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Abstract

We present a theoretical framework for faceted ontologies equipped with data repositiories. The ontology struc-
tures, inferencing within ontologies, and repository use and updating are expressed using mathematical structures
given by category theory.
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1 Introduction

The objective of our work is a methodology for the development, maintenance, and application of faceted ontolo-
gies equipped with data repositories. This report presents an initial theoretical approach for faceted ontologies
with repositories.

An ontology is an expression of that which exists, that is, objects, properties, events, processes and their rela-
tionships [18] in a universe of discourse, which we shall call a world. A faceted ontology is a sort of “ontology
with faces”, each face an ontology specialized to a particular viewpoint on the world. Any investigation of ontolo-
gies and the items they are supposed to express necessarily involves the symbolic representation of knowledge
about things and their relationships in some conception of a world. In the recent application of ontology outside
philosophy, it also involves the correspondence of the symbolic representation to data, which we consider in the
form of a mathematical model of, say, a computer system such as an online data repository [15]. Coupling an
ontology to data gathered from the world it is supposed to describe requires that it have an unambiguous seman-
tics, the meaning of its symbolic structures as determined by a systematic interpretation of them in the world
environment. In the work presented here, this requirement is addressed with mathematical rigor, the idea being
to disambiguate the semantics of symbolic representations so that their correspondence with data is accurate and
precise. This will facilitate the development of computerized systems that allow the exploitation of ontologies,
for example in performing updates to relational data repositories and in gaining useful information from the data.
To this end, we introduce a theory of faceted ontologies based upon category theory, the mathematical theory of
structure (see the Appendix for a brief introduction). In this investigation there are three kinds of structure.

Beverage Ontology Items in an ER Graph
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Figure 1: The Beverage Ontology as an entity-relationship (ER) graph.

The first kind of structure is that of an ontology. This is expressed as a network of concepts, which are human-
understandable descriptions of different kinds or classes of things, and descriptive links showing how the things
of one concept relate to those of another. In an ontology for beverages, part of which is shown in the form of an
entity-relationship (ER) graph in Figure 1, the entities Beer, Wine, etc. have is_a links to the entity Alcoholic
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Drinks. The entities Grapes and Grains have is_a links to Plants. There is also a made_from link from Wine
to Grapes and another from Beer to Grains. The terminology is suggestive: A link labelled “A is_a B” is meant
to express a subclass relationship, as in “every member of the class of A’s is a member of the class of B’s”. The
class of beers, whose members are instances of the concept Beers, is a subclass of the class of instances of the
concept Alcoholic Drinks. Of course, this is meant to express the common understanding that every beer is
an alcoholic drink. It is tempting to say that the meaning of the graph with its labelled nodes and links is clear.
But this very thought suggests its opposite, that the meaning is not so clear given that our objective is to apply
ontology to computer systems.

The notions embodied in the graph are clear only to we humans, and only because the entities and the relation-
ship links are labelled with familiar expressions derived from natural language such as Beer, is_a, Grains and
made_from. Labels alone are insufficient for a computer system for ontology and data manipulation because it
must be programmed specifically to enforce the understanding implicit in the labels. For example, in symbolic in-
ferencing with the ontology, the computer system can find the entities that are subconcepts of Alcoholic Drinks
only if it is programmed for symbolic manipulation and can recognize an “is_a” link and associate the symbolic
expression with its meaning in terms of the search operation to be performed. The programming involved must
convey the semantics implied by the graph, that is, the intended meaning of the structure of labelled entities and
links. This requires a translation of symbol system into computer system with a human-friendly interface. The
translation requires some degree of formalization, preferably made explicit in a system specification or at least in
a thorough system document once developed. Ontology development systems such as OWL are programmed to
recognize properly-formed symbolic expressions and enforce the labelled graph semantics as indicated. The on-
line OWL documentation [16] contains a discussion of the issue of translation to computer systems in the context
of the World Wide Web. The relationship between the semantics of OWL and our mathematical formalism will
be discussed in Section 2.

The second kind of structure is that of a relational data repository associated with an ontology. A repository
contains the data for the classes whose concepts are in the ontology, together with mapping links, or correspon-
dences, which link the data items of one class to those of another. As shown in Figure 2, there is a mapping
link between data classes in the repository for each symbolic link between concepts in the ontology. A relational
database is one example of this kind of structure, where the data items for a concept form a collection that we
shall think of as a finite set. A mapping link then corresponds (by restructuring the graph, if necessary) to a
function that maps the elements of one set to elements in the other. Another way of representing a collection is
as a column in a table, and the mapping links as rows. Here again the issue of semantics arises if the repository
is to ensure the integrity of its data: the concepts and their links must be matched by the appropriate sets of data
and mapping links. Without attention to this, data for different concepts might appear in the same place (such as
a column), and the mappings associated with the links might be incorrect. Queries would then yield unexpected
and incorrect results.

The third kind of structure is suggested by the fact that the classes and relational links of a repository are
associated with an ontology. This association is a special kind of mapping or correspondence (the large arrow
between the ontology and repository in Figure 2) which associates each concept of the ontology with its asso-
ciated data items (a set, or a column in a table) and each link of the ontology with a data mapping (one of the
small arrows, a function or a row in a table). As will be seen, these three structures require more information
than a graph conveys to properly express the semantics of an ontology and any data associated with it. For now,
the labelled graph and the other descriptions of structure will suffice; the analysis acquires the needed depth in
Section 2.

As discussed earlier, the Beverage Ontology concerns different beverages such as wine and beer and also
their principle ingredients such as grapes and grains. Suppose that this ontology has users who are specialists of
different kinds; one user, such as a brewmaster, might be concerned with how the beverages are made (mixing,
fermentation, brewing, etc.), another with marketing and pricing information (sold by the bottle, price varying
within such-and-such a range), and another specifying their recommended use (for example, whether for social
drinking or to accompany dining, and with which foods if for dining). An all-inclusive ontology is desirable
to maintain the organization of all the information present in the graph of Figure 1. The different kinds of
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Figure 2: Three structures: an ontology, a data repository, and a correspondence between the two.

users, however, might find the inclusion of all the information associated with each concept at best cumbersome
and at worst confusing. Faceted ontologies are meant to address this by providing additional structures which
correspond to the concepts and links of the all-inclusive ontology but provide a different interface or facet for
each type of specialist. The facets access the information specific to their specialties through the all-inclusive or
main ontology. In turn, the main ontology maintains the coherence of the total body of information present; it
associates the information for each concept specific to one facet with that for the same or a similar concept in
another facet, and associates the links likewise.

The information in each facet can be expressed in terminology understandable by its type of specialist, while
the main ontology maintains the information in a “neutral” language. This is indicated in Figure 3, where the
legend “x” with arrows to “a” and “b” inside the circle for Main Ontology indicates that it maintains information
for specialties “a” and “b” combined and that this is translated into the specialty languages. Facet 1, on the other
hand, is shown as having a node-and-link structure structure identical to that of the main ontology but containing
only information for specialty “a”. If the Main Ontology contains information for how beverages are made, how
they are priced and marketed, and their intended use, then Facet 1 contains only the information on how they are
made, Facet 2 contains only the information on pricing and marketing, and so forth. The node-and-link structure
of facets 1 and 2 may duplicate that of the main ontology, but only facet-specific information is labelled. For
example, if Facet 2 is concerned only with pricing and marketing of the beverages themselves and not at all with
their ingredients such as grapes, then the concept Wine is shown but the concept Grapes and the is_a link from
Wine to Grapes need not be labelled as such except in the main ontology. For flexibility, however, it is desirable
to include them in some form unobtrusive to the Facet 2 user. For example, at a future time it might become
desirable for Facet 2 to include information about the pricing of grapes, since that can contribute to the price of
wine. Hence, the ability to have the entire structure but strongly highlight and label only the relevant concepts
and links can be useful. Another consideration is the ability to perform data repository updates through the facet
interface that are propagatable. As will be seen, an update to one class in the repository can require changes in
its links to other classes. This requires that the facet user have access to the salient links.
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Figure 3: A faceted ontology.

Faceted ontologies yield additional examples of the third kind of structure, the correspondence between struc-
tures of the first and second kinds, except that now the correspondence is between ontologies. For example, the
arrows labelled F| and F, in Figure 3 are correspondences between the main ontology and Facets 1 and 2.
These correspondences are programmed in the software system that maintains the faceted ontology. The users
interacting with their facets can make facet-specific queries which are forwarded to the main ontology. This in
turn resolves the query and supplies this information to the facet for access by the user. In this way, the main
ontology can be linked through a correspondence mapping to the data repository and the requested data retrieved
via Fj, say, in a facet-specific format. Facet-specific inferencing can be performed in a similar manner, through
an inference engine—a symbolic manipulation system—that operates on Main Ontology.

The remaining sections of this report present a mathematical semantic approach to faceted ontologies. The
idea here is to resolve the issues raised about an ontology and its meaning in terms of operations on and with the
ontology in inferencing, data manipulation, querying, and so forth. In Section II, we discuss ontologies and repos-
itories as mathematical categories and correspondence mappings called functors and natural transformations. In
Section III, we describe facets based upon the mathematical theory presented in Section II. Section IV concerns
the repository modeling based upon the foregoing, and sections IV and V show how category theory is applied to
ensure propagatable updates.

2 The categorical approach

Our approach to faceted ontologies is based on [9], where category theory is applied to formalize data base
schemas by regarding them as theories in formal logic. The Beverage Ontology entity-relationship graph of
Figure 1 is like a schema graph and bears some resemblance to the graphical depiction of a theory. However,
interpreting the labels for the nodes and links of an ER graph requires human intuition. A formalization, on
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the other hand, expresses enough of the intended semantics of the ontology to allow mechanical inferencing and
manipulation of data in a manner consistent with it. Here, we obtain a formalization by completing the graph
to form a category Bev, called the classifying category of the theory. Since category theory is the mathematical
formalism used here but is unfamiliar to many, the Appendix contains a brief tutorial. In this section, we assume
a sufficient background and explain how the ontology formalization works.

2.1 Categorical completion

Initially in forming the categorical completion, the objects of the category are the concepts, or entities, at the
nodes of the graph of Figure 1 (but many new ones will be added, as will be explained). The morphisms, or
arrows, of the category begin with the links, or relationships, of the graph. More objects and arrows are obtained
recursively as specified in the following discussion to obtain the categorical completion. In a category, for any two
arrows f:a— b and g: b — c, there is an arrow g o f: a — ¢ which can be obtained as the composition
of f and g. If the latter two arrows are links in a graph, we might obtain g o f simply by concatenating them,
since they form a path through ». A meaning is attached to g o f based upon the meanings of its factors a and
b. For example, the link made_from: Wine — Grapes clearly (to us humans, because of the use of language)
means that wine is made from grapes, and the link is_a: Grapes — Plants means that grapes are plants.
Given that those meanings have been established, and regarding the links as arrows in a category, it is easy for
us to assign the meaning “wine is made from plants” to the composition is_a o made _from: Wine — Plants
as shown in Figure 4. In fact, this use of composition has produced a deduction, a form of inference: wine is
made from grapes, grapes are made from plants; therefore, wine is made from plants. But as mentioned in the
Introduction, the semantics of the names assigned to the objects and morphisms must be specifically implemented
in a computer system for working with the ontology if the composition is to correctly convey the meaning.

r—-——-=-=-=-=-=- -
| . 1

! Wine !

|

made from made from

7

——————— - Fe———m———— A
! ! . ] 1
! Grapes I > is a > ! Plants !

“ Wine is made from plants”

Figure 4: A composition relating two made_from arrows.

The categorical formalization may well indicate links that were missing in the original graph. Notice that
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the entities Beer, Wine, etc. have is_a links to the entity Alcoholic Drinks. The entities Grapes and Grains
have is_a links to Plants. There is then a made_from link from Wine to Grapes, another from Beer to Grains,
but no made_from link from Alcoholic Drinks to Plants. Completeness would seem to call for such a link,
and to require that it be consistent with the other links mentioned. If beer, wine, whisky, champagne, vodka are
alcoholic drinks, and are the only ones represented in the ontology, and all are made from grapes or grains, which
are plants, then why can not we conclude that alcoholic drinks are made from plants? Recall that another type of
missing link, the compositions of arrows, have been included by forming the categorical completion of the graph.
In subsection 2.2, we shall enlarge upon the categorical completion to form the classifying category of a theory,
which is how we formalize an ontology. In so doing, we include the missing link from Alcoholic Drinks to
Plants, thereby making direct use of the composition of arrows. But of most significance are other categorical
structures added to the completion. Before discussing these structures in detail, we provide an overview of their
use (refer to the Appendix for definitions).

Additional constraints can be imposed by enlarging upon the categorical completion. First, the category is
augmented with a terminal object and all the arrows having it as codomain. Second, certain diagrams in the
initial completion can be declared to commute; this is accomplished by specifying that certain pairs of paths from
the augmented graph yield the same composition arrow. Third, and this step is quite extensive, we can decree
that all finite coproducts and all pullbacks exist. This leads to the inclusion of additional objects and arrows, for
each coproduct has arrows with domains consisting of all the objects in a finite discrete diagram and a common
codomain consisting of an apical object—the coproduct. Each pullback has arrows with codomains consisting
of all the objects in a diagram containing two arrows with a common codomain, and which share a domain
consisting of an apical object—the pullback. By specifying that the category include coproducts for all finite,
discrete diagrams and pullbacks for all appropriate diagrams, we obtain Bev as an infinite category. Some of the
coproducts and pullbacks can be specified to specifically include objects and morphisms derived directly from the
ER graph. The greater share of the finite coproducts and finite pullbacks can be calculated incrementally based on
a theorem in category theory. This begins with diagrams formed from the links and compositional paths of the ER
graph augmented with a terminal object and accompanied by the initial, specified set of commutative diagrams.
The resulting cones and cocones can be used in further diagrams to form yet more coproducts and pullbacks, and
so forth in a never-ending multistage process. In practice, only those items needed can be calculated “on-the-fly”.
Also , because of the theorem mentioned, the inclusion of a terminal object in the category enables us to obtain
all finite limits—that is, limits for all finite diagrams. Thus, with the addition of any missing links as discussed in
the previous paragraph, Bev becomes the classifying category of a theory with a considerable expressive power.

It was stated that the ER graph of Figure 1 did not fully express the meaning implied by the labels used for
entites and relationships. Now, however, with the classifying category Bev of a full theory in hand, we have ac-
cess to a formalization of the intended semantics. The objects of the category Bev such as Wine and Alcoholic
Drinks are types, representing the classes of items the ontology or theory is about. We call these sorts, and our
theory is called a sorted theory (predicates can be used to correspond to the objects of the category in place of sorts
to obtain an unsorted theory). Each arrow of the category is to be interpeted as an operation on one sort—its do-
main, intepreted as a class of items—that maps its members to members of the class represented by its codomain
sort. Because there are different links with the same label inherited from the graphs, we need to distinguish
mathematically between them as arrows; hence, we use the abbreviated terms made_fromyg, made_fromyp and
is_agrapp interchangeably with the lengthier made_from: Wine — Grapes, made_from: Wine — Plants
and is_a: Grapes — Plants, respectively, and similarly for other duplicate link names. A theory has axioms,
forming a set of statements held as the basic truths of the theory, from which others can be proven as theorems
of the theory. Commutative diagrams express the axioms and theorems of the theory. By specifying certain di-
agrams to be commutative in our categorical completion, we decree axioms; other commutative diagrams result
from this, yielding the theorems. Decreeing that all finite coproducts and pullbacks exist provides an additional
axiom scheme, yielding more theorems, and specifying certain of these to be formed from objects and arrows
which were nodes and links in the graph yields additional axioms. In this way, the ontology is made to have
a rather rich semantics. To pay for this, however, a software system for ontologies that accepts the graph and
specified categorical structures and axiom schemes as input must enforce the overall specification of these items
in its operation. A system of this kind constitutes a categorical inference engine that provides for not only in-
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ferencing over the ontology, but as we shall see, the corresponding operations on data repositories which can be
incrementally updated via operations executed by the users through the facets.

To summarize, Figure 4 shows one of the commutative diagrams that exists simply because all compositions
exist in a category. In effect, it is a definitional axiom stating that made_fromyp has the same meaning as
is_agrapp 0 made_fromyg. Given the understanding that is_agrapp is intended to indicate a subentity relationship,
categorically a subobject, and that made_fromyg has its intended meaning as “made from”, then made_fromyp
also has the meaning “made from” because the only change is that the “G” part of made_fromyg is a subentity of
the “P” part of made_fromyp . But so far the “subentity” and “made from” notions are intuition, not formalization.
Formalizing the intuition is the subject of subsections 2.2-2.6.

2.2 Terminal objects, global elements, and coproducts

Categorical completions of a graph can be extended in many ways depending upon what is to be assumed about
the resulting theory. One extension we have made is to declare that certain diagrams in addition to those given
by composition commute as in Figure 4. An additional extension is the inclusion of a terminal object in Bev;
its usefulness will become apparent presently. Now, category theorists often overload suggestive symbols such
as 1 in many ways for economy of notation; the context is expected to clarify the intended meaning. In the
present case, 1, written in boldface, denotes the terminal object. A terminal object in a category has the property
that, for every object x, it serves as the codomain of a unique morphism !,: x — 1 having x as its domain.
This is illustrated in Figure 5, which shows a graph for a very small category (except that identity morphisms
idy: x — x and compositions of the labelled morphisms such as g o f: a — ¢ are not shown). Again for
economy of notation, the subscript on the ! symbol is normally omitted, as shown. Notice that the morphism
"1 —1 is not shown, since it is just the identity for 1, idy: 1 — 1 (remember, the ! morphism for 1 is
unique, so it must be idy ).

\

=~
[0)¢)

!/

Figure 5: In a category with a terminal object 1, every object x is the domain of a unique morphism

l'x—1.

Suppose that in Bev, instead of the entities (now regarded as objects) Grapes, Grains, and Plants, we have
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only Plants. A morphism whose domain is 1 is called a global element. Given that we have a terminal object,
we could replace the entities Grapes and Grains by global elements grapes: 1 — Plants and grains: 1 —
Plants. Global elements play a role in categories similar to (yet significantly different from) that of set-theoretic
elements. In the present case, which is the classifying category of a theory, global elements are the constants
expressed in the theory which enable reasoning over specified instances. Making them global elements of an
entity instead of entities in their own right changes the logical status of grapes and grains in the theory, but we
can retain the Grapes and Grains entities along with the global elements. In particular, this will ensure that the
diagram of Figure 4 remains as part of the theory.

Now Bev has two arrows with domain 1 and codomain Plants. As suggested in the discussion of missing
links in Section 2.1, let us include in the ontology the arrow made_from: AlcoholicDrinks — Plants.
Now we can regard Plants as an attribute of Alcoholic Drinks (the made_from attribute) with solely the two
values grapes and grains by specifying that it is one of the finite coproducts in Bev. The base diagram for this
coproduct is the discrete diagram D1 in Figure 6 consisting of two copies of 1. The coproduct cocone consists of
the two arrows grapes: 1 — Plants and grains: 1 — Plants. Since D; is discrete, there is no requirement
that triangles formed by the cocone and diagram morphisms commute, since there are none. We shall make use
of Plants as an attribute in subsection 2.4.

1
i Plants | Coproduct
1

grapes grains

S
~
~

Figure 6: The global elements grapes and grains and their common codomain Plants form a cocone over
a discrete diagram consisting of two copies of 1.

At this point, it is worth showing with a rather detailed argument that global elements are monics. This
will establish an important fact firmly in mind and also illustrate reasoning in category theory. A monic in any
category is a morphism m: a — b with the following property: If p: ¢ — a and ¢: ¢ — a are any two morphisms
such that the compositions mop: ¢ — b and m o g: ¢ — b are equal, in other words if m o p = m o g, then it is
the case that p = ¢. But for all objects x, 1 is the codomain of a unique morphism having x as its domain. This
means that if m: 1 — b is an arbitrary global element, any two morphims p: ¢ — 1 and ¢g: ¢ — 1 must both be
!: ¢ — 1 and therefore we have both (1) m o p = mo! = mo g and (2) p = ¢. This shows that global elements
are monics.

Monics are normally signified by attaching tails to the arrows. In Figure 6 the tails were omitted. They will
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............... :.-'":"Subobj ect

“ Wine is an alcoholic drink”

Figure 7: A pullback defining the entity Wine as a subentity or in categorical terms a subobject of Alcoholic
Drinks.

be present in subsequent figures, while in the text monics will be indicated only by stating that they are monics.

2.3 Subentities as subobjects

As mentioned earlier, the is_a links in an ER graph suggest a subclass relationship between entities. This means
that if we have a notion of “instances” of entities, then corresponding to every instance of Wine there is a unique
instance of Alcoholic Drinks, so that Wine instances form a subclass of the class of Alcoholic Drinks in-
stances. Subobjects are a type of categorical construct that appear in many useful categories and yield a notion
of subclass in a classifying category. In the category Set of sets and functions, subobjects are subsets, a kind of
subclass. In general, a subobject in a category is a monic (actually, a class of monics, but calling it a single monic
will suffice for our purpose). In many very important categories, there is an object known as a subobject classifier
that generalizes the notion of selecting a value from the set of boolean values {0, 1} (again overloading numerical
symbols). By definition, a subobject classifier true: 1 — Q (provided one exists) has the property that for all
monics m: a — b in the category, there exists a morphism ®: b — Q such that m: a — b and !: a — 1
form a pullback cone for the diagram consisting of ® and true. Figure 7 shows an example of the use of a sub-
object classifier in representation, where m is the is_ay_,p morphism and @ is the wine-detector morphism.
In the category Set, Q is the set {0, 1} and the terminal object 1 is the singleton {0}. The global element t rue
is a function which maps the element 0 of 1 to itself as an element of Q. The function m: a — b expresses
the subset relation a C b, and P is the characteristic function & for the subset a of 5. The same is true in the
category FinSet of finite sets and functions, with which we will actually be working: Q = {0, 1}, the terminal
object of interest 1 = {0}, and so forth. In the interpretation of the diagram of Figure 7, the wine detector
function is the characteristic function for the Wine subset of the Alcoholic Drinks set—alcoholic drinks that
are wines are mapped to 0 by this function and all others to 1. In this way, a subobject classifier formalizes the
notion of an is_a morphism. An is_a morphism is the pullback of the subobject classifier true: 1 — Q along
a morphism ®: b — Q. In particular, an is_a morphism is a monic.



UNM Technical Report: EECE-TR-11-0002

2.4 Applying Categorical Semantics

With is_a links properly formalized as described in the preceding section, they can be used in queries. One
example of this is a type of inferencing that constructs entities “on-the-fly” that were not defined in the ER graph.
To be specific, pullbacks of global elements in our ontology can be used to formalize a version of the database
Select operation that finds a subobject associated with a particular attribute value. Before we show how this
works, let us formally re-formulate the made_from links from Beer to Grains and from Wine and Champagne to
Grapes as compositions involving the newly-added made_from link from Alcoholic Drinks to Plants. That
is, we require that the diagram in Figure 8 and similar diagrams for champagne and beer commute. This diagram
imposes the constraint that the composition of is_a: Wine — AlcoholicDrinks with the made_from link is
essentially the global element grapes. The unique morphism !: Wine — 1 can be thought of as “translating”
the domain Wine of the composition grapeso! to the domain 1 of grapes. From this and Figures 6 and 7,
we can then infer that all instances of the subclass Wine are made from grapes, and also make the appropriate
“made from” inferences for champagne and beer.

! made from

“Wine is made from grapes”

Figure 8: A diagram specifying that wine is made from grapes. In a model of the ontology, this diagram
serves as a constraint upon data entry (for example, during a data base insert update).

The software based upon the formalization can then search through the appropriate subobjects to form the
pullback cone of Figure 9. This illustrates the database Select operation under the specification that the in-
stances of Alcoholic Drinks have a specified attribute value. Consider the made_from attribute for Alcoholic
Drinks, which we have agreed is now a single made_from link whose codomain is the attribute value entity
Plants. As shown in Figure 9, applying Select to find the alcoholic drinks that are made from grapes can be
specified by a pullback involving the global element (attribute value) grapes. The pullback object Select is the
domain of an is_a morphism, which we can claim really is an is_a because, as in the case of the is_a morphism
in Figure 7, it is the pullback of a monic, hence is itself a monic. Recall that at the beginning of this section we
specified that pullbacks exist in Bev for all diagrams with pairs of morphisms having a common codomain, as do
grapes: 1 — Plants and made_from: AlcoholicDrinks — Plants. In any model of the ontology in the
category FinSet, therefore, the Select set contains exactly those Alcoholic Drinks elements that are made
from grapes. Since the Wine and Champagne entities appear in commutative diagrams such as that in Figure
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8, and are, we suppose, the only ones that do so together with the global element grapes, the Select subset
contains all Wine and Champagne elements and nothing else.

T ¢ attribute 3
....,x‘subobject : B v e o R
i (Wine + : made_from
*. Champagne); i

T, pg ..... ) ............................................ attribute
- value
v e

“Find the alcoholic drinks made from grapes”

Figure 9: The Select operation as a pullback.

2.5 Repository states as models

We have made reference to interpreting the objects and morphisms of the ontology as finite sets and functions.
These are the objects and morphisms of the category FinSet, a subcategory of the category Set of all sets and
functions. We use the term “model” in this context. This is because we formalize repository states as collections
of data organized in concert with the ontology, and we do this by regarding the organization as a system of finite
sets and functions, the traditional way of regarding the models of a theory in formal logic. The entities of our
ontology are the sorts of the theory (or predicates, if we wish to use unsorted theories), expressed as objects of
the category Bev. The links between entities are operations of the theory, expressed as morphisms of Bev; the
symbolic instances of the entities are constants of the theory, expressed as global elements in Bev. In a traditional
set-theoretic model of a theory, each sort is associated with a set, each operation symbol is associated with a
function from one set to another, and each constant is associated with an element of its designated set. Unlike the
traditional formal logic notion of a model, however, in categorical logic and model theory a model is a functor
D: E — C that preserves certain designated categorical structures. In our case, these are a terminal object
and pullbacks (hence, all finite limits), coproducts, and a subobject classifier (recall that all functors preserve
commutative diagrams). In our example, E is the classifying category of the theory Bev and C is FinSet.
Notice in particular that since constants of the theory are global elements in a categorical formulation, which are
morphisms, they map to global elements in C. Notice that although the category FinSet is used for models, as
sets and functions are used in traditional model theory, the models in categorical model theory are significantly
different from traditional set-theoretic models. For example, in the categorical setting constants are mapped not
to set-theoretic elements, but to global elements, which are morphisms.

A central feature of our approach to faceted ontologies is the ability to mathematically characterize updates to
a repository that can be made safely, and to design faceted ontologies accordingly. Data can then be entered and

11



UNM Technical Report: EECE-TR-11-0002

used to provide a useful service to a system of experts communicating through the ontology. The mathematical
vehicle for the characterization of safe updates is the system of natural transformations between the functors
that formalize the models. Given a repository state D and information (such as new data) leading to an update
to the repository, an insert update of D, adding in new information, leads to a new repository state D'. We
express this as a natural transformation m: D — D', a monic in the category C¥ whose objects are functors
D: E — C and whose arrows are natural transformations on these functors. For updates expressed in the
category FinSet® , for each object a of E there is a component m,, a function mapping the set D(a) to the set
D'(a). As shown in Figure 10, if f: a — bis a morphism in E, the diagram of Figure 10 must commute,
that is, D'(f) o my = my o D(f). In our example, the models are functors D: Bev — FinSet, objects of the
category FinSetB".

Figure 10: A commutative square in a repository update expressed as a natural transformation.

A natural transformation m is a monic if and only if each component m, is a monic. We can express nearly
all updates as inserts and deletions (for example, an in-place update is a deletion followed by an insertion). The
components n,: D(a) — D'(a) of a monic natural transformation m: D — D' in FinSet®, being monics
in FinSet, are injective functions. This expresses the fact that if we insert a new element in D(a), then the
set D'(a) has the same elements together with the newly added one. As we shall see in the following sections,
updates normally require that some arrows associated with the changed objects must also change. If a and b are
objects of E, there are components m, and mj and for every arrow f: a — b the diagram of Figure 10 must
commute, that is, D'(f) o my = my, o D(f). Inserting an element in the repository as a new instance of concept a
while leaving the instance set for b unchanged results in the updated set D’(a) having an element x that did not
appear in the previous set D(a). The updated function D'(f): D'(a) — D’(b) must have a new maplet x — y,
showing that y = D'(f)(x), for some element y of D’(b) which, since it was not in the update, is the same set
as D(b), thatis, D'(b) = D(b). This is only possible if the morphism f is included in the update, so that the
required maplet can be added to D(f) to make D'(f). A delete update has the form dual to an insert update, that
is, it has the form m: D' — D. For suppose that a single element is deleted from D(a) to obtain D’(a); this can
be expressed as a monic component m,: D'(a) — D(a) of m.

Almost all updates to a repository can be expressed as a sequence of delete and insert updates. For example,
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assume that in a repository state D, the set D(Wine) for the entity Wine of Bev is a set of strings, as follows:
D(Wine) = {‘DomPerignon3000’, ‘PinotGrigio98’, ‘SangiovesediGermania'},
and there is to be an update from this to a final state
D'(Wine) = {‘DomPerignon2000’, ‘PinotGrigio98’, ‘SangiovesediRomagna’, ‘Merlot’}.
Apparently, this update can occur as the result of the following consecutive delete and insert updates:

Delete { ‘Dom Perignon 3000’, ‘Sangiovese di Germania’}
Insert { ‘Dom Perignon 2000’, ‘Sangiovese di Romagna’, ‘Merlot’} .

If it were that easy, it could be expressed using the components my;,e and my;, . of two natural transformations,
m: D" — D expressing the delete and m: D" — D' expressing the insert, as follows:

Myine: D" (Wine) — D(Wine) =

Myine: {‘Pinot Grigio 98’ } —

{‘Dom Perignon 3000’, ‘Pinot Grigio 98, ‘Sangiovese di Germania’} and
Myine . D" (Wine) — D'(Wine) =

Myine: {'Pinot Grigio 98’} »—

{‘Dom Perignon 2000’, ‘Sangiovese di Romagna’, ‘Pinot Grigio 98, ‘Merlot’}

There is just one complication: As has just been pointed out, the D-images of certain arrows involving the entity
Wine must also be updated. Maplets must be deleted and added to account for elements that have been deleted
and added to update D(Wine) to D'(Wine) via the intermediate set D”(Wine). Doing this while satisfying the
commutative-square requirements for the natural transformations imposes constraints on updates.

2.6 Relations as spans

As a morphism of FinSet, a function f: u — v is total: it associates with every element x of its domain u,
X € u, a unique element of its codomain, f(x) € v. This is one type of relation, but relations in general do not
do this. A relation R on sets # and v is normally expressed as a subset R C u X v of the cartesian product of
ordered pairs {(x,y) | x € u,y € v}. A particularly important case for repositories occurs when some but not all
elements of a set have been assigned an attribute value. This can occur, for example, if for some or all models
D: Bev — FinSet there occurs in the repository an instance of an alcoholic beverage with no corresponding
instance in Plants indicating its made_from ingredient; this can occur for Vodka if something is not done to
insert plants other than grapes and grains. Another example is tequila, which is not in the original graph of Bev;
but what if data for an instance of tequila occurs but D(Plants) contains no data for cacti? This might suggest a
future revision to the ontology, and therefore it might be advisable to enter any data that becomes available for this
or similar beverages. In such cases, for example with # = D(AlcoholicDrinks) and v = D(Plants), it has
often been the practice to interpret R using a partial function, for which some elements of # may not be assigned
a value of v. For consistency with other morphism interpretations in a model (we have been assuming that they
are morphisms of FinSet), however , and also for simplicity, it is desirable to use total functions exclusively.
One means of addressing this situation and yet employ total functions exclusively is through the use of NULLs, a
kind of “do-nothing palce-holder element”. In this scheme, all x € u not assigned an attribute value are assigned
the value f(x) = NULL € v. But this introduces difficulties, some of them logical; this is discussed in Johnson
and Kasangian [8], which cites related investigations of the use of NULLs in relational databases. Johnson and
Kasangian provide a different strategy in a categorical setting that uses total functions while avoiding the use of
NULLs. Added advantages of their strategy are that it generalizes to arbitrary relations, and it provides for several
types of data repository operations. This strategy we discuss next.

A span consists of objects a, b, ¢ in a category and morphisms &: ¢ — a and k: ¢ — b. In Figure 11,
the example given in the previous paragraph is reformulated as a span by introducing an entity SomeADs and

13



UNM Technical Report: EECE-TR-11-0002

is a made_from

' SomeADs 1

Figure 11: The partially-defined attribute made_from of Alcoholic Drinks expressed as a span involving
the subobject SomeADs.

a span arrow is_a: SomeADs — AlcoholicDrinks, placing a monic in the role of, say, h: ¢ — a. This
is interpreted with a monic (injective) total function D(is_a): D(SomeADs) — D(AlcoholicDrinks). The
attribute now consists of the other span arrow k: ¢ — b, which in this case is the reformulated made_from arrow
made_from: SomeADs — Plants, which is interpreted as the total function D(made_from): D(SomeADs) —
D(Plants). Thus, the attribute can be interpeted as a total function and partiality is expressed through the sub-
object is_a: SomeADs — Plants, where SomeADs is the subobject of AlcoholicDrinks representing those
repository elements of D(AlcoholicDrinks) that have been assigned an attribute value. In any update that as-
signs a value to an element of D(AlcoholicDrinks) that does not currently have one, that element can be dupli-
cated in the new (insert-updated) model D’ as an element of D’'(SomeADs). Notice that this also entails updating
the two span arrows D(is_a): D(SomeADs) — D(AlcoholicDrinks) and D(made from): D(SomeADs) —
D(Plants) to map the newly-assigned element of SomeADs to itself as the previously-non-assigned element of
Alcoholic Drinks and assign it the chosen attribute value. Of course, this change to incorporate a span in the
ontology entails changes to the original graph to incorporate the span and replace arrows that previously involved
Alcoholic Drinks, for now they impinge upon SomeADs instead. However, in a different ontology for beverages
there could have been other arrows involving Alcoholic Drinks that would remain unchanged given that they
did not involve partially-mapped attributes or other entities related in a non-function way to alcoholic beverages.
As shown in [8], other repository operations such as Join, Select and Project with partiality, and composition
involving partial attributes, can be expressed through the use of spans and spans together with pullbacks.

2.7 Compatibility with an existing ontology tool

The OWL ontology development system has analogs of some but not all of the categorical constructs presented
here. In the syntax of OWL, entities are defined as classes, by a sequence of statements such as the following [16]:

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
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<rdfs:label xml:lang="en">wine<\/rdfs:label>
<rdfs:label xml:lang="fr">vin</rdfs:label>

</owl:Class>

Notice the second line of the definition of the class Wine; the “subClassOf” defines Wine as a subclass of
PotableLiquid, which is in turn a subclass of food. In OWL, every class is a subclass of another, and all are
subclasses of Thing. In the categorical formalism, this would be equivalent to having every entity be a subobject
of a Thing entity. This inclusion of all types (entities, classes, “categories”) under a single one appears in other
ontologies and ontology systems. A further example is John Sowa’s concept lattice based on Formal Concept
Analysis (FCA) [4, 17]. Although the categorical formalism does not require that there be such an object, in
general there is no problem with having a “Thing object” with this property. For example, one can easily be
included in Bev, with the proviso that it cannot be interpreted in Set as “the union of all finite sets”, which is
not finite. On the other hand, we can avoid this difficulty by requiring that it be interpreted as a set containing all
things of a particular kind—such as beverages—under the supposition that those things exist in a finite domain.
We note in passing the important fact that in expressing a hierarchy of classes in a category with a subobject
classifier, if m: a — b and m’: b — ¢ are monics, then m’ o m: a — ¢ is a monic.

Another feature of OWL is the ability to define “individuals”, which are analogous to (but again not equivalent
to) our global elements:

<owl:Thing rdf:ID="CentralCoastRegion" />

<owl:Thing rdf:about="#CentralCoastRegion">
<rdf:type rdf:resource="#Region"/>
</owl:Thing>

Note that the OWL command rdf:type ties an individual to a class of which it is a member. Here,
CentralCoastRegion is a member of the class Region. For our purpose, it is important to note that in OWL
this is apparently the only means for representing actual data. This is in contrast to our use of functors in the next
section, with which data and relationships between sets of data can be associated as objects and morphisms with
the entities and links of an ontology. Also in OWL, there is no notion of a terminal object; hence, there is no
mechanism (at least none is visible at present) for using individuals in the same manner as we use global elements
in, for example, pullback diagrams as in sections 2 and 4.

The individuals in OWL appear to be analogous to the elements of sets. In the category-theoretic formulation,
however, the “individuals” are not elements. A global element is a morphism and, therefore, is interpreted in a
model of Bev (a functor) by a morphism in the category of sets, that is, by a function. The terminal object of Bev
is interpeted by a singleton—a terminal object of the sets and functions category—and therefore the interpeted
global element points to (but is not the same as) a single element of its codomain. For example, the function
interpreting wine: 1 — AlcoholicDrinks maps the single element of a singleton to an appropriate element of
the set interpreting Alcoholic Drinks.

In summary, with respect to “individuals” there are apparently two major differences between OWL and
the categorical expression of an ontology. First, the classifying category of a theory has models, functors whose
domain is the classifying category and whose codomain is a convenient category such as that of sets and functions.
This poses a clear distinction between an ontology and any system of data that grounds its semantics. Second,
certain representations of commonly-considered items such as classes and individuals have significant differences
in formalization and, hence, require a change in intuition in going from one to the other. For example, a category-
theoretic expression of an ontology expresses “individuals” as morphisms of a special kind and, hence, they are
not interpreted in the classical sense as elements of a set.

It is possible that there is actually a categorical underpinning for OWL, but it is not evident to us at this
writing. What is needed to resolve this is an investigation of the logical foundation of OWL. Also, there exist

15



UNM Technical Report: EECE-TR-11-0002

alternative systems, such as the Information Flow Framework (IFF) [10] and DAML+OIL [7]. In any case, at this
point we do not anticipate any great difficulty in creating an interface between OWL and categorical ontologies
as discussed here.

3 Facets and repositories

An ontology is a theory; in our formalization, we express a theory via its classifying category. A theory exists as
an object in a category of theories all having the same properties; the arrows of the category are theory morphisms,
which are symbol mappings that translate axioms of the domain theory into axioms or theorems of the codomain.
In similar fashion, the classifying category E of a theory exists as an object in a category 7 of categories all
having certain kinds of structures such as finite limits and coproducts. The category E expresses the properties of
the theory categorically using commutative diagrams together with structures of the kind expressed by all objects
of 7. The arrows of 7 are functors that preserve these structures. In our case, the structures in question are
a terminal object and all pullbacks (equivalently, all finite limits), all coproducts, and a subobject classifier as
was assumed during the discussion in Section 2. We regard facets as ontologies formalized in the same manner,
that is, as categories which are objects in 7. For our purpose, a faceted ontology is a system consisting of a
number of facets and a main ontology, where each facet is a category together with a functor relating it to the
main ontology. For brevity, we often refer to the facet category or functor alone as the facet. Each object of a facet
category (a sort of its theory) is mapped to an object of the main ontology category by its functor, and similarly
for each morphism (an operation of its theory). Additionally, commutative diagrams are mapped to commutative
diagrams as with all functors; however, since it is an arrow of 7, a facet-to-main functor must also preserve the
structures mentioned: a terminal object, coproducts, pullbacks, and the subobject classifier. Thus, facet functors
preserve the same kinds of structure as the model functors described in Section 2.5. In fact, the category FinSet
is an object in 7, and our model functors are morphisms in this category as are the facet functors.

3.1 A formalization of facets

Let us formalize the role of facets. This begins with a definition.

Definition 1. Let E be a classifying category in ‘T . A facet V is a category in ‘T together with a morphism of
T, that is, a functor F: V — E preserving the aforementioned constructs. We call E the main ontology and,
for brevity, may use the terminology “facet” for either V or F.

A facet is the mathematical formalization of a specialized interface for E, the main ontology. We now have
a more detailed understanding of the situation illustrated in Figure 3. There, “abx” denotes a sort, an operation,
a constant or a formula of the Main Ontology—an object, an arrow, or a commutative diagram of its classifying
category E. The notation “abx” indicates that this information in the main ontology is a composite of an “a”
and a “b” together with possibly other information, where “a” is the corresponding object, arrow, commutative
diagram or other construct common to the objects of 7, of Facet 1, which is a category V;j. Similarly, “b” is the
corresponding item of Facet 2, or V.

The expression of ontologies as categories is meant to express the semantics of the theories in a mathemati-
cally concise fashion amenable to computerization. However, a theory is only useful if some of its symbols can
be regarded as primitives, whose semantics can be expressed as the kind of things the theory is about. We call
this the grounding of the theory. Formally, the theory has models and the grounding is a way of identifying part
of a model which, using the inference capability within the theory, can be used to deduce the rest of the model.
Regarding a model as a state of a data repository, queries can be addressed in this manner. Also, because the for-
malization lends itself to symbolic manipulation, for example by calculating pullbacks, symbolic inferencing can
also be performed with the ontology. This provides for answering queries in two ways: symbolically, and through
data search and other operations performed upon the data repository. Categorically, the inferencing is done with
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commutative diagrams and the structures mentioned. Figure 9 is an example of this inferencing using a pullback;
it yields a symbolic construct directly in the ontology, and it also yields the associated data from the repository.
This favorable circumstance is a consequence of the formalization of a repository state as a model. Categorically,
it is a functor into the category FinSet that preserves the structures common to all objects of 7, where FinSet is
one of those objects. In terms of computation, it is a data structure with the same entity-relationship organization
and categorical constructs as the ontology.

Corresponding to the ER diagram of the Beverage Ontology, let us consider the facet V; as the categorical
completion of a graph, formed in the same way as Bev but with V; expressing information on how beverages are
made. The full facet includes the functor F;: Vi — Bev. Another facet formed the same way, F;: V, — Bev,
expresses information on how beverages are priced and marketed. Functional relations among these facets are
evident by looking at the graph in Figure 1. For instance, in V{, made_from: Wine — Grapes expresses the
fact that grapes are the principle ingredient in making wine. In V5, this same arrow indicates that the pricing
and marketing of wine is dependent upon that of grapes. To convey this information, the original graphs can
be annotated appropriately by attaching descriptions to the entities and information relating the descriptions to
the arrows. Annotating with text in this way is an informal device for specializing a facet. A formal means
of specializing the facets is to have additonal objects and arrows representing the descriptions in mathematical
detail. We discuss this second alternative next; unlike the informal annotation alternative, it is fully consistent
with our overall scheme for formalizing faceted ontologies.

To maintain the simplicity of our example, let us consider facet categories formed as subcategories of Bev.
Notice that in Figure 1, there are links we have not discussed as yet, labelled costs_less_than. These be-
come arrows in a categorical completion, such as costs_less_than: Beer — Wine. In our formal scheme
for specializing facets, we can let V; contain arrows such as made_from: Wine — Grapes along with the is_a
arrows. We can let V; contain arrows such as costs_less_than: Beer — Wine in addition to the is_a arrows.
Thus, facet Vy is specialized to information on how beverages are made by showing their ingredients and V; is
specialized to information on how beverages are priced and marketed by showing their relative pricing in the mar-
ketplace. Notice that the two facet subcategories overlap within Bev, since they share the is_a arrows. Because
they express V1 and V3 as subcategories of Bev, the functors F; and F, are injective, that is, as morphisms in
the category 7 they are monics. Thus, facet objects and arrows correspond to objects and arrows of the main
ontology as expressed via interface functors. This formalizes the picture in Figure 3.

3.2 Formalizing access to ontologies and data repositories through views

In database applications, data are expected to be shown combined and aggregated in different ways. In relational
databases as expressed through, for example, the SQL language [3], this is done through operations, or queries,
including select, join, project, and union. In our formalization, the categorical equivalents of these are ex-
pressed via the global elements, subobjects, pullbacks, and coproducts that are preserved by the models (functors
into FinSet). As was mentioned in Section 2, in the closure of an graph giving the basic specification for an
ontology, we decree that in addition to any specified pullbacks, coproducts, and so forth, all pullbacks, coprod-
ucts, etc. exist. This means that in addition to, for example, pullbacks on the appropriate diagrams within the
original graph, pullbacks and coproducts involving objects and morphisms of the pullback cones themselves exist
in our category, and pullbacks and coproducts on those, etc. Thus, the category Bev, although initially expressed
in a finite graph along with certain diagrams, cones and cocones consisting of graph nodes and links specifying
commutative diagrams, pullbacks and coproducts, is in reality an infinite category. On this account, we cannot
maintain Bev in its entirety in a computer system (and even if Bev were finite, this would be impractical because
of the prohibitive work and storage involved). Instead, we compute on demand, on a case-by-case basis, those
items (such as the infinite number of pullbacks) that are not in the initial ontology specification. We do this
on-demand querying through an additional categorical mechanism: a view.

Definition 2. A view W of a classifying category or ontology E is a functor W : W — E, where W is a
classifying category, preserving limits, coproducts, and subobject classifiers. In particular, the interface functors
for facets are views.
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Definition 3. A view W of a view V is a functor W : W — V, where V : V — E is a view of a classifying
category E and W is a classifying category, and where W, like V, preserves limits, coproducts, and subobject
classifiers. In particular, facets can have views.

Notice that through composition, a view of a facet can itself be considered alternately as a view or as a
(perhaps smaller, more limited) facet. That is, the composition of W : W — V with V : V — E yields a
functor V o W : W — E having the same property (preserving the structures mentioned in the definitions) as its
factors W and V. As a special case, if a view covers an entire facet, only the facet may be necessary to the user
as a portal to the ontology. Hence forth, we shall refer to facets and views interchangeably, the emphasis being
upon a facet as a view.

Before proceeding further, we remark that the process of enlarging on a categorical closure to include all limits
and the other structures mentioned, and also to formalize views and views of views (and views of those ... ) is
done incrementally beginning with graphs and specifications of particular commutative diagrams, pullbacks, etc.
The mathematical justification for this process is given in the very clear presentation of sketch theory in Sections
4.6 and 4.7 of Barr and Wells [2]. Johnson and Rosebrugh [9] recount this in brief, and provide mathematical
details relating more closely to the current discussion.

A specialized user who wishes to use a facet for inferencing, for queries addressed to the repository, or for
updates of the repository, does so through a view, although as indiciated above we shall regard facets as views and
not be concerned with that level of detail. Where necessary, a view can provide a femporary or restricted interface
through which a user is allowed access and through which tasks can be formulated and the results obtained. For
example, through a view of the facet V, described previously and computerized (in the “categorical inference
engine” referred to earlier), a user can perform inferencing, queries and updates. The operations called for in this
way can be carried out in the main ontology, which has all the information expressed in V; and V, combined
perhaps with other information. The combined information in the main ontology, together with the data accessible
through a portal to the data repository (a computer interface based upon categorical model theory), can provide
an accountant with the analytical capability to establish retail prices, or an economist to analyze the market for
beverages or commodities used in making them. But how are individual analysts working through their unique
facets or views of facets to perform inferencing and data manipulation tasks coherently? For example, if costs
must follow new budget constraints through facet V,, a decision has to be made by the user of facet V; to
either disallow or include ingredients accordingly through the appropriate updates to repository states. A goal of
our investigation will be to find precise conditions for allowing consistent inferencing and data updates through
individual analysts’ facets.

4 Repository states and updates

The data currently in a repository for a faceted ontology is organized as in a relational database. In our formal-
ization, this is a state of the repository. A repository state is expressed as a functor that preserves the previously-
mentioned categorical structures. As described in Section 2.5, a repository update is a transition from one state
to another, formalized as a natural transformation. The collection of repository states of an ontology E together
with their natural transformations are objects and morphisms in the functor category FinSet® . Because the states
are not only functors but preserve the aforementioned structures, and the natural transformations of interest are
monics, they form a subcategory of FinSet® .

Definition 4. A repository state D of an ontology (classifying category) E is a model of E based in FinSet, in
other words, a functor D : E — FinSet which preserves finite limits, coproducts, and a subobject classifier.

Definition 5. An insert update (respectively delete update) for a repository state D of an ontology E is a
monomorphism D — D' (respectively D' — D) in the category FinSet®.

It is stated in [9] that almost all updates to a database through a view can be represented as a combination
of insert and delete updates. We shall assume this for faceted ontology repositories, where a facet is formally

18



UNM Technical Report: EECE-TR-11-0002

identified with a view. These will be the only updates considered in this report, and the exceptions will be
addressed in future work.

For any facet (or view) V : V— E and any model D : E — FinSet it is natural to consider the composite
D oV:V — FinSet. Since both functors, hence their composite, preserve the appropriate structures, D o V is
a model of V. We often omit the composition symbol for functors, and write DV = D o V. With this notation,
the foregoing process yields the substitution functor

V*: FinSet® — FinSet"
defined on any repository state D of E by V*D = DV. We have the following diagram.

v—Y - g

D
V*D l

FinSet

In practical terms, the substitution functor V* translates a state D of the repository for E to a state 7 = V*D
of the repository for V, and likewise for the natural transformations. Now, since states and their updates are
automatically translated from the E to the V repository, a question arises concerning propagating in the reverse
direction: After all, it is to be anticipated that a user will be creating updates to the faceted ontology through that
user’s facet, which would mean propagating an update from the V to the E repository. Further, this propagation
must be safe, that is, an update made through V must translate to a valid update to the E repository, as if it
had been made directly through E. Fulfilling these requirements is the point of this section, wherein we discuss
fibrations (to be defined). A second question of safety arises concerning the direct propagation of updates through
V*. Suppose a repository update by the user of a facet Vy is propagated safely to the repository E of the main
ontology, where there is a second facet V,. The V; update, having been propagated to the E repository, will then
be automatically propagated to the V;, repository through V' . Is this second update valid for the V; repository?

To address the second question first, note that the propagation of a state D of the E repository to a state
T of the repository for a view or facet V has the form T = V*D = DV = D o V. Therefore, if an object a
of E has the form a = V(b) for some object b of V, the finite set D(a) propagates to a finite set in the V
repository, where the latter set has the form T (b) = DV(b) = D(a). Therefore, a state of the E repository
yields a set in the V repository if that set, D(a), is the D-image of an object (entity) a of E which is in turn
the V-image of an object (entity) » of V. When this happens, both repositories contain exactly the same set,
called D(a) for E-object a and T(b) for V-object b. The same holds for morphisms f: ¢ — a in E: The
function D(f): D(c) — D(a) propagates to the same function, but re-labelled 7(g): T(d) — T(b), in the
state T of the V repository if f, ¢ and a are the V-images of g, d and b, respectively. Thus, a state of FinSet®
yields identical structures in FinSet" for those objects and morphisms that are in the image of V, and therefore
states propagate as required. Because the commutative squares that define a natural transformation m: D — D’
in FinSet® propagate to the commutative squares defining a natural transformation 7: 7 — T’ in FinSet" if the
appropriate objects and morphisms are in the image of V, an update to the E repository propagates safely to the
V repository. Therefore, an insert or delete update to the V; repository, if it can be propagated safely to the E
repository, will automatically propagate from there to the V, repository through V. This, then, leaves only the
first question unanswered.

Consider an arbitrary facet V. Since V*: FinSet® — FinSetY maps repository states and updates in the
E-to-V direction, unless constraints are imposed upon facets there may be no update of the E-repository which
would express an update performed through V. Even if there is such an update, there could be many equally-
applicable updates, with no clear choice of which to choose. This obviates any chance of automating the facet
update process. In database programming, this is known as the view update problem. Fortunately, a universal
criterion has been developed for insert and delete view updatability based upon the formalization presented in
sections 2 and 3. The key to this solution is to guarantee that the substitution functor V* is a left and right
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fibration. A functor with the fibration property effectively can be “run backward”; that is, a unique morphism
can be found in its domain to represent a morphism in its codomain that is in the functorial image. In our case,
the morphisms are natural transformations and the fibration property acts as a guarantee that an insert or delete
update of the facet propagates to a unique insert or delete update in the main repository of E. In what follows we
give the definitions of propagatable updates, fibrations, and an even more comprehensive guarantee known as a
cofibration.

Definition 6. Let V be a facet with E as the main ontology. Suppose that D is a repository state for E. Let
T =V*D and t: T — T' be a repository state monomorphism of FinSet¥ expressing an insert update of T.
The insert t is propagable if t = V*m for an insert update m: D — D' in FinSet® with the following property:
for any repository state D" and insert update m": D ~— D" such that V*m" = t't for some t': T' — T" with
T" = V*D", there is a unique insert m': D' »— D" such that V*m' = ', where the following picture illustrates
(with maplets based at the objects) the mapping of the indicated commutative triangle diagram in FinSet® ro
one in FinSet :

If every insert update on T is propagable, we say that the facet state T is insert updatable.

The definition of propagable delete is dual to this (reverse the arrows and compositions). The definition is a
requirement that there be an insert update m mapping to an arbitrary insert ¢ that is essentially unique. That is, if
there is another m": D »— D" that maps to an update 't obtainable through a composition involving ¢, then m”
factors uniquely through m via some monic m’ that maps to t’. As a special case, the uniqueness guarantees that
if ' = idy so that 't = ¢, the only alternative is that also m’ = id;y and therefore m'm = m. The arrow m in
the definition is said to be an opcartesian arrow for t and D for the functor V*. It is a sort of “minimal inverse
image” for ¢ because of the unique factorization with an arrow ' that “points toward” any other arrow m” that
has a similar property. This is a way of saying that ¢ can be “mapped backward”, because the cartesian arrow
m, being universal in the sense of the unique factorization with m’, serves unambiguously as a sort of inverse
image for it. Another name for opcartesian is right cartesian. The definition of cartesian or left cartesian arrow
is dual to the definition of opcartesian or right cartesian arrow and, in the case of the functor V*, applies to delete
updates.

The definition of left and right cartesian arrows applies to functors in general. The following definition
follows.

Definition 7. A functor is a {left, right } fibration if every arrow t in its codomain has a {left, right } cartesian
arrow for every object that maps to the { codomain object, domain object } of t.

Suppose I: A — E is a fully faithful functor with image closed under isomorphism. The latter condition
means that if an object b of E is in the functorial image, where b = I(a) for some object a of A, then any object
of E that is isomorphic with b is also in the functorial image. Now suppose further that for any object e of E
not in the image of [ it is the case that E(e, I(a)) is empty for every a in A. Then [ is called a left cofibration.
A right cofibration J: A — E is a fully faithful functor with image closed under isomorphism such that for any
object e of E not in the image of J it is the case that E(J(b), e) is empty for every b in A.

We have seen that left and right fibrations guarantee delete and insert updatability, respectively. We end this
exposition on faceted ontologies and their associated data repositories with the following lemma. It provides
a sufficient condition for a substitution functor V* as discussed previously to be a left or right fibration. This
condition is that the facet interface functor V' from which it is derived be a left or right cofibration, respectively.
A proof is in [9].
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Lemma 1. [fa view or facet V: V— E with main ontology E is a left (respectively right) cofibration, then the
substitution functor V*: FinSet® — FinSet" is a left (respectively right) fibration.

5 Discussion

We have presented a new formalization of faceted ontologies accompanied by data repositories. This formal-
ization is based in category theory, the mathematical theory of structure. Categorical constructs and structural
mappings have been shown to have useful properties. They allow the unambiguous expression of the graphical
structure of faceted ontologies and their relational data repositories. Mathematical properties of these constructs
and mappings, such as diagrams, terminal objects, global elements, pullbacks, coproducts, functors, natural trans-
formations, and fibrations and cofibrations, support inferencing within ontologies and the transfer of knowledge
between facets and a main ontology as well as a universal solution to the view update problem, which supports
the capability to update repositories through facets.

The applicability of this formalization needs investigation on sample cases of faceted ontologies and their
associated data. Further, the formalization needs extension to enlarge upon its capabilites and support complex
interactions between facet-specific users and the main ontology and data repository. There are many issues that
can arise among the details in implementing the formalization. However, we do not think it useful to attempt to
list any such issues at this purely theoretical stage of investigation. This will have to await experimentation with
a trial implementation. Some areas of extension can be listed; for example, an initial implementation based upon
the formalization must be created given the informal or semi-formal items from an application, such as concept
graphs, sets of data, and other items. Again, it is not deemed useful to try to foresee the needed extensions in
advance of experimentation with the current formalization. The next phase of this effort will address these needs.

6 Appendix

6.1 Categories

Category theory (see any of [14], [1], [5], [11], and [12]), is based upon the notion of an arrow or morphism,
a mathematical relationship between two objects in a category. A morphism reflects the type of mathematical
structure of which the objects are exemplars. That is, each morphism f: a — b has a domain object a and a
codomain object b, and expresses one of the possible ways in which a relates to b in the context of their common
structure. This will become clearer in the examples we shall discuss.

At first glance, the morphisms appear to give a category an underlying directed-graph structure in which
objects serve in the role of nodes and morphisms act as edges. There is a defining property that distinguishes
categories from graphs, however: the property of composition of arrows. In a category C, each pair of arrows
having the form f:a — b and g: b — ¢ (where the codomain b of f is also the domain of g as indicated)
has a composition arrow go f : a — ¢ whose domain a is the domain of f and whose codomain c is the
codomain of g. Composition satisfies two axioms of category theory. The associative law states that in triples
which have a head-to-tail match by pairs, f: a — b, g: b — ¢ and h: ¢ — d, the result of composition is
order-independent, ho(go f) = (hog)o f. The identity axiom states that for each object a there is an identity
morphism id,: a — a such that for any arrows f: a — b and g: c — a id,og =g and foid, = f.
The notion of composition derives its importance from the fact that many pathways through the morphisms
leading from one object to another in a category often yield the same morphism when the composition of the
morphisms is calculated along each path. This means that, unlike the situation with graphs, a path through the
arrows in a category is associated with a precise notion of cumulative effect or meaning; and, further, different
paths whose compositions have the same domain and codomain can have the same meaning. When this is true,
we have a commutative diagram as shown Figure 12. The category in which this diagram is formed is Nj; its
objects are positive natural numbers, 1, 2, 3, ... , and a morphism from a to b, denoted | a,b» €Xists exactly when
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24

A
|
I
12,24 |
|
|
‘24 |
2

Figure 12: One of many commutative diagrams in the category N,.

a is a divisor of b. There are two apparent morphisms with domain 2 and codomain 24 in the diagram, both
being compositions along a path directed through a third diagram object (4 and 6, respectively). Yet, there being
at most one divisibility morphism from one natural number to another, we have the equation |424 © |24=1224
=624 © |26, stating that the two are equal. More generally, a commutative diagram in any category has the
property that any two morphisms having the same diagram objects as domain and codomain, where at least one
of them is obtained as the composition of two or more diagram morphisms and the other is obtained in the same
fashion or is itself a diagram morphism, are equal.

The category N| provides an example in which the morphisms are instances of what we usually think of as
a relation—the divisibility relation defined on positive natural numbers. It also exemplifies a relatively simple
type of mathematical structure known as a partial order, having at most one morphism between a pair of objects,
all morphisms having a shared sense of direction (that is, there are no cycles). In Set, which is probably the
most familiar example of a category, the morphisms are functions. There are many morphisms in both directions
for most pairs of objects in this category, so Set is definitely not a partial order. Composition in Set is just the
familiar composition of functions, with (go f)(x) = g(f(x)) for functions f: a — b and g: b — ¢, with
x €a and (go f)(x) € c. Function composition is associative, and for any set X there is an identity function
idy whose values are idy(x) = x(x € X), so Set is indeed a category. Commutative diagrams in Set can be
used to express the equivalence of functions, where one of them is obtained as the composition of two or more
others. For example, let f: R — R* U {0}, g: Rt U {0} — R and h: R — R be defined by f(x) = x?,
g(x) = /x and h(x) = |x|, where R denotes the set of real numbers and R™ U {0} denotes the nonnegative
reals. Then (g o f)(x) = Vx> = |x|, and the following diagram commutes in Set:

One sometimes hears a statement such as “the two [concepts, data types, program constructs, etc.] are in
some sense isomorphic”, where the term vaguely means “alike in some way”. Category theory provides a math-
ematically rigorous notion of “isomorphism”: If a, b are objects of a category C such that there exist arrows
f:ra—band g: b — a with fog = id, and go f = id,, then the morphism f is called an isomorphism
(as is g also) and g is called its inverse (and f is called the inverse of g), and the two objects are said to be iso-
morphic. The property of an identity morphism ensures that isomorphic objects in a category are interchangeable
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in the sense that they have the same relationships with all objects of the category. An isomorphism in Set is a
one-to-one, onto function.

An initial object of a category C is an object i having a unique morphism f: i — a corresponding to every
object a of C. A terminal object ¢ is the dual notion, obtained by reversing arrows in the definition of i—that
is, it serves as the codomain of a unique morphism f: a — ¢ corresponding to every object a of C. It is easy
to show that all initial objects in a category are isomorphic, and the same for all terminal objects. For suppose
that 7,7 are initial in C; then there must be unique morphisms f: i — i and f’: i’ — i. The compositions
flof:i—iand fof:i — i’ mustbe unique as well, implying that f'o f = id; and fo f/ = idy, which
shows that i and i’ are isomorphic. The empty set, 0, is the single initial object of Set, since for any set a there
is a unique function f: @ — a whose domain is @ and whose codomain is a, namely, the vacuous function,
since there are no elements in @ to map to an element of a. There is an infinite number of terminal objects in
Set, namely the singletons {x}, since there is a single function f: a — {x} mapping the elements of any set a
to x. One of the most important uses of commutative diagrams and terminal and initial objects is in the definition
of a limit of a diagram and the dual type of quantity, a colimit, two categorical constructs that we use extensively.

6.2 Limits and colimits

Let A be adiagram in a category C as shown in Figures 13 and 14, with objects ay, az, a3, as, as and morphisms
firar — a3, fo:ar — a4, f3: ap — aa, fa: ay — as. The diagram A in Figure 14 extends A to a
commutative diagram with an additional object b and morphisms g;: @, — b (i = 1,...,5), provided additional
objects and morphisms with the requisite properties existin C. Thatis, gj o fj = g2 =g30 f> and g3 o f3 = g4
= g5 o f4. The added cone-like structure K consisting of the apical object b and leg morphisms g1, g2, 83, 84, 85
is called a cocone for diagram A. In general, a diagram can have many cocones or it can have few or none,
depending upon the available objects and morphisms in C. Given cocones K’ and K” for A in Figure 13, with

respective apical objects &', b” and leg morphisms g’; and g”; (i = 1,...,5), a cocone morphism with domain
K' and codomain K" is a C-morphism h: b’ — b" having the property
gdi=hog, (i=1,....5). (1)

That is, % is a factor under composition of each leg morphism g”; of K” with respect to the corresponding leg
morphism g’; of K’. This is illustrated in Figure 13. Re-using the symbol % for notational efficiency, we also
denote the cocone morphism determined by h as h: K’ — K”'.

With morphisms so defined, and composition of cocone morphisms following directly from composition of
C-morphisms, the cocones for A form a category, coca . A colimit for the diagram A is an initial object K in the
category cocy . That is, for every other cocone K’ for A, there exists a unique cocone morphism h: K — K'.
The original diagram A is called the base diagram for the colimit and the diagram A formed by adjoining K
to A is called its defining diagram. Note that, as all initial objects are isomorphic, all colimits for a given base
diagram are isomorphic.

The notion of limits in a category can be obtained by dualizing the notion of colimits, that is, by “reversing
the arrows” and replacing initial objects with terminal objects. Let A be a diagram in a category C as shown in
Figure 15, with objects aj, ay, a3 and morphisms fi: a; — a3, and f>: ap — a3,. The diagram A extends
A to a commutative diagram with an additional object b and morphisms g;: b — a; (i = 1, ..., 3), provided
additional objects and morphisms with the requisite properties exist in C. Thatis, fj o g = g3 = f> 0 g2. The
conical structure K is called a cone; note that its morphisms are directed into the diagram, the opposite sense of
the leg morphisms of a cocone, which are directed out of the diagram. Cone morphisms are defined appropriately
by analogy with cocone morphisms, and again composition follows directly from composition of C-morphisms
and the cones for A form a category, conep. A limit for the diagram A is a terminal object K in the category
cone, . That is, for every other cone K’ for A, there exists a unique cone morphism h: K’ — K. Again, the
original diagram A is called the base diagram for the limit and the diagram A formed by adjoining K to A is
called its defining diagram. Note that, as all terminal objects are isomorphic, all limits for a given base diagram
are isomorphic.
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Figure 13: A cocone morphism /: K’ — K” in coc, is a morphism i: b — b” in C between the apical
objects b’ and b” of cocones K’ and K", respectively, that is a factor of each leg morphism g”;: a; — b”
of K", with g”;, = hog,.
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Figure 14: A colimit for a diagram A. The extended diagram A extends A with a conical structure of
morphisms from all diagram objects ay, ..., as pointing to an apical object b

The limit in Figure 15 is an example of a pullback. A pullback is a limit for a diagram consisting of three
objects and two morphisms (here, f; and f;) sharing one of the objects as codomain. This configuration is called
a cospan (a span is the dual notion—reverse the arrows). Pullbacks are limits commonly used in applications.
Johnson and Rosebrugh [9] give examples, and some are given in Section 2 of this report. In categorical logic
and model theory, pullbacks often appear along with a terminal object , which is a limit for an empty diagram.
Terminal objects can be used to define global elements; one use for these is to express constants in a theory,
and they are also useful in defining subobjects [13]; both uses are important in this report. The limits occurring
most commonly in categorical logic and model theory are products, which are limits over discrete diagrams. The
cartesian product of sets is an example from the category Set. Colimits have a history of use in categorical logic
and computer science ( [6], [19]). A theorem in category theory can be used to derive an algorithm for calculating
limits in any category that contains limits for all of its diagrams, and similarly for colimits by dualization (see
The Limit Theorem in [14]). Colimits and limits do not exist for all diagrams in all categories, but they can be
very useful where they do exist.
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h

Figure 15: A limit for a diagram A. The extended diagram A extends A with a conical structure of mor-
phisms to all diagram objects a1, ..., a3 from an apical object b.

6.3 Structural Mappings: Functors and Natural Transformations

To formalize the association of an ontology with a computational system, we make use of the categorical notion
of structure-preserving mappings. These are the essence opf category theory, which studies relationships between
different kinds of mathematical systems with a similar underlying structure. The first kind of mapping to discuss
is a functor, which transports the structure of one category into another category that is capable of expressing it.
A functor F : C — D, with domain category C and codomain category D, associates to each object a of C a
unique image object F(a) of D and to each morphism f:a — b of C aunique morphism F(f): F(a) — F(b)
of D. Moreover, F preserves the compositional structure of C, as follows. Let oc and op denote the separate
composition operations in categories C and D, respectively (this is for emphasis; normally, the unadorned symbol
o is used for all categories in a discussion since there is usually no ambiguity). For each composition goc f
defined for morphisms of C, F(goc f) = F(g)op F(f), and for each identity morphism of C, F(id,) = idp(q)-
It follows that F' preserves the commutativity of diagrams, that is, the images of the objects and morphisms in
a commutative diagram of C form a commutative diagram in D. This means that any structural constraints
expressed in C are translated into D and, hence, F is a structure-preserving mapping.

The set of all morphisms with domain a and codomain b (called a hom-set) in a category C is denoted either
as homg(a, b) or, more simply, C(a, b). The intent so far in this discussion has been to avoid foundational
issues in mathematics such as Russell’s Paradox and the “set of all sets”, which lead in the early 20th century
to the distinction between sets and proper classes. Notice that there is no guarantee in the general case that the
objects or the morphisms in a category form sets as opposed to proper classes; this point is particularly relevant
for the category Set, to name but one of many common examples. However, the hom-sets Set(a, b) in Set are
sets, and this is true of most important categories. These categories are called locally small; those whose class of
morphisms (hence, also objects) form a set are called small. A functor F : C — D is faithful if it is injective
(that is, one-to-one) on each hom-set C(a, b). It is full if it is surjective (that is, onto) each hom-set D(c, d) that
is in the functorial image, that is, where D(c, d) = F(C(a, b)) for a pair (a, b) of objects in C. A functor that
is both full and faithful (in which case the mapping from C(a, b) to D(c, d) is bijective, or one-to-one and onto)
is often referred to as a fully faithful functor.
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2%

F(b) ——— G(b)

Figure 16: A commutative diagram associated with a natural transformation. The morphisms G(f)oo, :
F(a) — G(b) and o, oF(f) : F(a) — G(b) are one and the same, G(f) oo, = o oF(f).

Not only are there structure-preserving mappings between categories, but also structure-preserving relations
between the mappings themselves. A natural transformation o : F — G with domain functor F : C — D
and codomain functor G : C — D consists of a system of D-morphisms «,, one for each object a of C,
such that the diagram in D shown in Figure 16 commutes for each morphism f: a — b of C. That is, the
morphisms G(f)ooy, : F(a) — G(b) and a0 F(f) : F(a) — G(b) are actually one and the same, G(f)oo, =
oo F(f). Inasense, the two functors have their morphism images F(f): F(a) — F(b), G(f): G(a) — G(b)
“stitched together” by other morphisms 0o, 0t existing in D, indexed by the objects of C. In plain Engtlish, the
composition of the morphisms along the two paths leading from one corner F(a) of a commutative square to the
opposite corner G(b) yields the same morphism, independently of the path traversed.
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