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Abstract

This paper considers Lyapunov stability of discontinuous
dymamical svstems. [t 15 assumed that discontinuties in
the svstem dynomics are caused by some intermal (e.g.,
component [ailures), and/or extemal (e.g. controller
commands) discrete events. This kind of systems are often
called Hvbmd Dynamical Systems. Three cases are
discussed in this work, First, we consider that a set of
gontinuous-stote systems is given and each system from
the set shores @ common Lyapunov function. Second,
stability of sequentially switched systems is investigated
by means of multiple Lvapunoy tunctions, Third. some
preliminary results are provided for the case when a hybnd
svstem  switches  between  systems with parametric
pnesmainty.

1. Introduction

Real-time hybrid complex systems (e.g., aircraft.
mbot) are subject to discontinuities in their dvnamics
caused by discrete events. Discrete events may result
from component failures, changing operating
conditions. switching control algorithms. choosing
differsnt sensor outputs. ete. [n this paper we assume
that if an event occurs, the evolution of the
continuous-state is govermed by a new set of
differantial/difference equations.  Related topics
include wvariable structure  controllers,  gain
scheduling, sample-data sysiems. motion control
svstems. systems with parametric uncertainty, and
many other dynamical systems, see [1] for references.

Stability (e.g.. Lvapunov stabilitv), and cycling
behavior of hybrid control systems are difficull to
analvze because classical stability theory [9] needs to
impose wvarious continuity constrainis on the
dynamical svstem. Even very simple hvbrid svstems
yiolate such continuity requirements.  Although some
rgorous results have been reported in the literature

(31, [13], (20], the field is not yct mature and there
stil! are many issues that require deeper investigation.

We consider three situations that may arise in
practical applications of hybrid control systems,
First, it is assumed that a set ol continuous-state
sysiems is given and each system from the set shares
a common Lyapunov function. This approach has
been used to prove stability, for instance in robust
stability of uncertain svstems [10], and asvmptotic
stability of a class of fuzzy systems [18]. [n this
paper we present a more practical stability criterion
for fuzzy systems than the result in [1§]
Furthermore. we use a common Lyapunov function to
decouple the design of a multimodal aircraft
conroller from the design of the discrete-evem
supervisor. Second. stability of sequentially switched
svslems is investigated by means of multiple
Lyapunov functions [3], [4], [13], and more general
and less conservative stability criteria than the results
in those references are obtained. Finally some
preliminary results are provided for the case when the
hvbrid svstem switches between systems with
parcmetric uncertainty [2].

The remainder of the paper is organized as
follows. In Section 2 we present some mathematical
preliminaries and the problem formulation, Sections
3, 5, and 5 discuss stability of hybrid dynamical
systams by means of common, multiple. and
parametric  Lyapunov  functions.  respectively
Finzlly, Section 6 gives some concluding remarks.

2. Preliminaries

2.1 Hybrid Dyvnamical System

Since we are interssted in the qualitative analvsis
of Lwvbrid svstems. a suitable qualitative model of
suck systems is needed. We adopt the definition of



hybrid dynamical svstem presented in [20] which is
an extension of the notion of general dynamical
system introduced in [11]. A Avbeid dvnamical
sustem is represented by o five-tuple X ={(T.p). (X.d).
5. .. T} consisting of a time space with metric p, a
stite space with metric o, a family of modions §, . <
S and T, = T. Dcetoils are discovered in the original
references.

Twao resulis in [20] are important in our work: 1)
a hwvbrid system is defined on an absuwact fully
ordered time space T which can be eg.
Ta{(t,k)sRxNtz0.k=|r]}. and 2) any

hybrid system ¥ can be cmbedded into another

dynamical system H defined on real time space R,
The second result is important because stability
properties of X can be deduced from stability
properties of E ;

1.2 The Problem Definition

Consider the continuous-time system given by

(t)= f(=x(1)), 1e{l2,....N}=N (D)
and the discrete-time system
x(k+1)= filx(k)), iesN (2)

where x € X< " is the continuous state, and / &€ N
is the discrete state. The evolution function f(-) is
ussunted to be globally Lipschite, ie., f) e
C* (M. Let Q denote a region of %" such that for
any i & N we have: (1) (), withj & N cover the
state space A", and (2) £y and 2 with / = k do not
overlap. It is assumed that if the continuous state hits
a certain boundary €2 (fe., a switching event) the
discrete state is given as

iy = g(i(t"),x(1)) = £,if i(t7) =iand x(r) €Q,.(3)
where g0 V «X— N is the discrete dynamics.

In this work the discrete dynamics is abstracted
away in order to study stability of the continuous-
state part of the hybrid system. The hybrid svstem ¥
given by (1).{(2)) and (3) |5 embedded into a switched
system f{ whose motions are discontinuous.

Some definitions are required in order to
proceed.

Definition 2.1 A vaild switching sequence b, for a
given initial continuous state x,, is defined by the pair
(i, £ as tollows

"] - {“ﬂl 'rl']}u ﬁ]l ;1}1 veug “LI! nﬂ}: {:h r.l']s--- }-
where ;< < . <ty <t,andis e N . Asitcanbe
scen, Lthe evolution of the system is govemned by the
vector field f () on the interval £, < ¢ < fi;. We

shall call ¢, a switching time.
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Definition 2.2 We deflne an increasing lime
sequence T

:Ir:, ={f.:,.f:.r:.uur;_nr;-q"hurl-..:!"'} {5}
Definition 2.3 If in a ball B(r,), the function FTx) is
positive definite and has continuous parial
derivatives, and if its time derivative along any state
rajectory x(-) of system X = f(x), is negative semi-
definite, J.e., V(x} <0, then F(v) is said 1o be a

Lvapunov function for the system x = f(x) [16].
Definition 2.4 =, is an equilibrium point of the
hybrid system (1),(2) if f{x,} =0 foralli = N .
Definition 2.5 The equilibrium point of the hybrid
svstem (1),(2) is stable if for every >0, and 1, & T,
there exists a & = 8(g,fy) = 0 such that for any
lettg) = ¢, < & and for any i(t) & . we have
||x{;;| - x, | < g forall = f, The equilibrium point
is said o be uniformly stable if & = 6(e). Moreover,
the equilibrium point is said to be asvmproiically
stable if itis stable and fx(1) - x,[| = 0 ast = =,

The varable structure nature of hybrid svstems
provides interesting stability behaviors.
Example 2.6 Consider the following systems:

[-05,-05,05,05] ,7.1,7]

A2 7 17-1] [-05-05050%]|
Notc that M) = A(1z) — -0.5 +j 2.6158 and L(.1,)
= Ad,) = 0.5 %] 26438, then the system is slable
fori=1,2 and unstable for i = 3, 4.
Case 1: If .1 is selected in the second and fourth
quadrants and A, is selected in the first and third
quadrants, the hybrid svstem is unstable.
Case 2: |[If 4, is seclected in the first and third
gquadrants and A4, is sclected in the second and fourth
quadrants, the hybrid system is stable.
Case 3: Suppose that a periodic sequence &, =
{[(1,0). 2,4). (3.6). (+.7.3)], [(1.8).....} is used. The
eigenvalues of the transition matrix ®(f,+A.f,) with
period A, are A(d) = {-3.8669, -0.0047}. From
Willems' theorem [7] we conclude the hvbrid system
is unstable,
Case 4 Suppose the previous sequence is
rzscheduled, then & = {[(+.0). (2.0.5), (3.2.3), (1.4)],
[[4.8),...), i.e, the first and the last systems were
interchanged. [t is easy to verify that the system is
asymptotically stable and the eigenvalues of b ure
RDY = {00545, 03363},

a

Example 2.6 shows some of the stability

problems one may encounter in switched hvbrid

systems  In the remainder of the paper we present

some Lyapunov tools that may help in the stability
analysis of a large class of systems.




3. Common Lyapunov Functions in rirs1yz

Linear Time-Invariant Systems Z v.H x(1)
. ; x(f)= 9y
Forthe LTI case. ie., X = 4x withi € Nand {; e
R*", if a common Lyapunov function exists, then
there exist symmetric positive definite matrices P and
£ such that ) .

AP+ PA, =-Q, VYielN. (6) ."czzfm-l]-r, v, =4 '
We can conclude that the set of systems is robustly me |
stable [10], Furthermore, anv arbitrary fasr switching | A -8 ,r;’ if 1=
sequence between elements in the set is stable 3], (A = BK +{A-8.K)
and any linear positive combination of the clements l ' =
of the set is also stable. _ 2 . .

A lundamental problem in this section is how to Th* next “_‘f‘“"“fl [18] gives a sufficient
find such a common quadratic Lyapunov function. condition for stability of svstem (9).

= = 15 1 ” L} . 9

An explicit construction, assuming that the stability Thecrem 3.3  The equlibnum of system (9) is
matrices 4, commute pairwise is given in [12). We globally asymptotically stable if there exists a
present a lemma for the linear continuous lime- positive definite matrix £ such that

where

il I':J

invariant case which will be useful in the stability H'P+PH, <0, i=12..2%5 (1)
analvsis presented in this section (]
Lemma 3.1 Let [ be the set of asvmpiotically Suppose we have a rule base with » rules, we
stable matrices 4  R™" that Eh-'lrE a common would need to verify condition (11) #(»+1)/2 times. If
quadratic Lyapunov function ¥(x) = x'Px. Then any the rules are chosen carefully, the applicability of
linear positive combination of 4, belongs to [s. [na Theorem 3.3 improves drastically, For instance, in
more compact form, we have many applications a fuzzy medel is ebtained lrom a

(7 linearized model of the plant, and all the consequents
of the fuzzy rules share a common mauix 8. In this
situatdon we need to check condition (11) only #
times, The advantage of this simplification is evident

[
Gel, &y, 2 0, 1{M = Zﬂ,.—!r = Mel,,

31 Application to Fuzzy Logic Control Systems

A Fuzzy Control System is a special class of hybrd wher r becomes larger. We formalize this result with
systems where a finile rulc basc interacts with a the following proposition.

continuous-state  syslem The communication Proposition 3.4 The equilibdum of svstem (9) is
between the fuzzy controller and the controlled plant globally asyvmptotically stable if there exists a
is by using the so-called fuzzifier and defuzzifier positive definite matrix P such that

mierfaces. Note that a closed-loop fuzzy system can H=A-BK.H P+PH <0i=1.r (12)
be seen as a system that swirches between mairices in pra;;vh:lcdr it 'Br_: Bforalli=12.. r

R = S6L Proof: Fora given r, equation (9) can be rewritten as
Example 3.2 Takagi-Sugeno's Fuzzy Model ;

The ith rule of the this fuzzy system is given by Z 0,H x(1)

Buolef: [F x is X;;and ... and x, is X;
THEN ¥ = Ax+Bu, i=12, r
The inferred final output of the fuzzy system is

. | —— . f
H(t) = Ll where V; = wl.z W, or

Vv
i

i=]
> wilAx(t)+ Bu(t)] (1) = Za H x(1), Zu =l a,20,vi=1,
¥(1) = - 3 (8) n
z W, Asymptotic stability I’nllmxs directly from the fact
that each individual mawix A; shares a common
The fuzzy controller is given by Lyapunov ﬁmct‘ion. However in this case onlv r
Rulel: IF x, is X,;and .. and x_ is X_, Lyapunov equations have to be solved.

THEN w,=-Kx, i=12...r 3.2 Application to a Stable Supervisory Behavior

it vields the following closed-loop fuzzy control Control System

system,

In intelligent control the decisions of the supervisor
are associated with changes in the closed-loop svstem




behavier From the continuous-state point of view a
bhehavior is determined by selecting a  control
algorithm, an output function, and a reference
trajectory from the corresponding libraries, see Fig. |
below.

Apezoor
—_— B
| i I II i I_ z ]
[LEIT ¥
- K —
L ifj Pt —-— -—hI
My z
f € N wim x ™ st
T K el Pl A ST L
t' 55 | — --.'n-u-||
R R_,_._I —1—;",
—
I: irare LY

Fig. 1. Closed-loop behavior selection,

Unfortunately, stability of the continuous-state
part of the svstem depends on the decisions of the
supervisor. We present an approach to decouple the
stability of the continuous-part of the hyvbrid system
from the decisions of the higher-level controller. The
main idea is to design stable behaviors that share a
common Lvapunov [unction. Therefore, any
nrbitrary sequence between them can be proven to be
stable. Note that a separation principle holds for the
class ol hybrid systems which this design approach
can be applied. In other words, the design of the
logic-based controller and the servo controller can be
carmried out independently.
FExample 3.6 Aireraft Control Design
As an ¢xample of o practical hybrid system, we
copsider the longitudinal dyvnamics of the F-16
aircraft shown in Fig. 2 [17]. We are interested in
three control modes: (1) normal acceleration control
V., (2) pitch-rate control ¢, and (3) angle of attack
control @. The discrele-siate (i.e., finite siate
machine) of this hvbrid system is depicted in Fig. 3.
Note that stability of this class of svstems is normally
curied out by extensive simulation an effective
technique which may not reveal the complete
hehaviar of the system,

The differential equations for each control made
are given by

x=Ax+Bu+Gr,

y=x, u=-=-Ky, (13)

:=Hx+Fu
where the state vector x = [a g w]" consists of the

angle of attack, the pitch-rate, and the output of an
integral conwoller respectively. The input command
= &, is the angle of the elevator.
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Fig. 2. Notations for the aircraft longitudinal
dynamics,
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Fig. 3. Discrete-state dvnamics.

The feedback control gains K, =[k, &, k]
were selected by using the LQ design with the
following cost function per mode

o]
Sz J'[x"(‘_}rx + " R, (14)
a

Next step was to verify if the closed-loop
matrices 4. =(4,—BK,) fori = 1.2.3, share a
common Lyapunov function P such that

AL P+PA. =0, (1%)
The problem of finding the feedback gains K, can be
cast into a convex programmung framework for which
very efficlent algorithms have been developed [6].
Let K denotes the set of stabilizing controller gains
that satisfy a given porformance index per mode, and
K» = K denotes the set of controllers gains for which
a common Lyapunov function exists. Assuming that
Kp = @, we are interested in [inding at least one
element k & Kp. [f such a « exists, we can conclude
that any arbitrary switching sequence between

dements of the set {A,.A. . 4.} s
asymptotically stable.

4. Muitiple Lyapunov Functions

[a generul linding a common Lyapunov tunction that
rzpresent i set of systems (linear, noniinear or both)
is not an casy task. \Mwltiple Lyvapunov Function
Theorv (MLF) may be used to studv stability of
switched and hybrid systems.

Lvapunov stability of sequentially switched
vector fields (1), (2) is addressed in [3]. In that work
i is assume that cach individual svstem is stable. On




the other hand, switching between unstable modes is
addressed in [13].

We should like to study stability of a more
realistic hybrid system where switching sequences
may be periodic. aperiodic, finite or infinite, and
include some unstable modes. In the next theorem
we provide some stability critena which are more
general and less conservative than the results in [3].
[13]

Theorem 4.1 Assume that therc exists a finile
sumber of scalar positive definite functions Fi(x).
YR, with i = 1.2,....V and continuous first order
partial derivatives. corresponding to the continuous-
state vector fields X = f(x) with f{0) =0, for all i
(a) Let & be the set of all valid switching sequences
associated with the system, and f, be the switching
fimes. If the following holds
(i) Therc exists a positive definite function $(x) such
that

DV (x(t,) < ~b(x), (16)
where
DV (x(t)) = K__,,{x':',nﬂ - V,: (x(t ))Vi, € N7
(i) ¥ is radially unbounded, i.e., IIi1n"1 Vix)==,
(1) b S fyoy = fr < 0 With £y > 0 vi, el
then the state of the system globally [x(£)] =0 as ¢

~+ =0 OVET 4.

() If conditions (i)=(iii) in part (@) are satisfied and in
addition we have

{iv) ¥, is nonincreasing and Vr <0 Yi,

then the origin of the continuous state space of the
hybrid system is a globally uniformly asymptotically
stable equilibrium point over d.

ich Let -\EK_-,' - {ﬁrr-'-.LU:.l'-, },.--.ﬁ_s.r.f,l.'}.[f;.f_j‘i"&}.----I bec a
peripdic valid switching sequence with period A. If
assumptions (i) and (iii) hold, and (i) is modified as
follows

(i*) There exists a positive definite function 3(x) such

that
V, (x(1,+A))= v, (x(r,)= -i(x), ¥i, eN. (18)
{hen the state of the system globally Jx(r)] = 0 as«

— w over the periodic sequence by,

(d) Given a hybrid system ¥ whose dynamics are
govemed by (1), (3). If assumptions {ii) and (iii) hold.
and (iv) is valid for all regions (3, and in addition we
have

(v} the Lyapunov functions have the same value on
the boundaries €2y, that is ¥ (x) = Va(x) = -
farall x & o83, (ef, (4]

= )

then the origin of the continuous stale space of the
hybrid system is a globally asymptotically stable
equilibrium point.

Proof Sec [8] for details.

Remark [n pan () and (c) a switching scquence
may nclude some unstable sysicms. scE Example
2.6-Case 2 and Case 4 respectively.

3, Parametric Lyapunov Functions

Parametric Lyapunov Functions arc special cases af
MLF. Let an uncertain system be given by

x = Alg)x (M
where 4(g) € R™", and the uncertain parameter g €
0. Swability of (19) has been studied bv wusing
common Lyapunov functions [10]. However, as
noted in Section 3, finding a common Lyapunov
functon can be a formidable problem. a better
alternative seems to be the so-called Paramefric
Lvapunov Function Theory which is based on the
fact: There exists a positive definite symmetric
matrix function P; § — R such that
Continuous-time A7 (q)P(g) + P(g)A(g) < 0, (20)

Discrete-time AT (q)P(q)A(q)— P(q) <0, (21]
for all g € Q if and only if the polviopic family of
matrices 4 = {A(g) € R™" : ¢ € O} is robustly stable
[2]. Assuming that the uncertain parameter g € O is
arbitrarily switched, then the robust stability problam
becomes a hybrid stability problem.

Robust stability, i.e., the system is stable for all
frozen values of the parameter ¢ = (), does not imply
that any arbitrary switching sequence between
clements of 4 is stable. To guarantee stability of the
switched system the parameter lime-variations nead
to be sufficiently slow [14], [15].

~onsider a convex hull of two real mxn matrices

AL & A= {4y, 43} with & € [0,1], i.e.,

ALY = (1= 2)A, + hds, (22)
and a discrete-time system given by
x(k+1)= Ak ) x(k). (23)

The system (23) is asymptotically stable for any
arbitrary fast switching sequence if and only if the set
{A,, Az} is asvmptotically stable [5]. Supposing this
condition does not hold: how much can ., vary while
still guaranteeing asymplotic stability of the hybrd
system (23) 7 We provide the answer 10 this question
in the next result.

Proposition 5.1 System (23) is asymptotically stable

it |4,]<y, ad J4]<y. for all k and
| by — Al <8, wheree, is given by (26).

Proof: Consider the following Lyapunov [unction
candidate




¥l ey m el B (24)
By selecting A B A, -P, =-[, it can be
shown that

AV = x[ (P, =P, )x, =x[x,. (29

By using the same arguments in [14]; that is. vec(P,)
depends continuously on A,. Fora given = > 0, say
4, there  existis a G{(g) such that if

|_lA+,1M - Aﬁ_. " < 8(g), we have "P. B Px. “ 2B,

and equation (25) is negative definite. Therefore
system (23) is asvmptotically stable and

l'.l:"'nn. s '-'[J'-,“- |.||:?LL+I e 'l]{~"!: = 441}“‘: E'!U-'.],
then

a{e)

— =g (26)
”""1 = AL][ ;

|akl <

6. Conclusions

This work presents some Lyapunov stability tools for
a class of hvbrid systems where a discrete-state
svstem supervises a multimodal continuous-state
plant. If a common Lyapunov function can be
associated to each discrete-state of the hybrid system,
then stability of the system can be guaranteed for any
arbitrarily fast switching scheme.  Since this
approach is quite conservative, we should expect that
stability results based on common Lyapunov
functions are quite conservative also. Multiple and
parametric Lyapunov functions provide a more
general approach to study stability of hybrid and
switched systems.
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