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ABSTRACT 
 
 
 

Depleted mantle peridotites from the Finero body in the Ivrea Zone were 

infiltrated by metasomatizing melts/fluids prior to their incorporation into the lower 

continental crust. Metasomatism resulted in pervasive development of phlogopite and 

amphibole throughout much of the body, as well as the formation of phlogopite-rich 

segregations. Previous trace element and isotopic data have been interpreted by different 

authors to reflect metasomatism induced by slab-derived, rift-related (continental), or 

plume-related melts/fluids. Several of these geochemical studies conclude that the rocks 

experienced two discrete metasomatic events. Here we combine chlorine and hydrogen 

stable isotopic data with field and petrologic data to better constrain the number of 

alteration events, the source(s) of the metasomatizing fluid/melt, and the migration 

mechanism(s) of the fluid/melt.  
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 Four types of samples were collected from two localities: (1) foliated phlogopite + 

amphibole peridotite, (2) crosscutting phlogopite + amphibole segregations, (3) a single 

crosscutting phlogopite + orthopyroxene segregation, and (4) cumulate amphibole 

peridotites. Group 1 peridotites range in textures from massive, showing few deformation 

features, to samples with well-developed olivine + orthopyroxene ± phlogopite ± 

amphibole shape-preferred orientation and evidence for subgrain rotation recrystallization 

of olivine and orthopyroxene. Thermodynamic modeling using Perple_X indicates that 

Group 1 samples equilibrated at temperatures of ~800-900°C, which is consistent with 

deformation microstructures seen in samples collected for this study. 

 Microprobe data from Group 1 samples show large variations within and between 

samples. Three distinct populations of amphiboles are defined on the basis of Na, K, Al, 

and Cr concentrations. Group 1 samples show a weak correlation in Cl vs. Na 

concentrations in amphibole, with an R² value of 0.414. Large variations in chlorine and 

hydrogen isotopic values occur both within and between groups, and do not obviously 

correlate with major cation or whole-rock concentrations: Group 1: δ37Cl = -1.3 to +3.3‰ 

(whole rock, n=8), δD = -48 to -36‰ (phlogopite, n=2); Group 2: δ37Cl = -2.1 and -1.7‰ 

(WR, n=2), δD = -49 and -40‰ (phlogopite, n=2); Group 3, one sample: δ37Cl = -0.1‰ 

(WR, n=1), δD = -80‰ (phlogopite, n=1); Group 4: δ37Cl = +0.8 to +1.9 (WR, n=3), δD 

not yet available. There is no correlation between δ37Cl values and sample location, 

chlorine concentration, major element composition, or phlogopite and amphibole 

abundances.  
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The isotopic and compositional heterogeneity within and between groups could 

reflect interaction between peridotite and (a) multiple fluids from different sources, or (b) 

a single fluid that evolved chemically. However, hypothesis (b) would require large 

chlorine and hydrogen isotopic fractionations to have occurred under mantle conditions, a 

conclusion that is inconsistent with experimental and theoretical studies. The lack of 

correlation between the isotope and petrologic data is more consistent with multiple 

pulses of chemically and isotopically distinct fluids, with evidence for meter-scale or 

smaller equilibration distances. It is unlikely that the large range of δ37Cl values could 

have been produced solely by mantle melting in a rift or plume setting. Instead, the 

heterogeneity likely reflects relatively small-scale pulses of fluid/melt derived from 

different slab components and mantle melts in a subduction setting. Some studies argue 

that large-scale breakdown of serpentine at depths of ~200 km in the subducting 

lithosphere plays the major role in hydrating the mantle wedge and triggering formation 

of arc magmas. However, the Finero mantle peridotite shows that repeated smaller scale 

episodes of hydration from shallower, isotopically distinct slab sources can also cause 

significant modification of the mantle wedge. Similarly heterogeneous rocks in the upper 

levels of modern mantle wedges may contribute to the arc signature of melts either by 

interaction with magmas that pass through them or by downward entrainment into the 

zone of partial melting. 
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PREFACE 

 

 

 The following manuscript discusses the use of chlorine isotopes to document 

separate metasomatic events within the Finero peridotite body, located in the Italian Alps. 

This study addresses the geodynamic setting in which metasomatism occurred and 

speculates on the origins of the metasomatic fluids. All samples used in this study were 

collected by Dr. Selverstone and myself in the summer of 2008. Drs. Selverstone and 

Sharp were advisors for this study.  

 The author of this thesis was responsible for sample preparation, including billet 

preparation for thin sections and whole rock powders for bulk chemistry. The author 

acquired all of the bulk chemical data, most of the microprobe analyses, and all of the 

chlorine isotopic analyses. The author was also responsible for petrography, 

pseudosection modeling, and sample preparation for hydrogen isotopic analysis. 

Microprobe data were acquired in collaboration with Dr. Selverstone, bulk geochemical 

analyses under the supervision of Dr. Ali, and chlorine isotopic analyses under the 

supervision of Drs. Barnes and Sharp. Hydrogen isotopic analyses were provided by Dr. 

V. Atudorei. Interpretations of the data were made in collaboration with Drs. Selverstone 

and Sharp.  

 Results of this study were presented at the American Geophysical Union (AGU) 

in Fall 2009 by Dr. Selverstone. This thesis will be converted into a coauthored 

manuscript (Halick, Selverstone, Sharp, and Barnes) that will be submitted to a peer-

reviewed journal.         
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INTRODUCTION 

 

 The phlogopite peridotites of the Finero Complex in the Italian Western Alps 

show clear evidence for mantle metasomatism prior to their incorporation in the 

continental crust (Exely et al., 1982; Coltorti et al., 1984; Farrario and Garuti, 1990; 

Shervais and Mukasa, 1991; Hartmann and Wedepohl, 1993; Zanetti et al., 1999; Garuti 

et al., 2001; Grieco et al., 2001; Grieco et al., 2004; Zaccarini et al., 2004; Matsumoto et 

al., 2005; Raffone et al., 2006; Morishita et al., 2008). Two different hypotheses 

dominate the literature regarding the cause of mantle metasomatism at this locality: (1) 

metasomatism resulted from mantle upwelling, either in response to continental rifting or 

mantle plume activity (e.g., Zaccarini et al. 2004), or (2) metasomatism resulted from 

subduction fluids infiltrating the mantle wedge above an ancient subduction system (e.g., 

Zanetti et al. 1999) (Figure 1).  

 In general, extension-dominated settings result in asthenospheric upwelling and 

partial melting of fertile or depleted lithospheric mantle, producing elemental 

enrichments and chemical re-equilibration of the overlying mantle (e.g., Bailey, 1982; 

Hawkesworth et al., 1984). In this setting, as well as a mantle plume-type setting, 

metasomatism due to partial melting contributes to the enrichment of incompatible 

elements (e.g., REE, K, Na, Rb, Pb, U, Th, Nb and Ta). In convergent settings, mantle 

metasomatism is mostly due to hydrous, slab-derived fluids/melts infiltrating the mantle 

wedge. This type of metasomatism also causes elemental enrichments, however large ion 

lithophile elements (LILE) and high field strength elements (HFSE) are strongly 

decoupled. This geochemical decoupling is a unique geochemical signature that is linked 
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to devolatilizing, hydrous fluids derived from a subducting lithospheric slab (e.g., 

Hawkesworth et al., 1993).  

   

  Figure 1. Cartoon sketch showing two geodynamic hypotheses for the Finero  
phlogopite + amphibole peridotite. (a) Continental extension/mantle plume setting with 
previously documented δ37Cl values. Metasomatism is caused by mantle-derived melts 
above an upwelling zone. Infiltrating melts will have mantle δ37Cl values similar to 
those of the host peridotites, producing little to no outcrop-scale isotopic variability. (b) 
Subduction setting with previously documented δ37Cl values for possible subduction 
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fluid/melt sources. Subduction fluids released from different components of the 
subducting slab may be isotopically distinct. Infiltration of discrete fluid packages into 
the mantle wedge produces isotopic heterogeneities over outcrop or regional scale. 
Isotopic values compiled from (1) Sharp et al., 2007; (2) Bonifacie et al., 2008a; (3) 
Magenheim, 1995;  (4) Layne et al., 2009; (5) Eggenkamp and Koster van Groos, 1997; 
(6) Barnes and Sharp, 2006; (7) Bonifacie et al., 2008b; (8) compiled in Barnes and 
Sharp, 2008; (9) Bonafacie et al., 2007. Asterisk in the lower diagram denotes that the 
majority of oceanic serpentinites fall within the δ37Cl range of 0 to +0.7 ‰. 

  

  

 In this study, we use a relatively new geochemical technique, chlorine isotope 

geochemistry, combined with other geochemical data to distinguish between these two 

tectonic settings, both of which have been proposed for metasomatism at Finero. Chlorine 

is not a major rock-forming element and is strongly incompatible and hydrophilic, 

preferentially partitioning into a hydrous fluid phase (Note: we use “fluid” to refer to 

either a supercritical hydrous fluid or a hydrous silicate melt). In silicates, chlorine 

substitutes for the hydroxyl site in hydrous minerals, such as micas, amphiboles, and 

serpentines (Volfinger et al., 1985). In addition, chlorine isotopic fractionation is 

theorized to be negligible at high temperatures for silicate minerals (Schauble et al., 

2003). Thus, if little to no fractionation occurs under lithospheric mantle conditions, 

chlorine isotope ratios should reflect the fluid sources involved in mantle metasomatism 

and the pathways along which fluid moved through the lithospheric mantle.   

 Chlorine has two stable isotopes, 37Cl and 35Cl, that are reported using the 

standard per mil notation versus SMOC (Standard Mean Ocean Chloride), where δ37Cl = 

[((37Cl/35Cl)sample/(37Cl/35Cl)SMOC)-1]. Consensus over the average δ37Cl value of the 

mantle is still under discussion. Sharp et al. (2007) state that upper mantle δ37Cl values 

are approximately 0‰ (Sharp et al., 2007), whereas Bonifacie et al. (2008a) and Layne et 
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al. (2009) argue for isotopically lighter values of  ≤ -1.6‰ and < -3 ‰, respectively,  and 

Magenheim (1995) argues for isotopically heavy δ37Cl values of +4.7‰. Regardless of 

the previously reported δ37Cl values, our expectation is that melts sourced from the 

mantle should be isotopically uniform if metasomatism at Finero resulted from 

infiltration of mantle melts. This hypothesis assumes that chlorine isotope fractionation is 

negligible at high temperatures. If this assumption is correct, then δ37Cl values 

throughout the phlogopite peridotite should be relatively homogeneous (Figure 1). 

Alternatively, if metasomatism was a result of infiltrating fluids/melts derived from 

different parts of the subducting slab, then the reasonable expectation is that isotopic 

heterogeneities should be preserved under mantle conditions.  

 Therefore, bulk rock δ37Cl values from Finero peridotites should reflect the 

isotopic nature of metasomatizing fluids and the tectonic setting in which metasomatism 

occurred. Here, we attempt to resolve the geodynamic setting of mantle metasomatism 

and document outcrop-scale chemical heterogeneities (if any) based on chlorine and 

hydrogen isotope ratios and mineral geochemistry of phlogopite and amphibole. In 

addition, we address possible fluid sources of the altering agent(s) and relate geochemical 

differences to field occurrences to constrain whether fluid migration at Finero was 

pervasive or limited.   

 

GEOLOGICAL SETTING 

Ivrea-Verbano Zone  
 

The Ivrea-Verbano Zone (IVZ) is located in the southern Alps in northwestern 

Italy and represents a relatively intact, steeply dipping section of the Adriatic lower crust 
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with tectonically emplaced slices of the underlying lithospheric mantle (Quick et al., 

1995). Three large, well-documented mantle peridotites of the IVZ are exposed near the 

villages of Finero, Balmuccia, and Baldissero, where all peridotite bodies are exposed 

near the Insubric Line, a major tectonic fault zone that generally separates the European 

plate from rocks with Adriatic continental affinity (Figure 2). These mantle tectonites are 

geochemically and isotopically distinct from one another, exhibiting different degrees of 

melt depletion, crustal assimilation and metasomatism (Hartmann and Wedepohl, 1993). 

The Balmuccia and Baldissero mantle bodies show little melt depletion or re-enrichment 

(Hartmann and Wedepohl, 1993), whereas the Finero mantle peridotite was depleted by 

approximately 18% melt (MORB) extraction and subsequently re-enriched via mantle 

metasomatism. The presence of phlogopite and amphibole in the Finero mantle peridotite 

requires at least one H2O-rich metasomatic episode prior to lower-crustal emplacement.  

Early work in this area interpreted the exposed lower crustal rocks, ultramafic 

cumulates, and mantle peridotites as a pre-Alpine crust-lithospheric mantle transition, or 

a relict petrologic Moho (e.g., Mehnert, 1975). This view dominated the literature for 

decades until recent field studies (Quick et al., 1995; Quick et al., 2003) showed that, at 

least at Balmuccia, the exposed mantle peridotite is tectonically interfingered with deep-

crustal metasedimentary rocks and mafic rocks. The present-day configuration and large-

scale geologic structures are attributed to rapid exhumation during the Alpine orogeny 

(see Peressini et al., 2007, for a full review of geochronologic data from the IVZ). 
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  Figure 2. Simplified geological map of the Ivrea-Verbano Zone and Finero Complex 
modified from Zanetti et al. (1999). Upper inset is a regional geologic map (based on 
Zingg, 1983) that shows the location of the Ivrea-Verbano Zone. Lower inset is a 
detailed map of the Finero mafic-ultramafic complex originally from Steck and Tieche 
(1976). Sample locations (Rio Cannobino Valley and Rio Creves quarry) are marked by 
stars.     
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Finero Complex 
 
 The Finero Complex is an antiformal structure consisting of four main lithologic 

units: Upper/External Metagabbro, Amphibole Peridotite, Lower/Internal Metagabbro, 

and Phlogopite Peridotite (Lensch, 1968; Hunziker, 1974; Cawthorn, 1975; Coltorti and 

Siena, 1984; Siena and Coltorti, 1989; Voshage et al., 1987; Hartmann and Wedepohl, 

1993). These units, excluding the Phlogopite Peridotite, represent a series of voluminous 

mafic magmas that intruded a thick metasedimentary package, the Kinzigite Formation, 

while resident in the lower crust. The metasedimentary package records amphibolite-

granulite conditions and consists of schist, marble, and mafic schist/gneiss. The younger 

Mafic Complex intruded the Kinzigite Formation in discrete pulses over an extended 

period during the Permian (Lu et al. 1997) and consists of metagabbro, garnet-rich 

diorite, pyroxenite, hornblendite, cumulate amphibole gabbro, and cumulate ultramafic 

rocks (i.e., amphibole peridotite). The phlogopite peridotite was tectonically emplaced 

into the lower crust after intense metasomatism and is not genetically linked to the 

cumulate amphibole peridotite (Vosage et al., 1987; Hartmann and Wedepohl, 1993; Lu 

et al., 1997). Quick et al. (1995) and others argue that the phlogopite peridotite was 

emplaced prior to mafic plutonism. However, magmatic or crosscutting contacts are not 

exposed at the Finero locality and the timing of emplacement relative to intrusion of the 

Mafic Complex still remains unresolved.  

 The phlogopite peridotite body is dominated by spinel, phlogopite- and 

amphibole-bearing harzburgite (locally lherzolite or dunite), with highly variable 

phlogopite and amphibole abundances.  It differs from the other peridotite bodies in the 

IVZ in being more depleted (~18% MORB extraction) and yet highly enriched in 
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incompatible elements (e.g., Hartmann and Wedepohl, 1993; Exley et al., 1982). The 

peridotite is pervasively enriched in K, Na, Cl, F, Ba, B, Li, Rb, Sr and LREEs and 

depleted in high field strength elements (HFSE) (Hunziker and Zingg, 1982; Hartmann 

and Wedepohl, 1993; Lu et al., 1997; Raffone et al., 2006), with local enrichment of Zr, 

U, Th, P, and HFSE, particularly in apatite-bearing and chromite-bearing layers (Ferrario 

and Garuti, 1990; Zanetti et al., 1999; Zaccarini et al., 2004; Matsumoto et al., 2005; 

Raffone et al., 2006; Morishita et al., 2008).  

 Previous studies of REE distributions in amphiboles from the phlogopite 

peridotite show two distinct patterns: one that is enriched in LREEs and one that shows a 

chondritic REE distribution (Hartmann and Wedepohl, 1993). These variations, along 

with differences in measured 87Sr/86Sr ratios (87Sr/86Sr ~ 0.7030 and 0.7070) have been 

attributed to two separate pulses of H2O-rich metasomatizing fluid (Hartmann and 

Wedepohl, 1993). Zanetti et al. (1999) and Morishita et al. (2008) document variable 

mineral compositions and suggest that the heterogeneous distribution of phlogopite and 

amphibole throughout the massif reflects multiple fluid infiltration events.  

 Despite a large number of geochronologic studies, the timing of metasomatism at 

Finero remains poorly constrained, thus the tectonic setting in which metasomatism 

occurred is also poorly understood. U-Pb crystallization ages of zircon in metasomatic 

chromitites in the phlogopite peridotite range from 204 to 208 Ma (Von Quadt et al., 

1993; Grieco et al., 2001). Phlogopite-bearing syenite dikes that crosscut the phologpite 

peridotite massif yield zircon dates of 225±13 (Stähle et al., 1990). The authors of these 

studies argue that the ages are consistent with formation of mantle melts during passive 

uplift of subcontinental lithospheric mantle during the early Triassic.  
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 Rb-Sr and K-Ar dates on phlogopite and/or amphibole are likely to represent 

cooling ages rather than crystallization ages. However, some of these dates are older than 

the inferred crystallization ages determined from zircon. Hartmann and Wedepohl (1993) 

obtained Rb-Sr dates of 226 to 163 Ma on four amphibole-phlogopite pairs, in contrast to 

K-Ar dates of 208 ± 9 Ma determined by Hunziker (1974) on phlogopite. Vosage et al. 

(1987) presented a whole-rock Rb-Sr date of 293±13 Ma for the phlogopite peridotite. It 

is unclear whether any of these ages are meaningful, and the timing of mantle 

metasomatism is thus still open to debate.  

 
 
Previous Interpretations 
 

The tectonic setting of the Finero peridotites at the time of mantle metasomatism 

has been a question of debate. Various authors have argued that the geochemistry of the 

phlogopite peridotites constrains the metasomatizing agent to be either (1) mantle melts 

generated above a subcontinental mantle plume or in response to continental rifting (e.g., 

Zaccarini et al. 2004; Garuti et al., 2001), or (2) metasomatism resulted from subduction 

fluids infiltrating the mantle wedge above an ancient subduction system (e.g., Zanetti et 

al. 1999). These interpretations imply completely different tectonic settings (extensional 

vs. compressional). In addition, previous studies have documented chemical 

heterogeneities in the phlogopite + amphibole peridotite and suggest that metasomatism 

resulted from fluid multiple events (Hartmann and Wedepohl, 1993). A brief review of 

the literature surrounding these two interpretations is described below.  

1) Exley et al. (1982) suggested that the metasomatizing agent responsible for 

phlogopite formation was an alkali-rich fluid of mantle origin. Subsequent studies link 
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the geochemistry of the apatite- and chromitite-bearing lithologies to carbonatitic and 

alkaline metasomatism, consistent with magmatic processes during continental rifting or 

mantle plume activity (Shervais and Mukasa 1991; Garuti et al., 2001; Zaccarini et al. 

2004). In addition, Stähle et al. (1990) documented the presence of syenite dikes within 

the peridotite massif that retain high Th, Nb and U contents. Based on these HFSE 

enrichments, these authors ruled out the interpretation that dike formation was a result of 

subduction-derived fluids. Sr and Nd isotopic ratios of the syenite dikes also have been 

interpreted to reflect melts derived from a mantle source. (Stähle et al., 1990). Zaccarini 

et al. (2004) go into further detail, suggesting that the metasomatizing agent evolved 

with decreasing temperature, thereby enriching the melt in highly incompatible elements 

such as Zr, U, Th, Cl, F, P, and CO2 and forming chromitites on the periphery of the 

mantle peridotite. They state that metasomatic production of the phlogopite peridotite is 

consistent with mantle diapirism at the base of continental crust and was most likely 

associated with continental rifting. Accessory minerals rich in Zr, U, and Th, such as 

zirconolite, have been linked to the phlogopite + amphibole assemblage and are 

interpreted to have crystallized from silica-undersaturated, hydrous melts that were rich 

in alkalis, LILE and HFSE (Ferrario and Garuti, 1990; Grieco et al., 2001, 2004; 

Zaccarini et al., 2004). Such fluids would be consistent with mantle derived melts and 

therefore likely represent a continental plume or rift-type setting (Ferrario and Garuti, 

1990; Grieco et al., 2001, 2004; Zaccarini et al., 2004). However, all of these studies 

focus on rare and localized features and accessory minerals of the phlogopite peridotite 

and may not apply to the entire phlogopite + amphibole peridotite massif.    
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 2) Other studies focus on subduction fluids/melts as the main metasomatizing 

agents (Hartmann and Wedepohl, 1993; Lu et al., 1997; Zanetti et al., 1999; Matsumoto 

et al., 2005; Raffone et al., 2006; Morishita et al., 2008). Detailed geochemical and 

isotopic studies show that the phlogopite + amphibole peridotite retains a crustal 

signature based on Nd and Sr isotopic compositions and is not related to crustal anatexis 

or crustal interactions during tectonic emplacement (e.g., Lu et al., 1997). These authors 

agree that „contamination‟ occurred while the host body was resident in the mantle and 

that the crustal imprint must thus be a result of subduction-related fluids. Hartmann and 

Wedepohl (1993) document depletion in  Nb, Ti, U, Th, and other high-valence elements 

and strong enrichment of incompatible elements such as LREEs, Na, K, Cl, F, a signature 

that is consistent with subduction zone fluids (excluding the apatite layers, chromitite-

rich pods, and zircon-rich syenite dikes). Zanetti et al. (1999) also document whole rock 

Sr ratios of 0.7055 to 0.7093 and negative εNd values, as well as δD (amphibole & 

phlogopite: δD -29 to -44) and δ18O values (amphibole: avg. +6.2‰; phlogopite: avg. 

+6.2‰) that are consistent with a crustal signature. Furthermore, various authors argue 

that apatite-bearing layers/regions have a different geochemical signature compared to 

the apatite-free phlogopite + amphibole peridotites and can be explained by evolution of 

immiscible, H2O-CO2 subduction melts/fluids (Zanetti et al., 1999; Matsumoto et al., 

2005; Morishita et al., 2008). An alternative hypothesis is that apatite-bearing and 

apatite-free peridotites reflect two separate metasomatic events: one that is mantle 

derived and one that is slab derived (Raffone et al., 2006). This study focuses primarily 

on apatite-free, hydrous peridotites, with only a single sample containing significant 

apatite (FIN-22B). 
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FIELD AND SAMPLE DESCRIPTIONS 

 
 Phlogopite peridotites were collected along the banks of the Cannobino River and 

in an abandoned quarry along the hillslope northwest of the Creves River. Samples of the 

cumulate amphibole peridotite of the Mafic Complex were collected along the bank of 

the Cannobino River south of the village of Finero. Detailed transects along fresh 

outcrops were sampled to document isotopic and geochemical heterogeneities across the 

phlogopite and amphibole peridotite bodies.  

 
 
Phlogopite-Amphibole Peridotite: Mantle Tectonite  
 
 This peridotite is referred to as the phlogopite peridotite in the literature, although 

amphibole locally occurs in higher abundances than phlogopite. This peridotite is foliated 

with amphibole- and phlogopite-rich bands similar in orientation to the main peridotite 

foliation. Some randomly oriented phlogopite-rich segregations crosscut the dominant 

peridotite foliation and thus are interpreted to be younger than phlogopite-amphibole 

assemblages in the host peridotite. In this study, samples from the mantle peridotite are 

classified into three groups based on mineralogy and field occurrence: (1) phlogopite-

amphibole peridotite (mainly harzburgite); (2) crosscutting phlogopite + amphibole 

segregations; and (3) a single phlogopite + orthopyroxene segregation (cross-cutting 

relationship unknown) (Figure 3).  
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Figure 3. Photographs of outcrop appearance of the four rock types collected. (a) Group 
1: foliated phlogopite + amphibole peridotite. (b) Group 2: phlogopite + amphibole 
segregation cross-cutting peridotite foliation. (c) Group 3: phlogopite + orthopyroxene 
segregation cross-cutting peridotite foliation. (d) Group 4: cumulate amphibole 
peridotite showing concordant hornblendite layers (magmatic origin). 

 

 

Group 1:  
 
 Representative samples of this group are foliated phlogopite + amphibole 

harzburgites (locally lherzolites and dunites), which we interpret to represent the oldest 

metasomatic event(s) of the three groups (Figure 3a). Petrographically, this group is 

distinct from the cumulate peridotite as it contains dark brown spinel and Cr-bearing 

edenitic to magnesiohastingsitic amphibole (bright green), and lacks cumulate textures. 

Phlogopite and amphibole are present in varying abundances, both ranging from <1% to 

~15%. Amphibole and phlogopite appear both as isolated grains and in fine-scale 
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intergrowths that indicate co-crystallization with one another (Figure 4). Grains are 

typically euhedral and are heterogeneously distributed between olivine and pyroxene 

grains; layers of interconnected phlogopite grains are rare. Both olivine and 

orthopyroxene show a prominent shape-preferred orientation (SPO) in most samples and 

are characterized by deformation lamellae, with some samples showing evidence for 

subgrain rotation recrystallization. These features are consistent with deformation under 

high-temperature conditions, most likely while resident in the mantle and before 

emplacement into the lower crust (e.g., Hirth et al., 2002; Jung and Karato, 2001). 

Phlogopite is strongly aligned in the olivine foliation, and is locally kinked. There is no 

evidence to suggest that phlogopite growth postdates development of the olivine-

pyroxene foliation, and we thus infer that growth and alignment of the hydrous minerals 

also occurred in the mantle. No reaction textures are preserved, suggesting that 

equilibration between the mantle peridotite and metasomatizing fluid was attained. 

 

Group 2 

 
 Rare, localized amphibole + phlogopite segregations/pods were observed at both 

localities but were only sampled on the hillside of the Rio Creves. These segregations are 

5-10 cm in length and appeared as clearly defined, isolated pods containing only books of 

phlogopite and massive green, Cr-rich amphibole (Figure 3b). These segregations 

crosscut the peridotite foliation of Group 1, signifying a younger metasomatic event. 

Phlogopite flakes were extracted with a knife from two separate segregations. Owing to 

the small amount of sample material that was collected, only isotopic data are available 

for these samples. 
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 Group 3 

   

 In addition, a rare orthopyroxene + phlogopite segregation, was sampled (Figure 

3c). This segregation was collected from a float block in the Rio Creves quarry and the 

cross-cutting relationship to the peridotite foliation is ambiguous for this sample.  This 

segregation was the only one of its kind that we observed. The sample was collected as 

described for Group 2 samples and all sample material was used for isotopic analysis.     

 
 
Amphibole Peridotite: Ultramafic Cumulate  
 
Group 4 

 Amphibole ± spinel (olive-green in thin section) peridotite is present at the base 

of a layered cumulate body in the Mafic Complex. Group 4 amphiboles are dominantly 

pargasitic and are chemically and texturally unrelated to amphiboles from the other 

previously described rock groups. Rock types within the peridotite body range from 

dunite with 2% interstitial amphibole to lherzolite with up to 35% amphibole (Figure 3d). 

Although highly variable, amphibole modal abundances generally increase towards the 

internal mafic unit. Cumulate textures are well preserved, with olivine as the major 

cumulate phase. Enstatite and amphibole generally occur as intercumulus phases, with 

amphibole typically rimming opaque minerals (Figure 4). Phlogopite was not observed, 

although Coltorti and Siena (1984) reported the presence of phlogopite rimming 

amphibole. Coarse-grained, concordant pyroxenite and amphibole-rich layers or sills are 

prevalent and range in size from a few millimeters to tens of centimeters in width. 
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   Figure 4. (a, b) Photomicrographs of foliated, phlogopite + amphibole peridotite 
(Group 1). Amphibole is associated with and/or intergrown with phlogopite, indicating 
co-crystallization. (c, d) Backscattered electron (BSE) image and photomicrograph 
showing amphibole intergrown with phlogopite. (e) Merged BSE image showing 
textural equilibration of phlogopite and amphibole. (f, g,) Photomicrographs of (Group 
4) cumulate amphibole peridotite. Pargasite typically occurs as a cumulate phase 
surrounding opaque minerals.  

 

 

 

ANALYTICAL METHODS 

 
Whole-Rock Chemistry 
 
 The whole-rock compositions of samples from Group 1 and 4 were determined by 

X-ray fluorescence spectrometry using a Rigaku ZSX Primus II wavelength dispersive X-

ray spectrometer. All rock samples were powdered and pressed using 9 g of sample and 1 

g of powdered boric acid as a binder. Major and trace elements were analyzed semi-

quantitatively using the EZscan method and the Rigaku internal reference library. 

Replicate analyses of standard reference materials BVHO-1 as secondary standards 

yielded values within ±10 relative percent of the reported values for most elements. A 

quantitative routine was set up for chlorine using nine standard reference materials with 

reported values ranging between 71 and 1200 ppm Cl; standard SDC-1 (32 ppm Cl) was 

utilized as a secondary standard.   

 
 
Perple_X Modeling  
 

Pressure-temperature pseudosections were calculated to help constrain the 

conditions of metasomatism for Group 1 samples using the thermodynamic software 

Perple_X_07 (Connolly, 2009). Bulk compositional data for the samples are discussed 

below. To model Cr-rich, hydrous peridotites, we used the solution file solut_08.dat in 
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conjunction with the cr_hp02ver.dat data file (Klemme et al., 2009). Stable assemblages 

were calculated over the range 10-24 kbar and 800-1200°C, with no saturated phase 

components. Thermodynamic components selected were SiO2, Al2O3, Cr2O3, MgO, FeO, 

CaO, Na2O, K2O, and H2O, assuming different weight amounts of H2O depending on the 

modal abundances of hydrous minerals. Solution models used were O(HP), Cpx(HP), 

Opx(HP), CrSp, Bio(HP), Gt(HP), and Pl(h) (Dienier et al., 2007; Holland and Powell, 

1996; Holland and Powell, 1998; Newton et al., 1980; Powell and Holland, 1999). The 

range of amphibole stability was approximated by using endmember pargasite for the 

final calculations. Because the amount of H2O at the time of metasomatism is unknown, 

we used a minimum and maximum quantity of water to constrain the range of conditions 

needed for equilibration of phlogopite and amphibole.  The minimum water content for 

each sample was taken to be the H2O content below which sanidine ± feldspathoid 

appeared in place of phlogopite in the calculated mineral assemblages. Maximum water 

contents were distinguished by the presence of free H2O as a phase in the model output. 

The determined maximum water contents used for this study are likely the more realistic 

approach for modeling P-T conditions during fluid infiltration and metasomatism.   

 
 
Mineral Chemistry 
 

Quantitative analysis on multiple samples from the phlogopite peridotite, 

amphibole peridotite and the internal mafic unit was performed using the JEOL JXA-

8200 electron microprobe located in the Earth and Planetary Sciences Department at the 

University of New Mexico. Points of interest for quantitative analysis included 

intergrown phlogopite and amphibole, solitary phlogopite, and solitary amphibole.  
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Analytical conditions were 10 nA and 15 kV, for count times ranging from 15 to 50 

seconds. A wide range of well-characterized natural and synthetic minerals were used as 

standards.    

X-ray compositional maps of major elements (Ca, Na, K, Mg, and Fe) in 

phlogopite and amphibole were obtained to look for evidence of chemical zoning. 

Analytical conditions for major-element maps were 300 nA, 15 kV and 30-60 msec dwell 

times. Pixel size was 1μm and the maps ranged in size from 150 to 650 pixels on a side. 

High-intensity Cl and Cr maps (1 µA, 15 kV and 100-500 msec dwell times) were 

obtained in the same areas as the major-element maps in order to correlate trace-element 

distributions with major element features. Cl and Cr were targeted because they represent 

fluid-mobile and -immobile elements, respectively, and any zoning in these elements 

would help to constrain the degree of fluid evolution during metasomatism. 

 
 
Anion Analysis 
 

 The three phlogopite segregations were sampled by scraping mica sheets out of in 

situ pods in the field. The amount of material recovered was insufficient for XRF 

analysis. Therefore, samples were prepared using the Cl extraction procedure described 

below and collected solutions were analyzed for Cl- using a Dionex DX-100 Ion 

Chromatograph.  

 
 
 Cl Isotopic Analysis and Cl Extraction  
 

All samples were prepared for measuring structurally bound chlorine in hydrous 

minerals; water-soluble chlorine was not considered. Weathered portions of all samples 
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were removed and fresh rock samples were crushed to centimeter-millimeter size and 

sonicated in 3 separate batches for 15 minutes each with 18MΩ deionized water. This 

ensures that any contamination of chlorine during sample collection and initial 

preparation is negligible. Cleansed rock fragments were then powdered and bulk chlorine 

was extracted from powdered rock via pyrohydrolysis (Magenheim et al., 1994) 

following the method described in Barnes and Sharp (2006). Bulk chlorine was collected 

in a hydrous solution and ultimately transformed into methyl chloride (CH3Cl) as 

described in Eggenkamp (1994) and Eggenkamp et al. (1995). This process is based on 

the assumption that all structurally bound chlorine is released during devolatilization 

when heated to sufficient temperatures (>1100°C). Previous studies have shown that 

extracted chlorine yields are close to the predicted whole-rock values (e.g., Bonifacie et 

al., 2007; Barnes and Sharp, 2006). However, peridotite powders were difficult to fuse 

and there was concern that the structurally bound chlorine from the hydrous phases 

(phlogopite + amphibole) did not undergo complete devolatilization. Thus, powdered, 

ultrapure lithium tetraborate (Li2B4O7) was used as a flux to lower the melting 

temperature of the system and ensure that all chlorine was released. 

After pyrohydrolysis, the solution is reacted with 4 mL of 1 M KNO3 to raise the 

ionic strength of the solution and 2 mL of Na2HPO4-citric acid buffer is used to fix the 

pH at 2.2 (e.g., Eggenkamp 1994; Barnes and Sharp, 2006). The solution is gently heated 

to 80°C, releasing any dissolved CO2 from solution. 1 mL of 0.4 M AgNO3 is added to 

the solution, which causes Cl- to precipitate as AgCl. The complete reaction of Cl- to 

AgCl occurs in approximately 12 hours in darkness to prevent photo-oxidation. Solutions 

are then filtered through a silica fiber filter, where AgCl precipitate is collected and dried. 
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The AgCl precipitate and silica filter are inserted into a clean Pyrex tube and pumped to 

vacuum. While maintaining vacuum, methyl iodide (CH3I) is injected into the Pyrex tube 

in excess (40 µL) and is frozen in the reaction tube using liquid nitrogen. The Pyrex tube 

is then sealed under vacuum and heated to 80°C in the dark for 48 hours to ensure that all 

AgCl precipitate is transformed into CH3Cl. 

 CH3Cl is measured on a Finnigan MAT Delta XL Plus mass spectrometer 

following the method of Barnes and Sharp (2006). Excess CH3I(g) and CH3Cl(g) are 

separated using a gas chromatograph column (Barnes and Sharp, 2006) before gas enters 

and is analyzed by the mass spectrometer. Samples were measured using either dual inlet 

or continuous flow methods. Ongoing lab precision is ± 0.4‰ using continuous flow and 

± 0.1‰ using dual inlet. All samples are referenced to the SMOC standard (Standard 

Mean Ocean Chloride) and written in per mil notation.  

 

Hydrogen Isotope Analysis 

 Hydrogen isotopic analyses were obtained for phlogopite segregations and 

separates. In order to have hydrogen isotopic values coincide with bulk chlorine isotopic 

values (amphibole + phlogopite), analysis of bulk hydrogen using whole-rock powders 

was attempted, but due to the small amount of hydrogen in each sample, the data were 

inconsistent and are not used in this study. Instead, we used phlogopite separates, which 

were sonicated with 18 MΩ DI water for three, five-minute intervals. Separates were then 

heated to temperatures greater than 100°C to remove any contamination. All samples 

were then placed in silver foil capsules and dropped into a furnace. Gases were separated 
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using a GC column and hydrogen ratios were measured using a Finnigan MAT DeltaPLUS. 

This procedure closely follows the method detailed in Sharp et al. (2001). 

 

RESULTS 

Whole-Rock Geochemistry and Chlorine Concentrations 
  
 XRF analyses of samples from groups 1 and 4 are shown in Table 1a and 1b. 

These data were primarily used to calculate pseudosections to constrain the P-T 

conditions of metasomatism of Group 1 samples. Whole-rock chlorine concentrations 

were used to determine how much sample was needed for chlorine isotopic analysis. 

Chlorine concentrations from Group 1 samples range from 50 to 679 ppm and chlorine 

concentrations from Group 4 samples range from 81 to 90 ppm. Higher chlorine 

concentrations in Group 1 samples correspond to greater modal abundances of amphibole 

and phlogopite. Phlogopite segregations from Group 2 have chlorine concentrations of 

558 and 893 ppm and the phlogopite separate from Group 3 yielded a concentration of 

750 ppm (anion analysis).  

 

Modeled Pressure and Temperature Constraints 
 
 Preliminary modeled pseudosections were matched up with the actual mineral 

assemblage present for each corresponding sample, and the region of equilibration in P-T 

space is where the modeled mineral assemblage matches the actual mineral assemblage 

present in thin section. These equilibrium conditions correspond to the left side (low T 

side) of the lines indicated in Figure 5 (see appendix for all modeled samples). 

Equilibration conditions are constrained by two samples, FIN-25B and FIN-21D. Sample 
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FIN-21D places the tightest constraints on temperatures estimates to ~800-900°C. This 

temperature estimate is based on the pargasite-out reaction line shown in Figure 5. 

Sample FIN-25B helps constrain the pressures to ~1.2-1.4 GPa. This pressure estimate is 

based on the presence of chromium spinel stability field. Because all samples were 

collected in close proximity to one another, it is reasonable to assume that all samples 

reached similar equilibration conditions. Thus, these preliminary equilibration pressures 

and temperatures common to all samples is constrained to 800-900°C and ~1.2-1.4 GPa, 

consistent with the spinel lherzolite stability field (Figure 5). These pressures and 

temperatures are in agreement with previous studies that conclude that metasomatism and 

equilibration occurred under upper mantle conditions (Ernst, 1978; Hartmann and 

Wedepohl, 1993; Ferraris et al., 2004). Microstructures (deformation lamellae and SPO) 

observed in olivine and orthopyroxene are also consistent with this temperature range 

(e.g., Passchier and Trouw, 2005).  

 

Figure 5. Preliminary P-T 
equilibration diagram 
generated with Perple_X. 
Solid lines show stable 
assemblages using minimum 
H2O contents calculated for 
each sample. Dashed lines 
show stable assemblages using 
maximum H2O contents 
appropriate for each sample. 
The left side of the lines 
represent the modeled 
assemblage that correlates 
with the assemblage observed 
in thin section. Two samples, 
FIN-25B and FIN-21D, tightly 
constrain the pressures and 
temperatures of equilibration. 
Area of overlap for all bulk 
compositions is ~800-900°C 
and ~1.2-1.4 GPa 
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Mineral Chemistry (Groups 1 and 4) 
 
 Microprobe analyses reveal significant variations in phlogopite and amphibole 

compositions within and between samples from the phlogopite peridotite massif (Table 

2a and 2b). Phlogopite shows detectable differences in Al, Na, and K in samples 

collected within a few meters (or less) of one another in the same outcrop (Figure 6 and 

7). X-ray maps (Figure 6) show no major element zoning; however, there are Na-rich and 

Na-poor bands parallel to mica cleavage planes (Figure 6). These bands have been 

previously interpreted to result from a miscibility gap between aspidolite and phlogopite, 

the Na and K endmembers (Costa et al., 2001; Banno et al., 2005). Group 1 amphiboles 

also show relatively large variations in Al2O3, Na2O, and K2O contents between samples 

(Figure 7a, 7b, 7c). Distinct differences are easily seen in Na2O vs. Al2O3 and K2O vs.     

             

 

 

 

Figure 6. Major element (K, Na, and 
Al) X-ray maps and BSE image of 
phlogopite showing Na-rich and Na-
poor bands parallel to cleavage mica 
planes from one Group 1 sample. 
These features are consistent with a 
miscibility gap at high temperatures 
between Na-rich and K-rich 
endmembers, aspidolite and 
phlogopite, respectively. Al X-ray 
map shows no evidence of chemical 
zoning. Each map is ~ 100 µm on 
each side.   
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Cr2O3 plots (Figure7a, 7b, 7c). Na-rich bands in phlogopite may fortuitously explain the 

large variations in Na and K contents within Group 1, but not the large variability in Na 

and K contents in amphiboles from the same samples. Chlorine concentrations of 

phlogopite and amphibole are also variable, but may simply reflect the analytical 

limitations of analyzing a volatile element. Within Group 1 amphiboles, chlorine 

concentrations are weakly correlated with Na2O abundances (R² = 0.414). Based on Na2O 

concentrations, amphibole compositions define three distinct populations within Group 1  

(Figure 7). 
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        Table 1a. XRF analyses for Group 1 samples.  

 

 

* Bulk Cl concentration obtained via quantitative x-ray fluorescence method 
All other analyses obtained using the EZscan x-ray fluorescence method 
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 Table 1b. XRF analyses for Group 4 samples.  

 

            

* Bulk Cl concentration obtained via quantitative x-ray fluorescence method 
All other analyses obtained using the EZscan x-ray fluorescence method 
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            Table 2a. Representative phlogopite analyses for Group 1. 
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               Table 2b. Representative amphibole analyses for Groups 1 and 4. 
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Figure 7a. Major element variation diagrams of phlogopite and amphibole compositions from Group 1 and Group 4. Phlogopite and 
amphibole: K2O vs. Al2O3 (wt %) and Na2O vs. Cr2O3 (wt. %). Note that amphiboles from Group 1 show larger chemical variability 
than amphiboles from Group 4. Group 4 amphiboles cluster tightly, showing little chemical heterogeneity.
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Figure 7b. Phlogopite and amphibole: Na2O vs. Al2O3 (wt. %) and Na vs. Al (cation). Note distinct amphibole populations within 
Group 1. 
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Figure 7c. Phlogopite and amphibole: Na2O vs. Cl (wt %) and K2O vs. Cl (wt. %). Note that Cl concentrations in phlogopite do not 
correlate with K or Na, but Cl contents in amphiboles from Group 1 show a slight correlation with higher Na contents.
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 Amphiboles from the cumulate peridotite (Group 4) are pargasitic and less 

variable in composition than the amphiboles from Group 1 (Table 2b). The microprobe 

data are tightly clustered in Al2O3 vs. K2O and Cr2O3 vs. Na2O plots, with little 

heterogeneity within or between samples (Figure 7a, 7b, 7c). K2O and Na2O 

concentrations range between ~0.1 to 0.3 and ~2.2 to 2.7 wt%, respectively, and are 

significantly lower compared to Group 1 amphiboles. Chlorine concentrations are also 

lower compared Group 1 and are more homogeneous within and between samples.   

 

Stable Isotopic Analysis: Chlorine and Hydrogen 

 Table 3 shows chlorine and hydrogen isotopic data for samples from the different 

rock groups. Large variations in chlorine and hydrogen isotope composition are found 

both within and between groups. δ37Cl values show a large range from -2.1 to +3.3‰, the 

largest spread that has been reported for peridotites. Group 1 shows the most variation, 

with δ37Cl values ranging from -0.9 to +3.3 (WR) and δD values ranging from -48 to         

-36‰ (phlogopite separates). The δ37Cl value, +3.3, is one of the heaviest isotopic values 

ever reported for peridotites and may be questionable, although repeat analyses of SMOC 

standards during the same analytical session revealed no analytical issues, suggesting that 

this value is of real significance. There is no systematic relationship between δ37Cl 

values, bulk rock chlorine concentrations or mineral abundances (amphibole and 

phlogopite) seen in the harzburgites from Group 1 (Table 3).  In addition, there are no 

obvious correlations between δ37Cl and sample locations, whole-rock Na and K 

concentrations, or chlorine concentrations (Figure 8). Group 2 samples have relatively 
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Table 3.  

 

 

Bulk Cl concentration obtained via quantitative x-ray fluorescence on all other samples 
* Cl concentration obtained via ion chromatography  
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 light δ37Cl values of -1.4, -1.7 (duplicate), and -2.1‰ and corresponding δD values of -

49 and -40‰ (phlogopite separates). Group 3 (orthopyroxene + phlogopite segregation) 

only has one sample, but it is distinctly different (δ37Cl = -0.1‰, δD = -80‰) from the 

Group 2 segregations. Group 4 (amphibole cumulate peridotite) has isotopically heavy 

δ37Cl values that are relatively uniform compared to Group 1, ranging from +0.8 to +1.9. 

An earlier stable isotope study of the phlogopite peridotite yielded δD values that vary 

over the same range as our data from Groups 1 and 2 (Hartmann and Wedepohl, 1993). 

 

 

 

Figure 8. (a) Plot of δ37Cl  vs. whole rock Na2O (b) Plot of δ37Cl vs. whole rock K2O 
(c) δ37Cl  vs. whole-rock Cl. There is no correlation between the whole rock 
concentrations of fluid-mobile elements (Na, K, and Cl) and δ37Cl values in samples 
from Groups 1 and 4.  
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DISCUSSION 

 Perple_X modeling indicates equilibration of the phlogopite + amphibole 

assemblages at upper mantle conditions of 800-900°C and 1.2 -1.4 GPa. These modeled 

conditions are consistent with temperature estimates from two-pyroxene thermometry of 

894±94°C (Ernst et al., 1978) and temperature estimates of ~750 °C based from δD 

water-mineral fractionations from amphibole and biotite (Hartmann and Wedepohl, 

1993). Chlorine fractionation under these conditions has been theoretically predicted to 

be minimal (Schauble et al., 2003). We thus assume that fluid-mineral and mineral-

mineral chlorine isotope fractionation was negligible during metasomatism.   

 
 
Tectonic Setting of Metasomatism 

 The large range of δ37Cl and δD values from Group 1 samples reveal large 

heterogeneities over small length scales (<1m in some cases) at the two sample localities. 

These heterogeneities indicate that isotopic and chemical homogenization for chlorine 

and hydrogen did not occur on meter-length scales and that chemical signatures of 

various metasomatizing agents were preserved under mantle conditions. These 

heterogeneities are also seen in major element concentrations, especially Na and K 

concentrations, in amphibole and phlogopite. Therefore, we interpret the different 

isotopic signatures and differences in mineral chemistry in samples from Group 1 to 

reflect multiple metasomatizing agents that were sourced from different rock types. 

Groups 2 and 3 are interpreted as a result from different fluid episodes based on their 

very different isotopic ratios (Group 2: δ37Cl= -1.7, -1.4, -2.1 and δD= -40 and -49; 

Group 3: δ37Cl= -0.1 and δD= -80) and their crosscutting relationship (Group 2) with 



37 
 

respect to Group 1 samples. In addition, Groups 2 and 3 are segregations rather than 

evenly distributed phlogopite and amphibole as seen in Group 1, hinting that migration 

mechanisms were different for the segregation fluids relative to the fluids that produced 

the pervasive phlogopite and amphibole. 

  Based on the large variations in chorine and hydrogen isotope compositions and 

the predictions for the different tectonic settings (Figure 1), we argue that growth of 

phlogopite and amphibole from Groups 1 and 2 and phlogopite from Group 3 resulted 

from at least three infiltrating events with at least three different sources. In addition, the 

presence of these significant chemical variations over less than tens of meters suggests a 

tectonic environment where multiple sources can infiltrate the upper mantle on extremely 

small length scales. We thus conclude that the samples from Group 1 and 2 are most 

likely to have formed from fluid(s) that were sourced from a subducting slab. This 

interpretation is consistent with high chlorine concentrations, heavy hydrogen isotopic 

values compared to the average δD mantle values (~-80), and the high alkali content 

needed to produce abundant and evenly distributed hydrous minerals (phlogopite and 

amphibole) throughout the massif. This interpretation also agrees with previously 

obtained geochemical data: enrichment in LILEs, depletion of HFSEs, and crustal 

radiogenic signatures (e.g., Hartmann and Wedepohl, 1992; Zanetti et al., 1999; Raffone 

et al., 2006). These signatures all suggest that that the main metasomatic agents were 

hydrous fluids and/or melts, consistent with subduction-zone metasomatism (Hunziker 

and Zingg, 1982; Cumming et al., 1987; Hartmann and Wedepohl, 1992; Zanetti et al., 

1999; Raffone et al., 2006).  
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 Based on our model, chlorine and hydrogen isotopes from the cumulate 

peridotites (Group 4) are predicted to have isotopically homogenous chlorine ratios, 

reflecting crystallization from a single mantle melt. Chlorine isotopic values from Group 

4 do in fact show little isotopic variability and suggest that the pargasitic amphibole 

crystallized from one mantle-derived melt. In addition, mineral geochemistry shows 

small variations compared to Group 1, which is also in agreement with equilibration with 

one melt source.  

 
 
Subduction Fluids: Multiple Episodes and Possible Sources 

 Determining the composition of fluids released during subduction has been the 

topic of many previous studies (e.g., Scambelluri and Phillipot, 2001). However, 

understanding how fluids leave the devolatilizing slab remains poorly understood. Some 

studies suggest a continuous dewatering process from progressive mineral breakdown in 

the slab between 60-120 km (e.g., Bebout and Barton, 1993), whereas others suggest 

discrete, episodic pulses corresponding to discontinuous dehydration reactions, especially 

at greater depths (e.g., Philippot, 1993; Früh-Green et al., 2001). Scambelluri and 

Philippot (2001) suggest that large volumes of hydrous fluid are derived from 

devolatilizion of serpentinites, which are estimated to store up to 13 weight percent H2O 

to ≥ 200 km depth. Because dehydration of the subducting slab contributes large amounts 

of hydrous fluid into the upper mantle, devolatilization is an important source for 

recycling chlorine into the mantle (e.g., Philippot, 1998; Sharp and Barnes, 2004). Once 

devolatilization occurs, fluids may enter the overlying mantle wedge via pervasive and/or 

channelized flow. In either case, once hydrous fluids are released, interaction with mantle 
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rocks with which the fluids are chemically out of equilibrium induces hydration of the 

mantle. The chemistry of the resulting metasomatic minerals partially reflects the 

chemistry of the altering agent and provides information regarding possible fluid sources. 

Because chlorine readily fractionates into the fluid phase (e.g., Kullerud et al., 2001) and 

because of its low abundance in the mantle, chlorine isotopes can be used to track fluid 

sources in different parts of a subduction setting.  

The Finero peridotite preserves several isotopic signatures, which we interpret to 

represent discrete pulses of fluids that were derived from several geochemically distinct 

sources derived from a down-going slab. Preservation of isotopic heterogeneities on 

relatively small length scales (less than a few meters in most cases) is interpreted to be a 

result of channelized fluids from distinct infiltration events. This interpretation contrasts 

with previous studies that argue for one single pervasive metasomatic event, with 

chemical evolution of the fluid producing the chemical heterogeneity observed in the 

mantle peridotite (e.g., Zanetti et al., 1999). 

 The source(s) of the metasomatizing fluid cannot be identified because the 

isotopic compositions are not unique. Previous studies show that chlorine isotopic values 

for serpentinites, depending on tectonic setting, range from –1.8‰ to +0.5‰ (Barnes and 

Sharp, 2006; Bonifacie et al., 2008b). Marine pore fluids are also isotopically light (–

7.8‰ to +0.3‰; e.g., Ransom et al., 1995; see compilation in Barnes et al., 2008), as is 

altered oceanic crust (-1.6‰ to -0.9‰; Bonifacie et al., 2007). The range in chlorine 

isotopic compositions of high-pressure, low-temperature metasedimentary rocks have yet 

to be determined. The large range in δ37Cl values determined from Group 1 samples in 

this study likely requires input from several fluid sources with possible mixing of the 
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different chlorine isotopic signatures. In all cases, the fluids must have been enriched in 

K, Na, and Cl and were most likely subduction related. 

 Amphibole + phlogopite segregations from Group 2 are distinctly isotopically 

light in terms of chlorine isotopic values (δ37Cl = -1.4‰ & -1.7‰, -2.1‰) and have high 

δD values (-40‰ and -49‰), indicating that metasomatism was possibly a result of a 

serpentinite-derived fluid phase or seafloor alteration of basalts. If devolatilizing 

serpentinite was the original source for isotopically light values (amphibole + phlogopite) 

at Finero, soluble elements such as K and Na must have been leached out of the oceanic 

crustal package as fluids passed through the upper portion of the subducting plate.  

 One data point from Group 3 (orthopyroxene + phlogopite segregation) has a 

δ37Cl value near zero and δD of -80‰, most likely representing a pure mantle signature 

(Figure 9). This occurrence is significantly different from Group 1 and 2 and most likely 

represents a different metasomatic event.  Despite the lack of consensus over the average 

δ37Cl value of the mantle, the δD value clearly indicates that phlogopite + orthopyroxene 

segregations are a result of mantle-derived melts. Raffone et al. (2006) also documented a 

pristine mantle signature in apatite-bearing peridotites and suggested that Finero consists 

of at least two metasomatic events with different components: one that is alkali or 

carbonatitic and one that is subduction related.  
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 Figure 9. δ37Cl vs. δD plot showing the different isotopic values for groups 1, 2 
and 3.  The green bar indicates δD values consistent with mantle values noted in 
Sharp (2007). The red bar indicated δ37Cl value consistent with mantle values as 
described in Sharp et al. (2007). 

 
 
 

CONCLUSIONS        

  The Finero samples for this study record the largest spread in δ37Cl values yet 

reported for mantle-derived rocks. The combined δ37Cl and δD values for the phlogopite 

peridotite and the amphibole cumulate body from the Finero Complex place the 

following constraints on the system:   

(1) Part of the metasomatic assemblage (phlogopite + amphibole) formed from 

hydrous fluids infiltrating the mantle wedge above ancient subduction system.  

Group 3

Group 2
Group 1
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(2) Chlorine and hydrogen isotopic values suggest that metasomatism responsible for 

phlogopite and amphibole formation occurred in multiple events from fluid 

sources with unique geochemical signatures. 

(3) Metasomatic minerals and isotopic values are heterogeneously distributed in the 

phlogopite peridotite, suggesting that chlorine isotopic ratios were preserved 

under mantle conditions. Fluid migration was limited, even where phlogopite + 

amphibole are pervasively developed. Variations in the δ37Cl and the δD values 

indicate that distinct fluid infiltration events were channelized through the mantle 

wedge.   

(4) Serpentinite devolatilization may be the possible fluid source for amphibole + 

phlogopite segregations.  

(5) δ37Cl and the δD values from the orthopyroxene + phlogopite segregation suggest 

that pristine mantle melts did play a role in the metasomatism observed at Finero.  

(6) The amphibole cumulate body has a relatively homogenous chlorine isotopic 

signature (based on three analyses), and consistent with expected chlorine isotopic 

ratios derived from one melt source.  

(7) This study demonstrates that chlorine isotopes provide a useful tracer of fluid-

rock interaction and can be used to trace specific fluid sources through the sub-arc 

mantle. Further studies are needed to characterize additional chlorine isotopic 

inputs (metasedimentary rocks) and possible isotopic fractionation that might 

occur in subduction zones.   
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APPENDICES 

Perplex modeling  
 
Minimum stability fields for the respective mineralogy for each sample are as follows:  

 

FIN-21C-RUN3 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.03 wt% H2O; minimum stability 
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FIN-21D-RUN3 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.05 wt% H2O; minimum stability 
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FIN-24B-RUN3 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.01 wt% H2O; minimum stability 
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FIN-25B-RUN4 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
1.5 wt% H2O; maximum stability 
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FIN-25C-RUN5 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.02 wt% H2O; minimum stability 
 
 



57 
 

 
 
 
 
 

 
 
 

FIN-25D-RUN2 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.2 wt% H2O; minimum and maximum stability 
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FIN-25Ji-RUN2 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.4 wt% H2O; minimum stability 
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FIN-25Jii-RUN2 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
2.0 wt% H2O; minimum stability 
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Maximum stability fields for the respective mineralogy for each sample are as follows:  

 

 
 
 
 
 

FIN-21C-RUN1 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.05 wt% H2O; maximum stability 
 
 



61 
 

 
 
 
 
 
 
  
 
 

FIN-21D-RUN2 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.1 wt% H2O; maximum stability 
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FIN-24B-RUN7 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.02 wt% H2O; maximum stability 
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FIN-25B-RUN2 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
1.6 wt% H2O; maximum stability 
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FIN-25C-RUN8 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.7 wt% H2O; maximum stability 
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FIN-25D-RUN2 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.2 wt% H2O; minimum and maximum stability 
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FIN-25Ji-RUN1 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
0.5 wt% H2O; maximum stability 
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FIN-25Jii-RUN6 
cr_hp02ver.dat 
O(HP), Cpx(HP), Opx(HP), CrSp, Bio(HP), Gt(HP), Pl(h)  
Amphibole was approximated as pure pargasite 
2.3 wt% H2O; maximum stability 
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Microprobe Sections 
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08FIN-20I: Amphibole Peridotite 
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08FIN-25D: Phlogopite-Amphibole Peridotite 
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08FIN-25D: Phlogopite-Amphibole Peidotite continued 
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