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ABSTRACT

In this paper we study the theoretical limits of finite
constructive convex approximations of a given function
in a Hilbert space using elements taken from a reduced
subset. We also investigate the trade-off between the
global error and the partial error during the iterations
of the solution.

The results obtained constitute a refinement of well es-
tablished convergence analysis for constructive iterative
sequences in Hilbert spaces with applications in projec-

tion pursuit regression and neural network training.

1 Introduction

Continuous functions on compact subsets of R?¢ can be
uniformly approximated by linear combinations of sig-
moidal functions [1], [2]. The issue of how the error
in the approximation is related to the number of sig-
moidals used is one of paramount importance from the
point of view of applications; it can be phrased in a more
general way as the problem of approximating a given el-
ement (function) f in a Hilbert space I by means of an
iterative sequence f,,, and has an enormous impact in
establishing convergence results for projection pursuit
algorithms [3], neural network training [4] and classifi-
cation [5]. It has been shown that this problem can be
given a constructive solution where the iterations taking
place involve computations in a reduced subset G of H.

In this paper we formulate the problem in such a way
that we can study the bounds for the error in the ap-

proximation, obtain the best possible trade-off between
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global and partial errors, and derive bounds for the
global error when a prespecified partial error is fixed.
The rest of the paper is organized as follows: Sec-
tion 2 will state the problem and highlight its practical
implications. Section 3 will review Barron’s and Din-
gankar’s solutions to the problem, while Section 4 will
provide the framework under which those solutions can
be derived. Section 5 will analyze the limits of the global
error and 1ts relation to the partial errors at each step
of the iterative process. Finally, Section 6 will close the

paper with the conclusions and further work.

2 The Problem

Let GG be a subset of a real or complex Hilbert space H,
with norm ||.||, such that its elements, ¢, are bounded in
norm by some positive constant b. Let ¢o(G) denote the
convex closure of GG (i.e. the closure of the convex hull
of G'in H). The first global bound result, attributed to
Maurey [4], concerning the error in approximating an
element of ¢o(() using convex combinations of n points
in GG, is the following:

Lemma 2.1 Let f be an element of co(G) and ¢ a con-
stant such that ¢ > b? — ||f]|* = bj%. Then, for each
positive integer n there is a pownt f, in the conver hull

of some n points of G such that: ||f — f.||* < .
n,

The first constructive proof of this lemma was given by
Jones [3] and refined by Barron [4]; it includes an algo-

rithm to iterate the solution. The result is the following:

Theorem 2.1 For each element f in co(G), let us de-

fine the parameter v as follows:

= Inf su — || = —v||?
= g sup {llg = vl = 17 = "}



Let § be a constant such that 6 > ~. Then, we can con-
struct an iterative sequence f,, fn chosen as a convex

combination of the previous iterate f,_1 and a g, € G,

Jo = (1= A) a1 + Agn, such that ||f — fa]]? < é
n

This new parameter, =, is related to Maurey’s b%; just
make v = 0 in the definition of v to realize that v < bj%.

The relation between this problem and the univer-
sal approximation property of sigmoidal networks was
clearly established in [3], [4]; specifically, it has been
proven that, under certain mild restrictions, continuous
functions on compact subsets of R? belong to the con-
vex hull of the set of sigmoidal functions that one hidden

layer neural networks can generate.

3 Constructive solutions

The proof of Theorem 2.1 given in [4] and [5] is based

on the following lemma:

Lemma 3.1 Given f € c¢o(G), for each element of
co(G), h, and XA € [0, 1]:

inf |If = (1=X)h=Agl[* < (1=A)?||If =h[[*+A*y (1)
geG

The main result is derived using an inductive argument.
At step 1, find g1 and €, so that ||f — g1]|*> < infg ||f —
g||? + €1 < 4. This is guaranteed by (1), for A = 1.

Let fy, be our iterative sequence in co(G); assume that
forn > 2, ||f — fa-1]|? <3/(n—1). 1t is then possible
to choose among different values of A and ¢, so that:

)
(1_/\)2||fn—1_f||2+/\27§g_Gn (2)
At step n, select g, such that ||f—(1—=X)fae1—Agn]]? <
inf ||f = (1= A)faz1 = Mgl* + en (3)
geG

J

NS
n

Hence, using (1), (2), and (3) we get: ||f — ful|* <
and that completes the proof of Theorem 2.1.

4 Discussion

The values of A and €, in [4] and [5] are related to the

parameter o, « = §/y — 1, in the following way:

1f = Fasl? o
4 p— N nzi
4] T = Foi B T nat )
1. _ay

€ = —
n n?

It can be shown [6] that admissible values of A satis-
fying inequality (2) for positive values of ¢, fall in the

following interval:

\f = fall®

+
v+ = Faall?

1
v+ = Faall?

)
\/||f_fn—1||4_ ||f_ fn—1||2+ g

To evaluate the possible choices for the bound ¢, we use
the induction hypothesis in inequality (2); values of A

should now satisfy
) )
=N —— 2y < ——¢,
( )n—1+ 7_71 ‘

Admissible values of A for positive values of ¢, fall

then in the interval:

1—|—oz:|:n—1 all+ a)
n+a ntal nn-—1)

Figure 1 shows the bounds of the interval for A as a

function of n. Bounds are plotted using solid lines, the
center of the interval dotted line, and A in [5] dash dotted
line. Note how this last value approaches the limits of
the interval, resulting in a poorer value for ¢,, as will be
shown later.
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Figure 1: admissible values of A as a function of n, for

a=1

We now formulate the following questions:

1. Is it possible of achieve a further reduction in the
error using convex combinations of n elements from
G7 What is the minimum bound for the global error

assuming €, = 0 for all n?



2. What is the optimal choice of A for a given
bound, so that ¢, is maximum, making the quasi-

optimization problem at each step easier to solve?

3. For a prespecified partial error, ¢,, what is the

bound for the global approximation problem?

Based on the assumptions made and in Lemma 3.1,
let us formulate the problem again in a more general
way: We look for a constructive approximation so that
the overall error using n elements from G satisfies

||f—fn||2§b(5—n) (4)

b(n) being a function of the parameter n which indicates
the order of our approximation (i.e. 6(n) = n both in
[3] and [5]) and & the parameter related to v as defined
before. Let fi, = (1 — A)fao1 + Agn; we want to find A,
€n, and the function b(n) so that:

_ 2 < . . _ _ _ 2 n
|f=Ffll? < 0é§£1;22|Lf (1= XN fac1 +Ag|]* + ¢
. _ 2 _ 2 2
< 0<H;f<1(1 NN = FactlP+ Xy + e
. 2 6 2
< i 0= Tt re )
_ 9
= b(n)

Since § = (1 + &)y, we can rewrite the last inequality:

inf (1—X)7 0

)
0<A<1 b(n—1) n

+ X264+ ¢, — May < —
b(n)

This last expression represents the trade-off between the
global error, §/b(n), and the error at each of the sub-
problems, ¢,. In reference [6] we have proved that set-
ting €, = A2a, then, for a given A, the best rate of con-
vergence of the approximation which can be achieved,
measured in b(n), is the one given in [4] and [5]; the value
of A which minimizes ¢, for that rate of convergence is

precisely the value given in [5].
5 Limits and Bounds of the Approximation

Looking back at expression (5), we notice that, after
using Lemma 3.1, we deal at each step with a quadratic

problem in A, which consists of minimizing

Q) = (1= 0)" g + A

provided that the induction hypothesis (4) is satisfied for
k < n. We have introduced the notation A, to stress the

variation of this parameter along the iterative process.

Writing dQ(An)/dA, = 0, we get

C(T=A)d I+a
/\n_'yb(n—l)_l—l—a-l-b(n—l) (6)
=l < 0= g+ g 4o
5 %)
S Trarion w0
. _d[14+a+bn—1)—b(n)] (8)
"7 ob(n)(1+a+b(n—1))

We conclude that there is a fundamental limitation in
the rate of convergence that can be achieved under the
hypothesis made so far, namely:
bn)—bn—1)<1+a= U
v
5.1 Minimum Global Error
Assuming that we can solve the partial approximation
problems at each step of the iteration, so ¢, = 0,n > 1,
we have proved in [6] that the best rate of convergence
that can be obtained follows the law ¢/n; the minimum
value of the constant is ¢ = 7.

Note that for this minimum to be reached we have

\ = I+a 1
C(I+a)n n
so the optimal convex combination would be the average

of n elements from G, as in [5].

5.2 Fixing the rate of convergence

The problem of finding the maximum ¢, for a fixed con-

vergence rate was also discussed in [6].

The value A = (1 + «)/(n + «) solves the optimization
problem; the best upper bound we can achieve for the
partial error at each step of the iteration process coin-

cides with Barron’s bound, and is always greater than

the bound found in [5].

5.3 Fixing ¢,
Given the nonlinear character of the recursion involved

in (7), there is no analytical procedure to find a closed



expression for b(n). However, we can compute the

bound of the approximation following the flow dia-
gram of the optimal procedure, and derive from 1t some

asymptotic results.

1. Select a constant ¢ such that § > ; let § = (14a)~.
2. Find g, € G so that ||f — g1||? < 4. Set f1 = g1.
3. For n > 1, evaluate:

(a) An =(1+ o)/ (1+a+b(n—1)) from (6)
(b) Find g, € G so that

||f_ (1 - /\n)fn—l - /\ngn||2 <

inf || = (1= An)foo1 = Angl* + en

(C) Make fn = (1 - An)fn—l + /\ngn
(d) Compute b(n) from (7)

In order to make the appropriate comparisons with pre-
vious results, we will set €, = (ay/n?), as in [5]. Then,
again under the induction hypothesis,
1 1 o
) 1tatbn-1)  (Itam?
To predict the asymptotic behavior of b(n), let us as-
sume that, at step n—1, b(n—1) > f(1 + a)(n—1), we

will then prove that, for some values of the constant 3,
we can imply that also b(n) > 5(1 + a)n.
Since b(n— 1) > F(1 + a)(n — 1),
1 < 1 o
W) S+ a8 —1) Atz
o) (4B —1)
n(l+ ) n?+a(l+p(n—-1))
b(n)
n(lta) >B & n(l-p)2>pa(l+p(n-1) <
n(l—p8—pF%) > pBa(l-7)

This last inequality is asymptotically fulfilled for any
value of 3 such that:
Vda¥1-1
2
Then, for the value of €, selected in [5], the asymptotic

0<p<

value for b(n) is:
Vida+1-1
2c

which is a better rate than the one obtained in [5].

b(n) =14+ a)n

6 Conclusions and Further Work

We have studied in this paper a framework where con-
structive algorithms based on convex combinations of
elements from a subset of Hilbert space can be derived.
We have obtained the optimal values for the coefficients
in the convex expansions to guarantee a desired conver-
gence rate. We have also studied the trade-off between
global and partial errors for that optimal value.

Our further work includes the study of different con-
vex combinations, which might include back-fitting of
previously computed values, and the design of a practi-

cal algorithm that achieves the bounds obtained.

References

[1] G. Cybenko, “Approximation by superpositions of
a sigmoidal function”, Math. Contr. Signals, Syst.,
2 313-314 (1989).

[2] K. Hornik, M. Stinchcombe and H. White, “Mul-
tilayer feedforward networks are universal approxi-

mators”, Neural Networks, 2 359-366 (1989).

[3] L.K. Jones, “A simple lemma on greedy approxi-
mation in Hilbert space and convergence rates for
projection pursuit regression and neural network
training”, The Annals of Statistics vol. 20 608-613
(1992)

[4] A.R. Barron, “Universal approximation bounds
for superpositions of a sigmoidal function”, IEEE

Trans. on Inf. Theory vol. 39930-945(1993)

[65] A.T. Dingankar and I.W. Sandberg, “A note on
Error Bounds for Approximations in Inner Product

Spaces”, To appear in Circuits, Systems and Signal

Processing, (1996)

[6] D. Docampo, C.T. Abdallah and D. Hush, “Er-
ror Bounds in Constructive Approximation”, to ap-
pear in Proceedings of Fourth COST Bayona Work-
shop on Intelligent Methods wn Signal Processing

and Communications.



	University of New Mexico
	UNM Digital Repository
	4-13-2012

	Bounding the Errors in Constructive Function Approximation
	Chaouki T. Abdallah
	D. Docampo
	Recommended Citation


	chaouki.dvi

