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Abstract 
Background: Both hypoxia and anemia stimulate erythropoiesis by stimulating Epo 

transcription and protein production. Developmental, tissue-specific, and environmental 

signals all contribute to the precise regulation of the Epo gene. Temporal and tissue-specific 

signals limit expression of the Epo gene primarily to cells in the fetal liver and adult kidney. 

The precise mechanisms regulating Epo gene expression during human fetal development are 

unclear.  We sought to determine if regulation of the Epo gene occurs in some part through 

methylation.  Using the demethylating agent 5-aza-2’ deoxycytidine (DAC), we compared 

Epo mRNA expression in human fetal kidney and liver between 12 and 22 weeks gestation 

under normoxic and hypoxic conditions. 

Methods: Primary cell cultures from liver and kidney tissue ranging from 12-22 weeks were 

either treated with DAC or vehicle control for three days. After day three, each matched 

kidney and liver set were incubated at 1% (hypoxia) or 21% (room air) for eight hours in a 37 

degree C incubator. RNA was harvested using TriZol, isolated, reverse transcribed, and 

quantification PCR was performed to measure Epo mRNA expression.   Epo mRNA 

expression was normalized to an internal standard 18S rRNA in each duplex reaction. 

Results: Epo mRNA concentrations were much greater in liver than kidney at all gestations 

tested (p<0.001).  A twenty-fold increase in Epo mRNA concentrations occurred when liver 

samples were exposed to hypoxia, however this increase was not enhanced by pretreating the 

samples with DAC.  There was no statistical difference in Epo mRNA concentrations when 

kidney samples were exposed to hypoxia.  There was a four-fold increase in Epo mRNA 

concentrations when kidney samples were pretreated with DAC, however this difference was 

not statistically significant.   
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Conclusions: Demethylation of fetal kidney increased Epo mRNA expression, but not to the 

level of Epo mRNA expression measured in fetal liver.  Methylation of fetal liver did not 

increase Epo mRNA expression under hypoxic conditions.  We speculate that Epo gene 

expression in fetal kidney is regulated in part by methylation, and is developmentally 

regulated during mid-gestation. 

 

 

Abbreviations: Epo (erythropoietin), DAC (5-aza-2’-deoxycytidine), DMEM (Dulbecco’s 

Modified Eagle’s Medium) 
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Introduction 

Regulation of the red blood cell mass relies on modulating erythropoietin (Epo) gene 

expression in response to tissue oxygen tension. Both hypoxia and anemia stimulate 

erythropoiesis by stimulating Epo transcription and protein production. Developmental, 

tissue-specific, and environmental signals limit expression of the Epo gene primarily to cells 

in the fetal liver. Epo gene expression transitions to the kidney only after birth. The precise 

mechanisms regulating Epo gene expression during human fetal development are unclear.  

 

The regulation of gene expression can occur through biochemical, non-genetic alterations in 

the gene. Such mechanisms can occur through methylation – the process in which methyl 

groups attach to cytosines of CpG sites, thereby blocking gene expression through tertiary 

changes. Regulation via methylation has been proposed as a cause for tissue and 

developmental differences in Epo gene expression.  

 

The purpose of this study was to determine if methylation played a role in Epo gene 

expression during fetal development. Regulation of the Epo gene occurred in part through 

methylation by exposing fetal tissues to a demethylating agent, 5-aza-2’-deoxycytidine 

(DAC). We sought to determine if methylation could affect Epo expression. We 

hypothesized that the Epo gene would be primarily unmethylated in fetal liver and would not 

respond to a demethylating agent by increasing Epo mRNA expression. We also 

hypothesized that fetal kidney would be heavily methylated and would therefore respond by 

increasing Epo mRNA expression. We compared Epo mRNA expression in human fetal 
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kidney and liver between 12 and 22 weeks gestation after pretreating cells with DAC and 

exposing to hypoxia.  

 

Methods 

Tissue samples: 

Fetal liver and kidney samples were obtained 15 minutes after termination from six fetuses 

ranging 12 to 22 weeks gestation. After identifying liver and kidney tissue, the tissue was 

minced using sterile scalpel blades and placed in 10 mL of Dulbecco’s Modified Eagle’s 

Medium (DMEM) containing 10% fetal bovine serum. Tissue was triturated to create a cell 

suspension. Trypan blue exclusion was performed to determine cell viability. Viable cells 

were plated at a density of 106 cells per mL in 60 cm3 culture dishes. Cells were placed in a 

37ºC incubator with 5% CO2 and 21% O2 and allowed to adhere to the plate for 24 hours.  

 

 Hep 3B cells constitutively express Epo at low levels under normoxic conditions, and 

express abundant Epo mRNA and protein in response to hypoxia. These cells served as 

postitive controls. Previous studies showed that the promoter and enhancer regions of the 

Epo gene are primarily unmethylated. HeLa cells do not constitutively produce Epo under 

normoxic or hypoxic conditions and therefore served as negative controls.  

 

Cell culture and processing: 

DAC (Sigma-Aldrich) was reconstituted in sterile water and diluted to a 10 mM working 

stock. Based on preliminary dose-response experiments (data not shown), a final 

concentration of 50 µM was chosen. After 24 hours, media was removed, cells were washed 
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with phosphate buffered saline (PBS) and, and fresh media containing DAC or vehicle 

control (sterile water) was added. Media was changed every 24 hours for three consecutive 

days.  

 

After three days of DAC treatment, fetal cells, Hep 3B cells, and HeLa cells were incubated 

at 1% or 21% oxygen for eight hours. The cells were then removed from the incubator for 

processing. Total RNA was harvested using 1 mL of TriZol (Invitrogen, Carlsbad, CA).  

 

RNA was isolated and quantified using a spectrophotometer. Reverse transcription was 

performed on 200ng total RNA using a commercially available kit (cDNA Archive Kit, 

Applied Biosystems, Foster City, CA).  

 

Quantitative-PCR: 

Quantification of the Epo mRNA was performed using the ABI Prism 7700 Sequence 

Detection System (ABI). PCR reaction volumes contained 4 µL cDNA, 1 µL Epo primer 

/probe mix (6-FAM-tgg aag agg atg gag gtc ggg ca- TAMRA) , 5’ primer (5’-aat atc acg acg 

ggc tgt g-3’) and 3’ primer (3’-tgc cag act tct act gcc-5’), 10 µL TaqMan Universal Master 

Mix, 1 µL 18 S primer /probe mix (sequence copyright of ABI), and 4 µL PCR water for a 

total reaction volume of 20 µL. 

 

Absolute quantification assay was performed using Hep 3B total RNA that was serially 

diluted (500ng, 100ng, 20ng, 4ng) prior reverse transcription to provide a standard curve of 
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Epo mRNA expression. Epo mRNA concentrations were normalized to 18S rRNA 

concentrations. Each duplex reaction (Epo and 18S) was run in duplicate.  

 

Determination of quantity was based on the standard curve generated. The log quantity of 

cDNA standard was plotted against the cycle threshold, slope (m) any y-intercept (b). The 

cycle threshold of the sample was determined using the formula x (quantity)=10(Ct-b)/m. 

 

Statistical Analysis: 

Epo expression for all samples was normalized to the internal 18S rRNA control expression 

based on the 18S mRNA concentration of 100 ng. The equation (100 ng 18S / measured 18S 

concentration) x (measured Epo concentration) allowed for this normalization. Epo mRNA 

concentrations were compared using unpaired t-tests and ANOVA (analysis of variance). 

Differences in Epo mRNA concentrations resulting from the various experimental conditions 

(± DAC, ± hypoxia, liver versus kidney) were analyzed using STATView commercial 

software (SAS institute, Version 5.01, Cary, NC). A power analysis was originally performed 

to determine the number of fetal samples to be studied, however due to time constraints only 

the first 6 samples are reported. The study was deemed not to constitute human subject 

research by the Human Research Review Committee at the University of New Mexico, as no 

identifiable patient data was collected.  

 

Results 

Epo mRNA concentrations were much greater in liver than kidney at all gestations tested 

(p<0.001).  A twenty-fold increase in Epo mRNA concentrations occurred when liver 
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samples were exposed to hypoxia (p=0.001), however this increase was not enhanced by 

pretreating the samples with DAC (p=0.096; figure 1).  There was no statistical difference in 

Epo mRNA concentrations when kidney samples were exposed to hypoxia (p=0.168, figure 

2).  There was a four-fold increase in Epo mRNA concentrations when kidney samples were 

pretreated with DAC, however this difference was not statistically significant.  When kidney 

samples were grouped into early (12-16 weeks) and late (17-22 weeks) gestation, there was a 

significant increase in mRNA concentrations in the early kidney samples pretreated with 

DAC and exposed to hypoxia (p=0.024).   

 

HeLa cells were similar to kidney samples, in that they responded to pretreatment with DAC 

by increasing Epo mRNA concentrations under hypoxic conditions (p=0.006, figure 3).  Epo 

mRNA concentrations in Hep 3B cells pretreated with DAC were lower under both normoxic 

and hypoxic conditions (p=0.004 and p<0.001, respectively, figure 4), however the response 

to hypoxia appeared preserved in that pretreatment with either DAC or vehicle control 

resulted in increased Epo mRNA concentrations in response to hypoxia (p=0.0005, DAC 

pretreatment; p=0.0002, vehicle control). 
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Discussion 

We hypothesized that demethylation of the enhancer region of the Epo gene with DAC would 

significantly increase mRNA expression in fetal kidney. 

 

 In these sets of experiments expression of Epo mRNA was significantly greater in fetal liver than 

fetal kidney. The greatest Epo expression occurred in Hep 3B cells not exposed to DAC and exposed 

to hypoxia. This is likely due to the fact that the enhancer region is unmethylated and therefore, 

would not increase Epo expression in response to pretreatment with a DNA methyltransferase 

inhibitor like DAC. In previous experiments, Epo expression was inhibited by DAC pretreatment 

(data not shown).  

 

While Epo mRNA expression in fetal kidney cells of all gestational ages was markedly less 

abundant than fetal liver, treatment with DAC and exposure to hypoxia showed a seven-fold increase 

in Epo expression compared with kidney cells not treated with DAC and incubated in a normoxic 

environment. These findings help support our theory that regulation of the Epo gene occurs in part 

through methylation. Also, the cervical cancer cell line, HeLa, does not produce Epo and served as 

our negative control. When exposed to DAC and hypoxia, however, Epo expression increased four-

fold as compared to the non-DAC treated, normoxic counterpart.  

 

Epo production in the fetus occurs in the liver. Sometime after birth Epo production shifts to the 

kidney (1-3). The shift may be due to the changes in arterial oxygen tension occurring just after birth 

(4). Interestingly, Epo production drops dramatically within 24 hours of delivery, and both term and 

preterm infants experience a gradual decrease in hemoglobin concentration over the next 2 to 3 
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months. In term infants, Epo production and erythropoiesis resumes between 6 to 12 weeks of life. 

In preterm infants, the reinitiation of Epo production is delayed, and erythropoiesis does not occur. 

The resulting “anemia of prematurity” affects preterm infants less than 32 weeks gestation. It is 

characterized by a normochromic, normocytic anemia with decreased hemoglobin and reticulocytes. 

The decrease in hemoglobin in preterm infants is much more significant than that seen in term 

infants (5-8). Infants demonstrating symptoms of anemia are treated by transfusion (9, 10). The 

molecular and cellular mechanisms responsible for the anemia of prematurity are still undefined. 

 

Erythropoietin (Epo) is a 34 kilodalton glycoprotein hormone located on chromosome 7q22 that 

stimulates the differentiation of lineage-committed pluripotent stem cells to erythrocytes in response 

to hypoxic conditions. Regulation of erythropoiesis and the red blood cell mass relies on altering 

Epo gene expression in response to tissue oxygen tension. Epo gene regulation in the adult requires 

an oxygen-sensing mechanism (11, 12). Both hypoxia and anemia stimulate transcription of the Epo 

gene in the kidney (13). 

 

Studies evaluating cell lines such as Hep 3B cells that produce significant Epo protein in 

response to hypoxia reveal that binding sites for hypoxia response elements such as hypoxia 

inducible factor 1 (HIF-1) in the promoter and enhancer regions are free of methylation. 

Thus, 10 to 1000 fold enhancement of transcription of the Epo gene occurs. The human Epo 

gene contains critical CpG sites in the HIF-1 binding site of the enhancer region that may be 

differentially methylated.  
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DAC inhibits DNA methyltransferase in genomic DNA and causes demethylation of cytosine 

residues in CpG islands. Removal of bulky methyl groups allows transcription factors to bind to the 

promoter regions allowing assembly of transcription complexes and thus, gene expression.  

 

Significant heterogeneity occurs when preparing primary cell cultures from fetal liver and kidney. 

These cell suspensions include Epo producing and non-Epo producing cells. Further studies in the 

laboratory will include ways to differentiate cells of the fetal liver and kidney that express Epo.  

 

We speculate that methylation patterns are developmentally controlled and may vary with 

gestational age. 
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Figures 

Figure 1. Liver 
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Figure 1: Epo mRNA concentrations were much greater in liver than kidney at all gestations 

tested (p<0.001).  A twenty-fold increase in Epo mRNA concentrations occurred when liver 

samples were exposed to hypoxia (p=0.001), however this increase was not enhanced by 

pretreating the samples with DAC (p=0.096). 
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Figure 2. Kidney

1 . 4

1 . 2

 

Figure 2: There was no statistical difference in Epo mRNA concentrations when kidney 

samples were exposed to hypoxia (p=0.168). There was a four-fold increase in Epo mRNA 

concentrations when kidney samples were pretreated with DAC, however, this difference 

was not statistically significant.   
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Figure 3. HeLa 
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Figure 3: HeLa cells were similar to kidney samples, in that they responded to pretreatment 

with DAC by increasing Epo mRNA concentrations under hypoxic conditions (p=0.006). 
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Figure 4. Hep 3B 
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Figure 4: Epo mRNA concentrations in Hep 3B cells pretreated with DAC were lower under 

both normoxic and hypoxic conditions (p=0.004 and p<0.001, respectively). The response to 

hypoxia appeared preserved in that pretreatment with either DAC or vehicle control resulted 

in increased Epo mRNA concentrations in response to hypoxia (p=0.0005, DAC 

pretreatment; p=0.0002, vehicle control). 

 

0

2 0

4 0

6 0

8 0

1 0 0

he
p,

 ra

he
p,

 h
yp

ox
ia

DAC

Control 

Epo 
mRNA 

21% 1% 


	University of New Mexico
	UNM Digital Repository
	8-22-2008

	Alterations in Methylation of the Erythropoietin Gene During Human Fetal Development
	Sally Vendor
	Suzanne McConaghy
	Robin Ohls
	Recommended Citation


	Introduction

