






7.3. Asymptotic Diffusion in the Multi-spider Model

(a) (b)

Figure 7.18: Average density for spiders with legs together (blue circles) and apart (red
triangles) plotted at several instants, for r = 1 (a) and for r = 0.05 (b).

very strong bias towards the together stride.

This can be considered an emergent phenomenon that arises as a means to in-

crease spider packing close to the injection source. Spiders in this high density

region rarely get an opportunity to spread their legs into the apart stride because

both neighboring sites are almost always occupied. Also of note, at the distances

where the linear decrease in spider density is no longer apparent, the distribu-

tions of strides becomes equal again. This equality of stride distribution indicates

that the spiders are no longer experiencing the extreme exclusionary pressure ob-

served near the injection site. Instead, the spiders on the periphery are able to act

more like single spiders, which have an equal distribution in strides. These effects

are again apparent at all time scales, as seen in Figure 7.18.

7.3.3.2 Density of leading spiders

Unlike the interior spiders, which never see a substrate, the leading spiders Ls

and Rs are strongly affected by the enzymatic rate r. When spiders are in the
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Figure 7.19: Average density of the leading spider at tmax, for r = 1 (a) and for r = 0.05
(b).

boundary metastate (Sec. 4.5.1), they move ballistically away from the origin, and

the smaller the value of r, the less chance they have of exiting the boundary state

and returning to the diffusive D state. Figures 7.19 and 7.20 show the probabil-

ity distribution of µ(Rs) (the leading spiders location) for both r = 1 spiders and

r = 0.05 spiders. Particularly at the shorter times in Figure 7.20, there is a distinct

difference in the distributions shape, with the r < 1 distributions having much

longer tails, and distinctly non-Gaussian shape. The mean of the distributions

is the 〈X2〉(t), reported in Sec. 7.2.1.1, which grows much faster for the r < 1

multi-spider systems than for r = 1. However, the complete distributions shown

in Figures 7.19 and 7.20 reveal more information, particularly that the tails of the

distribution are much shorter on the left than the right. This arises from the exclu-

sionary pressures exerted by the next leading spider R′s. However, the results of

Sec. 7.3.1 show that despite this exclusionary pressure, the distance between the

two leading spiders 〈Neff(t)〉 continues to increase as
√

t regardless of the value of

r. Hence, in the distributions at tmax in Fig. 7.19, there is less distinction between

the r = 1 and r < 1 walkers.
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(a) (b)

Figure 7.20: Average spider density of the leading spider plotted at several instants, for
r = 1 (a) and for r = 0.05 (b).

7.4 Importance of Multi-Pedal Gaits for Transport

Many molecular walkers, including the natural motors kinesin and dynein, are

multivalent—they have two (or more) attachment sites. Interestingly, it has been

shown that in the AK spider model, the superdiffusive effects are only present

when the number of legs k ≥ 2. Without the constraints imposed by multiple legs

the residence time-bias at the boundary when r < 1 does not lead to a bias in

motion towards substrates.

The multi-spider model has two potential sources of bias to cause superdiffu-

sive motion of the leading spiders: the residence time bias at the boundary when

r < 1, and the effective bias caused by the exclusionary pressure of the interior

spiders. We know that the multi-spider systems are transiently superdiffusive

even when r = 1 due to the exclusionary pressure, but what happens to their col-

lective behavior when they have only a single leg? In fact when k = 1 and r = 1

an AK spider is equivalent to an ordinary random walker that moves left and

right with rate 1. Thus, we measured 〈X2〉(t) for the leading walker of the multi-

spider model with k = 1 and r = 1. The values for 〈X2〉(t) are compared with the
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multi-spiders model with k = 2 and r ∈ {1.0, 0.1}, and shown on a log-log scale

in Fig. 7.21, and the corresponding values of α(t) are shown in Fig. 7.22. The k = 1

walkers do exhibit transient superdiffusive behavior, but their values of αmax and

td are surpassed by k = 2 spiders when r < 0.1, as summarized in Table 7.3. Spi-

ders with k = 1 achieve maximum 〈X2〉(t) when r = 1 [4, 5], so by using r = 1

in our comparison we are comparing with the most efficient single-legged spiders

possible.

It is, however, necessary to make an adjustment of scales to correctly compare

the 〈X2〉(t) values between k = 2 and k = 1 walkers. Since the position of a spider

is defined as the mean of its attached leg positions, the k = 2 spiders move by only

distance 0.5 with each step, in contrast to the k = 1 spiders which move by dis-

tance 1. Thus, in the analysis of k = 1 spiders shown in Figures 7.21 and 7.22, the

k = 1 spiders move over a lattice with site spacing 0.5. In essence this correction

can be thought of as adjusting the diffusion constant of the k = 1, r = 1 walkers

which have D = 1 to that of the k = 2, r = 1 walkers which have D = 0.5.

7.5 Analysis of Maximum Product Sea Size

Simulation results presented in Sec. 7.2.1.1 suggest that the leading spider Rs

moves diffusively in the long time limit with the value of α(tmax) ≈ 1. Section 7.3.1

showed that this happens because the mean effective size of the product sea as

seen by Rs, 〈Neff(t)〉, grows with time approximately as
√

t. Hence, the duration

of the D states 〈τD(t)〉 also grows with time, leading to asymptotically diffusive

motion. Furthermore the effective product sea size Neff can also be understood

as being a function N, the number of sites cleaved. Figure 7.23 shows simulation

estimates for 〈Neff(N)〉, which at times close to tmax is almost linear. Thus, while

the leading spider is cleaving sites at the boundary, the interior spiders are not fol-
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Figure 7.21: Comparison of 〈X2〉(t) for the leading spider Rs in multi-spider simulations
versus the k = 1 multi-spider model (with corrected diffusion constant of D = 0.5.)

lowing closely enough and the leading spider sees an increasingly large effective

product sea. If a multi-spider system were to keep the leading spider superdiffu-

sive as t→ ∞, it would have to ensure that 〈Neff(N)〉 does not grow too fast. The

asymptotic bound that ensures this property can be found analytically.

The expected exit time for a random walker from an interval (0, M) with two

absorbing boundaries at 0 and M is

〈Te(x)〉 = x(M− x)
2

, (7.12)

where x is the starting position of the walker. As shown in Fig. 7.11 and explained

in Sec. 7.3.1, the expected exit time from an interval with one absorbing and one

reflecting boundary is the same as exit time from a interval with two absorbing

boundaries of twice the size. Furthermore, when a spider moves over a region of

product sites, its body position µ(F) moves like a simple random walker with a

step size of 1/2.
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Figure 7.22: Comparison of finite difference approximation of α(t) for the leading spider
Rs in multi-spider simulations versus the k = 1 multi-spider model (with corrected diffu-
sion constant of D = 0.5.) Horizontal lines show the threshold for ordinary diffusion at
α = 1 and our defined threshold for superdiffusion at α = 1.1.

When at time t the Rs spider moves off the boundary and into the D state, it

enters a product sea of expected size 〈Neff(N)〉 with one absorbing and one re-

flecting boundary. The expected time to exit this interval is the expected duration

of the D-state, τD. This can be found by using Eq. 7.12 with M = 4〈Neff(N)〉 − 5

and x = 4〈Neff(N)〉 − 8, which gives

〈τD(N)〉 = 〈Te〉 =
3(4〈Neff(N)〉 − 8)

2
. (7.13)

From Ref. [4], the average time interval during which the number of visited

sites grows from N + 3 to N + 4 is

〈τN〉 =
1
r
+

1 + r
2 + r

E [Te] , (7.14)
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Figure 7.23: Size of the effective product sea 〈Neff(N)〉 as a function of the number of
visited sites N.

and the expected time to visit N + 3 sites is

〈T(N)〉 =
N−1

∑
i=0
〈τN〉. (7.15)

Thus, we can write 〈Neff(N)〉 to be a function of N, and by substituting Eq. 7.13

into the sum in Eq. 7.15, we obtain

〈T(N)〉 = N
r
+

1 + r
2 + r

N−1

∑
i=0

3(4〈Neff(i)〉 − 8)
2

. (7.16)

Equation 7.16 shows that if 〈Neff(N)〉 = Θ(N), as Fig. 7.23 suggests, then

〈T(N)〉 = Θ
(

N2), which corresponds to diffusive motion. Hence, in order for

the leading spider to be superdiffusive as t → ∞, we require 〈T(N)〉 = o(N2),

which implied 〈Neff(N)〉 = o(N). Unfortunately, as Fig. 7.11 shows, this is not
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the case for the multi-spider model—to maintain superdiffusive motion asymp-

totically, we need a mechanism stronger than passive injection at the origin.
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Chapter 8
Conclusion

In this work we exhaustively studied the statistical properties of several molecular

spider models and explored their potential for two applications, cargo transport

and search. We demonstrated that for both tasks spiders with legs that spend

more time on the unvisited sites (r < 1, spiders with memory) have an advantage

over spiders without residence-time difference between previously visited and

unvisited sites (spiders without memory, equivalent to regular diffusion).

Using Kinetic Monte Carlo simulations of the Antal and Krapivsky model we

showed the unanticipated result that spiders move superdiffusively over a span

of time before eventually moving diffusively as had been predicted analytically.

This phenomenon can be explained by considering the natural decomposition of

the process as switching between two metastates: a diffusive state D where a

spider moves over the contiguous sea of product sites, and a boundary state B

where the spider has a leg attached to a substrate at the boundary between visited

and unvisited sites. This decomposition partitions the underlying continuous-

time Markov process into B periods and D periods. The spider moves ballistically

away from the origin during B periods, but moves diffusively over visited sites

during D periods. The B state is Markovian in that the transitions from the B state

are independent of the state of the system when it entered the B state. However,

the transitions from the D-state depend on the size of the contiguous sea of prod-

ucts, and this size increases with time. This explains the apparent superdiffusion

at short times when the spider spends more time in the B state, and the decay to

ordinary diffusion at long times, as the spider spends nearly all of its time diffus-

ing over previously visited sites in the D state. The AK model with k = 2, s = 2,

r < 1 is the simplest model of spider motion with this B/D state decomposition

and the resulting superdiffusive effect. With k = 1, there is no bias at the bound-
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aries, and without irreversible cleavage of sites and a rate r < 1 there is no biasing

effect at the boundaries. Thus, the superdiffusive effect depends on spiders hav-

ing multiple legs and on the legs having the ability to modify sites so that future

steps on those sites have different rates.

In order to reduce durations of D periods we proposed a model where spi-

ders are sequentially released from the origin. The goal of multiple spiders in this

model is to prevent the leading spiders from moving too far backwards. Hence,

there is an effective outward pressure on the leading spiders that keeps them

closer to the boundary and increases their chances to move with the bias towards

unvisited sites. We showed that multi-spider systems move faster and farther

than single spiders or systems with multiple simple random walkers. However,

in the asymptotic limit as t → ∞, we find that α(t) → 1, and the leading spiders

of the multi-spider model move diffusively for all values of r. One way to un-

derstand this result is to note that the number of spiders released with time was

〈S(t)〉 = O
(√

t
)

and largely independent of r, even with the injection rate λ = ∞

(Sec. 7.3.2). Under asymptotically superdiffusive motion of the leading spiders

we would see the number of products cleaved N(t) = ω(
√

t), and to fill this

product sea would require S(t) = Θ(N(t)) = ω(
√

t), which is not achieved by

the multi-spider model. Thus, we cannot seem to release spiders fast enough to

support superdiffusion indefinitely. This failure can be understood by observing

that the only spiders that actually get to attach to and cleave the energy bearing

substrates are the leading Rs and Ls spiders. The other, interior spiders only ever

walk on products. Thus, while there is some bias exerted on interior spiders by

the exclusionary pressure of injected spiders near the origin, for the most part the

motion of interior spiders is governed by diffusion. Hence, they do not move fast

enough to get clear of the injection site at the origin to allow enough other spi-

ders to be injected fast enough. Indeed, the density of spiders (Sec. 7.3.3) around

the origin is nearly maximal, and also seemingly independent of r. Thus, it does
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not really matter how small the value of r is (and hence how much biasing en-

ergy is contained within substrates), because the interior spiders see none of that

energy and their diffusive motion is hence independent of r. Yet, the motion of

these interior spiders remains the limiting factor for the injection rate of the new

spiders needed to assist the leading spiders by reducing the effective size of the

product sea. Hence, no matter how fast the leading spiders are able to move ini-

tially, they will inevitably be hindered by the insufficiently fast dispersal of the

energy-deprived interior spiders.

For the search task, our studies show that the search time (MFPT) of single

multi-legged spiders depends strongly on the kinetic parameter r in all studied

cases. The MFPT is lower for r < 1 (i.e., with memory) than for r = 1 (i.e.,

without memory) in the one-dimensional case when the spider is searching for the

ends of a one-dimensional track. For one-legged spiders the parameter r does not

affect leading asymptotic behavior; however, it slows them down by increasing

the constant of the sub-leading term. In the extension of this problem to two

dimensions, when the spider is searching for the contour of a circle from its center,

the advantage of having r < 1 is even more significant, despite the less effective

bias provided by the shape of the leftover substrates. Here the bias provided by

the substrates does not always direct the spider towards the absorbing boundary.

In contrast, on a 1D track, the substrates always bias the spider towards the closest

end when one of the legs is attached to them. The disadvantage in 2D is overcome

by the greater amount of substrates that are accessible to spiders. In 1D, the spider

does not leave any substrates behind when it progresses towards the ends of the

track. In 2D, the shape of the sea of products is complex, and many substrates are

left behind. Those substrates can bias the spider towards the absorbing boundary

when it starts to turn back towards the origin. When we reverse boundaries in

2D we make the absorbing boundary the single site in the center of the circle, and

start the spider from the contour, the parameter r still improves the MFPT even
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though it is difficult to find the single target site in this scenario.

When we introduce multiple spiders and multiple targets, the communication

between spiders starts to influence their performance. Spiders communicate by

seeing each other’s traces, i.e. visited sites. Since multi-legged spiders are biased

towards unvisited sites when they are in the border region, they are more likely

to search for targets in unexplored locations. This property further reduces search

time compared with spiders without memory, which are equivalent to regular

random walkers.

In addition to the presented models, I studied several models with modifica-

tions that further enhance molecular spiders’ properties, including substrates that

can be cleaved several times and parallel tracks. Substrates that can be cleaved

multiple times introduce more memory into the system and allow spiders to re-

act differently with sites that have been visited more times than with sites that

have been visited less frequently. Preliminary results show that this feature can

improve spiders’ performance. Also, when a spider moves over a small number

of parallel tracks, in other words over a narrow but very long rectangle, its perfor-

mance is also improved, compared with a single 1D track. Another approach to

improve spiders’ performance is to introduce multiple tracks of substrates into the

model of multiple spiders with an infinitely strong source. Surprisingly, this mod-

ification made even one-legged spiders move superdiffusively during the whole

observed time period for some r values; as it was shown in Section 4.1, a single

one-legged spider is slowed down when r < 1. When r is less than some crit-

ical value the superdiffusive effect does not seem to fade away with time as it

happened with previously studied models. A full exploration of these models is

reserved for future work.
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