (af PO + (5)(0aE) + pd(af ) (6T
+ pP5(O(i+ 1))+ (O(i+1))Pép+p 6(O(i+1))op+ O(i + 1)

i

Now (6°')(dab ) and (O(i + 1))Pdp are O(i + 1) hence
S = (PS4 p S(aB) () 4+ p 6(03 + 1)) + O3 + 1)
= ST + 0%+ 1) +p O(i + 2) [Since §(O(i + 1)) and
5(al)(57'Y) are both O(i + 2)]

This concludes our proof. O

Lemma 3.5.11. Any ordinary k-point of Y = Y1(N)gr has an affine open neighbor-
hood X C 'Y such that E,_; is invertible on X, L is triwial on X and the natural

homomorphism

5.7

(fb75_.fb7 "'75T‘_1fb)

18 an isomorphism.

Proof. Since S = S[V/,...,b™] since b is the étale coordinate of S, we conclude

the proof by Lemma 3.5.10. [

Review of Katz generalized p-adic modular functions

The references here are [23, 19].

Let B be a p-adically complete ring, p > 5, and let N be an integer coprime to

p. Consider the functor

{p-adically complete B-algebras} — {sets} (3.5.9)
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that attaches to any A the set of isomorphism classes of triples (E/A, ¢,t), where
E is an elliptic curve over A, ¢ is a trivialization, and ¢ is an arithmetic level N
structure. Recall that a trivialization is an isomorphism between the formal group of
E and the formal group of the multiplicative group; an arithmetic level N structure
is defined as an inclusion of flat group schemes over B of py into E[N]. The functor
(3.5.9) is representable by a p-adically complete ring W(B, N). The elements of this
ring are called by Katz [23] generalized p-adic modular forms. Note that W(B, N) =
W(Z,, N)®B. Moreover there is a Z)-action on W(B, N) coming from the action
of Z, on the formal group of the multiplicative group. The fourier expansion E :
W — B/((C]\)) of f € W is defined as the evaluation of f at the T'ate(q) curve given by
E(f) := f(q) = f(Tate(q), Ycan; tean)- E is injective and has a flat cokernel over B.
Also W(Z,, N) possesses a natural ring endomorphism Frob which reduces modulo
p to the p-power Frobenius endomorphism of W(Z,, N) ® Z/pZ. So if R = Z;”, as
usual, and if ¢ is the automorphism of R lifting Frobenius then Frob®¢ is a lift of

Frobenius on

W = W(R,N) = W(Z,, N)®R

which we denote by ¢o. Moreover the homomorphism W(R, N) — R((¢))" commutes
with the action of ¢g where ¢y on R((q))" is defined by ¢o(>_ anqg™) := > d(an)q"™.

The ring of modular forms M injects into W via, if f € M then
fEJA p, ) == f(EJA, *(dt/t + 1),1) where dt/(t + 1) is the invariant differential

on G/ whose pull back via ¢ is a differential on the Elliptic curve E.

For any Z[1/N, (y]-algebra B the space M (B, k, N) of modular forms over B of
weight x and level I'1(N) has an embedding

M(B, ,N) C W(B, N).
The space M (B, r, N) is stable under the Zx-action on W(B, N) and \ € Z acts

on M(B,k,N) via multiplication by A\*. Recall that we denoted by Y,.q C Y =
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Yr = Y1(N)g the locus in Y where the Eisenstein form E, ; € M(Z,,p — 1,N) is

invertible. Then, since £,_; is invertible in W we get a homomorphism

My,, =L, —wW.

keZ
More generally, if X is any affine open subset of Y,,, then one can find g € My, , of

weight 0, g # 0, and a homomorphism

M= My =@ LY — W, =W[1/g]. (3.5.10)

KEZ

(So if X = Y,,4 we may take ¢ = 1.) Since g has weight 0, \7\7\9 has an induced
Z)-action and the homomorphism (3.5.10) is Z-equivariant if A € Z acts on each

L®% via multiplication by A*.

Finally recall Katz's ring of divided congruences [19],

D:=D(R,N) = {f e G MRk, N)@r K; E(f) € Rl[q]]},

k>0

where K := R[1/p|]. This ring naturally embeds into Katz’s ring of holomorphic

generalized p-adic modular forms,
Vi=V(R,N)={f e W(R,N); E(f) € R[[q]]},

and the image of D in V is p-adically dense. For simplicity we sometimes identify

D, V,W with subrings of R((¢g))"; i.e. we view

DCVCWCR((q).

We will need the following:

Lemma 3.5.12. D + R[A™!] is p-adically dense in 'W.

Proof. Tt is enough to check that V + R[A™!] is p-adically dense in W.
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We first claim that for any f € W there exists a sequence of polynomials F,, € R][t]
in a variable ¢ such that F,,; — F,, € p"R[t] for n > 0 and such that

f=F, (A" € p"R((g))" + Rl[g]]-

To check the claim we construct Fj, by induction. We may take Fy = 0. Now,

assuming F,, was constructed, write
N .
f=F (A =p"G+p"™'H+S, Ge> Rg', HeR(q). SeRq)
i=1

Since A™! — ¢=! € R[[q]] we can find a polynomial I' € R[t] of degree < N such that
G —T(A™') € R[[g]]. Then set F,,; := F, + p"I" which ends the inductive step of

our construction.

Now let F,, be as in our claim above and set F' := lim F,, € R[t|". Then clearly
f—F(A™) € R[[q]] n"'W = V. This implies that V + R[A™!] is p-adically dense in

W and we are done. ]

Theorem 3.5.13. Assume X = Spec S is a modular Fourier-framed curve with

E,_ invertible on X. The following hold:

1) The map S® — S]?gr is injective; in particular S® is an integral domain,
and the map S® — S is an isomorphism. Moreover the ring S® is an ind-étale

L, -extension of S°°.

2) The kernel of M> — S* is generated by

FT 1, 57— 1), (7 1), ..

8) The kernel of S® — Wg 15 generated by the images of

f1,6f1 62,
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4) The kernel of M> — Wg 15 generated by the elements

f@_l) F? 6(f8_1)7 6_]617 52(f8_1)7 52f17"'

Proof of Theorem 3.5.13. We are going to use the notation in the proof of Theorem
3.4.12. In particular recall the rings Q™' which are finite étale extensions of ST,

with

(QT,T_l)FTfl — gr. (3.5.11)

Note that assertion 4 follows from assertions 2 and 3.

We claim that in order to prove assertions 1 and 2 it is enough to show that all

the rings Q™" ! are integral domains. Indeed if this is so then
Q= = hin Qrrt
is an integral domain. We have surjections
Q™ — §% — S, (3.5.12)

where the last ring is an integral domain. Let I be the kernel of the composition
(3.5.12). Since the composition S® — Q> — S* is injective (cf. Proposition 3.4.1),
upon viewing S as a subring of Q>, it follows that I N 5% = 0. Since Q> is an
integral domain and an integral extension of S it follows that I = 0. This forces the
surjections in (3.5.12) to be isomorphisms, and so assertions 1 and 2 of the Theorem

follow.

Next note that since Spec Q"' is étale and finite over Spec S™ and since the
latter is smooth over k, it follows that Spec Q™" ! is smooth over k so, in particular
its connected components are irreducible and they are finite and étale over Spec S”.
So in order to prove that Q™! is an integral domain it is enough to prove that

Spec Q"1 is connected.

74



Chapter 3. Differential Modular Forms

Consequently in order to prove the Theorem we need to prove connectivity of
Spec Q"1 and assertion 3. We will prove these two facts simultaneously. To prove
either of these facts it is enough to prove that these facts hold for each of the open
sets of a given open cover of X. So we may assume, after shrinking X, that the
conclusion of Lemma 3.5.11 holds for X, in particular L is trivial on the whole of X
so f? is defined and f! and f* differ by a unit. Consider the scheme Spec T" defined

by the cartesian diagram

Spec T"  —  Spec Q"1

! |
Spec S — Spec ST

where the bottom horizontal arrow is defined by the surjection

o2 3
(2,607, ...,00 1)

cf. Lemma 3.5.11. The natural Z;-equivariant homomorphism M — \7\7\9 maps
fLoft 0%f1, ... into 0; cf. Proposition 3.5.8. So this homomorphism also maps
f2,8f°,82f°, ... into 0. One the other hand this homomorphism also maps f? —
1,6(f9=1),0%(f?—1),... into 0. So we get an induced Z)-equivariant homomorphism
N7 — W,, hence (by restriction) we get a Z)-equivariant homomorphism Qrrt —

Wg, and hence we get an induced Z;-equivariant homomorphism

ror—1 o
" = ¢ — W,.

(f°, ..., 071 f?)

Since Spec Wg is irreducible the closure Z of the image of Spec Wg — Spec T"

is contained in one of the connected components of Spec T". Since Z dominates
Spec S and since Spec T" is finite and étale over Spec S, it follows that Z is a
connected component of Spec T". Note that Z is a Z;-invariant subset of Spec T",
hence I',_j-invariant. Recall that by (3.5.11) I',_; acts transitively on the fibers of
Spec Q"1 — Spec ST. Hence I',_; acts transitively on the fibers of Spec T" —
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Spec S. Since each connected component of Spec T" surjects onto Spec S and since
Z is I',_q-invariant it follows that Spec T" must be connected. Since Spec T" is
smooth over k£ and connected it follows that 7" is an integral domain. Since Spec T"
is connected it must coincide with Z hence Spec Wg — Spec T" is dominant. Since

T" is an integral domain, 7" — Wg is injective. So lim_, 7" — Wg is injective. But
Hm T =lm Q™1 /(f°,0/7,62f°,..) = S¥/(f*,6/°, 02/, ...).
This proves assertion 3.

On the other hand since each connected component of Spec Q"' surjects onto
Spec S and Spec T is connected it follows that Spec Q™" ! itself is connected. This
ends the proof of the Theorem. m

Corollary 3.5.14. Assume X = Spec S is a modular Fourier-framed curve with

E,_; invertible on X. The following hold:
1) The inclusion S* C 5%, has torsion free cokernel.

2) The kernel of M> — Stor 18 the p-adic closure of the ideal generated by the

elements

=1, 67 -1), 8*(f7 1), ..

3) The kernel of S*® — R((q))" is the p-adic closure of the ideal generated by the

images of the elements

floofh o fh

4) The kernel of M*> — R((q))" is the p-adic closure of the ideal generated by

the elements

o1, f S0 = 1), §fY, S0 — 1), 8%F

Remark 3.5.15. Conclusion 1 in Corollary 3.5.14 should be viewed as a d-expansion

principle. Conclusions 2 and 4 should be viewed as d-analogues of the theorem of
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Swinnerton-Dyer and Serre according to which the kernel of the Fourier expansion

map

@ M(Fy, £, N) — Fp[q]]

k>0

is generated by E,_; — 1; cf. [20], p. 459.

Corollary 3.5.16. Assume X = Spec S is a modular Fourier-framed curve with
E,_y invertible on X. Let f(¢) € R((g)) be contained in the image of the map
M®pr K — K((q)). Then f(q) is contained in the image of the map M*> — R((q))".

Proof. Write f(q) = E(}%) = C;ff), where G € M. The image of G in R((q)) ®
Z/p’Z is 0 so the image of G in S® ® Z/p“Z is in the kernel of S™® ® Z/p"Z —
Stor @ Z/p’Z. But the latter morphism is injective; indeed this is trivially checked
by induction on v, using Theorem 3.5.13. It follows that the image of G in S*®Z/p"Z
is 0, hence the image of G in S* belongs to p”S*>. Hence the image of G in R((q))"
belongs to p” - Im(M> — R((q))"). It follows that f(q) belongs to the image of

M> — R((q))". O
Recall that we denoted by Y, the locus in Y = Y;(N)g where E,_; is invertible.

Corollary 3.5.17. Consider the modular Fourier-framed curve X = Spec S = Y,,4.
Then the image of M* — R((q))" contains D and hence is p-adically dense in 'W.

Proof. By Corollary 3.5.16 the image of M* — R((q))" contains the ring D. But
this image also contains the ring R[A™!]. We conclude by Lemma 3.5.12. ]

3.5.1 On (p—1)-th root of E, ;.

We will show that the p — 1-th root of E,_; does not belong to the modular forms of
X1 (N). It will be useful to recall one of the possible constructions of the Igusa curve

I. Let L be the line bundle on X;(/N)g such that the sections of the powers of L
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identify with the modular forms of various weights on I'y(NNV); cf. [20] p. 450 where
L was denoted by w. Let E, ; € H(X;(N)g, LP~!) be the normalized Eisenstein
form of weight p — 1 and let (ss) be the supersingular locus on X;(N)g (i.e. the
zero locus of E,_1). Let X C X;(N) be an open embedding such that L is trivial
on X. As usual, let = be a basis of L on X. Recall we have M = S[z,2~!]. Then
E, 1 = paP~! where ¢ € O(X). Let S = O(X). Define S) = Spec S[t]/(t*~! — ).
Let X, = Spec S;. If we denote the reduction mod p by X, then X, is birationally
equivalent to I (cf. [20], pp. 460, 461) and is the integral closure of X in the fraction
field of X,. Hence Spec S[t]/(t?~* — ¢) is irreducible since I is. Note that t*~! — ¢

are monic polynomials whose derivatives are invertible in S[t]/(t*~! — ).

Lemma 3.5.18. There exist no € € M such that ' = E, .

—

Proof. We will prove this by contradiction. Suppose there exist an ¢ € M

satisfying €#~! = E, ;. Then define an algebra homomorphism tp:ql[t]w =95 — M =

S[z,z71], by t — ex~!. Hence after reduction mod p, we have the following

Spec H*f> Spec Sy

L

Spec S

Note that Spec M ~ Spec S x G,,. Consider the restriction map of f (call it f again)

to Spec M x {closed point}. Hence we have the following commutative diagram

Spec §*f> Spec S

A

Spec S

The image of f can not be a point because 1 o f is an isomorphism. Hence Spec S
must be isomorphic to Spec S since it is irreducible. But that implies P~ — ¢ is

not irreducible which is a contradiction and we are done. [
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Hecke Operators mod p

We will study the space of g-expansions of differential modular forms mod p under
the action of Hecke operators. But first, we need to extend the action of Hecke
operators from classical Fourier series to differential Fourier series in our context
which is done in Section 4.1. The relation between the coefficients of the eigen forms
under Hecke operators away from p is also established. The concept of J-symmetry
is discussed and the space of J-symmetric power series in k[[g]][¢'] is computed. In
Section 4.3, we put together 4.1 and 4.2 and by comparing the coefficients we obtain
a multiplicity one theorem. In Section 4.4, we apply it in the case when the power

series in k|[[q]][¢'] is the image of a differential modular form.

4.1 Hecke operators away from p

4.1.1 Classical Hecke operators

Throughout the chapter the divisors of a given non-zero integer are always taken to

be positive, the greatest common divisor of two non-zero integers m, n is denoted by
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(m,n), and we use the convention (m,n) = n for m =0, n # 0. Fix throughout the
chapter an integer N > 4 and let € : Z~y — {0, 1} be the “trivial primitive character”
mod N defined by ¢(A) =1 if (A, N) =1 and ¢(A) = 0 otherwise.

For each integer n > 1 and each integer N > 4 consider the set
{(A,B,D);A,B,D € Z>o, AD =n,(A,N)=1,B < D}

Triples A, B, D will always be assumed to be in the set above. Recall (cf., say,
[24]) the action of the n-th Hecke operator T, (n) on classical modular forms f =
> om0 @mq™ on To(V) of weight £ > 2 with complex coefficients a,, € C given by

T.(n)f = n""'> ,p5p D™ f((Ba™P)

= Zmzo (ZAKn,m) G(A)An_la%> qm
Here g = e%ﬁz, (p:= e2mV=1/D

4.1.2 Hecke operators 7,,(n) on J-series

Now assume n and N are coprime to p and assume ¢, ¢, ", ...,¢"), ... are indetermi-

nates.

Definition 4.1.1. For each integer x € Z the Hecke operator f +— T.(n)f on
R((g)[d,...,q"] is defined as follows. For f = f(q,d,...,q™),

Tn :: n1 Z D~ nf CB A/D (CB A/D) ) (CB A/D)) (4.1.1>

A,B,D
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n/D

Here (p = ('~ € R where (,, € R is a fixed primitive n-th root of unity and the

right hand side of (4.1.1) is a priori in the ring

R((gn) (¢ 0] an =" (4.1.2)

However, by [10] Proposition 3.13,

Qs s q}Z’) € Rlq, q'd, q(r)]A

hence the ring (4.1.2) equals

R((gu))'[d a7
Since Ty(n)f is invariant under the substitution g - 6'(Caqn) it follows that
T.(n)f € R((q))[d,...,q™]". So the operators T, (n) send R((q))[¢,...,q"] into it-
self. As we shall see below for n > 2 the operators Ty (n) do not send R|[[q]|[¢, ..., ¢™]"

into itself. The operators Ty (n) on R((q))[¢, ...,q"]" induce operators still denoted
by T,.(n) on k((q))[d’, - a"].

Recall the operator V on R((q))" defined by V(> a,q") = >_ a,q”™. It induces
an operator still denoted by V' on k((q)).

For r = 0, T,.(n) commute with the operator V on R((q))".

4.1.3 Order r=1

We have the following formula for the Hecke action on d-series of order 1:

Proposition 4.1.2. Assume that
F=Y" tmmd™ ()" (4.1.3)

where m € Z, m' € Z>o. Then we have the following congruence mod (p):

L= [ 3w A e |

m.m’ \ Al(n,m)

(4.1.4)
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Proof. Note that

3(CpaMP) = Zlo(CBaM”) = (ChaMP )]
= 7@+ pd)MP = ¢plg P

= AP mod (p).

(4.1.5)

Then the formula in the statement of the Proposition follows by a simple computa-

tion, using the fact that
D-1
S
D
B=0

is D or 0 according as D divides or does not divide m + m/p.

Corollary 4.1.3. Let

/
/

7= Fla) (j—)m e K@) Forla) € k().

Then for any integer x and any integer n > 1 coprime to p we have:

_ o - q m’
0T = X0 Tl Tl (5)
In particular for A, € k we have Ty (n)f = \,f if and only if

TI{—‘,—Qm/ (n)?m/ = nm/XHTm/ fOl“ all m/ Z O

Proof. This follows immediately from Proposition 4.1.2.

(4.1.6)

]

Let us say that a series in k((¢))[¢, ..., ¢"] is holomorphic at infinity if it belongs

to k[[q]][¢, -, ¢™]. Also denote by v, the p-adic valuation on Z.

Corollary 4.1.4. Assume that, for a given xk € Z the series f € k[[¢]][¢'] has the

property that 7} (n)f is holomorphic at infinity for all n > 1 coprime to p. Then f
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has the form

Fa.d) = gola) + 3 (V5 (0 (0)) (q—)m , (4.17)

m’'>1

with

m’ vp(m/)

©o € K[ql],  @m(q) € ¢™/P k[g]] for m' > 1. (4.1.8)
Proof. Note that, since T(1)f = f, f is holomorphic at infinity so equation
(4.1.8) follows from (4.1.7). Let f be the reduction mod p of a series as in (4.1.3).
It is enough to show if two integers mo > 1 and m’ > 1 satisty v,(mg) < v,(m’)
then @, = 0. Pick such integers mg, m’ and set i = v,(mq), mo = p'p, m' = p'y/,

n = p+ py'. Clearly n is coprime to p. Picking out the coefficient of qpi*piﬂ“/(q’)pi“/

in the equation in Proposition 4.1.2 we get
Amg,m! = Qpip—pit1 s pipr = 0

and we are done. O

Corollary 4.1.5. Let s be an integer, let f € k[[q]][¢'] be holomorphic at infinity,
and assume that for any integer n > 1 coprime to p we are given a \, € k. Then

T.(n)f = A\, f for all (n,p) =1 if and only if f has the form (4.1.7) and

Trerom (1) (@) = 0™ Npiprr () for all m’ > 0.

Proof. This follows directly from the previous corollaries plus the commutation

of T,(n) and V on k[[q¢]]. O

4.1.4 Order r =2

Let us record the formula giving the Hecke action on d-series of order 2. This formula

will not be used in the sequel.

83



Chapter 4. Hecke Operators mod p

Proposition 4.1.6. If f = vamvm,, amym@muqm(q’)m,(q”)mﬁ € R((¢))[d,q"]" then

we have the following congruence mod p:

Tn(n)f = ZAH*I (%)m’+m” y A x qA(m+m’p+m//p2)/D

/m/ " S(A/D '\ P /2pm
<(8)" [ (5) 160 (8))

where the sum in the right hand side runs through all m,m',m”, A, D with A >
1,AD =n,(A,N) =1, D|m + m'p + m"p>.

Proof. A computation similar to the one in the proof of Proposition 4.1.2. m

Note that the formula in Proposition 4.1.6 acquires a simpler form for special ns.
Indeed assume n = ¢ is a prime. If £ =1 mod p then % —1=0ink. If /=1 mod
p? then 6(A/D) = 0 in k. Finally if £ =1 mod p but ¢ # 1 mod p? then §(A/D) # 0

in k.

4.1.5 Frobenii

Consider the ring endomorphisms F, Fy, F;, of k((q))[¢, ...,q@""] defined as follows:
F' is the p-power Frobenius (the “absolute Frobenius”); Fj is the ring automor-
phism that acts as the p-power Frobenius on k and is the identity on the vari-
ables ¢,¢,...,q""); F /1 is the ring endomorphism that is the identity on & and sends
¢, q,....,q") into ¢*, (¢')?, ..., (¢'")? respectively (the “relative Frobenius”). So we have
F = FyoF), = Fj,o0F,. Of course V = Fy, on k((q)). Also clearly T,.(n) commute
with F. By Proposition 4.1.2 Ty,(n) also commute with F on k((q))[¢']; so Tx(n)
commute with Fy, on k((q))[q]-
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4.2 Hecke operator at p

4.2.1 Taylor and Laurent j-symmetry

Following [11] we consider the R—algebras

A = R[50, 8p])[55 180 ey 8y r 51 s57]
B = R —1 —11~7 4/ / (r) (r)~
T [[qh‘"aqp]][ql qp ] [q17"‘7qP)"'7Q1 y -y dp ]7
where sy, ..., 8p, 81, ..., 8y oo and qu, ..., @py G, -5 Gy - arve indeterminates. In [11],

Lemma 9.10 we proved that the natural algebra map
A—B, w4,

where Sy, ..., 5, are the fundamental symmetric polynomials in ¢, ..., g, is injective

with torsion free cokernel. We will view this algebra map as an inclusion.

Definition 4.2.1. An element G € B is called Laurent —symmetric [11] if it is
the image of some element G,y € A (which is then unique). An element f €

R((¢))[d, ..., 4] will be called Laurent § — p-symmetric if
p
Sof =Y fg..d”) € B
j=1

is Laurent 0 —symmetric.

In the same way one can consider the algebras

A = R[[s1, e Spl][8hs s Sy ooy 8y 50T

B = R[[ql,...,qp]][q’l,...,q;,...,qlr,...,qp

As before the natural algebra map
A— B, sg.i) — 09},

is injective with torsion free cokernel.
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Definition 4.2.2. An element G € B will be called Taylor é—symmetric if it is
the image of some element G,y € A (which is then unique). An element f €

R[[q)]ld; ..., q"]" will be called Taylor § — p-symmetric if

Sof =Y fgj..q\”) € B

j=1

is Taylor ) —symmetric.

Clearly a Taylor § — p-symmetric series is also Laurent  — p-symmetric.

Remark 4.2.3. 1) Any element of R][q]] (respectively R((q))) is Taylor (respectively

Laurent) § — p-symmetric.

/

2) The Taylor (respectively Laurent) 6 —p-symmetric elements in R[[¢]][¢, ..., ¢™]"
(respectively R((¢))[¢,...,q™]") form a p-adically closed R-submodule.

3) If f is Taylor (respectively Laurent) 0 — p-symmetric then ¢(f) is Taylor

(respectively Laurent) 6 — p-symmetric.

4) If f € R[[q)l[¢, -, q™] (respectively f € R((¢))[¢,---,¢™]) and pf is Taylor
(respectively Laurent) d — p-symmetric then f is Taylor (respectively Laurent) 6 — p-

symmetric.

5) By 1)-4) any element f in R[[¢]][¢, ..., ¢™]" (respectively in R((¢))'[¢,-..,q™]")

of the form
Zglo Cbl(gz)
Iz
where g; are in R[[q]] (respectively in R((q))) is Taylor (respectively Laurent) § — p-

f=

symmetric. In particular for any ¢ in R[[¢]] (respectively in R((q))) we have that

0g = W, and more generally M are Taylor (respectively Laurent) § — p-

symmetric.

6) Let T € R[[T},T5]}? be a formal group law, and let ¢» € R[[T]][T,...,T™]" be

86



Chapter 4. Hecke Operators mod p

such that

YT, Ta), ooy " F(T1, 1)) = Y(Ths ey T) 4 (T, o, TS
in the ring

Ry, T[T}, Th, o, T TEOT
(Such a ) is called a d-character of F.) Let o(q) € qR|[[q]] and let

f=v(p(@). .8 (p(0)) € Rlldllld, .. q"]"

Then f is Taylor 6 — p-symmetric. Cf the argument in [12].

Note that if F is defined over Z, then F posses a d-character ¢ of order r at most
the height of ¥ mod p such that

Q/)(Tv 07 Tt 0) S T + TPZPHT”7
cf. [?], proof of Proposition 4.26.

Applying the above considerations to the multiplicative formal group we get that

for any ¢(q) € qR((q)) the series

L, (dlela) + 1)
1 («o(q) T 1>p)

p
is Taylor § — p-symmetric. (Here, as usual, log(1 +7T) =T —T?/2+T3/3 — ...)

7) The series
¥ = Llog (@) (4.2.1)

D q°

is Laurent 0 — p-symmetric; cf. [11], proof of Proposition 9.13.

8) In [11] we also defined the concept of §-symmetric element in

RI[q1, o Qs oonr @3 ooy 4]
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(without the qualification “Taylor” or “Laurent”). We will not use this concept in
the present paper. But note that if a series is Taylor d-symmetric then it is also o-

symmetric in the sense of [11] (and Laurent d-symmetric in the sense of the present
paper).

Definition 4.2.4. For any Taylor (respectively Laurent) § — p-symmetric

f € Rlllllgs.a"]" (vespectively f € R((q))[d, - 4"']")
we define
Uf:=p ' ()0, ..,0,q, ...,0, ..., 0,¢")

which is an element in p~*R[[q]][¢, ..., ¢""]" (vespectively in p~*R((¢))"[¢; ..., q"]).

The operator pU takes R|[q]][¢, ...,
R[[q)]ld; ..., q"]" (vespectively in R((¢))"[¢,...,q"]"). On the other hand the restric-
tion of U to R((q))" (respectively R[[q]]) takes values in R((q))" (respectively R|[[q]])

¢ (respectively in R((¢))’[¢,...,q™]") into

and is equal to the classical U-operator
U and™) =3 amd™
Definition 4.2.5. Define for any f € R((¢))[¢,...,q"]" the series

V= f(,....07(d")) € R(Q)[d, .. a"T".

So for any Taylor (respectively Laurent) § — p-symmetric f in R[[q]][¢, ..., ¢"]" (re-
spectively in R((q))[¢,...,¢"]") and any k € Z we may define

pTi(p)f =pUf +p "V f

which is an element in p*R[[q]][¢, ..., ¢]" (respectively in p"R((¢))’[¢, -, ¢™]").

The restriction of pT,(p) to R((q)) is, of course, p times the “classical” Hecke
operator Ty(p) on R((q)) defined by

Tn(p)(z amq™) = Z apmq™ + p* Z ™™

Recall:
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Proposition 4.2.6. [11] The series ¥ in (4.2.1) satisfies

pUV =, VU =pb.

For the next definition recall that the homomorphism
A:=A®pk — B:=BQrk
is injective (in both situations described in the beginning of the section).

Definition 4.2.7. An element G € B is called Taylor 6-symmetric mod p (respec-
tively Laurent §—symmetric mod p) if it is the image of some element E(p) € A (which
is then unique). An element f € k[[q]][¢, ..., ¢""]" (vespectively f € k((¢))[d, ..., q"])

will be called Taylor (respectively Laurent) § — p-symmetric if
p— p —_— —
Sof =Y F(gj,nd”) €B
j=1

is Taylor j—symmetric mod p (respectively Laurent j-symmetric mod p).

Clearly any Taylor § — p-symmetric series is Laurent § — p-symmetric.

Remark 4.2.8. 1) The Taylor (respectively Laurent) § — p-symmetric elements in
/

El[qd, ... ¢] (respectively in k((¢))[d, ..., ¢™]) form a k-subspace closed under F},
and F (hence also under FJy).

2) If f € R[[q]][d, ..., q™]" (vespectively f € R((q))[¢,...,q"™]") is congruent mod
p to a Taylor (respectively Laurent) § — p-symmetric element then the image of f of
fin k[[q]ld, ..., q™] (respectively in k((q))[¢, ..., q"]) Taylor (respectively Laurent)

0 — p-symmetric.

Definition 4.2.9. For any Taylor (respectively Laurent) § — p-symmetric

fekdld,....a"]" (respectively k((¢)[d, ..., q™])
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we may define

“pU”f = (EPT)(p)«)? "‘707q7 "'707 70’q(r)>

which is an element of k[[¢]][¢, ..., ¢™]" (respectively k((q))[d, ..., q"]).

The operator “pU” clearly commutes with the operators F' and Fj and hence it

also commutes with the operator F; (cf. section 4.1.5). If

f e R[[q)]ld...q™]" (respectively f € R((q))'[d,....a™])

is Taylor (respectively Laurent) d — p-symmetric and f is the reduction mod p of
f viewed as an element in k[[q]][¢/, ..., ¢""] (respectively in k((¢))[¢, ...,q""]) then

“pU” f is the reduction mod p of pU f; this justifies the notation in “pU” f.

Note that the operator U : R((q))" — R((¢))" induces an operator still denoted by
U, U : k((q)) — k((q)) (which is, of course, the classical U-operator Uf = > @p,q™,
for f =3 @,nq™ € k((q))). On the other hand note that “pU” f = 0 for all f € k((q)).
Finally note that if k > 1 then the operator T, (p) on R((¢)) induces an operator
T.(p) on k((q)); if K > 2 then T, (p) on k((gq)) coincides with U on k((q)).

Definition 4.2.10. Define the ring endomorphism V' of

k][, -, ¢7] (vespectively k((¢))[d', -, ¢™))

as the reduction mod p of the operator V over R. (Note that V' (¢') = 0 and Fy,(¢') =
(¢')P so in particular V' # Fy, on k((q))[¢'].) As in the case of characteristic zero,
for any k € Z>o and any Taylor (respectively Laurent) § — p-symmetric series fin

k[lgllg', ., q""] (respectively k((¢))[d -, ¢"]) we define
“an<p)”7 — upU777 + ﬁ . VT

which is again an element of k[[q]][¢, ..., ¢""] (respectively k((¢))[¢,-..,¢™]). (Note

that p¥ is 0 or 1 according as x is > 0 or 0.)
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The operator V' clearly commutes with /' and F}, (and hence also with Fy;). So

7

the operators “pT,.(p)” commute with F, Fy,, Fyy.

Also for f any Taylor (respectively Laurent) 0 — p-symmetric series in
R[[q)]ld; ..., q"]" (respectively R((¢))'[¢,-..,q™]") with reduction mod p f we have
that “pT(p)” f is the reduction mod p of pT}(p) f which, again, justifies our notation.

4.3 Structure of Laurent and Taylor )-symmetric

series

In what follows we address the problem of determining what series are Laurent
(respectively Taylor) § — p-symmetric and determining the action of our operators
“pU” on them. We will use the following notation: for all ¢ = > a@,q" € k((q)) we
define
_ _ [
fV == Y gt € k((0) (4.3.1)
(n,p)=1

where 0 = qd% is the Serre theta operator.

Theorem 4.3.1. If an element f € k[[q]][¢] is Taylor 6 — p-symmetric then it has
the form

s
/

7 = 0o(@) + 3 (V0 (0))) (q—) € k((g))[d] (132)

P
s>0 q

with ©o(q) € k[[q]], ©1(q), p(q), ¢p2(q), ... € qk[[q]]

Conversely we will prove:

Theorem 4.3.2. Any element of the form

S

/

T = gol) + SV (9 (0)) (q—) e K(@)ld)

P
s>0 q
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with vo(q), ©1(q), ¥p(q), ©p2(q), ... € k((q)) is Laurent § — p-symmetric and

S

BT == SV )+ X0 O (L)

14
s>0 s>0 q

If in addition f € K[[q]][d'] (i-c. if po(q) € K[la]] and 1(q), ¢p(a), 9p2(a), - € akllal]))
then f is Taylor 6 — p-symmetric.

Corollary 4.3.3. Let f € k((q))[¢] be Laurent § — p-symmetric and let \, € k.
Then “pT,.(p)” f = N, - f if and only if:

1) U(pps(q)) = Ny - ©ps(q) for all s > 0 and

2) 7 V(00(q) — Yno V(b V(@) = Xy - 90(0)-

Corollary 4.3.4. If f € k[[¢]][¢] is Taylor § — p-symmetric then the series “pU” f
and “pT,.(p)” f are again Taylor § — p-symmetric.

We will first prove Theorem 4.3.2.

Lemma 4.3.5. For any n € Z and s € Z>q the element

S

F=a"" (¢ = gmtr™ (;]—p) € k((q))[q]

is Laurent 6 — p-symmetric (and actually Taylor 6 — p-symmetric if n > 0.) Moreover
(n+1)p° (4 v
q & if pln+1

chUnT —

_ q(nt+1p®

w1 f pn+1

Proof. 1t is enough to consider the case s = 0; the general case follows by applying

the p-power Frobenius.

For n = —1 note that

¢ ’¢ =T mod (p)
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and so ¢ Pq’ is Laurent § — p-symmetric because ¥ is Laurent 6 — p-symmetric. Also

“pU” f = f because pU¥ = V.

Assume now n # —1. We have

0(g™) = 1l(¢" +pg) Tt = g?" Y]

[p(n +1a"q + Y nn S0+ 1) (n =+ 2)‘1]0("“7]')(‘1/)]']

D =

For j > 2 (and since p > 5) we have

P . . . J
vp(ﬁ >j-vh)>j—-——>1

It follows that

0(q") = (n+ g™ ¢ + pFasi(a.d)].  Fura(e,d) € Rlg.q7' ¢ (4.3.3)

In particular §(¢"*') is divisible by n + 1 in R((q))"[¢']" and we have the following
congruence in R((q))"[¢']":

1

n+1\y — np /
S0 =g mod (p). (4.3.4)

By Remark 4.2.8, assertions 4) and 5), the left hand side of the latter congruence is
Laurent 6 — p-symmetric (and also Taylor § — p-symmetric if n > 0) and hence ¢”"¢’

is Laurent 6 — p-symmetric (and also Taylor § — p-symmetric if n > 0).
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To compute “pU” f start with the following computation in R((q))[¢']™:

P+ 1)U (2) = pU(po(g™)
= pU(6(¢"")) — pU(g"™*P)

= ¢(pU(q™*")) — pU (g7 +)

(

—pg"*tif p fn41

ntl )
\pcb(q v ) —pg"ttif pln+1

)
—pg"t if p fn+1

1

\p2§(q%) if pln+1

(

—pg"tt if p fn+1

prod [q”(%l’”q’ +pFL+1(q,q’)] if pln+1
P

\ p
from which we get the following congruences mod p in R((q))"[¢']™:

qn+1
n+1

if p m+1

pU(¢™q") = pU (iqfi))

@ rg it pln+ 1.

and we are done.

Lemma 4.3.6. Consider the polynomials

81y ey Spy 81y ey Sy D € K[q1y oy Gy @15 oy @), D = 1_I(qZ —q).
i<j
Then the polynomials
DPqy, ..., DPq,
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are linear combinations of

with coefficients in k[q, ..., q)-

Proof. For j = 1,...,p let s;; be obtained from s; by setting g; = 0; so s;; is the ith
fundamental symmetric polynomial in {q, ..., g, }\{¢;}. Taking ¢ in the equalities

a1 4+ ...+ qp = 51, ---,Ch---Qp = Sp
in R[q1, ..., @p, @1, -+, q,) and reducing mod p we get the following equalities in k[q1, ..., ¢, 41, -, @, )]

Q+.tq = si—m
STqy T+ 81,0, = S5 =7

S§_1,1Q'1 +o 5£—1,pq1/; = 3; — T
for some 71,...,7 € kg, ...,q,]. View this as a linear system of equations with
unknowns ¢/, ..., q;,. We shall be done if we prove that the determinant of the matrix
of this system is =DP. This follows by taking determinants in the obvious identity

of matrices

AR | 1 1 .. 1
qg_l —qg_Q 1 S11 S12 ... S1p

(Dij)
q;’;*l —q}’;*Q | Sp—1,1 Sp=12 - Sp—1p
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where
D;j = H(Qz —qs)
s
and noting that (D;;) is a diagonal matrix with determinant D?. O

Lemma 4.3.7. Assume the notation of Lemma 4.3.6 and n > 0. Then the element

Zq?pqi € kllar, - alllat, s )

s a linear combination of

with coefficients in the ideal

(81, 0y 8p) TV Rl s,

Proof. By Lemma 4.3.6 we can write

P
Zq"p = Ay +ZA]-3;-
=1

where A; € klqi, ..., q,, D7) for j = 0,...,p. On the other hand, by (4.3.4) "%, ¢;"¢;

is the reduction mod p of

TL+1Z(5 n+1 Equ?"?Qp)Q:’[?"‘?Qp]’

We claim that the following holds:

’7p

Z(S P € (51,00 8p, S - ,sp)[(”+1 PIR[s1, ..., 8p, 81, ..y 51 (4.3.5)

Assuming (4.3.5) is true let us show how to conclude the proof of the Lemma. By

(4.3.5) we get that

np ! ! [(n+1)/p] / /
E ¢"q € (81500, Spy STy ey Sp) K[s1, .y 8py 815 -0y 8]
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So we have )
Z 07 =Y By, (1) (s,)"
where

Bi, i, € (51, Sp)[("H)/”]_il_'“_i”k[sl, vy Spl.

/

Since ), ..., s, are algebraically independent over kg, ..., ¢,] we get

p
Ao = DBo.o
Ay = Bio.o
Ay = Boio..0, etc

hence

Aj S (Sl, ceey Sp)[(n+1)/p]_1k[81, ceey Sp], ] = 0, P
which ends the proof of the Lemma.

To check (4.3.5) above note that

n+1) p _(ntl)p

ntly — n+1 Zp 1% i=1 4
> i) =5 () + :

The second term in the right hand side of the above equation is a homogeneous poly-

nomial in ¢, ..., g, of degree (n+ 1)p hence it is a weighted homogeneous polynomial
in sy,..., s, of weight (n + 1)p where s1, ..., s, are given weights 1, ..., p respectively.
Hence this polynomial is a sum of monomials in s1, ..., 5, of degree > n+1. Similarly

- ql”Jrl is a sum of monomials in sy, ..., s, of degree > [(n + 1)/p]. This implies

that (37, ¢/™") is a sum of monomials in sy, ..., s, 8, ..., s;, of degree > [(n+1)/p]

which proves (4.3.5). O

Proof of Theorem 4.3.2. In view of Lemma 4.3.5 (which treats the case of mono-

mials) we see that in order to prove that f in the statement of the Theorem is Laurent
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(respectively Taylor) § — p-symmetric it is enough to show that any series of the form
o0
F=2 eua™d € klgld]
n=0
is Taylor 0 — p-symmetric. By Lemma 4.3.7 we may write
P p
> 4% = Gou+ Y Gins)
i=1 j=1
where

Gin € (81, .0y )TV s 5] 5 =0,..,p.

Since G; := Y ,¢,G}, are convergent in k[[sq, ..., 5,]] we have
p —_—
Zf(qZ Go—l—ZGs € k[[s1, ..., 5p]] (57, .., 5,
i=1

which proves that f is Taylor § — p-symmetric. The assertion about “pU” f follows
from Lemma 4.1.4 by taking limits. O

Next we proceed to proving Theorem 4.3.1. We need some preliminaries. Let

Colqr, q2) = w € Z|q1, q2]. We start with a version of Lemma 4.3.6:

Lemma 4.3.8. Consider the elements 0 = q1 + q2 € k[q1, q2] and 7 = q1q2 € k[q1, ¢2]
and let v € k[q1, o] be the image of Cp(q1,q2) € Z[q1,qa]. Then

g oar TGt Y
' (g2 — qu)P ? (2 — qu)P

i the ring
1

q2 — 1

]

k[qla q2, Q£7 qé?

Proof. Applying ¢ to the defining equations of o and m we get

/

Qtag = o —nv

o+, = ™
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and solve for ¢/, ¢}. O

For the next Lemma let us denote by vy, : k((q1,¢2))* — Z the normalized
valuation on the fraction field k((q1, g2)) of k[[q1, ¢2]] attached to the irreducible series
¢2 — q1 € k[[q1, g2]]; in other words, if 0 # F(q1, q2) € k[[q1, ¢2]] then vy, (F) is the
maximum integer 7 such that (g, — ¢;)* divides F' in k[[qy, ¢o]].

Lemma 4.3.9. Let ®(q) =Y .~ Bmg™ € k[[q]], ® € k, Supp @ := {m € Zxo; B #
0}. Then

Vgo—ar (P(q2) — @(qn)) = pmin{vp(m);();émesupp o}

Proof. We have

O(2) = (@) = Lpuppor Loroo B (467 — @)

= > olq — )" G(q1, ¢2)
where

(n—1)p* n—2)p' pt n—1)p*
(a1, ¢2) Z Bupt (@87 + g+ g,

(n,p)=
Let ig = min{v,(m);0 # m € Supp ®}. Then f§,, = 0 for all (n,p) =1 and i < iy
and there exists ng, (no,p) = 1 such that 3, i, # 0. It is enough to show that
Gi,(q1,q2) is not divisible by g2 — ¢1 in k[[¢q1, ¢2]] equivalently that G(q,q) # 0. But

Gi(0,0) = D nBuyog™ 7" £ 0,

(n,p)=1

O

Proof of Theorem 4.3.1. We proceed by induction on the degree deg(f) of f
viewed as a polynomial in ¢’ with coefficients in k[[¢]]. If this degree is 0 we are done.

Assume now the degree is > 1. We may assume f(0,0) = 0.
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By hypothesis,
Flar, ) + o+ flapqy) =G

in kf[qr, .-, gpllla, - @), where G € k[[s1, ..., sp]][s], ..., 5,]. Setting g3 = ... = ¢, = 0
and g3 = ... = ¢, = 0 we get
fla, @) + f(g2. ¢5) = G(o, 7,0, ...,0,0", 7,0, ..., 0). (4.3.6)

Note that k[[q1, g2]] is a finite k[[o, 7]]-algebra so o', 7" are algebraically independent
over k((qi1,q2)). By Lemma 4.3.8 the left hand side of (4.3.6) is a polynomial H in
o', with coefficients in k((q1,¢2)). On the other hand since H is in the right hand
side of (4.3.6) H has coefficients in k[[q1, ¢2]]. Hence each non-zero coefficient of the

polynomial A has v,,_4,-adic valuation > 0. Now write

/

F@d) =D ulg)(d)™, ®u € kllq]].

Also write each m’ as m/ = n'p" with n/ not divisible by p. Using Lemma 4.3.8 we

have H =), H,, where

o

Hpy=—m
m <q2 o q1>n/pz —+1

(4.3.7)

where F,y € k((q1,q2))[0’, 7] is given by

/
il 1 i’

i/ i i+ i\
Fo = Qp(q) ((W’)” —q¢ (o) +qf 7”)

/

i’ d+r A\
@ +a ")

i/ il 1

=) B (o) () = b
Note that the coefficient of (/)™ in F, is

/

D (q1) + (=1)" v (g2) (4.3.8)

while the coefficient of (7’ )m/_pi/(a’ )pi/ in F,, is

i 41 ;i1

(¢ Bur(a) + (-1 P (). (4.3.9)
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Let now m’ = deg(f). If n’ is even the polynomial (4.3.8) has v,,_4-adic valuation
0 which contradicts the fact that the non-zero coefficients of H have v,,_4 -adic
valuation > 0. So n’ is odd. By Lemma 4.3.9 the v,,_,-adic valuation of (4.3.8)

equals

pmin{vp(m);OyémESupp @m/}, it @, g k.
Also the v,,_4,-adic valuation of (4.3.9) equals

"+1

min{uvy, (m)imeSupp(q? ' P,.1)} min{uvy (m-+p* +1);meSupp @/}

p =p

By the fact that the non-zero coefficients of H have vg,_,,-adic valuation > 0 we get

that

pmin{vp(m);o;ﬁmESupp D0} > n/pi’Jrl if @, ¢k (4.3.10)
and

pmin{’up(m+pi/+l);m€Supp i} > plpi 1 (4.3.11)
From (4.3.10) we get

vp(m) >4 +1 forall 0#m € Supp @y, if D, & k. (4.3.12)
We claim now that n’ = 1. Assume n’ > 2. By (4.3.10)

vp(m) >4 +1 forall 0#m € Supp @y, if D, & k.

Hence

vy(m +p" ) =4 +1 forall m € Supp ®,,..
By (4.3.11) p"*+' > 2p"+'  a contradiction. This ends the proof that n/ = 1.
By (4.3.12)
P (g)(@)™ = (V) (¢
for some ¢ € k[[q]]. By Lemma 4.3.5 ®,,,(q)(¢)"™ is Taylor § — p-symmetric hence so

is f — ®,(¢q)(¢)" which has smaller degree than f. We conclude by the induction
hypothesis. [l
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4.4 Multiplicity one

We begin by recalling the well known situation for series in k[[¢]]. Then we proceed

with our main results about d-series in k[[g]][¢']-

Throughout this section we fix kK € Z>.

Definition 4.4.1. A series ¢ € ¢kl[[g]] is said to be an eigenvector of all Hecke
operators Ty1a(n), Tyia(p), (n,p) = 1, with eigenvalues \,, \, € k if  # 0 and the
following hold:

Tn+2<n)90 =\ -, (nap) =
(4.4.1)

Teta(p)p = Ap - .

Of course the last equation in (4.4.1) is equivalent to

Proposition 4.4.2. Assume ¢ € gk|[g]] is an eigenvector of all Hecke operators
Trs2(n), Tia(p), (n,p) = 1, with eigenvalues \,, \, € k Then there exists vy € k*
such that

e(q) =1~ SN, g (4.4.2)
(

n,p)=1i>0

Proof. Pick out coefficient of ¢ in the first equation (4.4.1) and the coefficient
of ¢™, m > 1 in the second equation (4.4.1). (Here we use the convention that

00=1) 0

Definition 4.4.3. A d-series f = f(q,q') € K[[q]][¢'] is said to be an eigenvector of
all Hecke operators nT,(n), “pT.(p)”, (n,p) = 1, with eigenvalues \,, \, € k if f is
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Taylor 0 — p-symmetric and satisfies

nTn(”)? = Xn ’ f7 (nvp) = 1;
(4.4.3)

Theorem 4.4.4. Assume f = f(q,¢') € k[[q]]l¢d], f € k, is an eigenvector of all
Hecke operators nTy(n), “pT.(p)”, (n,p) = 1, with eigenvalues \,,\, € k. Then
there eists ¢ = ¢(q) € qk[[q]] and c,c; € k, i >0, with p~ - c;_y = N, - ¢; fori >0,
such that ¢ is an eigenvector of all Hecke operators Tyia(n), Tuio(p), (n,p) = 1,

with the same eigenvalues mep and such that

7 = c+ (ZiZO CzF/Zk> thmv
(4.4.4)

/ _ 1\ P
ph? = o) =X V() S+ PR VA (p) (q—) :

qp

Remark 4.4.5. One can also write f in (4.4.4) as

7 i(,(-DY _ X . yitl N it 2\
fo= C+Zi206i Vi) = AV (90><q_p> +pt-V (90><q_p>

A i N ; ’ p’
= c+ (2120 CiVZ) 90(_1) + Zizo(pﬁcifl _ )\pCi>V1+1<90) (g_p) ’

where c_; := 0. Note that the condition that p*-c¢;_1 = A, - ¢; for i > 0 insures that
the right hand side of the first equation in (4.4.4) is a polynomial in the variable ¢'.

Remark 4.4.6. Looking at the constant terms in (4.4.3) one sees that if ¢ # 0 then

Xn =n- ZA\n E(A)Anila (n>p) =1
(4.4.5)

X, = PF.

Conversely we will prove:
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Theorem 4.4.7. Let k € Zso. Assume ¢ = p(q) € qk[[q]] is an eigenvector of all
Hecke operators Ty 1o(n), Tria(p), (n,p) = 1, with eigenvalues A\, A, € k. Let ¢; € k
for i > 0 with pF - ¢,y = Xp -¢; fori > 0. Also let ¢ be an arbitrary element in
k or 0 according as equations (4.4.5) hold or fail respectively. Let f € k[[q]][¢] be
defined by Equation (4.4.4). Then f an eigenvector of all Hecke operators nT(n),
“DT(p)”, (n,p) = 1, with the same eigenvalues A, \p.

Let k[F;] be the k-algebra generated by F;, which is a commutative polynomial
ring in one variable. Note that k[[¢]][¢] is a k[F};]-module and the k-linear space of
series f(g,¢') € k[[g]][¢'] with f(0,0) = 0 is a torsion free k[F;]-submodule. Note
also that the ideal gk[[¢]] is a torsion free module over the ring k[[F;]] of power
series in Fy;,. Finally recall that a d-series f(q,¢') € k[[q]][¢] is called primitive if

U(f(q,0)) =0. Theorems 4.4.4 and 4.4.7 immediately imply:

Corollary 4.4.8. Fix \, € k for (n,p) = 1 and )\, € k. Let F be the k-linear space
of all the d-series f = f(q,q') € k[[q]][¢'] with £(0,0) = 0 which are either 0 or are
eigenvectors of all Hecke operators nT,(n), “pT.(p)”, (n,p) = 1, with eigenvalues
An, Ay € k. We have F # 0 if and only if there exists an eigenvector ¢ € gk[[q]] of
all Hecke operators Ty 2(n), Txia(p), (n,p) = 1, with eigenvalues \,, \,. Assume
furthermore that this is the case and let ¢*? be defined as in (4.4.4). Then ¢*? belongs
to F and is a primitive d-series; also any primitive d-series in F is a k-multiple of

©*2. Furthemore the following hold:

1) If kK > 0, A, = 0 then F is a free k[[F);]]-submodule of k[[¢]] of rank 1 with
basis pf? = (1),

2) If either k > 0, A, # 0 or k = 0, A, = 0 then F is a free k[F);]-submodule of
k[[q]][¢'] of rank one with basis ¢*2.

3) If K =0, A\, # 0 then F is a free k[F);]-submodule of k[[q]][¢'] of rank 1 with
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basis

Pt = (Z(Xp)_iF/ik> P,

>0

Remark 4.4.9. Note that

/

o = (Z(Xp)‘i‘/’) P =X Vi) %

i>0

and also that ¢*! is the unique element of gk[[q]] satisfying the equation

V(gpﬁ’l) - Xp‘:pm + XPQOM = 0.

Proof of Theorem 4.4.4. For any series (3(q) € kl[[q]] write

Ba) = an(B)g™.

m>0

By Theorem 4.3.1 and Corollaries 4.1.5 and 4.3.3 f has the form (4.3.2) and

Tﬁ(n)@o - Tn - ¥o, (n7p) -

TH+2pS (n)@ps = Xn . g0p37 (n,p) = 1, S Z 0

Ulpps) =

p* - V(po) — Zszo VS<90:EJ:1)) -

>
S

* Po-

In particular the following equalities hold:
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Anps (P0) 2 (), (nyp)=1,5>0
an(@p) = An-ar(@p), (n,p)=1,5>0
(4.4.8)
amp(@ﬁ) = Xp am(@ps)a m=>1,s2>0,
Pr e aps-1(po) — ar(pps) = Xp aps(po), 520,

where by convention we set a,-1(¢p) = 0 if s = 0. Let ¢ = ag(po) and ¢; = a,i(po)

for i > 0. By (4.4.8) we get

Anpi (00) = ’\” - ¢, (n,p)=1, i>0
(4.4.9)

Unpi (Pps) = AHX; (P o1 — Mpes), (nyp) =1, i>0, 5>0,
where ¢_; := 0. Define ¢ by the equality (4.4.2) with v = 1.

Assume first that there is an s > 0 such that a;(p,s) # 0. Then ¢,« is a non-zero
multiple of ¢ so (4.4.1) follows from (4.4.7) and (4.4.4) follows from (4.4.9). Since f
is a polynomial in ¢ we get that p~ - ¢, ; — A\,c, = 0 for s > 0.

Assume now that a;(¢,s) = 0 for all s > 0. Then ¢, = 0 for all s > 0 hence

f = py. By the last equation in (4.4.7) and since ¢o & k we get p® = A\, = 0. Then
the right hand side of (4.4.4) becomes

C+Z Z cz—nq"p (4.4.10)

120 (

By the first equation in (4.4.9) we get that (4.4.10) equals ¢y = f; so equation (4.4.4)
holds. Clearly Uy = 0 so the second equality in (4.4.1) holds. Finally, since po € k
we may write o, = F9¢ JiPo with @9 € k[[g]] and d maximal with this property; in
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(n,p) = 1. Hence
Tor2(n)p = ¢z T2 ()00 = cg ' nb(Ti(n) o) = cg' MubPo = Anp

and so the first equality in (4.4.1) holds. This ends the proof. O

Proof of Theorem 4.4.7. This follows directly from Corollary 4.1.3 and Theorem
4.3.2 using the following facts (which are direct consequences of the formulae for the

Hecke operators acting on Fourier coefficients (4.1.4)):

Thiopi(n)p = Xn-gp, (n,p)=1, i>0

T.(n)(eY) = 2.0 (n,p) =1

4.5 d-modular forms

4.5.1 Review of classical modular forms

Start by recalling some basic facts about modular forms; cf. [17]. Let N > 4 be an
integer and let B be a Z[1/N,(y]-algebra. Let Y = Y;(IN) be the affine modular
curve over B classifying pairs (F, «) consisting of elliptic curves E over B-algebras
plus a level I';(N) structure o : Z/N7Z — E. Let Y,.q be the ordinary locus in Y
(i.e. the locus where the Eisenstein form FE,_; is invertible). Let X be Y or Y,,q.
Let L be the line bundle on X, direct image of the sheaf of relative differentials on

the universal elliptic curve over X, and let

V = Spec (@ L®”> —- X (4.5.1)

KEZ
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be the G,,-torsor associated to L.

Set M = O(V) =P, ., L®". Recall that there is a Fourier expansion map

KEZ

E: M — B((q)

defined by the cusp I';(N) - oo [17], p. 112. Recall also that Y has a natural
compactification, X;(N), equipped with a natural line bundle, still denoted by
L, extending the line bundle L on Y, such that the space of classical modular
forms, M(T'y(N), B,k) C L®* on I'|(N) of weight k, defined over B identifies with
H°(X(N), L®"). Recall that the diamond operators act on M (I';(N), B, x); the in-
variant elements form the space M (I'o(NN), B, k) of classical modular forms on I'y(NV)
of weight s defined over B. Recall the g-expansion principle: for any B as above
there is an induced injective Fourier expansion map F : M(I'y(N), B, k) — Bl[q]] and
if B C B then M(I'y(N), B, k) identifies with the group of all f € M(I'y(N), B, k)
such that E(f) € B'[[q]]. Recall also the following base change property: if B’ is any
B-algebra and either B’ is flat over B or k > 2 and N is invertible in B’ then the
map M(I'\(N),B,k)®p B' — M(I'y(N), B, k) is an isomorphism; cf. [17], p.111.

4.5.2 f-series from classical modular forms

Theorem 4.5.1. Let k € Zxo and let f(q) = )_,.51 amq™ € qZy[[q]] be a series

satisfying ay = 1 and

tyin = it for (n,p) =1, 020 (452)

Api-1ay = api + play-1 fori > 2.
Let ¢ := f = > mz1 @mq™ € qFy[[q]] be the reduction mod p of f(q). Then the series

72 = 1**q,q',q¢") = %Z %(p“¢2(q)” —ay0(q)" +pq") € Qylla. ¢, ¢"]] (4.5.3)

n>1
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belongs to Zy|[ql]ld’,q"]" and its reduction mod p equals
B d 7 \?
= ) = a0 5+ 7 Ve (L) e Bl (s

Proof. For k = 0 the argument is in [13]; the case k > 0 is entirely similar. (Note

that the form f[g):] in [13] is congruent mod p to f itself.) O
Remark 4.5.2. Note that conditions (4.5.2) imply that Up = @, - ¢.

Ezample 4.5.3. Let k € Z>( and let F' C C be a number field with ring of integers
OF. Let

f@) =) and™ € qOr[lq] (4.5.5)

be the Fourier expansion of a cusp form
f € M(Fo(N), OF, K+ 2)

Assume a; = 1 and assume f(q) is an eigenvector for all the Hecke operators T} 2(n)
with n > 1. Assume p is a rational prime that splits completely in F', consider
an embedding Or C Z,, view f(q) as an element of ¢Z,[[q]], and let ¢ = f =
Y oms1 @mq™ € qFp[[g]] is the reduction mod p of f(g). Then the equalities (4.5.2)
hold. So by Theorem 4.5.1 the series
22 = f2(q,q.q") = %Z %(p“gb?(q)" —ay$(q)" +1q") € Qplla. ¢, ¢"]] (4.5.6)
n>1

belongs to Z,[[q]][¢’, ¢"]” and its reduction mod p equals

i g ) = ¢ —aV () L ) (;i) e B, [qllid). (457

Note also that Ty+2(n)e = @, - ¢ for (n,p) =1 and Up = @, - . So by Theorem 4.4.7
32 = %% is an eigenvector of the Hecke operators nT,(n), “pT.(p)”, (n,p) = 1,
with eigenvalues @,,@,. Also, by the same Theorem, if in addition @, # 0 and x = 0,
then the series ! in (4.4.6) is also an eigenvector of the Hecke operators nT}(n),

“pTi(p)”, (n,p) = 1, with eigenvalues @, G,.
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Example 4.5.4. Consider the Ramanujan series

P(q):=Ea(q):=1-24> (D d|q"

m>1 \ dm
and assume N is prime. Consider the series

1 N -1

9(q) = =57 (P(g) = NP(¢")) = —— + f(a) € Z[ld]],

F@)=> D DA g (4.5.8)
m>1 \ Ajm
Then ¢(q) is the Fourier expansion of a classical modular form in
M(T'o(N), Zy), 2) which is an eigenvector of the Hecke operators T5(n) for all n > 1
with eigenvalues a,, := ZAm e(A)A; cf. [17], Example 2.2.6, Proposition 3.5.1, and
Remark 3.5.2. Let v := f =3 -~ @ng™ € qFF,[[q]] be the reduction mod p of f(q).
By [24], Theorem 9.17, the equalities (4.5.2) hold with k = 0. So by Theorem 4.5.1

the series

27 =g d") = =) %(cb?(q)" —ay$(q)" +pq") € Qllg.¢'.q"]] (4.5.9)

n>1

T

belongs to Z,[[q]][¢, ¢"]" and its reduction mod p equals

JR— - B _ q/ q/ p
i ol o) = ¢ a0 %+ Vo) (L) e Bl (45.10)
Note also that Ty(n)e = @, - ¢ for (n,p) =1 and Up =@, - ¢. So by Theorem 4.4.7
32 = o2 is an eigenvector of the Hecke operators nTy(n), “pTy(p)”, (n,p) = 1,
with eigenvalues @,,a,. Also, by the same Theorem, if in addition @, # 0 and

k = 0, then the series "' in (4.4.6) is also an eigenvector of the Hecke operators

nT.(n), “pT.(p)”, (n,p) = 1, with eigenvalues @,,, a,. Note that if N =1 mod p then
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Equations 4.4.5 hold because

an =Y a €(A)A =03, e(A)A™!, mod p for (n,p) =1,

ap =D 4 €(A)A=1 mod p.

Note also that if N = 1 mod p it follows that f(q) = g(¢) mod p so p(q) is the

Fourier expansion of a modular form in M (I'o(N),F,,2)

4.5.3 Application to /-eigenforms

As noted in [15] the image of the Fourier expansion map M> — R((q))" is contained
in ‘W; this is by the universality property of O"(V') and by the fact that W possesses
a lift of Frobenius ¢y and hence it is naturally a d-subring of R((q))".

Proposition 4.5.5. The image of M"(w) in W consists of elements of weight deg(w).

Proof. 1t is easy to see that one may replace X in the statement above by an
open set of it. So one may assume L is free on X. Let x be a basis of L. Then any
element f € M"(w) can be written as f = fy- 2" where fy € O"(X). Now the image
of z in W has weight 1. Since ¢y on W preserves the elements of a given weight it
follows that the image of " in W has weight deg(w). On the other hand f, is a
p-adic limit of polynomials with R-coefficients in elements of the form &gy, where
go € O(X). Again, since ¢ sends elements of weight 0 in W into elements of weight
0 the same is true for 6 : W — W. Since the image of gg in W has weight 0 so does
the image of d°gy in W and hence so does the image of f. O]

Next we state our main applications to “d-eigenforms” (i.e. J-modular forms

whose d-Fourier expansions are “0-eigenseries”). First we will prove:
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Theorem 4.5.6. Assume f = f(q,q') € K[[q]][¢] is not a p-th power in k[[q]][¢'] and
assume f is the reduction mod p of the §-Fourier expansion of a d-modular form in
M7 (w) with r > 0, k= deg(w) > 0. Assume furthermore that f is an eigenvector
of all Hecke operators nTy(n), “pTx(p)”, (n,p) = 1, with eigenvalues \,, \, € k.
Then there exists o = @(q) € qk[[q]] which is the Fourier expansion of a modular
form in M(T'y(N),k,r"), ¥ >0, K = k+2 mod p — 1, and there exist c,c; € k,
1 >0, with p~ - ¢;_1 = chi for i > 0, such that ¢ is an eigenvector of all Hecke
operators Tyyo(n), Teya(p), (n,p) = 1, with the same eigenvalues \,, \, and such

that f satisfies (4.4.4).

Conversely we will prove:

Theorem 4.5.7. Assume ¢ € qk|[q]] is the Fourier expansion of a modular form in
MT(N),k,&"), k¥ >0, K =k +2 mod p—1, and that ¢ is an eigenvector of all
Hecke operators Ty 2(n), Teio(p), (n,p) = 1, with eigenvalues A\, \, € k. Assume
X =Y,.q. Consider the series f = f(q,q') € k[[q]][¢'] defined by the formula (4.4.4)
with ¢ = 0,¢; € k fori >0, and ¢; =0 fori> 0. Then f is the 5-Fourier expansion
of a §-modular form f € M'(x) and (by Theorem 4.4.7) is an eigenvector of all
Hecke operators nT,(n), “T(p)”, (n,p) = 1, with the same eigenvalues A, \p.

Note that Theorems 4.5.6 and 4.5.7 imply Theorem 1.0.10 in the Introduction.

The one-to-one correspondence in Theorem 1.0.10 is given by ¢ s %2 with @2

defined by (4.4.4).

4.5.4 Review of §-modular forms [11, 15]

Let V be an affine smooth scheme over R and fix a closed embedding V' C A™ into

an affine space over R.
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Definition 4.5.8. A map f : V(R) — R is called a d-function of order r on X [7]
if there exists a restricted power series ® in m(r + 1) variables, with R-coefficients
such that

f(a) = ®(a,da,...,0"a),

for all a € V(R) C R™. We denote by O"(V) the ring of J-functions of order r on V.

(Recall that restricted means with coefficients converging p-adically to 0; also the
definition above does not depend on the embedding V' C A™.) Composition with
§ defines p-derivations ¢ : O"(V) — O""(V). The rings O"(V) have the following
universality property: for any R-algebra homomorphism v : O(V) — A where A is
a p-adically complete d-ring there are unique R-algebra maps u” : O"(V) — A that

commute in the obvious sense with ¢ and prolong u.

Let now V' be as in (4.5.1) with B = R and Z[1/N, (x| C R a fixed embedding.

Definition 4.5.9. [15] A 0—modular function of order r (on I';(N), holomorphic on
X) is a o-function f : V(R) — R of order 7.

Let W := Z[¢] be the ring generated by ¢. For w = > a;¢' € W (a; € Z) set
deg(w) = > a; € Z; for A € R* we set \¥ := [ ¢'(A\)*.

Definition 4.5.10. A §-modular form of weight w (of order r, on I'y (IV), holomorphic
on X) is a 0-modular function f : V(R) — R of order r such that

JA-a) = A" f(a),

for all A € R* and a € V(R), where (A, a) — A-a is the natural action R* x V(R) —
V(R).

We denote by M" := O"(V) the ring of all -modular functions of order r and we
set M :=J,-o M". We denote by M"(w) the R-module of -modular forms of order
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r and weight w; cf. [15]. (In [11] the space M"(w) was denoted by M"(I'y(N), R, w)
or M! (I'1(N), R,w) according as X is Y or Y,,.4.) Note that M"(0) identifies with

ord

O"(X) which, in its turn, embeds into O"(X;(N)).

By the universality property of the rings M"™ = O" (V') there exists a unique J-ring

homomorphism (the d-Fourier expansion map)
E:M>— 5% =R, d™), E(f)=flg.q.q" ),
r>0
extending the Fourier expansion map E : M — R((q))". We may also consider the
composition
M= — 5% 5 R((q)), [+ f(q),

where the map 7 sends ¢/, ¢”, ... into 0; we refer to this composition as the Fourier

ETPansion map.

Recall the “j-expansion principle”:

Proposition 4.5.11. [11] The maps E : M"(w) — R((¢))[¢, ...,q"]" are injective
with torsion free cokernel; hence the induced maps E : M"(w)®k — k((¢)[¢, ..., ¢

are injective.
Proof. This is [11], Lemma 6.1. O

Recall also the following result:

Theorem 4.5.12. [11] If in Ezample 453 k = 0, F' = Q, and p > 0 then the
series f%%(q,q',q") € R[[d)]ld,q"]" in (4.5.6) is the image of a (unique) S-modular
form (still denoted by) f** € O*(X(N)) C M?(0). If in addition f in Ezample
4.5.3 is of “CL type” then the series o' € k[[q]][¢] in that Ezample is the image of
a §-modular form f** € OY(X(N)) C M(0).

Here by f being of C'L type we mean that the Neron model of the elliptic curve over

@ associated to f via the Eichler-Shimura construction has good ordinary reduction
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and its base change to R is the canonical lift of this reduction; cf. [11, 13] for more

details.

Proof. Let f* € O"(X;(N)) be as in [11], Theorems 6.3 and 6.5; cf. also [13],
Lemma 4.18. So r is 1 or 2 according as f is or is not of CL type. Then Theorem
4.5.12 follows from [11], Theorems 6.3 and 6.5, by letting the 5-modular form f%2 be
defined by

122 f%, if f is not of CL type,
o(f*) —a,f*, if fis of CL type,

and by letting
5= % if fis of CL type.
O

Remark 4.5.13. It is tempting to conjecture that if in Example 4.5.3 k > 0 is ar-
bitrary, ' = Q, and p > 0 then the series f*?(q,q,q") is the §-Fourier expansion
of a §-modular form f*2 € M"(k) for some r > 2. An appropriate variant of this
should also hold for arbitrary F'. As we shall see, however, the situation is drastically

different with Example 4.5.4; c¢f. Theorem 4.5.17.

Recall the Serre derivation operator O : M — M introduced by Serre and Katz
[22]. (Cf. also [10], p.254 for a review). Recall that 9(L®") C L®"*2). Recall also
that if X is contained in Y,,4 then one has the Ramanujan form P € M°(2). By
[10], Propositions 3.43, 3.45, 3.56, there exists a unique sequence of R-derivations

0; : M> — M, 7 >0, such that

(

0jo¢®=0 on M for j # s

’ (4.5.11)
djod) =p- ¢ 0d on M for j >0
\

These derivations then also have the property that

(

;=0 on M7~ ! for j >1

(4.5.12)

djodl =¢/0d on M for j >0
\
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and that
0;(M"(w)) C M"(w + 2¢”). (4.5.13)

Recall the Ramanujan theta operator § = q%} : R((q)) — R((q)). Then by [10],

Lemma 4.18, there is a unique sequence of R-derivations 0; : 575, — 57, such that

600" =0 on R((q)) for j # s

(4.5.14)
G;od) =p’ - ¢’ o6 on R((q)) for j > 0;
and such that
9. =0 on R((q)[¢,....qU V] for j > 1
j ((g))] ] (45.15)

;0867 = ¢’ o6 on R((q)) for j > 0.

Proposition 4.5.14. For any w = >, ja;¢' € W, any j > 0, and any f € M"(w)

the following formula holds in S7,:

E(9,f) = 6;(E(f)) — a;p E(f)E(P)” .

Proof. This was proved in [10], Proposition 8.42 in the case of “j-Serre-Tate
expansions”; the case of 0-Fourier expansions is entirely similar. (The level 1 case of
this Proposition was proved in [1] using the structure of the ring of modular forms

of level 1.) n

Proof of Theorem 4.5.6. By Theorem 4.4.4 all we have to show is that ¢ in that
Theorem is the Fourier expansion of a modular form in M(I'y(N), k, k'), K =k + 2
mod p — 1. Since f is not a p-th power we may assume ¢y = 1. Now if f(g,¢') is the

reduction mod p of the J-Fourier expansion

E(f) = f(q,q,....q") € 5%,
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of a d-modular form f € M"(w) then, by Proposition 4.5.14, and Equations 4.4.4

and 4.5.15 we have the following congruences mod p in 5%,

E(01f) 0.(E(f))

—XV (0)q 7701 (6q)

—MV (0)q P p(0q)

_/\pv(@-

By Equation (4.5.13) we have that 0, f € M"(w + 2¢). So by Proposition 4.5.5
the image E(d1f)(q,0,...,0) of E(01f) in R((q))" is an element of weight xk + 2 in
W. So E(01f)(q,0,...,0) is congruent mod p to the Fourier expansion of a classical
modular form of weight x' = k +2 mod p — 1. So A,V () is the Fourier expansion
of a modular form in M (T (N),k,«'). If A, # 0 then V(i) is the Fourier expansion
of a modular form in M(I'\(N), k, x") hence so is ¢ = UV (because U preserves
the weight [20], p.458). If A, = 0 then, by (4.4.2) we have p = >

np)=1 Anq" SO
0 = 0(pY) = 0(py). Now ¢ is the image of E(f) in k[[g]] so, as above, by
Proposition 4.5.5, ¢ is the Fourier expansion of a modular form in M (I'y(N), k, &)
where k” = k mod p— 1. But 0 sends Fourier expansions of modular forms of weight
k" into Fourier expansions of modular forms of weight £” + p + 1; cf. [20], p. 458.
So ¢ is the Fourier expansion of a modular form in M (I'y(N), k, k" +p+ 1), and we

are done because " +p+1=k+2mod p — 1. ]

Proof of Theorem 4.5.7. Set ' = k+2+(p—1)v, v > 0. Since =Y (q) = 67~2(q)
by get that (7Y (q) is the Fourier expansion of a modular form over k of weight
K +(p—2)(p+1) = k+(p—1)(p+v) hence V(=Y (q)) is the Fourier expansion of a
modular form over k of weight g ; := p'(k+(p—1)(p+v)); the latter lifts to a modular
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form @y, € M(T'1(N), R, ko;) which can be viewed as an element in M%(kq;). Also
Vitl(p) and V*2(p) are Fourier expansions of modular forms over k of weights
k1= p K and kg, := p'Tk so they lift to modular forms ®; ; € M (T1(N), R, k1)
and @y, € M(I'1(N), R, ko) respectively. The latter can be viewed as elements of
MO(ky;) and MO(kq;) respectively. Finally note that f!- fo € M?'(—2) and the
Eisenstein form E,_; can be viewed as an element in M°(p — 1); its inverse is an
element in M°(1 —p). Let A\, € R be a lift of \,. Note that xo; = x mod p — 1;
set eg; 1= % Similarly k1; = kK +2 mod p — 1 and kg; = K + 2p mod p — 1; set

e = % and eg; == K+ip__1'{2’i. Then, by Propositions 3.5.8 and 3.5.9 f is the

0-Fourier expansion of the d-modular form
S [B - @os— Ny By @y (f1 - )+ PF - B2y @oa - (F1 - fO)P] (4.5.16)
i>0

which is an element of M'(k). This ends the proof. O

Ezxample 4.5.15. We consider the special case of Example 4.5.3. Let

fl@) =" amg™ € qZ[q]] (4.5.17)

m>1
be the Fourier expansion of a cusp form f € M(I'g(N),Z,2). Assume a; = 1 and
assume f(q) is an eigenvector for all the Hecke operators To(n) with n > 1. Assume
pis a prime and let ¢ == f = Y om>18mq™ € qF,|[q]] be the reduction mod p of f(q).
Then the equalities (4.5.2) hold with x = 0. So by Theorem 4.5.1 the series
1 an K n n n
2= 1*(a.4.q") = ];-Z 2 ("0%(0)" —ap0(0)" +10") € Qylla. 7' q"]) (4.5.18)
n>1

belongs to Z,[[q]][¢, ¢"]" and its reduction mod p equals

TE2 . £52 ;oo (1) = ql 2 q/ ! /

f22 = f22(q,q.¢") = ¢ —apV(sDW +V(p) i Fpollal]lg]. (4.5.19)
Note also that T5(n)¢ = @, - ¢ for (n,p) = 1 and Up = G, - ¢. So by Theorem
4.4.7 f#2 is an eigenvector of the Hecke operators nTo(n), “pTo(p)”, (n,p) =1, with
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eigenvalues @,, a,. In addition, if p > 0, by Theorem 4.5.12, the series f**(q,q,¢") in
(4.5.18) is the -Fourier expansion of a §-modular form f%2 € O%(X,(N)) Cc M2%(0).

On the other hand, as in the proof of Theorem 4.5.7, (=Y (q) is the Fourier ex-
pansion of a modular form over k of weight p* — p; the latter lifts to a modular form
®y € M(T'y(N), R,p* — p) which can be viewed as an element in M°(p? — p). Also
V(p) and V?(yp) are Fourier expansions of modular forms over k of weights 2p and
2p? so they lift to modular forms ®; € M(I'y(N), R,2p) and &, € M(I';(N), R, 2p?)
respectively. The latter can be viewed as elements of M°(2p) and M°(2p?) respec-
tively. Then W is the d-Fourier expansion of the §-modular form

fm B @ —ay B @1 (1 f0) 4By (- O € MY(0). (4.5.20)

Note now that %2 € M?(0) and f' € M*'(0) have the same §-Fourier expansion and
the same weight. By Proposition 4.5.11 (the “d-expansion principle”) we get the

following:

Corollary 4.5.16. In the notation of Example 4.5.15 we have the congruence f*? =
f' mod p in M?(0).

Note that the right hand side of this congruence has order 1 and has a priori
“singularities” both at the cusps of X;(/N) and at the supersingular points. In stark
contrast with that, the left hand side of the above congruence has no “singularity”

at either the cusps or the supersingular points.

Also in stark contrast with Theorem 4.5.12 we have the following consequence of

Theorem 4.5.6.

Theorem 4.5.17. Let f(q) be as in Example 4.5.4 and assume N # 1 mod p (for
instance p > 0). Then the series f%(q,q',q") in (4.5.10) is not the image of any
element in any space M"(w) with r > 0, deg(w) = 0.
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Proof. Assume the notation of Example 4.5.4. By Theorem 4.5.6 it follows
that the image of f(q) in IF,[[¢]] is the Fourier expansion of some modular form
fe M(Ty(N),F,,2+ (p—1)v), v > 0. On the other hand, by Example 4.5.4 we
know that the image of g(¢q) in F,[[¢]] is the Fourier expansion of a modular form

g€ M(I'y(N),F,,2). It follows that the modular form
hi=EY -G~ feMI(N),F2+ (p—1)v)

has Fourier expansion a constant v := % € F,. On the other hand v, viewed as an
element in M (Iy(N),F,,0) has Fourier expansion 7. By the Serre and Swinnerton-
Dyer Theorem [18], p.140, the difference h— 7 is divisible by E,_; — 1 in the ring
..., M(I'1(N),F,, k). It follows that the weights 2 4+ (p — 1)v and 0 are congruent

mod p — 1, a contradiction. O]

120



References

Barcau, M: Isogeny covariant differential modular forms and the space of elliptic
curves up to isogeny, Compositio Math. 137, 237-273 (2003).

Borger, J. : The basic geometry of Witt vectors, I: The affine case, to appear in
Algebra and Number Theory.

Borger, J. : The basic geometry of Witt vectors, 1I: Spaces, to appear in Math-
ematische Annalen.

Breuil C., Conrad B., Diamond F., Taylor R.: On the modularity of elliptic
curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 4, 843-939.

Buium, A. : Differential Algebra and Diophantine geometry, Actualités
Mathématiques. [Current Mathematical Topics] Hermann, Paris, 1994.

Buium, A. : Intersections in jet spaces and a conjecture of S. Lang, Annals of
Math. 136 (1992) 557-567.

Buium, A. : Differential characters of Abelian varieties over p—adic fields, In-
vent. Math. 122, 309-340 (1995).

Buium, A.: Geometry of p-jets, Duke Math. J., 82, 2, (1996), 349-367.
Buium, A. : Differential Modular forms, Crelle J., 520 (2000) , 95-167.

Buium, A. : Arithmetic Differential Equations, Mathematical Surveys and
Monographs 118, AMS, 2005.

Buium A., Differential eigenforms, J. Number Theory 128 (2008), 979-1010.

Buium, A.: Differential characters on curves, Serge Lang Memorial Volume, to
appear.

121



References

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

Buium, A., Poonen, B.: Independence of points on elliptic curves arising from
special points on modular and Shimura curves, II: local results, Compositio
Math., 145 (2009), 566-602.

Buium, A., Saha, A., Hecke operators on differential modular forms mod p,
submitted to J. of Number Theory, arXiv:1104.0129.

Buium A., Saha A., The ring of differential Fourier expansions, submitted to J.
of Number Theory, arXiv:1104.0124.

Deligne, P., Rappoport, M., Schemas de modules de courbes elliptiques, LNM
349, Springer 1973, pp. 143-316.

Diamond, F., and Im, J.: Modular forms and modular curves. In: Seminar on
Fermat’s Last Theorem, Conference Proceedings, Volume 17, Canadian Mathe-
matical Society, pp. 39-134 (1995).

Goren, E. Z., Lectures on Hilbert Modular Varieties and Modular Forms, CRM
Monograph Series CRMM 14, 2002.

Gouveéa, F., Arithmetic of p-adic modular forms, Lecture Notes in Math. 1304,
Springer, 1985.

Gross, B. H., A tameness criterion for Galois representations associated to mod-
ular forms mod p, Duke Math. J., 61, 2, 445-517 (1990).

Hesselholt, L., Lecture notes on the big de Rham-Witt complex, Lecture notes
2009.

Katz, N.: p—adic properties of modular schemes and modular forms, LNM 350,
Springer, Heidelberg (1973).

Katz, N.: p-adic interpolation of real Eisenstein series, Ann. of Math. 104
(1976), 459-571.

Knapp, A.: Elliptic Curves, Math. Notes, Princeton Univ. Press (1992).

Manin, Yu. I. : Rational points on algebraic curves over function fields, Izvestja.
Acad. Nauk USSR, 27 (1963), 1395-1440.

Mumford, D. : Lectures on curves on an algebraic surface, Annals of Mathe-
matics Studies, 59.

Serre, J. P.. Formes modulaires et fonctions zéta p—adiques. In: LNM 350
(1973).

122



References

(28] Silverman, J. H.: Arithmetic of Elliptic Curves. Springer, Heidelberg, New York
(1985).

[29] Silverman, J. H.: Advanced Topics in the Arithmetic of Elliptic Curves.
Springer, Heidelberg, New York (1994).

123



	Arithmetic jet spaces and modular forms
	Recommended Citation

	diss_approval_pdf
	Thesis_UNM

	Member 8: 
	Member 7: 
	Member 6: 
	Member 5: 
	Member 4: 
	Member 3: James Borger
	Member 2: Michael Nakamaye
	Member 1: Charles Boyer
	Chair: Alexandru Buium
	Department: Mathematics and Statistics
	Candidate: Arnab Saha


