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Abstract 
 

This thesis is concerned with the development of mesh-input-free diagnostics for the 

determination of the iteration at which the source distribution of a Monte Carlo 

simulation has reached a stationary state, as well as the sufficiency of particle population 

size for a given tally cell volume, so as to reduce bias and increase accuracy of 

estimations of physical properties.  Such physical properties can include, but are not 

limited to, neutron effective multiplication, power distribution, neutron flux and various 

interaction rates.  When the physical properties of a Monte Carlo simulation are 

accurately estimated, they can be used to predict the actual behavior of a nuclear system, 

only being limited to the assumptions used to create the model. 

 Five methods were used to describe the state of the source distribution.  Four of 

the methods were established indicators of the source distribution’s state that required the 
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input of a mesh, which divided the geometry into bins.  These indicators are the Shannon 

entropy, Jensen measure, the progressive relative entropy and the posterior relative 

entropy.  The fifth indicator of the source distribution’s state was developed as to 

eliminate the need for the input of a mesh upon the geometry.  This method will be 

identified as the regionwise average position indicator or RAPI and is calculated by 

taking the sum of the distances of the regionwise average particle positions in the model 

at each cycle from the corresponding regionwise average particle positions at the first 

cycle.   In conjunction with the Shannon entropy, Jensen measure, progressive relative 

entropy and the RAPI, an on-the-fly step-refined judgment of the indicators of the source 

distribution’s state will be employed to determine at which cycle or iteration the 

indicators have reached convergence, signifying that the simulated source distribution has 

begun to fluctuate around the true source distribution.  This step-refined on-the-fly 

diagnostic of the source distribution was developed from the Wilcoxon rank sum in non-

parametric statistics.  The posterior relative entropy cycle of convergence is determined 

to be the cycle at which the posterior relative entropy becomes less than the average 

value of the posterior relative entropy over the second half of active cycles. The cycle of 

convergence was determined for three different models by the use of the above described 

methods. The resulting cycle of convergence obtained by the use of the indicators 

requiring a mesh input was compared against that obtained from the mesh-input-free 

indicator, RAPI, for each of the models.  It was found that the RAPI was an excellent 

representation of the source distribution’s state and more conservative than the posterior 

relative entropy diagnosis. The RAPI can be used to determine the cycle at which the 
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source distribution converged to an equilibrium fluctuation range of stationary state, thus 

eliminating the need for mesh-input for physical property estimation.  

 Applications of graph theory techniques to Monte Carlo methods were also 

investigated as a means of meshless convergence indication, but drawbacks for such an 

application led to a particle population diagnostic investigation.  This was done because 

meshless particle population diagnosis for the power distribution has yet to be done in 

Monte Carlo source iteration methods. In power distribution calculations, tally cells are 

used to estimate the power distribution in a model. To approach this problem, the concept 

of Euclidian minimum spanning trees (EMST) was applied to the source distribution to 

develop a meshless diagnosis of the particle population. One source particle effect is the 

characteristic volume of one particle and is defined to be the cubic of the average edge 

length of an EMST.  Then using this characteristic volume, weak and strong requirements 

of the particle population size were defined for minimum tally cell volume.  This 

diagnostic was compared against a verified population diagnostic, which requires a mesh 

input, termed as PD-MESH in this thesis.  These diagnostic methods were used in the 

analysis of a pressurized water reactor initial full core simulation. The comparison of the 

EMST-based population diagnosis to PD-MESH showed that it can be used to determine 

if a population size is of sufficient size for power distribution calculations, eliminating 

the need for mesh-based diagnosis.  
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Chapter 1  
 

Introduction 
 

 

 

 

 

Monte Carlo (MC) Codes solve criticality problems or simulate nuclear systems by the 

source iteration method.  At the start of this method, or the first cycle, a batch of particles 

is distributed within the fissile regions of the geometry.  These particles and their 

interactions are tracked until their track terminates or they leak out of the system. The 

location of the fission events of the particles, determine the spatial distribution of 

particles in subsequent cycles.  The particles interactions are tracked in the next cycle, 

and this process is repeated until the source distribution converges or begins to fluctuate 

around the true fundamental mode distribution.  When the source distribution has 

converged, the interactions reaction rates of the particles can be begin to be tallied.  

These tallies are used to estimate the physical properties of the nuclear model. If the 

source distribution has not converged before tallying begins or the number of particles 

used in the simulation is insufficient to adequately model the problem, bias and error are 

introduced into the physical property estimation.  To reduce the bias and error of the 

tallies, diagnostics must be developed. The first diagnostic is one that can determine if the 
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source distribution has converged, and the second diagnostic is one that can decide if the 

number of particles that are being used for Monte Carlo simulations is of sufficient size. 

The number of cycles that the source distribution takes to converge is affected by, 

but not limited to, the dominance ratio (DR) of the problem that is being considered, i.e. 

the ratio of the first higher mode eigenvalue to the fundamental mode eigenvalue 

(DR=k1/k0).  If the dominance ratio is high or close to unity, the source distribution may 

take thousands of cycles to converge. If the DR is low, the source distribution may 

converge in less than one-hundred cycles.  The convergence of the source distribution can 

also be affected by the heterogeneity of the system and the number of particles used for 

the modeling. 

To determine when the source distribution has converged to the true fundamental 

mode, so that more accurate tallying can be performed, Ueki and Brown proposed mesh-

based convergence indicators whose use has been demonstrated [1-3]. The indicators 

proposed were progressive relative entropy, posterior relative entropy and Shannon 

entropy.   Unfortunately these indicators depend upon mesh-input/binning by the user. If 

the binning is done incorrectly, i.e., not adequately refined, too refined or not placed in 

the correct locations, these indicators can give false signs of convergence.  The posterior 

relative entropy also depends on the user to specify when the tallying begins or the 

number of inactive cycles. If the user defines the number of inactive cycles to be too 

small and the tallying begins before the source has converged (the source does not 

converge in the middle of active cycles), the posterior relative entropy can also give false 

indication of convergence. These issues, as well as the theory of the entropy convergence 

indicators will be discussed in Chapter 2.  
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To avoid the problems that may arise with user input meshing, a meshless 

convergence indicator needs to be developed.  For this work, a meshless convergence 

indicator was developed from the idea of automatic meshing.  In the automatic meshing, 

“centers” are created by taking the average positions of the particles that are generated in 

the geometry.  Every particle generated in any geometry is generated within fissile 

regions of the geometry only, and each particle position has an x, y and z component.  By 

taking the average position of the particles in a three-dimensional space, in the x, y and z 

dimensions, a center coordinate will be found.  This center will divide the geometry into 

eight cells; top-upper-right, top-upper-left, top-lower-right, top-lower-left, bottom-upper-

right, bottom-upper-left, bottom-lower-right, and bottom-lower-left.  This procedure can 

be then applied to the particles in these eight cells and find the average position of the 

particles within these cells.  This will create eight more centers or local origins for a total 

of nine.  The automatic meshing can be refined as far as desired.  This can be done by 

taking another averaging of the particle positions.  From the eight cells centers, sixty-four 

cells are created. By taking the average of the particle position in the sixty-four cells, 

sixty-four more centers or origins are obtained for a total of seventy-three origins.  And 

by taking this process even further, from the sixty-four origins that are determined, five 

hundred twelve cells are created.  By taking the average of the particle positions in these 

five hundred twelve cells another five hundred twelve centers or origins can be realized. 

The number of origins that can be determined is dependent on the number of divisions 

that are performed. This dependency is exhibited by the relationship, , where T 

is the number of origins found and L is the level of discretization or number of divisions 

to be performed. For example if L is equal to 2, T will be equal to 9 and if L is equal to 3, 

1

0
8

L
i

i
T

−

=

=∑
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T will be equal to 73.   From this technique, a method free of predefined meshing for 

convergence indication can be developed by taking the sum of the distance of the 

calculated centers at each iteration from the corresponding calculated centers at the first 

iteration. This indicator of the source state will be known as the regionwise average 

position indicator (RAPI) and will be further discussed in Chapter 3. 

In conjunction with the convergence indicator an on-the-fly judgment of the 

indicator will be needed to create an on-the-fly convergence diagnostic.  An on-the-fly 

convergence diagnostic would track the indicator through the cycles, checking at each 

cycle to see if the convergence indicator has reached a state of stationarity.  When the 

convergence indicator has reached stationarity, the source distribution matches the true 

source distribution within small fluctuation and the estimation of physical properties or 

tallying could begin.  Ueki proposed using a Wilcoxon signed rank test on the 

convergence indicator for determination of the cycle when the source distribution has 

reached stationarity [3].  The details of this test will be discussed in Chapter 5. 

The second diagnostic of concern within this thesis was to determine if the 

number of particles in a simulation is of sufficient size; a meshless particle population 

diagnostic will accomplish this task. Euclidian minimum spanning trees (EMST) were 

investigated as meshless means of drawing diagnostic information from the source 

particles in Monte Carlo source iterations, and EMST is a concept adopted from graph 

theory. EMST’s were first investigated as a means of convergence indication of the 

source distribution. By finding the total cost of an EMST at every cycle, a convergence 

indicator can be developed. But due to limitations found using EMST’s in this way, the 
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main focus for the utilization of EMST’s in this thesis is for meshless particle population 

diagnosis.  

EMSTs have been used to compute the various entropies in multidimensional 

signal processing and image registration [4-6], can be applied to pattern recognition, have 

been used for multidimensional data analysis [7], and are capable of characterizing the 

order and disorder of a set of particles in some physics experiments [8]. Because of these 

applications, it should be possible for EMSTs to be applied to the source particles in 

Monte Carlo source iterations to draw some diagnostic information.  This technique will 

be used to find an EMST with the vertices being the particle positions within the Monte 

Carlo simulation geometry.   

The population diagnosis will determine what the resolution of the tally cell needs 

to be for power distribution investigations. It is important to draw some criterion for 

minimum tally cell volume for power distribution for a given population size, i.e., a given 

number of histories per cycle. This criterion will be developed from the average edge 

length of an EMST.    It is important because if the tally cell size is incorrect an 

unreliable power distribution can be inferred from the simulation.  The EMST diagnostic 

results will be compared to previous work by Ueki on population diagnosis with a 

diagnostic bin mesh, denoted PD-MESH [9]. The use of EMSTs will provide a meshless 

diagnostic for determining tally cell resolution, which will eliminate the need for prior 

experience with mesh input to obtain practical and applicable results.  The theory behind 

the EMST method, the constraints of its implementation for convergence indication, and 

an alternative application for population diagnostics will be discussed in Chapter 4. 
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In summary, the objective of this thesis is to demonstrate and implement the 

aforementioned automated indicator, RAPI, coupled with an on-the-fly judgment of the 

indicator in Monte Carlo simulations as well as to investigate the feasibility of population 

diagnostics derived from EMST’s.  In Chapter 2 entropy or mesh-based convergence 

indication will be discussed, and the RAPI theory and method will be discussed in 

Chapter 3. The theory behind the EMST method, the constraints of its implementation for 

convergence indication, and alternative applications for population diagnostics will be 

discussed in Chapter 4. The step refined on-the-fly judgment indicator or Wilcoxon rank 

sum and the theory behind it will be discussed in Chapter 5.  Numerical results of the 

implementation of the RAPI method and its comparison against mesh-based convergence 

determination will be presented and discussed in Chapter 6.  The numerical results for the 

EMST based population diagnostics and its use for defining a criterion for a tally mesh 

resolution for power distribution of a given population size will be presented and 

discussed in Chapter 7. Finally, suggestions for future work and conclusions will be 

presented in Chapters 8 and 9 respectively. 
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Chapter 2  
 

Entropy Convergence Indicators 
 

 

 

 

 

In Monte Carlo calculations, the cycle at which the source distribution reaches a 

stationary state, or matches the true fundamental mode, needs to be determined so that 

accurate tallying of the physical properties of a Monte Carlo simulation can done.  To 

determine when the source distribution reaches a convergent state an indicator of the 

source distribution’s state is needed.  Brown and Ueki proposed and demonstrated the use 

of convergence indicators that utilized different entropies of the system to determine 

when the source distribution has reached convergence [1-3].  These convergence 

indicators are mesh-based and were developed from information theory.  Since the 

entropy convergence indicators were proven to be able to determine when the source 

distribution has reached convergence, they will be used as comparison for the mesh-

input-free convergence indicator proposed in this thesis.  The comparison of the mesh-

input-free convergence indicator to the entropy convergence indicators will determine if 

the mesh-input-free indicator can describe the state of the source distribution and if it can 

be used to determine the cycle at which the source distribution has reached stationarity. 
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In information theory, entropy is a measure of uncertainty associated with a 

random variable.  In Monte Carlo calculations the source distribution is random.  The 

entropy or measure of uncertainty of the source distribution over the whole geometry at 

each cycle can be calculated and there are different ways of defining the entropy of a 

system.  By comparing the entropy from one cycle to the next, the change in uncertainty 

associated with the source distribution can be tracked.  The entropy of the system can be 

used as a tool to indicate source convergence.  When the entropy or uncertainty begins to 

fluctuate around an equilibrium value or converges, the particle source distribution has 

reached stationarity and fluctuates around the true source distribution.   

 In Monte Carlo calculations the geometry is divided into bins. Bins are sub 

volumes of the entire volume, and their size and location are currently predetermined by 

the user.  The initial source distribution is also defined by the user.  The initial source 

distribution is usually randomly distributed within part or whole of the fissile regions of 

the geometry.  By this distribution, the bins that divide the geometry are populated with 

particles. The initial distribution determines the birth sites of particles in the first 

iteration.  In a cycle or iteration the particle interactions within the simulation are 

recorded and the particle distribution in the next iteration is defined by nuclear fission 

interactions.  This process is repeated for as many cycles as desired. The part of the 

source distribution located within these bins can be defined as , where j is the 

iteration or cycle number and i denotes the ith bin out of B total bins. The source 

distribution is normalized to one. The properties of the source distribution are explained 

in equation 

( ) ( )jS i

(2.1).  
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  (2.1) ( ) ( )( ) ( )

1
, 1, 2,..., ;    1

B
j

i
S i i B S i

=

= ∑ j =

Because is normalized to one, it can be interpreted as a probability. This account is 

found in equation 

( ) ( )jS i

(2.2). 

  (2.2) ( )( ) "probability of particle starting its history at bin "jS i i=

In information theory the information content of an event needs to be measured. In this 

analysis, event (Ei), is a particle starting its history at bin i.  The information content of 

such an event is calculated by equation (2.3).  

 ( ) ( )( )
2log "information content of event "j

i iI E S i= = E

)

 (2.3) 

The source distribution in the first cycle (j=1) is randomly distributed as said before, but 

the distribution of particles in subsequent cycles is determined from previous cycle 

fission sites.  Since the distribution is originally randomly distributed, the random nature 

of the distribution can be deferred to the subsequent cycles.  Since the distribution is 

random we can use the definition for entropy that Appelbaum describes [10].  Given a 

random variable X, not knowing which of its values x1, x2,…, xn will occur, one really 

doesn’t know how much information ( ) ( ) (1 2, ,..., nI x x I x x I x x= = = will be received 

but we can regard the information content of the  random variable as denoted by I(X) 

[11].  

 

 

9 
 



2.1  Shannon Entropy 
 

The mean or expected information content of this random variable is called its entropy, 

and to obtain the entropy, equation (2.4) can be used:  

 ( ) ( )( ) ( )2
1

log
n

j j
j

H X E I X p p
=

= = −∑  (2.4) 

where pj is the probability of the event { }jx x= . This entropy is identified as the 

Shannon Entropy. From the concept of entropy or measure of uncertainty, three more 

variations can be developed and they are known as Jensen measure, progressive relative 

entropy and posterior relative entropy.  Shannon Entropy is the simplest of the four 

entropy calculations. By applying the concept of Shannon entropy to the source 

distribution we arrive at equation (2.5). 

  (2.5) ( ) ( ) ( )(( ) ( ) ( )
2

1
log

B
j j j

i
H S S i S i

=

= −∑ )

 

Shannon Entropy is considered to be a concave functional [11]. The simplest example of 

a concave function is a concave function of one variable and is displayed in Figure 2.1.   
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Figure 2.1: Concave Function of One Variable 

 

A function is said to be concave when an arc connecting two points on the function has 

values that are all less than the values of the function, which can be seen from the 

preceding graph.  When the points in the arc all take values greater than the function, the 

function is said to be convex.  These concepts can be generalized to a functional, i.e., 

functions of one function. Without creating a graph, the concavity of the functional can 

be determined.  The functional F is considered to be concave if the conditions in equation 

(2.6) are met. 

  (2.6) ( )( ) ( ) ( ) ( )1 2 1 21 1 ;    F f f F f F fλ λ λ λ λ+ − ≥ + − ≤ ≤0 1

In this equation, f1 and f2 are two independent random distributions. The variables in 

equation (2.6) can be changed to suit our investigation.  The functional can be 

reinterpreted to use the Shannon Entropy, and the random distributions can be replaced 

by the source distributions S and T, which is seen in equation (2.7). 

 ( )( ) ( ) ( ) ( )1 1H S T H S Hλ λ λ λ+ − ≥ + − T  (2.7) 
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In equation (2.7) the implicit assumption is that  and ( )1S S= ( )jT S= .  In other words the 

random distribution, S, is equal to the source distribution defined in equation(2.1), but for 

only the first cycle.  The random distribution, T, is equal to the source distribution at 

cycle j. Because preference is given to neither S nor T, we set λ=0.5. This is done to 

conserve the concavity of the functional.  

2.2  Jensen Measure 

By rearranging the equality in equation (2.7) and using these definitions, the description 

of the second entropy involved in our analysis is arrived at: Jensen measure (Equation 

(2.8)).   

  (2.8) 

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )(( )

( ) ( )( ) ( ) ( )( )

( ) (1) ( ) (1) ( )

(1) ( ) (1) ( )
2

1

(1) (1) ( ) ( )
2 2

1 1

0.5 0.5 0.5 0.5

            0.5 log 0.5

               0.5 log 0.5 log

j j j

B
j j

i
B B

j j

i i

J S H S S H S H S

S i S i S i S i

S i S i S i S i

=

= =

≡ + − −

= − + × +

+ +

∑

∑ ∑

)

Jensen measure is a metric derived from the concavity of Shannon entropy. Jensen 

measure is non-negative, if and only if  for i=1,…,B.  The definition for 

Jensen measure is similar to one defined for relative entropy.  

( ) ( )(1) ( )jS i S i=
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2.3  Relative Entropy 
 

“Relative entropy is a measure of distance between two distributions. In statistics it arises 

as an expected logarithm of the likelihood ratio” [11]. Equation (2.9) depicts such a 

definition,  

 ( ) ( ) ( )
( )2log

x

p x
D p q p x

q x
⎛ ⎞

= ⎜⎜
⎝ ⎠

∑ ⎟⎟  (2.9) 

where p(x) is thought to be the true distribution and q(x) is the assumed distribution. This 

definition can also be interpreted as the penalty or cost of information content of 

assuming q(x) when the observed distribution is p(x). Relative entropy satisfies the 

relationship  and is equal to zero if and only if p(x)=q(x) for all x.  The 

definition of Shannon entropy can be used to simplify the expression in equation 

( ) 0D p q ≥

(2.9) 

and arrive at equation (2.10).  

 

( ) ( ) ( ) ( )

( ) ( )

2

2 2

log    

              log ( ) log ( )

x

x x

D p q p x q x Shannon entropy of p x

p x q x p x p x

⎡ ⎤= − − ⎣ ⎦

⎡= − − −⎢ ⎥
⎣ ⎦

∑

∑ ∑ ⎤  (2.10) 

We can apply the concept of relative entropy to Monte Carlo calculations for nuclear 

criticality and static reactor analysis.  By setting the two random distributions in equation 

(2.9), p(x) and q(x), to the source distributions in the jth  cycle, S(j), and the 1st cycle, S(1), 

we arrive at equation(2.11).  

 ( ) ( ) ( )
( )

( )
( ) (1) ( )

2 (1)
1

log
jB

j j

i

S i
D S S S i

S i=

⎛ ⎞
= ⎜⎜

⎝ ⎠
∑ ⎟⎟  (2.11) 
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As the Monte Carlo calculation runs through the iterations, the relative entropy will show 

a general increasing trend due to the fact that ( )jS is moving away from , assuming 

that  becomes less and less credible.  The relative entropy is also lower bounded by 

the square of L1 distance as well as greater than or equal to zero [11]. This relationship is 

found in equation 

( )1S

( )1S

(2.12).   

 ( ) ( ) ( )
2

( ) (1) ( ) (1)

1

1 0
2log 2

B
j j

ie

D S S S i S i
=

⎛ ⎞≥ −⎜
⎝ ⎠
∑ ≥⎟  (2.12) 

The L1 distance is the sum over all bins, of the absolute difference of the two distributions 

 and .  Ueki found that a lower bound of the relative entropy exists, which 

increases through the cycle progression [4].  This property is found in equations 

( ) ( )jS i ( ) ( )1S i

(2.13) 

and (2.14). 

 ( )( ) ( )(1j
jD S S D f S∗≥ )1

)1

 (2.13) 

   (2.14) ( )( ) ( )(1
1j jD f S D f S∗ ∗

+ ≥

In equations (2.13) and (2.14), jS is the expectation value of the source distribution in 

cycle j, i.e. jS in D represents the ensemble average over infinitely many realizations of 

; and , defined via jS ( )( j
jf C ε∗ ∈ ) )( )( ) ( )( )

( )({ }1 min
jj

f C
D f S D f S

ε

∗

∈
=

( )( )

1 ),where  is 

a set of probability distribution defined by 

( )( jC ε

( )( ) ( ) ( ){ }; ,j j > 0jεC f
 

in which 

P D f Sε ε∞= ∈ ≤

( ) ( ) ( )( )j jD S Sε ∞=  and ( ) ( )lim j
jS E S→∞

∞ ⎡ ⎤= ⎣ ⎦
). Ueki also showed that ( jε  

monotonically decreases or ( ) ( )1 2 ... ( )jε ε≥ ≥ ε≥ [3]. 
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2.3.1  Progressive Relative Entropy 
 

By equations (2.13) and (2.14), ( ) ( )1jE S S⎡ ⎤
⎣ ⎦ is expected to be increasing.  But by 

a practical reason the concept of the progressive relative entropy is developed. The 

progressive relative entropy (PRE) and is defined in equation (2.15).   

 
( ) ( )( ) ( )( )

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( )

(1) (1) ( ) ( ) (1) ( )

(1) ( )
(1) ( )

2 2(1) ( ) (1) ( )
1 1

0.5 0.5

              = log log
0.5 0.5

j j j

jB B
j

j j
i i

PRE j D S S S D S S S

S i S i
S i S i

S i S i S i S i= =

≡ × + + × +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟× + × +⎝ ⎠ ⎝ ⎠

∑ ∑
 (2.15) 

The PRE is a symmetrization of the relative entropy, . The development of 

the concept of progressive relative entropy is needed because of a problem that arises 

with the application of the relative entropy to the source distribution in Monte Carlo 

calculations. Referring back to equation 

( ( ) (1)jD S S

( ) ( )1S i 0.5

)

)

(2.11), the problem with using relative entropy 

can be seen.  If the source distribution in one of the bins in the first cycle is equal to zero, 

the relative entropy will become infinite.  This condition can develop when the point 

source option in Monte Carlo is utilized.  “To avoid such a singularity, the PRE of the 

source distribution at cycle j defined in (equation (2.15)) is utilized” [3]. PRE will also 

exhibit a general increasing trend because as the cycles progress, the binned source 

distribution in cycle j, , moves away from the binned source distribution in the 

first cycle, .  “Thus, the distances of and to 

will increase, which implies that both terms in the right side of equation 

( ) ( )jS i

( (1)0.5 S×

( ) ( )1S i

1 2 D= ×

( ) ( )jS i

) 0

( ) ( ) ( ) ( )( )1jS i S i× +

(2.15)  will 

exhibit a general increasing trend from the initial value of zero 

to their respective stationary levels” [3]. By ( ) ( )( (1) (1)PRE S S+ =
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rearranging the equation for Jensen measure we can arrive at an equation that is a 

magnitude of the PRE.  The next set of equations demonstrates this alteration. 

 

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )( ) ( ) ( )

( )

( ) (1) ( ) (1) ( )
2

1

(1) (1) ( ) ( )
2 2

1 1

(1) (1) ( ) (1) (1)
2 2

1 1

( )

0.5 log 0.5

               0.5 log 0.5 log

            0.5 log 0.5 0.5 log
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B
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i i
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j

i i

j

J S S i S i S i S i

S i S i S i S i

S i S i S i S i S i

S i

=

= =

= =

= − + × +

+ +

= − × + +

−

∑

∑ ∑

∑ ∑

( ) ( )( )( ) ( ) ( )
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( ) ( )( )
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( ) ( )( )
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⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥× +⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟+

⎜ ⎟⎢ ⎥× +⎝ ⎠⎣ ⎦
⎡ ⎤= × + + × +⎣ ⎦

=

∑
 (2.16) 

From this rearrangement of the Jensen measure, it is shown that the Jensen measure is 

one half of the progressive relative entropy at cycle j.   

2.3.2  Posterior Relative Entropy 
 

The final relative entropy that was proposed was a “posterior defensive visual 

diagnostic” [12]. This diagnostic is known as the posterior relative entropy (PosRE). 

Posterior relative entropy is defined by equations (2.17), (2.18), (2.19) and (2.20). 
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  (2.17) ( ) ( )( ( )jPosRE j D S iμ≡ )

 
( )

( )

( )

max

1/2

( )

1

1/2 max

 average source distribution over second
             half of prior assumed active cycles

        =

N
j

j N

i

S i

N N

μ

= +

=

−

∑
 (2.18) 

  (2.19) 1/2

max

 Final cycle of first half of active cycles
 Total number of cycles

N
N

=
=

 ( ) ( ) ( )
( )

( )
( )

2
1

log
jB

j

i

S i
PosRE j S i

iμ=

⎛ ⎞
= ⎜⎜

⎝ ⎠
∑ ⎟⎟

)m

⎤
⎦

 (2.20) 

One can check after the final cycle or iteration to verify the PosRE crosses the 

average of the PosRE over the second half of the active cycles before the first active 

cycle begins.  If the value of the PosRE crosses the average of the PosRE over the second 

half of the active cycles after the beginning of the active cycles the PosRE is said to be 

invalid.  The theoretical foundation for the PosRE was developed by Ueki from equation 

(2.21) [3].   

  (2.21) ( ) ( )( ) ( ) ( )( 1lim limn m n

m m
D E S E S D E S E S+

→∞ →∞
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤≥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Where  is the ensemble average over infinitely many realizations of and 

is the stationary probability distribution. 

( )nE S⎡⎣

( )mE S⎡ ⎤
⎣ ⎦

( )nS

lim
m→∞

It was Brown and Ueki who proposed and developed the use of Shannon entropy 

and relative entropy as indicators of convergence [2].  With the preceding definitions of 
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entropies it can be determined at which cycle the source distribution converges or 

fluctuates around the true source distribution.  By taking the values calculated at each 

cycle for each of the entropies and comparing them to the values calculated in the 

previous cycles it can be determined if the entropies have reached stationarity.  This is 

known as an on-the-fly diagnostic and can be performed by a Wilcoxon signed rank test.  

A step refined on-the-fly judgment was proposed by Ueki [3] and will be discussed 

further in chapter 5.  

The determination of posterior relative entropy is different from the other entropy 

calculations because it depends on user defined values, i.e. the number of inactive cycles 

and the number of active cycles.  PosRE can be manipulated by changing the number of 

active and inactive cycles.  However inconsistencies can arise in the use of PosRE if the 

total number of cycles in the Monte Carlo run is less than it takes for the model to reach a 

state of stationarity.  This inconsistency can be seen when we look at the analysis of a 

homogeneous cube with vacuum boundary conditions. The simulation was run with 

10,000 particles per cycle. Because of the number of particles in this simulation the 

source distribution takes about 1400-1500 cycles to reach a stationary state.  This can be 

seen from RAPI behavior in Figure 2.2, which is developed and explained in Chapter 3. 

18 
 



0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
is

ta
nc

e 
(c

m
) 

Cycle Number
 

Figure 2.2: RAPI of Homogeneous Cube with 10,000 particles per cycle 

 This model is shown to converge around 1500 cycles. If a run of this simulation is 

done with the total number of iterations set to less than 1500 cycles, the calculation of the 

posterior relative entropy returns values inconsistent with what theory says posterior 

relative entropy should behave like.  PosRE should always decrease from its initial value 

as is illustrated by equation (2.21) [3].  A model of the homogenous cube problem was 

run for 1400 cycles with 400 inactive cycles, and the results for the calculation of the 

posterior relative entropy is displayed in Figure 2.3.  The value of the PosRE over the 

cycles or iterations of the run increases for approximately 80 cycles then begins to 

decrease. 
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Figure 2.3: Posterior Relative Entropy of Homogeneous Cube with 10,000 Particles per cycle 

This inconsistency indicates that the predefined number of inactive cycles was too small 

because the utility of the PosRE entails the implicit assumption that convergence occurs 

before the beginning of the second half of the active cycles. To be able to use PosRE in 

the proper manner, the number of inactive cycles needs be set to the number of cycles 

that it takes for the source distribution to reach a stationary state.  In the case of the 

homogeneous cube the number of inactive cycles needs to be set to 1500 and the number 

of active cycles be 1000 for a total number of cycles of 2500.  It is for this reason that 

posterior diagnostic measures are not an “ultimate” judgment; the stationary state needs 

to be determined during the iterated process. This can be done with an on-the-fly 

judgment like the Wilcoxon rank sum. Problems can also arise with the calculation of the 

entropies, when the model being simulated is undersampled or the number of particles for 

each cycle is too low for the run to reach a convergent state. 
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Chapter 3  
 

Regionwise Average Position Indicator of Convergence 
 

 

 

 

 

In Monte Carlo (MC) techniques it is very useful to know at which cycle the source 

distribution has become stationary or converges.  When the particle distribution 

converges, it reaches a state of equilibrium and is said to match the true source 

distribution of the problem. It is at this cycle that the physical properties of the system 

can begin to be tallied, and the results of the tallies will more accurately represent the 

physical parameter and give better insight to the behavior of the system being simulated.  

To accomplish the task of determining the cycle at which the source distribution has 

reached the true fundamental mode, a convergence indicator needs to be developed.  The 

convergence indicator needs to be representative of the source distribution’s state 

throughout the iterational process.  The indicator also needs to be free of requirement of 

user input mesh.  This indicator will be presented as the regionwise average position 

indicator (RAPI) and was developed from the concept of automatic meshing. 
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In MC neutron transport calculations a predefined number or batch of particles is 

generated within the boundaries of a geometry with different distribution 

characterizations.  Tracking the interactions of one batch of particles through the 

specified geometry and materials is called a cycle.  This tracking process is repeated over 

many cycles or iterations.  Each cycle has the same number of particles and the starting 

position in the first cycle of the first batch of particles is determined from the specified 

distribution. In each subsequent cycle the starting position of the batch of particles is 

determined from the fission sites of the previous batch of particles.  Statistics of the 

physical properties of a problem can be accumulated by recording the interactions of the 

particles at each cycle or iteration in a simulation.  To record these interactions accurately 

a mesh must be laid upon the geometry.  The mesh divides the geometry into bins.  

Currently when using the MC process of neutron transport for the calculation of the 

effective multiplication of a nuclear system or other physical properties of a system, a 

user of the computer program must input coordinates.  These coordinates are used to set 

up a mesh on the geometry, which in turn creates bins that discretize the geometry.  A 

user defined binning scheme can be very limited because the binning scheme needs to be 

problem specific.  The binning scheme is problem specific because it is the user who 

determines where the discretization will be most useful. The mesh, and thus the bins, 

need to be placed in the geometry where the most accurate and valuable information 

about the system can be obtained.  This can be seen if we examine the different ways as 

to which nuclear systems can be described.  Nuclear systems can range from lumps of 

fissionable material to nuclear reactor cores, with regions within the geometry ranging 

from fissile to non-fissile material. Not only can nuclear systems have different 
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geometries and material-neutron interaction probabilities, but they can also have different 

source distributions, including but not limited to point sources, uniform sources, and line 

sources. The requirement of preset meshing for various source distributions requires that 

the user intuitively knows how the particle distributions will behave in all possible types 

of geometry, material and initial source distribution possible. 

The need for knowledge of particle distribution evolution from cycle to cycle in 

any geometry and initial source distribution combinations and its impact on mesh 

coordinate assignment can be eliminated by automating the mesh assignment and bin 

creation.  The automation of bin creation can be done by taking the average of the 

particle positions in any geometry and initial source distribution and using this averaging 

to define the mesh coordinates.  If the average particle position is used to determine how 

the mesh is defined, bins will be created in the regions of the geometry where the particle 

density is the highest. It is in these regions of the geometry that the binning definition 

will have the greatest impact on the determination of the physical properties of the system 

as well as obtaining information that leads to understanding about how the system may 

behave.  

Every particle generated in a geometry is generated only within fissile regions of 

the geometry, and each particle position has an x, y and z component.  In one-dimensional 

problems, one dimension is defined to be finite while the other two are defined to be 

“infinite”.  For one-dimensional geometry, only one the finite component will be used in 

performing calculations, whether it is the x, y or z component.  In two-dimensional 

problems, two dimensions are finite while one is infinite, and in three-dimensional 

problems all three dimensions are finite.  It is only in the finite dimensions that we wish 
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to implement the automatic meshing. To begin the automatic meshing, the average of the 

particle positions can be found, and this calculation is described in the equation (3.1).   

 1 1 1
1 1

1 1        z
N N

avg k avg k avg k
k k 1

1 N

k

x x y y z
N N− − −

= =

= = =
N =

∑ ∑ ∑  (3.1) 

In these equations N is the total number of particles generated in the geometry and k is an 

index.  For example if the problem is a slab that is finite in the x dimension and infinite in 

the y and z dimensions, the average in the x dimension or xavg will only be calculated.  In 

a two-dimensional geometry, only the average in two dimensions will be taken, and in 

three all three will be calculated. With these averages, a coordinate that will be the first 

center point has been obtained.  This point becomes the intersection of the bin boundaries 

in the meshing. In a one-dimensional geometry two bins will be created by the division of 

the geometry by the first center point; four bins will be created in a two-dimensional 

geometry; and eight bins will be created in a three-dimensional geometry.  We can 

further subdivide these bins, in any geometry, by taking the average position of the 

particles within each of the bins. This is done with equation (3.2), 

 

1 1

( 1) ( 1) ( 1)
1 11 1

1 2

1 2 3 4

1 1 1        z

;                                                one-dimension
;                           

i iN N

avg i k i avg i k i avg i k i
k ki i i

x x y y
N N N

N N N
N N N N N

− −

− − − − − − −
= =− − −

= = =

+ =
+ + + =

∑ ∑

1 2 3 4 5 6 7 8

      two-dimensions
;  three-dimensionsN N N N N N N N N+ + + + + + + =

1

11

iN

k
z

−

− −
=
∑

 (3.2) 

which is similar to (3.1) with N, the number of particles in the entire geometry, changed 

where i is the regionwise average position coordinate, i-1 is the bin that is under 

consideration and Ni-1 is the number of particles within the bin denoted i-1.  With this 
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equation, there are an increased number of bins created in the geometry by automatic 

meshing. In this calculation the sum of the particles in the bins created by the center point 

is equal to the total number of particles. An example and explanation of automatic 

meshing for geometries in one, two and three dimensions will be discussed next. 

 

 

Bin 1 with N1 particles Bin 2 with N2 particles

ିࢍ࢜ࢇ࢞  

ିࢍ࢜ࢇ࢞ ିࢍ࢜ࢇ࢞   

Figure 3.1: 1D Automatic Meshing 

The first example is that of a one-dimensional geometry. For this example the 

geometry is infinite in the y and z directions.  The x direction is finite, meaning that the 

exterior boundaries are known.  The red line in the middle of Figure 3.1 represents the 

first bin boundary intersection that is created from the calculation 1
1

1 N

avg k
k

x x
N−

=

= ∑ . In 

general the coordinate for the x-direction bin center will be identified as ݔ௩ି  where i 

identifies the center point,  i-1 identifies which bin under consideration, and j identifies 

which cycle or iteration the calculation is being performed for.    In the case of the first 

bin boundary intersection, i is equal to one.  When the dimension in question in a one-

dimensional investigation is either the y or z direction there will be similar values 

calculated for y or z and will be represented by ݕ௩ି  and ݖ௩ି .  The initial calculation 

of the average particle position, represented by the red line in Figure 3.1, creates two 

bins.  From the two bins, two center coordinates will be determined by another averaging.  
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These coordinates in the x direction are represented by the blue lines.  They are calculated 

by taking the average of the positions of the particles located in each of the spaces or 

bins, separated by the first bin boundary intersection.  These two calculations, done with 

equation (3.2), create the secondary centers ݔ௩ିଶ  and ݔ௩ିଷ .  With these two 

secondary centers there is a total of three average coordinates and a total of 4 bins. By 

making ݔ௩ିଶ  and ݔ௩ିଷ  new bin boundary intersections, one can further compute the 

regionwise average particle position in each of the 4 bins leading to a total of 8 bins and 7 

average particle positions.  This meshing can be continued making the meshing finer or 

the bin size smaller, concentrating a higher number of bins in the areas of higher particle 

density. 
N1+N2+N3+N4=N 

Bin 2 Bin 1 
N1 particles N2 particles

ሾିࢍ࢜ࢇ࢞ , ିࢍ࢜ࢇ࢟ ሿ
ሾିࢍ࢜ࢇ࢞ , ିࢍ࢜ࢇ࢟ ሿ

Bin 4 
N4 particles 

Bin 3 
N3 particles

 
Figure 3.2: 2D Automatic Meshing 

 The next example is shown in Figure 3.2 and is that of a two-dimensional square.  

For explanation purposes, the x and y directions will be finite and the z direction will be 

infinite, although there could be any combination of two finite dimensions with the 

remaining being infinite.  The red center point in the left square represents the average of 

the particle positions within the entire geometry with respect to the x and y directions and 

becomes the intersection of the 4 bin boundaries indicated by the red lines.  This will be 

the first bin boundaries intersection and average coordinate.  This coordinate divides the 
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geometry into four bins. We then find the average particle position in each of the bins or 

regions to find four more centers or bin boundary intersections.  At two levels of 

averaging in a two-dimensional geometry, there are a total of five average coordinates 

and 16 bins.  As with the one-dimensional scheme, the automatic meshing can be made 

finer and finer; increasing the amount of bins for information analysis, and these bins will 

be in the areas of highest particle density.  

 
Figure 3.3: 3D automatic meshing 

Finally there is the case of a three-dimensional geometry or cube, and this case is 

depicted in Figure 3.3.  Each particle has an x, y, and z component of its position within 

the geometry.  By taking the average of the x, y, and z components respectively, an 

average particle position or center coordinate that is related to the particle density can be 

found.  This center coordinate becomes the intersection of 8 bin boundaries, whose 

intersections connected to the center is shown in red in Figure 3.3.  This center coordinate 

will divide the geometry into eight bins; top-upper-right, top-upper-left, top-lower-right, 

top-lower-left, bottom-upper-right, bottom-upper-left, bottom-lower-right, and bottom-

lower-left. As can be seen in the figure, one of the eight bins, top-upper-right, created 

from the first center coordinate is selected and shaded. Within the top-upper-right bin the 

ሾିࢍ࢜ࢇ࢞ , ିࢍ࢜ࢇ࢟ , ିࢍ࢜ࢇࢠ ሿ ሾିࢍ࢜ࢇ࢞ , ିࢍ࢜ࢇ࢟ , ିࢍ࢜ࢇࢠ ሿ
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average particle coordinate is found again as with the first center coordinate creating a 

secondary center.  This mesh coordinate or center is represented by the intersection of the 

blue lines.  This process is repeated for the seven other bins.  After the second set of 

averaging is completed a total of nine centers or mesh coordinates are found and these 

centers create a total of 64 bins.   Once again the automatic meshing and bin size can be 

made finer and finer depending on the needed amount of detail by increasing the number 

of divisions.   

 The number of bins and the number of centers created by the automatic meshing 

for any dimensional analysis is dependent upon the following set of equations. 

  (3.3) ( ) ( )
1

0

2       2
LLD

i

B T
−

=

= =∑
iD

In these equations, B is the number of bins, T is the number of centers, D is the number of 

dimensions the geometry occupies, and L is the level of divisions or number of averages 

performed.  

  The automated meshing and bin creation technique can serve as an indicator of 

convergence.  For example, in a three-dimensional space, this can be accomplished by 

taking the sum of the distances between the coordinates of the nine centers at each cycle 

from the corresponding nine centers or coordinates of the first cycle.  The sum of the 

distances between corresponding centers can be found using equations (3.4), (3.5) and 

(3.6).  

 ( ) (21

1 1
      3

T T
j j j

x i avg i avg i
i i

D d x x T− −
= =

= = − =∑ ∑ )  (3.4) 
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    5
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j j j j

xy i avg i avg i avg i avg i
i i

D d x x y y T− − − −
= =

= = − + − =∑ ∑ )  (3.5) 

 ( ) ( ) ( ) (2 2 21 1 1

1 1
     9

T T
j j j j j

xyz i avg i avg i avg i avg i avg i avg i
i i

D d x x y y z z T− − − − − −
= =

= = − + − + − =∑ ∑ )  (3.6) 

The three equations are used for one dimension, two dimensions, and three dimensions 

respectively. The j in the superscripts is indicative of cycle number, the i in the subscripts 

represents which of the nine centers is under question, and T represents the total number 

of centers to be summed over.  Equation (3.4) can be used for any dimension and 

equation (3.5) can be used for any combination of two dimensions.  For a three-

dimensional geometry, by plotting the distance of the nine centers from the initial nine 

centers over all cycles, the determination of the cycle of convergence can be made. This 

indicator of convergence will be designated the regionwise average position indicator or 

RAPI.  The RAPI can be used as convergence indicator of the source distribution because 

the centers describe the overall and regionwise average source distribution location 

within geometry, as well as tracks that change in the sum of the distances of each center 

at each cycle to that of the corresponding centers in the first cycle. When the sum of the 

distances converges, fluctuating around a central value, the source distribution can be 

said to be converged since RAPI values are determined from particle positions.  An 

example of how RAPI behaves in a Monte Carlo calculation’s cycle progression is found 

in Figure 3.4. 
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Figure 3.4: RAPI for Homogeneous Cube Case with 100,000 Particles per Cycle 

The homogeneous cube problem had side length of 200 cm. To create this figure a 

simulation was run with 100,000 particles, for 2000 active cycles and 500 inactive cycles. 

Because the homogeneous cube is a symmetric problem, the distance of the first center 

point or first average coordinate at each cycle or iteration from that of the first average 

coordinate at the initial cycle or iteration should exhibit a quasi stationarity from the 

beginning. This indicator is calculated by eliminating the sum in equation (3.6) and 

arriving at equation (3.7).  

 ( ) ( ) ( )2 21 1
1 1 1 1 1 1

j j j j
avg avg avg avg avg avgD x x y y z z− − − − − −= − + − + −

21   (3.7) 

If this fact turns out to be true then the amount of computation that would need to be done 

for symmetric problems could be reduced. Figure 3.5 is created by plotting the distance 

of the single center position at each cycle from the single center position at the first cycle 

against the number of cycles. 
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Figure 3.5: Single Center Distance for Homogeneous Cube Case with 100,000 Particles per Cycle 
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What is found is that the single center distance remains near that of first value, within 

about 10 cm, throughout all the iterations or cycles. The single center distance fluctuates 

around the first value, being in a quasi stationary state from the very beginning. The 

single center distance may be used to indicate convergence, but by comparing the graphs 

in Figure 3.4 and Figure 3.5, it can be seen that the sum of the distances is a better 

indicator of convergence of the source distribution in a symmetric system. In Figure 3.4 

the RAPI does not reach stationarity immediately whereas the single center distance in 

Figure 3.5 is in a stationary state from the beginning.  The sum of the distances indicator 

or RAPI takes into account the source distributions variation within the different regions 

of the entire geometry by combining the center’s distances into an overall indicator of the 

source distribution. 

 We can also see that the use of the RAPI for convergence determination may be 

promising by comparing it to the Shannon entropy, a mesh based convergence indicator 
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of the source distribution proposed by Ueki [3].  The Shannon entropy for the 

homogeneous case is in Figure 3.6. 

 

 
Figure 3.6: Shannon Entropy for Homogeneous Cube Case with 100,000 Particles per Cycle 
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The trend of the RAPI is opposite that of the Shannon entropy, increasing instead 

of decreasing but the fluctuations in both of the indicators occur at similar points in the 

number of cycles. So from this, RAPI looks to be a promising mesh-input-free 

convergence indicator. The RAPI method will be used to determine source distribution 

convergence for different scenarios using two computational packages, in a MC research 

code and in MCNP [13]. This method will then be compared against the four entropies 

associated with each simulation.  By comparing the RAPI method plots against these 

entropies, which are verified indicators of convergence, it can be seen if the RAPI method 

can be used as a convergence indicator.  The numerical results of the investigation will be 

discussed in Chapter 6. 
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The usefulness or accuracy of the RAPI method may be affected by the 

dominance ratio of the nuclear system.  The RAPI method may also be affected by the 

heterogeneity of the system.  The effects that these system characteristics have on the 

RAPI method will be discussed in Chapter 6, being inferred from the numerical results. 

Another question that needs to be looked at is if there is a difference between the research 

code and MCNP calculations, and if these differences cause a difference in the 

convergence determination.  This method needs to be rigorously tested and compared to 

proven methods to validate its usefulness.   

 With the use of automatic meshing and bin creation, the need for knowledge of 

particle distribution behavior gained from years of experience as well as the need to input 

the mesh coordinates can be eliminated.  This method can be useful in automatic 

determination of the cycle at which the convergence of the particle distribution occurs 

and thus initiating physical property information retrieval.  This will ultimately increase 

the accuracy of results and the usefulness of the modeling being performed.    
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Chapter 4  
 

Euclidian Minimum Spanning Tree Applications 
 

 

 

 

 

In Monte Carlo simulations, it is useful to know at which cycle the source distribution has 

converged, as well as if the particle population is of sufficient size for a given tally cell or 

bin size, to accurately model a nuclear criticality problem.  If the source distribution has 

converged and the problem/simulation is adequately populated, the error and bias 

associated with tallying of physical properties of the problem will be reduced.  To 

determine when the source distribution has converged or if the problem is adequately 

populated, a diagnostic is needed.  Currently, such diagnostics are mesh-based.  Problems 

can arise with mesh-based diagnostics because the meshing/binning is defined by the user 

and the user can make mistakes in the location and resolution of the binning scheme. The 

concept of Euclidian minimum spanning trees (EMST) was investigated as mesh-input-

free means of drawing diagnostic information from the source particles in Monte Carlo 

source iterations.  Because Euclidian minimum spanning trees have been used in a 

number of applications with reasonable success [4-8], their use in Monte Carlo diagnostic 

work seemed practical.  This section will explore applications of graph theory techniques 
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to diagnostics of Monte Carlo methods, to reduce error and bias in the tallying of physical 

properties and eliminate the need for user input mesh in diagnostic work. 

4.1 Graph Theory 
 

 Graph theory is the study of mathematical structures called graphs that model 

relationships between objects in a specified collection.   A graph consists of two finite 

sets, a set of vertices and a set of edges.  An example of such a graph can be found in 

Figure 4.1. 

 
Figure 4.1: A graph with vertices as numbers and edges as letters 

A graph is connected when every two of its vertices are connected [14].  This means that 

from any vertex in the graph, any other vertex in the graph can be reached, or there exists 

edges between vertices so that every other vertex is connected through these edges to 

every other vertex.  An example of a connected graph is shown in Figure 4.2. 

 
Figure 4.2: Connected Graph 

 
A weighted graph is a graph whose edges have weight. A spanning tree of a graph is a 

spanning subgraph of that graph that is a tree [14]. Here, a spanning subgraph of a graph 
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is a graph that has exactly the same set of vertices as the parent graph but has the same or 

fewer edges. A tree is a graph that is acyclic and has n vertices and n-1 edges. Acyclic 

means that there are no cycles in the graph (cycles is used here as a reference to a circular 

path, not a cycle or iteration as in Monte Carlo source iterations). An example of a cycle 

can be found in Figure 4.3. A spanning subgraph of the graph in Figure 4.2 can be found 

in Figure 4.4. 

 
Figure 4.3: Three Cycle Graph 

 
Figure 4.4: Spanning Tree 

 
A minimum spanning tree is the least total weight spanning tree of a weighted graph.  

There may be many spanning trees of a weighted graph, but the minimum spanning tree 

has the least total weight possible for the graph in question.  There exist different 

algorithms to find the minimum spanning tree of a graph, but Prim’s algorithm will be 

used for the purpose of the investigation described in this thesis. 
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4.2 Prim’s Algorithm 
 

Prim’s Algorithm works by taking a weighted connected graph and finds a 

minimum spanning tree.  Prim’s algorithm starts by choosing a vertex, any vertex in the 

graph say v1.  The next step in the algorithm is to choose an edge, e1=v1v2, which is 

incident to vertex v1 with the least weight and which is not a loop.  Edge e1 is connected 

to another vertex, v2.  Next the edge with the least weight that is incident to v1 or v2 is 

chosen to be part of the minimum spanning tree but with the other end of the edge not 

incident on v1 or v2, “i.e., we choose e2=viv3 where iൌא ሼ1,2ሽ but ݒଷ ് ,ଶݒ  ଵ” [14].  Thisݒ

process of choosing edges of smallest weight, one whose end is a vertex previously 

chosen and the other end becoming involved for the first time, until there has been n-1 

edges included in the minimum spanning tree (assuming the graph has n vertices).  At 

completion of this process all of the vertices have been involved in the construction of the 

subgraph and it is proved to be a minimum spanning tree [14]. 

The following are two examples of Prim’s algorithm: the first starts with one 

vertex in a graph, and the other by starts with a different vertex in the same graph.  This 

will be done to demonstrate that Prim’s algorithm will return the same minimum 

spanning tree for the same graph by starting with any vertex.    
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Example 1 

 

 

 

 

 

 

 

 

 

 

 
Step Four 

We next choose the edge of weight 
one connected to vertex f because it 

has the least weight of all edges 
incident on previously used vertices. 

Step Three 

We next choose the edge connected to 
c with weight two because it has the 
least weight of edges connected to 

vertices c and h.

We first choose the edge with weight 
one connected to c because it has the 

least weight. 

Step Two 

We begin Prim’s by randomly 
choosing vertex c. 

Step One 
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Step Five 

The next edge chosen is bg with a 
weight of two. 

The next edge is ei of weight one. 

Step Eight 

 

The next edge is de of weight two. 

 

Step Seven 

The next edge included in the 
minimum spanning tree is gd with 

weight one. 

Step Six  
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Step Nine 

The final step to include all edges in 
the minimum spanning tree is to 
include edge ia of weight two. 

Final MST 

This is the minimum spanning tree 
starting at point c with a total weight 

of twelve. 

 

 

 

 

 

 

 

After demonstrating the first example of finding a minimum spanning tree, Prim’s 

algorithm will be implemented a second time but by choosing a different starting vertex.  

This is done to illustrate that the total weight of the minimum spanning tree is not 

changed by the choice of starting vertex. 
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Example 2 
 

Step  One 

We begin Prim’s by randomly 
choosing g as the starting vertex to 
create the minimum spanning tree. 

Step Two 

 

We next choose the edge of weight 
one connected to vertex g because it 

has the least weight of all edges. 

Step Three 

Although there are two edges that 
have weight two at this point it 

doesn’t matter which is chosen and 
this will be seen shortly, so edge de is. 

 

 

 

 

 

 

 

 

 
Step Four 

The next edge with least weight is ei 
so this one is chosen to be in the 

minimum spanning tree. 
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Step Five Step Six 

 

The next edge that needs to be chosen 
is edge gb, it can now be seen even 

though it was looked over in previous 
ste

 

 

 

 

 

 

 
 

 We once again have two edges of 
weight two to choose from and as 

before either edge will do so edge ia is 
chosen.

 

 ps it is now being used. 

Step Seven 

The next edge used is bf with a weight 
of one. 

Step Eight 

Then next edge to be chosen is edge fc 
of weight two. 
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Step Nine Final MST 

And the final minimum spanning tree 
found using Prim’s algorithm also has 

a total weight of 12. 

 

And the final edge that needs to be 
included in the minimum spanning 

tree is edge ch of weight one. 

 

 

 

 

 

 

 

 

 

So by performing Prim’s Algorithm’s twice on the same graph, using different starting 

vertices, it can be seen that wherever the algorithm is started, the algorithm will return 

minimum spanning trees with equal weight. Prim’s algorithm yields the minimum 

spanning tree when implemented on a connected graph and obtains the minimum weight 

regardless of the initial vertex selection [14]. 

4.3 Euclidian Minimum Spanning Trees in Monte Carlo 
 

Prim’s algorithm can be applied to Monte Carlo techniques.  A graph acted upon 

by this algorithm will be created using the particle positions at the beginning of each 

cycle as the vertices of the graph.  The graph will be complete such that each of the 

vertices will be connected by an edge to every other vertex. The weight of each edge will 

be the Euclidian distance calculated by equation (3.8)  

 ( ) ( ) ( )2 2
2 1 2 1 2 1 ,d x x y y z z= − + − + − 2  (3.8) 
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where ( )1 1 1, ,x y z  and ( )2 2 2, ,x y z are the coordinates of vertices. Prim’s algorithm will 

then be implemented to find the Euclidian minimum spanning tree (EMST) of the 

complete graph created from the particle positions. From Prim’s algorithm, the total cost 

of the EMST can be obtained.  The total cost of the EMST may be used to determine 

convergence.  Because the EMST of the model is derived from particle positions within 

the volume of the simulation, the total cost of the EMST is indicative of the state of the 

source distribution in each cycle.  By tracking the behavior of the total cost of the EMST 

from cycle to cycle, where “cycle” refers to the cycle in Monte Carlo source iteration, it 

can be determined when the total cost of the EMST begins to fluctuate around an 

equilibrium value, reaching convergence.  When the total cost of the EMST reaches a 

state of stationarity, the source distribution can be said to be in a convergent state because 

the total cost of the EMST is dependent on the overall particle distribution of the system.    

Two-dimensional and three-dimensional examples of an EMST that were found using 

Prim’s algorithm on a particle source distribution in homogeneous models are shown in 

Figure 4.5, Figure 4.6 and Figure 4.7.  

  

Figure 4.5: 2D 75 Point EMST With and Without Edges 
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Figure 4.6: 3D 25 Point EMST With and Without Edges 

 

 

Figure 4.7: 3D 25 Point EMST With and Without Edges 

The calculation of the total cost of the EMST can be done for as little or as many 

cycles as needed to determine convergence.  In addition to use of the total cost of an 

EMST for convergence indication, the average edge length of an EMST may be used to 

evaluate the acceptable minimum tally cell volume in power distribution calculations. 

The use of EMST’s and graph theory in Monte Carlo simulations can be very useful in 

eliminating the need for bin creation and thus bin-based determination of convergence 

and tally cell resolution. However, implementing the use of EMST’s in Monte Carlo 

simulations has drawbacks and limitations.  

One limitation arises because of the computational time or cost of implementing 

Prim’s Algorithm on a graph created from a distribution of particles.  The time it takes to 

45 
 



implement Prim’s algorithm increases to the order N2, where N is the number of particles. 

This can be seen in Figure 4.8. 
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Figure 4.8: Computational Time Increase from Implementing Prim’s Algorithm 

In this figure the time needed to calculate the Euclidian minimum spanning tree of 

a system by using Prim’s algorithm is for a single cycle. This is problematic because to 

adequately model a nuclear system with Monte Carlo methods, a large number of 

particles are needed; sometimes greater than 100,000 particles. Monte Carlo analysis of 

complex problems that require a large particle population can often take days without the 

addition of Prim’s algorithm.  Using the total cost of an EMST as a convergence indicator 

or finding the average edge length of an EMST for a problem with a large particle 

population would be counter-productive and even more time consuming if these 

calculations needed to done at every cycle. If Prim’s algorithm were implemented in its 

current form, it would take far too long to perform the determination of the convergence 

of the source distribution, determine an average edge length, and to perform the 
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simulation of a model.  Another limitation is the number of particles that can be used in 

the computation of the Euclidian minimum spanning tree.  In the coding of Prim’s 

algorithm a distance matrix, which describes the distance of every particle to every other 

particle, there exists a run-time memory shortage of dynamic allocation of edge matrix in 

Fortran 90 for large numbers of particles.  Because of this run-time memory shortage, the 

number of particles that can be used in Prim’s algorithm is limited to about 16,000 

particles, which is why this is the upper limit of the number of particles in Figure 4.8.  

4.4 Power Law Approximation of EMST Average Edge Length 
 

Because of the run-time memory storage limits and large requirement of 

computational time for the implementation of Prim’s algorithm for a large number of 

particles, an approximation that could extend the usefulness of EMST is needed.  This 

approximation could eliminate the need for dynamic allocation of the edge matrix.   An 

approximation of the average edge length past these limits for use as a particle population 

diagnostic was chosen to be investigated.  The average edge length of an EMST at the 

first or final active cycle can be used as a criterion for determining minimum tally cell 

resolution. 

A simple scaling law for the average edge length of an EMST with respect to the 

number of particles is proposed. 

 ( )( )
1

EMSTL N
AEL N

N
=

−
 (3.9) 
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In this relationship  is the total weight of the EMST created from N particles.  

So the average edge length of an EMST with N particles, 

( )EMSTL N

( )AEL N

NV r

, is equal to the total 

weight of the EMST divided by the total number of edges, N-1. Let Vol be the volume of 

the domain.  In a three-dimensional medium of uniform composition, the volume per 

particle at position , , is inversely proportional to N ( ), 

where  is the distribution function of the particles in terms of number density.  From 

this relationship, it can be inferred that the expected average edge length in any sub 

domain, will be inversely proportional to  in ideal cases. From this, the following 

power law can be imposed on 

r ( )NV r ( ) ( ) /c r Vol N= ×

( )c r

1/3N

( )AEL N . 

  (3.10) 1/( ) bAEL N N −∝

From this proportionality, we can solve for what b may be equal to for any problem. 

  (3.11) 
1/

' 1/

b

b

x aN
y aN

−

−

=
=

In equation (3.11) x and y represent the average edge lengths found for two different 

EMST’s found with N and N’ vertices respectively.  By dividing the first equation by the 

second one can arrive at equation (3.12).   

 
1/

'

bx N
y N

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.12) 

Then the log of both sides is taken and the equation in (3.13) is solved for b. 
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( )

1ln
'

ln '

ln

x N
y b N

N
Nb

x
y

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

= −
 (3.13) 

From the theory that developed equation (3.10), b is ideally equal to 3. The departure of b 

from 3 may depend on the heterogeneity of the system.  For example in systems with 

fissile and non-fissile domains, particles can be born in only fissile regions.  To create an 

EMST from the particle positions, edges must extend past non-fissile regions to connect 

particles in fissile regions.  Extending across non-fissile regions increases the average 

edge length of the EMST thus inducing the departure of b from 3.  Because 3 is a 

theoretical value, the value of b needs to be determined for different cases to be able to 

approximate the average edge length of an EMST for a large batch of particles.  The 

average edge length can then be used to define a criterion to decide if the tally cell 

resolution of a problem is appropriate for power distribution estimation. 

 In Chapter 7, it will be determined if the power law truly can describe the average 

edge length of an EMST created by particle positions within a system for a large number 

of particles.  The soundness of an EMST approach to population diagnostic will then be 

discussed. Then in Chapter 7, after verifying the reliability of the EMST approach, the 

criterion for the tally diagnostic will be developed, discussed, implemented and validated 

against other diagnostics. 
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Chapter 5  
 

Step-Refined On-The-Fly Diagnostic of Convergence 
 

 

 

 

 

In addition to the convergence indicators, an on-the-fly test needs to be performed during 

the process of iteration to determine at which cycle the convergence indicators have 

reached a stationary state. Ueki proposed and demonstrated the use of the Wilcoxon rank 

sum as a successful means of detecting convergence [3]. 

To utilize this method, the convergence indicators must be manipulated into a 

form that can be useful for analysis with this test.  First we find the difference of the 

convergence indicator from one cycle to the next and for simplicity the regionwise 

average position indication (RAPI) value will be used for this explanation.  RAPI is the 

sum of the distances of the regionwise average particle positions at each cycle to 

corresponding regionwise average particle positions in the first cycle. By regionwise 

correspondence, it is meant the correspondence between the average particle position in 

the top-upper-right region at cycle j and the average particle position in the top-upper 

right region at the 1st cycle. This operation will be performed on the other convergence 
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indicators with the purpose of comparison and validation of the RAPI method. This 

difference is found in equation (3.14), where j is the current cycle. 

  (3.14) ( ) ( ) ( )1RAPI j RAPI j RAPI jΔ = − −

Differencing significantly reduces autocorrelation when the cycle is well into stationarity 

[3].  Due to the assumption of stationarity that the source distribution is in the equilibrium 

fluctuation range, the expected value of the during stationarity is zero and this 

relation is found in equation 

( )RAPI jΔ

(3.15).   

  (3.15) ( ) 0  if cycle  is in stationarityE RAPI j j⎡ ⎤Δ =⎣ ⎦

The expected value of  is equal to zero because during stationarity the source 

distribution should ideally be constant.  But due to statistical fluctuations in the source 

distribution during stationarity from cycle to cycle,  will be fluctuating around 

zero when the source distribution has reached a convergent state.  RAPI will have a 

generally increasing trend as the centers calculated in subsequent cycles move away from 

the centers determined in the first cycle, until the source distribution begins its fluctuation 

around the true source distribution.  Because of the generally increasing trend before 

stationarity, the prevailing value of  will be greater than zero before the 

source distribution reaches a convergent state. 

( )RAPI jΔ

( )RAPI jΔ

( )RAPI jΔ

  (3.16) ( ) 0  prevalent before cycle  is in stationarityRAPI j jΔ >

During stationarity an opposite trend will appear, and this relationship is found in 

equation (3.17).  
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  (3.17) 
( )
( )

0
 equally likely to occur through cycle  during stationarity

0

RAPI j
j

RAPI j

⎛ ⎞Δ <
⎜ ⎟⎜ ⎟Δ >⎝ ⎠

Each of the positive and negative values of  are equally likely to occur during 

stationarity.  The Wilcoxon rank sum can be used to detect the appearance of the trend 

found in equation 

( )RAPI jΔ

(3.17) [3]. 

 To utilize the Wilcoxon rank sum, M samples of RAPIΔ  from preceding cycles 

need to be taken separated by L cycles.  The samples ( ) ( ), ,RAPI j RAPI j LΔ Δ −

( )(..., 1 )RAPI j M LΔ − −  are then ordered from smallest to largest in magnitude 

according to their absolute value.  This ordered set is then denoted by ( ){ } 1

M

k
Q k

=
 as 

specified in equations (3.18) and (3.19). 

 ( ) ( ) ( )1 2 ...Q Q Q M≤ ≤ ≤  (3.18) 

 
( ) ( ) ( )( ){ }

( ) ( ) ( ){ }
, ,..., 1

                              1 , 2 ,...,

RAPI j RAPI j L RAPI j M L

Q Q Q M

Δ Δ − Δ − −

=
 (3.19) 

With these values then let  

 :   kRank R k≡  (3.20) 

and 

  (3.21) 
( )
( )

0 ,  if 0.
Sign indicator: 

1 ,  if 0.k

Q k
V

Q k

⎧ <⎪≡ ⎨
≥⎪⎩
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The Wilcoxon positive signed rank sum [4] is then defined in equation (3.22).   

  (3.22) ( )
1

M

k k
k

W j R V
=

≡∑

This is the first portion of the Wilcoxon rank sum.  Then, the negative sign indicator is 

defined in equation (3.23), 

  (3.23) 
( )
( )

1 ,  if 0.
Negative sign indicator:  

0 ,  if 0.k

Q k
V

Q k
−

⎧ <⎪≡ ⎨
≥⎪⎩

The Wilcoxon negative signed rank sum is defined in equation (3.24) as follows. 

  (3.24) ( )
1

M

k k
k

W j R V−

=

≡∑ −

The sum of Wilcoxon positive signed rank sum and the negative signed rank sum is 

constant:  

 ( ) ( ) ( ) ( )
1

1
2

M

k k k
k

M M
W j W j V V R− −

=

+
+ = + =∑  (3.25) 

By combining the trends in equations (3.16) and (3.17) with the definitions from above, 

general trends of the Wilcoxon rank sums are obtained.  These trends are as follows. 

  (3.26) ( ) ( )   prevalent for cycle  prior to convergenceW j W j j−>

and 

  (3.27) ( ) ( ) ( ) ( )  and    
are equally likely to occur for cycle  during stationarity

W j W j W j W j
j

− −> <
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The shift in trend of the Wilcoxon positive rank sum depicted in the above declarations, 

indicates the transition into stationarity.  By taking into account equation (3.25), the 

trends in statements (3.26) and (3.27) can be reinterpreted as the following. 

 ( ) ( )1
 for cycle  prior to convergence

4
M M

W j j
+

>  (3.28) 

and 

 ( ) ( ) ( ) ( )1 1
  and   

4 4
are equally likely to occur for cycle  during stationarity 

M M M M
W j W j

j

+ +
> <  (3.29) 

The constant value ( )1
4

M M +
 is described as the median of the Wilcoxon rank sum and 

will be identified as . ( )midW M

5.1 Step Refined On-the-Fly Diagnostic 
 

 Derived from the trend transition from declaration (3.28) to declaration (3.29), 

Ueki proposed the following “step-refined on-the-fly diagnostics of the source 

distribution convergence” to determine when the source distribution has reached the 

fluctuation range of stationarity [3]. 

5.1.1 Step One 
 

 In the first step samples of RAPI are taken from twenty cycles preceding the 

current cycle j for j ≥ 21.  In this step L and M in equation (3.19) are chosen to be 3 and 7 

respectively. After obtaining the values of the Wilcoxon positive rank sum for cycles j ≥ 
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21, the moving average of  of current cycle j  needs to be 

determined. After obtaining the moving averages, it needs to be determined at which 

cycle the moving average crosses the median of the Wilcoxon rank sum ( ).  

At the cycle the moving average crosses the median value for the first time, the 

declaration of the convergence cycle is made denoted as .   Then let 

which is the cycle at which the moving average crossing the median is checked. 

( ) ( ) (2 ,  1  and W j W j W j− − )

( )7 14midW =

( )1C Sj j=( )1Sj

5.1.2 Step Two 
 

 In step two, samples of RAPI are simultaneously being taken from 40 cycles 

preceding the current cycle j for j ≥ 41.  In this step L and M from equation (3.19) are 

taken to be 4 and 10 respectively.  At cycle , check whether the moving 

average of W j crossed the median of the ranked 

sum  before . [The number of preceding cycles is increased 

by 20, thus the judgment is made 20 cycles after .]   If this crossing has occurred 

prior to this cycle let . In this case, 

( )1 20Sj +

( ) W j

( )1Sj

C

( ) ( ) ( )3 ,  2 ,  1 andW j W j− − −

( )( )10 27.5= ( )1 20Sj +

( ) ( )2 1 20S Sj j= +

midW

j  is not updated.  If the crossing 

has not occurred at , continue to check the subsequent cycles to determine at 

which cycle the crossing occurs.  Once the crossing has occurred, let  be equal to 

the cycle of the first crossing.  Then set .   

( )1 20Sj +

(2C Sj j=

( )2Sj

)
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5.1.3 Step Three 
 

 In step three samples of RAPI are being concurrently taken from 60 cycles 

preceding the current cycle j for j ≥ 61.  In this step L and M from equation (3.19) are 

taken to be 5 and 12 respectively.  At cycle , check whether the moving 

average of crossed the median of 

the ranked sum before .  [The number of preceding cycles is 

increased by 20, thus the judgment is made 20 cycles after .]  If this crossing has 

occurred prior to this cycle, let , if this is the case 

( )2 20Sj +

( ) 1 andW j− −

20

20+

( ) ( ) ( ) (4 ,  3 ,  2 ,  W j W j W j W j− −

( )( )12 39midW = ( )2Sj +

(2Sj

( ) ( )3 2S Sj j=

)

)

Cj  will not change 

as said before.  If the crossing has not occurred at , continue to check the 

subsequent cycles to determine at which cycle the crossing occurs.  Once the crossing has 

occurred, let  be equal to the cycle of the first crossing.  Then set .   

( )2Sj 20+

( )3Sj ( )3C Sj j=

5.1.4 Step Four 
 

 In step four, samples of RAPI are simultaneously being taken from 80 cycles 

preceding the current cycle j for j ≥ 81.  In this step L and M from equation (3.19) are 

taken to be 5 and 16 respectively.  At cycle , check whether the moving 

average of crossed the median of 

the ranked sum  before .   If this crossing has occurred prior to 

this cycle, let .  If the crossing has not occurred at , 

continue to check the subsequent cycles to determine at which cycle the crossing occurs.  

( )3 20Sj +

( ) 1 andW j− −

20

( ) ( ) ( ) (4 ,  3 ,  2 ,  W j W j W j W j− −

( )( )16 68midW = ( )3Sj +

( ) ( )4 3 20S Sj j= +

)

0( )3 2Sj +
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Once the crossing has occurred, let  be equal to the cycle of the first crossing.  

Then set .   

( )4Sj

C

( )4C Sj j=

( )1 20− +

( ) ( and W j

( )1 20− +

( )1S Sj A= −

5.1.5  Step Five and Beyond 
 

 In steps five and later, samples of RAPI are simultaneously being taken from 20 X 

A cycles preceding the current cycle j, where A is the step number (A=5,6,..) and j ≥ 20 X 

A + 1.  In these steps L is always taken to be 5 and M is taken to be 4 X A.  At cycle 

, check whether the moving average of  

 crossed the median of the ranked sum before 

. If this crossing has occurred prior to this cycle, let 

.  In this case 

Sj A

1W j −

Sj A

( )j A

( ) ( ) (4 ,  3 ,  2 ,W j W j W j− − −

( )( )midW M

)

)

20+ j  is not updated. If the crossing has not occurred at 

, continue to check the subsequent cycles to determine at which cycle the 

crossing occurs.  Once the crossing has occurred, let 

( )1 20− +Sj A

( )Sj A  be equal to the cycle of the 

first crossing.  Then set ( )C Sj j A=   ( Cj is updated). Once again remember that ( )Sj A is 

in fact the current cycle in the cycle progression as with the previous steps. 

5.1.6  Stopping Criteria 
 

 The steps will continue until the convergence cycle has been identified.  Criteria 

for stopping of the step-refined on-the-fly diagnostic of the source distribution 

convergence need to be defined.  The stopping criteria are as follows.  
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The number of the cycles preceding
.   the current cycle, from which 

Wilcoxon rank sum is computed

66% of the declared 
> convergence cycle .

number

a
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                                            Or, 

  20 0.66 CA j× > ×

        
( )b. Same declared convergence cycle  at

    five consecutive steps
Cj  

In criterion a, A is the step number and Cj  is the declared convergence cycle. This 

criterion means that the diagnostics are stopped if the number of cycles immediately 

preceding the current cycle used to compute the Wilcoxon rank sum is greater than two-

thirds of the number of cycles preceding the declared cycle of convergence, Cj . This 

criterion is in place for rapid and regular-convergence cases.  The second criterion is for 

cases where the convergence tends to be sluggish. Once either of the criterion are met, 

the step-refined diagnostic analysis will halt, and the beginning of the active cycles will 

be declared as Cj .  

5.2 Alternative Explanation of Step Refined On-the-fly 
Diagnostic 

 

 The step refined on-the-fly diagnostic will be explained once again in a different 

manner for the ease of understanding.  
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Take samples of  from cycles preceeding cycle 
The number of preceeding cycles is determined from the product of L and M

 = Number of Preceeding cycles
Samples are taken every L cycles, For examp

RAPI j

L M×

( ) ( ) ( ) ( ) ( )
le if 3

, 1 , 2 , 3 , 4 ,...

From this sampling Wilcoxon Rank Sum will be calculated for cycle 
For each step take the moving average of  Wilcoxon Rank Su

Sample Sample

L
RAPI j RAPI j RAPI j RAPI j RAPI j

j
L

=
− − − −

ms
For example with 3L =

 

 

 
( ) ( ) ( ) ( ) ( ) (..., 5 ,  4 ,  3 ,  2 ,  1 ,  W j W j W j W j W j W j− − − − − )  

 

( )
Determine at which cycle does the moving average 

cross the median value  of current step
The stepping is done as follows:

midW M  

Step (i) Cycle of first 
downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 85 85 85 
2 93 105 85 
3 132 132 132 

 
In step one the first crossing occurs at cycle 85, so (1)Sj is set equal to 85 and 

the convergence cycle for the first step is equal to 85 as well.  In the second 

step, it is determined if the crossing happens before , and it does at 

the 93rd cycle.  Since this is so, and 

(1Sj

C

) 20+

(2) (1) 20S Sj j= + j remains the same for 

the second step.  In the third step the first downward crossing happens after 

, so is set equal to the first downward crossing, as is (1) 20Sj + (3)Sj Cj . The 

stepping continues until the stopping criteria are met. 

 

 

Moving Average 
of cycle  j-1 

Moving Average 
of cycle  j-3 

Moving Average 
of cycle  j-2 Moving Average 

of cycle  j 

( ( ))Sj i ( )Cj
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 Employing this diagnostic tool for the determination of the convergence cycle is 

superior to other methods in the following aspects. The step-refined nature of this process 

makes it superior because it increments the number of samples taken for the calculation 

of the Wilcoxon rank sum, ensuring that the declared cycle of convergence becomes 

more reliable as cycles progress.  It is also on-the-fly, because the diagnostic takes 

samples from cycles previous to the current cycle and finds if the convergence criteria 

have been meet at the current cycle for a number of steps.  If the criteria have not been 

met at the current cycle, the process continues stepping through the cycles until the 

criteria have been satisfied and a cycle of convergence is declared.  Once either of the 

criteria is met, the diagnostic declares that the convergence of the source distribution is 

achieved and the process ceases to function and tallies can began to be recorded. 

 This step-refined on-the-fly diagnostic of the source distribution convergence 

shall be implemented using RAPI values, discussed in Chapter 3, to determine the 

convergence cycle of various simulations.  The same diagnostic will then be performed 

with the entropy indicators, discussed in Chapter 4, to obtain the convergence cycle for 

the same simulations.  The resulting convergence cycle obtained from the step-refined 

on-the-fly diagnostic utilizing both RAPI values and entropy values will be compared to 

validate the practicality of the RAPI method as well as the usefulness of the combination 

of the RAPI method and the step-refined on-the-fly diagnostic for convergence 

determination.  The discussion of the numerical results and functionality of this 

diagnostic will be presented in Chapter 6. 
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Chapter 6  
 

Numerical Results of Convergence Determination 
 

 

 

 

 

The RAPI method can be used as an indicator of convergence of the source distribution, 

because the RAPI uses the particle positions of the source distribution to obtain its values. 

The cycle of convergence can then be determined by a step-refined on-the-fly diagnostic 

of the RAPI by Wilcoxon rank sum. The cycle of convergence that is determined using 

the values obtained from the RAPI needs to be validated to see if the RAPI is a good 

indicator of the convergence of the source distribution.  This can be done by comparing 

the convergence cycle obtained from RAPI to the convergence cycle that is found by 

previous methods shown to be able to determine convergence.  Previous work done by 

Ueki has shown that convergence indicators of monotonic trend, such as progressive 

relative entropy in combination with a step-refined on-the-fly diagnostic of the source 

distribution has been able to determine when the source distribution has reached a 

fluctuation around the true source distribution or a stationary state [3].  The determination 

of the convergence cycle was performed using values obtained by the RAPI method for 

three cases. These results were then compared against the convergence cycle determined 
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using the Shannon entropy, the Jensen measure, the progressive relative entropy and the 

posterior relative entropy for the same three cases.  

 The three cases for which convergence cycle determination was performed for 

was a homogeneous cube, Whitesides keff the world problem [15] and fuel storage vault 

of fresh PWR fuel assemblies [3].  As mentioned in chapter 3, the effectiveness of the 

RAPI may be affected by the dominance ratio and the heterogeneity of the problem, and 

these effects need to be investigated. The homogeneous cube was done first because it is 

a simple problem, homogeneous medium, with a high dominance ratio (DR=0.999) [16].  

Investigating this problem will indicate the performance of the RAPI and how it is 

affected by a high dominance ratio, without having to worry about the effects on RAPI 

from the heterogeneity of the problem.  The second problem investigated was Whitesides 

keff of the world problem, which is a 9x9x9 array of plutonium spheres surrounded on all 

sides by a thick water reflector; the center sphere is supercritical, the rest are subcritical 

spaced on 60-cm centers [15]. The difficulty in calculating the keff
 accurately arises 

because commonly used sampling may not account for the contribution of the 

supercritical sphere in the center to the calculation of the k-effective.  In A Difficulty in 

Computing the k-effective of the World, Whitesides explains that “erroneous results for 

these types of problems are the result of the failure of the calculation to converge to the 

fundamental source mode” [15].  This problem has a lower dominance ratio than the 

homogeneous cube (DR=0.73) [1], and it has a high degree of heterogeneity. Using RAPI 

to determine the convergence cycle of this problem will test RAPI performance in 

heterogeneous problems while reducing the effects the dominance ratio has on RAPI.  

The final problem was a PWR fresh fuel vault.  This problem is heterogeneous and has a 
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high dominance ratio. The dominance ratio was computed to be 0.9943, for the horizontal 

first and vertical fundamental mode, and 0.9934, for the horizontal fundamental and first 

vertical mode [3]. By examining this problem, RAPI performance will be tested for both 

heterogeneous and high dominance ratio effects.  This final case will also be done to see 

if the RAPI can be used for real-world problems. 

6.1 Homogeneous Cube 
 

The first problem investigated was a homogeneous cube with dimensions -100 cm 

to 100 cm in x, y and z.  The problem and the material properties are displayed in Figure 

6.1. 

 

( )1
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t s
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−
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Σ =

Figure 6.1: Homogeneous cube Simulation 

There are one thousand bins used in this problem or 10 bins in the x, y and z direction.  

The initial source distribution is uniform throughout the whole geometry. The simulation 

was run with 10,000 particles for 1,400 cycles and 400 inactive cycles.  Figure 6.2 shows 

the trend of the calculation of the RAPI.  It appears that RAPI may converge around 850 

cycles or iterations but the RAPI oscillates too greatly to be considered converged at this 

point.  If we compare this graph to one of the entropies in the system, say the Jensen 
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measure (Figure 6.3), we can see that there is some inconsistency between the behaviors 

of the two. The Jensen measure seems to converge at about 900 iterations and does not 

oscillate as much as the RAPI.   
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Figure 6.2: RAPI Distances for Homogeneous Cube with 10,000 Particles per Cycle 
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Figure 6.3: Jensen Measure for Homogeneous Cube with 10,000 Particles per Cycle 
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Figure 6.4: Posterior Relative Entropy for Homogeneous Cube with 10,000 Particles per Cycle 

 This inconsistency arises because the simulation is being undersampled.  The 

error of undersampling occurs when there are an inadequate number of particles to 
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accurately model the behavior of a nuclear criticality problem. Not only is there 

inconsistency between RAPI and Jensen measure, there is inconsistency with the Shannon 

Entropy, progressive relative entropy, and the posterior relative entropy.  The most 

significant irregularity in values obtained is with the posterior relative entropy.  The 

posterior relative entropy behaved contrary to the way it should, which can be seen in 

Figure 6.4. In theory, the posterior relative entropy is supposed to have a monotonic 

(generally decreasing) trend, having its maximum value in the first iteration or cycle.  In 

the beginning of the iterative process the posterior relative entropy increased in amount, 

peaked at the 79th iteration, and then began to assume a general decreasing trend.  

Another observation is that the posterior relative entropy rapidly increases from at cycle 

1,300 to 1,400, which is a sign that the convergence takes more than 1,400 cycles.  

Another sign that would support that convergence takes longer than 1,400 cycles is the 

great amount of oscillation of the RAPI found in Figure 6.2 from cycles 800-1,400 where 

there should be a plateau if the RAPI were in a convergent state. 

Because of the inconsistency with the previous model, alterations needed to be 

made to the particle population to properly simulate the system, increase the total number 

of cycles and increase the number of inactive cycles. The number of cycles needed to be 

increased so the convergence behavior of the indicators of the source distribution past 

1,400 cycles could be examined. The number of inactive cycles needs to be increased, 

because the posterior relative entropy is calculated by using the average of the source 

distribution over the second half of active cycles. If the source distribution has not 

converged by the second half of active cycles, i.e., too few inactive cycles, the trend 

found in Figure 6.4 may arise.  By increasing the number of inactive cycles, the total 
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number of cycles, and the number of particles; the system should be better simulated, and 

the results of the convergence indicators will be more accurate.  There should also be 

better agreement between the indicators. From this model it can possibly be inferred that 

the RAPI method may also be used as a particle population diagnostic, but this possibility 

needs to be further investigated and is beyond the scope of this thesis. 

For the next simulation of the homogeneous cube case, the number of cycles was 

increased from 1,400 to 2,000.  The number of inactive cycles was increased from 400 to 

500 to see the effect on the posterior relative entropy calculations. Finally the number 

particles were increased from 10,000 to 100,000.  The next figure displays how the sum 

of the distances or RAPI changed as a result.  The amount of variation decreases but the 

RAPI does not converge until much later in the iterational process.  This late convergence 

is due to the high dominance ratio of the problem.  The dominance ratio of this problem 

is 0.999, close to unity, computed by discrete ordinate methods [16].  In cases with a high 

dominance ratio, the source distribution may slowly converge or may not converge to 

stationary state due to the autocorrelation of the MC stationary sources being strong and 

slowly decaying [12].  Using the RAPI method, the step-refined on-the-fly diagnostic of 

the source distribution, discussed in chapter 5, was performed for the redefined 

homogeneous cube base. Stopping criterion b was met at the 15th step.  The results of the 

diagnostic procedure are displayed in Table 6.1. 

67 
 



 
Figure 6.5: RAPI distances For Homogeneous Cube with 100,000 Particles per Cycle 
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From the definition of stopping criteria b, the step refined on-the-fly judgment 

process will be terminated once the same cycle of convergence has been declared for five 

consecutive steps.  Utilizing the RAPI values gives a declaration of the cycle of 

convergence in the step 15 of 1471. 

Step (i) Cycle of first 
downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 327 327 327 
2 343 347 327 
3 347 367 327 
4 436 436 436 
5 460 460 460 
6 608 608 608 
7 503 628 608 
8 704 704 704 
9 734 734 734 

10 734 754 734 
11 1471 1471 1471 
12 1491 1491 1471 
13 1500 1511 1471 
14 1508 1531 1471 
15 1501 1551 1471 

( ( ))Sj i ( )Cj

Table 6.1: Determination of Convergence Cycle Using RAPI for Homogeneous Cube Case 
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The behavior of the RAPI through the cycles has a plateau at in the beginning of 

the cycles only to fluctuate again and then to converge at the 1471st cycle.  The erratic 

behavior of the RAPI trend is due to the high dominance ratio.  The on-the-fly judgment 

of the RAPI performed well, declaring convergence late in the iterations, when the RAPI 

appears to be in a stationary state. Once again a model with a dominance ratio close to 

one converges very slowly or may not converge at all.  These results are indicative of the 

nature of problems with dominance ratios close to unity. 

 The RAPI step-refined on-the-fly results were then compared to the results 

obtained through the use of the four indicators of the source distribution proposed by 

Ueki [3]. The first comparison was against the results obtained using Jensen measure. 

Like the RAPI, the Jensen measure does plateau late in iterations, which can be seen in 

Figure 6.6.  When the step-refined on-the-fly diagnostic is examined, stopping criteria b 

is not met until the 18th step (Table 6.2).  The declared convergence cycle for the Jensen 

measure is found to be close to that found for the RAPI method, being 1568.  Once again 

the late convergence of the Jensen measure is due to dominance ratio of the problem 

being close to unity causing the source distribution to converge slowly. 
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Figure 6.6: Jensen Measure for Homogeneous Cube with 100,000 Particles per Cycle 
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Step (i) Cycle of first 

downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 200 200 200 
2 329 329 329 
3 425 425 425 
4 437 445 425 
5 454 465 425 
6 481 485 425 
7 505 505 505 
8 517 525 505 
9 608 608 608 

10 608 628 608 
11 608 648 608 
12 736 736 736 
13 823 823 823 
14 1568 1568 1568 
15 1371 1588 1568 
16 735 1608 1568 
17 1576 1628 1568 
18 1577 1648 1568 

( ( ))Sj i ( )Cj

Table 6.2: Determination of Convergence Cycle Using Jensen Measure for Homogeneous Cube Case 
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The RAPI results were then compared to the results obtained using Shannon 

entropy as an indicator of the state of source distribution.  The graph in Figure 6.7 of the 

Shannon entropy over all the iterations shows a similar trend that is found for the RAPI.   

 
Figure 6.7: Shannon Entropy for Homogeneous Cube with 100,000 Particles per Cycle. 
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By looking at Table 6.3, the step-refined on-the-fly diagnostic of the Shannon Entropy 

gives a false declaration of the convergence cycle, meeting stopping criteria b in the 12th 

step.  In the next step the declared convergence cycle is identified as 1352, which is 

closer in number to that obtained by use of the RAPI method, and this cycle is declared 

the convergence cycle in step 17. Since criteria b was already met, the step-refined 

diagnosis of the source distribution would have prematurely been terminated giving an 

incorrect convergence cycle. Comparing these results to those found using RAPI, one can 

conclude that using RAPI of the source distribution for convergence determination is 

better for a case with a high dominance ratio, but improvements or alterations to the step-
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refined diagnostic may be needed.  Yet again problems arise when investigating the 

source distribution of simulations with a high dominance ratio. 

Step (i) Cycle of first 
upward crossing

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 203 203 203 
2 330 330 330 
3 435 435 435 
4 520 520 520 
5 520 540 520 
6 606 606 606 
7 608 626 606 
8 728 728 728 
9 734 748 728 

10 759 768 728 
11 776 788 728 
12 801 808 728 

(13) (1352) (1352) (1352) 
(14) (1359) (1372) (1352) 
(15) (1359) (1392) (1352) 
(16) (1355) (1412) (1352) 
(17) (1371) (1432) (1352) 

( ( ))Sj i ( )Cj

Table 6.3: Determination of Convergence Cycle Using Shannon Entropy for Homogeneous Cube 
Case 

The RAPI cycle determination was then compared to the results obtained through 

the use of the progressive relative entropy. From descriptions in Chapter 2, the 

progressive relative entropy is two times the Jensen measure. This can be seen by 

comparing Figure 6.8 and Figure 6.6.  Using the progressive relative entropy (PRE) for 

the step-refined on-the-fly diagnostic of the source distribution yields the same results as 

the Jensen measure results, which can be seen by comparing Table 6.4 to Table 6.2. Once 

again stopping criteria b is met in step 18, and the declared convergence cycle is 

determined to be cycle 1568.  The declared convergence cycle at the end of the diagnostic 

stepping provides similar results to the RAPI convergence determination.  Because of the 

equality and similar results of the Jensen measure and the PRE, only PRE results will be 

discussed for successive cases. 
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Figure 6.8: Progressive Relative Entropy for Homogeneous Cube with 100,000 Particles per Cycle.  
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Step (i) Cycle of first 

downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 200 200 200 
2 329 329 329 
3 425 425 425 
4 437 445 425 
5 454 465 425 
6 481 485 425 
7 505 505 505 
8 517 525 505 
9 608 608 608 

10 608 628 608 
11 608 648 608 
12 736 736 736 
13 823 823 823 
14 1568 1568 1568 
15 1371 1588 1568 
16 735 1608 1568 
17 1576 1628 1568 
18 1577 1648 1568 

( ( ))Sj i ( )Cj

Table 6.4: Determination of Convergence Cycle Using PRE for Homogeneous Cube Case 

The final comparison was done against the results obtained for the convergence cycle 

determination using the posterior relative entropy (PosRE).  The trend of the PosRE 
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found in Figure 6.9 is unlike that found for the RAPI.  Its trend decreases instead of 

increases. The posterior relative entropy is said to converge when the posterior relative 

entropy reaches the average value of the posterior relative entropy over the last half of the 

active cycles.  From Figure 6.9 the average value over the second half of active cycles is 

found to be 0.104 and the PosRE reaches this value at iteration 1362.  This value is close 

to the result of 1471 obtained from the RAPI.  This comparison shows that the RAPI can 

be used for source distribution convergence cycle determination of problems with a high 

dominance ratio, because it is close to the cycle determined using the PosRE. 

 
Figure 6.9: Posterior Relative Entropy for Homogeneous Cube with 100,000 Particles per Cycle 
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 Increasing the number of particles and cycles improved the agreement between 

the RAPI trends and the entropy trends calculated for the homogenous cube case. 

Increasing the number of inactive cycles corrected the behavior of the posterior relative 
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entropy. These facts can be seen from the previous five figures. So with these results 

there is promise for using the RAPI method as a tool for determining convergence. The 

difficulty in determining the convergence using the entropies of the system in the 

homogenous case may be attributed to the high dominance ratio of the homogeneous 

cube simulation.  Even due to this difficulty, the RAPI method performed well, meeting 

the stopping criteria without giving false confirmation of the cycle convergence unlike 

the Shannon entropy. By comparing Figure 6.5, Figure 6.8 and Figure 6.9, in addition to 

the step-refined diagnostic results in Table 6.1 and Table 6.4, RAPI can be as reliable as 

PRE and PosRE for use in on-the-fly diagnostics of simulations with a high-dominance 

ratio. 

6.2 Whitesides keff of the World 
 

The previous runs were done with a research code, but the next two runs were 

done with MCNP with the addition of the sum of the distances of the centers method or 

RAPI.  The first of these two runs was for the convergence cycle calculation of 

Whitesides k-effective of the world problem.  This problem is depicted in Figure 6.10, 

and it is a 9x9x9 array of plutonium spheres with radii of ~4 cm, spaced on 60 cm centers 

and reflected on all sides by a thick water reflector [15]. The center sphere is supercritical 

in the bare state and the remaining spheres are subcritical. This problem is heterogeneous 

and larger in dimension than the homogenous cube case. For the computation of the 

entropies of the system there is one bin per a sphere for a total of 729 bins.  The initial 

source distribution is uniform throughout the fissile regions or the plutonium spheres. 

75 
 



 
Figure 6.10: Whiteside k-effective of the World Problem [1] 

The model was run with 100,000 particles, 2000 cycles and 100 inactive cycles.  The 

dominance ratio of the problem is 0.73 [1]. The results of this run were very promising 

with quick convergence as well as with high similarity of trends between the RAPI 

method and the entropy values used for convergence indication.  The following four 

figures demonstrate this. Figure 6.11 shows that the RAPI distance calculation converges 

very quickly.  As with the previous problem, the convergence cycle was determined with 

the use of the step-refined on-the-fly diagnostic tool described in Chapter 5. The results 

of the implementation of this diagnostic derived from the RAPI values are shown in Table 

6.5. After 7 steps the diagnostic declares the convergence cycle as 183. After 7 steps 

stopping criterion a was satisfied, so the stepping of the diagnostic was terminated; i.e.,         

. The graph of the RAPI values over the total number of 

iterations strangely fluctuates after reaching a convergent state.  Perhaps this trend 

appears because the large amount of void in the geometry, but no explanation for this 

phenomenon could be found to explicitly be the cause. The results obtained using RAPI 
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for convergence cycle determination was then compared to the entropy based 

convergence cycle determination to see if there was agreement. 
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Figure 6.11: RAPI Distances for Whiteside’s keff of the World Problem with 100,000 Particles per 

Cycle 
 

 
Step (i) 

Cycle of first 
downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 98 98 98 
2 98 118 98 
3 162 162 162 
4 183 183 183 
5 188 203 183 
6 188 223 183 
7 206 243 183 

( ( ))Sj i ( )Cj

Table 6.5: Determination of Convergence Cycle Using RAPI for Keff of the World Case 
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Figure 6.12: Shannon Entropy for Whiteside’s keff of the World problem with 100,000 Particles per 

Cycle 
 

 The Shannon entropy results were the first that the RAPI results were compared 

against.  The behavior of the Shannon entropy showed the opposite behavior of the RAPI 

descending as opposed to ascending.  But the Shannon entropy reached a fluctuating state 

in a relatively small number of cycles. The step-refined on-the-fly diagnostic of the 

source distribution was performed using the Shannon entropy indicator of the source 

distribution.  The results can be found in Table 6.6.  The declared convergence cycle was 

found to be 172 at the sixth step when stopping criteria a was met.  Comparing the two 

declared convergence cycles showed a very small difference.  The convergence cycle 

determined by RAPI method was found later in the stepping process but since the 

declared cycles are so close, the RAPI can be as reliable as the Shannon entropy in on-

the-fly diagnosis in determining source distribution convergence. The Shannon entropy 
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determines convergence in fewer steps than RAPI, but RAPI does not need a user input 

binning definition. 

Step (i) Cycle of first 
upward crossing

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 103 103 103 
2 124 133 103 
3 172 172 172 
4 164 192 172 
5 174 212 172 
6 198 232 172 

( ( ))j i ( )jS C

Table 6.6: Determination of Convergence Cycle Using Shannon Entropy for Keff of the World Case 

 The RAPI results for Whitesides keff of the world case was then compared to the 

resulting convergence cycle found using the PRE of the system.  The graph of the PRE 

for this case can be found in Figure 6.13, and its trend is very similar to that found in 

Figure 6.11.  The convergence cycle determined for the keff of the world problem using 

progressive relative entropy was found to be 104 using the step-refined on-the-fly 

diagnostic shown in Table 6.7.  The cycle determined using the PRE took 4 steps to 

achieve the determination of the cycle convergence when criterion a was met, and this 

declaration is 79 cycles sooner. With the later convergence cycle found by using RAPI, 

physical property estimation may have fewer values with which to average over, but the 

averaging of these values will be accurately done. The PRE may be more efficient in 

determining the convergence cycle of Whitesides problem, but it still needs the user to 

define the binning structure of the system. This comparison validates the use of the RAPI 

method for determination of the convergence cycle of the source distribution, because the 

both were able to determine a convergence cycle of the system.   
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Figure 6.13: Progressive Relative Entropy for Whiteside’s keff of the World problem with 100,000 

Particles per Cycle 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pr
og

re
ss

iv
e 

R
el

at
iv

e 
E

nt
ro

py

Cycle Number

Converges to 
0.656 at 104 

 2000 cycles, 100 inactive cycles

Step (i) Cycle of first 
downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 104 104 104 
2 123 124 104 
3 144 144 104 
4 162 164 104 

( ( ))Sj i ( )Cj

Table 6.7: Determination of Convergence Cycle Using PRE for Keff of the World Case 

The final comparison of the use of the RAPI for convergence determination as done 

against the PosRE results of convergence cycle determination.  The trend of the PosRE 

found in Figure 6.14 has the same behavior as that of the Shannon entropy except it does 

not fluctuate as much once it reached stationary state.  The convergence cycle was found 

by determining when the PosRE crossed the average of the PosRE over the second half of 

the active cycles.  The average of the PosRE over the second half of the active cycles was 

found to be 0.0155, and the PosRE crosses at cycle number 78.   
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Figure 6.14: Posterior Relative Entropy for Whitesides Keff of the World Problem with 100,000 

Particles per Cycle 

The convergence cycle using the PosRE found the system to converge quicker than did 

using RAPI.  The convergence cycle declared through the use of RAPI, is a conservative 

declaration of convergence when compared against the cycle declared through the use of 

PosRE. 

 The comparison of the convergence determination using RAPI of the source 

distribution’s state against the entropy indicators of the source distribution’s state show 

that the RAPI method is a good tool for determining when physical property estimation or 

tallying can begin.  The RAPI converged fairly quickly performing slower than the 

entropy indicators but accomplished the task.  In using RAPI in addition to the entropy 

indicators, one will be able to effectively determine the convergence cycle of Whitesides 

keff of the world problem or problems with a dominance ratio akin to this problem.  By 

comparing the results utilizing RAPI to those calculating convergence using the entropies 
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of the system, using RAPI proved to be effective in determining the convergence cycle of 

the source distribution without the need for a user defined mesh. 

6.3 Fuel Storage Vault 
 

The final case run in MCNP was a fuel storage vault of fresh PWR fuel 

assemblies “with the checkerboard placement of fuel bundle units and water-filled units” 

as depicted in Figure 6.15 [3]. The checkerboard arrangement is surrounded by concrete 

and water as shown.  The initial source distribution of the problem is restricted to the 

upper left fuel bundle because the system is over moderated, and thus concrete is a better 

reflector than water. The bin definition for the problem used for the calculation of the 

system entropies is one bin per a fuel bundle horizontally and 12 vertically per a fuel 

bundle for a total number of bins of 432.  The dominance ratio was computed to be 

0.9943 for the horizontal first and vertical fundamental mode and 0.9934 for the 

horizontal fundamental and first vertical mode [3]. The convergence cycle determination 

was done for this simulation with 200,000 particles, 1,500 cycles and 500 inactive cycles. 

The result for the calculation of the RAPI of the source distribution’s state through the 

iterational computation is found in Figure 6.16.  Because of the dominance ratio that was 

computed, the source distribution has slow convergence and this fact can be seen in the 

slow convergence of the RAPI.  The results of the step-refined on-the-fly diagnosis 

employing the use of the RAPI are illustrated in Table 6.8.  The convergence cycle of the 

source distribution was determined to be 851 in the 16th step of the diagnosis. 
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Figure 6.15: PWR Fresh Fuel Vault (FVF) [3] 

83 
 



 

 

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

D
is

ta
nc

e 
(c

m
)

Cycle Number

Converges to 
474.11 at 851 

1500 cycles, 500 inactive cycles

Figure 6.16: RAPI distances for Fuel Storage Vault Model with 200,000 Particles per Cycle 
 

 
Step (i) Cycle of first 

downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 166 166 166 
2 485 485 485 
3 516 516 516 
4 522 536 516 
5 541 556 516 
6 625 625 625 
7 629 645 625 
8 629 665 625 
9 628 685 625 

10 773 773 773 
11 792 793 773 
12 851 851 851 
13 843 871 851 
14 857 891 851 
15 861 911 851 
16 897 931 851 

( ( ))Sj i ( )Cj

Table 6.8: Determination of Convergence Cycle Using RAPI for FVF case 
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Figure 6.17:  Shannon Entropy for Fuel Storage Vault Model with 200,000 Particles per Cycle 

 
 The convergence cycle was then determined by the step-refined on-the-fly 

diagnostic of the source distribution using the Shannon entropy.  The convergence cycle 

of the source distribution was determined to be 1277 in the 15th step (Table 6.9).  This 

value is much greater than that determined by using the RAPI.  The reason for this result 

can be seen when examining the trend of the Shannon entropy found in Figure 6.17.  The 

Shannon entropy does not enter into convergence until iteration 1277, dipping in value, 

seemingly entering a fluctuating state.  The RAPI would allow the initiation of property 

tallying sooner than the Shannon entropy for the fresh fuel vault (FVF) problem.  Like 

the homogeneous cube problem the FVF model has a high dominance ratio.  The high 

dominance ratio could be the reason for the slow convergence of the Shannon entropy. 
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Step (i) Cycle of first 
downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 375 375 375 
2 460 460 460 
3 564 564 564 
4 568 584 564 
5 604 604 604 
6 624 624 604 
7 674 674 674 
8 694 694 674 
9 1028 1028 1028 

10 1011 1048 1028 
11 1277 1277 1277 
12 1279 1297 1277 
13 1283 1317 1277 
14 1277 1337 1277 
15 1277 1357 1277 

( ( ))Sj i ( )Cj

Table 6.9: Determination of Convergence Cycle Using Shannon Entropy for FVF case 
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Figure 6.18: Progressive Relative Entropy for Fuel Storage Vault Problem with 200,000 Particles per 

Cycle 
 
 The convergence cycle of the source distribution for the FVF problem was then 

found using the step-refined diagnostic of the progressive relative entropy (PRE). The 

86 
 



PRE exhibits a similar trend to that of the Shannon entropy illustrated in Figure 6.18.  

The PRE indicator has slow convergence just as the Shannon entropy does, possibly due 

to the high dominance ratio of the simulation.  The step-refined diagnostic was able to 

determine a convergence cycle by the 20th step when stopping criterion b was met. The 

convergence cycle was declared to be 859, which is close to the cycle determined by 

using the RAPI.   

Step (i) Cycle of first 
downward 
crossing 

Cycle at which 
decision was made  

 

Declared 
convergence cycle  

1 264 264 264 
2 383 383 383 
3 411 411 411 
4 575 575 575 
5 589 595 575 
6 627 627 627 
7 657 657 657 
8 664 677 657 
9 683 697 657 

10 707 717 657 
11 747 747 747 
12 757 767 747 
13 764 787 747 
14 787 807 747 
15 830 830 830 
16 859 859 859 
17 878 879 859 
18 891 899 859 
19 899 919 859 
20 932 939 859 

( ( ))Sj i ( )Cj

Table 6.10: Determination of Convergence Cycle Using PRE for FVF case 

Finally the convergence cycle was determined from the posterior relative entropy 

of the PWR fresh fuel vault.  The average of the posterior relative entropy over the 

second half of the active cycles is 0.0104.  As previously mentioned, the posterior 

relative entropy should converge after it crosses the average over the second half of the 

active cycles.  This crossing occurs at cycle 892 which is seen in Figure 6.19.  This is 
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fairly close to the RAPI derived cycle determination, which validates the use of RAPI for 

determining when the source distribution has reached a stationary state. 

 
Figure 6.19: Posterior Relative Entropy for Fuel Storage Vault Problem with 200,000 Particles per 

Cycle 

 The convergence cycle determined through the use of the RAPI is the best option 

when evaluating the fresh fuel vault for PWR assemblies with the initial source 

distribution concentrated in the upper left fuel assembly. Because of the high dominance 

ratio of the problem, the posterior relative entropy of the system declared convergence 

later than the RAPI.  The on-the-fly judgment of the progressive relative entropy also 

took more steps than did the judgment using RAPI values. Also due to the high 

dominance ratio, the Shannon entropy showed slow convergence not declaring a 

convergence cycle until late into the iterations.  The analysis of this problem exhibits the 

usefulness of a mesh-input-free convergence indicator.  Where the entropy indicators, 

which are defined by binning the source distribution, were greatly affected by the high 
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dominance ratio, the regionwise average position indicator of the source distribution 

converged sooner and would allow a greater number of tallies to be used in the physical 

property estimation. 

From the last few models, it can be seen that the number of particles, size of the 

geometry, heterogeneity, and magnitude of the dominance ratio play an important role in 

the determination of the convergence cycle. The demonstrated performance of the 

regionwise average position indicator (RAPI) in the analysis and comparison of the last 

three cases proves that it is a versatile and effective indicator of the source distribution.  

The RAPI can be used to determine at which cycle or iteration the source has reached a 

stationary state.  In this investigation it was found that the RAPI performs as well as or 

better than the bin dependent entropy indicators, because it can be used to determine the 

cycle of stationarity of the source for a range of models.  RAPI is a better representation 

of the source distribution in the geometry as a whole while the entropies are piecewise 

approximations of the source distribution used to model the problem.  The RAPI is also 

better because the need for user defined bins for tally initiation can be eliminated, thus 

simplifying and increasing the efficiency of any code it is included in. With the use of 

this tool, the level of experience with particle distribution behavior in Monte Carlo 

modeling needed to obtain valid results will be reduced. By using the regionwise average 

position indicator, the accuracy of results and the usefulness of the modeling being 

performed will be improved.  
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Chapter 7  
 

Numerical Results for Population Diagnostics 
 

 

 

 

 

Due to limitations found using EMST’s in Monte Carlo, such as the computational time, 

which increases on the order of the number of particles squared, and data storage 

constraints, an approximation of the properties of an EMST past these limits for large 

batches of particles needed to be developed.  As discussed in Chapter 4 such an 

approximation was developed for the average edge length of an EMST.  In this 

approximation or power law relationship, the average edge length (AEL) was proportional 

to the inverse of the number of particles raised to the power of 1/b or .   

From the theory used to develop this relationship, b is ideally equal to 3 but affected by 

the heterogeneity of the system.  From this, b should be close to three for a homogeneous 

system where there is only fissile material.  To test the validity of this statement the 

average edge length of an EMST for a varying number of particles was calculated for a 

homogenous cubic medium with and without reflecting boundary conditions.  The cubic 

medium had side length of 20 cm with energy independent and isotropic scattering 

( ) 1/bAEL N N −∝
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macroscopic cross sections of , ,  and 

.  The determination of b was done by fitting a trendline to the data 

obtained over the changing number of particles and is displayed in 

11.0T cm−∑ = 10.75S cm−∑ = 10.25A cm−Σ =

10.275f cmυ −Σ =

Figure 7.1.   

 

Figure 7.1: Determination of b for 20x20x20 Homogeneous Cube Case  

From the equation for the trend line for the reflected boundary condition, b is equal to 

3.24. For the vacuum boundary condition, b is found to be 3.19, both of which are close 

to three.  So the assumption of b being close to 3 in homogeneous systems is found to be 

reasonable.   

y = 9.5955x-0.313

R² = 0.9995

y = 10.06x-0.309

R² = 0.9986

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1000 3000 5000 7000 9000 13000

A
ve

ra
ge

 E
dg

e 
L

en
gt

h 
(c

m
)

Number of Particles (x)

Vacuum Boundary

Reflected Boundary

11000

91 
 



 

0.1

1

10

10 100 1000 10000 100000

L
en

gt
h 

(c
m

)

Number of Source Particles

AEL of reflecting 
boundary cube

(volume/N)^(1/3)

Figure 7.2: Comparison of AEL and Cubic Root of Volume per Particle for 20x20x20 Homogeneous 
Cube 

Figure 7.2 compares the average edge length with the cubic root of volume per source 

particle.  This comparison is done to illustrate the differences in the two techniques used 

to describe the effective neighborhood distance of a particle. It is observed that the AEL is 

much smaller than the later. 

Prior to developing the diagnostic of the tally mesh resolution utilizing the 

average edge length of an EMST, the reliability of the EMST approach needs to be 

verified, i.e., which technique better captures an effective neighborhood distance or 

population sufficiency in nuclear criticality calculations.  To do this, an EMST was 

constructed from the particle positions in the keff of the world problem of Whitesides 

[15].  Whitesides problem consists of bare subcritical Plutonium-239 spheres with a 

radius of 3.7819 cm placed at intervals of 60 cm in a 9x9x9 array except the central 

sphere.  The central sphere is supercritical in a bare state and has a radius of 4.968 cm. 

The space between the spheres is void and the array is surrounded on all six sides by a 

92 
 



water reflector of 30 cm thickness, whose interior surface is 60 cm away from the center 

of the sphere on the edge of the array.  A schematic of the problem is found in Figure 7.3. 

 
Figure 7.3: Whiteside k-effective of the World Problem [1] 

In this problem, if the source distribution does not converge to the fundamental source 

mode, error can be introduced into computed results.  Error or bias in results is also 

increased if the number of particles that are used to simulate the criticality problem is too 

small. Figure 7.4 shows the keff of the problem for various numbers of source particles 

per cycle computed by MCNP [13]. 
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Figure 7.4: Confidence Interval (95%) of the k-effective of the World Problem [9]. 
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The variance of the keff values are calculated by the batch method of a batch size of 50 

cycles [1].  From the trendline in this figure “it is seen that if the number of source 

particles per cycle is smaller than 10,000, the k-effective estimate is certainly under the 

influence of bias and the third fractional digit may be affected; if the number of source 

particles per cycle is larger than 40,000, it is virtually free of bias” [17].  The keff estimate 

is under strong influence of bias before 10,000 particles, and the keff bias characteristic 

moves to gray or weaker influence between 10,000 and 40,000 particles.  

 
Figure 7.5: Average Edge Length of EMST Applied to Source Particles in keff of the World Problem  
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Figure 7.5 shows the cubic root of the fissile volume per source particle and the 

average edge length of an EMST for Whitesides problem for a varying number of source 

particles per cycle.  Figure 7.5 also displays the radius of the supercritical sphere, Rsuper, 

and ½ of the radius of the supercritical sphere, 0.5xRsuper, as examples of characteristic 

geometric lengths for sufficiently sampled source particles.  The AEL is extrapolated past 
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the limits of the number of particles allowed in the EMST calculation by the trendline 

equation displayed in the figure.  The shift of the value of AEL from greater than Rsuper to 

less than Rsuper and from greater than 0.5xRsuper and less than 0.5xRsuper happens at 10,000 

and 35,000 particles respectively.  These transitions are consistent with transitions of the 

bias of keff found in Figure 7.4. An EMST created from fission site particles contain 

edges that connect spheres that are 60 cm apart at center; these edge lengths are an order 

of magnitude larger than Rsuper. The number of edges that connect the spheres is at least 

9x9x9-1=728 if all the spheres contain at least one source particle. This is so because to 

create an EMST, all the source particles must be connected by an edge and in an EMST 

with N vertices there are N-1 edges.  Because of this, the transition of AEL from greater 

than Rsuper to less than Rsuper represents a transition to the source particle neighboring 

distance in the scale of Rsuper.  The transition of the AEL to values between Rsuper and 

0.5xRsuper happens around the same number of particles where bias characteristic of the 

keff changes from strong influence to gray influence.  When examining the behavior of 

the cubic root of the fissile volume per a number of particles, the previously mentioned 

transition to values between the two Rsuper limits happens in the range of 1,000 to 10,000 

particles. In comparison, the keff is under strong bias influence for this range of particle 

number.  Beyond 10,000 particles the cubic root of the fission volume per source particle 

is less than the lower limit of 0.5xRsuper.   The effective neighbor distance determined as 

the cubic root of fissile volume per source particle is smaller than the lower limit or 

characteristic geometric length where the keff bias characteristic on the third fractional 

digit cannot yet be ignored.  As the values of cubic root of the fissile volume per a 

particle progresses towards 40,000 particles, above which the keff estimation is nearly free 
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of bias, there is little change in value.  Due to the cubic root of the fissile volume per 

particle taking on values less than Rsuper, where the bias strongly influences results, it is 

determined that it does not capture the effective neighborhood distance very well.  

Therefore, because of the transition of the AEL of the system consistent with the bias 

characteristic transition of the keff, the AEL is superior for population diagnostics to the 

cubic root of the fissile volume per source particle, in the presence of void. 

From the previous discussion the AEL can be considered as a characteristic 

neighbor distance and a useful indictor of the adequacy of particle population.  The AEL 

of an EMST can be then used to define the effective volume per source particle or the 

volume of one source particle effect for a set of N particles, represented by , in 

equation 

( )EV N

(7.1). 

 ( ) ( ) ( ) 3
3( )

1
EMSTL N

EV N AEL N
N

⎛ ⎞
= = ⎜ −⎝ ⎠

⎟  (7.1) 

The minimum tally cell volume (MTCV) can then be suggested as 

  (7.2) ( ) ( )30     weak requirementMTCV EV N= ×

  (7.3) ( ) ( )100     strong requirementMTCV EV N= ×

The MTCV requirements in equations (7.2) and (7.3) “refer to two conditions in the sense 

that ten source particles effects are to be ensured at tally cell locations producing one-

third and 10% of average power density, respectively” [17]. Using these definitions will 

verify whether the cell volume of a given tally mesh is larger than the weak requirement 

and smaller than the strong requirement or larger than the strong requirement.  If the tally 

cell volume is much larger than the strong requirement, then the particle population will 
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be regarded as sufficiently large.  If the tally cell volume falls within the two limits, then 

the particle population will be considered acceptable in size. This diagnosis of the particle 

population does not require the input of mesh by the user. 

 The application of the meshless population diagnostic is compared against the 

existing population diagnostic with a diagnostic mesh identified as PD-MESH [9]. This 

diagnostic is described below. The diagnostic has B bins and  and  are 

distributions over B bins normalized to unity; 

.  The Shannon entropy of  is 

represented by equation 

( )BS j ( )BT j

BS( ) ( ) ( ) ( )
1 1

1,  0  and  0
B B

B B B B

j j
S j T j S j T j

= =

= = ≥∑ ∑ ≥

)

(7.4). 

  (7.4) ( ) ( ) ( )(2
1

log
B

B B B

j
H S S j S j

=

≡ −∑

The relative entropy and chi-squared distance of  with respect to  are found in 

equations 

BS BT

(7.5) and (7.6), respectively. 

 ( ) ( ) ( )
( )2

1
log

BB
B B B

B
j

S j
D S T S j

T j=

⎛ ⎞
≡ ⎜⎜

⎝ ⎠
∑ ⎟⎟  (7.5) 

 ( ) ( ) ( )
( )

2

1

B BB
B B

B
j

S j T j
S T

S j
χ

=

⎡ ⎤−⎣ ⎦≡∑  (7.6) 

These values satisfy equation (7.7). 
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e
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B Bj je

B B

Bj B
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S j S j

S j T j
S j

χ
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≤ ≤

−

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦≤ − + ⋅⋅⋅
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−
=

∑ ∑ 3  (7.7) 

Let be the fission source distribution at the continuous space coordinate r( )S r and 

be defined as the Monte Carlo estimate of ( ), jS p ( )
 bin j

S r dV∫  at cycle p. The 

normalized source ratio is then defined in equations (7.8) and (7.9). 

 ( )

( )
( )

( )
( )

( )
( )

( )
( )1

1,1 1,2 1,
, ,...,

,1 , 2 ,
SR

1,
,

B

j

S p S p S p B
S p S p S p B

p
S p j

S p j=

⎛ ⎞+ + +
⎜ ⎟⎜ ⎟
⎝ ⎠≡

+
∑

 (7.8) 

 (
components

1 1,1,...,1
B

BR
B

≡ )  (7.9) 

If the expectation value is denoted by [ ]E •  we can find that the keff or effective neutron 

multiplication is in terms of the expectation of the Monte Carlo estimate of the integral of 

the fission distribution over bin j for cycle p and p+1, and this is found in equation (7.10). 

 
( )

( )
1,

1
,

E S p j
E S p j

⎡ ⎤+⎣ ⎦ =
⎡ ⎤⎣ ⎦

 (7.10) 

( ) (1, / ,S p j S p j+ ) will be constant over bins j=1,…,B if the particle population is 

satisfactorily large.  From these descriptions and relations, Ueki proposed a more 
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stringent translation of the population diagnostic criteria in equation (7.7) as can be seen 

in equation (7.11). 

 ( )( ) ( )( ) ( )(1 min 1,
2log 2

B B

e

D D SR p R SR p R f H SR pχ χ ⎡ ⎤≡ − < × ⎣ ⎦)  (7.11) 

The factor f  was recommended as to be 0.025.  The choice of 0.025 is shown to be 

consistent with the keff eigenvalue calculation of the Whitesides’ keff-of-the-world 

problem [9]. From this equation, the criterion for the Shannon entropy population 

diagnostic is arrived at, and it is this criterion that the effective volume of a source 

particle diagnostic will be compared against.  To do this one must determine at what 

value of N does the left side of equation (7.11) become smaller than the right hand side of 

equation (7.11) for the diagnostic mesh set equal to the tally mesh in a reactor power 

distribution calculation.  Next one examines at what value of N does 30xEV(N) (or 

100xEV(N)) become smaller than the cell volume of the tally mesh.  Then the two values 

of N obtained from this transition of the PD-MESH [9] value and the multiples of the 

effective volume of a source particle need to be compared to see if the two values of N 

are close to each other or not.  “Except for the problems with a single extremely sharp 

peak of source distribution and/or the diagnostic checking with a small number of bins, 

Shannon entropy is larger than unity” [17].  As a result, the right side of equation (7.11) 

will reduce to f for three-dimensional full core reactor core simulations. Note if some of 

the bins in the Shannon entropy have zero particle presence, these bins will be neglected 

for calculational purposes. 
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 The effective volume of a source particle diagnostic and the PD-MESH diagnostic 

were tested against the three-dimensional full core modeling of an 1100 MWe pressurized 

water reactor depicted in Figure 7.6 [18].  The tally mesh declaration for power 

distribution determination was defined to be 4 cells per fuel bundle horizontally and 24 

cells vertically. With this the tally cell volume (TCV) was . 

The TCV will then be compared against and .  The diagnostic 

mesh for equation 

( )2 321.6 366 / 4 24 1779cm× × =

( )100 EV N×

24 193 18,528× =

( )30 EV N×

B(7.11) produced B bins, where . As described 

in the previous paragraph the Shannon entropy was observed to be much greater than 

unity, so the criterion in equation 

4= ×

(7.11) becomes 

  (7.12) .Dχ < f

 
Figure 7.6: 1100 MWe PWR Full Core Model at Beginning of Reactor Operation [18] 

Because equation (7.11) reduces to equation (7.12), it needs to be examined when the left 

side of equation (7.12) becomes smaller than f.  From earlier in this section f was set 
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equal to 0.025. The AEL trends derived from the EMST’s of first collision sites and 

source particles is shown in Figure 7.7. 
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Figure 7.7: EMST AEL from Collision Sites and Fission Sites for PWR Initial Full Core Model 

In addition to examining the AEL behavior for source particle positions, the first collision 

site AEL was examined.  This was examined because the first collision site and source 

particle sites are on the opposite ends of a particle’s first flight, and as the PWR model is 

reflected by water and the core is large in dimension, the escape of first flight particles is 

negligible. The performance of the power law fit is found to be exceptional, for this case.  

The fact that b is much closer in value to 3 for this simulation than in the keff of the world 

problem of Whitesides can be attributed to the adjacency of the fuel pins in the model. 
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Figure 7.8: Effective Volume per Particle (EV) for Source Particles and Tally Cell Volume (TCV) for 
PWR Initial Full Core Model 

In Figure 7.8 and Figure 7.9, TCV is compared against 30 ( )EV N×  and 100 ( )EV N× for 

up to 200,000 source particle positions and 200,000 first collision sites. The extrapolation 

of the AEL past 12,000 in both figures is obtained from the fitting formulae in Figure 7.7.  

In Figure 7.8, 30 ( )EV N×  for source particle position becomes smaller than TCV at 

96,000 particles. In Figure 7.10, Dχ is has an average value of 0.0246, becoming smaller 

than f=0.025 for 100,000 histories per cycle (N=100,000). The observation obtained from 

the effective volume per source particle diagnostic for 30 ( )EV N×

D

 crossing at 96,000 

source particles is consistent with the downward crossing of χ , which verifies the 

ability of the ability of the effective volume per source particle diagnostic in determining 

an acceptably large particle population for power distribution determinations.  It is also 

observed that 100 ( )EV N×  does not cross TCV before 200,000 particle per history 
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(N=200,000).  Meaning that for the defined TCV, 200,000 particles may not be a strongly 

guaranteed large population for power distribution determination.   
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Figure 7.9: Effective Volume per Particle (EV) of First Collision Sites and Tally Cell Volume (TCV) 
for PWR Initial Full Core Model 

In Figure 7.9, it is observed that the downward crossing of TCV by 30 ( )EV N×

0 (

for first 

collision sites occurs at 154,000 first collision sites (N=154,000) while 10 )EV N× does 

not cross TCV by 200,000 first collision sites.  Because the strong requirement of the 

crossing of 100 ( )EV N× downward of TCV is not met for either source particle or first 

collision site and that the first collision site 30 ( )EV N× does not cross till N=154,000, 

leads one to question the value of f  being equal to 0.025.  By examining Figure 7.10,  
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Figure 7.10: Shannon Entropy Diagnostic Measure for PWR Full Initial Core Model [17] 

Dχ  has an average value over 1001-2000 cycles of 0.00576 for 200,000 particles per 

history and is found to take values smaller than 0.001 a great many of times.  This 

observation lends credibility to the notion that f should have a value lower than 0.025 to 

be an acceptable criterion for power distribution computation.  For example, setting f 

equal to 0.01 would be an acceptable criterion for determining if a particle population 

size is sufficiently large for power distribution determinations. Finally the comparison of 

30 ( )EV N×  and for the PWR Initial Full Core Model is found 

in 

(30 fissile volume / N× )

Figure 7.11.  The fissile volume of this model is the total volume of fuel pellets. It is 

seen that up until about 3,000,000 particles, 30 ( )EV N×  is smaller in value than 

 and becomes less than the TCV for a smaller number of source 

particles.  From this, 30

(fissile v )me / N

( )

30× olu

EV N×  is a more conservative population diagnostic, also 
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making it superior to for power distribution computations.  
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Figure 7.11: Volume Comparison for PWR Initial Full Core Model 

The comparison of the effective volume per source particle population diagnostic or 

meshless diagnostic of the particle population to the mesh based diagnostic, PD-MESH, 

proposed by Ueki, shows that the meshless diagnostic can determine if the defined 

particle population is large enough for power distribution computations to be done 

accurately.  By comparing 30 EV N×  against , it is seen that 

the effective volume per source particle is a more conservative gauge of neighborhood 

distance, also making it a superior diagnostic of the particle population size.  The 

comparisons have shown that the meshless diagnostic can be used to determine if the 

population is of large enough size for a given tally cell volume, but improvements can be 

made.  For example it was seen that b departs from its theoretical value of three 

depending on the heterogeneity of the system and the number of particles in a simulation.  

It is this departure that needs to be better understood, and this can be accomplished 
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through rigorous modeling and tracking. The theory behind the power law could also be 

refined by trying to understand what assumptions were over looked in its development.  

When the theory is refined the extrapolation of the AEL can be better estimated. These 

improvements need to be made so that EMST based population diagnostics will be more 

reliable at determining sufficient particle population size. These improvements will be 

discussed in more depth in Chapter 8 as part of future work for this area of investigation.  
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Chapter 8  
 

Future Work 
 

 

 

 

 

The methods discussed in this thesis for source distribution and particle population 

diagnostics can be further investigated, developed and improved.  The RAPI was used to 

determine when the source distribution had reached a stationary state and when the 

tallying of the physical properties of the system could begin or when the declaration of 

active cycles occurs. The techniques used to develop the RAPI source distribution 

diagnostic or automatic mesh creation was not used in physical property of the system 

estimation.  To obtain information about the physical properties of a nuclear system, 

tallies are averaged over the active cycles in the process. Currently when tallies of the 

system are done, the user must input the mesh coordinates or bin boundary specifications, 

and it is from the information in the bins that the tallies of the system are averaged.  Bins 

can be created by the use of automatic meshing.  By taking the average particle position 

of a system the geometry can be divided into bins.  Then by taking the average position 

within these bins more bins can be created; this process can be continued until an 

effective size and number of bins, for tallying purposes, is achieved. The use of automatic 
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meshing in Monte Carlo methods needs to be investigated to determine if the automatic 

meshing of the geometry from average particle position can be used effectively for 

tallying purposes. If the need for user input mesh can be eliminated, Monte Carlo 

calculations can be simplified. 

Just as the number of bins that can be created from meshing can be increased, the 

RAPI method can be expanded to include the next level of bin average particle position.  

Up to now, in 3-dimensional problems, RAPI is the sum of the distance of nine average 

coordinates in each cycle or iteration to the first iteration’s nine average coordinates.  As 

described in chapter 3 for three-dimensional simulations, the number of bins used for 

average position calculation can increase from 8 bins to 64 bins and from 9 distances to 

73 distances.  The number of bins and the number of centers is described by the 

following relationships, 

  (8.1) ( ) ( )
1

0

2       2 .
LLD

i

B T
−

=

= =∑
iD

)

Where B is the number of bins, D is the number of dimensions the geometry occupies, L 

is the level of divisions, and T is the number of coordinates or distances that are used to 

determine the RAPI.  For three-dimensional problems D is equal to three. The same 

calculation used to obtain the RAPI at each iteration will be used and is found in equation 

(8.2). 

 ( ) ( ) (2 21 1

1 1

T T
j j j j j

xyz i avg i avg i avg i avg i avg i avg i
i i

D d x x y y z z− − − − − −
= =

= = − + − + −∑ ∑
21  (8.2) 
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By increasing the number of distances used for the RAPI, the fluctuation in RAPI may 

decrease allowing for quicker determination of the active cycle by the step refined on-

the-fly judgment of the source distribution’s state.  The effects on the RAPI by increasing 

T needs to be investigated to determine if investing more computational resources by 

expanding the number of coordinates is necessary and useful for resolving the cycle at 

which the source distributions reaches stationarity. 

Computational resources and time are important in Monte Carlo calculations. As 

mentioned in Chapter 4, using techniques from graph theory can significantly increase 

the computational time of a problem and using these techniques in the currently 

programmed form, exceeds the limits of array size.  

The limit imposed by the upper bound of array size can be avoided by changing 

how the distances between the particles array is used.  In current programming the array 

that defines the distances between all the particles in the geometry is defined by a double 

precision real N by N array.  Currently the size of the array that can be used in the MC 

research code is 16000 by 16000.  The amount of memory for this array can be reduced 

by performing the distance calculation in double precision and then storing the distance 

value between any two particles as single precision real in an N by N array. By using 

single precision storage, the number of particles used in Prim’s algorithm can be 

increased to16000 2 23000× = . This only slightly increases the number of particles that 

can be used by Prim’s algorithm. This will be useful if six digits of precision are enough 

to describe the problem geometry. The way that the data is accessed by Prim’s algorithm 

could also be altered.  Another improvement to memory storage could be to write the 

distance array to file instead of storing the data in a temporary array.  Prim’s algorithm 
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could then access the file, for its determination of the EMST, instead of an array, but this 

possibility was not investigated as a means of avoiding runtime memory shortages. 

In Monte Carlo the computational time increases linearly with respect to the 

number of particles per cycle, or O(N). When Prim’s algorithm is employed to find 

EMST from particle positions the computational time increases as the square of the 

number of particles, or O(N2).  To reduce the amount of time needed to perform Prim’s 

algorithm, the geometry can be automatically divided into 8 sub-regions by the use of the 

automatic meshing technique.  This technique finds the average particle position,

( , , )A A Ax y z , in the geometry and this average position divides the geometry into 8 

regions.  These regions are defined by R1: , ,A A Ax x y y z z> > >  (top-upper-right), R2: 

, ,A A Ax x y> < y z z> (top-lower-right),…, R8: , ,A A Ax x y y z< < z<  (bottom-lower-left).  

Next, use Prim’s algorithm to find the EMST of the particles in each region.  This will 

construct eight EMST’s.  From these eight EMST, eight average edge lengths and eight 

EMST total costs are found.  Next choose a representative particle from each region and 

create a ninth EMST from these 8 particles.  From this ninth EMST a ninth total cost and 

ninth average edge length will be obtained.  By combining the nine EMST’s a super 

EMST will be constructed with the average edge length calculated from the average edge 

lengths of the nine EMST’s and the total cost of the EMST calculated by the sum of the 

edge lengths of the super EMST.  These nine AELs are averaged with weights according 

to the number of particles in each of the trees.  The total cost of the super EMST would 

be a representation or approximation to the total cost of an EMST constructed from all 

the particles in the geometry. “The average of nine AELs is approximation larger than the 

true AEL obtained if Prim’s algorithm is applied to the collection of all particles” thus 
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making this a conservative approximation of the average edge length of the EMST that 

would be computed for the entire geometry [17].  By using these approximations, the 

time needed to compute the average edge length and total cost of an EMST is reduced by 

a factor of 8, i.e. ( ) .  The divisions can be taken one step further and 

each of the eight regions subdivided into eight more regions for a total of 64 regions.  

Doing this will reduce the computational time by a factor of 64 or 

.  The approximation of the total cost of an EMST can then be 

used as an indicator of when the source distribution reaches a stationary state, and the 

conservative approximation of the AEL can be used in the particle population diagnostic 

of the tally cell volume in power distribution calculations.  Using the approximation of 

the AEL will lead to a larger estimate of the minimum tally cell volume making the 

diagnosis conservative. The only challenge with these approximations would be in 

choosing the representative particle from each of the regions to retain the conservative 

approximation of the AEL and the representative nature of the approximation to the total 

cost of the EMST. 

2 2/ 8 8 / 8N N∗ =

2 / 64N( )2/ 64 64N ∗ =

The final issue is the refinement of the power law fit of the average edge length 

found in Chapters 4 and 7.  The total cost of an EMST, , can be defined as ( )EMSTL N

 ( )
( ) ( )

min | |
N

N

EMST N M V e M V
L V e

∈

≡ ∑  (8.3) 

Where  is the set of all vertices in the graph represented by particle positions, NV ( )NM V  

is all possible sets of edges in an acyclic and connected graph and e is the edges in this 
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graph connecting the particle positions.  Equation (8.3) can be generalized resulting in 

equation (8.4). 

 ( )
( ) ( )

min | |
N

N

pp
EMST N M V e M V

L V
∈

≡ e∑  (8.4) 

A limit law of this equation has been discussed by Redmond and Yukich [19]. 

 ( ) ( )

[0,1]
lim ( ) ( , ) ( )

d

p d p d d p
EMST NN

L V N p d dg xβ−

→∞
= ∫ dx−  (8.5) 

 In this equation ( , )p dβ  is a constant that depends only on p and d, and ( )g x

NV

 is the 

absolutely continuous part of the probability density function of the vertices in whose 

domain is presumed to be in [0 .  Values of p and d corresponding to EMST are found 

to be p=1 and d=3. By taking this values equation 

,1]d

(8.5) becomes, 

 1 2 3

[0,1]
lim ( ) (1,3) ( )

dEMST NN
L V N 2 3g x dxβ

→∞
= ∫  (8.6) 

The domain of the Monte Carlo source can be scaled to be contained in [0  and by 

combining equation 

,1]d

(8.7) with equation (8.6), 

 ( )( ) ,
1

EMST NL V
AEL N

N
=

−
 (8.7) 

one can arrive at equation (8.8). 

 
1

1/3 2 3

[0,1]

( )( ) (1,3) ( )   as N
1 d

EMST NL VAEL N N g x dx
N

β−= →
− ∫ ∞  (8.8) 

This equation implies that the average edge length of an EMST decreases by , 

regardless of material composition, as the particle population is increased to infinity.  It 

1/3N −
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can be guessed that the average edge length approach to  is very slow from the 

power law fitting figures found in Chapter 7.  In the power law theory found in Chapter 4 

the average edge length is proportional to . Because of the relationship found in 

equation 

1/3N −

1/bN −

(8.8), modeling needs to be performed to investigate how the exponent -1/b 

approaches -1/3.  It can be done, but it is beyond the scope of this thesis. 
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Chapter 9  
 

Conclusion 
 

 

 

 

 

The goal of this thesis was to analyze and demonstrate the performance of mesh-input-

free diagnostics of the source distribution and particle population.  The mesh-input-free 

convergence indicator, RAPI, of the source distribution was compared against established 

convergence indicators for three different cases.  From this comparison, it was found that 

RAPI performed as well as or better than the established methods for the determination of 

the cycle at which the source distribution reached a stationary state.  As a result of the 

RAPI performance, mesh-free diagnosis of the source distribution’s state shows potential 

for use in reducing error in Monte Carlo calculations and eliminating the need for mesh 

based diagnostics of the source distribution.  Because of the promise demonstrated with 

this technique, expansion and further development of this method is warranted. 

From exploring graph theory techniques for convergence diagnostics, a mesh-free 

diagnostic of the particle population in a simulation was developed. This diagnostic used 

the average edge length of an EMST to develop indicators to the sufficiency of the size of 
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a particle population in power distribution calculations. By comparing this diagnostic to a 

previously validated diagnostic, PD_MESH, the meshless EMST-based diagnostic was 

found to be a suitable method of determining an adequate particle population for a model 

with a given tally cell volume in power distribution calculations.  With the promising 

performance of the EMST based diagnostic, the need for a mesh-based diagnostic can be 

eliminated, simplifying the diagnostic process. However, because the use of graph theory 

techniques in Monte Carlo methods has been limited, incorporating such techniques 

needs to be further investigated and improved.   
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