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ABSTRACT 

 
The formulation of economic time series problems has a long tradition of 

progressing towards better estimation procedures of economic variables over time. This 

tradition, however has sometimes left a void in our understanding as we smooth and de-

trend data to remove bias and correlation in attempts to correct for econometric problems 

over time. For the purposes of forecasting, the practitioner is often left with a choice of 

either a naive time series model or a static regression model with no effect across time.  

However, the treatment of such data can be difficult and often model fit can be relatively 

low.  That does not need to necessarily be the case. Using dynamical systems 

methodology that has been recently developed in the fields of Physics and Biology and 

that is beginning to be used in Economics, we develop improved methods for estimation 

through a better characterization of the functional form of an econonomic variable over 

time, that does not have the constraints of linearity or independence that we often convey 

on time series data.   
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This dissertation will demonstrate the usefulness of dynamic systems methodology in 

regression analysis.  We will find that dynamic systems analysis allows an economic 

variable changing over time to be split into random and deterministic components in 

order to better understand the root cause of why an economic variable is changing over 

time.  Dynamic systems methodology will then be used to develop an equation that 

explains the behavior of the economic variable over time for the purposes of simulating 

possible changes to the economic system in the future.  The equation of the dynamic 

system will also be used to perform a supply and demand analysis on an industry. 

 

We study the dynamic system of the gold industry, an industry with a diverse and rich 

economic history.  Gold has been valued by societies for hundreds of years due to its 

many uses: store of wealth, commodity, industrial metal, art.  Therefore the price and 

production amounts of gold have been recorded by numerous countries for the last 

century.  Additionally gold markets have sustained may changes which have been well 

documented.  Because of the availability and diverse nature of data relating to the price of 

gold, the gold industry was used as a case study to demonstrate the usefulness and 

methodological differences of dynamic systems. 

 

Dynamic systems methodology has undergone dramatic changes in other fields of study.  

This paper will “make a case” for the use of dynamic system methodology in economics 

in order to gain a more thorough understanding of how and why economic systems 

behave the way they do over time.  
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Chapter 1 - Introduction 

 

Overview 

In general, some economists study the appropriate representation of economic variables 

over time and how changes in variables over time affect economic equilibrium.  This has 

lead to a rich history in econometric time series analysis as well as the evolution of 

theoretical models to account for changes in economic understanding.  Increases in 

computational speed and accuracy have lead to many new econometric tests and the 

development of new functional forms to represent economic data.  This being said, there 

is still much work to be done in economic modeling.  As a discipline, there is still a 

prevalence toward simplifying assumptions (linear systems, stationarity, etc.) to estimate 

and replicate dynamic economic systems.  Before making simplfying assumptions we 

should first seek to understand the behavior of the data we are analyzing.  In 

understanding the behavior or “character” of the data we are studying first, appropriate 

econometric assumptions can be made.  Dynamic systems methodology offers a global 

approach to first understanding the character of economic data before making any 

modeling assumptions.  Simplifying assumptions, without fully understanding the nature 

of the dynamic system, has left us with a gap in our knowledge of economic phenomena.  

The gap caused by simplification, leads to difficulties in analyzing market structure 

issues from an industrial organization standpoint.  
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The following research employs dyanamic systems to relax the constraints implicit with 

the normal simplifying assumptions of time series analysis.  Reducing the simplifying 

assumptions in regression analysis allows the data to tell the story.  Changes in our 

understanding of functional form can affect results of market structure models.  This 

paper will demonstrate that economists need to understand dynamic systems in their 

general form with more rigor.  A better understanding of dynamic systems will lead to 

avoiding many specification problems, frequently the cause of difficulties in 

understanding an industy or firm behavior.   

 

The use of dynamic systems methodology is common in the study of physics.  Dynamic 

systems are used to describe motion of an object over time, such as the swing of a 

pendulum or planetary orbits.  In biology dynamic systems are used to assess changes in 

populations and the movement of diseases in a population.  For instance chicken pox 

displays random behavior, suddenly expanding in one population and then dying off.  

Whereas the spread of measles flu displays deterministic behavior, moving from one 

geographic area to another in a more predictable pattern (Stone 1996). 

 

This paper will show how to use dynamic system methodology to characterize an 

industry’s economic system.  The proper characterization of a dynamic system will allow 

for a better understanding of how economic variables behave.  Tests will show how to 

describe the behavior of a dynamic system and how that information can be used to 

modify the choices we make about the functional form of economic variables.   
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To begin, we must describe what dynamic systems are and how they work.  We will 

identify the various classifications of different dynamic systems and demonstrate 

problems with some conventional tests, such as autocorrelation.  This paper will then 

explore tests to appropriately determine what type of dynamic system is present.  Finally, 

the use of a case study of gold prices to give practical application to the methods 

developed will be presented.   

 

The historical chronology of our understanding of dynamic systems and time series 

analysis helps to understand where we are currently.  We will begin with a brief review 

of the history of dynamic systems and time series analysis in economics.   
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History of Time Series Analysis 

 

The history of time series analysis in economics is as diverse as the many disciplines 

which have contributed to our understanding, identification and classification of 

probabilistic phenomena over time. 

 

Pearson, Gauss and many others began by looking at discrete probabilities through 

flipping coins, which they used to develop the normal distribution (Pearson 1897).  

However, there was a disconnect between the discrete probability and the probability of 

an event occurring in the future.  Once they realized that discrete probabilities didn’t 

accuratley explain the chance of some events occuring over time, many started to study 

random processes including Yule, Pearson and others.  Pearson was the first to use the 

term “random walk” (Pearson 1905) which was used to describe the behavior of a system 

in which the chance of an event occuring over time was not correlated with the previous 

events of that particular variable.  Bachelier saw the “random walk” process as a 

stochastic difference equation of the form ݕ௧ െ ௧ିଵݕ ൌ    (Bachelier 1900) .ߝ

 

Using a deck of cards, many early econometricians produced a random series.  They 

would take out the higher order cards from the deck, (Jacks, Queens and Kings) and 

designate the 10 remaing cards per suite to have a value of zero to ten.  Each color 

represented positive or negative values.  They would then draw a card, record the value, 

replace it in the deck and reshuffle (Yule 1921).  These records of numbers are how early 
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statiticians created a random series over time, which evolved into early time series 

analysis. 

 

With time series analysis starting to pick up prevalence in the discipline of economics, 

more economists looked to natural processes to explain economic phenomena.  As 

Stanley Jevons said "Time is the great independent variable of all change that which itself 

flows on uninterruptedly, and brings the variety which we call motion and life". (Jevons 

1877)  In fact the “father” of neoclassical economics himself, Jevons was convinced that 

economic downturns were correlated with high rates of sunspot activity (Jevons 1862).  

Although this theory eventually proved to be wrong, Jevons’ line of inquiry started the 

development of the autoregressive processes (AR).   

 

The autoregressive process uses past data to predict future data.  The early research on 

autoregressive processes was primarily conducted by Yule, in which he defined the 

sunspot data to be an AR(2) process or ݕ௧ ൌ ݂ሺݕ௧ିଵ, ௧ିଶሻݕ ൅  Yule then .(Yule 1921) ߝ

began to look for stationarity in time series and was instrumental in starting the 

development of using oscillators for time series analysis (Yule 1926).  He classified time 

series data by four categories: random, conjunct, disjunct and oscillation. 

 

A random series has no serial correlation, meaning the two events are not correlated over 

time.  If events are purely random, then any past events will in no way effect what will 

happen in the future.  In other words, what happens today does not influence tomorrow.  



 

6 

An example of a random series is consecutive rolls of a die, the outcome of each roll is 

independent of the previous roll. 

 

A conjunct series has serial correlations which are all positive.  These types of series tend 

to confer on one another in directionality.  For instance, if a variable has risen in the 

previous period it is more likely to rise again.  We see such behavior in stock prices 

movements. 

 

A disjunct series has serial correlations which are all negative.  This type of series also 

confers itself in directionality as the conjunct series, but in the opposite direction.  So if a 

variable falls today it is more likely to fall tomorrow. 

 

Finally, what Yule believed to be the most prevelant and often the least common type of 

random series used in economics, the oscillation series.   The oscillation series has serial 

correlations which switch sign.  In this case we see data that is constantly going up and 

down from period to period. 

 

The identification of different catagories of the behavior of data over time was really the 

beginning of using economic time series data as a dynamic system. During this era, a lot 

of time was being spent studying random processes and how they follow a normal 

distribution. Slutsky (1927) saw these natural processes as a moving summation and 

started looking at time series problems through moving averages.  The moving average is 
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calculated by successively calculating an average of a defined interval that is shifted over 

time.  Finally, it was Wold who put it all together to develop the random stationary 

process. (Wold 1938)   The random stationary process is one in which the oscillation is 

random and the average remains at a constant level over time. 

 

More recently (1940-1950), other economists expressed the need to understand 

dynamical systems such as Samuelson: “we should still need a theory of the path by 

which a given market approaches its equilibrium position, not for sake of the theory 

alone, but for the information that such knowledge throws upon the direction of 

displacement of the new equilibrium position as well” (Samuelson 1943).  However, even 

Samuelson himself was conflicted over the appropriateness of using the understanding of 

dynamical systems from other disciplines, such as physics or biology and questioned 

their relevance.  As a discipline, we have incorporated some of those concepts, such as 

logistic functions and Brownian Motion.  We use the concepts of dynamic systems in 

natural resource economics for population changes as well as in explaining the movement 

of prices over time.   

 

In 1965, Adelman noted that long cycles did exist in economic data. (Adelman 1965)  

Long cycles are oscillatory in nature but occur over large time intervals.  In 1966 Granger 

noted that most economic phenomena exhibit low level frequency components (Granger 

1966) and that lack of inclusion can lead to problematic modeling procedures. This was 

soon followed by Mandelbrot & Van Ness in 1968 who reclassified Brownian Motion 
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into a more general form to allow for the inclusion of long memory processes.  They 

stated that “empirical studies of random chance phenomena often suggest, on the 

contrary, a strong interdependence between distant samples” and additionally that: “It is 

known that economic time series “typically” exhibit cycles of all orders of magnitude, the 

slowest cycles having periods of duration comparable to the total sample size” 

(Mandelbrot/Van Ness,1968). 

 

After this flurry of activity on memory processes, the next major piece of research in time 

series analysis was Box & Jenkins in 1976 with the formal derivation ARIMA(p,d,q) 

modeling.  That is to say, short memory autoregressive processes (p) and longer memory 

non recursive moving averages (q) were included together into a modeling framework 

with an integrating factor (d).  This set up a template that could capture some memory 

processes, at least short memory.  However, long memory Brownian Motion was not 

included.  Brownian Motion was not included due to the fact that the integrating factor 

only performs an exponential smoothing of the data, which does not work well with 

cyclical processes.  This is because the integrating factor in the ARIMA modelling 

structure is forced to be an integer. 

 

A few years later, Granger and Joyeux (1980) found that these low level frequencies may 

exist in ARMA models as long term memory and should be included.  In 1981 Hoskings 

derived a method to include long memory processes, in what was considered a Fractional 
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ARIMA or FARIMA model.  The FARIMA model allowed the integrating factor of the 

ARIMA model to vary more than just an integer value. 

 

After this period, there came interest in chaotic processes as they are deterministic and a 

system of this type would have long memory processes among its attributes.  Brock did 

most of the work, relating to macroeconomic phenomena. (Brock 1995) 

 

As of late, more research has gone into dynamic systems and their properties for the 

purposes of simulation or to recover primitive functions of a dynamic system in motion. 

That is to say, that instead of decomposing a times series into additive components and 

determining an error term with Brownian Motion, more attention is being paid to other 

methods such as non-linear systems.  Of particular interest, is whether or not a system is 

linear or non-linear and if it exhibits long memory or chaotic behavior (Frank/Stengos 

1988, Brock 1988 ).   

 

Aside from the economics literature, many other disciplines, such as physics and biology, 

have been working hard on dynamic system problems.  Many books and articles have 

been produced on the topic. (Hilborn 2000, Williams 1997)  May started chaotic research 

in biological processes (May 1973,1976,1996) through the use of attractor plots.  

Attractor plots are scatter plots of time series data over different time intervals.  The 

attractor plot demonstrates whether a variable converges or diverges to a particular value 
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over time.  The attractor plot has been an important first step to visually understanding a 

dynamic system. 

 

Many “classic” physics problems demonstrate chaotic behavior, such as the “double 

pendulum”.  The double pendulum example describes the motion of two pendulums 

swung from the same axis will exhibit a chaotic type of behavior.  Planetary orbits can 

behave in a chaotic way as well.  That is to say, the attractor plot of a planet’s orbit over 

time can look random, but it is not.   

 

At our current point in the history and evolution of time series analysis and dynamic 

systems, computing power has finally caught up with theory.  Many dynamic systems do 

not have closed form solutions and must be solved numerically.  The additional 

computing power allows us to be able to estimate and use many of these concepts in our 

analysis of economic problems.   
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The Gold Industry 

 

For the first time, we utilize dynamic systems to evaluate the gold industry.  Gold has a 

rich and diverse economic history which makes for an interesting study.  Gold has been 

valued by societies for hundreds of years due to its many uses: store of wealth, 

commodity, industrial metal, art.  Therefore the price and production amounts of gold 

have been recorded by numerous countries for the last century.  Additionally gold 

markets have sustained may changes which have been well documented.  Because of the 

availability and diverse nature of data relating to the price of gold, the gold industry is 

used as a case study to demonstrate the usefulness and methodological differences of 

dynamic systems. 

 

Using dyanamic systems methodology we characterize the movements in the price of 

gold over time.  We start by calculating the long run dependence of gold prices.  The long 

run dependence is a measure of how important the history of the data is to its current 

price.  To estimate the amount of dependence we will use the Hurst Exponent, which 

gives the level of long run dependence of data.  We will discuss the various measures of 

the Hurst Exponent and derive them for the price of gold. 

 

Secondly we determine how much of the price of gold is random and how much is 

deterministic.  We do this by first defining what is random and deterministic.  Then we 

will measure for determinism via the Lyapunov Exponent.  We will find that the market 
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price of gold has both a deterministic (intra market) and random (inter marekt) 

component. 

 

After separating the intra and inter market components of the gold price, we test via 

regression for industry structure affects on the price of gold.  We will also be able to 

develop a characteristic equation for the price of gold that incorporates the deterministic 

and random components.  We will use this characteristic equation to simulate the effects 

of future events on the gold industry as well as to develop a linear supply and demand 

model for the U.S. gold industry.  We will find that utilization of dynamic systems allows 

for an improved understanding to changes in the gold industry over time.  It will be 

shown that increases in the number of firms in the gold industry make the market price of 

gold more subject to external events outside of the industry and thus more volatile and 

that a reduction in the number of firms in the industry will narrow the range of volatility 

in the market price of gold.  From the supply and demand analysis we will discover that 

the majority of the changes in the market price of gold come from the demand curve.  We 

will also learn how the intra and inter market prices affect the equilibrium price of gold.  

All of the tested relationships are only possible through an understanding of dynamic 

systems. 

 

As our understanding of dynamic systems has evolved, so must our application of these 

principles to our discipline.  Let us begin with what a dynamic system is and how they 

work.  
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CHAPTER 2 - DYNAMIC SYSTEMS 

 

Dynamic systems include any series of data that propagates through time.  In this chapter 

we will characterize the components of dynamic systems.  First we will begin with 

describing the behavior of dynamic systems.  Next we will characterize the two broad 

categories of dynamic systems, deterministic and random.  We will then show a special 

deterministic system, a chaotic one.  Following that we will discuss how memory 

(correlation of a variable over time) works and is measured in a dynamic system.  We 

will then look at the Lyapunov Exponent test to determine if a dynamic system is 

deterministic.  Finally we will discuss assumption differences in dynamic systems as well 

as what a general functional form without a linearity assumption would be for a dynamic 

system. 

  

 
Behavior of Dynamic Systems 

Dynamic systems are a functional form that explain the position of an object in space 

over time.  That is to say, dynamic systems can identify the position of an object in 

space-time.  Dynamic systems have been used extensively in the physical sciences to 

explain bodies in motion, as well as in the biological sciences for population growth.  In 

economics, many market systems and economic models are dynamic in nature.  We use 

dynamic systems to understand rational and adaptive expectations.  Dynamic functions 

are used  to determine rates of change in populations and sustainable yields.  Dynamic 

functions are also used in optimal control theory.  With all of our use of dynamic 
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systems, we have done little in the discipline to understand how these systems behave 

and the impact of our assumptions.  We will start with the development of what dynamic 

systems are and how they behave.  

 

“A dynamical system is a rule for time evolution on a state space.” (Meiss 2007)  State 

space is the set of all possible states of the dynamic system and each state space is a 

unique coordinate point within the fixed set of the system.  A dynamical system consists 

of a state space, and the coordinates of the system, at any instant, are described by the 

rule or functional form of the system.  In economics, many of our dimensions of variables 

are dynamic in nature, such as interest rates, prices and quantities.  A further definition 

may clarify: “Mathematically, a dynamical system is described by an initial value 

problem.  The implication is that there is a notion of time and that a state at one time 

evolves to a state or possibly a collection of states at a later time. Thus states can be 

ordered by time, and time can be thought of as a single quantity.” (Meiss 2007)  Dynamic 

systems are deterministic because they have a functional form which identifies the state 

space and the evolution of the states over time completely.   

 

For the economist, a deterministic dynamic system has a very profound meaning and 

effect for understanding an economic system.  Determining the functional form that 

produces a system, is critical to identifying its behavior.  If a system behaves in a 

dynamically deterministic fashion, then that system is always in equilibrium at every 

evolution on the state space.  For instance, a pendulum has an equation that defines its 
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motion completely.  In order for the pendulum to swing back and forth, it is always 

dependent on where it was previously, as well as where it is going, in order for it to 

reverse direction.  At every instance in time of the pedulum’s arc, the pendulum must be 

in equilibrium or it would not be fully identified by the equation which governs its 

motion.  The example of the pendulum shows that a process that is deterministic has to be 

in equilibrium always or the process could not be deterministic.  The state space of the 

dynamic system is the evolution of the variable in the phase space across time.  The 

variables that affect the pendulum’s motion, that can be measured at any instance, are in 

the “phase space” of the dynamic system.   

 

State space is the combination of the phase space and time.  In supply and demand 

models, price and quantity make up the phase space.  The phase space of the supply and 

demand model shows a static equilibrium point at an instant in time.  The state space of 

the supply and demand model, is the description of the evolution of the equilibriums over 

time, which includes the phase space. 
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Figure 1 – Evolution of Static Equilibriums 

 

 

We classically define a static equilibrium in price-quantity space, which is our phase 

space (Figure 1).  As we have changes in supply and demand from time t=0 to time t=1 

we arrive at a new static equilibrium, due to the demand curve shifting between t=0 to 

t=1.  The resulting plot in the lower part of the figure, results from connecting the 

equilibria in the phase space over time.  When we plot a variable across time, we lose a 
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dimension.  In this case we do not see the quantity dimension, although we know it is 

necessary for the formation of the equilibrium price over time.  Often, we only look at 

either the trajectory of a price change over time or the static phase space without time.  In 

either case, we may lose information about the variables that caused the supply or 

demand curves to shift.   

 

In reality, the two graphs put together give the complete dynamic system in state space.  

The state space describes the evolution of the equilibrium point over time (Figure 2).  

 

Figure 2 - Complete Dynamic System of Supply and Demand 

 

 

Dynamical systems are deterministic, if there is a unique point to point evolution 

(trajectory) of the state space.  Dynamic systems can be random, if there is a probability 
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associated with the evolution of the movement between state space.  For example, Figure 

2 would represent a deterministic system if a function could be identified that would 

exactly explain the position of the price, quantity demanded and quantity supplied of any 

instance in time past, present and future.  If no function could explain the position 

exactly, then there may be randomness in the system.  However, the presence of 

randomness doesn’t preclude the function from being dynamic in nature.  The 

indentification of an appropriate function that describes the movement of all the variables 

in the state space, is important to our understanding of how economic variables evolve.  

If a system is deterministic, that suggests that the system is always in a static equilibrium 

in the phase space at any given point in time along the trajectory.  That conclusion is very 

different than a random dynamic system where the exact trajectory is unknown.  

Understanding whether or not a dynamic system is deterministic or random is important 

to describing what type of behavior we might expect.  Such as a system that drives 

toward a long run equilibrium or a system that will never reach a static long run 

equilibrium. 

 

Certain tests can be used to demonstrate how deterministic or non-deterministic a system 

is.  Before these are presented, let us better define both a deterministic and non 

deterministic system through example. 
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Deterministic Dynamic Systems 

 
A deterministic dynamic system can be defined and better understood using the example 

of a simple, one dimensional model which propagates over time.  For example the 

example that follows will utilize the logistic function to demonstrate the one dimensional 

model.   

 

The logistic function is a non-linear dynamic system that describes the behavior of one 

variable in the past, present and the future.  The logistic function is dependent on the 

function’s previous value, time and the sensitivity of the growth rate.  This function is 

frequently used by economists to model the supply or availability of various renewable 

resources, as well as population growth rates (Conrad 2002).  The logistic function in 

discrete time takes the form: 

 

ܺ௧ାଵ ൌ ௧ሺ1ܺߙ െ ܺ௧ሻ 

 

The coefficient of sensitivity “alpha”, can theoretically take on any value from 0 to 4.  

Although this value seems arbitrary, all other values for the sensitivity coefficient cause 

the logistic function to become undefined.  The value of X (growth rate) can take on a 

value between 0 and 1.  The variable alpha causes the motion of the variable X over time.  

The state space for the logistic function will include all possible values for alpha, because 

the state space defines the entire range of possibilities of all trajectories.  As alpha 

changes so does the evolution of X through the state space and all different iterations of 
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X through space-time are predetermined given a specific alpha.  Since the logistic 

equation is a non-linear dynamic equation, the value of X in the future is dependent on its 

past by functional definition: ܺ௧ାଵ ൌ ௧ሺ1ܺߙ െ ܺ௧ሻ. 

 

Consider the trajectry of X through the state space when the value of the alpha is 2.8.  For 

consistency across examples, a starting value for X of 1/2 will be utilized.  In Figure 3 

we can see that the value of X oscillates to a fixed point after aproximatley 15 time 

periods and converges to the value 0.64. 

 

Figure 3 - Logistic Function α=2.8 

 Period

F(
X t
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0.7
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The logistic function with value α = 2.8 above, is an example of a dynamic system that is 

attenuating to a constant level.  The evolution of the state space converges to one point in 

the set of all possible values in the state space.  Another tool for understanding the 

convergence of a series to a particular value over time can be used, the attractor plot 

(May 1973).   

 

The attractor plot is one time step plotted against another time step so that the system is 

viewed in a time independent fashion.  Based on the attractor plot (Figure 4) of the same 

logistic function we can see that the value of X is converging to a value of 0.64.  We 

classify a deterministic system of this type, as stable and in this case has a “long run” 

equilibrium of a single value over time.  Systems that converge to a single value are 

intuitively simple.  Most of the use of dynamic systems in economics has stopped as this 

point.   
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Figure 4 - Attractor Plot of Xt+1 vs. Xt for Logistic Function α=2.8 

 

 

As a contrast to the “long run” stable equilibrium, let us look again at the same logistic 

function, but this time change the value of alpha to 3.  In this case (Figure 5) the series is 

starting to converge to a particular point in the state space, but will never reach a single 

point. 
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Figure 5 - Logistic Function α=3 

 

In Figure 5 the system finds two equilibriums between the two points of approximatley 

0.64 and 0.69.  With no changes to the logistic equation, the system will continue to 

alternate between these two equilibrums indefinatley.   

 

The above logistic function is also a stable “long run” equilibrium.  We can also see  this 

behavior in the attractor plot of the series (Figure 6) where the equilibrium does not 

stabilize to one point, but instead oscillates between two equilibriums of 0.64 and 0.69. 
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Figure 6 - Attractor Plot of Xt+1 vs. Xt for Logistic Function α=3 

 

In both of the two cases presented, the dynamic system is deterministic, but a small 

change in the initial value of alpha from 2.8 to 3 caused the equilibrium of the system to 

change from one stable value to a stable oscillation between two values.  It is important 

to note that a small change in a deterministic dynamic system can have a profound effect 

on the resulting type of “long run” equilibrium.   

 

We have seen examples of dynamic systems that are deterministic, however not all 

dynamic systems are deterministic, let us now focus our attention on a dynamic system 

that has some random component to it.  As discussed, variables which move through time 

are dynamic in nature.  There are two types of dynamic systems.  Those that are 
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completley defined, as demonstrated earlier, and those dynamic systems which have an 

element of randomness, also known as a stochastic process. 
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Random Dynamic Systems 

Dynamic systems contain variables which move through time.  Occasionally the variables 

of some dynamic systems are random.  A random (stochastic) dynamic system is subject 

to the effects of noise (randomness).  In economics, we usually consider only a specific 

type of noise “white noise”.  Noise is a random variable and can fluctuate with or without 

a regular pattern over time.  Noise is common in many models, consider an AR(1) 

process: 

 

ܺ௧ାଵ ൌ Θଵܺ௧ ൅  ௧ߝ

where ߝ௧ is a random process  

 

The random dynamic system is still a dynamic system as the AR(1) equation completley 

describes how ܺ௧ evolves over time through state space.  In the case of the AR(1) 

equation, the value of the variable in the next period is a function of the value of the 

variable in the previous period plus randomness (noise).  Typically noise refers to the 

generating of fluctuations due to a large number of variables interacting in the system, 

considered to be a problem of omitted variables.  Sometimes however, noise in a dynamic 

system is due to the variables in the system being probabilistic in nature and arises due to 

the confluence of these probabilistic variables interacting. (Chatfield 2004)  

 

Noise can have a pattern, just as in a deterministic system, and can be one of three types.  

Noise can be persistent, anti persistent or completely random.  All noise (regardless of 
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type) falls under the general classification of Fractal Brownian Motion (FBM).  As 

economists, we typically use the subset of FBM that is completly random or Regular 

Brownian Motion (RBM).  FBM and RBM are related as: 

 

ܯܤܴ ؿ  ,ܯܤܨ

 

that is Random Brownian Motion is a subset of Fractal Brownian Motion.  By definition 

FBM falls into three catagories: persistent, anti-persistent and random.  Persistent and 

anti persistent randomness is serially correllated over time.  What makes RBM special, is 

that there is no serial correlation of the noise between time periods.  Persistent FBM is a 

situation in which the noise is positivley correllated over time.  In persistent FBM, if the 

previous value of the noise is moving up, there is a higher probability of the present value 

moving up as well.  Stock prices tend to exhibit this behavior, where the price of a stock 

has movements that directionally go the same way for a while such as: “up”, “up”, “up”, 

“down”, ”up”, “up”, etc.  Anti persistent noise has serial correllations that are negative.  

In the anti persistent case, there is a higher likelihood that the series will alternate from 

“up” to “down” with more periodicity.  

 

To better understand the full complement of Brownian Motions let us define randomness 

formally as was done by Mandelbrot and van Ness (1968).  In their definition t designates 

time and ߱ is all the values of a random function where ߱ belongs to sample space Ω.  

Therefore, Regular Brownian Motion (completley random) has a mean of zero and 



 

28 

constant variance between any two points such as ቚݐଶ െ  ଵቚ.  Thus an RBM process inݐ

completely random because ۰ሺݐଶ, ߱ሻ െ ۰ሺݐଵ, ߱ሻ are independent of one another.  A 

RBM process is stationary because there is no serial correlation (dependence) between 

time periods.   

 

For the two other noise cases, we need to add a parameter to capture the serial 

correlation.  This parameter is called the Hurst Exponent (H), thus Fractional Brownian 

Motion is ۰ுሺݐ, ߱ሻ and to look for stationarity we now have: 

 

۰ுሺݐଶ, ߱ሻ െ ۰ுሺݐଵ, ߱ሻ

ൌ
1

Γሺܪ ൅ 1
2ሻ

ቊන  
௧మ

ି∞
ሾሺݐଶ െ ሻுିଵݏ

ଶሿ݀ܤሺݏ, ߱ሻ െ න  
௧భ

ି∞
ሾሺݐଵ െ ሻுିଵݏ

ଶሿ݀ܤሺݏ, ߱ሻ  ቋ 

 

The gamma function is: Γሺߙሻ: ൌ ׬  ∞
଴   ܺఈିଵ݁ି௑݀ݔ and is used to ensure the Hurst 

Exponent (H) takes on a positive value.  The range of the Hurst Exponent is: 0< H<1 and 

B is an FBM stochastic process. 

 

With this formulation FBM falls into the three basic categories: anti persistent ሺ0 ൏ ܪ ൏

ଵ
ଶ
ሻ, persistent ሺଵ

ଶ
൏ ܪ ൏ 1ሻ and neutrally persistent (RBM) ሺܪ ൌ ଵ

ଶ
ሻ.  The formal 

derivation of FBM means that stochastic processes can have a memory structure 

(Granger,1980) and that RBM really is a subset of FBM and is indeed a special stochastic 
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process.  In other words some random processes are correlated over time and the 

existence of correlation over time does not preclude a series from being random. 

 

Further proof of serial correlation can be seen in the autocovariance of an incremental 

random process Z where ܼ ൌ ሾܼ௞: ݇ ൌ 0,1, . . . ሿ.  Thus for any time series data, Z is the 

random process.  Whether Z is correlated or not can be defined as FBM by: ܼ௧ ൌ

۰ுሺݐଶ, ߱ሻ െ ۰ுሺݐଵ, ߱ሻ.  As such the corresponding autocovariance function between ݐଶ 

and ݐଵ is of the form:  

 

ܧ
ሺ۰ுሺݐଶ, ߱ሻ۰ுሺݐଵ, ߱ሻሻ

ሺ۰ுሺݐଶ, ߱ሻሻ  

  

The autocorrelation is the covariance divided by the variance.  In another form, we could 

also define an h that is any fixed increment between observations so that the 

autocovariance is equivalent to :  

 

ሺ݊ሻݎ ൌ ଶߪ ݄ଶு

2 ሺሺ݊ ൅ 1ሻଶு ൅ ሺ݊ െ 1ሻଶு െ 2݊ଶுሻ, ݊ ൌ 1,2, . . . , ݄ ൐ 0 

 

The general formulation of the ACF function between any two time steps is: 

 

ሻݐሺߛ ൌ
ሾݐଵ

ଶு ൅ ଶݐ
ଶு െ ଵݐ| െ ଶ|ଶுሿݐ

ଶݐ2
ଶு  
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If ܪ ൌ ଵ
ଶ
 then there is no serial correlation between time steps and we have a series that is 

random in the common definition of the term.  RBM is a true subset of FBM.  In fact, 

RBM is the special case of FBM when the Hurst Exponent is ½ .  When the Hurst 

Exponent is ½ the covariances, or serial correlations in the random process go to zero in 

the numerator of the ACF function.  All exponents in the ACF function become one.  A 

graphic representation of an RBM process is in Figure 7 below.   

 

Figure 7 - Regular Brownian Motion BH = 1/2 

 

Although visual inspection of any stocastic prosess is difficult, the movement of Z(t) in 

Figure 7 has no correlation between periods.  To reiterate, RBM is special because there 

is no serial correlation of noise between time periods.  Another way to visually inspect 
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the process, is to look at an attractor plot of the RBM process as we did before for the 

deterministic system (Figure 8). 

 

Figure 8 - Attractor Plot of RBM 

 

 

In Figure 8 there is no discernable pattern or convergence of the trajectory to a particular 

value, which supports the lack of serial correlation between time periods, demonstrating 

that RBM is different.  The clustering or lack of clustering in the attractor plot is 

determined by the Hurst Exponent. 

 

Again, it is worth noting, that random and deterministic behavior can be difficult to 

discriminate.  Later we will discuss tests to identify the difference between random and 
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deterministic behavior.  In the case of persistent Fractal Brownian Motion, the terms are 

positively correlated to one another (Mandelbrot,1971) and in this case we should expect 

to see more of a “pattern”.  Using the general functional form for an FBM process and 

assigning a value of H = 0.9 for the Hurst Exponent, the persistent FBM in Figure 9 is 

generated. (code to generate FBM in Appendix) 

 

Figure 9 - Persistent FBM BH=.9 

 

 

A visual inspection of the random process does, not clearly demonstrate if the process is 

correlated over time.  However an attractor plot does provide a hint of correlation with a 

visual inspection (Figure 10). 
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Figure 10 - Attractor Plot of Persistent FBM 

 

 

The difference between the persistent FBM attractor plot and the RBM attractor plot is 

the clustering of the Z values.  Notice in Figure 10, that the random values are clustered 

together “tighter” than that of the RBM (Figure 8). 

 

To reiterate, visual comparison of an RBM plot (Figure 7) and a persistent FBM plot 

(Figure 9) reveals little discernable differences.  Close visual comparison of an RBM 

attractor plot (Figure 8) and a persistent FBM attractor plot (Figure 10) does begin to 

reveal the correlation between time periods.  The attractor plots of these two different 

types of Brownian Motion demonstrate that not just one type of randomness exists. 
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Let us now review a third type of Brownian Motion, the antipersistent FBM.  Again a 

visual inspection of a plot of anti-persistent FBM (Figure 11) does not obviously 

demonstrate a correlation over time. 

 

In the case of Anti persistent FBM, the terms are negatively correlated over time.  To 

produce anti persistent FBM, we utilize the general form of the FBM equation and in this 

case use a value of H = 0.3 for the Hurst Exponent. 

 

Figure 11 - Anti Persistent FBM BH=.3 

 

 

In this example we may see more “cycling” behavior, however  the attractor plot will 

illuminate the difference in a more pronounced way (Figure 12). 
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Figure 12 - Attractor Plot of Anti Persistent FBM 

 

 

In the case of anti persistent FBM the attrator plot (Figure 12) has values that are more 

“spread out” than those in the previous two attrator plots.  Again demonstrating that there 

is correlation over time, but it is difficult to discern visually.   

 

Regardless of the type of plot used, visual inspection alone does not adequately 

demonstrate correlation over time.  As such, we need to test for the Hurst Exponent, 

which defines how a random process is correlated over time.  We will discuss the tests a 

in a forth coming section. 
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Regardless of the noise type, it evolves, or moves through state space, the set of the state 

space changes according to the probabilistic properties of the noise variable itself.  Due to 

noise in a random dynamic system, we cannot map by means of the attractor plot the 

complete evolution of the variable through space time.  Instead a compendium (many 

“states of the world”) of state space trajectories exist after each demarcation of time in 

the state space.  Specifically, noise which is random, has infinite state spaces at each time 

demarcation and is only constrained by the probabilistic properties of the noise.  This is 

not true of a deterministic dynamic system, which has a well defined dimension. (Longtin 

2007)  As will be discussed in the next section determining the size of the state space is 

the basis of methods used to distinguish random dynamic systems from deterministic 

systems.   

 

The correlation of randomness over time is given as the integral of the autocorrelation 

function over all times in the state space.  The problem with the measurement and 

detection of randomness, is that randomness typically occurs in conjunction with a 

variable of interest in the functional form.  This is true of the AR(1) process, as with 

other random dynamic systems.  Both processess occuring together can cause 

misidentification of the dynamic system as being random and not deterministic.   

 

To estimate a dynamic system, it is common to use a linear approximation.  A linear 

assumption can lead to errors in identifying the functional for of the system.  For example 

given the function: 
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ݔ݀
ݐ݀ ൌ ݂ሺݔ,  ሻߪ

 
where: ߪ ൌ  ݁ݏ݅݋ܰ

 

The measurement of the observational noise over time would be given by: 

 

ሻݐሺݐ݊݁݉݁ݎݑݏܽ݁ܯ ൌ ሻݐሺݔሺܨ ൅  ሻሻݐሺߪ

 

In this case the act of measurement is affected by the noise, but the variable of interest 

x(t) is not.  A linear type of treatment can make the detection of deterministic systems 

difficult and cause mis-specification of a dynamic system. (Longtin 2007)  Before we talk 

about how to detect the difference between the two, we need to discuss a special type of 

deterministic system that can mimic a random system. 
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Chaotic Dynamic Systems 

In the previous section we argued, by example, that visual comparisons of a plot or 

attractor plot of an RBM, persistent FBM and of an anti-persistent FBM process do not 

clearly demonstrate correlation between time periods.  However, we will see that in 

chaotic systems, attractor plots do provide a clear visual correlation over time. 

 

A chaotic system is a condition in which the system appears to be random, but is in fact 

deterministic.  The existence of chaotic systems further compounds the problem of 

specifying dynamic systems. 

 

Refer back to the deterministic logistic function from the previous section, we can see 

chaos as well.  As the alpha in the logistic function changes, so too does the equilibrium.  

A chaotic system, is one in which the alpha becomes “sensitive” enough to cause the 

logistic function to oscillate in a fashion that appears random.  For the logistic function, 

this is true for any alpha with a value of greater than 3.57.  Figure 13 is one such system.  

As before, the initial value of X is 0.5, but now the alpha is 3.95.   
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Figure 13 - Logistic Function α=3.95 

 

 

Figure 13 appears to have behavior that is random.  Visual inspection of the plot (Figure 

13) shows no obvious correlation.  It would be easy to come to the conclusion that this 

plot is random.  Discerning the difference between the random processess and the 

deterministic one is difficult because they share similar properties such as constancy of 

mean (0.56) and variance (0.09) throughout either system.  In the case of this specific 

function, we know that it is not random and we can verify this by looking at the attractor 

plot when the alpha is 3.95 (Figure 14). 
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Figure 14 - Attractor Plot of Logistic Function α=3.95 

 

 

The attractor plot of the above deterministic logistic function does not drive to a 

particular value or values.  Instead the equilibrium in the system is the parabola shown.  

All values on the parabola are equilibria.  In a chaotic system, the equilibrium becomes 

the locus of points described by the parabola.  The behavior of a deterministic system can 

sometimes change from one equilibrium to many, simply by changing the alpha 

coefficient.  For example, in Figure 14 changing the alpha from 2.8 to 3.95 would cause 

the system to become chaotic.  Once a system is chaotic it is very sensitive to changes.  

This sensitivity is what causes some systems to exhibit very volatile behavior, which 

happens to mimic a random system.     
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To find out whether or not a system is deterministic or random, we  must determine how 

much “memory” (how past events affect future events) a dynamic system has.  We will 

do this by estimating the Hurst Exponent that was presented earlier. 
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Dynamic Systems and Long Memory Processes 

Dynamic systems, whether they be random or deterministic, exhibit to a certain degree a 

behavior called “long run dependency” or “Long Memory Processes” (Granger 1966).  In 

long run dependency events far back in time affect the evolution of the series through its 

state space today.  Because of long memory processes, any changes in a dynamic system 

can affect the evolution of the trajectory through state space for very long periods, 

sometimes for years to come.  

 

Common measures of this phenomena are measured linearly, through the autocovariance 

and autocorrelation functions, and dimensionally through the use of the Hurst Exponent. 

(Hurst,1951) 

 

Many dynamical systems do not posess constant variance and stationarity.  The 

autocovariance function implies that the covariance between two time segments of an 

object’s state space, the covariance, only arises as a function of the absolute distance 

between the two points in time.  The autocorrelation function is similar, as it is the 

autocovariance function normalized by the variance.  This results in the autocorrelation 

coefficient.  Due to their assumptions of constant variance and stationarity, 

autocovariance and autocorrelation functions are not the best methods to use for testing 

dynamic systems.  This does not mean that the measures of autocovariance and 

autocorrelation are of no consequence.  They can help as a basic start to analyzing a 

dynamic system.   
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To get a better idea of the degree of long run dependency in a system a better measure is 

needed and comes in the form of the Hurst Exponent.  The Hurst Exponent not only looks 

at autocovariance and autocorrelation, but also how much the past influences the future.   

 

The Hurst Exponent was originally developed by Harold Hurst in 1951 for use in 

hydrology to determine optimal dam sizing for the Nile river.  Hurst wanted to know how 

much a previous years rainfall affected the height of the Nile river.  The measure he 

developed gave him insight into how long a rainfall would cause an increase in the height 

of the Nile.  The Hurst Exponent is a measurement that is non-deterministic in nature and 

measures what is observed.  Currently, there are five methods for estimation of the Hurst 

Exponent (H).  In no particular order they are: re-scaled range, autocorrelation, absolute 

moment method, aggregated variance method and periodogram method.  The original 

method developed by Hurst was the re-scaled range method.   

 

We will begin the explanation of tests for the Hurst Exponent with the original re scaled 

range test. 

 

Re-Scaled Range Test 

In the re-scaled range test the Hurst Exponent is related to dimensional space (D) of the 

system by the equation:  

ܦ ൌ 1 െ  ܪ
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The Hurst Exponent itself is bounded from 0 to 1. The scale between 0 and 1 describes 

the behavior of the series.  For example ܪ ൌ ଵ
ଶ
 Random Brownian Motion ܪ ൐ ଵ

ଶ
 

indicates a persistent effect of previous data on current data.  For example if we have a 

high data point it is likely to be followed by a high data point again.   ܪ ൏ ଵ
ଶ
 indicates 

anti-persistent behavior, meaning a high value is likely to be followed by a low value.  H 

= 0 indicates some other type of noise such as pink or white noise.   

 

One way the Hurst Exponent can be estimated is through the use of a re scaled range 

analysis.  To perform this type of analysis one starts with the amount of data you have.  

For example let us assume we have 100 observations x(1), x(2), ..., x(100).  We first start 

by removing any trend by subtracting the mean (m) from each observation and develop 

the series x'(1), x'(2), ...x'(100) where x'(t) = x(t) – m.   

 

Next, a set of partial sums are formed where x''(1) = x'(1), x''(2) = x'(1) + x'(2) etc. until 

x''(n) = x'(1) + x'(2) + ... + x'(n).  Since this series is a sum of a mean-zero variable, the 

series will be positive if the majority of variables is positive x'(n) and vice versa if 

negative.  Next, the range R is defined as R = max x'' - min x''. Finally, the range is scaled 

by the standard deviation (s) of the series to get the re-scaled range (RR) or RR = R / s.  

 

Feller (1951) has proven that if the re-scaled range is independent (no serial correlation) 

and has finite variance it follows that ܴܴ ൌ ݇݊
భ
మ where k is a constant and n is the 
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number of observations.  To test this, a regression is run in the form of log(RR) = a + b 

log(n) over many ranges of the observations where “a” is a constant and “b” is the slope 

parameter that should correspond to ଵ
ଶ
. Hurst found that this did not hold and that 

ܴܴ ൌ ݇݊ு where H is the Hurst Exponent.  Tested by running the regression log(RR) = a 

+ H log(n) over various ranges, this method can be tedious to perform.  For example, if 

you had 1024 observations you would need to run this analysis over the entire range and 

then again for the first and last 512 observations.  Then again on all four 256 observations 

sets and so on verifying that the Hurst Exponent was the same over all.  This makes the re 

scaled range method computationally cumbersome which limits its use.  Another way to 

calculate the Hurst Exponent is through the fractal dimension by estimating D using 

FARIMA, although there is some debate over the correct value of D to use. 

 

The use of FARIMA in estimating the Hurst Exponent from a re-scaled range perspective 

comes from the relationship with the dimensional space given earlier. FARIMA allows 

the “d” parameter in the FARIMA(p,d,q) model to be estimated.  We will see an example 

in the case study section of this paper.  The next Hurst Exponent estimation method to 

discuss is the Autocorrelation method. 

 

The Autocorrelation Method for Hurst Estimation 

To estimate a Hurst Exponent using the Autocorrelation Method, one needs to calculate a 

sufficient number of lags to perform the analysis.  In the case of this analysis, the Hurst 

Exponent is related to the Autocorrelation Function (ACF) via the slope coefficient of the 
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estimate of the log of the ACF versus the log of the frequency.  To perform this test one 

should calculate the ACF of a series until the ACF is negative and use all of the positive 

values as a data series.  A regression run on the natural log of the ACF values versus the 

natural log of the lags of the ACF values is used to estimate the Hurst Exponent.  The 

Hurst Exponent is related to the slope coefficient via:  

ܪ ൌ 1 ൅
ߙ
2 

Where ߙ = slope of regression.  Here again it is important to have a sufficient amount of 

points.  However unlike the re scaled range method, the range of the data does not have 

to be a power of 2.  The ACF method is easier to calculate than the re scaled range 

method. 

 

Absolute Moment Method for Hurst Estimation 

To estimate the Hurst Exponent with the absolute moment method, one starts estimation 

by dividing a series of length n into shorter segments of length m and then averaging the 

series over each m length segment.  

 

ܺ௠ሺ݇ሻ: ൌ
1
݉ ෍  

௞௠

௜ୀሺ௞ିଵሻ௠ାଵ
௜ܺ, ݇ ൌ 1,2, . . . ,

݊
݉ 

 

To get the absolute moment (AM) of the series: 

 

௡ܯܣ
௠ ൌ

1
ܰ/݉ ෍  

ே/௠

௞ୀଵ
|ܺ௠ሺ݇ሻ െ തܺ|௡ 
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This method is generally used for n=1.  If n=2 or larger it reduces to the aggregated 

variance method.  In a log/log plot of the absolute moments versus m the slope(ߙ) of the 

linear fit is related to the Hurst Exponent as:  

 

ߙ ൌ ݊ሺܪ െ 1ሻ or ߙ ൌ ܪ െ 1 if n=1 

so ܪ ൌ ߙ ൅ 1 

 

If there is no long run dependence, then the Hurst Exponent again will be 0.5.  

 

Aggregated Variance Method for Hurst Estimation 

To estimate the Hurst Exponent with the aggregated variance method one starts as in the 

absolute moment method, by dividing a series of length n into shorter segments of length 

m and then averaging the series over each m length segment.  

 

ܺ௠ሺ݇ሻ: ൌ
1
݉ ෍  

௞௠

௜ୀሺ௞ିଵሻ௠ାଵ
௜ܺ, ݇ ൌ 1,2, . . . ,

݊
݉ 

 

Then the sample variance is calculated for each m length segment and the log of the 

variance is plotted against the log of m, as done in previous methods.  Once again, the 

slope (ߙ) of the linear regression of the log/log plot is related to the Hurst Exponent.  
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ܪ ൌ
ߙ
2 ൅ 1 

 

As before, if H = 0.5 then the series has no long range dependence.  

 

Periodogram Method for Hurst Estimation 

To estimate the Hurst Exponent with the Periodogram method, one estimates the slope of 

the log of the Periodogram (I) versus the log of the Frequency over the entire domain 

from 0 to ߨ. The Hurst Exponent is:  

 

ܪ ൌ
1 െ ߙ

2  

 

Where ߙ is the slope of the regression.  To perform the periodogram analysis one needs 

to use the Fourier equation (Wei 2006) to estimate the Fourier coefficients ܽ௞ and ܾ௞: 

 

ܼ௧ ൌ ෍  
௡
ଶ

௞ୀ଴
ሺܽ௞cosሺݓ௞ݐሻ ൅ ܾ௞sinሺݓ௞ݐሻሻ 

where: 

ܼ௧=Series 

௧ݓ ൌ ଶగ௞
௡

=Frequency 

ܽ௞ ൌ
1
݊ ෍  

௡

௧ୀଵ
ܼ௧cosሺݓ௞ݐሻ, ݇ ൌ 0 ܽ݊݀ ݇ ൌ

݊
2  ݊݁ݒ݁ ݏ݅ ݊ ݂݅
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ܽ௞ ൌ
2
݊ ෍  

௡

௧ୀଵ
ܼ௧ cosሺݓ௞ݐሻ , ݇ ൌ 1,2, . . . ,

݊ െ 1
2  ݀݀݋ ݏ݅ ݊ ݂݅

and 

ܾ௞ ൌ
2
݊ ෍  

௡

௧ୀଵ
ܼ௧sin ሺݓ௞ݐሻ, ݇ ൌ 1,2, . . . ,

݊ െ 1
2  

To calculate the periodogram the Fourier coefficients are used to calculate the 

periodogram (I) where (Wei 2006):  

 

௞ሻݓሺܫ ൌ ݊ܽ଴
ଶ, ݇ ൌ 0 

 

௞ሻݓሺܫ ൌ
݊
2 ሺܽ௞

ଶ ൅ ܾ௞
ଶሻ, ݇ ൌ 1,2, . . . ,

݊ െ 1
2  

 

௞ሻݓሺܫ ൌ ݊ܽ௡
ଶ

ଶ, ݇ ൌ
݊
2  ݊݁ݒ݁ ݏ݅ ݊ ݄݊݁ݓ

 

Once the periodogram coefficients are calculated, the regression of log(I) versus 

log(Frequency) is used to estimate the Hurst Exponent.   The estimate of the slope of the 

regression is used in the calculation of the Hurst Exponent. 

 

Regardless of the estimation method that is applied to estimate the Hurst Exponent, the 

Hurst Exponent measures the correlation of data over time.  The Hurst Exponent is 

helpful in characterizing the dynamic system.  If H = 0.5 then there is no memory in the 

system and the system is completley random (RBM).  If H is not 0.5 then the system may 
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be deterministic (FBM) or some combination of the two.  Keeping the concept of 

“memory” of a system in mind let us look at the problems of the traditional time series 

approach to classifying a system. 
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Confusion in Testing for Types of Dynamic Systems 

Previously, it was demonstrasted how the Hurst Exponent is helpful in characterizing a 

dynamic system.  However, with our current methods of time series classification, we can 

have difficulty in determining an appropriate model specification.  For example, let us 

visually inspect two graphs A and B (Figures 15 and 16) containing different simulated 

time series data each over 100 periods and try to determine which series has a random 

component and which one does not.   

 

Figure 15 - Graph A 

 

 

Period

X(
t)
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Figure 16 - Graph B 

 

 

If you think the graph of the data in Figure 16 is not random than you would be incorrect.  

The series in Figure 16 does contain a random component whereas the data in Figure 15 

is not random at all.  This is an interesting problem for economic analysis.  Just so we are 

working from the same information, let us look at the functions that produced both data 

sets. 

 

Graph A (Figure 15): ܺ௧ାଵ ൌ ௧ሺ1ܺߙ െ ܺ௧ሻ 

 

Graph B (Figure 16): ܺ௧ାଵ ൌ െܺ௧ ൅  ߝ

Period

X(
t)
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 :݁ݎ݄݁ݓ

ߙ ൌ  ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ

ߝ ൌ  ݉ݎ݁ݐ ݎ݋ݎݎ݁ ݈ܽ݉ݎ݋݊ ݉݋݀݊ܽݎ

  

As will be discussed in a moment, the first equation is a logistic and is completely 

deterministic.  Whereas the second function (Figure 16), is a standard autoregressive 

function with a random process.   

 

To detect whether or not a series is random, it is conventional to begin with a traditional 

time series testing method such as the autocorrelation function (ACF).  Recall that the 

ACF is the autocovariance between to time steps, divided by the variance.  In Figures 17 

an 18 below we see the ACF plots for both functions. 
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Figure 17 - ACF Plot of Graph A Data 
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Figure 18 - ACF Plot of Graph B Data 

 

 

Notice that in both cases, each equation shows some cycling behavior and both have 

similar magnitudes of ACF values.  In a standard time series approach, we would be 

tempted to use an autoregressive (AR) model.  Indeed if we did, we would find that the 

data for Figure 18 could be reduced nicely using an AR(1) model and that the ACF of the 

residuals would be stationary.  However the data for Figure 17 would not reduce and 

would need additional components.  Using a traditional ARMA approach an ARMA(1,1) 

model would fit the data in Figure 17 well and the residuals would be considered 

stationary.  Note that in both cases, there would not be a unit root problem as both final 

models would be outside the unit circle. 
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At this point in time, the reader may question why not use ARMA or ARIMA models if 

we can get a reasonable forecast?  The answer: in the case of data from Figure 17 the 

sensitivity of the coefficient ߙ is important to describing how the system behaves.  When 

using a linearly additive estimation technique such as ARMA to estimate, the sensitivity 

of the coefficient looses information due to the linear measurement.  This causes a 

misidentification of the functional form of the system. 

 

So let us now start our discussion of what a dynamic system is and how it works, by 

taking a step back and defining a dynamic system more generally and more precisely and 

how it applies to economics. 
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Identifying a Dynamic System as Deterministic 

Although it can be rather difficult to detect, there are ways to test a system for 

deterministic and chaotic behavior.  The most common test is that of the Lyapunov 

Exponent.  The Lyapunov Exponent is defined as: 

  

ߣ ൌ
1
ݐ lnሺ

௧ߝ

଴ߝ
ሻ 

 

Where ߝ at any time step is defined as the difference between the actual series and the 

reference trajectory.  The reference trajectory is generated numerically by creating a 

series that is close to the actural series.  In estimation of the Lyapunov Exponent the 

distance (seperation) of the reference trajectory is continually increased.  Lyapunov 

Exponents are calculated over a range of different trajectories to evaluate a series of data. 

 

To perform this test, one needs to measure the divergence of the trajectory away from a 

reference trajectory at various time steps.  If the system is deterministic or chaotic that 

implies a predetermined path will exist, so the actual trajectory and the reference 

trajectory would be close to one another.  As we can see in Figure 19 below, we have 

data that falls within a point on the hyper sphere at ߝ଴ and at another point in time t.  The 

data should be dimensionally close, if the series is deterministic.   
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Figure 19 - Reference Trajectory 

 

 

If a series is chaotic, then it is by definition deterministic.  Therefore the actual series, 

must lie in the same dimension as the reference trajectory, if the Lyapunov Exponent is 

positive.  One note when testing for chaos, is that it may not exist on all n-dimensions.  

As such, testing amongst various dimensions is necessary, since not all dimensions form 

a contact manifold (intersection) with one another. 

 

The Lyapunov Exponent characterizes the rate at which close trajectories separate.  

Because rates of separation can differ depending on an objects orientation, there are many 

Lyapunov Exponents.  The number of Lyapunov Exponents  depends on how the object 

may separate.  Thus it is common to look for the largest Lyapunov Exponent, as this is 

the maximum amount of divergence.  
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Again if a series is random the state space will have infinite dimension.  Also, the 

Lyapunov Exponent can give us an idea of the behavior of the series.  For example, if a 

system is conservative, that is to say does not dissipate, then the sum of all the Lyapunov 

Exponents will equal zero.  If a system dissipates, then the sum of the Lyapunov 

Exponents is negative.  The sum is positive if the series gains momentum. 

 

Using the Lyapunov Exponent helps us to learn if a dynamic system has deterministic 

behavior.  Testing the Lyapunov Exponent against multiple dimensions is necessary.  

Using the largets Lyapunov Exponent produces the largest amount of divergence.  The 

largest Lyapunov Exponent  tells us how many dimensions the system has and therefore 

whether or not a series is deterministic (limited dimensions) or random (infinite 

dimension).  Now let us look at differences between testing for linear and non-linear 

dynamic systems. 
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Testing Dynamical Systems 

A dynamical system may or may not lie in a restricted dimensional space (some are 

deterministic and some are random) however, all move through space time.  Since 

dynamical systems may or may not be linear, there is a different approach to testing for 

their existence than standard linear tests.  In other words, different assumptions must be 

used since a dynamic system may or may not be linear.  The table below shows the 

differences between the two major types of dynamical models, linear and non linear.   

 

Table 1 - Linear vs. Non-Linear Systems 

Linear Non-Linear 

Constant Mean May or May Not Have Constant 
Mean 

Invertible Not Invertible 

Variable is Independent and 

Identically Distributed 

Variable is Not Independent and 

Identically Distributed 

Series Has Infinite Dimension Series Lies in Restricted Space 

Series is Additively Separable Series is Not Additively Separable 

 

To test whether a system is dynamical, and to what degree, one needs to investigate the 

state space as well as the long run dependence with the methodologies previously 

discussed (Hurst Exponent, Lyapunov Exponent, ACF).  Let us not forget that seeing 

oscillations in a series, may not mean the system is non linear.  Conversley seeing a 

pattern that is flat, does not mean a system is linear.  Again, to see this notion you can 

refer to the logistic function discussed in Figures 3, 5 and 13. 
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When using dynamic systems we have to be careful with more traditional techniques.  

When a series is differenced to make it stationary using standard time series techniques, 

we have demonstrated that the measurmentof sensitivity is lost.  Also, we lose the signal 

that the process is generating naturally as it travels through space-time. 

 

Dynamical systems are not simply identified by an observation at a given point in time.  

The dimensions that we view observationally are only one part of the objects cause of 

trajectory at a given point.  As we will see when testing dynamical systems, there are 

other dimensions at work “behind the scenes” that produce the observation.  Recall when 

we looked at the supply and demand model over time, we were able to view price 

changes over time.  But the dimension we lost was quantity.   

 

Since we do not see all dimensions in a dynamic system, it is important to estimate them 

through the use of manifolds.  A manifold is an abstract space in which every point has a 

neighborhood that resembles coordinate space.  The dimension is the minimum number 

of coordinates needed to specify every point within the manifold.  Thus dimensional 

space is important in understanding dynamical systems.  A line, or a circle has a manifold 

of one and a plane would have a manifold of two.  So in defining a dynamical system, 

there needs to be enough manifolds used so that we get a picture that resembles 

coordinate space.  The number of dimensions used is analogous to creation of a space that 

houses all points of that effect, such as mass or acceleration.  The use of manifolds and 

dimensional space, describes how to define the general functional form of a dynamic 
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equation.  Using this information helps to determine if a dynamic system is linear or not, 

which is important in assigning a correct functional form to economic data. 
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A General Functional Form for Dynamic Systems 

In general, a manifold is defined such that the dimensions within it, define the behavior 

of the series.  For example, given any one point we define the point by its dimensional 

coordinates.  

ଵܲ: ൌ ሺ ଵܲ௫, ଵܲ௬, ଵܲ௭ሻ 

 

There may be more dimensions than the example lists.  Each one of these dimensional 

coordinates contains a vector of possibilities.  In a general form more familiar to 

economists, we would use a Hamiltonian to define these dimensions.  For example a 

common motion problem would be defined as:  

 

Z: ൌ ሺ݌, ,ݍ  ሻݐ

 

Where p is momentum, q is the generalized coordinates and t is time. In this case the 

value of the series at any instant is:  

 

ሶ݌ ൌ
െ ∂Z
ݍ∂  

  

ሶݍ ൌ
∂Z
 ݌∂
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Where p = momentum vector and q = generalized coordinates vector.  In this case, the 

vector of time goes away.  In terms of dimensions, we find an odd number because time 

is always its own dimension.  However, what is usually lacking in dynamical models are 

the other dimensions of behavior.  For example randomness, mass (stock), acceleration 

(extraction), historical dependence, etc.  So a general form of a dynamical economic 

system would look as follows:  

 

:௧݌ ൌ ሺ݉௧, ܽ௧, ,௧ݎ ݀௧,  ௧ሻ݌݀

where: 

௧ܲ ൌ ,݊݋݅ݐݒݎ݁ݏܾ݋ ݉௧ ൌ ,ݏݏܽ݉ ܽ௧ ൌ ,݊݋݅ݐܽݎ݈݁݁ܿܿܽ ௧ݎ ൌ ,݉݋݀݊ܽݎ  ݀௧

ൌ ,ܿ݅ݐݏ݅݊݅݉ݎ݁ݐ݁݀ ௧݌݀ ൌ  ሻݕݎ݋ሺ݉݁݉ ݁ܿ݊݁݀݊݁݌݁݀

 

The Hamiltonian in this case would be structured as before but p is instead given in the 

defining equality above.  

 

ܼ: ൌ ܼሺ݌, ,ݍ  ሻݐ

 

Of course by redefining the Hamiltonian in this way, it makes integration difficult.  That 

is why manifolds need to be used on each variable.   

 

We have described the behavior of dynamic systems and their various catagories 

(deterministic and random), as well as derived tests for determing if a dynamic system 
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has memory or is deterministic.  We have described the difference in assumptions 

between linear and non-linear dynamic systems and what a general functional form of a 

dynamic system looks like.  Using the methodology presented so far we will separate the 

deterministic and random components of economic variables which will allow us to 

characterize a dynamic economic system.  We can then study the results of the 

characterization and the impact the components of a dynamic system has on economic 

variables. 

 

In the following case study we will see that the gold industry is an example of a dynamic 

system with both random and deterministic components.  Using the Hurst Exponent, 

Lyapunov Exponent and autocorrelation tests, we will be able to separate the 

deterministic from the random.  This information will allow us to characterize the 

behavior of gold prices based on intra and inter market events.  An equation will be 

formulated based on the dynamic behavior of gold prices.  The characteristic equation of 

gold prices will allow for simulation of market events and the construction of a supply 

and demand curve for the current US gold market. 
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CHAPTER 3 – THE CASE OF GOLD  

There are many examples of dynamic systems in economics.  The changes in prices of 

commodities are examples of dynamic systems that interest economists.  Of particular 

interest to many individuals, is the change in the price of gold over time.  Consumers and 

economists have an interest in gold for many reasons: gold’s history of regulation, 

various uses (products, investment) and recent volatile history.  Characterizing the 

dynamic system of gold prices will allow for the measurement of how market structure 

changes affect the price of gold.  We will find in our case study that industry 

concentration causes the price of gold to become less volatile.  Furthermore 

characterizing an appropriate function for the evolution of gold prices over time, will 

allow the reconstruction of supply and demand curves for the US gold industry. 

 

To study the dynamic system of gold prices, we will start by testing for long run 

dependence and deterministic behavior.  We will use all of the various methods for 

estimating long run dependence with the Hurst Exponent given in the previous chapter. 

 

We will then test for deterministic behavior by estimating Lyapunov Exponents for gold 

price, again using the methods described previously, to find out how deterministic or 

random gold prices are.   

 

Once we have determined the amount of long run dependence and the deterministic 

portion of the gold price, we will separate the two.  Seperation of the deterministic 
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portion of the gold price from the random portion will be conducted through the use of a 

space-time regression, utilizing the estimates of the Hurst and Lyapunov Exponents. 

 

After the deterministic and random portions of the price of gold are separated we will 

study how sensitive the gold industry is to external and internal events.  An equation for 

gold prices, based on deterministic and random components will be developed.  This 

equation will then be used to simulate possible affects from future events.  Using the 

dynamical equation for gold prices, we will see how external or internal effects on the 

gold industry can affect gold prices. 

 

Finally, we will use the dynamic equation for gold prices to develop a supply and demand 

curve for US production and consumption of gold.  Before we begin let us get an idea of 

the gold industry, past and present.  

 

A Brief History of the Gold Industry 

The history of gold is multifaceted.  In ancient civilizations gold was used for jewelry and 

ceremonial purposes (NMA 2008).  Gold began to be used instead of  silver for coinage 

in many societies over the centuries (NMA 2008). In more recent times, throughout the 

last century, governments have used gold as a monetary standard and have controlled the 

price up until the ending of the gold standards in the 1970s (NMA 2008).  After the 

deregulation of gold, the industry expanded with many new new mining firms.  The 

expansion of the gold industry was short lived due to mergers and consolidation over the 



 

68 

last decade or so.  A peak in merger activity in 2001 resulted in 40.9 billion dollars worth 

of mergers in the gold industry (Ericsson 2001-02).  From 1990 to 2001 the Herfindahl-

Hirschman Index for the 10 largest firms increased from 395 to 457 or 62 points 

(Ericsson 2001-02).  The control over the production of gold has declined since 

deregulation, to historic lows (Ericsson 1994).  To get an unbiased historical perspective 

of the gold industry, gold production data by country was gathered from the “Minerals 

Yearbook” (USGS) from 1931 to 2006.  The results by country and by decade are in 

Table 2.   
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Table 2 - Percentage of World Gold Production by Country (by percent) 

 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 
Canada 11.82 12.00 12.10 6.93 4.50 5.85 6.99 5.45 
Mexico 2.41 1.79 1.07 0.42 0.40 0.50 0.73 1.12 
United 
States 

10.71 7.19 5.22 2.90 2.90 6.39 14.16 11.50 

Bolivia 0.05 0.05 0.06 0.13 0.08 0.13 0.44 0.42 
Brazil 0.60 0.64 0.49 0.26 0.51 4.07 3.02 1.79 
Chile 0.64 0.73 0.37 0.11 0.25 1.08 1.71 1.68 

Colombia 1.19 1.61 1.09 0.63 0.60 1.59 1.16 1.36 
Ecuador 0.23 0.25 0.07 0.03 0.02 0.17 0.50 0.16 

Peru 0.45 0.60 0.41 0.21 0.23 0.42 2.23 6.75 
Venezuela 0.33 0.24 0.13 0.05 0.04 0.12 0.39 0.37 

Finland 0.01 0.03 0.06 0.04 0.06 0.09 0.12 0.20 
France 0.24 0.15 0.12 0.09 0.13 0.15 0.18 0.08 
Sweden 0.56 0.39 0.25 0.18 0.16 0.22 0.26 0.19 

India 1.11 0.66 0.57 0.26 0.24 0.14 0.10 0.15 
Japan 1.94 0.67 0.61 0.48 0.43 0.35 0.38 0.33 

Philippines 1.61 0.80 1.13 0.82 1.36 1.94 1.23 1.39 
South 
Africa 

18.65 40.81 39.28 49.81 61.81 43.59 23.67 14.20 

Australia 2.07 3.10 2.98 1.75 1.45 4.38 11.58 10.75 
New 

Zealand 
0.26 0.44 0.12 0.03 0.02 0.07 0.41 0.38 

  

South Africa represented the largest portion of production in the market for gold over a 

number of decades.  Figure 20 shows the comparison of three of the largest gold 

producing nations: South Africa, United States and Canada. 
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Figure 20 - Percentage of World Gold Production by Country (1931-2006) 

 

 

Prior to industry deregulation, South Africa was the largest producer of gold.  After 

deregulation, countries such as the United States and Australia increased production 

significantly and South Africa decreased production significantly.  For a more detailed 

perspective of the rest of the gold producing countries South Africa was removed due to 

scaling issues (Figure 21).   
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Figure 21 - Percentage of World Gold Production by Country (1931-2006) 

 

 

Currently no country represents more than 15% of the production in the entire industry.  

As such, market structure is vital to understanding the changes in the price of gold.   

 

To understand the affect of market structure on the price of gold, we must first 

characterize the system of gold prices to find out if gold is deterministic, random or a 

combination of both.  We will begin by estimating long run dependence in the price of 

gold. 
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Testing for Long Run Dependence in Gold Prices 

For the purposes of characterizing the price of gold, nominal price data was collected.  

The data used are nominal monthly average gold prices from January 1968 to February of 

2008 (Figure 22).   

 

Figure 22 - Average Monthly Gold Price 

 

 

As we have previously demonstrated, a visual inspection of the plot does not adequatley 

convey if gold prices are deterministic, random, have long run dependence, etc.  

Therefore, we will perform various tests of the Hurst Exponent to determine if long run 

dependence exists in the price of gold (see Appendix for computer code).  Calculating the 
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re-scaled range estimate for long run dependence, we found the following results (Figure 

23). 

 

The value of the Hurst Exponent estimated is equal to 0.9788 and suggests that a 

persistent long run dependency exists.  To verify the validity of the estimate, we will 

continue with, the ACF Hurst Estimation technique (Figure 24). 

 

Figure 23 – Re-Scaled Range Analysis of Monthly Gold Prices 
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Figure 24 - ACF Analysis of Monthly Gold Prices 

 

 

In the case of the ACF method H = 0.8314 which again suggests persistence in the series 

over time.  Continuing our estimation, the Absolute Moments Method estimate is 2.44 

(Figure 25). 
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Figure 25 - AMM Analysis of Monthly Gold Prices 

 

 

Since H = 2.44 this again suggests long run dependence in the data.   

 

The Aggregated Variance Method (Figure 26) has an estimate of 1.19 for the Hurst 

Exponent. 
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Figure 26 - AVM  Analysis of Monthly Gold Prices 

 

 

In this case H=1.19 again suggesting persistence.   

 

With the Periodogram Method (Figure 27) we get a Hurst Estimate of 1.49, again 

suggesting persistence. 
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Figure 27 - Periodogram Analysis of Monthly Gold Prices 

 

 

Finally, one more way to derive the Hurst exponent for gold prices is to use the FARIMA 

model.  The differencing parameter, or exponent on the autoregressive and moving 

average terms, is allowed to vary in order to estimate the dependency on dimensional 

space and the amount of the dependency is given by the Hurst Exponent.  The results of 

an FARIMA(1,d,1) model, that is to say, 1 Auto Regressive and 1 Moving Average 

component allowing the fractional differencing (d) component to be estimated to 

determine the level of dependency, Hurst Exponent is 1-d (Table 3). 
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Table 3 - Estimation of Hurst Exponent with FARIMA 

Coefficients   Estimate   Std. Error   z Value Pr(>| z|)  
d   4.583e-05   0.000   Inf<2e-16***  
AR(1)   9.995e-01   0.000   Inf<2e-16***  
MA(1)   -2.980e-01   7.075e-03   -42.12<2e-16***  
       
Significance: 0'***'        
Log likelihood: -2115        
  

The Hurst Exponent is 1-d (1-4.583e-05) = 0.999, thus, the Hurst Exponent = 0.999.  The 

fact that the Hurst Exponent is greater than ½ shows that the dependency on the past is 

rather large.  The derived Hurst Exponent shows that there is dependence between prices 

over very long intervals of time in gold prices. 

  

A quick review of the results of our Hurst Exponent tests (Table 4) shows the prominence 

of the result that some long memory process exists in the price of gold because all tests, 

and the average of all tests, are greater than 1/2.  The variations in the results of the 

different Hurst Exponent tests are due to the different methods employed to estimate the 

long run dependence. 
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Table 4 - Summary of Hurst Exponents for Monthly Gold Price 

RS Method  0.98 
ACF Method  0.83 
AMM Method  2.44 
AVM Method  1.19 
Periodogram Method  1.49 
FARIMA Method  0.99 

Average Hurst Exponent for All Methods  1.32 
  

Due to the variety of estimating techniques for the Hurst Exponent results of those 

techniques will vary.  In our case the AMM, AVM and Periodogram methods produced 

results that were outside of the theoretical limit of the Hurst Exponent.  This is the result 

of difficulties in estimation of the Hurst Exponent.  As of this moment there is no 

consensus as to which test is preferred given a particular set of conditions.  This is why 

we performed all tests for the Hurst Exponent.  All tests show a preponderance of of the 

Hurst Exponent having a value greater than 1/2.  Testing for the Hurst Exponent has 

determined the existence of long run dependence in gold prices.  We have shown that the 

price of gold has a large persistent memory over time.  However, we need to classify this 

dependence.  For instance, what is the functional form?  To classify the dependence we 

must perform a check on whether the system is random, deterministic or some 

combination of both.  

 

The Lyapunov Exponent will identify if the dynamic system of gold prices has a 

deterministic or random component.  Once the component is identified we will then 

separate the deterministic portion of the data from the random portion.  
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Estimating the Lyapunov Exponent for Gold Prices 

To test for the dimensional space, a Lyapunov Exponent was calculated as seen in Figure 

28.  The calculation determined that there are a finite number of dimensions, suggesting 

that part of the appropriate functional form, is multiplicative in nature.  This is suggested 

because there is a portion of the system of gold prices that is not IID (Idependently 

Idenentically Distributed) and therefore not linear. 

 

Figure 28 - Lyapunov Exponent Estimation of Monthly Gold Prices 

 

The red line represents the average Lyapunov Exponent over the entire series of gold 

data, which has a value of 3.93.  This demonstrates the dimensions are finite in number 

Number of Dimensions

Ly
ap

un
ov

 E
xp

on
en

t

0 20 40 60 80 100 120
-2

0

2

4

6

8



 

81 

due to the Lyapunov Exponent being positive.  As such, a portion of the system is 

deterministic.   

 

To confirm the deterministic result found, a polynomial equation was used to create the 

reference trajectory.  Then the Lyapunov Exponents were calculate by running 

regressions on ln(et) vs ln(e0) over different ranges of the data.  The results were of lower 

magnitude, due to the polynomial reference trajectory being not as accurate as the 

programmed computer procedure.  But the polynomial reference line still indicates some 

level of chaotic behavior.  Figure 29 shows an attractor plot of the Lyapunov Exponents 

calculated with the polynomial methed.  All Lyapunov Exponents are positive, 

indicationg deterministic behavior.  Also the attractor plot shows that the Lyapunov 

Exponents are bounded to a close area of values. 
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Figure 29- Attractor Plot of Lyapunov Exponents 

 

 

The range of Lyapunov Exponents using the polynomial method was:   

 

Table 5 - Range of Lyapunov Exponents from Polynomial Method 

Maximum Lyapunov Exponent  1.08 

Minimum Lyapunov Exponent  0.52 

Average Lyapunov Exponent  0.93 

  

Given the results from both methods, we conclude that because all the Lyapunov 

Exponents are positive, then there is some deterministic chaotic behavior in gold prices. 
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With the existence of both random and deterministic components verified, the next step is 

to separate the two.  To separate random IID and deterministic components of the price of 

gold, a space-time regression (Deutsch & Pfeifer 1981, Gooijer & Anderson 1985) must 

be used.   
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Seperating the Deterministic and the Random Components of Gold Price 

Using the Lyapunov Exponent we have demonstrated that a portion of the gold price is 

deterministic in nature.  To separate the random and deterministic, we need to check for 

linear dependency by utilizing the autocorrelation function.  The ACF is a measure of the 

strength of the relationship of the prices to themselves over time.  If the series exhibits a 

high degree of autocorrelation, that means that the series is very dependent on its 

previous values over time using the linear IID assumption.  When the ACF is zero, there 

is no relationship between the current price and the price that came before it.  We want to 

separate the data at this point, because the covariance across time in the data is zero when 

the ACF function has a value of zero.  At the point where the ACF is zero, the affects to 

the system are random.  In the case of gold, Figure 30 shows that the lag required to make 

the ACF coefficient equal to zero is 103 months.  Figure 30 shows that the linear serial 

correlation is large for a long period in time.  At the point where the ACF value is zero 

(103 months) there is no more linear serial correlation.  This indicates that the point of 

seperation between the deterministic and random components in the gold price begins at 

103 months. 
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Figure 30 - ACF Plot of Monthly Gold Data 

 
 
This is confirmation of the long memory we are seeing in the process and will be the 

starting point to sperate the deterministic and random components of the signal.  We can 

use the IID assumption in a linear model when there is no serial correlation.  To further 

test the memory, and determine if gold prices are random or not, we need to check the 

dimensional space.  If a series is random, then it will exhibit infinite dimensional space.  

Whereas a deterministic function will have a finite set of dimensions. The Lyapunov 

Exponent will give us an indication of the correct functional form for the signal.   

 

The space-time regression routine separates the aggregate signal (nominal gold price) by 

its serial correlation and dimensional space.  The starting of the estimation parameters is 
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at the ACF lag of 103 months and the Lyapunov Exponent result for the dimensional 

space requirement from our Lyapunov Exponent estimation.   

 

The Hurst, ACF and Lyapunov Exponent all indicate long run dependency and chaotic 

behavior in gold prices.  We now turn to separating the data in order to isolate the 

component of the price that exhibits long run dependency versus the component that does 

not.  To do this a Space-Time separation procedure was performed using the information 

gathered from the previous three tests.  The results of this procedure produce a data series 

for the exogenous, or inter market effects, that does not have any long run dependency.  

In other words it is stationary.   

 

To verify, an FARIMA(0,d,0) model was performed on the transformed data to test for 

long run dependency.  A Hurst exponent of 0.5 is measured indicating the transformed 

data is now stationary.  The long run dependent data is formed by subtracting the actual 

data from the random data.  The descriptive statistics are in Table 6.   
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Table 6 - Descriptive Statistics of both Gold Price Signals 

Intra Market Descriptive Statistics 

Minimum 1st 
Quartile 

Median Mean Std. Dev 3rd 
Quartile 

Maximum 

-27.04 0.04 1.745 2.64 3.09 3.07 55.92 

              

Inter Market Descriptive Statistics 

Minimum 1st 
Quartile 

Median Mean Std. Dev 3rd 
Quartile 

Maximum 

3.97 182.00 347.00 311.70 164.30 394.70 920.60 

  

We have now separated the long run dependent portion on the price (endogenous or intra 

market) and the random portion (exogenous or inter market), as shown in Table 6. 

 

Figure 31 shows the relative impacts of the two components.  The endogenous 

component accounts for less than 20% of the total price - indicationg gold prices are 

highly susceptible to external or inter market factors.   
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Figure 31 - Nominal Monthly Gold Price Impacts 

 

To illustrate the movement of the intra and inter market portions of price, both signals 

were normalized (Figure 32).  The intra and inter market factors do not move in relation 

to one another.  When we look at the intra market portion of the price we can see the 

series cycle in what appears to be a chaotic manner (Figure 32).  This is because the intra 

market portion is deterministic so the behavior is not random.  Recall the plot of the 

chaotic logistic equation as an example of what chaotic behavior looks like.  We will test 

for the existence of chaotic behavior to determine if the intra market price of gold moves 

up and down with a frequency similar to the pattern of the chaotic logistic function 

shown previously.  
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Figure 32 - Normalized Monthly Gold Price Impacts 

 

 

The functional form for the deterministic part of the series needs to be determined.  For 

continuity and ease we utilize the logistic functional form that was discussed previously.   

 

To verify that the logistic function fits the intra market signal we will test its validity via 

regression.  To use the logistic function, the data has been scaled into the range of 0 to 1 

and then an estimate of the value of the variable of sensitivity alpha is calculated using 

the method of non-linear least squares.  The results are shown in Table 7. 
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Table 7 - Estimation of Logistic Function 

Coefficient   Estimate   Std. Error   T Value   Pr(>| t|)  

Alpha   3.639   0.202   18.05   2e-16***  

         

Significance: 0'***'       

Residual standard error: 0.321 on 274 degrees of freedom 

  

The estimate of the alpha term in the logistic is significant at more than 1%.  The value of 

3.639 is inside of the theoretical limit of the logistic function and is a value that suggests 

chaotic behavior.  The non-linear least squares method indicates that the logistic function 

is a statistically appropriate function to describe the deterministic component of gold 

prices.  This will allow us to utilize the logistic function to characterize the deterministic 

component in gold prices.  The knowledge that the logistic function is possibly chaotic 

will prove useful later on.  Understanding that the gold industry is sensitive to industry 

changes will help in the understanding of policy changes that can effect the gold industry. 

 

With the price of gold separated into deterministic and random components, we can now 

perform regressions on each series.  Next, we will use our separated gold price signals, as 

well as world production data, to understand how price and quantity interact in the gold 

industry. 
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The Gold Industry and Gold Prices 

Given that gold prices exhibit long memory and chaotic behavior, this will allow us to 

develop a model that does not impose the normal restrictions of linear additivity.  Thus, 

the data itself determines the model.  Table 8 presents nominal annual descriptive 

statistics for the gold industry.  For the last century the average price of gold is $136.33 

per ounce, while the average production in the U.S. has been 120.25 tons and average 

U.S. consumption has been 150.03 tons per year.  The intra and inter market signals were 

developed using the previously discussed methodology.  The average price of the intra 

market signal is $1.66 per ounce, whereas the average price of the inter market signal is 

$137.99 per ounce.  Notice the vast difference in range between the two signals, the intra 

market prices ranged from $-10.75 to $8.21 and the inter market prices ranged from $19 

to $615.78.   

 

Table 8 - Descriptive Statistics of the Annual Gold Market 

Variable Mean Median Max Min Std 

Price($) 136.33 35.03 612.56 17.06 163.36

US Production (tons) 120.25 71.8 366 29.7 98.39 

Consumption (tons) 150.03 120 667 12.7 102.02

World Production (tons) 1260.84 1170 2600 481 615.16

Intra Market Signal ($) -1.66 -3.22 8.21 -10.75 3.09 

Inter Market Signal ($) 137.99 37.94 615.78 19 164.3 
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Since the production data is annual, the price of gold was split on an annual basis using 

the same methodology as before.  Again, evidence of chaotic behavior exists as we can 

see from the Lyapunov Exponents of the price of gold which are predominatley positive 

as well as in finite number(Figure 33). 

 

Figure 33 - Yearly Gold Price Lyapunov Exponents 

 

Evidence that a long memory process exists is also supported by the ACF estimate of the 

Hurst Exponent which is 0.723 for an annual measurement.  The value of 0.723 for the 

Hurst Exponent means that there is some positive persistent behavior (memory) in annual 
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gold prices.  The persistent behavior detected by the Hurst Exponent means that the 

current market price of gold is dependent on previous prices. 

 

Using the same methodology as used in the previous section to separate the monthly gold 

price, the intra market and inter market annual signals can also be separated.  These 

signals take the form seen in Figures 34 and 35.  The descriptive statistics are in the 

previous table (Table 8).  Figures 34 and 35 show the yearly intra and inter market 

signals. 

 

Figure 34 - Intra Market Gold Price Signals (1908-2006) 
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Figure 35 - Inter Market Gold Price Signals (1908-2006) 

 

 

As with the monthly gold data, we can see that the intra market effect on price is low 

compared to the inter market effect.  This means that currently gold prices are extremely 

sensitive to, and dominated by inter market (exogenous) factors.  In comparing both price 

signals the complete deregulation of the gold industry in the 1970s caused the price of 

gold to be more susceptible to exogenous factors.  This corresponds to the increase in the 

inter market signal in Figure 35.  Comparing the two signals allows us to also infer that as 

the number of gold mining firms has increased, the intra market signal has less of an 
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impact on the market price.  In other words, as the gold industry's concentration 

decreases, the price is more subject to external factors.  As the industry consolidates, the 

intra market signal becomes more significant and the market price of gold is less affected 

by inter market effects. 

 

To appreciate how separation of price signals can be beneficial, let us look at the inter 

market signal and significant events that happened in the gold market from 1908-1970.  

Remember, that since the intra market effect has been removed, we are actually looking 

at the true magnitude of the inter market effect.  The inter market signal here is the same 

as in Figure 35, the scale is changed to display the occurance of the events clearly. 

 

Figure 36 - Exogenous Events vs. Inter Market Price 
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From the graph it can be seen that this pure Fractal Brownian Motion signal clearly 

displays the exogenous events.  The key here, is that looking only at this particular part of 

the price signal, we can now tell what the correctly scaled impact from an inter market 

event truly was.  It is important to note that this type of analysis can be used on any 

frequency of observation, in this case the data was yearly.  Note that you cannot 

disaggregate or aggregate signals, in other words, we would not be able to take this 

yearly inter market signal and calculate for a monthly time frame or vice versa. 

 

To test that the events listed in Figure 36 had a significant impact on the FBM signal a 

trend stationary AR(1) regression was performed (Table 9).  Due to the amount of data 

points available the following equation was used for the test in Table 9 to keep adequate 

degrees of freedom.  One dummy variable was used to test for the significance of all 

events, the impact of each individual event was not tested. 

 

௧ܲ ൌ ן଴൅ ߚଵ ܶ݀݊݁ݎ ൅ ሺ1ሻܴܣ ଶߚ  ൅ ߚଷ ݏݐ݊݁ݒܧ ൅  ௧ߝ 
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Table 9 - Estimation of Exogenous Events on Inter Market Price 

Dependent variable: Inter Market Gold Price   
Number of observations: 98   
     

Variable Coefficient St. Error t-statistic Sign. 
Constant -16.072 10.301 -1.560 [0.1220] 
Trend 0.562 0.265 2.124 [0.0363] 
AR(1) 0.929 0.048 19.328 [0.0000] 
Events 25.88 13.922 1.859 [0.0661] 
     

R2adj. = 92.70% 
R2 = 92.93% 
DW = 1.6369 
S.E. = 44.4921 
Residual sum of squares:  186077.134 
Maximum loglikelihood: -508.954 
AIC =  10.489 
F(3,94) = 411.7796 [0.0000] 
Normality: χ2(2) = 1287.958 [0.0000] 
Heteroskedasticity: χ2(1) = 10.519   [0.0012] 
Functional form: χ2(1) = 12.0982 [0.0005] 
AR(1) in the error: χ2(1) = 1.9386 [0.1638] 

 

The events had a statistically significant affect on the inter market price signal (Table 9).  

The coefficient estimate of the external events shows a $25.88 impact on the inter market 

price signal per event.  Further investigation of the individual events in Figure 36 was 

done by using a dummy variable for each event, given the following equation. 
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௧ܲ ൌ ן଴൅ ߚଵ ܶ݀݊݁ݎ ൅ ߚଶ ܴܣሺ1ሻ ൅ 1 ݐ݊݁ݒܧ ଷߚ  ൅ 2 ݐ݊݁ݒܧସߚ  ൅ 3 ݐ݊݁ݒܧହߚ 

൅ 4 ݐ݊݁ݒܧ଺ߚ  ൅ 5 ݐ݊݁ݒܧ଻ߚ  ൅ 6 ݐ݊݁ݒܧ଼ߚ ൅ 7 ݐ݊݁ݒܧଽߚ  ൅ ߚଵ଴8 ݐ݊݁ݒܧ

൅  ௧ߝ 

 

The results of the regression are given in Table 10.  The results of the estimated 

coefficients are not very robust the estimated coefficients have the appropriate sign we 

would expect from visual inspection of Figure 36 with the exception of Event 7.   
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Table 10 - Estimation of Individual Events on Inter Market Price 

Dependent variable: Inter Market Gold Price   
Number of observations: 98   
Variable Coefficient St. Error t-statistic Sign. 
Constant -13.314 11.248 -1.184 [0.2398] 
Trend 0.628 0.286 2.198 [0.0306] 
AR(1) 0.909 0.051 17.837 [0.0000] 
Britan Returns to  
Gold Standard 
(Event 1) 

1.042 1.043 0.964 [0.3377] 

1929 Market Crash 
(Event 2) 

-0.964 1.043 -0.859 [0.3927] 

U.S. Prohibits 
Private Holding of 
Gold (Event 3) 

-0.765 1.044 -6.279 [0.0000] 

1934 Gold Act 
(Event 4) 

-0.753 1.042 -6.891 [0.0000] 

Fort Knox Opens 
(Event 5) 

1.121 1.044 2.665 [0.0092] 

Bretton Woods 
(Event 6) 

-0.996 1.042 -0.108 [0.9145] 

London Gold 
Market Reopens 
(Event 7) 

-0.988 1.042 -0.302 [0.7630] 

London Gold 
Market Closes 
(Event 8) 

1.003 1.042 0.079 [0.9373] 

R2adj. = 91.86% 
R2 = 92.70% 
DW = 1.6573 
S.E. = 46.988 
Residual sum of squares:  192084.071 
Maximum loglikelihood: -510.511 
AIC =  10.663 
F(10,87) = 110.487 [0.0000] 
Normality: χ2(2) = 2109.259 [0.0000] 
Heteroskedasticity: χ2(1) = 7.775   [0.0053] 
Functional form: χ2(1) = 16.1233 [0.0001] 
AR(1) in the error: χ2(1) = 1.6677 [0.1966] 



 

100 

To discern what type of randomness is occuring we need to test the series for its Hurst 

Exponent.  Please note, we previously used the Hurst Exponent to test for long run 

memory over the entire signal.  This time we are using the Hurst Exponent to test for 

correlation of FBM to determine the type of randomness.  The ACF method of Hurst 

Exponent estimation derives a value of 0.726. 

 

The result of the ACF test shows that the series is persistent FBM.  Knowing this, allows 

us not to falsely conclude that the part of the series that is random is not RBM, what we 

see is FBM.  This is important in a dynamical system because we now know that the inter 

market impacts are not of the RBM type and that the randomness is indeed serially 

correlated over time.  This demonstrates a significant interpretation change of the 

randomness.  It means that there is a more likely chance of movements conferring on 

each other up to a switch point.  For example, we are more likely to see many upward 

movements before a downward movement.  The persistence is an important consideration 

in understanding the systems behavior. 

 

To further investigate the separation and dimensional space of the variables, let us look at 

three dimensional attractor plots of the two signals (Figures 37 and 38). 
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Figure 37 - Attractor Plot of Intra Market Gold Prices 
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Figure 38 - Attractor Plot of Yearly Inter Market Gold Prices 

 

The attractor plots of the intra market signal are consistent with deterministic behavior, 

because they are dimensionally close.  We can see in Figure 37 that all of the intra market 

prices remain in a resticted dimensional space.  In the case of the inter market prices, we 

can see that they are persistent FBM because the points remain in relativley close 

dimensional space.  Both price signals have some persistance (memory) in each price 

signal.  We can see that the level of divergence is much less than the inter market.  These 

results demonstrate that the random component has a larger impact on the overall price of 

gold. 
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We have specifically used the Lyapunov Exponent to separate the series by nearby 

trajectories, thus demonstrating the cycling behavior on the intra market prices.  Looking 

at surface plots of the same attractors, we can see the limited dimensional space and 

grouping of prices (Figure 39 and 40).  The surface plots allow for an interpolation of all 

between the points from each scatter plot.  The highest values are in red for each plot and 

the lowest values are in purple.  The surface plots show an interesting topography to each 

price signal.  For example in Figure 39 there is a low spot at approximately Pt = -10, Pt+1 

= -6, Pt+2 = -5.  This combination of these three prices over time shows the persistance in 

the data, where one low value causes the value to stay low in the future. 

 

Figure 39 - Surface Plot of Yearly Intra Market Gold Prices 
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In Figure 40 we can see the high peaks in red also demonstrate the persistance in the inter 

market price, where a high value causes high values to persist into the future. 

 

Figure 40 - Surface Plot of Yearly Inter Market Gold Prices 

 

Both the surface plots of the intra and inter market prices show groupings of the prices 

(peaks and valleys) in a more pronounced manner than the scatter plots.  The surface 

plots confer the result that there are a finite number of dimensions in both price signals 

and that persistance exists in both price signals. 

 

We can now look at other impacts on gold prices, other than the two signals by 

themselves.  Examination of regressions on the two signals of different explanatory 
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variables will show how production can affect the price of gold.  In both the intra and 

inter market values, some autoregressive components can be seen in the plots of the 

autocorrelation function (Figure 41 and 42). 

 

Figure 41 - ACF of Intra Market Price Signal 
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Figure 42 - ACF of Inter Market Price Signal 

 

 

Both ACF plots suggest serial correlation of both signals in a linear sense due to the high 

ACF values over many lags.  The slowly decaying ACF values versus the lags show that 

autoregressive components will be necessary in both regressions to remove linear serial 

correlation. 

 

Using the percentage of world production by country, we can run regressions which have 

that results confer the description of the two signals.  The first regression run is on the 

inter market signal, identifying how production by country affects the inter market price 

signal.  Four of the largest gold producing countries were chosen (Canada, U.S., Mexico 

and South Africa).  The following regression equation was used. 
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௧݁ܿ݅ݎܲ ݐ݁݇ݎܽܯ ݎ݁ݐ݊ܫ ൌ ଴ߙ  ൅ ௧ܽ݀ܽ݊ܽܥ ଵߚ  ൅ ௧݋ܿ݅ݔ݁ܯ  ଶߚ  ൅ ߚଷ ܵܽܿ݅ݎ݂ܣ ݄ݐݑ݋௧ ൅

.ܷ ସߚ  ܵ.௧൅ ߚହ ܴܣሺ1ሻ ൅    ௧ߝ 

 

The results of the inter market price signal, are listed in Table 11 (the signal was 

normalized to improve estimation). 
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Table 11 - Estimation of Industry Structure on Inter Market Price 

Dependent Variable: Normalized Inter Market Signal 
Number of Observations: 74  

 

Variable  Coefficient St. Error T-Statistic Sign. 
Constant 0.68 0.28 2.41 [0.0187] 
Canada -2.96 1.6 -1.85 [0.0689] 
Mexico -8.69 6.89 -1.26 [0.2115] 
South Africa -0.6 0.37 -1.62 [0.1088] 
United States -0.78 1.44 -0.54 [0.5890] 
AR(1) 0.87 0.06 14.82 [0.0000] 

 

Adjusted R2 = 91.46%  
R2 = 92.05%  
DW = 1.8487  
S.E = 0.2927  
Residual Sum of Squares: 5.8257  
Maximum Loglikelihood: -10.9554  
AIC = 0.4853  
F(5,68) = 157.3769 [0.0000]  
Normality: ߯ଶሺ2ሻ = 1495.556 [0.0000]  
Heteroskedasticity: ߯ଶሺ1ሻ = 3.7302 [0.0534] 
Functional Form: ߯ଶሺ1ሻ = 16.1094 [0.0001] 
AR(1) in the error: ߯ଶሺ1ሻ = 0.4761 [0.4902] 

 

The signs of the coefficients are negative as economic theory would predict.  As the 

industry consolidates, the inter market signal weakens.  Meaning that as competition goes 

down, the gold industry is less sensitive to inter market events.  Conversely , as 

competition increases, market share is dilluted, and external events have a greater impact 

on the overall price of gold.  As one country produces a larger share of the world 

production, the result is that the inter market signal is reduced.   



 

109 

 

Conversely if we look at the intra market price versus the United States production (Table 

12), we see that the effect is the opposite from that of the inter market.  The following 

regression equation was used to estimate the coefficients. 

 

௧݁ܿ݅ݎܲ ݐ݁݇ݎܽܯ ܽݎݐ݊ܫ ൌ ଴ߙ  ൅ .ܷ ଵߚ  ܵ.௧൅ ߚଶ ܴܣሺ1ሻ ൅ ߚଷ ܴܣሺ2ሻ ൅ ߝ௧  

 

Although the results are not as robust as the inter market price, the estimated coefficient 

suggests that as the percentage of world production by the United States grows, the intra 

market price increases.  If the Intra market price is increasing the inter market price 

would be declining, resulting in the market price of gold becomes less subject to inter 

market events such as those seen in Figure 36 (wars, stock market crash, etc.).  . 
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Table 12 - Estimation of U.S Production on Intra Market Price 

Dependent Variable: Normalized Intra Market Signal 
Number of Observations: 74  

  

Variable  Coefficient St. Error T-Statistic Sign. 
Constant  -0.03 0.11 -0.26 [0.7982] 
United States  0.52 1.25 0.42 [0.6733] 
AR(1)  1.25 0.11 11.93 [0.0000] 
AR(2)  -0.46 0.1 -4.37 [0.0000] 

  

Adjusted R2 = 79.84%  
R2 = 80.67%  
DW = 1.7111  
S.E = 0.448  
Residual Sum of Squares: 14.047  
Maximum Loglikelihood: -43.52  
AIC = 1.311  
F(3,70) = 97.3597 [0.0000]  
Normality: ߯ଶሺ2ሻ = 145.0713 [0.0000]  
Heteroskedasticity: ߯ଶሺ1ሻ = 0.2308 [0.6309] 
Functional Form: ߯ଶሺ1ሻ = 0.6767 [0.4107] 
AR(1) in the error: ߯ଶሺ1ሻ = 0.418 [0.5179] 
  

 

The separation of the price into its two components helps us to quantify the different 

effects of market structure.  The separate regressions allow for a more detailed account of 

what is occuring in the gold industry.  Without separating the signals, the sign change in 

US production would not be obvious, due to the greater magnitude of the inter market 

signal.  This is clearly demonstrated when we look at regressions of the same 



 

111 

independent variables versus the entire price signal (Table 12).  The following equation 

for estimation was used. 

 

௧݁ܿ݅ݎܲ ݈݀݋ܩ ൌ ଴ߙ  ൅ ߚଵ ܽ݀ܽ݊ܽܥ௧ ൅ ௧݋ܿ݅ݔ݁ܯ  ଶߚ  ൅ ௧ܽܿ݅ݎ݂ܣ ݄ݐݑ݋ܵ ଷߚ  ൅ .ܷ ସߚ  ܵ.௧൅

ሺ1ሻܴܣ ହߚ  ൅   ௧ߝ 

 

Please note that the U.S. coefficient is negative as it was in the inter market regression.  

However the estimated coefficient is now larger in magnitude from -0.78 to -0.82.  While 

the regression results are not robust enough to be statistically different, the differences in 

the estimates suggests that the separation of the market price into the two signal offers a 

different perspective on the data.  The only conclusion which can be drawn, when not 

separating the signals, is that as gold production increases the price of gold goes down.  

This conclusion is more generalized and does not show as much detail as to how the 

market structure of the gold industry affects the price of gold. 

 

 

 

 

 

 

 

 



 

112 

Table 13 - Estimation of Market Structure of Entire Gold Price 

Dependent Variable: Normalized Gold Price 
Number of Observations: 74  

  

Variable  Coefficient St. Error T-Statistic Sign. 
Constant  0.67 0.28 2.47 [0.0159] 
Canada  -2.99 1.61 -1.85 [0.0680] 
Mexico  -8.76 6.89 -1.27 [0.2082] 
South Africa  -0.63 0.37 -1.69 [0.0950] 
United States  -0.82 1.45 -0.57 [0.5724] 
AR(1)  0.86 0.06 14.75 [0.0000] 

 

Adjusted R2 = 91.34%  
R2 = 91.93%  
DW = 1.8620  
S.E = 0.2941  
Residual Sum of Squares: 5.8835  
Maximum Loglikelihood: -11.3209  
AIC = 0.4952  
F(5,68) = 154.9573 [0.0000]  
Normality: ߯ଶሺ2ሻ = 1564.79 [0.0000]  
Heteroskedasticity: ߯ଶሺ1ሻ = 3.6514 [0.0560] 
Functional Form: ߯ଶሺ1ሻ = 16.8505 [0.0000] 
AR(1) in the error: ߯ଶሺ1ሻ = 0.387 [0.0619] 
  

For example, the difference in the coefficient on US production (Table 11 and 13) is 0.04.  

This may seem insignificant, but an extra 0.04 tons of gold in the world could cause a 

large impact on price.  In the case of looking for the intra market effect, we can see that 

because the inter market signal is so large, the estimate below is contrary to the results we 

would expect (Table 14).  The following estimation equation was used. 
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௧݁ܿ݅ݎܲ ݈݀݋ܩ ൌ ଴ߙ  ൅ ߚଵ ܷ. ܵ.௧൅ ߚଶ ܴܣሺ1ሻ ൅ ሺ2ሻܴܣ ଷߚ  ൅  ௧ߝ 

 

Table 14 - Estimation of U.S Production on Entire Gold Price 

Dependent Variable: Normalized Gold Price 
Number of Observations: 74  

  

Variable  Coefficient St. Error T-Statistic Sign. 
Constant  0.08 0.08 0.95 [0.3430] 
United States  -0.59 0.99 -0.59 [0.5561] 
AR(1)  1.04 0.12 8.71 [0.0000] 
AR(2)  -0.07 0.12 -0.57 [0.5696] 

  

Adjusted R2 = 90.69%  
R2 = 91.07%  
DW = 1.9562  
S.E = 0.305  
Residual Sum of Squares: 6.512  
Maximum Loglikelihood: -15.078  
AIC = 0.5426  
F(3,70) = 237.9363 [0.0000]  
Normality: ߯ଶሺ2ሻ = 1080.687 [0.0000]  
Heteroskedasticity: ߯ଶሺ1ሻ = 6.718 [0.0095] 
Functional Form: ߯ଶሺ1ሻ = 34.4353 [0.0000] 
AR(1) in the error: ߯ଶሺ1ሻ = 3.761 [0.0525] 
  

We would expect to see, from our previous analysis, that the coefficient for US 

production should be positive, however the magnitude of the inter market signal causes 

the coefficient to be negative.  We cannot estimate the true effect of market structure 
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using a regression without separating the signals.  This is important for simulations, as we 

will see in the next section.  
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Simulation of Gold Industry Events 

To analyze the affect of potential future events on the industry, we can simulate different 

scenarios and see the impact the change in market structure has on the market price.  

Given our previous analysis, we know that there is a deterministic and a random 

component to the market price of gold.  The deterministic component is multiplicative in 

nature and the random component displays signs of persistent FBM.  The following 

general equation for gold price will be used for simulation:  

 

௧݌ ൌ ௧ିଵሺ1݌ߙߚ െ ௧ିଵሻ݌ ൅ ,ݐ۰ுሺߠ ߱ሻ 

Where: 

β = Scaling factor on the logistic function 

θ = Scaling Factor of FBM 

 

Simulation allows us to vary the magnitudes of the deterministic and random 

components.  Simulation also provides the level of oscillation in the deterministic 

component and the level of memory in the random component.  Both the deterministic 

and random components are produced on a zero to one scale, as such the scaling factor 

puts the prices into the range of current prices.  Because the previous empirical tests of 

the FBM component showed persistence, a value of 0.9 was assigned for the Hurst 

Exponent.  The Hurst Exponent could be changed to test for what would happen to 

structural changes in the type of randomness, if desired.  However for the purposes of this 

paper, we will only evaluate changes in the deterministic and random components. 
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We simulate four scenarios.  The first base case is consistent with a large number of firms 

in the industry and a large random component.  The second case is consistent with a 

smaller number of firms in the industry and a large random component.  The third case is 

consistent with a small number of firms in the industry and a small random component.  

The fourth case is consistent with a large number of firms in the industry and a small 

random component.  The table below summarizes the four simulations. 

 

Table 15 - Design of Simulations 

D
eg

re
e 

of
 

R
an

do
m

ne
ss

 

 Number of Firms 

 Many Few 

High Simulation 1 Simulation 2 

Low Simulation 4 Simulation 3 

 

Figure 43 shows a simulation of the gold price path under the scenario of a stationary 

deterministic component (α=1) and a large random component.  This scenario describes a 

situation in which the gold industry is reaching perfect competition.  Since α=1 the 

deterministic portion of the price signal remains constant.  Thus this simulation result is 

only influenced by the random signal. 
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Figure 43 - Simulation of Gold Price (1) 

 

 

This figure (43) demonstrates that the price of gold is subject to external events which are 

the only cause for these price changes.  As market share per firm declines, the intra 

market signal will be reduced to a fixed value.  This will leave the market price of gold 

highly subject to inter market events. 

 

The simulation in Figure 44 has the same random component and scale as in Figure 45.  

The change in the simulation this time, is making the deterministic component oscillate 

(α=3.5).  This could be a situation of consolidation of firms within the industry, with the 
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random component still having a greater share of causation of gold prices.  In this case, 

both the random and deterministic components confer on one another causing an increase 

in the volitility of gold prices.  This simulation represents the current state of the gold 

industry.  As the gold industry has been consolidating over the past decade the intra 

market signal is getting larger in magnitude and more chaotic, however the FBM still is 

much larger.  

Figure 44 - Simulation of Gold Price (2) 

 

 

Figure 45 uses the same oscillation as in Figure 44, but this time the random component 

is of lower magnitude.  This is a historic scenario where more regulation is causing the 
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price of gold to be less subject to external events and there are fewer firms.  In this case 

the oscillatory behavior of the deterministic signal, overrides the random component and 

more regular oscillations in the price of gold occur.  This simulation describes a gold 

industry that has few firms and is stable to external events.  Historically this scenario has 

occurred and describes the situation of gold being regulated for currencies.  

Figure 45 - Simulation of Gold Price (3) 

 

 

In Figure 46 the deterministic component attenuates to a “long run” value.  Meaning that 

over time, only the random component causes changes in the price of gold.  As in the 

previous scenario if regulation kept the effects from external events low, but in this case 
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there is more competition in the industry.  Gold prices would be less effected by intra 

industry changes and more by inter market events.  What makes this simulation different 

from the one in Figure 44 is the magnitude of the FBM, which is lower causing the range 

on gold prices to be smaller. 

Figure 46 - Simulation of Gold Price (4) 

 

 

To recap, in Figure 43 the Brownian motion is the larger of the two effects and in Figure 

44 the FBM is still the larger of the effects, but the deterministic signal is chaotic.  In 

Figure 44 even though the magnitude of the deterministic effect is small, the amount of 

cycling (chaotic behavior) still has an impact on the price, however it is minimized by the 
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much larger in magnitude inter market component.  In Figures 45 and 46 the 

deterministic components are larger in magnitude than the random components.  In 

Figure 46 the level of chaotic behavior declines, as there is a significantly larger decrease 

in cycling behavior.  A comparison of the magnitudes of change between the four 

scenarios is given in the stacked bar graph (Figure 47).  All four scenarios were centered 

around their mean for comparision.  From Figure 47 we see that industry consolidation 

(scenarios 2 & 3) would lead to more chaotic behavior in prices and consequently more 

up and down changes in the price of gold.  This is in contrast to scenarios 1 and 4 where 

the inter market price has more of an impact on the overall price.  In that case we can see 

swings in the price of gold, but they occur with less regular frequency. 
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Figure 47 – Scenario Comparison 

 

 

 

The importance of being able to simulate the system in accordance with its character, is 

that it can lead to a better understanding of how changes in industry structure can affect 

the market price.  With simulation based on a more accurate functional form, we can 

better understand the impact of various changes.  We have learned that changes in market 

structure affect the volatility in the price of gold because it changes the magnitudes of the 

deterministic and random effects.  This type of simulation can help us determine how 

sensitive an economic system is to both intra and inter market changes.  
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In the case of the gold industry, currently the inter market signal is so much larger than 

the intra market signal that the exogenous market impacts override many of the 

deterministic behaviors in the price signal.  If the current conditions of the gold industry 

continue, we can expect to see gold prices remaining volatile for some time to come. 

 

From the simulation results, we conclude that the market structure of the gold industry 

will influence the price of gold.  As competition in the gold industry decreases, the intra 

market price becomes chaotic, whether or not it has a large impact on the price is 

dependent on the size of the inter market component.  As competition in the gold industry 

grows and more firms arise, the intra market price becomes less chaotic and more stable 

and the market price of gold is influenced more by exogenous events. 

 

Using the information and results derived so far we can construct a linear model of the 

market for gold in the U.S. that includes the behavior of gold prices.  Our results so far 

have shown that the price of gold has an intra and inter market component.  We have 

tested both components and learned that the intra market component has chaotic behavior 

and that the inter market component is persistent FBM.  We will use a similar functional 

form for the the movement of gold prices over time as was used in the simulations as this 

is the appropriate characterization of the movement in the market price of gold over time.  

With this information we will develop a supply and demand model that can give insight 

into gold industry events and their impact on the market price of gold.   
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Constructing the U.S Demand and Supply for Gold 

Employing the functional form of both a deterministic component and a random 

component for gold prices (that has been developed, tested and simulated) a demand and 

supply curve can be constructed for the U.S. Gold industry, based off of the data from 

1970 to 2008.  Data prior to 1970 was excluded because of the influence of the regulation 

of gold prices, which caused a dampening of the motion of the variables.  Again we use 

the logistic function with a random component for the price equation.  Price over time is: 

 

௧݌ ൌ ௧ିଵሺ1ݔߙ െ ௧ିଵ݌௧ିଵሻݔ ൅ ۰ுሺݐ െ 1, ߱ሻ 

Where:  

x = growth rate of price 

α = sensitivity of deterministic component 

ВH = FBM 

 

To relate the price with quantity demanded and quantity supplied, linear equations will be 

used for ease and because the scatter plot of the variables suggest that a linear 

approximation to be appropriate (Figure 48).  The relationship between price and quantity 

in the phase space is linearly defined as: 

 

Demand ؠ ௧݌   ൌ ߛ െ  ௧ݍߜ

Supply ؠ ௧݌ ൌ ߡ ൅  ௧ݍߢ
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Replacing ݌௧ in the supply and demand equations with the equation for gold price over 

time gives the following price and quantity relationships: 

 

Demand ؠ ௧ݍ ൌ ఊିఈ௫೟షభሺଵି௫೟షభሻ௣೟షభି۰ಹሺ௧ିଵ,ఠሻ
ఋ

                      (1) 

Supply ؠ ௧ݍ ൌ ఈ௫೟షభሺଵି௫೟షభሻ௣೟షభା۰ಹሺ௧ିଵ,ఠሻିఐ
఑

                         (2) 

 

Since the logistic function is the growth rate, we can replace ݔߙ௧ିଵሺ1 െ  ௧ݔ ௧ିଵሻ withݔ

and solve for equilibrium price and quantity relationships.  

Where: ߭ ൌ ߛ ൅  ߡ

 

௧݌
כ ൌ జି۰ಹሺ௧,ఠሻ

௫೟శభ
                                                                     (3) 

 

Demand ؠ ௧ݍ
כ ൌ ఊ௫೟శభିజି۰ಹሺ௧,ఠሻ

ఋ௫೟శభ
                                        (4) 

 

Supply ؠ ௧ݍ
כ ൌ జିఐ௫೟శభି۰ಹሺ௧,ఠሻ

఑௫೟శభ
                                           (5) 

 

Some important items to note are that both equilibrium price and quantity are determined 

by both deterministic growth as well as randomness.  Using equations 1 and 2, as well as 

the intra and inter market signals estimated earlier the points for the price/quantity 

relationship in the phase space can be plotted in Figure 48.  To calculate the demand and 

supply curves of the U.S. gold industry through 2008 equations 3, 4 and 5 are used to 
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create the lines of best fit through the points via the simplex method.  To create the best 

fit γ,δ,ι,κ and x are all interated where each p* and q* have the smallest mean squared 

error.  The linear demand and supply curves are the fitted p*, q* combinations of best fit 

to the points from the demand and supply schedules (Figure 48). 

 

Figure 48 - U.S. Demand and Supply of Gold 
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relationship for both curves.  From Figure 48, the equilbrium price from 1970 – 2006 is 

$321.32 and the equilibrium quantity is 184.76 tons per year in the U.S.  From the 

characterization of the gold price, we know that deviations from the equilibrium are in 

large part caused by random exogenous events.  This is due to the magnitude of the inter 

market price being much greater than that of the intra market price. 

  

To investigate the equilibrium further, we can look at an attractor plot (Figure 49) of the 

price, quantity demanded and quantity supplied.  Again we can see that randomness is 

causing dispersion in the equilibriums but that the dimensional space is still relatively 

close.  Meaning that the equilibrium is still being influenced by deterministic behaviors. 

 

Figure 49 - Attractor Plot of: Price and Quantity of Gold 
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Furthermore, a surface plot (Figure 50) of the three variables (price, quantity demanded, 

quantity supplied) gives an interpolation of all possible equilibrium points within the 

system.  As economic theory would suggest, the quantity supplied is higher when the 

price is high and the quantity demanded is high when the price is low.  The estimated 

supply and demand equations concur with economic theory. 

 

Figure 50 - Surface Plot of: Price, Quantity Demanded and Quantity Supplied of Gold 

 

 

We can also look at equilibrium growth rates from the deterministic component of the 

price for both the demand and supply equations in the equilibrium.  The growth rates are 
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derived by solving p* and q* for x.  recall that the growth rates come from the 

deterministic (intra market) component of the gold price.  Solving for the equilibrium 

growth rates gives the change in quantity demanded or supplied from the sensitivity of 

the intra market change in price. 

 

Equilibrium Quantity Demanded Growth Rate ؠ ௧ାଵݔ
כ ൌ జሺଵାఋሻା۰ಹሺ௧,ఠሻሺଵିఋሻ

ఊ
 

Equilibrium Quantity Supplied Growth Rate ؠ ௧ାଵݔ
כ ൌ జሺଵି఑ሻି۰ಹሺ௧,ఠሻሺଵା఑ሻ

ఐ
 

 

Based on the equations, the equilibrium growth rates are partially dependent on the 

random component as well as the constant and slope terms from the supply and demand 

equations.  In the case of gold, because the random component is larger, a small change 

in the inter market effect can cause a large change in the growth (reduction) of the 

quantity demanded and quantity supplied.  The magnitude of the effect of the random 

price component causes the elasticity of the curves.  At the equilibrium over time from 

1970 - 2008 the elasticity of demand and supply are: 

ؠ ݀݊ܽ݉݁ܦ ݂݋ ݕݐ݅ܿ݅ݐݏ݈ܽܧ ௗߝ  ൌ 1.82 

ؠ ݕ݈݌݌ݑܵ ݂݋ ݕݐ݅ܿ݅ݐݏ݈ܽܧ  ௦ = 0.86ߝ 

From an economic theory standpoint, this makes sense.  Suppliers of gold are not as 

responsive to changes in price as demanders.  This is because mining gold involves a lot 

of capital that is not easy to change in a short period of time.   
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The elasticity measures give some understanding of the sensitivity of quantity demanded 

and quantity supplied to changes in price.  However, the demand and supply growth rates 

show the volatility of the deterministic part of the price signal over time.  The demand 

growth rate is much larger and more sensitive to random changes than the supply growth 

rate, as can be seen in Figures 51 and 52.  Solving the equilibrium growth rates for the 

sensitivity coefficient in the logistic function for both demand and supply shows how 

sensitive or not both series are.  The quantity demanded has an alpha of 3.95 whereas the 

quantity supplied has an alpha of 0.467.  The elasticities of both curves are a rough 

indicator of this behavior, but it is through the use of the logistic equation that we can get 

a better picture of how volatile the two components are.  In Figure 51 we see that the 

growth in demand for gold has fluctuated since the 1970’s due to the chaotic behavior of 

the system.  This means that the demand curve for gold is shifting more often than the 

supply curve.  The changes in the market price of gold come largely from shifts in the 

demand curve, not the supply curve. 
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Figure 51 - Equilibrium Growth Rates for U.S. Gold Demand 

 

In Figure 52, the growth rate in supply has diminished to near zero since the 1970’s as 

more mines have opened.  The growth rate shows that the deterministic component of 

price that affects the quantity supplied, has declined to a constant level.  With no 

significant changes in the market structure of the gold industry we should expect that in 

the future, the growth rate in the supply of gold will continue to fall, internally in the 

industry.   
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Figure 52 - Equilibrium Growth Rates for U.S. Supply of Gold 

 

 

A spectral analysis of the demand (Figure 53) and supply (Figure 54) confirms both 

behaviors of the growth rates.  The spectral analysis decomposes the growth rate into a 

series of composite wavelengths for the entire signal.  In Figure 53 there are many cycles 
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Figure 53 - Spectral Analysis of U.S. Gold Demand 
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Figure 54 - Spectral Analysis of U.S Supply of Gold 

 

 

Lastly we need to look at the random component, which in the case of the gold industry is 

persistent FBM.  Solving for an equilibrium amount of the randomness between the 

quantity demanded and quantity supplied yields the following equation. 

 

Bୌ
כ ሺt, ωሻ ൌ  

ଶሺ1ߛ െ ሻߢ െ ଶሺ1ߡ ൅ ሻߜ െ ߢሺߡߛ ൅ ሻߜ
ሺ1ߡ െ ሻߜ ൅ ሺ1ߛ ൅ ሻߢ  

 

An attractor plot of the random component shows that the equilibrium value of the 

random component is roughly $350 (Figure 55).  Which means that most times, 
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approximatley $350 of the market price of gold comes from inter market events.  In 2008 

this constituted roughly half of the market price of gold.  The clustering of the FBM 

around $350 shows the magnitude that exogenous events have on the market price of 

gold.  If inter market events lessen in the future they would cause the market price of gold 

to fall dramatically. 

 

Figure 55 - Attractor Plot for U.S. Inter Market Gold Prices 

 

 

With the demand and supply analysis complete we draw the following conclusions.  Both 

the demand and supply for gold are sensitive to the inter market randomness that the 
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industry faces.  The magnitude of that sensitivity is partially determined by the elasticity 

of the supply and demand.  Over time the demand curve changes more dramatically than 

the supply curve as seen by the growth rates.  This means that changes in demand have a 

greater impact on changes in the total market price than changes in supply.  In the case of 

gold industry specific regulations, there will not be much impact on the total market price 

because of the size of the inter market component compared to that of the intra market 

component.  Instead, external changes that influence the system will have more of an 

impact on equilibrium.  Also we know that the quantity demanded changes over time in a 

chaotic manner, this means that small changes to consumer demand will cause a large 

change in the market price.  The quantity supplied is not chaotic therefore changes in 

industry structure will not have as significant and impact on the market price as the 

demand curve.  Overall the U.S. market for gold is dominated by inter market events.  

The inter market events affect the rate of change in the demand curve the most.  At this 

time the industry structure of the gold market has little to do with the market price which 

again comes predominatley from inter market events.  Because the demand side of the 

gold market is sensitive to changes, it is easily swayed by exogenous events.  This causes 

the market price of gold to be highly volatile and may be why we see the market price of 

gold change rapidly and often. 
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CHAPTER 4 – CONCLUSION 

 

In economics, the study of time series analysis has overshadowed the field of dynamic 

systems.   

 

Recent innovations in computational speed and accuracy have led to the development of 

many new functional forms and econometric tests.  Even with our expanding knowledge, 

we still find simplified assumptions are being applied to dynamic systems, instead of a 

global process of first understanding the character of the data and then making 

assumptions based off of the data.  The most common simplifying assumption is the 

linear model.  Because the linear model is additive, behavior which is not additive in 

nature is lost during estimation.  Many times, linear models that do not have a good fit, 

are said to be random due to the size of the error.  Consequently, effects such as chaotic 

behavior are not addressed when using a linear model for estimation.  This leads to a 

large gap in our understanding of the behavior of the dynamic system being studied.  

 

Dynamic systems describe how a variable or variables change over time.  Many 

economic systems are dynamic in nature, which requires proper characterization of their 

behavior.  To do this we need to distinguish between two basic types of dynamic systems: 

random and deterministic.   
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A deterministic system is one in which the behavior of the variable is completely 

determined across time. A deterministic system can exhibit many behaviors such as: 

convergence of a system to a single value, convergence to a few values and no 

convergence at all.  Deterministic systems are always in equilibrium.  We used the 

example of a pendulum.  In order for the pendulum to swing back and forth it is always 

dependent on where it was previously, as well as where it is going, in order for it to 

reverse directions.  Because a deterministic system explains a variable over time it is 

always in equilibrium.    

 

Deterministic dynamic systems that do not converge to a single value or values can give 

the impression of being random (chaotic).  A chaotic system is a condition in which the 

system appears to be random, but is in fact deterministic.  We used the logistic function 

to demonstrate all varieties of deterministic systems.  When the alpha coefficient in the 

logistic function was low, we saw a system that attenuated to a single value.  As the alpha 

coefficient of the logistic function increased, the behavior of the system showed more 

oscillations and eventually became chaotic.  If a system becomes chaotic, then it is very 

volatile and sensitive to changes.  To identify the equilibriums, and observe deterministic 

behavior, attractor plots were used.  The attractor plots for the deterministic system show 

the equilibrium or equilibriums of the system.       

 

A random dynamic system is problistic in nature and may or may not be correlated over 

time.  In economics, we usually use RBM as the assumption of error in models or for data 
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that is random.  As we have learned, this assumption may not be the case as RBM is a 

subset of all types of FBM.  Randomness can have persistence, anti-persistence or no 

persistence (RBM) over time.  Allowing the possibility for randomness to be correlated 

over time, has an impact on how a dynamic system evolves.  This is why we see random 

economic variables have some patterns, such as the price of a stock tends to have a series 

of up movements before a down movement or vice versa.  

 

To characterize a dynamic system, one should first identify if it is deterministic, random 

or some combination of the two.  A proper characterization will identify whether the 

function that describes the motion is linear or not.  Based on this information, one should 

then develop a function that will more accurately explain the behavior of the dynamic 

system.  Proper characterization can be found through the use of existing tests such as the 

Hurst Exponent, Lyapunov Exponent and autocorrelation.   

 

The Hurst Exponent has two uses in analyzing a dynamic system.  First, the Hurst 

Exponent tells us if there is persistence or long term dependency in the data.  This lets us 

know how influential history is to the system.  We discussed five different methods to 

determine the Hurst Exponent: re scaled range, autocorrelation, absolute moments 

method, aggregated variance, and periodogram methods.  Long term dependency can be 

an indicator that the system may not be linear.  The Hurst Exponent also tells us what 

type of randomness is occurring in a system.   
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The Lyapunov Exponent tells us if the dynamic system has some deterministic 

components.  We can also utilize the Lyapunov Exponent to separate the random from 

the deterministic, which allows us to derive the intra and inter market pieces of the 

dynamic system.   

 

Currently, we frequently over use the autocorrelation test based on the assumption that 

every dynamic system is separable in a linear fashion.  A comparison of two different 

equations, one linear and one multiplicative, showed that the autocorrelations for both 

appeared to be nearly the same.  If a linear time series technique such as ARMA is used, 

prediction results may be good, however there is still no understanding of how the 

dynamic system is evolving.  Also, there is no measure as to how sensitive the dynamic 

system is to other economic variables.  As demonstrated, large amounts of information 

are lost if conclusions are drawn solely based on the autocorrelation. 

 

In this paper we have seen how dynamic systems can be used to improve our 

understanding of economic variables.  We used a case study of the gold industry to 

explore how dynamic systems methods can be applied in economics.   

 

Historically the gold industry has seen many changes.  Gold was used in ancient times for 

religious purposes, and evolved to coinage and monetary standards as well as being a 

commodity and industrial metal.  Current changes to the gold industry include price 

deregulation in the 1970’s and the subsequent industry expansion.  Recently the gold 
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industry has seen concentration in the form of increased merger activity in the last 

decade.   

 

To study the gold industry we first looked at gold production by country.  We saw that as 

deregulation occurred the market for gold became more competitive and some countries 

lost large shares of the gold market.  The price of gold increased significantly after the 

period of deregulation. 

 

To understand where the changes in the price were coming from, the monthly price of 

gold was characterized.  Performing all tests for the Hurst Exponent showed that long run 

dependence existed in gold prices.  In other words, the price of gold today is dependent 

on what the price of gold was previously.   

 

We also found there to be deterministic behavior in the price of gold via the Lyapunov 

Exponent.  Knowing that there was some deterministic behavior, we had to identify when 

the series did not have any linear serial correlation through the ACF.  With the two pieces 

of information about the gold price, the series was split into the deterministic and random 

components using a space-time regression.  The deterministic component of price is the 

industry (intra) market and the random component of gold price is exogenous (inter) 

market effects.   
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We found that the intra market component of the price of gold has decreased in its 

magnitude of importance over time.  The intra market price signal also showed that as 

competition in the gold industry increased, firms lost market power and the market price 

of gold became increasingly subject to exogenous factors.  This lines up nicely with 

economic theory in that as an industry gets more competitive, firms become price takers 

and not price makers.  Additionally, the intra market component was found to be chaotic.  

Meaning that the strategic behavior that is occurring in the gold industry causes the intra 

market price to be volatile, due to the sensitivity of firms competing in the gold industry.  

Over the same period in time, we determined the inter market component of gold price 

has increased in importance and magnitude.  We classified the type of randomness in the 

gold industry to be persistent FBM.   

 

To be able to compare the price signals to production, the same analysis had to be 

conducted with annual data.  The results of the regressions on country production, versus 

the price signals, showed expected relationships.  First, we were able to verify how the 

inter market signal and production were related.  We found that as a country’s market 

share increases, the inter market price falls, causing the intra market price to have a 

greater impact on the overall price of gold.   

 

From a market structure standpoint, this makes sense.  As an industry consolidates, we 

would expect to see more strategic behavior.  The regression on the intra market price 
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and production conferred this same result.  Having the intra market signal separated out 

allows for the study of how individual firms can impact an industry.   

 

In our analysis, we looked at the United States.  We saw that as US production of gold 

increased, so did the intra market price.  To show the usefulness of separating the two 

signals, we contrasted our regressions with a regression on the overall price of gold.  We 

found that the overall regression was unable to discriminate between the deterministic 

and random effects.  This comparison demonstrates that separating out the inter and intra 

market price provides a more thorough understanding of the behavior of the dynamic 

system.   

 

Having found significance in both the intra and inter market price signals, we developed 

a dynamic equation for the changes in gold price over time based on both components.  

This equation was then used to simulate what would happen to gold prices over time 

based on changes to the dynamic system.  We concluded that as the gold industry 

consolidates, the price of gold becomes less volatile and less subject to random events.  

We contrastingly observed that as the gold industry becomes more competitive, the price 

of gold becomes more volatile and more subject to external events.  This is important to 

our understanding of policy on the gold industry.  Regulations that change the industry’s 

structure can cause the price of gold to become more or less volatile depending on 

whether or not they increase or decrease competition.  Also because the current state of 

the gold industry is one in which the inter market component is larger than the intra 
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market component we can conclude that industry specific regulations on price will have 

little impact on the overall market price.  Using simulation on a dynamic system, after the 

system has been characterized, can allow for a better understanding of how policy 

decisions can impact the system.  For example, we learned that if there were some policy 

change, such as anti-trust legislation, which forced the gold industry to become more 

diluted, the affect of the policy would make the market price of gold more volatile and 

more subject to changes from random events.  The development of an appropriate 

dynamic equation, can allows us to simulate the consequences of a variety of changes to 

an economic system.   

 

Finally, we used our dynamic gold price equation to develop supply and demand curves.  

We found that the US equilibrium price and quantity for gold per year over the last 30 

years is $321.32 and 184.76 tons, respectively.  We found that the demand curve for gold 

is elastic and the supply of gold is inelastic.  We learned that the inter market signal 

currently accounts for approximately $350 of the equilibrium price.  Since we had a 

logistic function for the price of gold, we were able to estimate growth rates for the 

quantity demanded and the quantity supplied.  We discovered that the growth rate in the 

quantity demanded is chaotic and the growth rate in the quantity supplied is continually 

decreasing.  This is important because it identifies the demand curve as the primary cause 

of volatility in the market price of gold.  Because the growth in the quantity demanded is 

chaotic it is very sensitive to small changes.  This is why consumer behavior in the gold 

markets causes such a large change in the price of gold.  Overall we found that the main 
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cause of changes in the market price of gold comes from the inter market price signal, 

predominately driven by consumers. 

 

As a discipline, there is still a prevalence toward simplifying assumptions to estimate and 

replicate dynamic economic systems.  The over simplification of assumptions leads to 

large gaps in our understanding and analysis of market structure issues.  Overall we have 

seen how dynamic systems can be used to improve our understanding of economic 

variables.  The use of dynamic systems can lead to the avoidance of many specification 

and interpretation difficulties.  In the case of gold prices, we know that there is a larger 

portion of the current market price of gold that comes from inter market (random) than 

from intra market (deterministic) effects.  Without a dynamic systems approach we 

would not be able to reach this conclusion, because we would not be able to characterize 

the movement in the price of gold over time appropriately.  We would also not have been 

able to modify the supply and demand model to measure the deterministic growth rates of 

quantity demanded and quantity supplied.  Without the growth rates we would not be 

able to determine the sensitivity of consumers and firms interacting in the gold industry.   

 

Dynamic systems methodologies has a host of different uses in economics.  As we have 

shown, dynamic systems can be used to characterize the evolution of a variable over 

time.  The characterization of an economic variable can allow for a more complete 

understanding of economic policies as well.  Knowing if a policy would make an 
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economic system chaotic or not could be invaluable to understanding the full 

ramifications of policy.   

 

As we increase our use of dynamic systems in economics, we will be better able to 

understand how policy decisions and other industry changes will affect industries and 

markets.  It is through a better characterization of how an economic system propagates 

over time that will allow for a better understanding of the impact of changes to economic 

systems.  
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APPENDIX 

Re Scaled Range Test for Hurst Exponent 

% set default values; 
clear; 
format short; 
% import file; 
u = csvread(filename); 
x = u; 
x = x.'; 
N=length(x); 
iRS=[]; 
RS=[]; 
for k=1:length(ii) 
i=ii(k); 
a=floor(N/i); 
X=matrix(x(1:a*i),i,a); 
ave=mean(X,'r'); 
mmat=[]; 
for k=1:i 
mmat=[mmat;ave]; 
end 
cumdev=X-mmat; 
cumdev=cumsum(cumdev); 
rm=max(cumdev,'r')-min(cumdev,'r'); 
sm=stdev(cumdev,'r'); 
sm=stdev(X,'r'); 
ind=find(sm); 
if (ind<>[]) 
iRS=[iRS i]; 
RS=[RS mean(rm./sm)]; 
end 
end 
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ACF Method of Hurst Exponent 

% set default values; 
clear; 
format long; 
setprintlimit(10000); 
% import file; 
u = csvread(filename); 
x = u; 
% get basic series info 
n = length(x); 
mx = mean(x); 
k = floor(n/6); % calculate variances 
var1 = zeros(n*k,2); for (i = 1:n); 
var1(i,1) = x(i,1) - mx; var1(i,2) = var1(i,1)^2; end 
%get sum of squares 
svar1 = sum(var1); 
% calc acov and acf 
acov = zeros(k,1); 
acf = zeros(k,1); 
for (j = 1:k); 
sumacov = 0; 
for (m = 1:n); 
sumacov = sumacov + var1(m+j,1) * var1(m,1); 
end 
acov(j,1) = sumacov; 
end 
for (j = 1:k); 
acf(j,1) = acov(j,1) / svar1(1,2); 
end 
%create periods 
for (i = 1:k); 
period(i,1) = i; 
end 
% Get Logs 
lacf = log(acf); 
lperiod = log(period); 
% Run regression 
B = inv((lperiod' * lperiod)) * lperiod' * lacf; 
%calc hurst 
hurstacf = 1 + B/2 
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AMM Method of Hurst Exponent 

% set default values; 
clear; 
format long; 
setprintlimit(10000); 
% import file; 
u = csvread(filename); 
x = u; 
% get basic series info n = length(x); 
mx = mean(x); 
k = floor(n/6); % for sufficient amount of lags 
nmoment = 24; % enter number of moments to get 
for (t = 1:nmoment); 
grp = floor(n/t); %set group size 
%reset variables 
avegrp = 0; 
var2 = 0; 
rng = 0; 
rng1 = 0; 
rng2 = 0; 
%get average for groups 
for (i = 1:grp:n); 
rng(i,1) = i; 
end 
rng1 = nonzeros(rng); % start group 
rng2 = rng1 -1; % stop group 
tstep = length(rng1); 
for (i = 1:tstep-1); 
sumx = 0; 
for (j = rng1(i,1):rng2(i+1,1)); 
sumx = sumx + x(j,1); 
end 
avegrp(i,1) = sumx/grp; 
end 
% calculate absolute moments 
var2 = abs(avegrp - mx); 
AM(t,1) = sum(var2)/grp; 
moment(t,1) = t; 
end 
%create logs 
lmoment = log(moment); 
lAM = log(AM); 
%Run regression 
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Bamm = inv((lmoment' * lmoment)) * lmoment' * lAM; 
%calc hurst 
hurstamm = Bamm + 1 
 

AVM Method of Hurst Exponent 

% set default values; 
clear; 
format long; 
setprintlimit(10000); 
% import file; 
u = csvread(filename); 
x = u; 
% get basic series info 
n = length(x); 
mx = mean(x); 
k = floor(n/6); % for sufficient amount of lags 
%Aggregated Variance for Hurst 
nmoment1 = 36; % enter number of moments to get 
for (t = 1:nmoment1); 
grp = floor(n/t); %set group size 
%reset variables 
avegrp = 0; 
var2 = 0; 
rng = 0; 
rng1 = 0; 
rng2 = 0; 
%get average for groups 
for (i = 1:grp:n); 
rng(i,1) = i; 
end 
rng1 = nonzeros(rng); % start group 
rng2 = rng1 -1; % stop group 
tstep = length(rng1); 
for (i = 1:tstep-1); 
sumx = 0; 
for (j = rng1(i,1):rng2(i+1,1)); 
sumx = sumx + x(j,1); 
end 
avegrp(i,1) = sumx/grp; 
end 
% calculate avm 
var2 = (avegrp - mx); % need to fix variance method 
AVM(t,1) = sum(var2)/grp; 
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moment1(t,1) = t; 
end 
%create logs 
lmoment1 = log(moment1); 
lAVM = log(AVM); 
%Run regression 
Bavm = inv((lmoment1' * lmoment1)) * lmoment1' * lAVM; 
%calc hurst 
hurstavm = Bavm/2 + 1 
 

Periodogram Method of Hurst Exponent 

% set default values; 
clear; 
format long; 
setprintlimit(10000); 
% import file; 
u = csvread(freemat); 
x = u; 
% get basic series info 
n = length(x); 
mx = mean(x); 
%add if statement 
k = floor((n-1)/2); %odd series 
% k = floor(n/2); %even series 
%create spectral table 
for (i = 1:k); 
spectrum(i,1) = i; %calc k 
spectrum(i,2) = (2*pi*i)/n; %calc freq 
spectrum(i,3) = (2*pi)/spectrum(i,2); %calc period 
end; 
%find variances 
for (i = 1:n); 
variances(i,1) = x(i,1) - mx; %obs - mean 
variances(i,2) = variances(i,1)^2; % get ss 
end; 
% get acfs acov 
for (j = 1:k); 
for (i = 1:k); 
variances(i,3) = variances(i+j,1) * variances(i,1); 
end; 
spectrum(j,4) = sum(variances(:,3))/sum(variances(:,2)); %acf for given k lag 
spectrum(j,5) = sum(variances(:,3))/n; %acov for k 
end; 
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% get a   b fourier coeffs 
for (j = 1:k); 
coa = 0; 
cob = 0; 
for (i = 1:n); 
coa = x(i,1)*cos(2*pi*j*i/n) + coa; 
cob = x(i,1)*sin(2*pi*j*i/n) + cob; 
end; 
spectrum(j,6) = (2/n)*coa; 
spectrum(j,7) = (2/n)*cob; 
end; 
%get periodogram I 
for (i = 1:k); 
spectrum(i,8) = (n/2)*(spectrum(i,6)^2 + spectrum(i,7)^2); 
end; 
%calculate Hurst 
lni = log(spectrum(:,8)); 
lnf = log(spectrum(:,2)); 
p = polyfit(lnf,lni,1); 
Hurst = (1 – p(1))/2 
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Generation of Fractal Brownian Motion 

% set default values; 
clear; 
format long; 
setprintlimit(10000); 
H = .9; 
B = 2; 
Q = 4; 
T = 100; 
%calc first step 
X(1,1) = randn; 
xsub(1,1) = X(1,1); 
% create cov vector 
for (i=1:T); 
r(i,1) = e^(-B^-i); 
end 
% create weight Vector 
for (i=1:T); 
W(i,1) = (H*(2*H -1)*(B^(1-H) - B^(-1+H)))/gamma(3-2*H) * B^(-2*(1-H)*i); 
end 
% generate fbm 
for (j=2:T); 
for (i=2:T); 
xsub(i,1) = W(i,1)*(r(i,1)*xsub(i-1,1) + (1-r(i,1)^2)^.5*randn); 
end 
X(j,1) = sum(xsub); 
end 
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