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Abstract

The Black Scholes equation is a fundamental model for derivative pricing. Modifying

its assumptions will lead to more realistic but mathematically more complicated

models. This dissertation consists of analytical and numerical studies about one

particular type of nonlinear Black Scholes models, whose nonlinearity lies in the

highest spatial derivative 1 with discontinuous coefficient function.

First we smooth out the discontinuous term and focus only on the nonlinearity.

We consider the case where the volatility is a smooth function and present some

basic existence and uniqueness results. To study the discontinuity we simplify the

problem by discretizing the Partial Differential Equation PDE only in time and

1In physics, spatial derivative is the partial derivative with respect to space. Here the
spatial derivative is with respect to the price of the underlying asset.
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consider the evolution in a given tiny time step from initial data. We perform

convergence and perturbation analysis to the Ordinary Differential Equation (ODE)

with discontinuous coefficient and obtain some insight of how the curves, where

the discontinuity occurs, evolve in the space-time plane for the PDE. Last we obtain

numerical results for the nonlinear PDE in the setting of a moving boundary problem.
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Chapter 1

Introduction

The field of mathematical finance has gained significant attention since Black, Sc-

holes, and Merton [1] published their Nobel Prize work in 1973. Using some simpli-

fied economic assumptions, they derived a linear partial differential equation (PDE)

of convection–diffusion type which can be applied to the pricing of options. The

solution to the linear PDE can be obtained analytically.

We are interested in nonlinear modifications of the Black-Scholes equation where

the volatility σ is no longer constant, but depends on vss. Here v is the value of

the option and s is the price of the underlying asset. The resulting PDEs become

nonlinear in the highest derivative, and furthermore the nonlinear coefficients are

discontinuous. Therefore the mathematical theory of the equation is by no means

trivial. In this dissertation we treat the mathematical difficulties separately in the

following chapters.

This chapter begins with a brief introduction to the classical Black-Scholes model

in Section 1. The derivation of the modified Black-Scholes models is provided in

Section 2.

1



Chapter 1. Introduction

1.1 Classical Black-Scholes Model

Option is an agreement that gives the holder a right, not obligation, to buy from, or

sell to, the seller, or the buyer of the option certain amounts of underlying assets at

a specified price (strike price) at a future time (expiration date). Clearly the value

v of an option is a function of various parameters in the contract, written as

v(s, t;µ, σ;E, T ; r)

Here, s is the price of underlying asset; t is current time; µ is the drift of s; σ is the

volatility of s; E is the strike price; T is the expiration date; r is the risk-free rate of

interest. The assumptions for classic Black-Scholes model are the following:

1. The risk-free interest rate r is a known constant for the life of the option;

2. The price of underlying asset s follows log-normal random walk and the drift

µ and volatility σ are constants known in advance;

3. Transaction costs associated with buying or selling underlying assets are not

considered;

4. There are no dividends on the underlying asset;

5. Hedging can be done continuously;

6. The price of the underlying asset is divisible so that we can trade any share of

the asset;

7. It is an arbitrage-free market.

Let Π denote the value of a portfolio with a long position in the option and a short

position in some quantity ∆ of the underlying asset,

Π = v(s, t)−∆s

2



Chapter 1. Introduction

By assumption, the price s of the underlying asset follows a log–normal random walk,

ds = µsdt+ σsdX (1.1)

where X is standard Brownian motion.

As time changes from t to t+dt, the change in the value of the portfolio is due to

the change in the value of the option and the change in the price of the underlying

asset

dΠ = dv −∆ds

By Itô’s formula, we have

dv = (vt +
1

2
σ2s2vss)dt+ vsds

Combining the last two equations yields

dΠ = (vt +
1

2
σ2s2vss)dt+ (vs −∆)ds

Using a delta hedging strategy, we choose ∆ = vs and obtain

dΠ = (vt +
1

2
σ2s2vss)dt

By the assumption of an arbitrage–free market, the change dΠ equals the growth of

Π in a risk–free interest–bearing account,

dΠ = rΠdt = r(v −∆s)dt

Therefore,

r(v −∆s)dt = (vt +
1

2
σ2s2vss)dt

Substituting ∆ = vs, one arrives at the classic Black-Scholes equation,

vt + rsvs +
1

2
σ2s2vss − rv = 0 for 0 ≤ t ≤ T (1.2)

3



Chapter 1. Introduction

The equation is supplemented by an end–condition at the expiration time T ,

v(s, T ) =







































max(s− E, 0), for call option,

max(E − s, 0), for put option,

H(s− E), for binary call option.

H(E − s), for binary put option.

(1.3)

HereH(x) is the Heaviside function. Equations (1.3) are examples of payoff functions

for different options. Denote the right-hand side in formula (1.3) by v0(s).

An easy generalization can be made if we assume the asset receives a continuous

and constant dividend yield D. The dividend rate can be viewed as risk-free rate for

the underlying asset. After a time step dt each unit of the asset receives an amount

Dsdt of dividend. Thus, the change in the value of the portfolio after a time step dt

becomes

dΠ = (vt +
1

2
σ2s2vss)dt+ (vs −∆)ds−D∆sdt (1.4)

Under from delta hedging and the assumption of a non-arbitrage market, we get

vt + (r −D)svs +
1

2
σ2s2vss − rv = 0 (1.5)

If one uses the transformation

τ = T − t, x = ln(s) + (r −D − 1

2
σ2)(T − t), w(x, τ) = er(T−t)v(s, t)

Equation (1.5) transforms to the heat equation,

wτ =
1

2
σ2wxx

and the end-condition becomes the initial condition,

w(x, 0) = v(s, T ) = v0(s) = v0(e
x) = w0(x)

4



Chapter 1. Introduction

Therefore the classic Black Scholes model with a continuous constant dividend has

the explicit solution

w(x, τ) =

∫ +∞

−∞

1√
2πσ2τ

e
−(x−y)2

2σ2τ w0(y)dy

or

v(s, t) = e−r(T−t)

∫ +∞

−∞

1
√

2πσ2(T − t)
e

−(ln(s)+(r−D−1
2σ2)(T−t)−y)2

2σ2(T−t) v0(e
y)dy (1.6)

For the Black-Scholes model, the ”greeks” are important and useful for constructing

option strategies. “Delta” (∆) of an option defined as

∆ = vs

measures the sensitivity of the option or portfolio to the underlying asset. Call deltas

are positive while put deltas are negative, reflecting the fact that the call option price

is positively related to the underlying asset price while the put option price and the

underlying asset price are inversely related. In fact, based on the put-call-parity, we

have the put delta equals the call delta minus 1.

“Gamma” (Γ) measures how fast the delta changes for small changes in the

underlying stock price. It is the second derivative of the option value with respect

to the underlying asset.

Γ = vss

It shows by how much or how often a position should be rehedged in order to keep

a delta neutral position. For hedging a portfolio with the delta-hedge strategy, then

we want to keep gamma as small as possible, since the smaller it is the less often

we will have to adjust the hedge to maintain a delta neutral position. The gammas

are always positive for call options while negative for put options. However, gammas

generally change signs for more complicated options such as binary options. This

5



Chapter 1. Introduction

makes a big difference in the modified Black-Scholes model, which will be discussed

in the next section.

“Theta”(Θ) is defined as

Θ = vt

It measures the sensitivity of the value of the option to the change of time, i.e: the

“time decay”. If the asset price does not move, then the option will change by theta

with time.

“Vega” measures the sensitivity of the option price to the volatility of the under-

lying asset.

V ega = vσ

It is an important but also confusing index, since volatility is not known with cer-

tainty in real market. Practically, Vega is expressed as the amount that the option’s

value will gain or lose as volatility rises or falls.

The last greek is “Rho” (ρ). It shows the rate of change of the option with respect

to the interest rate.

ρ = vr

Notice in the classic Black-Scholes we make the assumption of a constant interest

rate. However, in practice one can use a time-dependent rate r(t).

With the payoff functions for call, put and binary call/put options, we can cal-

culate option values and “greeks” for these options explicitly. Tables 1.1- 1.3 list

the formulas for values, Deltas and Gammas of options for the Black Scholes model

(1.5). Given parameters as E = 50, r = 0.01, D = 0, T = 1 and σ = 0.2, Figures

1.1-1.6 show payoffs, option values at t = 0, deltas and gammas at t = 0 as functions

of the underlying asset price.

6



Chapter 1. Introduction

The simple call and put options can be combined to construct advanced option

strategies, such as butterfly options and bull options. The butterfly options consist of

several simple call and put options. For example, the butterfly option could consist

of two long calls at different strike prices and two short calls with the same strike

price in between. The payoff function for a butterfly option, shown in Figure 1.7,

can be expressed as

v(s, T ) = max(s− 90, 0) +max(s− 110, 0)− 2max(s− 100, 0) (1.7)

The bull options consists of either call or put options. For example, a bull call

spread could be formed by buying a call option with a low exercise price, and selling

another call option with a higher exercise price. A payoff function example in Figure

1.8 is shown as

v(s, T ) = max(s− 90, 0)−max(s− 100, 0) (1.8)

1.2 Modified Black-Scholes Model

We can modify the assumptions leading to the Black-Scholes model in different ways,

which leads to different modified models. In this section we will focus on three

different models.

1.2.1 Modified Black-Scholes Model with Variable Volatility

Volatility is the most fundamental input to an option pricing model. It is a measure

of how much the underlying asset’s price is likely to vary over time and is used to

quantify the risk over the specified time period. The estimation of volatility is by no

means an exact science, instead, it has many empirical features. Several approaches

7



Chapter 1. Introduction

have been suggested such as using historical volatility or implied volatility, however

neither of them is completely satisfactory. Volatility estimated from historical data

is missing accurate indications of future volatility. While implied volatility from

observed prices of traded options may differ for the same stock across strike prices

and expiration date, like volatility smile 1 and volatility surface 2. An alternative

approach is to assume volatility is not known in advance as a constant but is an

uncertain variable, which lies within a known range of values. This setting is very

different from the classic Black Scholes model in the sense that the option price is no

longer a unique value but lies in a range of possible prices (from worst case to best

case). Work in this field was started by Avellaneda, Levy and Paras [13].

Assume the volatility σ lies within the range

0 < σ− ≤ σ ≤ σ+

where σ+ and σ− are estimates for the maximal and minimal values of σ. We then

have

min
σ−≤σ≤σ+

1

2
σ2s2vss =











1
2
(σ+)2s2vss, if vss < 0,

1
2
(σ−)2s2vss, if vss ≥ 0.

This motivates to define the discontinuous function

σd(vss) =











σ+, if vss < 0,

σ−, if vss ≥ 0.
. (1.9)

As outlined in the previous section, under delta hedging, ∆ = vs, we have

dΠ = (vt +
1

2
σ2s2vss)dt

1When implied volatility is plotted against strike price, the resulting graph typically
turns up at either end. The shape of the curve is called the “smile”.

2Implied volatility can be plotted against both maturity and strike price. The three-
dimensional plot is called local volatility surface.

8



Chapter 1. Introduction

Assume the minimum return on the portfolio with volatility σ varying over the range

σ− ≤ σ ≤ σ+ equals the risk-free return rΠdt. We then obtain

(vt +
1

2
σd(vss)

2s2vss)dt = rΠdt = r(v − svs)dt

with σd(vss) given by function (1.9). One obtains the non-linear PDE

vt + rsvs +
1

2
σd(vss)

2s2vss − rv = 0 (1.10)

This is the model of Avellaneda, Levy, Paras for uncertain volatility.

We can also find the best option value by setting the maximum return on the

portfolio to be the risk-free return. Then we will have a different discontinuous

function of σd(vss) as

σd(vss) =











σ+, if vss ≥ 0,

σ−, if vss < 0.
. (1.11)

In practice, we will not find much use for the best return model with (1.11), since it

will be meaningless to assume the best outcome financially.

The nonlinearity in equation (1.10) has an important practical consequence. In-

dividual options can not be calculated separately and aggregated. Any portfolio

containing several options must be treated as a whole, such as binary options, but-

terfly spread and bull spread.

Because of the variability of σ = σd(vss), the transformation

x = ln(s) + (r − 1

2
σ2)(T − t)

is not useful since it depends on the solution v. Instead, we apply the much simpler

transformation

τ = T − t, x = s, u(x, t) = v(s, τ)

9



Chapter 1. Introduction

This transformation leads to

uτ =
1

2
σ2
d(uxx)x

2uxx + rxux − ru , x > 0 (1.12)

u(x, 0) = v(s, T )

1.2.2 Modified Black Scholes Equation with Transaction

Costs

Transaction costs are the costs appearing in the buying and selling of the underly-

ing asset. The Black Scholes model requires the continuous rebalancing of a hedged

portfolio and assumes no transaction costs in buying and selling. In reality, transac-

tion costs do exist, of course. Depending on the underlying market, transaction costs

may or may not be important. For example, transaction costs in emerging markets

are more expensive and therefore it is not desirable to rehedge frequently. However,

in a more liquid market, transaction costs may be very low and a portfolio can be

easily rehedged to keep a delta neutral position. The classic Black-Scholes equation

should be generalized to incorporate the effects of transaction costs in option pricing.

Based on Leland’s model [11], we assume that the transaction cost is proportional

to the value of the underlying assets traded and the rate of proportion is a positive

constant κ. Therefore, for buying (+) or selling (-) of |ν| shares at the price s, the

transaction cost is

κ|ν|s

It is possible to generalize the model by considering the components of transaction

costs as a fixed cost for each transaction or a cost proportional to the number of

shares of traded assets. Whalley and Wilmott [10] discussed the general models

in greater detail. For completeness of model derivation, we quickly make a sketch

of the Hoggard-Whalley-Wilmott model, which is based on Leland’s assumption of

10



Chapter 1. Introduction

transaction cost. Since transaction can only happen in discrete time step δt, we need

to approximate the stochastic process (1.1) for the underlying asset by

δs = µsδt+ σsφδt
1
2 (1.13)

where φ is a standardized normal random variable. This approximation is based on

the assumption thatX is the standard Brownian motion. According to the normality

of Brownian motion, we have

X(t+ δt)−X(t) ∼ N(0, δt)

and as δt → 0, X(t + δt)−X(t) approach to zero like
√
δt. We construct the same

portfolio Π = v(s, t) − ∆s. After a time step δt, the change in the value of the

portfolio is given as

δΠ = σs(vs −∆)φ
√
δt+ (vt +

1

2
σ2s2vssφ

2 + µsvs − µ∆s)δt− κs|ν| (1.14)

We use the same delta hedging strategy as in the classic Black-Scholes model and

choose ∆ = vs. The number of shares a trader holds is provided by ∆ and hence the

quantity ν is given by the change in the deltas

ν = vs(s+ δs, t+ δt)− vs(s, t) (1.15)

Using Taylor expansion, this can be approximated to the leading order as

ν = vssσsφ
√
δt+O(δt) (1.16)

Therefore, the change in portfolio can be approximated by

δΠ = (vt +
1

2
σ2s2vssφ

2)δt− κs2|vss|σ|φ|
√
δt (1.17)

And its expectation is

E[δΠ] = (vt +
1

2
σ2s2vss − κσs2

√

2

πδt
|vss|)δt (1.18)

11



Chapter 1. Introduction

which follows from the facts

E[φ] = 0, E[φ2] = 1, and E[|φ|] = 2

π

Set the expected change of the portfolio value to be the amount that would have

been earned by risk free deposit, namely E[δΠ] = rΠδt. After dividing by δt and

rearranging, we obtain

vt +
1

2
σ2s2vss − κσs2

√

2

πδt
|vss|+ rsvs − rv = 0 (1.19)

which is the Hoggard-Whalley-Wilmott model. Note that equation (1.10) with un-

certain volatility model is exactly the same as the Hoggard-Whalley-Wilmott model

(1.19). The nonlinear partial differential equations are essentially the same, however

the reasons to form such equations are completely different.

1.2.3 Market Liquidity

The market price of the underlying asset is determined by supply and demand of

the traded asset. Therefore the underlying asset price is affected by dynamic trading

strategy. However, the classic Black Scholes model assumes that the market has

perfect liquidity, meaning that investors can buy or sell a large amount of stock

without affecting its price. In practice, there must be a feedback effect of trading

strategies in any real market. Here we will take the market liquidity into account

and introduce the modified model based on the analysis of Frey and Patie [14].

The price of the underlying asset is assumed to follow a stochastic process driven

by some exogenous source of randomness such as a standard Brownian motion and

also by the trading strategy of a representative trader. This leads to

ds = σsdX + ρλ(s)sdα (1.20)

where α is the stock trading strategy of a large trader, such as the amount of stock

held by the trader. The variable ρ is a non-negative constant liquidity parameter. A

12



Chapter 1. Introduction

small value of ρ means the market is more liquid and vise versa. Note if we set ρ to

be zero then we are back to the Black Scholes assumption of perfect liquidity. The

term 1
ρλ(s)s

measures the “depth of the market”, which indicate the size of change in

price caused by the change in one unit account of the large trader’s stock position.

The parameter λ describes the asymmetry of liquidity. In general, the market seems

to be more liquid in bull market than in bear market range. Suppose the large trader

uses a trading strategy of the form α = φ(t, s). Then by Ito’s Formula we will have

dα = (φt +
1

2
φssσ

2s2)dt+ φsds (1.21)

Inserting (1.21) into the right-hand-side of (1.20) and rearranging the terms, we

obtain

ds = ν(t, s)sdX + b(t, s)sdt (1.22)

where

ν(t, s) =
σ

1− ρλ(s)sφs

(1.23)

b(t, s) =
ρλ(s)(φt +

1
2
φssν

2(t, s)s2)

1− ρλ(s)sφs

(1.24)

In Frey’s model, the risk free interest rate is set to be zero for simplicity. Similar to

the analysis of the portfolio in the Black Scholes model, we can derive the nonlinear

Frey model as

vt +
1

2

σ2

(1− ρλ(s)svss)2
s2vss = 0 (1.25)

with end condition at expiration date as payoff function.

v(s, T ) = payoff(s) (1.26)

while the trading strategy is

φ(t, s) = vs(t, s) (1.27)

13



Chapter 1. Introduction

Note that the volatility ν is not a constant. Indeed, it depends on vss, the second

spatial derivative of the solution.

To summarize this section of modified Black Scholes models, we showed nonlinear

pricing models followed from different assumptions. These three models exhibit

common mathematical features. The coefficient functions of these PDEs are not

smooth and they depend on the highest spatial derivatives of the solution. Based on

model (1.10), analysis of the essential mathematical features are discussed in Chapter

2 and Chapter 3 while numerical results are shown in Chapter 4.

14
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Option Value

Call se−D(T−t)N(d1)−Ee−r(T−t)N(d2)

Put −se−D(T−t)N(−d1) + Ee−r(T−t)N(−d2)

Binary Call e−r(T−t)N(d2)

Binary Put e−r(T−t)(1−N(d2))

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2dy

d1 =
ln( s

E
) + (r −D + 1

2
σ2)(T − t)

σ
√
T − t

d2 =
ln( s

E
) + (r −D − 1

2
σ2)(T − t)

σ
√
T − t

Table 1.1: Option value
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Option Delta

Call e−D(T−t)N(d1)

Put e−D(T−t)(N(d1)− 1)

Binary Call
e−r(T−t)N ′(d2)

σs
√
T − t

Binary Put −e
−r(T−t)N ′(d2)

σs
√
T − t

N ′(x) =
1

2π
e−

x2

2

Table 1.2: Delta of option

16
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Option Gamma

Call
e−D(T−t)N ′(d1)

σs
√
T − t

Put
e−D(T−t)N ′(d1)

σs
√
T − t

Binary Call −e
−r(T−t)d1N

′(d2)

σ2s2
√
T − t

Binary Put −e
−r(T−t)d1N

′(d2)

σ2s2
√
T − t

Table 1.3: Gamma of option
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Chapter 2

Existence and Uniqueness Analysis

The essential mathematical difficulty of equation (1.10) lies in the nonlinear term

σ2
d(vss)vss. To address this difficulty, we consider an equation of the form

ut = G(uxx)uxx, u(x, 0) = u0(x), u(x+ 1, t) ≡ u(x, t) (2.1)

where G : R → (0,∞) is a given smooth positive function, and u0(x) is a 1-periodic

smooth function.

The function σd in (1.10) is not smooth, of course, but we can approximate σd

by a smooth function like

σǫ(uxx) =
1

2
(σ+ + σ−)− 1

2
(σ+ − σ−)tanh(

1

ǫ
uxx), ǫ > 0 (2.2)

An example of σǫ is shown in Figure 2.1.

Differentiate equation (2.1) twice with respect to x and let w(x, t) = uxx(x, t) to

get

wt = D2(G(w)w), w(x, 0) = u′′0(x), w(x+ 1, t) ≡ w(x, t) (2.3)

Here D2 = ∂2

∂x2 . Therefore, we get

wt = h(w)wxx + h
′
(w)w2

x (2.4)
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Figure 2.1: Plots of discontinuous function σd and corresponding smooth function
σǫ, where σ

− = 0.2, σ+ = 0.3 and ǫ = 0.3.

where h(w) = G(w) + G
′
(w)w. It will be convenient to consider the slightly more

general problem

wt = h(w)wxx + g(w,wx), w(x, 0) = f(x), w(x+ 1, t) ≡ w(x, t) (2.5)

where h(w), g(w,wx) are C∞ functions of their arguments, and f(x) = u′′0(x) is

1-periodic smooth function. In addition, assume that 1

h(w) ≥ k > 0 k is a constant

and that h, g and all their derivatives are bounded functions. If h , g or their

derivatives are unbounded, we can use cut-off functions φ(w) ∈ C∞(R) for h and

ϕ(w,wx) ∈ C∞(R2) for g with

φ(w) = 1 for |w| ≤ R , φ(w) = 0 for |w| > 2R

ϕ(w,wx) = 1 for |w|2 + |wx|2 ≤ R2 , ϕ(w,wx) = 0 for |w|2 + |wx|2 > (2R)2

1This assumption of h(w) is plausible for any ǫ > 0 with suitable σ+ and σ−.
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Chapter 2. Existence and Uniqueness Analysis

for some real positive R. Then we can replace h by h̃(w) = φ(w)h(w) and replace

g by g̃(w,wx) = ϕ(w,wx)g(w,wx). The functions h̃(w) and g̃(w,wx) satisfy the

assumptions of boundedness. Then for the original problem one obtains existence

local in time.

After showing the uniqueness of a classical solution of equation (2.5) under the

above assumptions, we prove a priori estimates in any finite time interval 0 ≤ t <

T < ∞. To show existence of a solution in some time interval, we use the iteration

approach as

wn+1
t = h(wn)wn+1

xx + g(wn, wn
x) (2.6)

wn(x, 0) = f(x), n = 1, 2, 3, ....

where w0(x, t) ≡ f(x). The sequence wn will be shown to be convergent, and its

limit is a solution to equation (2.5).

2.1 Uniqueness

A classical solution of equation (2.5) is a function w ∈ C1(t) ∩ C2(x) which satisfies

(2.5) pointwise. Let |.|∞ be maximum norm, ||.|| be L2 norm, (., .) be L2 inner

product and Dj = ∂j

∂xj , j = 0, 1, 2, ... . We first show

Theorem 2.1.1. Equation (2.5) has at most one classical solution.

Proof. Let u(x, t) and v(x, t) be solutions to equation (2.5) in some time interval

0 ≤ t < T . This also assumes that u and v are 1-periodic in x. Their difference

ψ(x, t) = u(x, t)− v(x, t)

satisfies

ψt = h(u)uxx + g(u, ux)− h(v)vxx − g(v, vx), ψ(x, 0) = 0
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We can rewrite ψt as

ψt = h(u)(uxx−vxx)+(h(u)−h(v))vxx+(g(u, ux)−g(v, ux))+(g(v, ux)−g(v, vx))

By the Mean Value Theorem, we now get

ψt = h(u)ψxx + h
′
(ξ)vxxψ + g1(ζ, ux)ψ + g2(v, η)ψx (2.7)

where ξ and ζ lie between u and v, and η lies between ux and vx. Here g1 is the partial

derivative of g with respect to the first argument, while g2 is the partial derivative of

g with respect to the second argument. Applying energy estimation to ψ with (2.7),

we have

1

2

d

dt
‖ ψ(., t) ‖2 = (ψ, ψt)

= −(D(h(u)ψ), ψx) + (ψ, (h
′
(ξ)vxx + g1(ζ, ux))ψ) + (ψ, g2(v, η)ψx)

≤ −k ‖ ψx ‖2 +c1 ‖ ψ ‖‖ ψx ‖ +c2 ‖ ψ ‖2

≤ c3 ‖ ψ ‖2

Therefore

‖ ψ(., t) ‖2≤ e2c3t ‖ ψ(., 0) ‖2= 0

The initial condition ψ(x, 0) = 0 implies ψ(x, t) ≡ 0.

2.2 A Priori Estimates

We show a priori estimates since the techniques to derive these will be useful for the

existence argument in section 2.3. We first show the following lemmas which will be

used for a priori estimates.
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Lemma 2.2.1. (Gronwall’s Lemma): Suppose y ∈ C1[0, T ), ψ ∈ C[0, T ) satisfy

y
′
(t) ≤ cy(t) + ψ(t) + k, 0 ≤ t < T,

for some c ≥ 0,k ≥ 0. Then

y(t) ≤ ect{y(0) +
∫ t

0

|ψ(s)|ds+ kt}, 0 ≤ t < T.

Proof. For the function z(t) = e−cty(t) it holds that

z
′
(t) = −ce−cty(t) + e−cty′(t) ≤ e−ct(ψ(t) + k).

Thus integration of both sides yields

z(t) ≤
∫ t

0

|ψ(s)|ds+ kt + z(0),

and the lemma follows.

Lemma 2.2.2. Suppose u ∈ C1[0, 1], then

|u|2∞ ≤ ||u||2 + 2||u||||Du||, D =
d

dx

Proof. There exist x0 and x1 with

min|u(x)| : 0 ≤ x ≤ 1 = |u(x0)|

max|u(x)| : 0 ≤ x ≤ 1 = |u(x1)| = |u|∞

Let x0 < x1 for definiteness. Then we have

|u(x1)|2 − |u(x0)|2 =

∫ x1

x0

[
d

dx
|u(x)|2]dx

=

∫ x1

x0

2(u, ux)dx

≤ 2||u||||ux||.

Since |u(x0)| ≤ ||u||, the lemma follows.
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Chapter 2. Existence and Uniqueness Analysis

Lemma 2.2.2 is an example of Sobolev Inequality which gives bounds of the

maximum norm of a smooth function by L2-norms of its derivatives.

Let w denote a C∞ solution of (2.5) defined for 0 ≤ t < T , any finite T , with

periodic boundary conditions. We can show estimations for spatial derivatives of w.

In the following, let ci, i = 1, 2, ... be suitable positive constants. First note that

1

2

d

dt
‖ w ‖2 = (w, wt)

= (w, h(w)wxx + g(w,wx))

≤ c1 ‖ w ‖‖ D2w ‖ +c2 ‖ w ‖ +c3 (2.8)

and

1

2

d

dt
‖ Dw ‖2 = (Dw, Dwt)

= −(D2w, wt)

≤ −k ‖ D2w ‖2 +c4 ‖ D2w ‖ +c5

≤ −k
2
‖ D2w ‖2 +c6 (2.9)

Adding (2.8) to (2.9), we obtain the differential inequality

1

2

d

dt
(‖ w ‖2 + ‖ Dw ‖2) ≤ c7(‖ w ‖2 + ‖ Dw ‖2) + c8 (2.10)

As follows from Gronwall’s Lemma ??, inequality (2.10) implies that ‖ w ‖ and

‖ Dw ‖ are bounded for 0 ≤ t < T < ∞. By Lemma 2.2.2 , we obtain the

boundedness for |w|∞ for 0 ≤ t < T . Furthermore, integrating both sides of equation

(2.9), we have
∫ t

0
||D2w(., τ)||2dτ is bounded for 0 ≤ t < T . The function Dwt

satisfies

Dwt = D(h(w)wxx) +Dg(w,wx)

= hD3w + h
′
D2wDw + g1Dw + g2D

2w
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Therefore

1

2

d

dt
‖ D2w ‖2 = −(D3w, Dwt)

= −(D3w, hD3w + h
′
D2wDw + g1Dw + g2D

2w)

≤ −k ‖ D3w ‖2 +c9|Dw|∞ ‖ D2w ‖‖ D3w ‖

+c10 ‖ D3w ‖‖ Dw ‖ +c11 ‖ D3w ‖‖ D2w ‖

The function ||Dw|| has been shown to be bounded, and |Dw|∞ is bounded by ||D2w||
from Lemma 2.2.2. We obtain

1

2

d

dt
‖ D2w ‖2≤ c12 ‖ D2w ‖4 +c13||D2w||2 + c14

Using the abbreviation α(t) = ||D2w(., t)||2 and β(t) = ||D2w(., t)||2 + 1, we have

shown the differential inequality with some positive constants a and c

α′(t) ≤ aα(t)β(t) + c (2.11)

Since
∫ t

0
β(s)ds is bounded for 0 ≤ t < T , we can rewrite the differential inequality

(2.11) as

(e−a
∫ t

0
β(s)dsα(t))′ ≤ e−a

∫ t

0
β(s)dsc

Then integration of both sides yields

α(t) ≤ ea
∫ t

0 β(s)ds[

∫ t

0

e−a
∫ s

0 β(τ)dτ cds+ α(0)]

Therefore, we obtain α(t) = ||D2w(., t)||2 is bounded for 0 ≤ t < T . Furthermore,

|Dw|∞ is bounded by Lemma 2.2.2. Next we consider

D2wt = D2(h(w)wxx) +D2g(w,wx)

= hD4w + h
′′
(Dw)2D2w + 2h

′
D3wDw + h

′
(D2w)2

+g11(Dw)
2 + 2g12DwD

2w + g22(D
2w)2
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where gii, i = 1, 2, is the second partial of g with respect to the ith argument, while

g12 is the mixed second partial of g with respect to both arguments. We get

1

2

d

dt
‖ D3w ‖2 = −(D4w,D2wt)

≤ −k ‖ D4w ‖2 +c15 ‖ D4w ‖‖ D3w ‖ +c16 ‖ D4w ‖‖ D2w ‖ |D2w|∞
+c17 ‖ D4w ‖‖ D2w ‖ +c18 ‖ D4w ‖

≤ c19 ‖ D3w ‖2 +c20

Again, as follows from Gronwall’s lemma 2.2.1, we have ‖ D3w ‖ is bounded for

0 ≤ t < T . Lemma 2.2.2 gives a bound for |D2w|∞.

Lemma 2.2.3. Suppose w is a C∞ solution of equation (2.5) defined for 0 ≤ t < T,

T is any finite time. Assume w(x, t) is 1-periodic in x for each t. Then ‖ Djw ‖ are

bounded for j = 0, 1, 2 · · · for 0 ≤ t < T .

Proof. We use induction on j.

The cases when j = 0, 1, 2, 3 have been treated above; thus let j ≥ 4, we only need

to show ‖ Djw|| is bounded, given ‖ Dlw|| are bounded for l = 0, 1, · · · , j − 1. We

have

1

2

d

dt
‖ Djw ‖2= −(Dj+1w,Dj−1wt)

For term Dj−1wt, the leading order terms give

Dj−1wt = α1h(w)D
j+1w + (α2h

′
Dw + α3g2)D

jw

+(α4h
′
D2w + α5g22D

2w + α6g1)D
j−1w + o(Dj−2w)

where αi, i = 1, 2, ..6 are positive constant coefficients. The terms |Dl−1w|∞ are
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bounded by Lemma 2.2.2 for 1 ≤ l ≤ j − 1, j ≥ 4 , therefore

1

2

d

dt
‖ Djw ‖2 ≤ −k ‖ Dj+1w ‖2 +c21 ‖ Dj+1w ‖‖ Djw ‖

+c21 ‖ Dj+1w ‖‖ Dj−1w ‖ +c22 ‖ Dj+1w ‖

≤ c23 ‖ Djw ‖2 +c24

From Gronwall’s lemma 2.2.1, the induction step is completed, and the lemma fol-

lows.

Since we have bounded space derivatives of w in 0 ≤ t < T < ∞, we can use

the differential equation (2.5) to bound all time derivatives and mixed derivatives,

ie: each term

∂p+q

∂xp∂tq
w(x, t)

can be written as a sum of products of space derivatives and hence it is bounded in

0 ≤ t < T .

2.3 Existence via Iteration

First, notice wn(x, t) in iteration scheme (2.6) are defined as solutions to linear

equations. They exist for 0 ≤ t <∞. Fix T > 0, to prove existence via the iteration

scheme (2.6). We then estimate the function wn independently of the index n. We

start with the following estimates to show uniform smoothness of the sequence wn.

Let ci, i = 1, 2, ..., be suitable positive constants. First note that

1

2

d

dt
‖ wn ‖2 = (wn, wn

t )

= (wn, h(wn−1)wn
xx + g(wn−1, wn−1

x ))

≤ c1 ‖ wn ‖‖ D2wn ‖ +c2 ‖ wn ‖ +c3 (2.12)
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and

1

2

d

dt
‖ Dwn ‖2 = (Dwn, Dwn

t )

= −(D2wn, wn
t )

≤ −k ‖ D2wn ‖2 +c4 ‖ D2wn ‖ +c5

≤ −k
2
‖ D2wn ‖2 +c6 (2.13)

We then obtain the following differential inequality by adding inequalities (2.12) to

(2.13)

1

2

d

dt
(‖ wn ‖2 +||Dwn||2) ≤ c7(‖ wn ‖2 +||Dwn||2) + c8

Therefore, as follows from Lemma 2.2.1, ‖ wn ‖ and ‖ Dwn ‖ are bounded inde-

pendently of n for 0 ≤ t < T . We also obtain that |wn|∞ is bounded indepen-

dently of n by Lemma 2.2.2. Integrating both sides of inequality (2.13), we have
∫ t

0
‖ D2wn(, .τ) ‖ dτ is bounded uniformly for 0 ≤ t < T . Notice Dwn

t satisfies

Dwn
t = D(h(wn−1)wn

xx) +Dg(wn−1, wn−1
x )

= h
′
Dwn−1D2wn + hD3wn + g1Dw

n−1 + g2D
2wn−1

and

1

2

d

dt
‖ D2wn ‖2 = −(D3wn, Dwn

t )

≤ −k ‖ D3wn ‖2 +c9|Dwn−1|∞ ‖ D2wn ‖‖ D3wn ‖

+c10 ‖ D3wn ‖‖ Dwn−1 ‖ +c11 ‖ D3wn ‖‖ D2wn−1 ‖

Since |Dwn−1|∞ is bounded by ‖ D2wn−1|| by Lemma 2.2.2, we get

1

2

d

dt
‖ D2wn ‖2≤ c12 ‖ D2wn ‖2‖ D2wn−1 ‖2 +c13 ‖ D2wn−1 ‖2 +c14
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Using the abbreviations α(t) =‖ D2wn(., t) ‖2 and β(t) =‖ D2wn−1(., t) ‖2, we have

shown the differential inequality with positive constants a,b and c

α
′
(t) ≤ aα(t)β(t) + bβ(t) + c (2.14)

Since
∫ t

0
β(τ)dτ has been shown to be bounded for 0 ≤ t < T , we can rewrite

inequality (2.14) as

(e−a
∫ t

0
β(s)dsα(t))′ ≤ e−a

∫ t

0
β(s)ds(bβ(t) + c)

Integration of both sides gives

α(t) ≤ ea
∫ t

0 β(s)ds[

∫ t

0

e−a
∫ s

0 β(τ)dτ (bβ(s) + c)ds+ α(0)]

Thus α(t) =‖ D2wn ‖ is bounded uniformly for 0 ≤ t < T . It follows that |Dwn| is
also bounded independently of n by Lemma 2.2.2.

D2wn
t = D2(h(wn−1)wn

xx) +D2g(wn−1, wn−1
x )

= hD4w + h
′
Dwn−1D3w +

h
′′
(Dwn−1)2D2wn + h

′
D2wn−1D2wn + h

′
Dwn−1D3wn +

g11(Dw
n−1)2 + 2g12D

2wn−1Dwn−1 + g1Dw
n−1

+g22(D
2wn−1)2 + g2D

3wn−1

and therefore

1

2

d

dt
‖ D3wn ‖2 = −(D4wn, D2wn

t )

≤ c15 ‖ D3wn ‖2 +c16 ‖ D3wn−1 ‖2 +c17

Using the abbreviation yn(t) =‖ D3wn(., t) ‖2, we have shown the following differen-

tial inequality

y′n(t) ≤ 2c15yn(t) + 2c16yn−1(t) + 2c17
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To estimate yn(t), we can use Gronwall’s lemma 2.2.1 and Picard’s lemma stated as

follows:

Lemma 2.3.1. (Picard’s Lemma): Let yk(t), k = 0, 1, · · · , denote a sequence of

nonnegative continuous functions which satisfy the inequalities:

yk+1(t) ≤ a+ b

∫ t

0

yk(s)ds, 0 ≤ t ≤ T,

with nonnegative constants a, b. Then

yk(t) ≤ a

k−1
∑

n=0

bntn

n!
+
bktk

k!
max
0≤s≤t

y0(s)

for 0 ≤ t ≤ T and k = 0, 1, · · · . In particular, the sequence yk(t), 0 ≤ t ≤ T , is

uniformly bounded. If a = 0, then the sequence converges uniformly to zero.

Proof. For k = 0 the estimate is true. Assume it holds up to the index k. Then

yk+1(t) ≤ a+ a
k

∑

n=1

bntn

n!
+
bk+1tk+1

(k + 1)!
max
0≤s≤t

y0(s)

and the lemma is proved.

By Gronwall’s lemma 2.2.1 and Picard’s lemma 2.3.1, we obtain that the term

‖ D3wn(., t) ‖ is bounded independently of n for 0 ≤ t < T .

We now show that all spatial derivatives of wn can be estimated for any finite

time interval 0 ≤ t < T .

Lemma 2.3.2. For j = 0, 1, 2, · · · , ‖ Djwn ‖ are bounded independently of n for

0 ≤ t < T ,

Proof. We use induction on j.

The cases with j = 0, 1, 2, 3 have been shown above. Thus let j ≥ 4, we now show
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that ‖ Djwn ‖ is bounded independently of n , given ‖ Dlwn ‖ are bounded for

0 ≤ l ≤ j − 1. We have

1

2

d

dt
‖ Djwn ‖2= −(Dj+1wn, Dj−1wn

t )

For function Dj−1wn
t , the leading term analysis leads to

Dj−1wn
t = α1h(w

n−1)Dj+1wn

+α2h
′
Dwn−1Djwn + α3g2D

jwn−1

+α4h
′
D2wn−1Dj−1wn + (α5g22D

2wn−1 + α6g1 + α7h
′
D2wn−1)Dj−1wn−1

+o(Dj−2wn) + o(Dj−2wn−1)

where αi, i = 1, 2, .., 7 are positive constant coefficients. We have |Dl−1wn|∞ are

bounded independently of n for 1 ≤ l ≤ j − 1, j ≥ 4 by lemma 2.2.2. Thus

1

2

d

dt
‖ Djwn ‖2 ≤ −k ‖ Dj+1wn ‖2 +c18 ‖ Dj+1wn ‖‖ Djwn ‖

+c19 ‖ Dj+1wn ‖‖ Djwn−1 ‖ +c20 ‖ Dj+1wn ‖

≤ c21 ‖ Djwn ‖2 +c22 ‖ Djwn−1 ‖2 +c23

Followed from Gronwall’s lemma 2.2.1 and Picard’s lemma 2.3.1, we obtain that

‖ Djwn ‖ is bounded independently of n for 0 ≤ t < T . Thus the induction step is

completed and the lemma follows.

So far, we have estimated the L2−norm of all spatial derivatives of the sequence

wn in 0 ≤ t < T , any finite T . By the Sobolev inequality stated in Lemma 2.2.2, the

functions Djwn are also bounded in maximum norm, for any j ≥ 0. Since we can

always replace time derivatives by spatial derivatives using the differential equation

(2.6), it follows the uniform smoothness:

|∂
p+qwn

∂xptq
(x, t)| ≤ C(p, q)
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for 0 ≤ t < T . Here C(p, q) are some constants depending only on p and q, but

independent of n.

We finally show

Theorem 2.3.3. For any finite time T , equation (2.5) has a C∞ solution, which is

1-periodic in x, defined for 0 ≤ t < T .

Proof. Consider the sequence wn defined by the iteration (2.6) and let

δn = wn+1 − wn

δn(x, 0) = 0

Then

δnt = h(wn)wn+1
xx + g(wn, wn

x)− h(wn−1)wn
xx − g(wn−1, wn−1

x )

= (h(wn)wn+1
xx − h(wn)wn

xx) + (h(wn)wn
xx − h(wn−1)wn

xx) +

(g(wn, wn
x)− g(wn−1, wn

x)) + (g(wn−1, wn
x)− g(wn−1, wn−1

x ))

We apply the Mean Value Theorem and get

δnt = h(wn)δnxx + h
′
(ξ)wn

xxδ
n−1 + g1(ζ, w

n
x)δ

n−1 + g2(w
n−1, η)δn−1

x

where ξ and ζ lie between wn−1and wn, and η lies between wn−1
x and wn

x . Then we

have

1

2

d

dt
‖ δn ‖2 = (δn, δnt )

= −(D(δnh(wn)), δnx) + (δn, (h
′
(ξ)wn

xx + g1(ζ, w
n−1
x ))δn−1)

−(D(δng2(w
n, η)), δn−1)

≤ −k ‖ δnx ‖2 +c1 ‖ δnx ‖‖ δn ‖ +c2 ‖ δnx ‖‖ δn−1 ‖ +c3 ‖ δn ‖‖ δn−1 ‖

≤ c4 ‖ δn ‖2 +c5 ‖ δn−1 ‖2
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As follows from Gronwall’s Lemma 2.2.1, we obtain

‖ δn(., t) ‖2≤ c5e
2c4t

∫ t

0

‖ δn−1(., τ) ‖2 dτ

Let C = c5e
2c4T . For 0 ≤ t < T , we now have

‖ δn(., t) ‖2≤ C

∫ t

0

‖ δn−1(., τ) ‖2 dτ

where C is independent of n. Therefore, by Picard’s lemma 2.3.1, the sequence

wn(·, t) converges to a L2 function w(·, t). The smoothness estimates (Lemma 2.3.2)

imply that w ∈ C∞ and the convergence holds pointwise and also for all derivatives.

(see Arzela-Ascoli theorem in [2] for details). Then the equation (2.6) implies that

w solves the equation (2.5).

2.4 Construction of Solution

So far we have shown, for problem (2.3):

wt = D2(G(w)w), w(x, 0) = u′′0(x), w(x+ 1, t) ≡ w(x, t)

if the function G satisfies the assumption that h(w) = G(w) + G′(w)w is bounded

from below by some positive constant, we then obtain the local existence of a unique

solution w(x, t). The Fourier expansion of w(x, t) is written as

w(x, t) =

∞
∑

k=−∞
ŵ(k, t)e2πikx (2.15)

Notice that

d

dt
(1, w) = (1, wt) = (1, D2(G(w)w)) = 0

We then have
∫ 1

0

w(x, t)dx ≡ 0, t ≥ 0
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Therefore, the term ŵ(0, t) ≡ 0 in the equation (2.15), and

w(x, t) =
∑

k 6=0

ŵ(k, t)e2πikx (2.16)

We can integrate (2.16) twice in x and obtain a 1-periodic function u(x, t)

u(x, t) = α(t) +
∑

k 6=0

1

(2πik)2
ŵ(k, t)e2πikx (2.17)

The term α(t) needs to be determined.

We are now to show that u(x, t) defined in equation (2.17) with suitable α(t)

solves problem (2.1)

ut = G(uxx)uxx, u(x, 0) = u0(x), u(x+ 1, t) ≡ u(x, t)

First we show that u(x, t), constructed in equation (2.17), satisfies the initial

condition u(x, 0) = u0(x), if α(0) = û0(0). Here û0(k), k ∈ Z, are the Fourier

coefficients of u0(x). Express u0(x) in Fourier expansion as following

u0(x) = û0(0) +
∑

k 6=0

û0(k)e
2πikx

Then we have

u′′0(x) =
∑

k 6=0

(2πik)2û0(k)e
2πikx

Since w(x, 0) = u′′0(x), we get

w(x, 0) =
∑

k 6=0

ŵ(k, 0)e2πikx

=
∑

k 6=0

(2πik)2û0(k)e
2πikx

This leads to

ŵ(k, 0) = (2πik)2û0(k), for each k 6= 0
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Then we can show that

u(x, 0) = α(0) +
∑

k 6=0

1

(2πik)2
ŵ(k, 0)e2πikx

= û0(0) +
∑

k 6=0

1

(2πik)2
(2πik)2û0(k)e

2πikx

= u0(x)

Next, we will derive the conditions for α(t) such that u(x, t) satisfies the PDE

ut = G(uxx)uxx. Note that the term G(uxx)uxx can be written as G(w)w, which is

a 1-periodic function in x. Let H(x, t) = G(w)w. The Fourier expansion of H(x, t)

leads to

H(x, t) =
+∞
∑

−∞
Ĥ(k, t)e2πikx

and

D2H(x, t) =
∑

k 6=0

(2πik)2Ĥ(k, t)e2πikx

As follows from wt = D2H(x, t), we have

ŵt(k, t) = (2πik)2Ĥ(k, t), for each k 6= 0

Therefore, we can show that

ut = α′(t) +
∑

k 6=0

1

(2πik)2
ŵt(k, t)e

2πikx

= α′(t) +
∑

k 6=0

1

(2πik)2
(2πik)2Ĥ(k, t)e2πikx

= α′(t) +
∑

k 6=0

Ĥ(k, t)e2πikx

Choose α′(t) = Ĥ(0, t), then we have

ut = G(uxx)uxx
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Let u1 and u2 solve problem (2.1). Set w1 = u1xx, w2 = u2xx. As follows from

the uniqueness argument of equation (2.3), we then have w1 = w2 := w. This leads

to u1xx = u2xx. The PDE ut = G(w)w implies that u1t = u2t. Therefore we obtain

u1 = u2. Then the uniqueness of solution u to (2.1) follows.

Finally, we summarize this section as following:

Based on the solution w(x, t) to the problem (2.3), we can construct a function

u(x, t) by equation (2.17), where α(t) satisfies α′(t) = Ĥ(0, t), α(0) = û0(0), here

H = G(w)w. Such u is the unique solution to problem (2.1).

We have obtain the uniqueness and existence results for PDE ut = G(uxx)uxx

with periodic boundary conditions. Although we have not carried out the analysis

in details, it is reasonable to expect the similar but more complicated argument will

lead to the same results for u with the Dirichlet boundary conditions.
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Analysis of Discontinuity

In this chapter we drop the assumption of smoothness for G(uxx) in equation (2.1)

and allow it to be a discontinuous function. As motivated by our application, we

choose G(uxx) as a positive piecewise constant function. We consider equation (2.1)

for 0 ≤ x ≤ l, with smooth initial condition u(x, 0) = f(x) and Dirichlet boundary

conditions. To study the discontinuity in the coefficient function, we discretize only

in time and consider the evolution of equation (2.1) in a given tiny time step dt

from initial data. For simplicity we use uxx(x, 0) instead of uxx(x, dt) in the func-

tion G(uxx), which is similar to using a semi-implicit difference scheme in numerical

computations. We obtain

u(x, dt)− u(x, 0)

dt
= G(uxx(x, 0))uxx(x, dt) (3.1)

Note that uxx(x, 0) = f
′′
(x) is a given function. We assume, for f(x) there is x̄ ∈ (0, l)

such as

f
′′
(x) < 0, for x ∈ [0, x̄)

f
′′
(x) > 0, for x ∈ (x̄,l] (3.2)

A typical function f(x) is shown in Figure 3.1
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Chapter 3. Analysis of Discontinuity

Figure 3.1: f(x) satisfies condition (3.2).

Therefore, G(uxx(x, 0)) is a positive piecewise constant function defined in [0, x̄)

and (x̄, l]. Denote u(x, dt) = u(x), then equation(3.1) can be written as

u(x)− g(x)u
′′
(x) = f(x), u(0) = u(l) = 0 (3.3)

where

g(x) =











K, for 0 ≤ x < x̄

D, for x̄ < x ≤ l
(3.4)

where K and D are both positive constants, K = σ+dt and D = σ−dt.

3.1 Existence of Solutions to Smoothed ODEs

There are at least two obvious formulations to smooth out the ODE (3.3) with

Dirichlet boundary conditions:

uǫ(x)− gǫ(x)u
′′
ǫ (x) = f(x) , uǫ(0) = uǫ(l) = 0 (3.5)

uǫ(x)− (gǫ(x)u
′
ǫ(x))

′ = f(x) , uǫ(0) = uǫ(l) = 0 (3.6)

Here gǫ(x) is positive smooth function and gǫ(x) ≥ c0 > 0, c0 is a constant. Fur-

thermore, we assume that gǫ(x) converges to g(x) defined in (3.4) in L1 norm for

41



Chapter 3. Analysis of Discontinuity

equation (3.5), while in L2 norm for equation (3.6), as ǫ→ 0 . The Maximum Prin-

ciple guarantees that there is only the trivial solution to the homogenous systems

of (3.5) and (3.6). Therefore, as follows from Fredholm’s Alternative (see [7] for

details), we conclude

Theorem 3.1.1. The boundary value problem (3.5) has a unique solution.

Theorem 3.1.2. The boundary value problem (3.6) has a unique solution.

3.2 Existence of Solutions to Discontinuous ODEs

Typically, no C2 solution exists to equation (3.3) with discontinuous function g(x).

We need to impose conditions at x = x̄ in order to define what we mean by a solution

of equation (3.3). Let u(x̄±) = limx→x̄± u(x) and u′(x̄±) = limx→x̄± u′(x)

Theorem 3.2.1. Let f ∈ C∞[0, l]. The boundary value problem (3.3) with g(x)

defined in (3.4) has a unique solution, if we require the solution u(x) to satisfy

u(x̄−) = u(x̄+) and Ku
′
(x̄−) = Du

′
(x̄+).

Proof. Equation (3.3) with g(x) defined in (3.4) can be viewed as two initial value

problems as

u(x)−Ku
′′
(x) = f(x) , 0 ≤ x < x̄

u(0) = 0 (3.7)

and

u(x)−Du
′′
(x) = f(x) , x̄ < x ≤ l

u(l) = 0 (3.8)
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Let uL and uR be solutions to (3.7) and (3.8), respectively. We have

uL = upL + ugL

where upL is the unique solution to

u(x)−Ku
′′
(x) = f(x)

u(0) = 0, u(x̄) = 0

while ugL satisfies

u(x)−Ku
′′
(x) = 0

u(0) = 0

We have

ugL = a1(e
1√
K
x − e

− 1√
K
x
)

and a1 is a constant to be determined. Similarly we have

uR = upR + ugR

where upR is the unique solution to

u(x)−Du
′′
(x) = f(x)

u(x̄) = 0, u(l) = 0

while ugR satisfies

u(x)−Du
′′
(x) = 0

u(l) = 0

We have

ugR = a2(e
1√
D
x − e

2√
D
l− 1√

D
x
)
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and a2 is a constant to be determined. The assumptions of uL(x̄) = uR(x̄) and

Ku′L(x̄) = Du′R(x̄) lead to a linear system for a1 and a2:

a1(e
1√
K
x̄ − e

− 1√
K
x̄
) − a2(e

1√
D
x̄ − e

2√
D
l− 1√

D
x̄
) = 0

a1
√
K(e

1√
K
x̄
+ e

− 1√
K
x̄
) − a2

√
D(e

1√
D
x̄
+ e

2√
D
l− 1√

D
x̄
) = DupR

′
(x̄)−KupL

′
(x̄)

To show the existence of a unique solution of (3.3), we only need to show det(A) 6= 0,

where

A =





(e
1√
K
x̄ − e

− 1√
K
x̄
) −(e

1√
D
x̄ − e

2√
D
l− 1√

D
x̄
)

√
K(e

1√
K
x̄
+ e

− 1√
K
x̄
) −

√
D(e

1√
D
x̄
+ e

2√
D
l− 1√

D
x̄
)





The term det(A) is a smooth function of x̄, and we call d(x̄) = det(A(x̄)). Let

s1 =
1√
K
+ 1√

D
and s2 =

1√
K
− 1√

D
. We have

det(A) = d(x̄) = (
√
K −

√
D)(es1x̄ − e

2√
D
l−s1x̄) + (

√
K +

√
D)(e−s2x̄ − e

2√
D
l+s2x̄)

and

d(0) = (1− e
2√
D
l
)2
√
K < 0

d(l) = (e−s2l − es1l)2
√
D < 0

while

d
′
(x̄) = (

√

K

D
−

√

D

K
)(es1x̄ + e

2√
D
l−s1x̄ + e−s2x̄ + e

2√
D
l+s2x̄)

d(x̄) is monotonic since d
′
(x̄) > 0 if K > D while d

′
(x̄) < 0 if K < D. Therefore we

obtain

d(x̄) < 0 for all x̄ ∈ (0, l)

Then the theorem follows.

Theorem 3.2.2. Let f ∈ C∞[0, l]. The boundary value problem (3.3) with g(x)

defined in (3.4) has a unique solution, if we require the solution u(x) to satisfy

u(x̄−) = u(x̄+) and u
′
(x̄−) = u

′
(x̄+).
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Proof. Follow the argument in Theorem 3.2.1 and get the same setting for uL and

uR. The assumptions of uL(x̄) = uR(x̄) and u
′
L(x̄) = u′R(x̄) lead to a linear system

for a1 and a2:

a1(e
1√
K
x̄ − e

− 1√
K
x̄
) − a2(e

1√
D
x̄ − e

2√
D
l− 1√

D
x̄
) = 0

a1
1√
K

(e
1√
K
x̄
+ e

− 1√
K
x̄
) − a2

1√
D
(e

1√
D
x̄
+ e

2√
D
l− 1√

D
x̄
) = upR

′(x̄)− upL
′(x̄)

Therefore, we have matrix A as

A =





(e
1√
K
x̄ − e

− 1√
K
x̄
) −(e

1√
D
x̄ − e

2√
D
l− 1√

D
x̄
)

1√
K
(e

1√
K
x̄
+ e

− 1√
K
x̄
) − 1√

D
(e

1√
D
x̄
+ e

2√
D
l− 1√

D
x̄
)





Let s1 =
1√
K
+ 1√

D
and s2 =

1√
K
− 1√

D
, we have

det(A) = d(x̄) = s2(e
s1x̄ − e

2√
D
l−s1x̄) + s1(e

−s2x̄ − e
2√
D
l+s2x̄)

and

d(0) = (1− e
2√
D
l
)

2√
K

< 0

d(l) = (e−s2l − es1l)
2√
D
< 0

while

d
′
(x̄) = s1s2(e

s1x̄ + e
2√
D
l−s1x̄ − e−s2x̄ − e

2√
D
l+s2x̄)

= s1s2[(e
s1x̄ − e−s2x̄) + e

2√
D
l
(e−s1x̄ − e−s2x̄)]

= s1s2(1− e(s1+s2)x̄)
es1x̄ − e

s2x̄+
2√
D
l

e(s1+s2)x̄

Now we can show d
′
(x̄) < 0 if K > D, while d

′
(x̄) > 0 if K < D. Therefore we

obtain the monotonicity for d(x̄) and then show

d(x̄) < 0 for all x̄ ∈ (0, l)

The theorem follows.
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3.3 Convergence Results

We now connect the smooth boundary value problems (3.5) and (3.6) with the dis-

continuous boundary value problem (3.3) to show some convergence results. First of

all, we consider

u(x)− g(x)u
′′
(x) = f(x)

u(0) = u(l) = 0

u(x̄−) = u(x̄+)

u′(x̄−) = u′(x̄+) (3.9)

where g(x) is defined in (3.4) , and prove the following lemma.

Lemma 3.3.1. Let u(x) be the solution to (3.9). Then u(x) is bounded in maximum

norm by the L1 norm of f(x), i.e: |u(x)|∞ ≤ c||f ||L1 with some positive constant c,

here c is independent of f .

Proof. We use Green’s functions to solve the system (3.9). For 0 ≤ x < x̄, we have

Ku
′′
(x)− u(x) = −f(x)

u(0) = 0 (3.10)

The Green’s function G(x) satisfies

KG
′′
(x)−G(x) = δ(x− ξ)

G(0) = 0

Therefore, G(x) can be solved as










c1(e
1√
K
x − e

− 1√
K
x
), 0 ≤ x < ξ

c1(e
1√
K
x − e

− 1√
K
x
) + 1

2
√
K
(e

1√
K
(x−ξ) − e

− 1√
K
(x−ξ)

), ξ < x < x̄
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Let uL(x) = u(x) for 0 ≤ x < x̄. Then

uL(x) = −c1(e
1√
K
x− e

− 1√
K
x
)

∫ x̄

0

f(ξ)dξ− 1

2
√
K

∫ x

0

(e
1√
K
(x−ξ)− e

− 1√
K
(x−ξ)

)f(ξ)dξ

and

u′L(x) = −c1
1√
K

(e
1√
K
x
+e

− 1√
K
x
)

∫ x̄

0

f(ξ)dξ− 1

2K

∫ x

0

(e
1√
K
(x−ξ)

+e
− 1√

K
(x−ξ)

)f(ξ)dξ

For x̄ < x ≤ l, we have

Du
′′
(x)− u(x) = −f(x)

u(l) = 0 (3.11)

The Green’s function G(x) satisfies

DG
′′
(x)−G(x) = δ(x− ξ)

G(l) = 0

And G(x) can be written as











c3(e
1√
D
x − e

1√
D
(2l−x)

)− 1
2
√
D
(e

1√
D
(x−ξ) − e

− 1√
D
(x−ξ)

), x̄ < x < ξ

c3(e
1√
D
x − e

1√
D
(2l−x)

), ξ < x ≤ l

Let uR(x) = u(x) for x̄ < x ≤ l, we have

uR(x) = −c3(e
1√
D
x−e

1√
D
(2l−x)

)

∫ l

x̄

f(ξ)dξ+
1

2
√
D

∫ l

x

(e
1√
D
(x−ξ)−e−

1√
D
(x−ξ)

)f(ξ)dξ

and

u′R(x) = −c3
1√
D
(e

1√
D
x
+e

1√
D
(2l−x)

)

∫ l

x̄

f(ξ)dξ+
1

2D

∫ l

x

(e
1√
D
(x−ξ)

+e
− 1√

D
(x−ξ)

)f(ξ)dξ

Let

a1(x) = −(e
1√
K
x − e

− 1√
K
x
)
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a2(x) = −(e
1√
D
x − e

1√
D
(2l−x)

)

a3(x) = − 1√
K

(e
1√
K
x
+ e

− 1√
K
x
)

a4(x) = − 1√
D
(e

1√
D
x
+ e

1√
D
(2l−x)

)

and

B1(x; f) = − 1

2
√
K

∫ x

0

h1(x, ξ)f(ξ)dξ

B2(x; f) =
1

2
√
D

∫ l

x

h2(x, ξ)f(ξ)dξ

B3(x; f) = − 1

2K

∫ x

0

h3(x, ξ)f(ξ)dξ

B4(x; f) =
1

2D

∫ l

x

h4(x, ξ)f(ξ)dξ

with

h1,3(x, ξ) = e
1√
K
(x−ξ) ∓ e

− 1√
K
(x−ξ)

, for 0 < ξ < x̄

h2,4(x, ξ) = e
1√
D
(x−ξ) ∓ e

− 1√
D
(x−ξ)

, for x̄ < ξ < l

and

p =

∫ x̄

0

f(ξ)dξ

q =

∫ l

x̄

f(ξ)dξ

The conditions at x̄ lead to two linear equations for c1 and c3, and we get

c1 =
1

a(x̄)p
[a2(x̄)(B4(x̄; f)−B3(x̄; f))− a4(x̄)(B2(x̄; f)−B1(x̄; f))]

c3 =
1

a(x̄)q
[a1(x̄)(B4(x̄; f)−B3(x̄; f))− a3(x̄)(B2(x̄; f)−B1(x̄; f))]
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where a(x) = a2(x)a3(x) − a1(x)a4(x). Theorem 3.2.2 shows a(x̄) 6= 0. Therefore,

the solution to (3.9) is

uL(x) = a1(x)
a(x̄)

[a2(x̄)(B4(x̄; f)− B3(x̄; f))− a4(x̄)(B2(x̄; f)−B1(x̄; f))] +B1(x; f)

uR(x) = a2(x)
a(x̄)

[a1(x̄)(B4(x̄; f)− B3(x̄; f))− a3(x̄)(B2(x̄; f)−B1(x̄; f))] +B2(x; f)

(3.12)

Notice

|Bi(x; f)|∞ ≤ bi||f ||L1

where bi are positive constants ,i = 1, 2, 3, 4 . From (3.12), we can bound uL(x) and

uR(x) in |.|∞ by the L1 norm of f(x).

Lemma 3.3.2. Let uǫ be the solution to (3.5). There exists a positive constant c

independent of ǫ, such that |u′′ǫ (x)|∞ ≤ c|f(x)|∞.

Proof. By the maximum principle, we get

|uǫ(x)|∞ ≤ c1|f(x)|∞

where c1 > 0 is independent of ǫ. Therefore for

u′′ǫ (x) =
uǫ(x)− f(x)

gǫ(x)

with assumption

gǫ(x) ≥ c0 > 0

we have

|u′′ǫ (x)|∞ ≤ c1 + 1

c0
|f(x)|∞

Let c = c1=1
c0

, c is independent of ǫ. The lemma is proved.

49



Chapter 3. Analysis of Discontinuity

Now we are ready to show the convergence result for the first case.

Theorem 3.3.3. Let uǫ(x) be the solution to equation (3.5), and let u(x) be the

solution to (3.9). Then uǫ(x) converges to u(x) in |.|∞ as ǫ → 0, if gǫ(x) converges

to g(x) in L1 norm as ǫ→ 0.

Proof. Let the linear operator L0 be defined as

L0u = u− gu′′

while

Lǫuǫ = uǫ − gǫu
′′
ǫ

and set

ϕǫ(x) = gǫ(x)− g(x)

Consider

Lǫuǫ = uǫ − (g + ϕǫ)u
′′
ǫ

= uǫ − gu′′ǫ − ϕǫu
′′
ǫ

= L0uǫ − ϕǫu
′′
ǫ (3.13)

Meanwhile we have

Lǫuǫ = f = L0u

Then (3.13) can be rewritten as

L0(uǫ − u) = ϕǫu
′′
ǫ

Lemma ?? and lemma 3.3.2 imply

|uǫ − u|∞ ≤ c1 ||ϕǫu
′′
ǫ ||L1

≤ c1 ||ϕǫ||L1|u′′ǫ |∞
≤ c2 ||ϕǫ||L1|f |∞
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with positive constants c1 and c2. Therefore |uǫ − u|∞ → 0 as ǫ → 0 follows from

the assumption ||ϕǫ(x)||L1 → 0 .

Now consider the ODE system

u(x)− g(x)u
′′
(x) = f(x)

u(0) = u(l) = 0

u(x̄−) = u(x̄+)

Ku′(x̄−) = Du′(x̄+) (3.14)

and equation (3.6). We show the convergence result for the second case.

Theorem 3.3.4. Let uǫ(x) be solution to equation (3.6), while u(x) denotes the

solution to equation (3.14). Then uǫ converges to u(x) in L2 as ǫ → 0, if gǫ(x)

converges to g(x) in L2 norm as ǫ→ 0.

Proof. Let

ϕǫ(x) = gǫ(x)− g(x)

and

δǫ(x) = uǫ(x)− u(x)

The Dirichlet boundary conditions imply

δǫ(0) = δǫ(l) = 0

The solution u(x) is a smooth function in [0, x̄) and in (x̄, l]. The difference of

equation (3.6) and (3.14) gives, for x 6= x̄

δǫ − [(gǫu
′
ǫ)

′ − (gǫu
′)′]− [(gǫu

′)′ − gu′′] = 0
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Since g(x) is a piecewise constant function away from x̄, we have gu′′ = (gu′)′ for

x 6= x̄. Therefore,

δǫ − (gǫδ
′
ǫ)

′ = (ϕǫu
′)′ , x 6= x̄.

Multiplying δǫ(x) to both sides above and integrating, we get

||δǫ||2L2
−

∫ l

0

(gǫδ
′
ǫ)

′δǫdx =

∫ l

0

(ϕǫu
′)′δǫdx (3.15)

And

−
∫ l

0

(gǫδ
′
ǫ)

′δǫdx =

∫ x̄

0

(gǫδ
′
ǫ)δ

′
ǫdx− gǫδ

′
ǫδǫ|x=x̄−

x=0 +

∫ l

x̄

(gǫδ
′
ǫ)δ

′
ǫdx− gǫδ

′
ǫδǫ|x=l

x=x̄+

=

∫ l

0

gǫ(δ
′
ǫ)

2dx+ gǫδ
′
ǫδǫ|x=x̄+

x=x̄−

Note that, for x 6= x̄

gǫδ
′
ǫδǫ = (gǫu

′
ǫ − gu′)δǫ − ϕǫu

′δǫ

where gǫ, u
′
ǫ and δǫ are continuous functions. The conditions at x̄ for ODE sys-

tem(3.14) show that gu′ ∈ C. Therefore

gǫδ
′
ǫδǫ|x=x̄+

x=x̄− = −ϕǫu
′δǫ|x=x̄+

x=x̄−

For the right hand side of (3.15), we also have

∫ l

0

(ϕǫu
′)′δǫdx = −

∫ l

0

(ϕǫu
′)δ′ǫdx− ϕǫu

′δǫ|x=x̄+

x=x̄−

Thus

||δǫ||2L2
+

∫ l

0

gǫ(δ
′
ǫ)

2dx = −
∫ l

0

(ϕǫu
′)δ′ǫdx

≤ ||ϕǫu
′||L2||δ′ǫ||L2

With the assumption gǫ ≥ c0 > 0, we have
∫ l

0

gǫ(δ
′
ǫ)

2dx ≥ c0||δ′ǫ||2L2
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Therefore, we obtain

||δǫ||2L2
+ c0||δ′ǫ||2L2

≤ ||ϕǫu
′||L2||δ′ǫ||L2

≤ 1

2c0
||ϕǫu

′||2L2
+ c0||δ′ǫ||2L2

Thus

||δǫ||2L2
≤ 1

2c0
||ϕǫu

′||2L2
≤ 1

2c0
|u′|2∞||ϕǫ||2L2

Here |u′|∞ is finite by construction. Therefore, we get

||δǫ||2L2
≤ c||ϕǫ||2L2

and the theorem follows.

3.4 Perturbation Result

In this section, we consider equation (3.9) and note that g(x) = g(x; x̄) is also a func-

tion of x̄, see equation (3.4). Recall that for the solution of the PDE ut = G(uxx)uxx,

the function uxx changes sign at the discontinuity of G(uxx). This motivate the fol-

lowing considerations.

For equation (3.9) we have defined a solution u(x) ∈ C1[0, l]. Let uL(x) = u(x) for

0 ≤ x ≤ x̄ and uR(x) = u(x) for x̄ ≤ x ≤ l. Then the following three statements are

equivalent.

Statement1: u(x) ∈ C2

Statement2: u
′′
L(x̄) = u

′′
R(x̄) = 0

Statement3: uL(x̄) = uR(x̄) = f(x̄).

Assume that for some given f(x) there exists x̄ so that

uL(x̄) = uR(x̄) = f(x̄).
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We then perturb f(x) to become f(x) + ǫh(x) and ask if we can find x̃ = x̄+ ǫa so

that the solution ũ(x; ǫ) of the problem

ũ− g(x; x̃)ũ′′ = f(x) + ǫh(x)

ũ(0) = ũ(l) = 0

ũ(x̃−) = ũ(x̃+)

ũ′(x̃−) = ũ′(x̃+)

will satisfy

ũL(x̃) = ũR(x̃) = f(x̃) + ǫh(x̃).

Here ǫ > 0, h(x) ∈ C∞ and a is a constant. We carry out the analysis to first order in

ǫ and show that if non-degeneracy condition is satisfied, then the perturbed problem

will again have a solution ũ ∈ C2[0, l], if x̃ = x+ ǫa is properly chosen.

Note u(x) depends on parameter x̄ and data f(x). To separate the perturbation

effects of x̄ from the effects of f(x), different from the construction in Theorem 3.3.3,

we set uL(x) as uL(x) = uL1(x)+uL2(x), where uL1(x) is the unique solution to initial

value problem

u(x)−Ku′′(x) = f(x)

u(0) = 0

u′(0) = 0

Thus uL1(x) only depends on f(x) smoothly, denote as uL1(x; f). While uL2(x) is

solution to

u(x)−Ku′′(x) = 0

u(0) = 0
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therefore

uL2(x) = αw(x)

where w(x) = eλ1x − e−λ1x, λ1 =
√

1
K

and α is a free parameter. Similarly, we have

uR(x) = uR1(x) + uR2(x)

where uR1(x) is the unique solution to the initial value problem

u(x)−Du′′(x) = f(x)

u(l) = 0

u′(l) = 0

The function uR1(x) also only depends on f(x) smoothly, denote as uR1(x; f). And

uR2(x) is solution to

u(x)−Du′′(x) = 0

u(l) = 0

therefore

uR2(x) = β(eλ2(x−l) − e−λ2(x−l))

with λ2 =
√

1
D

and β is a free parameter.

The assumption of u(x) ∈ C1 leads to a linear system for α and β. We can show

α and β are smooth functions of x̄ and also smoothly depend on f(x). Therefore,

denote uL2(x) = uL2(x, x̄; f) = α(x̄; f)w(x).

When f(x) gets perturbed to be

f̃(x) = f(x) + ǫh(x)
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As follows from Taylor expansion, we have, to the leading order

uL(x; x̄, f̃) = uL1(x; f) + α(x̄; f)w(x) + ǫv(x; x̄, h) +O(ǫ2)

where v(x) is some smooth function. With x̄ being perturbed to be

x̃ = x̄+ ǫa

we have

uL(x; x̃, f̃) = uL1(x; f) + α(x̄; f)w(x) + α′(x̄; f)ǫaw(x)

+ǫv(x; x̄, h) +O(ǫ2)

Then for the new solution ũL, we obtain

ũL(x̃; x̃, f̃) = uL1(x̄; f) + ǫa u′L1(x̄; f) + α(x̄; f)w(x̄) +

ǫa α(x̄; f)w′(x̄) + ǫa α′(x̄; f)w(x̄) + ǫv(x̄; x̄, h) +O(ǫ2)

= uL(x̄) + ǫ[a u′L1(x̄) + aα(x̄)w′(x̄) + aα′(x̄)w(x̄) + v(x̄; x̄, h)] +O(ǫ2)

The Taylor expansion for f̃(x̃) gives

f̃(x̃) = f(x̄) + ǫ[af ′(x̄) + h(x̄)] +O(ǫ2)

As follows from the assumption uL(x̄) = f(x̄), we have ũL(x̃) = f̃(x̃) to the leading

order if and only if

a u′L1(x̄) + aα(x̄)w′(x̄) + aα′(x̄)w(x̄) + v(x̄; x̄, h) = af ′(x̄) + h(x̄)

which can be arranged as

a[u′L1(x̄) + α(x̄)w′(x̄) + α′(x̄)w(x̄)− f ′(x̄)] = h(x̄)− v(x̄; x̄, h) (3.16)

Note

u′L1(x̄) + α(x̄)w′(x̄) + α′(x̄)w(x̄) = [
∂

∂x
uL(x, x̄) +

∂

∂x̄
uL(x, x̄)]|x=x̄

Following from (3.16), we conclude
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Theorem 3.4.1. Assume for equation (3.9). There is a solution u(x) ∈ C2. Let uL

be defined as above. If [ ∂
∂x
uL(x; x̄) +

∂
∂x̄
uL(x; x̄)]|x=x̄ − f ′(x̄) 6= 0, then there exists

constant a, such that with perturbed f̃(x) = f(x)+ ǫh(x) and x̃ = x̄+ ǫa, where ǫ > 0

and h(x) ∈ C∞, the new solution ũ(x) ∈ C2 .

This result provides an insight of how the curve, where discontinuity of coefficient

function occurs, evolves in space-time plane for the corresponding PDE.

3.5 Local Convergence of Simplified Newton

Iteration

Consider an iteration in function space for the following boundary value problem

u− g(u′′)u′′ = f

u(0) = u(l) = 0 (3.17)

We assume here that g(w) is a smooth positive function, Dng(w) is bounded for

n = 0, 1, 2 · · · , and g(w) +Dg(w)w ≥ c0 > 0, where Dng(w) = dn

dwng(w). We define

the simplified Newton iteration as

un+1(x) = un(x) + hn(x) , n = 0, 1, 2, · · ·

where hn(x) satisfies

hn − [g(u′′0) +Dg(u′′0)u
′′
0]h

′′
n = f − [un − g(u′′n)u

′′
n]

hn(0) = hn(l) = 0 (3.18)

We first use induction to show
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Lemma 3.5.1. Consider the sequence hn(x), n = 0, 1, 2, ... defined in (3.18). If

|h′′0|∞ is small enough, then there exists k, 0 < k < 1, with the following property:

|h′′i |∞ ≤ k|h′′i−1|∞ for 1 ≤ i ≤ n− 1, implies |h′′n|∞ ≤ k|h′′n−1|∞ .

Proof. Let RHS denote the right-hand-side of (3.18). Substituting un by un−1+hn−1

and rewriting in Taylor expansion, we get

RHS = f − [un−1 − g(u
′′
n−1)u

′′
n−1] + [g(u

′′
n−1) +Dg(u

′′
n−1)u

′′
n−1]h

′′
n−1 − hn−1

+[
1

2
D2g(u

′′
n−1)u

′′
n−1 +Dg(u

′′
n−1)](h

′′
n−1)

2 +O((h
′′
n−1)

3)

Note the first two parts on right of above equation are the right-hand-side of equation

(3.18) at n− 1. Thus

RHS = −[g(u
′′
0) +Dg(u

′′
0)u

′′
0 ]h

′′
n−1 + [g(u

′′
n−1) +Dg(u

′′
n−1)u

′′
n−1]h

′′
n−1

+[
1

2
D2g(u

′′
n−1)u

′′
n−1 +Dg(u

′′
n−1)](h

′′
n−1)

2 +O((h
′′
n−1)

3)

= [g(u
′′
n−1)− g(u

′′
0)]h

′′
n−1

+[Dg(u
′′
n−1)u

′′
n−1 −Dg(u

′′
n−1)u

′′
0 +Dg(u

′′
n−1)u

′′
0 −Dg(u

′′
0)u

′′
0 ]h

′′
n−1

+[
1

2
D2g(u

′′
n−1)u

′′
n−1 +Dg(u

′′
n−1)](h

′′
n−1)

2

+O((h
′′
n−1)

3)

= [Dg(ξ) +Dg(u
′′
n−1) +D2g(η)](u

′′
n−1 − u

′′
0)h

′′
n−1

+[
1

2
D2g(u

′′
n−1)u

′′
n−1 +Dg(u

′′
n−1)](h

′′
n−1)

2 +O((h
′′
n−1)

3) (3.19)

where ξ and η lie between u
′′
0 and u

′′
n−1. Notice D

ng are bounded by assumption and

u
′′
n−1 − u

′′
0 = h

′′
0 + h

′′
1 + · · ·+ h

′′
n−1

Also followed from assumption, we have

|h′′
0 |∞ + |h′′

1 |∞ + · · ·+ |h′′
n−1|∞ ≤ |h′′

0 |∞
1 − k

58



Chapter 3. Analysis of Discontinuity

Therefore we can bound RHS as

|RHS|∞ ≤ c1
|h′′

0 |∞
1− k

|h′′
n−1|∞ + (c2

|h′′
0 |∞

1− k
+ c3)|h

′′
n−1|2∞

where c1,2,3 are positive constants. Note |h′′
n−1|∞ ≤ |h′′

0 |∞, we have

|RHS|∞ ≤ c4(
|h′′

0 |∞
1− k

+
1

1− k
+ 1)|h′′

0 |∞|h′′
n−1|∞

where c4 ≥ max(c1, c2, c3). For equation (3.18), by the maximum principle one

obtains

|hn|∞ ≤ |RHS|∞

Rewrite equation (3.18) as

h
′′
n =

hn −RHS

g(u
′′
0) +Dg(u

′′
0)u

′′
0

With the assumption g(w) +Dg(w)w ≥ c0 > 0, we can get

|h′′
n|∞ ≤ 2

c0
|RHS|∞ =

2c4
c0

(
|h′′

0 |∞
1− k

+
1

1− k
+ 1)|h′′

0 |∞|h′′
n−1|∞

For any chosen k, 0 < k < 1, start from u0 very close to real solution u such that

|h′′
0 |∞ is small enough to make

2c4
c0

(
|h′′

0 |∞
1− k

+
1

1− k
+ 1)|h′′

0 |∞ ≤ k

Then we have

|h′′
0 |∞ ≤ 2

c0
|RHS|∞ ≤ k|h′′

n−1|∞

and the lemma follows.

It is easy to check that |h′′
1 |∞ ≤ k|h′′

0 |∞ by using equation (3.19) for n = 1.

Therefore we have shown the contraction for |h′′
n|∞ for all n . This leads to the fact

|h′′
n|∞ → 0 as n→ ∞. Now rewrite (3.18) as

hn = RHS + [g(u′′0) +Dg(u′′0)u
′′
0]h

′′
n
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Then

|hn|∞ ≤ |RHS|∞ + c1|h′′n|

≤ kc0
2

|h′′
n−1|+ c1|h′′n|

Here c1 is a positive constant independent of n. Thus we have shown

Theorem 3.5.2. The simplified Newton iteration defined in (3.18) is locally conver-

gent.
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Moving Boundary Problem

4.1 Formulation

We continue the analysis of the discontinuity occurring for the partial differential

problem:

ut = g(x, t)uxx, l1 ≤ x ≤ l2, t ≥ 0

u(l1, t) = 0

u(l2, t) = 0

u(x, 0) = f(x) (4.1)

with smooth initial data f(x) satisfying assumption (3.2) on l1 ≤ x ≤ l2.

Let s : [0,∞) → (l1, l2) denote a smooth function. We first consider s(t) as a

given function, but below we will derive conditions to determine s(t). Assume that

g(x, t) is a piecewise constant function defined in the x − t plane of the following
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form: for t ≥ 0

g(x, t) =











k1, for l1 ≤ x < s(t)

k2, for s(t) < x ≤ l2

(4.2)

Here we assume k1,2 > 0 and k1 6= k2. Let u be a solution of problem (4.1), u1

be the solution in region R1: l1 ≤ x < s(t) and u2 be the solution in region R2:

s(t) < x ≤ l2. We have a PDE problem, shown in Figure 4.1, as follows:

∂u1
∂t

= k1
∂2u1
∂x2

, l1 ≤ x < s(t), (4.3)

∂u2
∂t

= k2
∂2u2
∂x2

, s(t) < x ≤ l2, (4.4)

u(l1, t) = 0 (4.5)

u(l2, t) = 0 (4.6)

u(x, 0) = f(x) (4.7)

Figure 4.1: Moving boundary problem.

One assumes that u1 and u2 have C2 extensions to the closure of the regions R1

and R2. The position of the moving boundary x = s(t) has to be determined as well

as the unknown solution u(x, t).
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Usually two conditions are needed on the moving boundary, one to determine

the boundary itself and the other to complete the definition of the solution to the

differential equation. For example, the non-dimensional two phase Stefan problem

[8], recall:

∂u1
∂t

= k1
∂2u1
∂x2

, 0 ≤ x < s(t), (4.8)

∂u2
∂t

= k2
∂2u2
∂x2

, x > s(t), (4.9)

u1 = U1, x = 0, t ≥ 0, (4.10)

u2 = −U2, x→ ∞, t ≥ 0, (4.11)

on x = s(t) ,











u1 = u2 = 0,

γ2
∂u2

∂x
− γ1

∂u1

∂x
= ds

dt

(4.12)

where k1,2 and γ1,2 are non-dimensional parameters, which relate to specific heat ca-

pacity, density, heat conductivity and latent heat. The terms U1,2 are given constants.

The boundary condition (4.12) is called Stefan condition, which can be derived from

energy conservation.

Since our problem is not based on physics, but is derived from the financial

world, different moving boundary conditions are appropriate. In this case, we assume

u(., t) ∈ C2 across the phase-change curve x = s(t). First notice u(., t) ∈ C1 implies

u1 = u2 = h(t) on x = s(t) (4.13)

where h(t) is some unknown function to be determined, and

∂u1
∂x

=
∂u2
∂x

on x = s(t). (4.14)

Then u(., t) ∈ C2 is equivalent to

∂2ui
∂x2

= 0 on x = s(t), i = 1, 2 (4.15)
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and

∂ui
∂t

= 0 on x = s(t), i = 1, 2 (4.16)

due to the change of coefficients in equations (4.3) and (4.4).Differentiate ui(s(t), t),

i = 1, 2 with respect to t, to obtain

dui(s(t), t)

dt
=
∂ui
∂t

|x=s(t) +
∂ui
∂x

|x=s(t)ṡ = ḣ (4.17)

where ˙= d
dt
. By using (4.16) we obtain

∂ui
∂x

ṡ = ḣ, on x = s(t) (4.18)

Therefore, we have a moving-boundary problem defined by (4.3)-(4.7) together with

the moving boundary conditions (4.13), (4.14) and (4.18). For this problem, the

unknowns are u1(x, t), u2(x, t), h(t) and s(t). Notice u1,2(x, t) are determined if s(t)

and h(t) are given. It is reasonable to expect that h(t) and s(t) can be solved from

conditions (4.14) and (4.18).

4.2 Numerical Method

Very few analytical solutions are available in closed form for moving boundary prob-

lems. With appropriate boundary conditions and initial conditions, the exact solu-

tions are usually known as similarity solutions, which, for the problem under consid-

eration, take the form of functions of the single variable x/t
1
2 . Numerical methods

have been developed for the solution of moving boundary problems. Front-tracking

methods compute the position of the moving boundary at each step in time using

a finite-difference scheme or a finite-element scheme. An alternative way to track

the moving boundary is to fix it by a suitable choice of new space coordinates. Of

course, the partial differential equations need to be transformed correspondingly.

In this section we will discuss numerical methods for problem (4.3)-(4.7) with

moving boundary conditions (4.13), (4.14) and (4.18).
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4.2.1 Front Tracking Method with Fixed Grid

Suppose the partial differential equation is to be solved by using finite-difference

replacements for the derivatives to compute values of ui,j, at discrete points (iδx,

jδt) on a fixed grid in the (x, t) plane, 1 ≤ i ≤ M and 1 ≤ j ≤ N . At any

time jδt, the phase-change boundary x = s(t) will usually be located between two

neighbouring grid points, say iδx and (i + 1)δx. The value of u at the moving

boundary x = s(t) is hj at time t = jδt. The value hj is also unknown.

Figure 4.2: Fixed grid for front-tracking method

Figure 4.2 shows the moving boundary at time t = jδt, which is at a fractional

distance pδx between the grid lines iδx and (i+ 1)δx. Lagrangian interpolation can

be used to approximate uxx at x = iδx, x = (i+1)δx and x = s(t), and ux at x = s(t)

[8]. For l1 < x < s(t) we have

∂u

∂x
≃ 1

δx
(
pui−1

p + 1
− (p+ 1)ui

p
+

(2p+ 1)h

p(p+ 1)
), x = s(t) (4.19)

∂2u

∂x2
≃ 2

(δx)2
(
ui−1

p+ 1
− ui

p
+

h

p(p+ 1)
), x = iδx (4.20)

Similarly for s(t) < x < l2 we have

∂u

∂x
≃ 1

δx
(

(2p− 3)h

(1− p)(2− p)
+

(2− p)ui+1

1− p
− (1− p)ui+2

2− p
), x = s(t) (4.21)
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∂2u

∂x2
≃ 2

(δx)2
(

h

(1− p)(2− p)
− ui+1

1− p
+

ui+2

2− p
), x = (i+ 1)δx (4.22)

These formulas for the space derivatives are used with usual explicit replacement

of time derivatives in partial differential equations and conditions on the phase-

change boundary. For points not next to the moving boundary, the standard central

finite-difference formulas for equal space intervals are used. Then we obtain

um,j+1 = um,j + k1
δt

(δx)2
(um−1,j − 2um,j + um+1,j), m = 2, ..., i− 1, (4.23)

um,j+1 = um,j + k2
δt

(δx)2
(um−1,j − 2um,j + um+1,j), m = i+ 2, ...,M − 1 (4.24)

From boundary conditions (4.5) and (4.6), we have u1,j = uM,j = 0. At points iδx

and (i+ 1)δx, we use (4.20) and (4.22) instead, and get

ui,j+1 = ui,j + k1
2δt

(δx)2
(
ui−1,j

pj + 1
− ui,j

pj
+

hj
pj(pj + 1)

) (4.25)

ui+1,j+1 = ui+1,j + k2
2δt

(δx)2
(

hj
(1− pj)(2− pj)

− ui+1,j

1− pj
+
ui+2,j

2− pj
) (4.26)

Write sj = (i + p)δx, the conditions at moving boundary (4.14) and (4.18) lead to

equations for hj+1 and pj+1 at time t = (j + 1)δt.

pj+1ui−1,j+1

pj+1 + 1
− (pj+1 + 1)ui,j+1

pj+1
+

(2pj+1 + 1)hj+1

pj+1(pj+1 + 1)
=

(2pj+1 − 3)hj+1

(1− pj+1)(2− pj+1)
+

(2− pj+1)ui+1,j+1

1− pj+1

− (1− pj+1)ui+2,j+1

2− pj+1

=

hj+1 − hj
pj+1 − pj

(4.27)

The steps in the numerical solution, starting from known values of all variables at

each grid point at time jδt, are:

(i) Calculate um,j+1, m = 2, ..., i − 1, from (4.23) and um,j+1, m = i + 2, ...,M − 1,

from (4.24).

(ii) Calculate ui,j+1 from (4.25) and ui+1,j+1 from (4.26).
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(iii) Calculate pj+1 and hj+1 from (4.27).

(iv) Repeat the steps (i)-(iii). When p exceeds unity or p becomes negative, the

special equations (4.25),(4.26) and (4.27) are applied to the points (i + 1)δx and

(i+ 2)δx or (i− 1)δx and iδx.

There are two problems for the method above. When the moving boundary gets

close to a grid point, singularities will cause loss of accuracy. For example, the

Lagrangian interpolation formulas (4.19) and (4.20) will lead to big coefficient for

ui, if p is very close to 0. Another issue for the method is that it is a nonlinear

system (4.27) for pj+1 and hj+1. To avoid these two issues, we can use Lagrangian

interpolation at points (i−2)δx, (i−1)δx and iδx to compute uxx at iδx and similarly

points (i + 1)δx, (i + 2)δx and (i + 3)δx to compute uxx at (i + 1)δx. As for ux at

x = s(t), we use one-side difference of points (i− 1)δx and x = s(t) for x < s(t)

∂u

∂x
=

h− ui−1

(1 + p)δx
, x = s(t) (4.28)

while use (i+ 2)δx and x = s(t) for x > s(t)

∂u

∂x
=

ui+2 − h

(2− p)δx
, x = s(t) (4.29)

Therefore the moving boundary conditions (4.14) and (4.18) yield

hj+1 − ui−1,j+1

1 + pj+1

=
ui+2,j+1 − hj+1

2− pj+1

=
hj+1 − hj
pj+1 − pj

(4.30)

Notice (4.30) can be simplified into two linear equations about p(j+1) and h(j+1).

However no solution exists for p(j + 1) and h(j + 1). Therefore this alternative

finite-difference scheme does not work. So far we have not succeeded in applying

the explicit finite-difference front tracking method with fixed grid to our moving

boundary problem (4.3)-(4.7).
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4.2.2 Front-Fixing Methods with Coordinate Transforms

In the moving boundary problem specified by equations (4.3)-(4.7), let phase 1 be

the region l1 ≤ x ≤ s(t). Then the moving boundary can be fixed by the coordinate

transformation

z1 =
x− l1
s(t)− l1

(4.31)

so that x = l1 becomes z1 = 0 and x = s(t) becomes z1 = 1. Similarly, transformation

for phase 2, s(t) ≤ x ≤ l2, is

z2 =
x− l2
s(t)− l2

(4.32)

and x = l2 becomes z2 = 0 and x = s(t) becomes z2 = 1. Let

ui(x, t) = vi(zi, t), i = 1, 2.

We apply the chain rule for partial derivatives and get, for i = 1, 2

∂ui
∂x

=
∂vi
∂zi

1

s(t)− li
(4.33)

∂2ui
∂x2

=
∂2vi
∂z2i

1

(s(t)− li)2
(4.34)

and

∂ui
∂t

=
∂vi
∂zi

(− x− li
(s(t)− li)2

)ṡ+
∂vi
∂t

(4.35)

=
∂vi
∂zi

(− zi
s(t)− li

)ṡ+
∂vi
∂t

Correspondingly, equations (4.3)-(4.4) become

ki
∂2vi
∂z2i

+ zi(s− li)
∂vi
∂zi

ṡ− (s− li)
2∂vi
∂t

= 0, i = 1, 2 (4.36)

after multiplying through by (s− li)2 for numerical convenience. The moving bound-

ary conditions (4.14) and (4.18) become

∂v1
∂z1

|z1=1
ṡ

s− l1
=
∂v2
∂z2

|z2=1
ṡ

s− l2
= ḣ (4.37)
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Let ξi, 1 ≤ i ≤ N +1 be equally spaced grid points for z1. While let ξi, N +1 ≤ i ≤
2N + 1 be equally spaced grid points for z2. Let δξ =

1
N
, we then have

ξi = (i− 1)δξ, i = 1, 2, .., N + 1

and

ξi = 1− (i−N − 1)δξ, i = N + 1, N + 2, .., 2N + 1.

Figure 4.3: Fixed grid for front-fixing method with coordinate transform

Figure 4.3 shows the fixed grid mesh of z and the moving boundary x = s(t) is

transformed to the straight line ξN+1 = 1. The usual finite-difference discretization in

time at tj+1 = (j+1)δt, a fully implicit scheme, is combined with central differences

for space derivatives to give the system for i 6= N + 1

Cmv(i, j) = v(i− 1, j + 1)[−Bm + ξiAm] + v(i, j + 1)[2Bm + Cm)]

+v(i+ 1, j + 1)[−Bm − ξiAm], m = 1, 2 (4.38)

where

Bm =
δt

(δξ)2
km
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Cm = (s(j + 1)− lm)
2

A1 = C1
s(j + 1)− s(j)

2δξ

and

A2 = −C2
s(j + 1)− s(j)

2δξ

Notice that the negative sign in A2 occurs since z2 changes form 1 to 0 decreasingly.

We use two points backwards derivatives for approximating ∂v
∂z1

at ξN+1

∂v

∂z1
=
vN+1 − vN

δξ
(4.39)

while two points forwards for ∂u
∂z2

at ξN+1

∂v

∂z2
= −vN+2 − vN+1

δξ
(4.40)

From moving boundary condition (4.37), one obtains

v(N, j+1)(l2−s(j+1))+v(N+1, j+1)(l1−l2)+v(N+2, j+1)(s(j+1)−l1) = 0 (4.41)

and

s(j+1) =
(v(N + 1, j + 1)− v(N, j + 1))s(j)− δξl1(v(N + 1, j + 1)− v(N + 1, j))

v(N + 1, j + 1)− v(N, j + 1)− δξ(v(N + 1, j + 1)− v(N + 1, j))

(4.42)

Notice that equation (4.41) exhibits linearity between v(N, j + 1), v(N + 2, j + 1)

and v(N +1, j+1) at each time step if s(j+1) is known. Therefore we can combine

equation (4.38) with (4.41) together to form a linear system for u(:, j + 1) with a

given s(j + 1). Let P denotes the matrix defined as
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

























1

ξ2A1 − B1 2B1 + C1 −ξ2A1 − B1

. . .

ξNA1 − B1 2B1 + C1 −ξNA1 −B1

l2 − s(j + 1) l1 − l2 s(j + 1)− l1

ξN+1A2 − B2 2B2 + C2 −ξN+1A2 −B2

. . .

ξ2NA2 −B2 2B2 + C2 −ξ2NA2 − B2

1



























(4.43)
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where A1,2, B1,2 and C1,2 are described as for equation (4.38). Let

V =

























































v(1, j + 1)

v(2, j + 1)

.

.

v(N, j + 1)

v(N + 1, j + 1)

v(N + 2, j + 1)

.

.

v(2N, j + 1)

v(2N + 1, j + 1)

























































and

Q =

























































0

C1v(2, j)

.

.

C1v(N, j)

0

C2v(N + 2, j)

.

.

C2v(2N, j)

0

























































We then derive the matrix system PV = Q to solve for v(:, j + 1). An iteration

scheme can be used with known v(:, j) and s(j) as following:

(i) Make an initial guess for s(0)(j + 1), for example, let s(0)(j + 1) = s(j) .
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(ii) Solve for v(0)(:, j + 1) from the matrix system PV = Q .

(iii) Compute next s(1)(j + 1) from equation (4.42).

(iv) Repeat the steps (ii)-(iii) until the error |s(n)(j + 1)− s(n+1)(j + 1)| is less than
a prescribed tolerance, say tol = 10−6.

At all interior ξi, except for i = N +1, we use central difference formulas for both

the first and second space derivatives. Therefore, we expect the order of method for

space discretization to be 2. While the time derivative is always approximated by

two point backward formula, the order of method for time discretization is 1. These

results are confirmed in next section for test problems. Of course, rather than using

two-points approximation for ∂v
∂ξ1,2

as in (4.39) and (4.40), we have other choices for

approximation, such as the three-point backward/forward formula

(3vN+1 − 4vN + vN−1)/2δξ (4.44)

However, for the sake of numerical efficiency, we want the matrix P to be tridiagonal.

An alternative way of treating equation (4.36) suggested in [9] is the Method

of Lines in space, i.e: discretize only the space derivatives and then integrate the

resulting ordinary differential equations in time along all constant ξ = ξi lines. For

example, equation (4.36) is approximated by

∂v(i)

∂t
= km

1

(s− lm)2
v(i+ 1) + v(i− 1)− 2v(i)

(δξ)2
+

1

s− lm
ṡξi

v(i+ 1)− v(i− 1)

2δξ

(4.45)

where i = 2, ..., N for m = 1, while i = N + 2, ..., 2N for m = 2. The moving

boundary conditions (4.37) can then be approximated by

v(N + 1) =
v(N)(l2 − s) + v(N + 2)(s− l1)

l2 − l1
(4.46)

ṡ =
v̇(N + 1)(s− l1)δξ

v(N + 1)− v(N)
(4.47)
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for example. Well-established ODE solvers can automatically integrate the result-

ing ODE systems to the required accuracy and will produce the solution vector

(v(2), ..., v(2N), s) at required time intervals. With Dirichlet boundary conditions,

we then have the full solution vector (v(1), ..., v(2N + 1), s).

4.3 Numerical Results for Front Fixing Method

4.3.1 Test Examples

We have no exact solution for the moving boundary problem (4.3)-(4.7) to compare

with the numerical solution. Therefore some special examples are used to test the

method.

A. Base Case

Assume for problem (4.3)-(4.7), we have l1 = −l2 and a smooth initial function f(x)

satisfying the following conditions:

f(−x) = −f(x)

and

f ′′(x) > 0 for x < 0 and f ′′(x) > 0 for x > 0.

Since f(x) changes concavity at x = 0, we have s(0) = 0. Let (u(x, t), s(t)) be the

solution to the base case.

B. Case I

Consider a solution pair (ũ(x, t), s(t)), where ũ(x, t) = −u(x, t). It is trivial to

show ũ(x, t) satisfies PDE (4.3) and (4.4) with Dirichilet boundary condition, while

ũ(x, 0) = −f(x). On the moving boundary x = s(t), we have

ũ1(x, t) = ũ2(x, t) = h̃(t) = −h(t)
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and

∂ũ1,2
∂x

=
∂u1,2
∂x

Therefore, the moving boundary condition (4.18) still holds for (ũ(x, t), s(t))

∂ũ1
∂x

=
∂ũ2
∂x

=
˙̃
h

ṡ

Hence with the initial condition in Base Case changed to −f(x), the solution will

become (−u(x, t), s(t)).

C. Case II

Now take a solution pair (ũ(x, t), s̃(t)), where ũ(x, t) = u(−x, t) and s̃(t) = −s(t).
It is easy to see that ũ satisfies Dirichilet boundary condition and ũ(x, 0) = f(−x).

∂u

∂t
=
∂ũ

∂t

∂u

∂x
= −∂ũ

∂x
and

∂2u

∂x2
=
∂2ũ

∂x2

Then we obtain

∂ũ1
∂t

= k1
∂2ũ1
∂x2

, l1 < −x < s(t)

and

∂ũ2
∂t

= k2
∂2ũ2
∂x2

, s(t) < −x < l2

Given the assumption of l1 = −l2, we can rewrite the regions for ũ1,2(x, t) as s̃(t) <

x ≤ l2 and l1 ≤ x < s̃(t), respectively. The moving boundary condition (4.18) is

satisfied, since on x = s̃(t)

ũ1(s̃(t), t) = ũ2(s̃(t), t) = h(t)

and

∂ũ1
∂x

=
∂ũ2
∂x

= − ḣ
ṡ
=
ḣ
˙̃s
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Thus, if we change the initial condition to f(−x) and exchange coefficients k1 and

k2 in PDEs, the solution (u(−x, t), −s(t)) should be expected.

D. Case III

Now consider an extreme case where k1 = k2. We have shown from Case I, a solution

pair (−u(x, t), s(t)) exists with initial condition −f(x). While in Case II, there is

a solution pair (u(−x, t), −s(t)) with initial condition f(−x) and exchanged k1 and

k2. Under assumption k1 = k2 together with f(−x) = −f(x), Case I is the same as

Case II. Therefore we conclude the solution should have the following properties:

−u(x, t) = u(−x, t)

and

s(t) ≡ 0.

A complete specification of the test problem for Base Case, including the PDE pa-

rameter, is given in Table 4.3.1. The numerical comparison results, shown in Figures

4.8-4.9, verify the symmetry properties for the cases discussed above.

4.3.2 Rate of Convergence

Test problem of Base Case was solved by front fixing method with coordinate trans-

formation. Solutions were computed on a sequence of uniformly refined grids, initial

spacestep dz is 0.01 and timestep dt is 0.01. At each grid refinement, the spacestep

and timestep were halved. The convergence tolerance for s(t) iteration is 10−6. Since

there exists no exact solution for comparison, we take the numerical solution with

very fine mesh, where dz = 0.01/32 and dt = 0.01/64, as a proxy for exact solution.

Let uex be “exact solution” and u be numerical solution. Define error as

error = |u(:, T )− uex(:, T )|∞
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Convergent results are given in Table 4.3.2 and 4.3.2. Figure 4.10 and 4.11 are the

log-log plots of errors versus the number of grid points. We showed the front fixing

method described above converges at quadratic rate in space and at linear rate in

time. These results are consistent with the order of the discretization formulas,

which are central difference in space except for points on the moving boundary and

backward difference in time everywhere.
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Initial Condition f(x) = −x3 + x

Initial Moving Boundary Position s(0) = 0

Boundary l1 = −1, l2 = 1

Final Time T = 0.1

PDE Parameter k1 = 0.1, k2 = 0.5

Table 4.1: Description of test problem for Base Case

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
u BaseCase & CaseI

 

 
u(:,0) BaseCase
u(:,T) BaseCase
s(T) BaseCase
u(:,0) CaseI
u(:,T) CaseI
s(T) CaseI

Figure 4.4: Solution u(x, t) at t = 0 and t = T , final position of moving boundary
x = s(T ) for Base Case and Case I.
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Figure 4.5: Moving boundary x = s(t) for Base Case and Case I.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
u BaseCase & CaseII

 

 
u(:,0) BaseCase
u(:,T) BaseCase
s(T) BaseCase
u(:,0) CaseII
u(:,T) CaseII
s(T) CaseII

Figure 4.6: Solution u(x, t) at t = 0 and t = T , final position of moving boundary
x = s(T ) for Base Case and Case II.
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Figure 4.7: Moving boundary x = s(t) for Base Case and Case II.
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Figure 4.8: Solution u(x, t) at t = 0 and t = T , final position of moving boundary
x = s(T ) for Case III.
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Figure 4.9: Moving boundary x = s(t) for Case III.

Spacial Nodes Error (10−4) Ratio

201 0.1798

401 0.0454 3.96

801 0.0113 4.01

1601 0.0027 4.18

Table 4.2: Convergence results for test problem defined in Table 4.3.1. The time step
is fixed at 0.01/64 at each grid refinement. ”Ratio” is the ratio of successive error
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Time Nodes Error Ratio

11 0.0034

21 0.0017 2

41 0.0008 2.12

81 0.0004 2.00

Table 4.3: Convergence results for test problem defined in Table 4.3.1. The space
step is fixed at 0.01/32 at each grid refinement. ”Ratio” is the ratio of successive
error

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

loglog plot of error with fixed dt=0.01/64

number of space grid points

er
ro

r

Figure 4.10: Log-log plot of error versus number of space grid points when time step
is fixed at 0.01/64
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Figure 4.11: Log-log plot of error versus number of space grid points when space
step is fixed at 0.01/32
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Chapter 5

Conclusion and Future Work

Although the classic Black Scholes model is the most important step in the develop-

ment of derivative pricing analysis, the assumptions of constant volatility of the un-

derlying asset, no transaction costs and the market being perfectly liquid are clearly

not plausible in real markets. We have derived nonlinear models corresponding to re-

vised assumptions. Despite substantial differences in the financial framework, these

nonlinear Black-Scholes models have a very similar mathematical structure. This

dissertation focuses on the properties of the resulting nonlinear PDEs.

The main results consist of three parts. Using energy estimates, we have shown

existence and uniqueness of a solution to the smoothed nonlinear PDE with peri-

odic boundary conditions. To study the discontinuity in the coefficient function, we

discretize the nonlinear PDE into ODE systems. The analysis focuses on the con-

nection between the ODE systems with discontinuous coefficient function and the

ones with smoothed coefficient function. Numerical results are based on the frame-

work of moving boundary problems. We first formulate the nonlinear PDE model

as a moving boundary problem with appropriate moving boundary conditions. Two

general methods are applied to our model. The front tracking method with a fixed
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grid does not work well, due to the nonlinearity of the discretized system of moving

boundary conditions. The front fixing method with coordinate transform has been

validated for some test problems. The order of the method is shown to be quadratic

in space while linear in time.

One part of our future work is to connect the PDE with discontinuous coeffi-

cient function to the one with smooth coefficient function through some convergence

analysis. The problem can be formulated as follows: consider a PDE with smooth

coefficient function, as such coefficient function approaches some discontinuous func-

tion in certain norm, will the solution also converge and if yes, will it converge to

the solution of the discontinuous PDE? Another part of our interest is the analysis

of moving boundary problems. We would like to establish analytical validation of

moving boundary conditions of our model. Leading order analysis has been tried for

validation, however it does not seem to be helpful. For numerical analysis, we have

seen the iteration scheme works for the front fixing method. Therefore, the proof of

convergence of the iteration scheme will be of interest.
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