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Abstract

The use of several uncertainty quantification and propagation methodologies is

investigated in the context of the prompt fission neutron spectrum (PFNS) uncer-

tainties and its impact on critical reactor assemblies. First, the first-order, linear

Kalman filter is used as a nuclear data evaluation and uncertainty quantification

tool combining available PFNS experimental data and a modified version of the Los

Alamos (LA) model. The experimental covariance matrices, not generally given in

the EXFOR database, are computed using the GMA methodology used by the IAEA

to establish more appropriate correlations within each experiment. Then, using sys-

tematics relating the LA model parameters across a suite of isotopes, the PFNS for

both the uranium and plutonium actinides are evaluated leading to a new evaluation

including cross-isotope correlations. Next, an alternative evaluation approach, the

unified Monte Carlo (UMC) method, is studied for the evaluation of the PFNS for

the n(0.5 MeV)239Pu fission reaction and compared to the Kalman filter. The UMC
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approach to nuclear data evaluation is implemented in a variety of ways to test con-

vergence toward the Kalman filter results and to determine the nonlinearities present

in the LA model. Ultimately, the UMC approach is shown to be comparable to the

Kalman filter for a realistic data evaluation of the PFNS and is capable of captur-

ing the nonlinearities present in the LA model. Next, the impact that the PFNS

uncertainties have on important critical assemblies is investigated. Using the PFNS

covariance matrices in the ENDF/B-VII.1 nuclear data library, the uncertainties of

the effective multiplication factor, leakage, and spectral indices of the Lady Godiva

and Jezebel critical assemblies are quantified. Using principal component analysis on

the PFNS covariance matrices results in needing only 2–3 principal components to re-

tain the PFNS uncertainties. Then, using the polynomial chaos expansion (PCE) on

the uncertain output quantities, the stochastic collocation method (SCM) is used to

compute the PCE coefficients. Compared to the “brute force” Monte Carlo forward

propagation method, the PCE-SCM approach is shown to be capable of obtaining the

same amount of output quantity uncertainty information with orders of magnitude

computational savings. Finally, the uncertainties quantified in the correlated model

parameters for the suite of uranium and plutonium actinides are propagated through

the Big Ten and Flattop assemblies. In the case of the keff uncertainties in the Big

Ten assembly, the uncorrelated PFNS uncertainties leads to 17.5% smaller predicted

uncertainties compared with the correlated PFNS uncertainties, suggesting the pres-

ence of these cross-isotope correlations are important for this application. Last, the

unified Monte Carlo + total Monte Carlo (UMC+TMC) method is implemented to

propagate uncertainties from the prior LA model parameters through the Flattop

critical assemblies. Due to the fact that cross-experiment correlations are neglected

in all of the present evaluation work, the UMC+TMC suffers by predicting smaller

uncertainties in the integral quantities by an order of magnitude or more compared

to direct sampling from the posterior LA model parameters.
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Chapter 1

Introduction

For several decades in the reactor physics and nuclear engineering application com-

munity there has been a need to know how precise the result of a neutron transport

simulation is with the focus on improving accuracy and safety margins. While the

methodologies, algorithms and computing capabilities have improved over the years,

the sources of errors and uncertainties in the transport calculations began to be a

major research topic. Some errors in the calculations come from the methodolo-

gies used to solve the transport simulations including both discretization errors and

statistical noise while other errors come from the lack of knowledge of the system ge-

ometry and material composition. Both of these types of errors have been able to be

reduced through improvements in the algorithms and increased computer resources

with the knowledge of the system being increased from improved accuracy in the

measurements of the geometry and material composition. Another source of error in

a neutron transport simulation comes directly from the nuclear data, which describes

exactly how the neutrons in the simulation interact with the material in the system.

Some of the nuclear data that is needed in any given transport simulation can be

lacking either due to the difficult to experimentally measure or because of insufficient

nuclear physics theory to fully understand. This brings up an important aspect of
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Chapter 1. Introduction

this research, which is to identify where uncertainties need to be quantified in the

evaluated nuclear data. The most modern evaluated nuclear data libraries, such as

ENDF/B-VII.1 in the US [1], JENDL-4.0 in Japan [2], and JEFF-3.1.1 in Europe [3],

have already begun expanding on the amount of nuclear data stored to include as

much information about the nuclear data uncertainty as needed. This expansion is

due to the need within the nuclear application communities (e.g., advanced reactors,

medicine, non-proliferation, astrophysics, etc.) to propagate uncertainties through

transport simulations so that we can begin to understand the impact that the nuclear

data uncertainties alone have on the important integral solutions.

Some examples of important nuclear data include cross sections, angular distri-

butions of scattering interactions and neutron emission, prompt and delayed fission

neutron spectra, average fission neutron multiplicities and fission neutron multiplic-

ity distributions. While much work has been devoted to the precise evaluation of

cross sections and the associated covariance matrices with recent results obtained

as part of the Organization for Economic Cooperation and Development (OECD),

Working Party on Evaluation and Cooperation (WPEC) Subgroup 26 [4], it has been

pointed out that uncertainties in fission neutron spectra can have a significant impact

on the effective multiplication factor in some critical benchmark problems [5]. And,

in some other selected integral benchmarks, recent estimates of the neutron fission

spectrum uncertainties have been shown to be as important as cross section uncer-

tainties [6, 7]. Partially due to these results from the selected integral benchmarks

and because many of the minor actinides in the ENDF/B-VII.1 library [1] have crude

evaluated prompt fission spectrum data and even more limited covariance data, an

important part of this work focuses on the quantification of uncertainties of the eval-

uated average prompt fission neutron spectrum (PFNS) for many relevant actinides.

For example, some of the PFNS evaluations for many of the actinides have out-

dated evaluated mean values due to the availability of more up-to-date theoretical
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models and/or experimental results, and many of the actinide evaluated files do not

include PFNS covariance matrices. For the most important actinides (e.g. 235U,

238U and 239Pu) evaluations have recently been released in the ENDF/B-VII.1 nu-

clear data library, but the need for nuclear data and uncertainty evaluations on the

minor actinides has increased, especially under the advanced fuel cycle initiative

(AFCI) [6, 7] and the increased interest in designing Generation-IV fast reactors [8].

Not only has there been an increased interest in uncertainty quantification but

there has been interest in propagating the uncertainties through radiation transport

simulations. It is important to study how the uncertainties in the data affect the

uncertainty in the final integral quantities of interest including, for example, the

effective multiplication factor of a critical system. By studying the uncertainty of

the solutions of the transport simulations we can provide feedback to the nuclear data

evaluators to help identify where the largest deficiencies still exist. This information

can be used to help guide the kind of experiments that need to be done or on which

topic theoretical research needs to be focusing on.

Presently, in the ENDF/B-VII.1 evaluated library [1], in order to combine exper-

imental PFNS data with theoretical model calculations the Kalman filter is used [9].

The Kalman filter used in nuclear data evaluations is a first order Bayesian approach

and works best if the system response is linear near the central value. Of course, if

the system response is nonlinear, the Kalman filter may lead to an evaluation that is

inaccurate and inappropriate for use in physics simulations. Therefore, if a significant

difference can be seen between the evaluations and their impact on an important ap-

plication, the quality of the evaluated and covariance data can potentially be seen as

a weakness of the current evaluation methodology. The Unified Monte Carlo (UMC)

sampling method [10] has been investigated for a few test problems and could be

seen as a method to exactly sample from the prior probability distribution functions

(PDF) of the theoretical model parameters and minimize those results with respect
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to the experimental data used to constrain the model.

The methodology for propagating uncertainties through nuclear physics simula-

tions should also be addressed. There has been work done in the area of uncertainty

propagation through nuclear physics simulations including but not limited to sen-

sitivity analysis and perturbation theory [7]. Due to the lack of some evaluated

covariance matrices, the propagation of PFNS uncertainties has not been widely in-

vestigated. Also, because the UMC method has not yet been implemented for any

serious evaluation, a comparison to the Kalman uncertainty propagation results has

yet to be done. An alternative approach, the so-called “Total” Monte Carlo method-

ology [11], takes the prior model parameters and samples from a filtered parameter

space to create a realization of the nuclear data of interest. Each realization of the

nuclear data set is propagated through a nuclear physics simulation and the final ac-

cepted data set is determined from the calculated integral parameters that minimizes

discrepancies with the experimentally measured integral parameters. While the idea

of bypassing the covariance matrix formulation is tempting this methodology does

not explicitly include the differential experimental data available.

The focus of this research is to describe the current state of some important

nuclear data evaluations, propose new methods for quantification of uncertainties of

evaluated nuclear data and propagate uncertainty through important nuclear physics

simulations. The remainder of this dissertation is organized as follows:

• In Chapter 2, we introduce prompt-critical fast reactor systems, neutron trans-

port theory, computational techniques used to simulate nuclear physics exper-

iments, sources of nuclear data uncertainties and the prompt fission neutron

spectrum theory.

• In Chapter 3, we introduce uncertainty quantification techniques applied to the

evaluated prompt fission neutron spectrum.
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• Chapter 4 presents numerical results of applying these uncertainty quantifica-

tion methods, and discusses the merits and hurdles in each of those.

• In Chapter 5 we discuss the propagation of nuclear data uncertainties. Specif-

ically, we discuss covariance matrix decomposition techniques, and direct sam-

pling and polynomial chaos expansion methods.

• In Chapter 6 we present the numerical results of propagating uncertainties

comparing each of the propagation methods introduced.

• In Chapter 7 we draw some conclusions from the numerical results presented

and discuss several suggestions for future research that could extend the work

reported in this dissertation.
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Chapter 2

Background

2.1 Nuclear Physics Critical Assemblies

In the modern era of nuclear physics and engineering research majority of efforts

are often directed toward improvements in nuclear physics theory, computational

physics methods and numerical algorithm development rather than toward new nu-

clear physics experiments. Granted, new nuclear physics experiments do get built

occasionally, including both the recent developments on the TPC (time-projection

chamber) and Chi-Nu experiment at Los Alamos National Laboratory (LANL) used

in the re-evaluation efforts of the fission cross section and PFNS, the expense in

designing, testing and safely operating an experiment that includes exotic nuclear

material can be prohibitive. With increased interest in designing Generation-IV fast

reactors [8], the knowledge available from previous experiments need to be utilized

to continue improving the state-of-the-art in the future of nuclear engineering de-

sign. Previously built nuclear physics experiments, including many of the critical

and subcritical assemblies operated at the Pajarito site at LANL [12] may be cur-

rently decommissioned, but have been studied extensively for decades and provide
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excellent benchmarks for various applications.

Radiation transport critical assembly experiments are some of the most well

known and heavily studied physics experiments available for the computational physi-

cist to benchmark nuclear engineering application codes. In fact, the ICSBEP hand-

book [13] is a compilation of many critical assemblies spanning various materials, ge-

ometries and configurations used specifically for validating radiation transport codes.

Early on in the study of nuclear fissile materials, many critical assemblies were de-

signed exclusively for the weapons program with a large focus on criticality safety.

Many of these tests were composed of highly enriched uranium or plutonium metal

and in a simple geometric shape, usually in spherical or cylindrical geometry. By

simplifying the material composition and the geometry, the properties of the fissile

materials can be well characterized for future design considerations.

The present work focuses on a few very well known fast critical assemblies which

began with the Topsy assembly [14] built in 1947. The Topsy assembly contributed

some of the first basic fast-neutron fission chain information used for both weapon

and fast-reactor design. Not only did the assembly provide information about criti-

cality, critical masses and critical densities, information about the neutron distribu-

tions throughout the assembly, spectral indices and reactivity coefficients for various

materials was studied as well. Many of the interesting integral quantities measured

in these critical assemblies will be defined and introduced later when discussing

radiation transport theory and the capabilities of some of the state-of-the-art com-

putational tools available. A few of the subsequent fast critical assemblies built

after the Topsy assembly will be the focus of the numerical results presented in this

dissertation.

One of the first assemblies built after Topsy was the solid, bare, highly enriched

uranium (HEU) sphere, Lady Godiva [15] seen in Fig 2.1. It was an unshielded

reactor beginning operation in 1951 and ending operation in 1957, after the second
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Figure 2.1: Lady Godiva Critical Assembly in a Scrammed Position.

excursion beyond prompt criticality led to many damaged components. The Lady

Godiva assembly consisted of a sphere with a diameter of 17.483 cm, mass of 52.42 kg

with the material composed of 93.71 wt.% 235U, 5.27 wt.% 238U, 1.02 wt.% 234U and

trace amounts of 236U, C, Si and Fe. Because the critical radius of the HEU material

was still unknown when designing the Lady Godiva experiment, a shell model was

first constructed consisting of sets of nested hemispherical shells. With the informa-

tion from the shell model the final Lady Godiva critical radius, density and volume

was determined and the assembly seen in Fig. 2.1 could be finally manufactured.

The Lady Godiva assembly provided a plethora of information about HEU beyond

the criticality dimensions that would prove to be extremely useful for future reactor
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designs that include HEU in fast-neutron environments.

The plutonium counterpart to the Lady Godiva assembly was the Jezebel assem-

bly [16] built in 1954 composed of a solid, bare, delta-phase plutonium metal in a

near spherical shape. In fact, the Jezebel assembly had three separate assemblies

including two assemblies made of plutonium and one assembly made of uranium.

The assembly known as the 239Pu assembly was composed of 98.98 wt.% Pu and

1.02 wt.% Ga with negligible impurities from materials like C, O and Fe. The com-

position of the plutonium in the 239Pu Jezebel was found to be 95.2 at.% 239Pu, 4.5

at.% 240Pu and 0.3 at.% 241Pu. Because of the toxicity of plutonium, the compo-

nents were all plated with nickel but the model used in the present work ignores

the thin nickel plating. Although the Jezebel assembly included a couple of alter-

nate assemblies including a 240Pu (about 20.0 at.% 240Pu) and a 233U assembly, this

present work will focus only on the original Jezebel assembly. Two configurations of

the 239Pu assembly were used to help establish the critical mass and density of an

idealized plutonium sphere. With the two configurations including mass adjustment

plugs, polar disks, control rods and the inherent pseudo-spherical shape, experimen-

tal measurements and careful analyses were used to calculate corrections necessary

to convert the Jezebel assembly to a perfect sphere with a critical mass of 16.784 kg

and a homogenized density of 15.60 g/cm3.

Similar to the Jezebel assembly, the Flattop assembly [17] included several con-

figurations including an HEU, 233U and Pu metal core for operation. Built in the

1960’s, unlike the previously studied pseudo-spherical assemblies, the Flattop assem-

blies were spherical in geometry and were surrounded by a thick, normal uranium

metal reflector. The HEU core was comprised of two metal hemispheres and when

joined together had a combined mass of 17.84 kg and average density of 18.62 g/cm3

surrounded by a concentric normal uranium shell with a thickness of 18.01 cm and

density of 19.0 g/cm3. The composition of the HEU core was found to be 93.24 wt.%
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235U, 5.74 wt.% 238U and 1.02 wt.% 234U with the normal uranium shell composed

of 99+ wt.% 238U. The 233U core was also comprised of two metal hemispheres of

uranium metal highly enriched in 233U instead of HEU, which is highly enriched in

235U. After minor corrections were made to the original experiment, the idealized

core has a mass of 5.74 kg and an average density of 18.42 g/cm3 surrounded by the

same normal uranium shell with a thickness of 19.91 cm. The core is composed of

98.13 wt.% 233U, 1.24 wt.% 234U, 0.60 wt.% 238 and 0.03 wt.% 235U. Last, the Pu

core will be studied and is composed of 93.80 wt.% 239Pu, 4.80 wt.% 240Pu and 0.30

wt.% 241Pu with the remaining material in the core being 1.10 wt.% Ga. Once again,

the delta-phase plutonium metal components were plated with nickel and assembled

in a similar way the uranium cores were assembled. The final assembled core has a

mass of 6.06 kg with an average density of 15.53 g/cm3, once again being surrounded

by the same normal uranium reflector material with a thickness of 19.609 cm.

The last critical assembly studied in this dissertation is the Big Ten critical as-

sembly [18], which features a cylindrical core with an intermediate enrichment of

uranium on average throughout the core. The assembly first attained criticality in

1971 and was named Big Ten because of its overall experimental mass of uranium

(10 metric tons) and because the average 235U enrichment within the core is 10%.

This assembly differs substantially from the assemblies discussed previously. These

assemblies were small with highly enriched materials in spherical geometries leading

to the majority of neutrons in the assemblies being fast. The Big Ten assembly was

designed to study cross sections of materials in an environment that had a slightly

softer spectrum of neutrons and this requires the assembly to be larger to allow fast

neutrons to interact with the reflecting parts of the assembly before leaking from the

system. Within the Big Ten assembly, four different zones of uranium material were

used including a 93 wt.% 235U zone, a 10 wt.% 235U zone, a natural uranium zone

and a depleted uranium zone. The Big Ten assembly had several different configura-

tions during its 25 year life but the present work will use a recognized and acceptable
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model that has been homogenized in two sections throughout the core leading to a

core with a somewhat balanced amount of each uranium isotope.

Originally, many of the experiments were developed to support the weapons pro-

gram to study the neutronic behavior of highly enriched uranium and plutonium

during delayed-critical, prompt-critical and superprompt-critical excursions [12]. Af-

ter performing many fast burst criticality experiments, the work was later extended

to include fundamental nuclear data research, biological studies, nuclear energy mea-

surements and radiation damage effects. In fact, while the Lady Godiva [15] and the

Jezebel [16] assemblies were built with the emphasis on weapons research, the Flat-

top [17] and the Big Ten [18] assemblies were built during the so-called “Rover”

period with the emphasis placed on broader nuclear physics research with many new

nuclear reactor designs in mind. Some of the interesting integral quantities that

have been measured for each of the critical assemblies presented are the effective

multiplication factor, the neutron leakage spectrum and the spectral indices of sev-

eral important neutron-induced reactions. All of these original assemblies have been

extensively studied and thanks to the wealth of knowledge gained from these as-

semblies, they have been used for future critical assembly design and especially in

validating criticality calculations performed by neutron transport codes.

2.2 Neutron Transport Simulations

To model the critical assemblies faithfully the nuclear interactions taking place within

the system must be well understood in order to reproduce the measured integral

quantities. For this work we consider the time-independent linear Boltzmann trans-

port equation in a multiplying medium that has been seen extensively in various

textbooks [19, 20, 21, 22]. The assumptions made in the derivation of this form of

the Boltzmann transport equation include: a fixed medium, Markov process for par-
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ticle interactions (next event only depends on current state), particles are considered

as points, particles do not interact with one another, relativistic effects are negligible,

outside forces are neglected (i.e. gravity, magnetic field), material properties do not

change as a consequence of particle interactions and stochastic effects are negligible.

With these assumptions in mind, the transport equation can be described by:

Ω̂ · ∇ψ(r⃗, E, Ω̂) + Σt(r⃗, E)ψ(r⃗, E, Ω̂)

=

∞∫
0

dE ′
∫
4π

dΩ̂′Σs(r⃗, E
′ → E, Ω̂′ · Ω̂)ψ(r⃗, E ′, Ω̂′) (2.1)

+
1

4π

ν̄

k

∞∫
0

dE ′
∫
4π

dΩ̂′Σf (r⃗, E
′)χ(r⃗, E ′, E)ψ(r⃗, E ′, Ω̂′) ,

ψ(r⃗, E, Ω̂) = 0 , if Ω̂ · êS < 0 for r⃗ on S , (2.2)

where S denotes the domain surface, ês is the unit outward normal vector on the sur-

face, and the boundary conditions given in Eq. (2.2) are known as vacuum boundary

conditions. The variables that are solved in Eq. (2.1) include the k-eigenvalue and

the angular flux, ψ(r⃗, E, Ω̂), which is a function of spatial location, r⃗, energy, E, and

direction vector, Ω̂. The first loss term on the left-hand-side is known as the stream-

ing term expressed as the spatial divergence of the angular flux. The second loss

term on the left-hand-side is the total collision operator where the total cross section

of the material, Σt(r⃗, E), which is dependent on the space and energy variables, acts

on the angular flux. This term describes the interactions of the neutral particles with

the material that are subsequently removed from the phase space, (r⃗, E). The right-

hand-side of Eq. (2.1) are the source terms that describe the neutral particles that

are sourced into the phase space through some interaction with the media. The first

source term is called the in-scatter term. This term describes the neutral particles

integrated over the phase space variables, (E ′, Ω̂′), which interact with the material

in a scattering collision described by the double-differential scattering cross section,
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Σs(r⃗, E
′ → E, Ω̂′ · Ω̂), and end up in the phase space of interest, (r⃗, E, Ω̂). The

second source term is the fission source term and it describes the neutral particles

integrated over the phase space variables, (E ′, Ω̂′), which interact with the material

in a fissioning collision described by the fission cross section, Σf (r⃗, E
′). After the

fission occurs, there is an average number of neutral particles, ν̄, that are released

in the fission event with an energy spectrum, χ(r⃗, E ′, E), leading to particles being

sourced into the phase space of interest, (r⃗, E, Ω̂). The fission source term is scaled

by the k-eigenvalue which is also known as the effective multiplication of the system

and as the ratio of the number of neutrons in one generation to the number of neu-

trons in the previous generation. The effective multiplication factor values can be

split into three categories:

k < 1 describes a subcritical system where the asymptotic neutron population ap-

proaches zero in the absence of a fixed source,

k = 1 describes a critical system where the neutron population remains constant

due to the self-sustaining fission chain reaction,

k > 1 describes a supercritical system where the neutron population diverges regard-

less of the presence of a source.

For the problems that are considered in the present work, the effective multi-

plication factor is studied along with the total leakage from the system and some

important spectral indices. The k eigenvalue is computed directly in the solution of

the transport equation. The remaining integral parameters studied here, including

the total leakage and the spectral indices, are derived from the other solution result-

ing from the transport computation, the angular flux, ψ(r⃗, E, Ω̂). The total leakage
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is defined by the relationship,

J =

∫
S

dA

∞∫
0

dE

∫
Ω̂·ês>0

dΩ̂ Ω̂ · êsψ(r⃗, E, Ω̂) , (2.3)

where ês is once again the unit outward normal vector on the surface of the domain,

S, and r⃗s denotes that the leakage is evaluated at the surface. This term describes

the rate of neutrons leaving the domain and is an important measured quantity for

any type of radiation transport application. The spectral indices are also derived

from the angular flux, ψ, in the following manner:

I(n)(r⃗) =
1

N

∞∫
0

dE

∫
4π

dΩ̂ Σ(n)(r⃗, E, Ω̂)ψ(r⃗, E, Ω̂) , (2.4)

where Σ(n)(r⃗, E, Ω̂) is defined as a particular neutron-induced cross section for iso-

tope n. The reason that this quantity is of interest is because the energy spectra

seen in the angular flux affect these quantities in a substantial way depending on

the critical assembly being studied. In order to measure a spectral index, specific

materials are placed in or near the critical assembly and after the materials have

been subjected to the angular flux within the experiment the measurements of each

reaction take place. Generally, the N in Eq. (2.4) is defined as a similar reaction

that is very well known and this allows the measurements of the spectral indices in

many differing experiments to be compared in a reasonable fashion. In the present

work the well known reaction will be defined with respect to the Σ
(235U)
f (r⃗, E) cross

section, because the neutron-induced fission reaction of 235U is considered very well

known and a “standard” in the ENDF/B nuclear data library [23]. In this work, the

Σ(n) isotope will vary from Σ
(238U)
f , Σ

(237Np)
f and Σ

(239Pu)
f , but each will again be the

associated fission cross section of each isotope. These reactions are of particular in-

terest because both the 238U and 237Np fission reactions are threshold reactions that

require a minimum neutron energy for the reactions to even occur, and the 239Pu
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fission reaction is also well known. Ultimately, the spectral index integral quantities

studied in the present work are defined by,

I(238f)(r⃗) =
1

N(r⃗)

∞∫
0

dE Σ
(238U)
f (r⃗, E)ϕ(r⃗, E) , (2.5)

I(237f)(r⃗) =
1

N(r⃗)

∞∫
0

dE Σ
(237Np)
f (r⃗, E)ϕ(r⃗, E) , (2.6)

I(239f)(r⃗) =
1

N(r⃗)

∞∫
0

dE Σ
(239Pu)
f (r⃗, E)ϕ(r⃗, E) , (2.7)

where the spectral indices are written shorthand with the (238f) in Eq. (2.5) referring

to the fission reaction of 238U, for example. The N(r⃗) term in Eqs. (2.5)–(2.7) is

defined as,

N(r⃗) =

∞∫
0

dE Σ
(235U)
f (r⃗, E)ϕ(r⃗, E) . (2.8)

The scalar flux, ϕ(r⃗, E), in Eqs. (2.5)–(2.7) is defined as the angular flux integrated

over all angles in Ω̂,

ϕ(r⃗, E) =

∫
4π

dΩ̂ ψ(r⃗, E, Ω̂) . (2.9)

By studying these spectral indices, particular information about the energy spectrum

of the angular flux can be inferred based on the calculated quantities. In general, the

fission cross sections in Eqs. (2.5)–(2.7) can be defined for any reaction the neutrons

might undergo including capture, elastic and inelastic scattering, (n, 2n), etc.

The transport equation can be posed in many other ways for various applications,

but for this application the neutral particles of interest will be neutrons and the

applications of interest include time-independent prompt critical systems where the
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materials in the experiment are in a configuration such that they can maintain a self-

sustaining chain reaction of fission events without the presence of an external source

of neutrons. For materials like uranium and plutonium, the neutron-induced nuclear

physics in the scattering cross section, fission cross section and the prompt fission

neutron spectrum are very interesting with some complexities making it challenging

to solve this integro-differential equation. First remember that this equation includes

unknowns in both the k-eigenvalue as well as the angular flux, ψ. The most common

way of solving this form of the transport equation is the so-called power iteration

method [24, 25]. The power iteration method can be best described by first viewing

the transport equation in Eq. (2.1) in operator notation,

(L+T)ψ = Sψ +
1

k
Fψ , (2.10)

where L is the streaming operator, T is the total collision operator, S is the scattering

source operator, F is the fission source operator, k is the effective multiplication

eigenvalue and ψ is the angular flux written shorthand which remains a function of

the phase space variables, (r⃗, E, Ω̂). Rearranging Eq. (2.10) into an eigenvalue form,

(L+T− S)ψ =
1

k
Fψ ,

ψ =
1

k
(L+T− S)−1Fψ , (2.11)

ψ =
1

k
Mψ ,

where the operator M = (L+T− S)−1F. The power iteration method solves this

problem by assuming the right-hand-side k and ψ are known and the left-hand-side

ψ is solved by applying the M operator. The new ψ is used to compute a new k and

the iteration continues until both quantities converge. The algorithm can be seen
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here following an initial guess for k(0) and ψ(0),

ψ(n+1) =
1

k(n)
Mψ(n) , (2.12)

k(n+1) = k(n)
⟨
Fψ(n+1)

⟩
⟨Fψ(n)⟩

, (2.13)

where Eqs. (2.12) and (2.13) are repeated for N time until the conditions ||ψ(N+1) −

ψ(N)|| < ϵ and |k(N+1) − k(N)| < ϵ are satisfied, where ϵ is a user-defined convergence

tolerance. The methods available for inverting the (L+T− S) operator in Eq. (2.11)

needed for each power iteration have been extensively studied over many years and

are separated into three classes of techniques: deterministic, Monte Carlo and hybrid.

Each category has its own advantages and disadvantages.

Deterministic methods are derived from the transport equation and involve dis-

cretizing the angular flux in each of the phase space variables including handling

the differential and integral portions seen in Eq. (2.1) and then solving a large set

of coupled equations. Deterministic methods are often computationally inexpensive

and naturally provide solutions everywhere in the problem domain. However, these

methods can have some disadvantages due to the approximations made when deal-

ing with the spatial, energy and angular variables. Some disadvantages of using

deterministic methods to solve the transport equation include inaccuracies in the

computed integral quantities that can be caused by spatial truncation errors, angu-

lar quadrature order, polynomial expansion of the scattering cross section, energy

group structure and ray effects, to name a few.

The Monte Carlo method for solving the transport equation was first brought to

light by Von Neumann [26] in the 1940s with many subsequent developments and

texts written [22, 27, 28]. Monte Carlo methods involve simulating the individual

histories of radiation particles using random sequences of particle events and averag-

ing over all event histories. The methodology relies on the facts that each individual
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history is considered a Markov process and can be treated independently from all

other histories, and as the number of histories gets very large the average quantities

computed approach the true solution. The Monte Carlo method tries to avoid the

discretization errors made by the deterministic methods by modeling the particle

physics as faithfully as possible and the resulting solutions are generally referred to

as the “exact” solution that other methods try to duplicate. A couple of the disad-

vantages of the Monte Carlo method include the inherent statistical noise introduced

by the random sequences of events and the large computational cost required to solve

problems with a complex phase space where the number of histories necessary may

become large. Because of the nature of the Monte Carlo method, being that it is

inherently parallelizable, the method can easily benefit from some of the very large

computational multi-core clusters now available.

The final class of methods are the hybrid methods which have characteristics of

both the deterministic and Monte Carlo methods, trying to utilize the advantages

while limiting the inherent disadvantages each possess. Generally, the hybrid class

of methods are application specific and will not be discussed any further in this

dissertation.

Depending on what methods are used to solve the radiation transport problem,

some modeling uncertainties or errors will be introduced. In the present work, when

calculating the effective multiplication factor, the leakage and the spectral indices

of each critical assembly, the Monte Carlo method is the method of choice. The

MCNP5-1.60 code package [29, 30], a well established and respected Monte Carlo

radiation transport code, is used to simulate all critical assemblies discussed previ-

ously.

Up to this point, most of the research toward the nuclear physics critical as-

semblies and the radiation transport codes has been on trying to exactly match the

experimental measurements with the simulated results. Unfortunately this goal is
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not as easy as it may seem. For example, the ICSBEP handbook [13] contains hun-

dreds of the accepted benchmarks with a variety of materials and geometries. To

obtain sufficient agreement between all of the benchmarks and the simulated results,

the nuclear data going into the radiation transport codes, such as the cross sections,

fission spectra and average multiplicity, has to be very well known. With the large

amount of data and complexity, especially in the double-differential scattering cross

section, matching every single benchmark is an extremely difficult task. Because of

this difficulty, the uncertainties in the nuclear data libraries need attention so that

we can begin to understand the sources of the discrepancies between the benchmarks

and the simulations.

2.3 Nuclear Data Uncertainty

Recently, there has been an increased interest in the reactor physics community to

include not only the evaluated values of nuclear data used in physics simulations but

to also include the evaluated uncertainties associated with the nuclear data. The

confidence in which the expected solution is known with respect to the nuclear data

uncertainties is an important piece of information that can help in determining where

future research efforts need to be focused. With the increased computer processing

power available and newer and more sophisticated algorithms used in nuclear physics

simulations, it is not sufficient to only calculate the expected solution anymore. Al-

though errors do exist in nuclear physics simulations because of model imperfections,

truncation errors and Monte Carlo noise among others, uncertainties in nuclear data

need to be quantified.

Uncertainties in the expected values in the evaluated nuclear data libraries like

ENDF/B-VII.1 [1] can come from many sources including experimental measurement

uncertainties, theoretical model parameter uncertainties and the subsequent theoret-
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ical model deficiencies. Quantifying the theoretical model deficiencies requires inti-

mate knowledge of how the assumptions made while deriving the theoretical model

affect the accuracy of the model predictions. Because the theoretical models are of-

ten derived from fundamental nuclear physics principles, uncertainties due to model

deficiencies are very difficult to assess and beyond the scope of this research. Next

we discuss the experimental data uncertainties and theoretical model parameter un-

certainties.

Before discussing the experimental and model parameter uncertainties, some

mathematical definitions of the uncertainties are introduced. In the present re-

search, a probabilistic approach is used to describe the data uncertainties in the

form of univariate and multivariate random variables. First, a single or univariate

random variable X(ω) is completely characterized by the univariate probability den-

sity function, P (X)dX, describing the probability that X(ω) lies between X and

X + dX where the domain for X is finite and bounded by Xmin ≤ X ≤ Xmax. The

moments of the univariate random variable are described by weighted integrals of

the probability density function such that,

E[Xm] = ⟨Xm⟩ =
Xmax∫

Xmin

XmP (X)dX , (2.14)

where m is the order of the moment taken and ⟨· · · ⟩ denotes an ensemble average

of the quantity inside. Note that the expectation or mean value of X(ω) is defined

as the first moment where m = 1 in Eq. (2.14). From the moments of univariate

random variable, the definition of the variance is,

σ2 = E
[
(X − E[X])2

]
=

Xmax∫
Xmin

(
X − ⟨X⟩

)2
P (X)dX , (2.15)

where the standard deviation of the univariate random variable, σ, is simply the

square root of the variance.
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For a multivariate random variable, x⃗(ω) = {x1(ω), x2(ω), . . . xN(ω)}, the joint

or multivariate probability density function, PN(x⃗)dx⃗, completely characterizes the

random space where,

PN(x⃗)dx⃗ = PN(x1, x2, . . . xN)dx1dx2 . . . dxN , (2.16)

is the probability that x1(ω) lies between x1 and x1 + dx1, x2(ω) lies between x2

and x2 + dx2, and continuing on to where xN(ω) lies between xN and xN + dxN .

Analogous to the moments of the univariate random variable, a relationship exists

describing the moments of multivariate random variables,

E[x⃗m] = ⟨x⃗m⟩ =
x1,max∫

x1,min

· · ·
xN,max∫

xN,min

x⃗mPN(x⃗)dx⃗ , (2.17)

where the vector multiplication is component-by-component and not interpreted as

a dot product or cross product multiplication. The expectation or mean value for

the multivariate random variable is defined in Eq. (2.17) when m = 1. From the

moments of the multivariate random variable, the definition of the variance can be

established by,

σ⃗ 2 = E
[
(x⃗− E[x⃗])2

]
=

x1,max∫
x1,min

· · ·
xN,max∫

xN,min

(
x⃗− ⟨x⃗⟩

)2
PN(x⃗)dx⃗ . (2.18)

The standard deviation of the multivariate random variable, defined as the square

root of the variance, σ⃗, gives insight into the amount of randomness coming from

the second moment of the multivariate random variable in terms of the same units

as the mean of the distribution.

When dealing with multivariate random variables defined by the joint probability

density function, the correlations between the random vector component can be
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characterized through the covariance matrix, which is a generalization of the notion

for the variance. The individual components of the covariance matrix are defined by,

Ci,j = E

[(
xi − E[xi]

)(
xj − E[xj]

)]

=

xi,max∫
xi,min

xj,max∫
xj,min

(
xi − ⟨xi⟩

)(
xj − ⟨xj⟩

)
P2(xi, xj)dxjdxi (2.19)

Of course, higher moments of the multivariate random variables can be defined,

however, in the present work, the covariance matrix is used to describe all of the

randomness in the nuclear data uncertainty. One final definition relating the un-

certainties in a multivariate random variable is defined by the components of the

correlation coefficient matrix,

ρi,j =
Ci,j√
Ci,iCj,j

, (2.20)

where diagonal components of the covariance matrix normalize the covariance matrix

such that the values of the components of the correlation coefficient matrix strictly

range from −1 to 1.

In the present work, the covariance matrix is used to define the uncertainties in

the quantity of interest and more importantly, define the way that the uncertainties

interact with each other within a data set. The variance or standard deviation defines

the total uncertainty for each data point in the data set. This information is useful for

displaying the uncertainty information on a single graph using error bars to indicate

the magnitude of uncertainty at each data point. Last, the correlation matrix strictly

defines how the uncertainties within the data set interact with each other. If strong

correlations exist, then fewer independent sources of uncertainty exist within the

data set whereas if weak correlations exist, there are more independent sources of

uncertainty.
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The methods of computing an appropriate PFNS covariance matrix utilizing the

uncertainties in experimental data and model parameters, and then analyzing and

using the covariance matrix in a realistic application is a central theme of this dis-

sertation. First, the potential sources of uncertainties are discussed at some length.

2.3.1 Experimental Data Uncertainties

Most of the experimental data used in this work were taken from the EXFOR exper-

imental database [31]. Many of the datasets for the PFNS in the EXFOR database

often only contain total uncertainties of the measurements while some might include

a few individual sources of uncertainty coming from background interference, nor-

malization measurements, etc. Experimental uncertainties have been categorized

into three groups:

1. Short-energy-range (SER) uncertainties describe energy-dependent uncertain-

ties that contribute to the overall uncertainty but do not interact between

energies or energy bins. This would lead to a diagonal covariance matrix of

partial uncertainties and an example of this type of uncertainty in nuclear

data experiments is the statistical uncertainty from the number of counts in

an energy bin. There may be correlations between neighboring bins due to bin

sizing and uncertainty in the energy recorded, but in this work, the statistical

uncertainty is considered to only contribute to the covariance in the diagonal

elements.

2. Medium-energy-range (MER) correlations describe energy-dependent uncer-

tainties that contribute not only to the total uncertainty but also contribute

to the covariance matrix in the neighboring off diagonal terms. In the present

work, the MER correlations are represented as a linear relationship for which
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the correlations decrease from 100% to a minimum correlation given by some

energy range parameters.

3. Long-energy-range (LER) correlations describe energy-independent uncertain-

ties that contribute to the overall uncertainty in the form of a constant co-

variance matrix. This type of uncertainty is usually called the normalization

uncertainty which will be identified by σN . Examples of LER correlations

include target mass uncertainty, target geometry, sample self-absorption, etc.

By separating out all sources of uncertainty in experimental measurements, correla-

tions can be computed more faithfully in this way. Recent work at the International

Atomic Energy Agency (IAEA) [32] led to PFNS experimental correlation matrices

using the GMA code [33] evaluated this way. The way that the correlation matrix is

handled in GMA is best shown by an equation for the correlation matrix, ρi,j,

ρi,j =
(σN)

2 +Qi,j

σiσj
, (2.21)

where σi and σj are the total uncertainty at energy Ei and energy Ej, respectively,

σi =

√√√√(σN)
2 +

K∑
k=1

(
σk
i

)2
, (2.22)

and the σk
i is the energy dependent uncertainty from source k. The source k can be

from statistical uncertainty, background uncertainty, detector efficiency uncertainty,

etc. To properly compute the Qi,j factor, some knowledge about how uncertainties

interact with one another needs to be known. The counting statistics are considered

SER correlations and they do not contribute to the Qi,j off diagonal terms. On the

other hand, energy dependent uncertainty such as detector efficiency and background

uncertainty should be included in the Qi,j off diagonal terms if the experimental
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information is available. For the diagonal terms, Qi,i is given by,

Qi,i =
K∑
k=1

(
σk
i

)2
, for i = j , (2.23)

where K is the total number of uncertainty sources, and this definition ensures that

the diagonal elements of the correlation matrix, Ci,i are equal to unity. The off

diagonal terms for Qi,j for energies that are far apart are given by,

Qi,j =
K∑
k=1

σk
i σ

k
j ak (ak + bk) , for i ̸= j and |Ei − Ej| ≥ bkckEi , (2.24)

where the definitions for ak, bk and ck determine the MER correlations with the

minimum correlation defined by the choice of the ak (ak + bk) term. The remaining

correlations that are not too far apart are computed linearly based on the energy

difference between Ei and Ej,

Qi,j =
K∑
k=1

σk
i σ

k
j (ak + bk)

(
ak + bk −

|Ei − Ej|
ckEi

)
,

for i ̸= j and |Ei − Ej| < bkckEi . (2.25)

Determining what to choose for the ak, bk and ck can be difficult especially when

trying to correctly construct a correlation matrix of an older PFNS experiment. In

recent IAEA work and the work presented here, the default values for the MER

correlation coefficients have been, ak = bk = ck = 0.5, given in the GMA code

manual [33].

Many of the older PFNS experiments that have enough recorded details have

been revisited by the IAEA [32]. The goal of that work has been to analyze known

sources of uncertainty given by the experimentalists and to compute realistic co-

variance matrices of the experimental data to include in the EXFOR database. In
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all of the results that follow, the experimental correlation matrices are either taken

from the recent IAEA work where available or they are computed using the GMA

code methodology extended to other experiments outlined in Eqs. (2.21)–(2.25) with

the experimental uncertainties taken from the EXFOR database. Note that cross-

experiment correlations, which do certainly exist, are not considered in this work,

but should be the subject of future work.

2.3.2 Model Parameter Uncertainties

Another source of uncertainty present in evaluated nuclear data comes from the

theoretical model parameters. Usually, a theoretical model will be derived with

respect to a set of physical parameters that are either known to a certain degree from

experimental measurement or from some derived systematics based on interpolation

or extrapolation of similar experimental measurements. The reason that theoretical

models are used in nuclear data evaluations is because in places where measurements

are deficient or simply do not exist, theoretical models are used to predict the missing

data. Here the theoretical model will be defined as a function, f(x⃗), which depends

on the input parameters, x⃗.

Besides the uncertainties in the model parameters x⃗, deficiencies of the model

f(x⃗) also exist. The theoretical model uncertainty is considered to be a deficiency

in the model that cannot be propagated from the input parameter uncertainties.

Although they do exist, because of the complex nature of the theoretical models, the

theoretical model deficiencies will not be discussed any further and are a subject of

future work.

In the present work, the input parameters, x⃗, are considered to have a covariance

matrix, X, including the uncertainties of the model parameters. The model param-

eters that are used in this work are all physically measurable quantities. Therefore,
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the model parameters used in the present work have been researched independently

of the prompt fission neutron spectrum (PFNS) and have been assigned some un-

certainties. Because theoretical model deficiencies are not considered and we wish

to allow the parameters more flexibility in order to match the experimental data,

the uncertainties in the model parameter covariance matrix will be conservatively

estimated allowing the experimental uncertainties to dominate the overall source of

uncertainties.

2.4 The Prompt Fission Neutron Spectrum and

Multiplicity

The average PFNS is defined as a probability distribution function, χ(E ′, E), describ-

ing the probability a neutron of energy E ′ induces a fission event with the emitted

prompt fission neutrons with energy E. Linked closely to the PFNS is the aver-

age prompt fission neutron multiplicity (PFNM), ν̄p, which is defined as the average

number of prompt neutrons emitted in a fission event. The PFNM is presented here,

but the majority of this work is dedicated to the PFNS with some current and future

work focused on PFNM uncertainty quantification and propagation.

Presently, work is being done on developing a new model for prompt fission re-

actions using an advanced Monte Carlo Hauser-Feshbach (MCHF) model [34, 35],

originally inspired by the work done by Browne and Dietrich [36]. The approach con-

sists in following all possible fission fragment configurations and subsequent neutron

cascades keeping track of the outcomes of each fission event. The MCHF model has

the capability of calculating many more quantities associated with the prompt fission

event as well as the average PFNS and average PFNM. It can also calculate the neu-

tron multiplicity distribution, P (ν), the average neutron multiplicity as a function
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of fragment mass and kinetic energy, ν̄(A,KE), the PFNS for a given multiplicity,

χ|ν=νo , and neutron-neutron energy and angular correlations.

The idea of the MCHF model is to follow all possible neutron and gamma ray

cascades from all of the possible fission fragment yields of the fissioning nucleus. This

means that one of the model parameters needed for the MCHF model calculation

is the fission fragment mass yield. Some experimental measurements of the fission

fragment mass yield exist for a few isotopes and incident neutron energies only and

theoretical modeling is currently underway to provide a starting point for MCHF

model calculations of other actinides [37]. From the total excitation energy of each

of the fissioning fragments the emission of neutrons and gamma rays can be done

through Monte Carlo sampling. If γ-rays are neglected, the neutrons are emitted

sequentially until not enough excitation energy remains for neutron emission and

the remaining excitation energy is given as the total emitted gamma ray energy.

When neutrons are emitted, the Weisskopf spectrum [38] at the fission fragment

temperature is randomly sampled from to give a neutron energy. The total excitation

energy of the fission fragment is reduced by the binding energy and kinetic energy

carried away by the neutron, and a subsequent neutron is released in the same way.

The Monte Carlo process is repeated until sufficient sampling of the entire phase

space is completed and the noise in the solution is within a desired range.

The advanced MCHF model has not been included in any of the ENDF/B-VII.0

data evaluations but major efforts are underway to use it in near future releases of

the ENDF/B-VII library. With the amount of potential gains in knowledge of the

fission reaction process especially with respect to the correlations between related

fission reactions, this method should have a significant impact on the evaluation

process related to nuclear fission reactions in future evaluation studies.
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2.4.1 The Los Alamos Model

For the most important actinides, the ENDF/B-VII.1 [1] evaluations of PFNS are

based on the Los Alamos (LA) or Madland-Nix model [39]. The LA model calculates

the average neutron spectrum in the laboratory as a function of outgoing energy,

N(E) for a given incident neutron energy. An advantage of using the LA model for

calculating the average PFNS is that the model contains very few tunable parameters.

The most important are the average total kinetic energy of the fission fragment

⟨TKE⟩, the average energy release ⟨Er⟩, and the average level density parameter ⟨a⟩

which is used in calculating the maximum value of the temperature Tm related to

the excitation energy distribution in the fragments.

In the laboratory frame, the average neutron energy spectrum is

N(E) =
1

2
√
EfT 2

m

(
√
E+

√
Ef )

2∫
(
√
E−

√
Ef )2

dϵσc(ϵ)
√
ϵ

Tm∫
0

dTk(T )T exp(−ϵ/T ) , (2.26)

where Ef is the fission fragment kinetic energy per nucleon and k(T ) is the temper-

ature dependent normalization constant defined by

k(T )−1 =

∞∫
0

dϵ′σc(ϵ
′)ϵ′ exp(−ϵ′/T ) , (2.27)

where σc(ϵ
′) is the energy-dependent cross section for the inverse process of compound

nucleus formation. Assuming an equal number of neutrons are emitted from the light

and heavy fragments, the average neutron energy spectrum in the laboratory frame

is given as an average over the spectra for the light and heavy fragments,

N(E) =
1

2
[NL(E) +NH(E)] , (2.28)
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where the subscripts L and H identify the light and heavy fission fragment, respec-

tively. While there is ample experimental evidence that ν̄L ̸= ν̄H , we decided to

keep the original assumption of the LA model for the present work. By providing

two more parameters, the average neutron separation energy of the fission fragments

⟨Sn⟩ and the average total energy carried away through gamma-ray emission ⟨Eγ⟩,

the average prompt fission neutron multiplicity, ν̄ can also be inferred. The average

fission neutron multiplicity is calculated by

ν̄ =
⟨Er⟩+Bn + En − ⟨TKE⟩ − ⟨Eγ⟩

⟨Sn⟩+ ⟨ϵ⟩
, (2.29)

where En is the energy of the incident neutron and ⟨ϵ⟩ is the average energy of the

spectrum in the center-of-mass frame.

Derivation of the model is based on nuclear evaporation theory [38] and is the

result of averaging over the entire fission fragment distribution and neutron cascades.

In the LA model, the fission fragment temperature distribution is assumed to be

triangular starting from zero to a maximum value for the temperature, Tm, calculated

from the average excitation energy, ⟨E∗⟩ = ⟨Er⟩+En+Bn−⟨TKE⟩, and the average

level density parameter of the fission fragments, ⟨a⟩,

Tm =

√
⟨E∗⟩
⟨a⟩

. (2.30)

For each fission fragment pair, the distribution of the temperature is assumed to be

the same, i.e. Tm,L = Tm,H .

Equation (2.26) was derived under the assumption that neutrons are evaporated

isotropically in the center-of-mass reference frame of the fission fragments. If the

fragments carry a large spin, it can be shown [40] that this assumption is no more

valid, and that the prompt fission neutron spectrum in the center-of-mass should
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read

ϕ (ϵ, θ) ∝ ϕ (ϵ)
(
1 + b cos2 θ

)
, (2.31)

where θ is the angle between the neutron and fission fragment directions. Equa-

tion (2.26) now becomes

N(E) =
1

2
√
EfT 2

m

1

1 + b/3

(
√
E+

√
Ef )

2∫
(
√
E−

√
Ef )2

dϵσc(ϵ)
√
ϵ×

(
1 + b

(E − ϵ− Ef )
2

4ϵEf

) Tm∫
0

dTk(T )T exp(−ϵ/T ) . (2.32)

In the present work, we have included the anisotropy coefficient b as a parameter.

2.4.2 Model Parameter Systematics

Usually, a theoretical model will be derived with respect to a set of physical pa-

rameters that are either known to a certain accuracy from experimental measure-

ment or from some systematics, parameterized into a functional form derived from

experiments as well. As mentioned earlier, the LA model has very few tunable pa-

rameters. Recently some of these parameters have been systematically evaluated by

Tudora [41]. Specifically, the average total kinetic energy of the fission fragments

⟨TKE⟩, the average energy release ⟨Er⟩, and the average neutron separation en-

ergy of the fission fragments ⟨Sn⟩ at thermal energy were systematically estimated

for the following actinides: 226−232Th, 224−233Pa, 229−238U, 231−237Np, 234−242Pu, and

240−245Am.
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The following relations were obtained in [41]:

⟨TKE⟩th = α1 + α2
Z2

A1/3
, in [MeV] (2.33)

⟨Er⟩th = α3 + α4x(Z,A) + α5x(Z,A)
2 , in [MeV] , (2.34)

where x is the fissility parameter given by

x(Z,A) =

(
Z2

A

)
/

(
50.883

(
1− 1.7826

(
N − Z

A

)2
))

, (2.35)

and N = A−Z. The present work includes two additional model parameters. First,

the average level density parameter, ⟨a⟩ is expressed in terms of the mass number,

A,

⟨a⟩ = A/α6 , in [MeV−1] (2.36)

as in the original LA model [39]. As mentioned earlier, the anisotropy of the neu-

trons emitted from an excited fission fragment is now considered in our LA model

calculations. In this work, the anisotropy coefficient, b, is also a parameter,

b = α7 . (2.37)

Utilizing the systematics evaluated by Tudora [41] in a data evaluation sense,

allows the simultaneous evaluation of the uncertainties of a suite of actinides bring-

ing consistency and cross-isotopes correlations, and more reliable extrapolations to

neighboring nuclei for which no experimental data exist. This can be seen as an

improvement to the present evaluations of the minor actinides in [1] of which some

are still based on simple theoretical models and do not include evaluated covariance

matrices.
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Uncertainty Quantification:

Theory

With increased interest in nuclear data uncertainties, several collaborative efforts

in the form of international workshops have taken place to present new research

on uncertainty quantification methods and to present some practical results of the

methods available [42, 43]. Some of the earliest methods of obtaining uncertainty

information in the form of a covariance matrix were based largely on experimental

data. In principle, if enough well documented experimental measurements have

been taken, an adequate covariance matrix can be estimated. Using the generalized

least-squares methodology, the GLUCS [44] code can be used to build a covariance

matrix for a particular nuclear reaction from the experimental data sets. However,

the resulting covariance matrices have been found to have very small off-diagonal

components with large variances along the diagonal leading to very weak correlations

between data points.

Many of the newer methods that are discussed in more detail here have been

studied and implemented in the last 10 years or so. Much like the methods of solving
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the transport problem discussed in Ch. 2.2, the contemporary methods of calculating

nuclear data uncertainties fall into three categories: deterministic, Monte Carlo, and

hybrid methods.

The deterministic methods are based on a Bayesian updating procedure that

propagates prior model parameters and uncertainties by incorporating new knowl-

edge from an experimental data set to obtain posterior evaluated model parameters

and uncertainties, which are used to infer the evaluated nuclear reactions and uncer-

tainties. Generally the deterministic methods require only a few theoretical model

calculations and then apply the experimental data sets. Actually, in the updating

procedure the uncertainties are quantified in the theoretical model parameter covari-

ance matrix making it possible to then calculate a covariance matrix in the nuclear

data phase-space using the theoretical model calculation. There are a few drawbacks

of the deterministic methods including: the theoretical model calculation response is

assumed to be linear with respect to a change in the model parameters, the resulting

distribution of the parameters is assumed to be a multivariate Gaussian distribution,

and the methods are limited to continuum quantities only. Similar to the General-

ized Least Square Method (GLSM) [45], the Kalman filter [9, 46] has been a widely

adopted deterministic method and will be discussed in more detail in the following

section Ch. 3.1.

Stochastic or Monte Carlo methods do not generally have the same drawbacks

the deterministic methods have. First, it is not necessary to assume the theoretical

model response is linear with respect to a change in the input model parameters.

Also, the stochastic methods are not limited to specific distributions of parameters

and results, and they can handle discrete quantities unlike the deterministic methods.

One drawback of many of the stochastic methods that has led to some criticism is

the fact that many of the methods do not explicitly include experimental data.

One such stochastic method that does not explicitly include experimental data
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is the “Filtered” Monte Carlo approach [47]. In this approach, implemented with

the TALYS code [48], nuclear model uncertainties via the nuclear model parameters

are propagated to the final evaluated uncertainties. The nuclear model parameter

uncertainties are chosen such that the possible nuclear model calculations only span

the spread of the existing experimental measurements for each reaction. Basically,

the nuclear model parameters are sampled in a Monte Carlo fashion and if the nuclear

model calculation falls outside of the existing experimental measurements, the sample

is thrown away and another random sample is taken. After enough successful Monte

Carlo samples, the average mean and covariance converge and a final evaluated mean

and covariance for the parameters and model reactions are determined. This method

has been used in building the nuclear data library TENDL [49] based solely on nuclear

modeling with only partial use of the existing experimental data.

Instead of building the entire nuclear data library with means and covariances

for all of the important nuclear reactions that can be used in nuclear physics simula-

tions, the “Total” Monte Carlo method [11] has been suggested as an approach that

propagates uncertainties in the model parameters all the way through the selected

nuclear physics calculations. Each Monte Carlo sample of the model parameters that

is accepted as in the Filtered Monte Carlo method is then used to calculate all theo-

retical model reactions, which are then used in selected nuclear physics calculations.

This methodology provides an alternative to the usual ways of propagating uncer-

tainties from a covariance matrix, i.e. sensitivity/perturbation methods and random

sampling from decomposed covariances, by completely bypassing the evaluation of a

covariance matrix and propagating uncertainties directly to nuclear physics calcula-

tions. The “Total” Monte Carlo approach has been employed for various applications

including criticality studies [50], fast reactors [51] and fusion [52]. Although this

methodology can be seen as an improvement over the traditional uncertainty prop-

agation methods, the method still uses existing experimental data in an incomplete

way, relying almost entirely on nuclear modeling.
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Another stochastic method that has been developed is the Backward-Forward

Monte Carlo method [53]. First, this method performs a Backward Monte Carlo

step, which uses both the experimental data available and the model parameters

to form a covariance matrix of the parameters. This is done by sampling from the

independent parameters, computing the sample weight, which is based on a χ2 esti-

mate of the goodness of the model fit with experimental data, and then averaging

the Monte Carlo samples to obtain a prior covariance matrix of the model param-

eters. Then, a Forward Monte Carlo step is taken, sampling from the computed

parameter covariance and averaging the Monte Carlo samples to obtain the poste-

rior covariance matrix of the parameters and theoretical model. This methodology

uses the experimental data in a more formal way compared with the Filtered and

Total Monte Carlo approaches using the experimental data as a more rigorous way

to filter the sampling of the model parameters. An alternative stochastic approach,

the Unified Monte Carlo method [10], capable of correctly handling experimental

data is discussed in detail in Ch. 3.2.

The final category of methods used to evaluate nuclear data uncertainties falls

under the class of hybrid methods. These methods make use of both deterministic

and stochastic approaches trying to maximize the benefit of each and minimize their

disadvantages. One such approach makes use of the GANDR code system [54].

Using the nuclear reaction code EMPIRE [55], Monte Carlo samples of the model

parameters are used to obtain the prior mean values and covariances of several model

reactions. These model reactions are then used in conjunction with the appropriate

existing experimental data in a GLSM fit [45] to obtain the posterior reactions of

interest. The advantages this method has over the previously discussed methods are

that it allows the evaluation to include uncertainties for discrete quantities, e.g., spin

and parity of discrete state, by Monte Carlo sampling through the EMPIRE code (not

possible with deterministic methods) and it uses experimental data with the averaged

model calculations in a rigorous sense through the GLSM fitting. Unfortunately, the
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result of the evaluation only includes information about the posterior model reactions

and nothing about the posterior model parameters.

3.1 Kalman Filter

In the context of nuclear data evaluations, the Kalman filter [9, 46] has been used to

infer the best estimate of the central value and associated uncertainties of a nuclear

reaction, a cross section for example [56, 57], combining experimental measurements

and model predictions in a purely deterministic approach. The first-order Kalman

filter most used in nuclear data evaluations can be derived from Bayes’ theorem [58],

expressed as

p(x⃗) = AL(ϕ,V|x⃗)p0(x⃗|x⃗0,X) , (3.1)

where p(x⃗) is the posterior probability density function (PDF) of the parameters, x⃗, L

is the likelihood PDF, p0 is the prior PDF, and A is the PDF normalization constant.

The x⃗0 are the prior model parameters, X is the prior model parameter covariance

matrix, ϕ is the experimental data andV is the experimental data covariance matrix.

The normalization constant A is chosen such that the posterior PDF is normalized

over the domain D of interest,

∫
D

p(x⃗)dx⃗ = 1 . (3.2)

The Principle of Maximum Entropy [59, 60] states that the optimal choice for the

shape of the likelihood and prior parameter PDF is a multivariate normal function

or Gaussian distribution if the only knowledge of the prior parameters is the mean

and the covariance matrix [45]. Therefore, the appropriate choice for the shape of
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the prior parameter PDF and likelihood PDF would be,

p0(x⃗|x⃗0,X) ∼ exp

{
− (1/2)

[
(x⃗− x⃗0)

TX−1(x⃗− x⃗0)
]}

, (3.3)

L(ϕ,V|x⃗) ∼ exp

{
− (1/2)

[
(f(x⃗)− ϕ)TV−1(f(x⃗)− ϕ)

]}
, (3.4)

where f(x⃗) is the output of the theoretical model calculation given as a function of

x⃗. Substituting the definitions in Eqs. (3.3) and (3.4) into the Bayes’ theorem in

Eq. (3.1) results in the PDF of the posterior parameters,

p(x⃗) ∼ exp

{
− (1/2)[(f(x⃗)− ϕ)TV−1(f(x⃗)− ϕ) + (x⃗− x⃗0)

TX−1(x⃗− x⃗0)]

}
= exp

{
− (1/2)[(x⃗− x⃗1)

TP−1(x⃗− x⃗1)

}
, (3.5)

where the first assumption in deriving the Kalman filter comes from the assump-

tions for p0 and L, requiring the posterior PDF of the parameters to be a Gaussian

distribution with the knowledge of the posterior parameters, x⃗1, and the posterior

covariance matrix, P. Note that the maximum probability corresponds to the peak of

the Gaussian distribution at x⃗ = x⃗1. As the second assumption made, the response

of the model calculation, f(x⃗), is taken to be a first-order Taylor series expansion

about the prior model parameters such that,

f(x⃗) ≃ f(x⃗0) +C(x⃗− x⃗0) , (3.6)

where C is the sensitivity matrix whose coefficients are

Ci,j =
∂f(x⃗)i
∂xj

|x⃗=x⃗0 , (3.7)

where i refers to the i-th energy point of the model calculation and j refers to the

j-th model parameter. The sensitivity matrix in Eq. (3.7) can be computed by a
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simple numerical differencing around x⃗0,

Ci,j ∼
f(x⃗0 + δxj êj)i − f(x⃗0 − δxj êj)i

2δxj
, (3.8)

where δxj is relatively small compared with the value of the associated prior param-

eter value in x⃗0, and êj is a unit vector in the j-th row.

In Eq. (3.5), the arguments of the exponential terms can be equated such that:

(f(x⃗)− ϕ)TV−1(f(x⃗)− ϕ) + (x⃗− x⃗0)
TX−1(x⃗− x⃗0) = (x⃗− x⃗1)

TP−1(x⃗− x⃗1) .

(3.9)

For convenience we define,

y⃗ ≡ f(x⃗0)− ϕ ,

x̃0 ≡ x⃗− x⃗0 , (3.10)

x̃1 ≡ x⃗1 − x⃗0 .

We can now rewrite Eq. (3.9) as:

(y⃗ +Cx̃0)
TV−1(y⃗ +Cx̃0) + x̃T

0X
−1x̃0 = (x̃0 − x̃1)

TP−1(x̃0 − x̃1) , (3.11)

using the linear assumption in Eq. (3.6). Reorganizing the terms in Eq. (3.12) leads

to:

x̃T
0 (X

−1 +CTV−1C)x̃0 + 2y⃗TV−1Cx̃0 + y⃗TV−1y⃗

= x̃T
0P

−1x̃0 − 2x̃T
1P

−1x̃0 + x̃T
1P

−1x̃1 . (3.12)
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Now, when the coefficients of the x̃T
0 x̃0, x̃0 and constant terms in Eq. (3.12) are

equated, the following relationships are found,

x̃T
0 (X

−1 +CTV−1C)x̃0 = x̃T
0P

−1x̃0 , (3.13)

2y⃗TV−1Cx̃0 = −2x̃T
1P

−1x̃0 , (3.14)

y⃗TV−1y⃗ = x̃T
1P

−1x̃1 , (3.15)

resulting in definitions for the posterior covariance matrix from Eq. (3.13) and the

updated model parameters from Eq. (3.14) while the equality in Eq. (3.15) holds

true. From Eqs. (3.13) and (3.14) the posterior covariance and parameter update

are inferred,

P = (X−1 +CTV−1C)−1 , (3.16)

x̃1 = −PCTV−1y⃗ . (3.17)

Replacing the variables in Eq. (3.17) with the definitions in Eq. (3.10) results in an

expression for the posterior parameters,

x⃗1 = x⃗0 +PCTV−1(ϕ− f(x⃗0)) . (3.18)

The final Kalman filter equations after applying the matrix inversion properties,

discussed in Appendix A, to Eqs. (3.16) and (3.18) result in the posterior model

parameters and covariance matrix,

x⃗1 = x⃗0 +XCT
(
CXCT +V

)−1
(ϕ− f(x⃗0)) , (3.19)

P = X−XCT
(
CXCT +V

)−1
CX . (3.20)

The method that is generally employed to compute the final evaluated parameter

central values and covariance matrix is to apply Eqs. (3.19) and (3.20) for each new
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experimental dataset included in the analysis. First, the a priori values, x⃗0 and X,

are assumed to be known to some extent outside of the influence of the experimental

data being used. With the experimental data, ϕ and V, known, and having already

computed the sensitivity coefficients, C, Eqs. (3.19) and (3.20) are applied to obtain

a posteriori values, x⃗1 and P, for the model parameters. If more experimental data

exist that should be used to constrain the model parameters, the a posteriori values

are set as the a priori values and the same Eqs. (3.19) and (3.20) are used again albeit

with a new experimental data set filling in the ϕ and V components. This method

is generally referred to as the Bayesian updating technique because the updates are

applied iteratively with different experimental data each time.

The final evaluated mean values and covariance matrix of the quantity of interest

are given as

Φ = f(x⃗1) , (3.21)

F = CPCT , (3.22)

where Φ represents the evaluated mean model reaction and F represents the evaluated

reaction covariance matrix. If the model is indeed linear, then the evaluated mean

model reaction can be calculated by,

Φ = f(x⃗0) +C(x⃗1 − x⃗0) . (3.23)

In the special case when experimental data is unavailable, the likelihood function

would be equal to unity and the posterior PDF would assume the same shape as the

prior PDF,

p(x⃗) ∼ exp
{
−(1/2)[(x⃗− x⃗0)

TX−1(x⃗− x⃗0)]
}

= exp
{
−(1/2)[(x⃗− x⃗1)

TP−1(x⃗− x⃗1)
}
. (3.24)
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In this situation, it is clear that the assumption the posterior parameters are dis-

tributed normally is no longer an assumption, but is a result of having no other

experimental data to constrain the parameters. In order to satisfy Eq. (3.24) the

posterior parameters and covariance matrix are equal to the prior parameters and

covariance matrix,

x⃗1 = x⃗0 , (3.25)

P = X . (3.26)

The posterior spectrum and covariance matrix calculated from Eqs. (3.21) and (3.22)

are then,

Φ = f(x⃗1) = f(x⃗0) , (3.27)

F = CPCT = CXCT , (3.28)

equivalent to the prior spectrum and covariance matrix. This special case will be

used when comparing the Kalman filter results with the Unified Monte Carlo (UMC)

results for verification that the UMC method is implemented correctly.

3.2 Unified Monte Carlo

The Unified Monte Carlo method (UMC) [10] has been suggested as a potential

alternative to the Generalized Least Squares (GLS) method used for nuclear data

evaluations [10]. Some of the limitations and approximations associated with the

GLS approach could be avoided by using the UMC approach. The UMCmethodology

results from applying Bayes’ theorem in the form described in Eqs. (3.1) and (3.2).

In this form, the PDF of posterior parameters can be written explicitly, but our

interest is in calculating integral moments of the posterior PDF. The x⃗ values are
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assumed to be random variable arguments centered about the prior parameter PDF.

The mean value components of the posterior parameters x⃗1 can be defined by,

⟨xi⟩ =

∫
D

xip(x⃗)dx⃗∫
D

p(x⃗)dx⃗
, (3.29)

and the covariance matrix components for the posterior parameters P can be defined

by,

Pij =

⟨(
xi − ⟨xi⟩

)(
xj − ⟨xj⟩

)⟩
=

⟨
xixj

⟩
−
⟨
xi

⟩⟨
yj

⟩
, (3.30)

where the average values ⟨· · · ⟩ are obtained in Eq. (3.29).

Equation (3.5) is written without explicitly including the normalization constant,

but in the implementation of the UMC method, the normalization, mean values and

covariance matrix are calculated simultaneously, which is why Eq. (3.29) includes

the normalization integral in the denominator. Our interest is in determining the

mean and covariance of the parameters in Eqs. (3.29) and (3.30), respectively, and

in calculating the mean and covariance of a given reaction, Φ(x⃗),

⟨Φi⟩ =

∫
D

Φi(x⃗)p(x⃗)dx⃗∫
D

p(x⃗)dx⃗
, (3.31)

Fij =

∫
D

Φi(x⃗)Φj(x⃗)p(x⃗)dx⃗∫
D

p(x⃗)dx⃗
− ⟨Φi⟩⟨Φj⟩ . (3.32)

The solutions for the mean and covariance matrix for the parameters shown in

Eqs. (3.29) and (3.30) and the mean and covariance for the spectrum in Eqs. (3.31)

and (3.32) can be easily solved by Monte Carlo sampling from the domain of the

prior parameters. For a Monte Carlo random history, k, the model parameters, x⃗k,
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are randomly sampled in each individual component, where the i-th component of

the model parameters is denoted as xik. Using these terms we can see that the

continuous integral equations can be solved by Monte Carlo integration leading to

the following equations for the evaluated parameters and spectrum, respectively,

⟨xi⟩ = lim
K→∞


K∑
k=1

xikp(x⃗k)

K∑
k=1

p(x⃗k)

 , (3.33)

Pij = lim
K→∞


(

K∑
k=1

xikxjkp(x⃗k)

)
(

K∑
k=1

p(x⃗k)

) − ⟨xi⟩⟨xj⟩

 ,

(3.34)

and,

⟨Φi⟩ = lim
K→∞


K∑
k=1

Φi(x⃗k)p(x⃗k)

K∑
k=1

p(x⃗k)

 , (3.35)

Fij = lim
K→∞


(

K∑
k=1

Φi(x⃗k)Φj(x⃗k)p(x⃗k)

)
(

K∑
k=1

p(x⃗k)

) − ⟨Φi⟩⟨Φj⟩

 ,

(3.36)

where p(x⃗) is calculated as the product of the exact prior parameter and likelihood

PDFs in Eqs. (3.3) and (3.4), respectively.

This UMC methodology has been used and compared against the traditional

GLS method for some simple examples with few input values only [10]. For the

set of simple examples, both the brute force (BF) Monte Carlo method and the
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Metropolis (METR) algorithm developed by Metropolis et al. [61] and later gener-

alized by Hastings [62] were used to compute the mean and covariance shown in

Eqs. (3.33) and (3.34). Although the METR algorithm performed much better in

convergence and computation time, the authors concluded that the BF approach was

better suited for realistic applications, while the METR algorithm needs additional

work to be efficient for a variety of applications [10].

To directly compare the Kalman filter with the UMC method, the assumption

that the theoretical model response is linear will be made for verification purpose only

in the context of the UMC integral equations. Using the definitions in Eq. (3.10),

with the linear assumption of the model response, the posterior PDF takes a familiar

form,

p(x⃗) = exp

{
−1

2

[
x̃T
0X

−1x̃0 + (y⃗ +Cx̃0)
TV−1(y⃗ +Cx̃0)

]}
. (3.37)

Expanding the terms in the exponential function while separating some of the expo-

nential terms leads to,

p(x⃗) = exp

{
−1

2

[
x̃T
0 (X

−1 +CTV−1C)x̃0 + y⃗TV−1Cx̃0 + x̃T
0C

TV−1y⃗
]}

× exp

{
−1

2

[
y⃗TV−1y⃗

]}
. (3.38)

Notice the second exponential term in Eq. (3.38) does not depend on the integration

variables in Eq. (3.29), therefore it can be moved outside the integral in both the

numerator and denominator, canceling each other out in both the definitions of the

mean and covariance. Before doing so, we multiply and divide Eq. (3.38) by a useful

exponential term,

exp

{
−1

2

[
y⃗TV−1C

(
X−1 +CTV−1C

)−1
CTV−1y⃗

]}
= exp

{
−1

2

[
y⃗TV−1CQCTV−1y⃗

]}
, (3.39)
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where Q =
(
X−1 +CTV−1C

)−1
is defined for convenience at this point. In applying

this exponential term and using the definition for Q, the first exponential term in

Eq. (3.38) can be compressed resulting in,

p(x⃗) = exp

{
−1

2

[(
x̃0 + R⃗

)T
Q−1

(
x̃0 + R⃗

)]}
× exp

{
−1

2

[
y⃗TV−1y⃗

]}
exp

{
1

2

[
y⃗TV−1CQCTV−1y⃗

]}
, (3.40)

where R⃗ = QCTV−1y⃗ is defined for convenience. This modified version of the

posterior PDF in Eq. (3.40) is inserted into the exact integrals for the mean and

covariance. Note that the final two exponential terms in Eq. (3.40) are independent

from the variables of integration in the moment equations and are now cancelled out.

The resulting equations for the components of the mean and covariance, given the

linear model assumption and given that the domain D spans from −∞ to ∞, can

be seen as,

⟨x̃i⟩ =

∞∫
−∞

· · ·
∞∫

−∞
x̃0,i exp

{
−1

2

[(
x̃0 + R⃗

)T
Q−1

(
x̃0 + R⃗

)]}
dx̃0

∞∫
−∞

· · ·
∞∫

−∞
exp

{
−1

2

[(
x̃0 + R⃗

)T
Q−1

(
x̃0 + R⃗

)]}
dx̃0

, (3.41)

and,

Pi,j =

∞∫
−∞

· · ·
∞∫

−∞
x̃0,ix̃0,j exp

{
−1

2

[(
x̃0 + R⃗

)T
Q−1

(
x̃0 + R⃗

)]}
dx̃0

∞∫
−∞

· · ·
∞∫

−∞
exp

{
−1

2

[(
x̃0 + R⃗

)T
Q−1

(
x̃0 + R⃗

)]}
dx̃0

− ⟨x̃i⟩ ⟨x̃j⟩ .

(3.42)

Shown in Appendix B the solutions to the exponential integrals in Eqs. (3.41)

and (3.42) are,

⟨x̃⟩ = −R⃗

= −
(
X−1 +CTV−1C

)−1
CTV−1y⃗ , (3.43)
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and,

P = Q

=
(
X−1 +CTV−1C

)−1
. (3.44)

Finally cleaning up the expressions and inserting the original variables back into

Eq. (3.43) we see,

x⃗1 = x⃗0 +PCTV−1(ϕ− f(x⃗0)) , (3.45)

where Eqs. (3.45) and (3.44) are identical to the results found in deriving the Kalman

filter in Eqs. (3.18) and (3.16), respectively. In fact, this approach can be seen as an

alternate method for deriving the Kalman filter equations directly.

This is an important result, especially when testing the implementation of the

UMC method. In Ch. 4.2, we will check that when the linear model assumption is

enforced in the context of the UMC algorithm, the UMC results toward the Kalman

filter results with or without the use of the direct experimental data. Chapter 4.2.1

discusses the implementation details of the UMC method, and the linear model

assumption while including or excluding experimental data to study the UMC con-

vergence properties.

It is important to note that the posterior values obtained in the Kalman filter

correspond to the function peak, while the posterior values obtained in the UMC

method correspond to the true mean of the underlying posterior PDF. In deriving

the Kalman filter, a normal distribution is assumed for the posterior PDF in Eq. (3.5).

In the case where direct measurements of the nuclear reaction being considered are

the only experimental data included and the theoretical model response is linear, the

Kalman filter assumption is exact and the UMC results (given sufficient sampling

of the prior PDFs) would be the same as the Kalman filter results. When indirect
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experimental data, like ratio data or integral data, are included in the evaluation,

the posterior PDF will be skewed (shifting the mean away from the peak) and the

UMC method will result in a more appropriate estimate for the posterior parameters

and covariance matrix. This will be important when comparing Kalman and UMC

results. In Ch. 4.2 the UMC implementation details will be discussed in the context

of a realistic PFNS evaluation compared with the Kalman filter.
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Uncertainty Quantification:

Numerical Results

One of the major improvements made to the ENDF/B-VII.0 [63] nuclear data library

released in 2006 is the inclusion of a significant number of evaluated nuclear data

uncertainties. In fact, the newly released ENDF/B-VII.1 [1] library contains 423

neutron-induced evaluations of which 190 include covariance matrices. Some of the

covariances included in the new library release span many different reaction channels

and types including the most important cross sections, secondary particle energy

spectra, prompt fission neutron spectra, and prompt fission neutron multiplicity [57].

The prompt fission neutron spectrum (PFNS) uncertainty evaluations that were

released in the ENDF/B-VII.1 library include, but are not limited to, the neutron-

induced fission reactions on 235U, 238U, 238Pu and 239Pu below the second-chance

fission threshold. Of the evaluated PFNS covariance matrices mentioned, the PFNS

for the 238Pu(n,f) reaction is the only one that has been evaluated using the Kalman

filter without differential experimental data to help constrain the model parameters.

In fact, differential experimental data of the PFNS for the 238Pu(n,f) reaction has
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Figure 4.1: The correlation matrix of the PFNS for the n(0.5 MeV)+238Pu fission
reaction in the ENDF/B-VII.1 nuclear data library [1]. The clear two-block pattern
seen is the result of the probability distribution properties of the PFNS based only
on the model calculations.

never been measured or published, making it difficult to reasonably evaluate the re-

action as well as the uncertainties using only the theoretical model. Figure 4.1 shows

the results of the n+238Pu PFNS covariance evaluation included in the ENDF/B-

VII.1 library. The shape of the n+238Pu covariance matrix has two very distinct

regions of correlation and anti-correlation because it is based purely on model pre-

dictions and the linear model assumption.
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4.1 Actinide Suite Evaluation

The recent work in [64, 65] has been done to remedy the fact that the minor ac-

tinides have scarce experimental data available making it difficult to evaluate the

mean values and covariance matrices consistently with the major actinides. In the

present work each actinide evaluation of the PFNS across a suite of isotopes uses

the same values of the LA model parameters, αi for i = 1, ..., 7, defined previously in

Eqs. (2.33)–(2.34) and (2.36)–(2.37). Note that the αi for i = 1, ..., 5, in the present

work have been altered from their original values given by Tudora [41] by shifting

the origin of the systematics to a reference isotope that is likely to have the smallest

uncertainty for each actinide (e.g. 235U for uranium isotopes, 239Pu for plutonium

isotopes, etc.). As an example,

⟨TKE⟩th = α̂1 + α̂2

[
Z2

A1/3
− Z2

0

A
1/3
0

]
, in [MeV] , (4.1)

⟨Er⟩th = α̂3 + α̂4 [x(Z,A)− x(Z0, A0)]

+ α̂5 [x(Z,A)− x(Z0, A0)]
2 , in [MeV] , (4.2)

where the fissility parameter, x(Z,A), is defined in Eq. (2.35) and the same shape

of the systematics exist now centered around the isotope (Z0, A0). For simplicity,

the parameters used in the remainder of this document will assume the definition

αi = α̂i for i = 1, ..., 5, such that each reference to the parameters henceforth will be

assumed to be defined in Eqs. (4.1) and (4.2).

The posterior parameters and uncertainties are obtained using the Kalman filter

in Eqs. (3.19) and (3.20) using the differential experimental data available in the

EXFOR database [31] and the LA model calculations. In Tables 4.1 and 4.4 where

the IAEA work [32] is cited, the dataset that is used in this work is the “corrected”

dataset from the IAEA calculated in the same fashion outlined in Ch. 2.3.1 using
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the GMA methodology [33]. In most cases, the “corrected” dataset is a modified

version of the original where the central values are only slightly changed, if at all,

and the uncertainties and calculated correlations have been adjusted to account

for uncertainties that the experimentalists did not include in the original work or

EXFOR entry. In all other cases, the dataset that is used in this work is taken

directly from the EXFOR database and the correlation matrix is computed using

the GMA methodology.

4.1.1 Uranium 229-238

The uranium suite of isotopes has the most PFNS experimental measurements in

the EXFOR database as well as some of the most recent measurements [67, 68].

The differential data listed in Table 4.1 are used to constrain the parameters and

associated uncertainties in the present evaluation work. In the cases where the

experimental data are also cited by the IAEA work [32], the IAEA results were used

in place of the original EXFOR entries.

Figures 4.2 and 4.3 show the prior parameter values and posterior parameter val-

ues across the entire suite of uranium actinides for the average total kinetic energy

and energy release, respectively. Plotted along with the prior and posterior sys-

tematics are the parameter values calculated by Madland for the n(thermal)+235U,

n(thermal)+238U, and n(thermal)+239Pu reactions [80]. Note that the prior uncer-

tainties are shaded in light red and are chosen to be large enough to allow the model

parameters to explore a large but reasonable parameter space. Note that the slopes of

the prior and posterior systematics differ slightly due to the inclusion of experimental

data of multiple uranium isotopes.

The prior values for α1 − α6 are calculated from the systematics given by Tu-

dora [41] and the prior value and prior uncertainty for α7 is taken to be within
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Mass # First Date Einc Eout EXFOR Ref.
(A) Author (MeV) (MeV) Entry
233 Miura 2002 0.55 0.7-12.1 22688-002 [69]
233 Lajtai 1985 thermal 0.03-3.855 30704-002 [70]
233 Starostov 1985 thermal 0.83-9.3 40930-004 [71, 32]
233 Boytsov 1983 thermal 0.025-4.6 40873-002 [72, 32]
235 Kornilov 2010 thermal 0.68-11.8 31692-002 [67, 32]
235 Vorobyev 2010 thermal 0.21-10.8 41516-017 [68, 32]
235 Staples 1995 0.5-3.5 0.596-16.772 13982-002 [73]
235 Boikov 1991 2.9 0.232-11.885 41110-009 [74]
235 Wang 1989 thermal 0.58-12.3 32587-002 [75, 32]
235 Lajtai 1985 thermal 0.025-4.0 30704-003 [70, 32]
235 Starostov 1985 thermal 0.085-12.3 40930-006 [71, 32]
235 Boytsov 1983 thermal 0.025-4.6 40873-004 [72, 32]
235 Johansson 1977 0.53 0.625-14.45 20175-003 [76]
235 Adams 1975 0.52 0.625-15.629 20996-003 [77]
238 Trufanov 2001 5.0 0.28-12.27 41450-003 [78]
238 Boikov 1991 2.9 0.232-11.885 41110-010 [74]
238 Baba 1989 2.0 2.5-12.87 22112-002 [79]

Table 4.1: Experimental measurements of the PFNS for the neutron-induced 229−238U
fission reactions used in the present work including work from both the EXFOR
database [31] and modified data from the IAEA PFNS experimental data [32].

one standard deviation of the value proposed in the original anisotropy work by Er-

icson [40]. The prior and posterior parameters along with their uncertainties are

summarized in Table 4.2. For α4 and α5 the relative uncertainty increased from

the prior uncertainty given due to the increase in the parameter value. In terms

of the behavior of the absolute uncertainty, we expect the uncertainty to decrease

or remain unchanged when using the differential experimental data to constrain the

model parameters.

The prior parameters are uncorrelated, i.e. diagonal covariance matrix based

on the chosen prior uncertainties, and the posterior parameter correlations resulting

from applying the Kalman filter (Eq. (3.20)) are given in Table 4.3. The average
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Figure 4.2: The prior and posterior average total kinetic energy of the fission frag-
ments of the n+229−238U PFNS plotted with calculations done by Madland [80].

Prior Prior Posterior Posterior
Parameter Value Uncertainty (%) Value Uncertainty (%)
⟨TKE⟩ α1 171.41 2.0 168.57 0.52
— α2 0.273 100.0 0.228 78.29
⟨Er⟩ α3 187.85 6.0 185.13 0.37
— α4 784.34 50.0 442.21 63.56
— α5 25586 25.0 20783 30.04
C α6 11.000 4.0 10.094 3.78
b α7 0.100 50.0 0.098 16.04

Table 4.2: Parameters of the LA model evaluation of the n+229−238U PFNS, where
α1 − α6 are in MeV and α7 is dimensionless.
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Figure 4.3: The prior and posterior average energy release of the n+229−238U PFNS
plotted with calculations done by Madland [80].

total kinetic energy and the average energy release show a strong correlation seen in

the calculated correlations between the α1 and α3 terms and the α2 and α4 terms.

This result has been seen in previous work including the recent evaluation of n(0.5

MeV)+239Pu uncertainties [66]. It is expected as the average excitation energy ⟨E∗⟩

appearing in Eq. (2.30) is mostly determined by the difference between ⟨Er⟩ and

⟨TKE⟩. To keep ⟨E∗⟩ nearly constant, ⟨Er⟩ and ⟨TKE⟩ have to be strongly cor-

related. It also follows from the Kalman filter that the level density parameter,

α6, is correlated with the dominant average total kinetic energy term, α1, and is

anti-correlated with the dominant average energy release term, α3. Once again, to

keep the Tm calculation in Eq. (2.30) nearly constant, the α6 parameter needs to be
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anti-correlated with the ⟨Er⟩ term and correlated with the ⟨TKE⟩ term. Lastly, it

is observed that the anisotropy parameter, α7, is moderately correlated with both

the average total kinetic energy and the average energy release. The remaining pa-

rameter, α5, has a very weak correlation with all of the other parameters in this

study.

Parameter α1 α2 α3 α4 α5 α6 α7

α1 100
α2 -1 100
α3 36 0 100
α4 -3 97 0 100
α5 -3 -4 0 -2 100
α6 61 -1 -50 -2 -3 100
α7 25 0 7 -2 -1 11 100

Table 4.3: Posterior parameters correlations of the LA model evaluation of the
n+229−238U PFNS.

From the posterior parameters listed in Table 4.2 and the posterior parameter

correlation matrix in Table 4.3 the evaluated PFNS and associated covariance matrix

for any n+229−238U first-chance fission reaction can be computed using Eqs. (3.21)

and (3.22). The n(thermal)+233U PFNS and covariance matrix are computed and

the results are shown in Figs. 4.4–4.6.

In the most recent release of the ENBF/B-VII.1 data library [1], the evaluated

PFNS of the n(thermal)+233U is described as an energy dependent Watt spectrum

while the remaining major actinides in the library have been evaluated using the LA

model. Using the information from the posterior parameters and covariance matrix,

a more consistent evaluation of the PFNS and its uncertainties across this suite of

uranium isotopes can be included in future releases of the ENDF/B-VII library.

In Fig. 4.5 the uncertainty of the PFNS for the n(thermal)+233U reaction is shown

compared with the JENDL-4.0 [2] evaluation. The “Posterior from KALMAN” re-
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Figure 4.4: The PFNS of the n(thermal)+233U fission reaction is plotted as a ratio
to a Maxwellian spectrum at T=1.32 MeV with experimental data and the current
ENDF/B-VII.1 and JENDL-4.0 evaluations. The experimental data are normalized
to the posterior PFNS in the thick black line.

sults show extremely low uncertainties reported and this can be partly attributed

to how the experimental correlations are handled. Even though the experimental

correlation matrices for each individual experiment used in the present work were

evaluated more realistically using the GMA methodology, correlations between sep-

arate experimental datasets have not been included in this work. Because all of the

datasets are considered uncorrelated, the posterior uncertainties resulting from the

Kalman filter are much smaller than reported experimental uncertainties. To rem-

edy this, an ad hoc fix is applied by “rescaling” the covariance matrix such that the

smallest uncertainty in the PFNS will be rescaled to what is believed to be a more
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Figure 4.5: The uncertainty of the PFNS for the n(thermal)+233U fission reaction.
The lowest evaluated uncertainty lies near the mean outgoing neutron energy (∼ 2
MeV) and located generally where experimentalists report the smallest statistical
uncertainties.

realistic uncertainty value in the range of 1-2% near the mean outgoing energy.

Due to the fact that the PFNS is a probability distribution function and its

integral must be normalized to unity, the correlation matrix has a unique shape. As

can be seen in Fig. 4.6 the correlations are divided into two separate block regions.

Starting from the low energy tail of the PFNS, near the mean outgoing energy the

correlation goes from being highly correlated to highly anti-correlated. This simply

means that the PFNS has a pivoting point near the mean outgoing energy and

if one side increases the alternate side must compensate and decrease. Note that
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Figure 4.6: The correlation matrix of the PFNS of the n(thermal)+233U fission re-
action. As already observed for the 238Pu PFNS in Fig. 4.1, the overall shape of the
covariance matrix is dominated by two strongly correlated blocks. The inclusion of
experimental data in the analysis leads to finer structures in the matrix.

this feature is very important when sampling from the covariance matrix because it

ensures that the sampled PFNS will remain normalized.

The most recent PFNS experimental datasets available for the 235U(nth,f) reac-

tion are shown in Fig. 4.7 along with the present work. Both Kornilov [67] and

Vorobyev [68] datasets have been normalized to the posterior results shown as the

solid line. Over the entire energy range of the Kornilov dataset, excluding the last few

data points above 10 MeV, the agreement with the present work is extremely good.

In general, this present work agrees to within the quoted experimental uncertainties
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Figure 4.7: The PFNS of the 235U(nth,f) reaction plotted in ratio to a Maxwellian
spectrum at T= 1.32 MeV with experimental data and the current ENDF/B-VII.1
and JENDL-4.0 evaluations.

excluding a couple of data points in each of the high and low energy tails.

The n(thermal)+235U fission reaction is very important in many applications. For

some other applications, the incident energy dependence of the PFNS is of impor-

tance as well. The previous evaluation of the PFNS for the n(0.5 MeV)+235U fission

reaction used mostly the Johansson [76] dataset to constrain LA model parameters.

Figure 4.8 shows the present work along with the Johansson dataset normalized to

the posterior PFNS. It can be seen that the present work is within the quoted un-

certainties and the shape of the spectrum over the experimental data energy range

is generally in very good agreement.
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Figure 4.8: The PFNS of the n(0.53 MeV)+235U fission reaction plotted as a ratio
to a Maxwellian spectrum at T=1.32 MeV with experimental data and the current
ENDF/B-VII.1 and JENDL-4.0 evaluations.

In both Figs. 4.7 and 4.8 the most recent ENDF/B-VII.1 evaluation is plotted

along with the present work. The only difference between the two versions of the LA

model used is the inclusion of the anisotropy parameter (see Eqs. (2.31) and (2.32)).

The effect that this parameter has on the PFNS is in the low energy tail between

400 keV and 1 MeV and can be seen in the difference between the shapes of the

ENDF/B-VII.1 PFNS and the present work. By including this new parameter, the

low energy part of the spectrum changes shape and increases while leaving the shape

of the peak and the high energy tail almost unchanged.

In this work, the experimental measurements done by Boikov [74] for both n(2.9

61



Chapter 4. Uncertainty Quantification: Numerical Results

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

 0.01  0.1  1  10

R
at

io
 o

f P
F

N
S

Outgoing Neutron Energy (MeV)

n(2.9 MeV)+238U / n(2.9 MeV)+235U

Present Work
Boikov, 1991
ENDF/B-VII.1

JENDL-4.0
JEFF-3.1.1

Figure 4.9: The ratio of the PFNS for the n(2.9 MeV)+238U fission reaction to the
PFNS for the n(2.9 MeV)+235U fission reaction is plotted with the present work,
experimental data by Boikov [74] and the current ENDF/B-VII.1, JENDL-4.0, and
JEFF-3.1.1 evaluations.

MeV)+235U and n(2.9 MeV)+238U reactions have been included in the evaluation

procedure. These datasets have been the main culprit in terms of large discrepancies

in the high energy tail between the experimental data and the posterior results.

The n(2.9 MeV)+238U evaluated PFNS is in good agreement throughout the entire

range of the experimental outgoing energy unlike the n(2.9 MeV)+235U evaluated

PFNS which has large discrepancies in the high outgoing energy tail of the spectra.

In Fig. 4.9 a ratio of the two measurements has been plotted as well as the same

ratio of the present work and several evaluated data libraries. The present work

and the evaluated data libraries show the same downward trend at higher energies
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while the ratio of the experimental measurements is almost constant above 5-MeV

outgoing neutron energy. The simplified treatment of the level density used in this

work (Eq. (2.36)) leads naturally to a harder spectrum for 235U than for 238U. Boikov

data do not show this trend however. The best agreement is obtained for ENDF/B-

VII.1, whose parameter values have been tuned around this incident neutron energy

to better agree with Boikov’s data.

4.1.2 Plutonium 235-242

The plutonium suite of isotopes has several PFNS experimental measurements in

the EXFOR database but only for 239Pu. In the cases where the experimental data

are cited by the work done at the IAEA [32], the data reported by the IAEA is

the differential data used in this work which may differ slightly from the original

published data. The use of the LA model and Kalman filter for evaluating the PFNS

uncertainties of the n(0.5 MeV)+239Pu reaction was done recently [66]. The present

work follows the same methodology applied to the entire suite of plutonium isotopes

below the threshold for second-chance fission.

Mass # First Date Einc Eout EXFOR Ref.
(A) Author (MeV) (MeV) Entry
239 Staples 1995 0.5-3.5 0.596-15.952 13982-003 [73]
239 Lajtai 1985 thermal 0.03-3.855 30704-004 [70, 32]
239 Starostov 1985 thermal 3.007-11.2 40930-008 [71, 32]
239 Boytsov 1983 thermal 0.021-4.5 40873-006 [72, 32]
239 Knitter 1972 0.215 0.28-13.87 20576-003 [81]

Table 4.4: Experimental measurements of the n+235−242Pu PFNS used in the present
work including entries from both the EXFOR database [31] and modified data from
the IAEA PFNS experimental data [32].

Figure 4.10 shows the prior parameter values and posterior parameter values

across the entire suite of plutonium isotopes for the difference between the average
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Figure 4.10: The difference between the average energy release and the total kinetic
energy of the n+235−242Pu PFNS plotted with calculations done by Madland [80].

energy release, ⟨Er⟩, and the average total kinetic energy, ⟨TKE⟩. Because Fig. 4.10

is the difference between two uncertain parameters the prior uncertainty band shaded

in light red and the posterior uncertainty band shaded in light blue are large. This

allows the model parameters to explore a very large and in some cases unphysical

parameter space, but the experimental data constrains the parameters in a very

reasonable way.

The prior values taken from Tudora [41] and posterior parameters from the

present work along with all of the uncertainties are given in Table 4.5. Because

the prior systematics were altered from the original values given by simply shifting

the origin of the parameters to be located at the n+239Pu reaction, the prior and
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posterior values for α2, α4, and α5 remain the same. If other experimental data in

the plutonium suite existed outside of 239Pu, then the prior and posterior values for

α2, α4, and α5 would differ and the plutonium suite would have results similar to

the uranium suite discussed earlier.

Prior Prior Posterior Posterior
Parameter Value Uncertainty (%) Value Uncertainty (%)
⟨TKE⟩ α1 177.56 2.0 178.34 1.14
— α2 -0.231 100.0 -0.231 100.0
⟨Er⟩ α3 197.96 6.0 195.43 0.91
— α4 -354.69 50.0 -354.69 50.0
— α5 -5140.7 25.0 -5140.7 25.0
C α6 11.000 4.0 11.042 3.82
b α7 0.100 50.0 0.127 20.91

Table 4.5: Parameters of the LA model evaluation of the n+235−242Pu PFNS, where
α1 − α6 are in MeV and α7 is dimensionless.

The prior correlations between the parameters are chosen to be null and the

posterior parameter correlations resulting from applying the Kalman filter (Eq. (3.22)

are given in Table 4.6. Once again, because of the shifting of the systematics and

the lack of experimental data outside of 239Pu, the correlations for α2, α4, and α5

remain zero. Again, the correlation between α1 and α3 show that the average total

kinetic energy and the average energy release across this suite of isotopes are strongly

correlated. The level density parameter, α6, is correlated with the average total

kinetic energy, α1, and is anti-correlated with the average energy release, α3. The

anisotropy parameter, α7, is correlated with both α1 and α3. Basically, the same

trends exist in the correlations between the parameters as was seen in the evaluation

of the suite of uranium isotopes.

Although there is a lack of experimental PFNS data for other plutonium isotopes,

from the posterior parameters listed in Table 4.5 and the posterior parameter cor-

relation matrix in Table 4.6, the evaluated PFNS and associated covariance matrix
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Parameter α1 α2 α3 α4 α5 α6 α7

α1 100
α2 0 100
α3 81 0 100
α4 0 0 0 100
α5 0 0 0 0 100
α6 25 0 -34 0 0 100
α7 35 0 29 0 0 3 100

Table 4.6: Posterior parameters correlations of the LA model evaluation of the
n+235−242Pu PFNS.

for any n+234−242Pu first-chance fission reaction can be computed using Eqs. (3.21)

and (3.22) and the LA model. Note that if constraints are placed on even just one

isotope, a reasonable set of model parameters are available as a result and can be

used to calculate any of the PFNS in the suite of isotopes.

Figure 4.11 shows the prior and posterior spectra as well as the thermal exper-

imental data used to constrain the parameters and the current ENDF/B-VII.1 and

JENDL-4.0 evaluations. The experimental data below about 500 keV show very large

discrepancies, but the present work is in reasonable agreement with the experimental

data from Starostov [71] and Boytsov [72]. Both the ENDF/B-VII.1 and JENDL-

4.0 evaluations are very similar to each other and the main difference between the

present evaluation and previous evaluations is the inclusion of the anisotropy pa-

rameter in the LA model that increases the PFNS below 500-keV outgoing energies,

thus lowering the peak of the spectrum to maintain normalization of the distribution.

Compared with the shape of the ENDF/B-VII.1 and JENDL-4.0 PFNS, the present

work has a lower peak in the 1–3-MeV range and the low energy tail from 0.5–1 MeV

is higher.

Although the uncertainties for the neutron-induced prompt fission neutron spec-

trum for low incident energies was done recently [66, 57] using much of the same
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Figure 4.11: The PFNS of the n(thermal)+239Pu fission reaction plotted with exper-
imental data and the current ENDF/B-VII.1 evaluation. The posterior parameters
in Table 4.5 were used in Eq. (3.21) to compute this present evaluation.

experimental data, this evaluation has been carried out in order to compare the

new evaluated spectrum with the addition of the anisotropy parameter against the

ENDF/B-VII.1 evaluation as well as evaluate the spectra and uncertainties across

the entire suite of plutonium actinides in a consistent manner. In general, the un-

certainties shown in Fig. 4.12 are in agreement with both the ENDF/B-VII.1 and

JENDL-4.0 evaluations in both shape and magnitude. Once again, it can be seen

that the evaluated uncertainties resulting from the Kalman filter are unreasonably

low, therefore the same ad hoc fix mentioned previously has been applied by scal-

ing the entire covariance matrix by a constant allowing the correlations to remain

invariant to the scaling.
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Figure 4.12: The uncertainty in the PFNS of the n(thermal)+239Pu fission reaction.
The lowest evaluated uncertainty is near the mean outgoing neutron energy and
located generally where experimentalists report the smallest statistical uncertainties.

By applying the covariance matrix of the posterior parameters, built from the

uncertainties and correlation matrix in Tables 4.5 and 4.6, respectively, to Eq. (3.22)

where the sensitivity coefficients of the PFNS for the n(0.5 MeV)+238Pu fission re-

action are known, the associated covariance matrix can be computed. The correla-

tion matrix computed from the resulting covariance matrix can be seen in Fig. 4.13.

Comparing the n(0.5 MeV)+238Pu PFNS correlation matrix from the ENDF/B-VII.1

data library in Fig. 4.1 with the correlation matrix in Fig. 4.13 of the same reaction,

significant differences can be seen because of the indirect inclusion of the n+239Pu

PFNS experimental data in Table 4.4.
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Figure 4.13: The correlation matrix of the PFNS for the n(0.5 MeV)+238Pu fission
reaction resulting from the present work. With respect to the evaluation of the same
reaction in ENDF/B-VII.1 seen in Fig. 4.1 the structural differences of the correlation
matrix are due to the inclusion of experimental data in Table 4.4 for the PFNS of
the n+239Pu fission reaction.

The result of this work is that any of the PFNS of the 229−238U or 235−242Pu

fission reactions mean values and covariance matrices below the second-chance fission

threshold can be computed in a consistent way. Results of this work have been saved

in ENDF-formatted files and delivered to the National Nuclear Data Center at BNL

for inclusion in a future release of the ENDF/B library.
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4.1.3 Summary

We have evaluated the PFNS and the associated uncertainties of both a suite of

uranium isotopes and a suite of plutonium isotopes below the threshold for second-

chance fission in a consistent manner. The entire evaluation process was explained

with much detail. In the present calculations, a modified LA model was used by intro-

ducing an anisotropy parameter. The uncertainties of the parameters were discussed

as well as the systematics obtained to help describe the behavior of the parame-

ters across a suite of isotopes. Experimental data were obtained from the EXFOR

database and the uncertainties were estimated using the same methodology that was

used for the evaluation of the standard cross sections [23]. A Bayesian approach,

a first order, linear Kalman filter, was used to combine the experimental data and

uncertainties with the LA model calculations to obtain a reasonable evaluation of

the parameters and covariance matrix.

The evaluation of the parameters and covariance matrix provides a consistent

way to compute the evaluated PFNS and covariance matrix across isotopes. In

the ENDF/B-VII.1 nuclear data library, many of the minor actinides have missing

or inconsistent evaluated PFNS and covariance matrices. The results presented in

this work will be proposed to fill those gaps, even for actinides where there is no

experimental data. This work can be further extended to include other actinides,

e.g., thorium, neptunium, americium, protactinium, and higher incident neutron

energies, above the threshold for second-chance fission.

Future work will focus on studying other evaluation approaches, e.g., Unified

Monte Carlo [10] discussed in the following section, expanding the experimental

data used to constrain the model parameters, e.g., average outgoing energy of the

PFNS and average multiplicity, and further understanding the sources of uncertainty

for the experimental datasets. The only way to truly understand the impact that the
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PFNS uncertainties have on applications is to propagate the uncertainties through

well known problems seen in Ch. 6.

4.2 Unified Monte Carlo Implementation

In recent years, there has been research devoted to stochastic methodologies for use

in the nuclear data evaluation process. Some of this work has led to interesting re-

sults, by avoiding some of the disadvantages of the deterministic methods, namely

the Kalman filter method, but some of the methods have introduced their own dis-

advantages. One method that seems to have almost all of the advantages of the

deterministic and stochastic methods with very little of the disadvantages is the

Unified Monte Carlo (UMC) approach [10]. So far, the UMC approach has been

investigated for a small toy problem only and has yet to be widely implemented in

realistic nuclear data evaluations. The background and mathematical theory of the

UMC approach have been discussed in Ch. 3.2.

Before moving to the UMC evaluation results, the implementation of the UMC

algorithm is verified by simplifying the evaluation to allow comparison directly to

the Kalman filter. Because both methods are derived from the same mathematical

principles, the UMC method can be “dumbed” down by making the same assump-

tions that were necessary to derive the Kalman filter. The first UMC results will

be obtained by assuming that the LA model calculation is linear with respect to

the model parameters. When experimental data is not available to the evaluator or

only direct experimental data (no ratio data, integral data, etc.) are used in the

evaluation, the UMC results should converge to the Kalman results, given enough

Monte Carlo histories are performed and the parameter phase space has been suffi-

ciently sampled. In the original implementation of the UMC method [10], the model

parameters were sampled from a uniform distribution with a spread of one standard
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deviation to each side of the model parameters, seen mathematically as,

x⃗k = x⃗0 + σ⃗x⃗0

(
2ξ⃗k − 1

)
, (4.3)

where k is the realization index, σ⃗x⃗0 is the prior standard deviation of the parameters

and ξ⃗ is a uniformly distributed vector of independent random numbers between 0

and 1. By using this sampling distribution, the entire phase space of the parameters

may not be sufficiently sampled. Because the prior PDF of the parameters is a Gaus-

sian distribution, a more rigorous approach to sampling the parameters phase space

would be to sample from a Gaussian distribution about the prior model parameters,

seen as,

x⃗k = x⃗0 + σ⃗x⃗0

(
N⃗k(0, 1)

)
, (4.4)

where N⃗ (0, 1) denotes a zero mean, unit variance vector of independent normally

distributed random numbers. Both of these sampling methods as well as the validity

of the linear model response assumption are studied in the context of the UMC

evaluation methodology applied first to the evaluation of the PFNS for the n(0.5

MeV)+239Pu fission reaction uncertainties previously studied by Talou et al. [66]

with the addition of the anisotropy parameter fixed at a value of 0.1.

4.2.1 Test Problem: n(0.5 MeV)+239Pu PFNS Evaluation

The data sets used in the evaluation are shown in Table 4.7, similar to the data

sets used in the actinide suite evaluation seen in Table 4.4. The uncertainties in the

experimental data sets are taken from the EXFOR database [31] and the correlations

within each data set are approximated to be 50% in each of the off-diagonal correla-

tion matrix elements. Note that each data set is again considered to be uncorrelated

to each of the other data sets. In this work as in the previous evaluation work, the
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experimental data sets are all considered at the same incident energy of 0.5 MeV

because the model parameters are assumed to be energy-independent. This allows

the evaluation of the PFNS uncertainties to be valid over a range of incident energies

utilizing multiple experimental datasets while saving on storage space that would be

needed to retain many of the large tabulated covariance matrices.

First Date Einc Eout EXFOR Ref.
Author (MeV) (MeV) Entry
Staples 1995 0.5 0.596-15.952 13982-003 [73]
Lajtai 1985 thermal 0.03-3.855 30704-004 [70]
Boytsov 1983 thermal 0.021-4.5 40873-006 [72]
Knitter 1972 0.215 0.28-13.87 20576-003 [81]

Table 4.7: Experimental measurements of the n+239Pu PFNS used in [66] and in the
present study of the UMC implementation.

In the evaluation of the uncertainties for the PFNS of the n(0.5 MeV)+239Pu

fission reaction, the average total kinetic energy, ⟨TKE⟩, the average energy release,

⟨Er⟩, the binding energy of neutron inducing fission, Bn, and the level density param-

eter, C (seen in Eq. (2.36) as α6), are considered to be uncertain. Table 4.8 displays

the prior parameters and uncertainties used in all subsequent evaluation results.

Prior Prior
Parameter Value Uncertainty
⟨TKE⟩ 177.56 2.00
⟨Er⟩ 197.96 8.00
C 11.00 9.00
Bn 6.5342 9.00

Table 4.8: Prior LA model parameter values and uncertainties of the PFNS for the
n(0.5 MeV)+239Pu fission reaction. Note the ⟨TKE⟩, ⟨Er⟩ and Bn parameters all
have dimension of (MeV) and the C level density parameter is dimensionless and all
uncertainties are given in percent.
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UMC Implementation Excluding Experimental Data

The first test of the UMC implementation is to apply the UMC algorithm to the n(0.5

MeV)+239Pu evaluation excluding the experimental data in Table 4.8 and assuming

the LA model response is linear with respect to the parameters in Table 4.8. This test

is useful to verify that the UMC implementation is working correctly, especially with

respect to the sampling method chosen. If the model parameters are not sufficiently

sampled from, the UMC method might underestimate the posterior uncertainties

in the model parameters and the spectrum. In this particular case, given that the

UMC results in Eqs. (3.45) and (3.44) are identical to the Kalman filter equations,

the UMC posterior calculations should reflect exactly the prior model parameters

and uncertainties in Table 4.8 within the Monte Carlo statistics.

Posterior Kalman Filter ∗UMC Uniform ∗UMC Gaussian
Parameter Value Uncertainty Value Uncertainty Value Uncertainty
⟨TKE⟩ 177.56 2.00 177.56 1.90 177.56 2.00
⟨Er⟩ 197.96 8.00 197.89 7.62 197.88 8.03
C 11 9.00 10.996 8.55 10.995 9.04
Bn 6.5342 9.00 6.5316 8.57 6.5328 8.99

∗105 UMC histories performed for reported results.

Table 4.9: Posterior LA model parameter values and uncertainties of the PFNS for
the n(0.5 MeV)+239Pu fission reaction excluding experimental data with the LA
model assumed linear for both UMC cases.

The resulting posterior parameter values and uncertainties calculated using the

Kalman filter, uniformly sampled UMC approach and the normally sampled UMC

approach are displayed in Table 4.9. From all of the approaches, the mean values

calculated are in very good agreement. This is expected, given enough sampled his-

tories, because both of the UMC sampling approaches are centered about the prior

values. The major discrepancy between all three methods is seen in the calculation

of the uncertainty of the parameters. While the UMC Gaussian approach and the

74



Chapter 4. Uncertainty Quantification: Numerical Results

Kalman filter results are in extremely good agreement, the UMC uniform approach

has significant differences in the computation of the parameter uncertainties. For

all model parameters, the UMC uniform approach underestimates the uncertainties

due to the truncation of the distribution of the parameters. By sampling one stan-

dard deviation away from the model parameters central value, the uniform sampling

method does not capture all of the prior variance in the model parameters, leading

to an underestimation of the calculated uncertainties.
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Figure 4.14: The L2 norm errors of the mean values of the posterior model parameters
and PFNS resulting form the UMC approaches compared with the Kalman filter
results. Both UMC approaches converge toward the Kalman filter solution at a rate
of ∼ 1/

√
N .

In Fig. 4.14 the convergence of the posterior central values resulting from the

UMC approaches compared to the Kalman filter are displayed. Even with the Monte
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Carlo noise, there is a definite trend for all of the central value errors such that we

observe roughly 1/
√
N convergence rates where N is the number of UMC histories.
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Figure 4.15: The L2 norm errors of the standard deviations of the posterior model pa-
rameters and PFNS resulting form the UMC approaches compared with the Kalman
filter results.

In Fig. 4.15 the convergence of the posterior standard deviation resulting from

the UMC approaches compared to the Kalman filter are displayed. Much like in

Table 4.9 the discrepancies between the UMC approaches show up in the computed

uncertainties. The uncertainties computed using the UMC Gaussian approach show

approximately the same convergence properties as with the central value convergence

plots in Fig. 4.14 such that we once again observe roughly 1/
√
N convergence rates

where N is the number of UMC histories. On the other hand, the UMC uniform

errors remain nearly constant for increasing number of histories. This result was
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expected due to the truncation of the sampled distribution used in the UMC uniform

implementation.

The next test of the UMC algorithm is similar to the first test with the experi-

mental data excluded and the linear model response assumption. The difference is

that the sampled parameters are biased based on their physical and mathematical

meaning in the context of the LA model calculations. When calculating the PFNS

from a given set of model parameters using the LA model, the maximum tempera-

ture, Tm, in Eqs. (2.26) and (2.32) must remain positive to calculate the PFNS using

the LA model. The only cases where the maximum temperature is not positive is

when either the average excitation energy, ⟨E∗⟩ = ⟨Er⟩ + En + Bn − ⟨TKE⟩, or the

average level density, ⟨a⟩ = A/C, are negative (see Eq. (2.30)). When sampling from

the model parameters, especially from the Gaussian distribution, there is a nonzero

probability that the parameters could be sampled in such a way that the maximum

temperature is imaginary. Up until this point, because the LA model is not being

directly used due to the linear assumption, all realizations of the model parameters

are being utilized. However, because this limitation truly exists for the evaluation of

the PFNS using the LA model, the amount of biasing that results from each sampling

method is determined.

Posterior Kalman Filter ∗UMC Uniform ∗UMC Gaussian
Parameter Value Uncertainty Value Uncertainty Value Uncertainty
⟨TKE⟩ 177.56 2.00 177.56 1.90 177.49 1.99
⟨Er⟩ 197.96 8.00 197.89 7.62 199.46 7.24
C 11 9.00 10.996 8.55 10.997 9.04
Bn 6.5342 9.00 6.5316 8.57 6.5347 8.99

∗105 UMC histories performed for reported results.

Table 4.10: Posterior LA model parameter values and uncertainties for the PFNS
of the n(0.5 MeV)+239Pu fission reaction excluding experimental data and the LA
model parameters are biased by discarding unphysical samples of the model param-
eters.
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When biasing the sampled parameters, whenever a sampled set of parameters

leads to a negative excitation energy, the sample is discarded and a new sample is

drawn. While enforcing this biased sampling method, the uniform UMC implemen-

tation skipped zero of the total histories because the prior uncertainties are chosen to

be small enough such that a negative excitation energy or level density is not possible

in the 1-σ range about the prior parameters. The Gaussian UMC implementation

skipped ∼4.7% of the total histories due to the biasing of the sampled parameters

where it is clearly possible to sample in the either of tails of the Gaussian distri-

bution. The percentage of skipped histories is directly related to the prior central

values and uncertainties chosen. Table 4.10 shows the posterior central values and

uncertainties computed using the Kalman filter and both UMC approaches result-

ing from biasing the sampled model parameters. The UMC posterior mean values

for both the ⟨TKE⟩ and ⟨Er⟩ have some discrepancies from the Kalman filter that

can be explained while the remaining parameter central values are computed very

accurately. When sampling from the ⟨TKE⟩ and ⟨Er⟩ parameter spaces, the ⟨TKE⟩

distribution will be slightly biased lower and the ⟨Er⟩ will be slightly biased higher to

avoid obtaining a negative excitation energy. Another result of biasing the sampled

parameters is a small, 3% correlation is introduced between the ⟨TKE⟩ and ⟨Er⟩

model parameters while all of the calculated correlations in the first test were less

than 1%.

In Fig. 4.16 some significant differences in the computed posterior PFNS from

the various methods are seen. First, the Kalman, linear UMC uniform and linear

UMC Gaussian calculated spectra are nearly identical, therefore, only the Kalman

filter PFNS is plotted. The biased Gaussian UMC solutions differ slightly from the

Kalman filter results due to the increased average excitation energy resulting from the

increased average energy release leading to a harder PFNS. The largest discrepancies

from the Kalman filter prior PFNS come from the UMC nonlinear posterior PFNS

calculations. In the nonlinear calculations, the model parameters are used in the LA
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Figure 4.16: The posterior PFNS for the n(0.5 MeV)+239Pu fission reaction while
excluding experimental data in the evaluation.

model calculation for each realization unless the sampled parameters are unphysical

in the context of the LA model.

The final test performed while excluding experimental data is using the suggested

UMC implementation, allowing possible nonlinearities from the model calculations

to be present in the evaluation. In this approach the model parameters are still

biased, but the LA model is used to calculate response to the sampled model pa-

rameters. In Fig. 4.17 there are some differences in the computed PFNS uncertainty

most noticeable between the linear and nonlinear methods. The Kalman filter and

all of the linear UMC methods calculate nearly the same PFNS uncertainty. The

biggest differences exist when the nonlinear UMC methods are implemented where a
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Figure 4.17: The posterior PFNS uncertainties for the n(0.5 MeV)+239Pu fission
reaction while excluding experimental data in the evaluation.

slight bump is introduced below about 1 MeV and the valley where the lowest uncer-

tainty exists is shifted slightly lower in outgoing energy and increases by an order of

magnitude. When experimental data is unavailable for an evaluation of the PFNS,

the UMC method can be seen as an improvement over the Kalman filter because

the resulting PFNS central values and uncertainties capture a significant amount of

nonlinearity leading to a more appropriate evaluation of the PFNS.

In Fig. 4.18 the PFNS correlation matrices are presented using the Kalman filter

and the nonlinear UMC Gaussian implementation. There are significant differences

in the correlation matrices throughout the outgoing energy range all due to the

nonlinearities present in the LA model. The Kalman filter and the UMC implemen-
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Figure 4.18: The posterior PFNS correlation matrices are calculated excluding the
experimental data using the (a) Kalman filter and (b) nonlinear UMC Gaussian
implementation.

tation results are inferred from the calculated covariance matrix using Eqs. (3.22)

and (3.36), respectively.

So far the results presented on the UMC implementations have been useful to ver-

ify that the UMC results, without experimental data, are similar to the Kalman filter

results. In cases where the UMC implementation assumes linearity of the LA model

and the model parameters are left unbiased, the UMC Gaussian implementation re-

turned exactly the Kalman filter results within the Monte Carlo statistics. When the

nonlinear behavior of the LA model is included, the calculation of the prior model

parameters and PFNS using the UMC implementations differ significantly from the

Kalman filter.
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UMC Implementation Including Experimental Data

Now, the experimental data in Table 4.7 is added to the evaluation of the PFNS

for the n(0.5 MeV)+239Pu fission reaction. First, because the Kalman filter and

UMC implementations are found to agree in Eqs. (3.45) and (3.44) under the model

linearity assumption, we keep the linear assumption of the LA model response in the

UMC implementation. Once again, the Kalman filter and UMC results using the

Gaussian distribution are expected to agree to within the Monte Carlo statistics.

Posterior Kalman Filter ∗UMC Uniform ∗UMC Gaussian
Parameter Value Uncertainty Value Uncertainty Value Uncertainty
⟨TKE⟩ 176.68 1.66 176.57 1.73 176.65 1.69
⟨Er⟩ 194.33 1.67 194.08 1.69 194.15 1.64
C 10.823 8.84 10.871 8.44 10.877 8.83
Bn 6.5087 9.02 6.5390 8.71 6.5215 9.09

∗105 UMC histories performed for reported results.

Table 4.11: Posterior LA model parameter values and uncertainties of the PFNS
for the n(0.5 MeV)+239Pu fission reaction including experimental data with the LA
model assumed linear for both UMC cases.

The posterior parameters and uncertainties calculated with the Kalman filter and

linearized UMC implementations are shown in Table 4.11. For all parameters and

uncertainties, the Kalman filter and linearized UMC Gaussian implementation agree

extremely well, as is expected from the previous analysis. In the case of the linearized

UMC uniform implementation, the agreement is very good as well with some slight

underestimations of the uncertainties of both the C and Bn parameter uncertainties

most likely due to the truncated sampling distribution.

Next, keeping the linear model assumption while biasing the calculation by dis-

carding model parameter realizations that are outside of the bounds of the LA model

does not affect the resulting calculation of the posterior parameters or spectrum. The

model parameter realizations that are discarded have a calculated probability very
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close to zero based on the likelihood PDF. In this case, the likelihood PDF has effec-

tively discarded the model parameter realization because of disagreement with the

experimental data.

Posterior Kalman Filter ∗UMC Uniform ∗UMC Gaussian
Parameter Value Uncertainty Value Uncertainty Value Uncertainty
⟨TKE⟩ 176.68 1.66 176.67 1.75 176.79 1.71
⟨Er⟩ 194.33 1.67 194.18 1.79 194.38 1.71
C 10.823 8.84 10.937 8.53 10.917 8.96
Bn 6.5087 9.02 6.5546 8.64 6.5424 9.03

∗105 UMC histories performed for reported results.

Table 4.12: Posterior LA model parameter values and uncertainties of the PFNS
for the n(0.5 MeV)+239Pu fission reaction including the experimental data available.
The LA model is used to calculate each realization of the model parameters that
lead to a positive excitation energy.

The final case that is studied in the present work is the full implementation

of the UMC method, including nonlinearities of the model response and utilizing

the available experimental data. Table 4.12 shows the posterior parameters and

uncertainties of the Kalman filter and both nonlinear UMC implementations, and

the differences in all cases are minimal. In the case of the PFNS for the n(0.5

MeV)+239Pu fission reaction, the experimental data are dominant and constrain the

model parameters and uncertainties very well, leaving only slight differences in all of

the evaluation methods presented.

Figure 4.19 shows the posterior PFNS calculated using the Kalman filter and the

linearized, biased and nonlinear UMC implementations. The results for the Kalman

filter and all of the linear UMC implementations are nearly identical within the Monte

Carlo noise present in the UMC results while the nonlinear UMC implementations

very well with each other with a slight difference in the high outgoing energy tail.

This means, in the context of a typical evaluation of the PFNS using the LA model

when experimental data is available, the posterior central value of the PFNS can
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Figure 4.19: Evaluated posterior PFNS calculated utilizing the available experi-
mental differential data. The posterior PFNS for the linear UMC implementations
are calculated the same way the Kalman filter posterior PFNS is calculated using
Eq. (3.21) while the nonlinear UMC implementations are calculated using Eq. (3.35).

be sufficiently calculated using the Kalman filter because the experimental data

constrains the model parameters and PFNS within the linear regime of the LA model

and discrepancies only exist in the high outgoing energy tail where the nonlinearities

in the model and uncertainty in the spectrum are largest.

The posterior PFNS uncertainties, calculated using Eq. (3.22) for the Kalman

filter results and using Eq. (3.36) for the UMC results, are shown in Fig. 4.20. In

general the agreement with the Kalman filter is very good throughout the outgo-

ing neutron energy for the Gaussian UMC implementations, except for some minor
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Figure 4.20: The posterior PFNS uncertainties calculated using all of the presented
methods including the experimental data. The Kalman filter and the UMC imple-
mentation results are inferred from the calculated covariance matrix using Eqs. (3.22)
and (3.36), respectively.

discrepancies above about 10 MeV. Like the posterior model parameters calculated

using the uniform UMC implementations, the uncertainties in the PFNS are sig-

nificantly under-predicted due to the inadequate sampling phase-space. While the

Kalman filter is capable of capturing some of the nonlinearities in the central val-

ues of the PFNS, one advantage the UMC method has is in calculating the PFNS

uncertainties in a more exact fashion, capturing nonlinearities in the LA model.

Table 4.13 shows the posterior parameter correlation matrices resulting from the

Kalman filter implementation and the nonlinear UMC Gaussian implementation.
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Kalman filter UMC Gaussian
Parameter ⟨TKE⟩ ⟨Er⟩ C Bn Parameter ⟨TKE⟩ ⟨Er⟩ C Bn

⟨TKE⟩ 100 ⟨TKE⟩ 100
⟨Er⟩ 66 100 ⟨Er⟩ 71 100
C 14 -61 100 C 8 -59 100
Bn 3 -14 -1 100 Bn 0 -14 -4 100

Table 4.13: Posterior parameters correlations of the LA model evaluation of the
n(0.5 MeV)+239Pu PFNS using the Kalman filter and the nonlinear UMC Gaussian
implementation.

The correlations in the parameters are very similar in value with the largest discrep-

ancy being about 6% in the correlation between the ⟨TKE⟩ and C parameters and

about a 5% discrepancy in the correlation between ⟨TKE⟩ and ⟨Er⟩.

Figure 4.21: The posterior PFNS correlation matrices are calculated using exper-
imental data applied to the (a) Kalman filter and (b) nonlinear UMC Gaussian
implementation.
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In Fig. 4.21 the PFNS correlation matrices are presented using the Kalman fil-

ter and the nonlinear UMC Gaussian implementation. The Kalman filter and the

UMC implementation results are inferred from the calculated covariance matrix us-

ing Eqs. (3.22) and (3.36), respectively. There are a couple of very slight differences

in the correlation matrices, mostly in the higher outgoing energy parts of the cor-

relation matrices where the largest nonlinearities exist in the LA model. Overall,

the evaluated PFNS central values, uncertainties and correlations are very similar

between the linear Kalman filter and the nonlinear UMC implementations with some

small nonlinearities causing some subtle differences in the calculated uncertainties

and correlation matrices.

4.2.2 Summary

Various implementations of the UMC method were studied in an effort to compare

against the first-order, linear Kalman filter in the evaluation of the PFNS for the

n(0.5 MeV)+239Pu fission reaction. First, the UMC methods were implemented

while excluding experimental data in the evaluation in an attempt to determine the

convergence of the UMC method to the Kalman filter in this simplified case. Many

interesting results were found:

• In the original UMC implementation by Capote [10], the prior parameters were

sampled from a uniform distribution about their central values leading to an

under-prediction of the uncertainties in the prior PFNS with no detectable

convergence toward the Kalman filter results.

• A new implementation of the UMCmethod, sampling from a Gaussian distribu-

tion about the parameter central values, was shown to converge to the Kalman

filter results when the linear assumption in the LA model was introduced to

the UMC method.
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• The nonlinearities in the LA model were evident in the calculation of the mean,

relative uncertainty and the correlation matrix of the PFNS showing significant

differences between the Kalman filter and the nonlinear UMC implementations.

When the experimental data was used in the evaluation of the PFNS there was

generally good agreement between the Kalman filter and the UMC uniform and

Gaussian implementations with some notable observations made:

• The uniform UMC implementations under-predicted the uncertainties in the

PFNS.

• The Gaussian UMC implementation with the LA model forced to be linear

performed very well and converged to the Kalman filter results as expected.

• The Gaussian UMC implementation with nonlinearities in the LA model ob-

tained a very similar PFNS central value, uncertainty and correlation matrix

to the Kalman filter with some small difference in the high energy tail where

the uncertainties are largest and the LA model is most nonlinear.

For the evaluation of the PFNS using the LA model, the Kalman filter is shown

to be computationally efficient and accurate enough because the linear assumptions

made are very reasonable especially when enough experimental data is used to con-

strain the model parameters. The Gaussian UMC method agrees very nicely with

the Kalman filter results while demonstrating the ability to retain the nonlinear-

ities present in the LA model. To be able to implement the UMC method on a

much larger scale to be used for other nuclear data evaluations, the robustness of the

implementation needs to be improved, especially to take advantage of the obvious

parallel computing capabilities.
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Uncertainty Propagation: Theory

With the availability of massively parallel supercomputing machines, there has been

increased attention on both nuclear data uncertainty quantification and propaga-

tion through nuclear engineering simulations for many applications including reactor

physics, criticality safety, radiation shielding, dosimetry and dose deposition calcu-

lations, etc. Chapters 3 and 4 described a few examples of the theory and recent

work on uncertainty quantification of nuclear data that is presently underway in the

nuclear data community. While this work is important, the uncertainties in nuclear

data are not a physical quantity and are meaningless unless they are propagated

through nuclear engineering applications shedding light on the impact the uncer-

tainties have on the measurable integral quantities that are of great importance to

designing, maintaining and engineering both new and old nuclear facilities.

Generally, when discussing uncertainty quantification in the context of the nu-

clear applications community, the methods available that have been used include

perturbation theory, sensitivity analysis and direct sampling methods. Much like

the methods used in solving transport problems and the techniques used to quan-

tify uncertainties in nuclear data, each of the methods available for the uncertainty
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propagation and subsequent quantification of the integral quantities of interest have

their own advantages and disadvantages. Depending on the application of interest,

the method used to quantify uncertainties needs to be chosen with respect to the

computational expense, accuracy and the tools already available.

One method that can be used to quantify uncertainties, originally applied in the

nuclear application community to the study of pile reactors, is first-order perturba-

tion theory [82]. In this early study of fission chains and nuclear reactors done by

Wigner, the basic concepts of perturbation theory were applied to study what impact

small changes in the geometry, mass and density of the pile reactor core had on the

integral quantities that were measured. The generalized perturbation theory (GPT)

and the equivalent generalized perturbation theory (EGPT) developed by Gandini et

al. [83, 84] has had a major impact on some of the more recent perturbation studies

and sensitivity analyses in the field of nuclear engineering. GPT and EGPT each

require solving the forward solution and adjoint solution of the transport problem

in order to characterize the flux sensitivities with respect to the perturbed input

quantities. Most of the original work on solving the adjoint solution of the transport

equation used in calculating the sensitivities in the integral quantities was done using

deterministic methods and until recently [85, 86, 87], the adjoint solution, specifically

related to criticality problems, was difficult to solve using Monte Carlo methods.

Unfortunately, perturbation theory methods for quantifying uncertainties have a

couple of downsides. First, they are only valid for small perturbations in the input

quantities, where nuclear data uncertainties, in some situations, might be too large

to benefit from these powerful methods. And the second is that the perturbation

methods are not capable of calculating the higher order moments or probability

distributions of the integral quantities of interest. For these reasons, this research

focuses on direct sampling-based methods and other forward uncertainty propagation

methods where the integral quantity uncertainties can be fully characterized by the
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uncertainties present in the nuclear data.

In the present work, the integral quantities that we want to characterize in terms

of uncertainty quantification are the solutions to the transport equation introduced

in Ch. 2.2, namely the effective multiplication factor, the leakage, and the particular

spectral indices described in Eqs. (2.5)–(2.7). The uncertainties present in the PFNS

of the fissioning nuclides, in the form of the covariance matrix, will be used to define

the random space of the input quantities. In the following section, the methods

available to manipulate the covariance matrix and in general, a covariance function,

will be discussed in the context of preparing the uncertain input data for use in

the uncertainty propagation methods. Next, the sampling-based methods will be

introduced, with concentration on the methods that are used in the present work.

Finally, the application of the polynomial chaos expansion method is discussed along

with the quadrature-based “sampling” method, the stochastic collocation method.

5.1 Covariance Manipulation

Previous work concentrated on the use of the Karhunen-Loéve (KL) transform or ex-

pansion [88, 89], representing a second-order random process in a generalized Fourier

series in terms of eigenfunctions of its covariance function. In this context, the covari-

ance function is known and continuous where the moments of the random variable

or process, y, can be defined. Recall that the moments are,

E[ym] =

∫
Y

ymP (y)dy , (5.1)

over the domain Y given the probability density P (y). If the randomness exists

continuously in a dimension x, y is considered a random process where the mean and
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covariance are defined as,

⟨y(x)⟩ = E[y(x)] , (5.2)

and

Cy(x1, x2) = E

[(
y(x1)− E [y(x1)]

)(
y(x2)− E [y(x2)]

)]
, x1, x2 ∈ X , (5.3)

respectively, continuous throughout the domain X. In this notation, we define the

expected covariance to be shifted about the expected mean values. The KL expansion

relies on the fact that the covariance function, by definition, is bounded, symmetric

and positive definite and due to Mercer’s theorem [88] can therefore be expressed in

an infinite expansion,

Cy(x1, x2) =
∞∑
k=1

λkφk(x1)φk(x2) , (5.4)

where λk and φk(x) are the eigenvalues and orthogonal eigenfunctions of the covari-

ance function. This result is significant because the second order random process

defined by the mean and covariance functions in Eqs. (5.2) and (5.3) can be ex-

pressed in terms of a generalized Fourier series expansion of the eigenvalues and

eigenfunctions of its covariance function.

Previous work done by Fichtl [90] assumed that the total cross section in a slab

geometry neutron transport setting was considered a second order random process

with a known covariance function. Using a KL transform truncated to include only

K components, the eigenvalues and eigenfunctions were used to compute spatially

dependent realizations of the cross section,

σ(x, ω) = ⟨σ(x)⟩+
K∑
k=1

√
λkφk(x)ξk(ω) , (5.5)
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using zero-mean, unit-variance, uncorrelated random variables, ξk(ω). Although this

work focused on covariances in the form of a known continuous function (i.e. expo-

nentially distributed correlation function), the roadmap was established for trans-

forming a random process into a useful form to compute realizations of the input

quantities for use in uncertainty propagation applications.

Another aspect of the previous work done by Fichtl [90] concentrated on prop-

agating uncertainties given in the form of a single random variable. This can be

considered as a limiting case in the random process formulation, where all of the

spatially varying cross section uncertainties are considered fully correlated leading to

just a single spatially-independent random cross section, σ(ω). In this case, given the

mean and variance of the cross section, computing realizations of a random variable

are straight forward,

σ(ω) = ⟨σ⟩+
√
vσξ(ω) , (5.6)

where vσ is the variance of the cross section and ξ(ω) remains a zero-mean, unit-

variance, random variable. An extension to include multiple uncorrelated and in-

dependent random variables is straightforward where each random variable is inde-

pendently sampled in the same fashion as in Eq. (5.6). Although these concepts are

generally simple, they are important to understanding the covariance and how to

sample from random variables and processes.

In the present work, the covariance of the PFNS is assumed to be known, given

in the nuclear data libraries such as ENDF/B-VII.1 [1] in a discrete matrix form.

The concepts introduced to handle a continuous covariance function are analogous

to the methods used to manipulate a discrete covariance matrix, which are discussed

in greater detail in the following sections.
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5.1.1 Cholesky Decomposition

One method of manipulating the covariance matrix of an uncertain quantity is to

perform a Cholesky decomposition on the covariance matrix [91]. Unlike the expected

values shown in a continuous sense in Eqs. (5.2) and (5.3), the mean values in the

discrete sense have slightly different notation, although the essence of the values

remain the same. In the context of the PFNS, the covariance matrix is described by,

C =
⟨
χ⃗ χ⃗T

⟩
−
⟨
χ⃗
⟩⟨
χ⃗
⟩T
, (5.7)

where the PFNS is in now a vector quantity rather than a continuous function.

Performing a Cholesky decomposition on the PFNS covariance matrix leads to,

C = LL∗ , (5.8)

where L is a lower triangular matrix and L∗ is its conjugate transpose. This decom-

position of the covariance matrix is analogous to the single random variable example

seen in Eq. (5.6) where the square root of the variance defines the range that the

single random variable is sampled from. In the case where the covariance matrix

in Eq. (5.8) is fully diagonal, the lower triangular matrix L would be fully diagonal

with the square root of the variance occupying each of the diagonal entries. When

off-diagonal entries exist in the covariance matrix, the Cholesky decomposition can

be considered to be the square root of the covariance matrix where the correlations

between the PFNS uncertainties are taken into account. Realizations of the PFNS

using the Cholesky decomposition of the covariance matrix can be computed by,

χ⃗ = ⟨χ⃗⟩+ Lξ⃗ , (5.9)

where ξ⃗ is a vector of independently sampled zero-mean, unit-variance, random vari-

ables.
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In recent work by Fichtl and Prinja [99] and Rising et al. [92] the Cholesky

decomposition has been shown to work for uncertainty quantification in a transport

setting where the spatially dependent total cross section is assumed uncertain with

a known covariance matrix. In Fig. 5.1 a few sample realizations of the total cross
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Figure 5.1: Sample realizations of the spatially uncertain total cross section used to
propagate uncertainties in recent work [92].

section are shown from the previous work [92]. In that work, the total cross section

is taken to be uncertain with a spatially constant mean and variance, and a spatially

dependent correlation matrix in the form of an exponential distribution. The samples

are computed using the same relationship in Eq. (5.9) for the total cross section after

performing a Cholesky decomposition of the spatially varying covariance matrix and

the random variables are sampled from a log-normal distribution. As can be seen in
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Fig. 5.1, the random samples are very distinct in that they have some highly varying

cross section values in neighboring spatial locations. Because the uncertainties in

the previous work are considered to be present due to spatially varying material

densities, the rapid variation in cross section values are acceptable and considered

valid “realizations”.

For the present work, applying the Cholesky decomposition to the PFNS covari-

ance matrix is not considered an appropriate method for two reasons. First, the

correlations in the uncertainties of the PFNS are present in the outgoing neutron

energy grid, where the PFNS is expected to be smoothly varying and generally pre-

dictable in shape and magnitude. Therefore, realizations should not behave similarly

to the cross section realizations in Fig. 5.1. The second reason why the Cholesky

decomposition is not considered in the present work is because the number of ran-

dom variables present in the uncertainties is determined entirely by the rank of the

covariance matrix. In the present work, the size of the evaluated PFNS covariance

matrix is up to a 643-by-643 matrix on the outgoing energy grid. Performing a

Cholesky decomposition on a 643-by-643 covariance matrix would require 643 inde-

pendent, uncorrelated random samples to populate the ξ⃗ vector in Eq. (5.9). As we

will discuss in the following section, this kind of decomposition is overkill and we

seek a dimension reduction method to use to propagate uncertainties.

5.1.2 Principal Component Analysis

An alternative method that can be used to decompose the covariance matrix is

to perform a principal component analysis (PCA) [93, 94]. The PCA is an effi-

cient dimension-reducing method by decomposing the covariance matrix into pairs

of eigenvalues and eigenvectors ordering them from largest to smallest eigenvalue.

The largest eigenvalue corresponds to the eigenvector with the largest uncertainty
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and the smallest eigenvalue corresponds to the eigenvector with the smallest un-

certainty. The advantage of using the PCA is that eigenvectors with very small

corresponding eigenvalues can be neglected without excessively biasing the results.

The PCA decomposition leads to a realization, χm, of the PFNS

χm = ⟨χ⟩+
K∑
k=1

√
λkφ⃗kξk,m , (5.10)

where λk is the k-th eigenvalue of the covariance matrix, φ⃗k is the k-th eigenvector

of the covariance matrix, and ξk,m is the k-th zero-mean, unit-variance, uncorrelated

random variable for the m-th realization. The PCA expansion requires K indepen-

dent samples for each realization where K is the number of eigenmodes kept in the

expansion. This method can be considered to be analogous to the discrete form of

the continuous KL expansion making it possible to decompose discrete covariance

matrices that are generally the result of the nuclear data uncertainty quantification

efforts.

In recent work by Rising et al. [92, 95] the PCA technique has been shown to work

for uncertainty quantification in a transport setting where the spatially dependent

total cross section is assumed uncertain with a known covariance matrix. In Fig. 5.2

some sample realizations of the total cross section are shown from the previous

work [92]. The total cross section is taken to be uncertain with a spatially constant

mean and variance, and a spatially dependent correlation matrix in the form of an

exponential distribution. The samples are computed using the same relationship

in Eq. (5.10) for the total cross section after performing a PCA on the spatially

varying covariance matrix and the random variables are sampled from a log-normal

distribution. As can be seen in Fig. 5.2, the random samples are much smoother

in their variation throughout the slab compared with the Cholesky decomposition

realizations in Fig. 5.1.

In the present work, the PCA is the chosen method to decompose both the
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Figure 5.2: Sample realizations of the spatially uncertain total cross section used to
propagate uncertainties in recent work [92].

PFNS and model parameter covariance matrices to obtain realizations either directly

or through the sampled LA model parameters. This method will also allow the

dimensionality of the random PFNS to be reduced significantly to only a handful

of principal components while retaining nearly all of the uncertainty in the original

formulation of the covariance matrices.
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5.2 Forward Propagation Methods

5.2.1 Sampling-based Methods

In the present research, sampling-based methods [96] are chosen as the primary

method to quantify uncertainties in the integral quantities for the fast-critical assem-

blies described in Ch. 2.1. Unlike perturbation methods and sensitivity analyses, the

sampling-based methods are capable of propagating large input uncertainties while

quantifying the uncertainties in the higher-order moments and probability density

functions of the output quantities. Within the field of sampling-based methods there

exists many variants of the Monte Carlo method including the standard “brute force”

approach, Markov Chain methods [61, 62], and the more recently studied approach,

the Latin Hypercube sampling method [97, 91]. All of these methods have been used

in various applications to propagate uncertainties in a forward manner by sampling

from underlying uncertainty distributions of the input quantities with the goal of

adequately characterizing the response of some integral quantities of interest.

In the present work, the standard “brute force” Monte Carlo direct sampling

approach will be the method of choice among the sampling-based methods because

this method is generally taken to be the “gold” standard in terms of comparisons

made to other more computationally inexpensive methods.

5.2.2 Unified Monte Carlo and Total Monte Carlo

This work is a combination of the unified Monte Carlo (UMC) method being used

for uncertainty quantification with the total Monte Carlo (TMC) method described

earlier in the Ch.3. Mentioned previously, the problem with the TMC method, that

has been developed making use of the TALYS code package, is that the experimental
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data are not explicitly used like in the generalized least-squares approach. The use

of the UMC method in combination with the TMC method would offer a great com-

parison to the covariance sampling method, described in the previous section, which

samples from the posterior covariance matrix to obtain individual realizations of a

nuclear reaction. This new, UMC+TMC, method samples from the prior parameter

covariance matrix and then takes the experimental data into account in the same way

that the UMC approach works. Then, instead of calculating the mean and covariance

matrix right away, the sampled realization will be propagated through the critical

assembly transport simulation. This method bypasses the covariance matrix which

requires an assumption to be made on the shape of the underlying PDF. Therefore

the UMC+TMC method will only differ from the covariance matrix sampling when

the LA model calculation is sufficiently nonlinear or the underlying shape of the

covariance matrix is not a multivariate Gaussian distribution.

Using this new approach on propagating uncertainties in the PFNS using the

LA model on a real transport simulation is a unique contribution to the field of

uncertainty quantification and propagation.

5.2.3 Polynomial Chaos Expansion

Use of stochastic spectral methods for representing both input and output variable

uncertainties has come to be recognized as a powerful uncertainty quantification

(UQ) approach that integrates well with both deterministic and stochastic (Monte

Carlo) numerical techniques and codes that have been developed for applications in

the absence of uncertainty [89, 98, 99, 100, 101]. In this approach, given a finite di-

mensional input random vector representing the uncertain data or model parameters,

output variables are expanded in an appropriate family of random polynomials, so-

called polynomial chaos expansions, and collocation or projection methods applied
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to generate independent or coupled equations for the deterministic expansion coeffi-

cients. Existing codes are then directly used or modified somewhat to solve for the

expansion coefficients and the polynomial chaos representation then provides a com-

plete statistical characterization of the output uncertainty. Means, variances, auto-

and cross-covariances, as well as probability densities, all associated with output

variables, are obtained by fairly routine post-processing of the output statistics.

One method that has been known to be very efficient in characterizing uncer-

tainties in the integral quantities for various types of problems is the Polynomial

Chaos Expansion (PCE) method. It is used to expand the unknowns in the random

transport problem (i.e. flux, multiplication factor, spectral indices, etc.) in terms of

the same statistical distributions chosen to describe the uncertain input quantities.

The original Wiener polynomial chaos, or homogeneous polynomial chaos [102], em-

ployed Hermite polynomials when the random process is described by a multivariate

Gaussian distribution. Later, the Wiener-Askey polynomial chaos, or generalized

polynomial chaos (gPC) [89, 98] was expanded to employ other orthogonal polyno-

mials for a broad class of non-Gaussian multivariate random variable distributions.

The most suitable choice of polynomials to expand the unknowns is determined from

the distribution of the uncertain input quantities. For example, with the random

variables having a normal distribution, the optimal gPC expansion choice is Hermite

chaos, while for random variables having a uniform distribution, the gPC expansion

choice is Legendre chaos. The remainder of this section will describe the gPC ex-

pansion methodology applied to the problem of interest in terms of a set of general

multivariate orthogonal polynomials, G, used to characterize the distribution of the

solution given the uncertainties are described by a known distribution.

The output quantities of interest, the multiplication factor, keff , and the angular

flux, ψ, in the transport equation can be expressed as multidimensional functions of
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the underlying random variables,

keff (ω) = keff (ξ1(ω), ξ2(ω), · · · , ξK(ω)) , (5.11)

ψ(r⃗, E, Ω̂, ω) = ψ
(
r⃗, E, Ω̂, ξ1(ω), ξ2(ω), · · · , ξK(ω)

)
, (5.12)

where the statistics of the multiplication factor and angular flux can be expressed in

terms of some general multivariate orthogonal polynomials, Gn. The expansion of

the effective multiplication factor is then,

keff (ω) = k0G0 +
∞∑

i1=1

ki1G1(ξi1) +
∞∑

i1=1

i1∑
i2=1

ki1,i2G2(ξi1 , ξi2)

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ki1,i2,i3G3(ξi1 , ξi2 , ξi3) + · · · , (5.13)

while the expansion of the angular flux is then,

ψ(r⃗, E, Ω̂, ω) = ψ0(r⃗, E, Ω̂)G0 +
∞∑

i1=1

ψi1(r⃗, E, Ω̂)G1(ξi1)

+
∞∑

i1=1

i1∑
i2=1

ψi1,i2(r⃗, E, Ω̂)G2(ξi1 , ξi2)

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ψi1,i2,i3(r⃗, E, Ω̂)G3(ξi1 , ξi2 , ξi3) + · · · . (5.14)

The infinite expansion of the unknowns needs to be truncated with respect to the

number of random variables, K, and the number of polynomials, P , used to describe

the random dimension, leading to,

keff (ω) = k0G0 +
K∑

i1=1

ki1G1(ξi1) +
K∑

i1=1

i1∑
i2=1

ki1,i2G2(ξi1 , ξi2) + · · ·

+
K∑

i1=1

i1∑
i2=1

· · ·
iP−1∑
iP=1

ki1,··· ,iPGP (ξi1 , · · · , ξiP ) , (5.15)
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for the effective multiplication factor and,

ψ(r⃗, E, Ω̂, ω) = k0G0 +
K∑

i1=1

ψi1(r⃗, E, Ω̂)G1(ξi1)

+
K∑

i1=1

i1∑
i2=1

ψi1,i2(r⃗, E, Ω̂)G2(ξi1 , ξi2) + · · ·

+
K∑

i1=1

i1∑
i2=1

· · ·
iP−1∑
iP=1

ψi1,··· ,iP (r⃗, E, Ω̂)GP (ξi1 , · · · , ξiP ) , (5.16)

for the angular flux. By truncating the number of random variables to K, some

information about the random process is lost, whereas truncating the polynomial

expansion order to P , limits the ability to capture higher moment features of the

unknowns. The total number of terms in the expansion of the multiplication factor

grows as the values chosen for K and P increase,

(Pt + 1) =
(K + P )!

K!P !
, (5.17)

where Pt is defined in this manner such that with a single random variable it is the

maximum polynomial order. A compact form of the gPC expansion of the unknowns

can be written as

keff (ω) =
Pt∑
i=0

kiG̃i(ξ⃗(ω)) , (5.18)

ψ(r⃗, E, Ω̂, ω) =
Pt∑
i=0

ψi(r⃗, E, Ω̂)G̃i(ξ⃗(ω)) . (5.19)

To proceed further, some properties of the multivariate orthogonal polynomials

need to be established. The inner product of two functions, f and g, depending on

the random variables, ξ⃗, with support from a⃗ to b⃗, is defined as

⟨f, g⟩ =
b1∫

a1

dξ1 · · ·
bK∫

aK

dξKP (ξ⃗)f(ξ⃗)g(ξ⃗) , (5.20)
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where P (ξ⃗) is the weight function and is defined as the joint probability distribution

of the random variables. Given that the random variables, ξ⃗, are independent from

one another, the joint probability distribution factors into a product of univariate

probability distributions,

P (ξ⃗) = P (ξ1)P (ξ2) · · ·P (ξK) , (5.21)

leading to,

⟨f, g⟩ =
b1∫

a1

dξ1P (ξ1) · · ·
bK∫

aK

dξKP (ξK)f(ξ⃗)g(ξ⃗) . (5.22)

In the case when f and g are both in the same family of general multivariate orthog-

onal polynomials, G, then the orthogonality condition is

⟨Gi,Gj⟩ =
⟨
G2

i

⟩
δij . (5.23)

The expansion of the unknowns, specifically the multiplication factor, keff , and

angular flux, ψ, shown in Eqs. (5.18) and (5.19), respectively, can be directly substi-

tuted into the transport equation in Eq. (2.1) leading to an unfamiliar transport-like

equation. By taking Galerkin projections of the new transport equation in the ran-

dom dimension, a coupled set of transport equations results, leading to the stochastic

finite element method (SFEM) [89]. Because this method is intrusive by requiring

a new algorithm for solving the SFEM equations, we seek an alternative approach

that can utilize the existing transport solvers available.

Stochastic Collocation Method

Polynomial chaos expansions (PCE) in conjunction with the stochastic collocation

method (SCM) [103] was recently demonstrated [100, 92] to be a highly a effective
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method of propagating uncertainty in the total cross section modeled as a statisti-

cally well-characterized spatial random process. A truncated Karhunen-Loéve (KL)

expansion [89] was used to replace this infinite dimensional spatial stochastic process

by a finite number of random variables for a given covariance function. The angu-

lar flux was expanded in a homogeneous chaos, corresponding to an expansion in

terms of multidimensional random Hermite polynomials [102, 89] and direct random

sampling as well as tensor and sparse grid quadrature based stochastic collocation

techniques were used to relate the expansion coefficients to solutions of independent

deterministic transport equations. Post-processing of the random polynomial repre-

sentation then provided means, variances and probability densities of various output

quantities of interest, and the computational advantages of PCE-SCM over direct

random sampling demonstrated with respect to polynomial chaos expansion order

and quadrature order.

The SCM is a non-intrusive method to propagate uncertainties, without changing

the underlying solution method of the transport problem. The inner product of the

expansion in Eqs. (5.18) and (5.19) is taken before it is inserted into the transport

equation. Utilizing the orthogonality of the chosen general orthogonal polynomial

basis functions in Eqs. (5.20)–(5.23), the unknown coefficients of the expanded mul-

tiplication factor and angular flux can be found by computing the inner products,

kp =

⟨
Gp, keff (ω)

⟩⟨
G2

p

⟩ , (5.24)

ψp(r⃗, E, Ω̂) =

⟨
Gp, ψ(r⃗, E, Ω̂, ω)

⟩⟨
G2

p

⟩ . (5.25)

Based on the expansion of the average PFNS in the random dimension, ω, in

Eq. (5.10), the transport solution unknowns can be computed. These transport

solution unknowns are then used to compute the SCM coefficients in Eqs. (5.24)

and (5.25). Either a Monte Carlo method or an appropriate quadrature method can
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be used to approximate the integral quantity coefficients of the transport solution

unknowns.

Note that the effective multiplication factor and the angular flux have been used

as just an example of the unknown integral quantities of interest in the random trans-

port problem. This very same procedure for obtaining the coefficients in Eqs. (5.24)

and (5.25) can be used for calculating the coefficients of many more quantities of

interest including the scalar flux, current, reaction rates, spectral indices, leakage,

point reactor kinetics equation parameters, etc.

Tensor Product Gauss Quadrature

Gauss quadrature methods are optimal in the sense that for a Gauss quadrature set

of orderM , the integral of a univariate polynomial up to order 2M−1 will be exactly

computed. The Gauss quadrature methods that we are interested in will accurately

compute an integral of the form,

b∫
a

dxw(x)f(x) ≈
M∑
i=1

wif(xi) , (5.26)

given the function f(x) can be well approximated by an order 2M − 1 polynomial

and that w(x) = e−x2/2, a = −∞ and b = ∞ for a Gauss-Hermite quadrature and

w(x) = 1, a = −1 and b = 1 for a Gauss-Legendre quadrature. In this work we rely

on the fact that each multivariate polynomial can be expanded into a product of sev-

eral univariate polynomials (Eq. (5.21)) and that the arguments of the multivariate

polynomial are independent and uncorrelated. This allows the inner product shown

in Eq. (5.22) to be well approximated as a tensor product of Gauss quadrature sets,

b1∫
a1

dξ1w(ξ1) · · ·
bK∫

aK

dξKw(ξK)f(ξ⃗)g(ξ⃗) ≈
M1∑
i1=1

wi1 · · ·
MK∑
iK=1

wiKf(ξ⃗)g(ξ⃗) , (5.27)
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given that the quantity f(ξ⃗)g(ξ⃗) is well approximated by an order 2Mi−1 polynomial

in the i-th dimension for i = 1, ..., K. Note that in this work, only a single distribution

type at a time will be used for all random variables while in theory it is possible to

simultaneously use separate distributions in each random dimension.
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Uncertainty Propagation:

Numerical Results

Currently, with the availability of newly evaluated nuclear data uncertainties and

the amount of computing power needed to propagate uncertainties through complex

simulations, the next step is to quantify the uncertainties of the integral quantities of

the critical assemblies described in Chapter 2.1. In Chapter 5 the methods available

for uncertainty propagation were reviewed with the primary focus on the methods

utilized in the present work.

In the following section we study the recently released PFNS covariance matrices

for the n+235U, calculated by the author of this work, and the n+239Pu fission reac-

tions in the ENDF/B-VII.1 [1] nuclear data library. The evaluated uncertainties in

these two major actinides are propagated through two very well known critical as-

semblies, Lady Godiva and Jezebel, and several integral quantities of each assembly

are investigated using both the standard brute force Monte Carlo approach and poly-

nomial chaos expansion with the stochastic collocation method. In Chapter 6.2.1,

the uncertainties quantified in Chapter 4.1 for the suite of uranium isotopes are prop-
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agated through the Big Ten critical assembly where the focus is on comparing the

differences when the actinides are considered correlated and uncorrelated. Last, the

results of the implemented Unified Monte Carlo approach combined with the To-

tal Monte Carlo approach (UMC+TMC) is shown for the Flattop assemblies. This

new method is compared with the standard brute force approach where the samples

are calculated from the posterior model parameter covariance matrices that were

quantified for the uranium and plutonium actinide suites described in Chapter 4.1.

6.1 ENDF/B-VII.1 PFNS Uncertainty Propaga-

tion

The present work focuses on a couple of very well known fast critical assemblies

including the solid, bare, highly enriched uranium (HEU) sphere, Lady Godiva [15]

and the solid, bare, plutonium sphere, Jezebel [16]. Of course, for the neutron

transport codes to perform adequately the nuclear data needs to be well known for

the materials in each assembly. Recently, the ENDF/B-VII.1 nuclear data library [1]

was released including the evaluated covariance matrices of the PFNS for the n+235U,

n+238U and n+239Pu reactions below the second-chance fission threshold energy. In

the evaluation work to quantify the uncertainties, the mean value of the PFNS was

left unchanged from the previous ENDF/B-VII.0 data library release [63]. Because

the MCNP5-1.60 [30] transport code release includes the ENDF/B-VII.0 nuclear

data, the given data will be used for all transport calculations utilizing the ENDF/B-

VII.1 covariance matrices for computing realizations of the PFNS.

Without a significant neutron moderating mechanism in place, both the Lady

Godiva and Jezebel assemblies are considered fast neutron critical assemblies. In

order to determine if these experiments are well suited to demonstrate the impact
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Figure 6.1: The MCNP5-1.60 calculated probability density function (PDF) and
cumulative probability density function (CPDF) of neutrons inducing fission in
each of the Lady Godiva and Jezebel assemblies using the ENDF/B-VII.0 nu-
clear data library. The vertical unfilled arrow marks approximately where the
n+237Np(n,f) threshold exists and the vertical filled arrow marks approximately
where the n+238U(n,f) threshold exists.

of the uncertainties coming from the average PFNS below the second chance fission

threshold energy the assemblies were run through the MCNP5-1.60 calculation to

obtain the spectrum of neutrons inducing fission, shown in Fig. 6.1. The probability

that a fission event is induced by a neutron with less than 5-MeV energy is calculated

to be 96.3% and 94.2% for the Lady Godiva and Jezebel assemblies, respectively.

Therefore, the Lady Godiva and Jezebel benchmarks are considered appropriate

critical assemblies for the propagation of the average PFNS uncertainties below the

second-chance fission threshold energy.
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For the Lady Godiva fast critical assembly the n+235U PFNS uncertainties are

propagated and for the Jezebel fast critical assembly the n+239Pu PFNS uncertainties

are propagated through MCNP5-1.60 and several integral quantities are computed.

First, the effective multiplication factor, keff in Eq. (2.1), and the total leakage de-

fined in Eq. (2.3) are computed. The value for keff is an extremely important quan-

tity in reactor physics and criticality safety applications. The value for the leakage is

also important in reactor physics applications as well as in radiation shielding appli-

cations for health safety reasons. Along with the effective multiplication factor and

the total leakage, several spectral indices have been calculated. These quantities are

computed at the very center of the Lady Godiva and Jezebel spheres and are the

result of folding the neutron spectrum in the angular flux into the neutron-induced

fission cross section reaction in Eqs. (2.5)–(2.7). Because the neutron induced fission

cross section is very well known for the 235U(n,f) reaction, the spectral indices are

defined as ratios to the 235U(n,f) reaction. These reactions are of particular inter-

est because both the 238U and 237Np fission reactions are threshold reactions that

require a minimum incident energy for the reactions to even occur, and the 239Pu

fission reaction is well known much like the 235U fission reaction. By studying these

reactions we can infer information about the magnitude of the neutron spectrum for

different energy ranges inside the critical assembly.

6.1.1 Principal Component Analysis

By studying the eigenvalues of the PFNS covariance matrix shown in Fig. 6.2, the

number of principal components needed in the expansion can be estimated. In this

case, because the evaluation of the uncertainties uses the LA model with very few

tunable parameters, it isn’t surprising that the evaluated covariance matrix only has

a few dominant eigenvalues. From Fig. 6.2, we can say that a maximum of 3 to 4

eigenmodes is needed.
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Figure 6.2: The first several eigenvalues, λk, of the PFNS covariance matrix for the
n+235U and n+239Pu reactions.

A more quantitative manner to determine the appropriate number of principal

components needed in the expansion is to compute the relative standard deviation

and the correlation matrix of the PCA expansion depending on the expansion order,

K. Because the ξk,m are zero-mean, unit-variance, uncorrelated random variables,

the relative standard deviation of the PFNS, σ⃗χ, can be computed exactly,

σ⃗χ =

K∑
k=1

√
λkφ⃗k

⟨χ⃗⟩
. (6.1)

In the case of n+235U PFNS, the resulting relative uncertainties in Fig. 6.3 have

already converged for K = 2 principal components and the remaining differences are
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negligible and are not expected to effect the uncertainties in the computed integral

quantities. Also, in the case of the n+239Pu PFNS, an expansion up to K = 3

is needed. The differences between the n+235U and n+239Pu PFNS relative uncer-

tainties are due to the “model uncertainty” corrections applied during the n+239Pu

PFNS uncertainty evaluation [66] effectively adding an additional eigenmode to the

evaluated covariance matrix.
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Figure 6.3: The reconstructed relative standard deviation of the n+235U and n+239Pu
PFNS reactions depending on the PCA expansion order, K.

The correlation matrix of the PFNS, ρ, can also be reconstructed based on the

expansion order, K. The elements of the correlation matrix are defined in terms of
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the elements of the covariance matrix,

ρij =
Cij√
CiiCjj

, (6.2)

where the values are bounded, −1 ≤ ρij ≤ 1. Similar to the total PFNS uncertainty

in Eq. (6.1), the covariance matrix of the PFNS, C, can be exactly computed by,

C =
K∑
k=1

λkφ⃗kφ⃗
T
k , (6.3)

depending on the PCA order, K. In Fig. 6.4, the correlation matrices for the n+235U

Figure 6.4: The reconstructed correlation matrix of the n+235U PFNS depending on
the PCA expansion order; (a) K = 1, (b) K = 2 and (c) ENDF/B-VII.1 library.
Note that the axes on all plots are for the outgoing neutron energy in MeV.

PFNS for K = 1 (a) and K = 2 (b) are compared to the original ENDF/B-VII.1

matrix (c). Again, the result for K = 2 is nearly identical to the original evalu-

ated matrix. By qualitatively looking at the eigenvalue spectrum of the covariance

matrix, the total PFNS uncertainties and the correlation matrix resulting from the

PCA decomposition, we can be certain that the most important components of the
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uncertainties in the PFNS covariance matrix are being faithfully propagated through

the transport simulations given a sufficient number of principal components are kept

in the expansion.

The n+239Pu PFNS covariance matrix yields the same general results from the

qualitative analysis shown in this section for the n+235U PFNS reaction, except

that 3 eigenmodes are needed instead of 2. In conclusion, the number of principal

components necessary to model the evaluated uncertainties in the ENDF/B-VII.1

library is between 2–3 for the n+235U PFNS reaction and is between 2–4 for the

n+239Pu PFNS reaction. To benefit from effectively reducing the dimensionality of

the PFNS covariance matrix, an efficient uncertainty propagation method when few

random variables are present is utilized and compared against the computationally

expensive direct sampling methods.

6.1.2 Sampling PFNS Covariance Matrices

One difficulty in sampling from the PFNS covariance matrices is the fact that the

relative uncertainties are large for very high outgoing energies. Figure 6.3 shows that

the relative standard deviation reaches 100% or greater at 20 MeV outgoing neutron

energies. When sampling from a Gaussian or uniform distribution, any PFNS real-

ization could become negative with such large relative uncertainties. Unfortunately,

because of the mathematical properties of a probability density function, and the fact

that negative values for a PFNS are unphysical, an alternate method for propagating

these uncertainties must be utilized.

The first option would be to choose a distribution that would lead to positive

realizations only. One such distribution would be the log-normal distribution which

has been heavily studied previously in uncertainty propagation work when large

uncertainties exist [100, 65]. As will be discussed next, this option would give positive
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realizations only.

Two other options include biasing either the Monte Carlo or SCM sampling meth-

ods. The first biasing method that we consider is throwing out any realization with

negative PFNS values. The problem with this method arises for the SCM sampling

methods because the quadrature sets are generally small compared with the brute

force sampling. If we throw out quadrature points in the SCM quadrature, then the

coefficients in Eqs. (5.24) and (5.25) quickly begin skewing away from their intended

meaning and would lead to significantly different results for the moments and distri-

butions of the integral quantities. Therefore, this method is considered unacceptable

and will not be used in the present work.

To avoid changing the underlying distribution from which the realizations are

being computed and to avoid heavily biasing the sampling method we choose to

slightly bias the sampling method by setting the PFNS to zero where the realization

is negative in the outgoing energy spectrum and renormalizing over the entire range

of the PFNS. The justification for this sampling method can be seen in Fig. 6.5

where the sampled mean and standard deviations are only slightly altered from their

exact mean and standard deviations. Also, this biasing only effects the high outgoing

energies (> 10 MeV) where the absolute PFNS values are several orders of magnitude

lower than the average PFNS in the 1–3 MeV outgoing energy range and the relative

uncertainties are large indicating that the actual values for the PFNS at high energies

are very uncertain.

6.1.3 Lady Godiva Critical Assembly

The Lady Godiva fast critical assembly [15] is a metallic, spherical assembly with an

approximate radius of 8.7407 cm highly enriched in 235U with small amounts of 238U

and 234U. The n+235U PFNS uncertainties are propagated through the Lady Godiva
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Figure 6.5: PFNS realizations, exact mean and standard deviations, and biased
mean and standard deviations for (A) Gaussian distribution with Monte Carlo real-
izations, (B) uniform distribution with Monte Carlo realizations, (C) Gaussian dis-
tribution with Gauss-Hermite quadrature realizations and (D) uniform distribution
with Gauss-Legendre quadrature realizations.

critical assembly and from Fig. 6.3 the necessary number of principal components

needed to adequately propagate the modeled uncertainties is estimated to be K = 2.

Table 6.1 shows the results of propagating the uncertainties in the n+235U PFNS

using up to three principal components and assuming the principal components

are independent random variables with a Gaussian distribution. The direct sam-

pling results were obtained by computing 10,000 realizations of the PFNS where

the stochastic collocation method results were obtained using the Gauss-Hermite

quadrature with 4K quadrature points. Because the integral values computed using
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Direct Sampling (104)
Integral MC Principal Components
Quantitiy Statistics∗ K = 1 K = 2 K = 3
keff 0.0001% 0.1037% 0.2347% 0.2345%

Leakage 0.0001% 0.2079% 0.2140% 0.2144%
I(238f) 0.0032% 3.1290% 3.3595% 3.3572%
I(239f) 0.0020% 0.2420% 0.2435% 0.2433%
I(237f) 0.0023% 1.3296% 1.3343% 1.3323%

Stochastic Collocation Method (4K)
Integral MC Principal Components
Quantitiy Statistics∗ K = 1 K = 2 K = 3
keff 0.0053% 0.1069% 0.2386% 0.2327%

Leakage 0.0042% 0.2123% 0.2100% 0.2128%
I(238f) 0.1320% 3.0891% 3.4052% 3.3884%
I(239f) 0.0818% 0.2409% 0.2501% 0.2437%
I(237f) 0.0944% 1.3023% 1.3627% 1.3401%

∗ Calculation based on K = 2 principal components.

Table 6.1: Lady Godiva relative uncertainties: keff , total leakage, and I(238f), I(237f)

and I(239f) spectral indices assuming a Gaussian distribution for the principal com-
ponents. Note that the number of transport solutions for each method are indicated
in parentheses.

MCNP5-1.60 inherently have some statistical noise, the Monte Carlo statistics col-

umn displays the statistical uncertainty in the calculation of each integral value. In

all of the following cases the direct sampling statistics are much smaller compared

with the SCM statistics because of disparity in the number of realizations used in

calculating the moments of each integral value. The remaining columns in Table 6.1

present the ratio of the standard deviation to the mean based on the PFNS uncertain-

ties. In general, as long as the standard deviation of the integral value distribution

is large compared with the Monte Carlo statistics, the uncertainties in the data can

be propagated using a Monte Carlo transport code such as MCNP5-1.60.

The probability density function of the keff integral value resulting from the

propagation of the Gaussian distributed n+235U PFNS uncertainties can be seen in
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Figure 6.6: The probability density function of the effective multiplication factor,
keff , for the Lady Godiva fast critical assembly resulting from propagating the
n+235U PFNS uncertainties through MCNP5-1.60 with 10,000 PFNS realizations.

Fig. 6.6. Along with the plotted probability density functions, all of the mean and

standard deviation values are listed in Fig. 6.6 with the dashed lines representing

Gaussian distributions with the computed mean and standard deviations listed. Out

of all of the integral parameters listed in Table 6.1, the keff uncertainty has the

largest relative change from K = 1 to K = 2 principal components. This can be

explained by the difference in modeled uncertainties in K = 1 and K = 2 principal

components (see Fig. 6.3), where in the 1–3-MeV outgoing neutron energy range the

majority of neutrons are born, the keff can be significantly altered by a change in

the PFNS shape or magnitude. When the second principal component is added to

the total uncertainty, the PFNS uncertainties in the 1–3-MeV energy range are given
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larger uncertainties significantly impacting the keff uncertainties.

The remaining integral quantities have a much smaller relative change in cal-

culated uncertainties when more principal components are added to the PFNS un-

certainty. Both the leakage and the I(238f) spectral index have slight increases in

calculated uncertainties while the I(239f) and I(237f) spectral indices have no dis-

cernible change. The latter integral quantities show no real difference because they

are ratio quantities of the n+239Pu and n+237Np fission reactions to the n+235U fis-

sion reaction. When the second principal component is added, the uncertainties in all

of these fission reactions increases by nearly the same amount leaving the uncertain-

ties in the ratio quantities the same. In the case of the I(238f) spectral index, there

is very slight amount of uncertainty added below the threshold for the n+238U(n,f)

reaction (see Fig. 6.3 below 1 MeV) contributing to the increase of uncertainty in

the integral quantity.

Table 6.2 displays the results of propagating the uncertainties in the n+235U

PFNS using up to three principal components and assuming the principal compo-

nents are independent random variables with a uniform distribution, instead of a

Gaussian distribution. Once again, the brute force results were computed using

10,000 realizations and the stochastic collocation results were computed using a ten-

sor product quadrature set with 4K quadrature points. There is good agreement

between the relative uncertainties computed using the brute force approach and

stochastic collocation method within the Monte Carlo statistics.

The only difference between the relative uncertainty values in Tables 6.1 and 6.2

is the PFNS realizations are sampled from Gaussian and uniform distributions, re-

spectively. In Fig. 6.5 the moments of the PFNS samples from both Gaussian and

uniform distributions are in very close agreement. Figure 6.7 shows that while the

dominant moments of the input uncertainties remain the same for different distribu-

tions and the dominant moments of the output integral distributions remain the same
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Direct Sampling (104)
Integral MC Principal Components
Quantitiy Statistics∗ K = 1 K = 2 K = 3
keff 0.0001% 0.1042% 0.2337% 0.2335%

Leakage 0.0001% 0.2085% 0.2141% 0.2139%
I(238f) 0.0032% 3.1389% 3.3421% 3.3412%
I(239f) 0.0020% 0.2434% 0.2445% 0.2446%
I(237f) 0.0023% 1.3334% 1.3346% 1.3339%

Stochastic Collocation Method (4K)
Integral MC Principal Components
Quantitiy Statistics∗ K = 1 K = 2 K = 3
keff 0.0035% 0.0958% 0.2364% 0.2338%

Leakage 0.0027% 0.2128% 0.2132% 0.2132%
I(238f) 0.0860% 3.0370% 3.3403% 3.3826%
I(239f) 0.0533% 0.2280% 0.2458% 0.2465%
I(237f) 0.0616% 1.2835% 1.3350% 1.3526%

∗ Calculation based on K = 2 principal components.

Table 6.2: Lady Godiva relative uncertainties: keff , total leakage, and I(238f), I(237f)

and I(239f) spectral indices assuming an uniform distribution for the principal com-
ponents. Note that the number of transport solutions for each method are indicated
in parentheses.

for different distributions, the distribution shapes propagate through the transport

problem in a different manner. While the Gaussian distribution propagates through

to the integral values maintaining a Gaussian shape, the uniform distribution propa-

gates through to the integral values having some features of the uniform distribution

with some other distinct features. Because the distribution of the PFNS realizations

is a linear combination of uniform distributions, this non-uniform input distribution

shape propagates through to all of the integral parameter distributions.

To understand the importance of the uncertainties in the integral quantities, the

uncertainty in the experimental measurement of keff is compared with the calcula-

tions shown in Tables 6.1 and 6.2. The uncertainty in the experimental benchmark

of Lady Godiva for keff has been reported in the ICSBEP handbook [13] to be 0.1%
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Figure 6.7: The probability density function of the leakage for the Lady Godiva
fast critical assembly resulting from propagating the n+235U PFNS uncertainties
through MCNP5-1.60. The probability density functions were computed usingK = 2
principal components with 10,000 PFNS realizations used for the brute force case
and 16 PFNS realizations using the Gauss-Hermite and Gauss-Legendre quadrature
sets for the Gaussian and uniformly distributed cases, respectively.

compared with the ≈ 0.23% calculated in the present work. Because the PFNS un-

certainties lead to larger uncertainties compared with the experimental benchmark,

the precise evaluation of the n+235U PFNS is very important and should continue to

be studied in both the areas of theoretical modeling and experimental measurements

to lower the evaluated uncertainties.

In order to compare the performance between the direct sampling approach and

the SCM uncertainty propagation methods the minimum number of brute force trans-
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port calculations to minimize the statistical noise can be estimated. Assuming that

with 10,000 PFNS realizations the relative uncertainties in Tables 6.1 and 6.2 have

converged and assuming that the K = 2 principal components adequately capture

the PFNS uncertainties, the difference in the relative uncertainty of the SCM and di-

rect sampling method is computed. Table 6.3 shows the estimated number of Monte

Gaussian Uniform
Integral Transport Solves Transport Solves
Quantitiy Error SCM BF Error SCM BF
keff 1.68% 16 1,240 1.16% 16 5,560

Leakage 1.86% 16 1,105 ∗0.42% 16 2,330
I(238f) 1.36% 16 5,745 ∗0.05% 16 2,795
I(239f) 2.72% 16 1,555 ∗0.53% 16 1,790
I(237f) 2.13% 16 1,545 ∗0.03% 16 1,790

∗ Minimum of 1.00% is used in estimation of BF transport solves.

Table 6.3: Lady Godiva: Convergence of keff , total leakage, and I(238f), I(237f) and
I(239f) spectral indices. The errors computed are the relative difference between the
direct sampling and the SCM relative uncertainties with the number of brute force
transport calculations being the last realization outside of the 1-σ error band.

Carlo transport calculations necessary to be as accurate as the SCM calculated un-

certainties for each of the integral quantities. The accuracy measure is established

by computing the relative difference between the direct sampling relative uncertain-

ties and the SCM relative uncertainties. In some cases the integral quantity relative

uncertainties computed using SCM are in extremely good agreement with the di-

rect sampling relative uncertainties causing the estimated minimum number of brute

force transport calculations to be prohibitively large. Therefore, the error bands

are increased to a minimum of 1.00%, resulting in a more reasonable estimation of

the minimum number of brute force transport calculations. Note that the majority

of the computation time needed to propagate the uncertainties through the criti-

cal assemblies is spent on solving each transport problem therefore the number of

PFNS realizations used in each calculation is an appropriate measure of the compu-
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tational cost. While propagating the n+235U PFNS uncertainties through the Lady

Godiva critical assembly the SCM results computationally cost between 1–2 orders

of magnitude less compared to the direct sampling approach.

6.1.4 Jezebel Critical Assembly

The Jezebel fast critical assembly [16] is a metallic, spherical assembly with an ap-

proximate radius of 6.3849 cm composed mostly of 239Pu with smaller amounts of

240Pu and 241Pu. The n+239Pu PFNS uncertainties are propagated through the

Jezebel critical assembly. From Fig. 6.3 the necessary number of principal compo-

nents needed to adequately propagate the modeled uncertainties is estimated to be

K = 3.

Table 6.1 shows the results of propagating the uncertainties in the n+239Pu PFNS

using up to three principal components and assuming the principal components are

independent random variables with a Gaussian distribution. Once again the direct

sampling results were obtained by computing 10,000 realizations of the PFNS where

the stochastic collocation method results were obtained using the Gauss-Hermite

quadrature with 8K quadrature points. The resulting relative uncertainties from

the SCM method are in extremely good agreement with the direct sampling results

demonstrating the convergence capability of the SCM method with a larger quadra-

ture set. With a higher quadrature order, the Monte Carlo statistics for the SCM

relative standard deviations in Tables 6.4 and 6.5 are smaller in comparison to the

statistics in Tables 6.1 and 6.2, leading to smaller errors with respect to the direct

sampling results.

Once again, the uncertainties in the keff integral quantity increases the most

from the addition of the remaining principal components which contribute more to

the PFNS uncertainties in the 0.5–5-MeV outgoing neutron energy range. Com-
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Direct Sampling (104)
Integral MC Principal Components
Quantitiy Statistics∗ K = 1 K = 2 K = 3
keff 0.0001% 0.1063% 0.1576% 0.1634%

Leakage 0.0001% 0.0184% 0.0198% 0.0208%
I(238f) 0.0026% 1.1406% 1.6976% 1.7110%
I(239f) 0.0018% 0.1670% 0.1675% 0.1681%
I(237f) 0.0021% 0.7530% 0.7833% 0.7838%

Stochastic Collocation Method (8K)
Integral MC Principal Components
Quantitiy Statistics∗ K = 1 K = 2 K = 3
keff 0.0021% 0.1108% 0.1531% 0.1623%

Leakage 0.0017% 0.0170% 0.0215% 0.0201%
I(238f) 0.0445% 1.2171% 1.6331% 1.6908%
I(239f) 0.0311% 0.1660% 0.1666% 0.1688%
I(237f) 0.0349% 0.7682% 0.7662% 0.7862%

∗ Calculation based on K = 3 principal components.

Table 6.4: Jezebel relative uncertainties: keff , total leakage, and I(238f), I(237f) and
I(239f) spectral indices assuming a Gaussian distribution for the principal compo-
nents. Note that the number of transport solutions for each method are indicated in
parentheses.

pared with the analysis done for the Lady Godiva integral quantity uncertainties,

the remaining integral quantities have a larger relative change in calculated uncer-

tainties when more principal components are added to the PFNS uncertainty. This

is attributed to the magnitude and outgoing energy range of the remaining principal

components for the n+239Pu PFNS compared with the n+235U PFNS. In particular,

the I(238f) spectral index in the Jezebel assembly has a larger increase in calculated

uncertainties compared to Lady Godiva because the second principal component in

Fig. 6.3 ranges to a lower outgoing neutron energy, farther below the fission thresh-

old than the second principal component of the n+235U PFNS. Similarly, the I(237f)

spectral index shows a small but definite change with the addition of the second

principal component because the uncertainties are increased below the ≈ 0.7-MeV
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n+237Np(n,f) reaction threshold contributing to the increase of uncertainty in the

integral quantity.
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Figure 6.8: The probability density function of the effective multiplication factor,
keff , for the Jezebel fast critical assembly resulting from propagating the n+239Pu
PFNS uncertainties through MCNP5-1.60 with a Gauss-Hermite quadrature set of
order 8 with 8K tensor product quadrature points.

The probability density function of the keff integral value resulting from the

propagation of the Gaussian distributed n+239Pu PFNS uncertainties can be seen in

Fig. 6.8. As expected from the qualitative analysis of the PCA (see Fig. 6.3) three

principal components are needed in order to adequately propagate the uncertainties

in the PFNS. Along with the plotted probability density functions, all of the mean

and standard deviation values are listed in Fig. 6.8.
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Direct Sampling (104)
Integral MC Principal Components
Quantitiy Statistics∗ K = 1 K = 2 K = 3
keff 0.0001% 0.1069% 0.1563% 0.1621%

Leakage 0.0001% 0.0183% 0.0199% 0.0207%
I(238f) 0.0026% 1.1424% 1.6902% 1.6978%
I(239f) 0.0018% 0.1671% 0.1678% 0.1687%
I(237f) 0.0021% 0.7542% 0.7827% 0.7826%

Stochastic Collocation Method (8K)
Integral MC Principal Components
Quantitiy Statistics∗ K = 1 K = 2 K = 3
keff 0.0007% 0.1041% 0.1584% 0.1611%

Leakage 0.0006% 0.0180% 0.0189% 0.0198%
I(238f) 0.0145% 1.1936% 1.7023% 1.7034%
I(239f) 0.0101% 0.1606% 0.1707% 0.1693%
I(237f) 0.0114% 0.7513% 0.7922% 0.7847%

∗ Calculation based on K = 3 principal components.

Table 6.5: Jezebel relative uncertainties: keff , total leakage, and I(238f), I(237f) and
I(239f) spectral indices assuming an uniform distribution for the principal compo-
nents. Note that the number of transport solutions for each method are indicated in
parentheses.

Table 6.5 displays the results of propagating the uncertainties in the n+235U

PFNS using up to three principal components and assuming the principal compo-

nents are independent random variables with a uniform distribution. Once again,

the direct sampling results were computed using 10,000 realizations and the stochas-

tic collocation results were computed using a tensor product quadrature set with

8K quadrature points. There is good agreement between the relative uncertainties

computed using the direct sampling approach and SCM within the Monte Carlo

statistics.

The probability density functions of the spectral indices are plotted in Fig. 6.9

utilizing all 3 principal components in the n+239Pu PFNS uncertainty. Both the

uniform and Gaussian PCE spectral index coefficients have been computed using
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Figure 6.9: The probability density function of the spectral indices for the Jezebel
fast critical assembly resulting from propagating the n+239Pu PFNS uncertainties
through MCNP5-1.60 with a Gauss quadrature set of order 8 with 8K tensor product
quadrature points. Note the continuous dashed line represents a Gaussian distribu-
tion based on the computed SCM moments.

the Gauss-Legendre and Gauss-Hermite quadrature sets, respectively, for the inner

products of the angular flux coefficients computed in Eq. (5.25). The uniform and

Gaussian probability density functions were then reconstructed, as in Eq. (5.19), from

the spectral index coefficients and the underlying orthogonal polynomials. Compared

with the computational cost to run MCNP5-1.60 for each realization of the PFNS,

the PCE method is very inexpensive to reconstruct the PDF of the integral quantities

from the calculated coefficients.

As we mentioned previously, the number of principal components used to model
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the n+239Pu PFNS uncertainties was found to be very important for the I(238f)

spectral index uncertainty, less important for the I(237f) spectral index uncertainty

and generally unimportant for the I(239f) spectral index uncertainty. Figure 6.9

demonstrates the effect on the integral quantity uncertainty when using indepen-

dent uniform distributions for the principal components. In a situation where many

principal components with nearby eigenvalues are needed to construct realizations of

the PFNS, the linear combination of independent uniform distributions in Eq. (5.10)

would lead to an overall distribution that would be similar to a Gaussian distribu-

tion. In this case, because each of the 3 principal components are very important in

the calculation of the I(238f) spectral index uncertainty, the distribution begins to

look similar to a Gaussian distribution while the distribution for the I(239f) spectral

index has a definite uniform shape coming from the dominance of the single most

important principal component.

With a quadrature set of order 8 chosen to compute the PCE coefficients, a poly-

nomial order P = 7 is used to reconstruct each probability density function seen in

both Figs. 6.8 and 6.9. Allowing a higher order polynomial expansion, the skewness

of the distributions can be observed if the higher order PCE coefficients are large

enough. Skewness of the probability density function would be the result of some

nonlinear effects being present while propagating the uncertainties through the trans-

port equation. It is clear in both Figs. 6.8 and 6.9 that the higher order coefficients

are very small and if there is any discernible skewness in the distributions it would

be difficult to determine whether the skewness is present because of nonlinear effects

or if the skewness is due to the statistical noise in the MCNP5-1.60 calculations.

To understand the importance of the uncertainties in the integral quantities, the

uncertainty in the experimental benchmark of Jezebel for keff is compared with the

calculations shown in Tables 6.4 and 6.5. The uncertainty in keff in the experimental

benchmark has been reported in the ICSBEP handbook [13] to be 0.2% compared
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with the ≈ 0.16% calculated in the present work. Because the PFNS uncertainties

lead to uncertainties of the same order compared with experimental measurements,

the precise evaluation of the n+239Pu PFNS is very important and should continue to

be studied in both the areas of theoretical modeling and experimental measurements

to better understand and possibly lower the evaluated uncertainties.

Gaussian Uniform
Integral Transport Solves Transport Solves
Quantitiy Error SCM BF Error SCM BF
keff

∗0.67% 512 6,275 ∗0.62% 512 5,575
Leakage 3.33% 512 2,245 4.14% 512 135
I(238f) 1.18% 512 5,855 ∗0.33% 512 4,935
I(239f) ∗0.42% 512 7,015 ∗0.36% 512 2,365
I(237f) ∗0.31% 512 7,020 ∗0.27% 512 2,365

∗ Minimum of 1.00% is used in estimation of BF transport solves.

Table 6.6: Jezebel: Convergence of keff , total leakage, and I(238f), I(237f) and I(239f)

spectral indices. The errors computed are the relative difference between the brute
force and the SCM relative uncertainties with the number of brute force transport
calculations being the last realization outside of the 1-σ error band.

Table 6.6 shows the approximate number of brute force transport calculations

necessary to converge within 1-σ of the final converged integral quantity. Once

again the error bands are established by computing the relative difference between

the brute force relative uncertainties and the SCM relative uncertainties. Because

the quadrature order is chosen to be larger than the one chosen for the Godiva

problem, some of the integral quantity relative uncertainties computed using SCM

are well converged, leading to small errors with respect to the direct sampling results.

Therefore, the error bands are set at a minimum of 1.00% around the brute force

converged relative standard deviations, resulting in a more reasonable estimation

of the minimum number of brute force transport calculations. While propagating

the n+239Pu PFNS uncertainties through the Jezebel critical assembly, to obtain a

reasonable estimation of the relative uncertainties in the integral parameters, the
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SCM results computationally cost an order of magnitude less compared to the direct

sampling approach. However, if the only information wanted from the uncertainty

propagation is an estimate of the relative uncertainty in the integral parameters, a

quadrature set of order 2 can be used resulting in only 8 transport solves for the

SCM method. For the Gaussian case, for example, the relative uncertainty in keff

is calculated to be 0.1556% with a quadrature set of order 2, which is less than a

5% error with respect to the converged brute force results. This approach would

certainty lead to a reasonable estimate of the integral parameter uncertainties with

nearly 3 orders of magnitude computational savings.

6.1.5 Summary

We have successfully used the recently released n+235U and n+239Pu PFNS covari-

ance matrices from the ENDF/B-VII.1 data library and performed principal com-

ponent analysis on the matrices to study the uncertainties present in the PFNS.

The number of principal components needed to propagate uncertainties through any

neutron transport application was found to be a maximum of K = 2 and K = 3

for the n+235U and n+239Pu PFNS covariance matrices, respectively. Each of the

studied integral parameters behaved slightly differently depending on the number of

principal components:

• For both the Lady Godiva and Jezebel critical assemblies, the keff and the

I(238f) spectral index integral quantities need the maximum number of principal

components to accurately predict the correct propagated uncertainty. If too

few principal components are used in propagating the uncertainty, the integral

quantity uncertainties could be underestimated.

• In the Lady Godiva critical assembly, the relative uncertainties computed for

the leakage and the I(237f) and I(239f) spectral indices changed very little when
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more principal components were added. This is due to the bulk of the uncer-

tainties in each of these integral parameters coming from the lower energy part

of the spectrum. Figure 6.3 shows that with just a single principal component,

the lower outgoing energy uncertainties in the PFNS are accurately modeled.

• For the Jezebel critical assembly, in order to accurately calculate the relative

uncertainties for the leakage and the I(237f) and I(239f) spectral indices, the

maximum number of principal components need to be used. This is in contrast

to the integral parameters calculated for the Lady Godiva critical assembly.

This is due to the higher energy spectrum (see Fig. 6.1) observed in the Jezebel

assembly effectively shifting where the most sensitive region of the PFNS is

located.

For both n+235U and n+239Pu PFNS in the Lady Godiva and Jezebel critical as-

semblies, respectively, a standard direct sampling approach was implemented along

with the stochastic collocation method to propagate the uncertainties to the integral

quantities. The direct sampling approach was implemented using 10,000 PFNS re-

alizations. Because of the simplicity of the critical assemblies, it is computationally

feasible to perform so many brute force realizations. However, if it is necessary to

propagate the PFNS uncertainties through a much more computationally expensive

transport problem (i.e. full-core critical reactor physics calculation) then the brute

force approach would be prohibitively expensive. In comparing the brute force ap-

proach and the polynomial chaos expansion with the stochastic collocation method

(PCE-SCM), the general result was that the brute force approach would computa-

tionally cost between 1–2 orders of magnitude more than the SCM approach just

to calculate the relative standard deviation of the integral quantities. If we are in-

terested in obtaining the probability density function for the integral quantities, the

noise in the histogram may be too large to discern any nonlinear effects if the number

of brute force calculations is decreased. On the other hand, the PCE-SCM approach
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offers a computationally inexpensive approach to computing the probability density

functions in a high fidelity histogram allowing any nonlinear effects to be seen clearly.

Also, if all that is wanted is a reliable estimate of the relative uncertainty in the in-

tegral quantities, the PCE-SCM approach can be used with a very small quadrature

order of 2 leading to only 2K transport solves using the tensor product quadrature

set.

The polynomial chaos expansion with the stochastic collocation method is used

to calculate uncertainties of several important integral quantities in the Lady Go-

diva and Jezebel critical assemblies. The computed uncertainties in keff for both the

Lady Godiva and Jezebel assemblies are shown to be of the same order or larger com-

pared with the experimental benchmark uncertainties in the ICSBEP handbook [13]

meaning the PFNS uncertainties have a significant impact on these applications and

should be studied more to decrease the evaluated uncertainties. In general, the PCE-

SCM results compare nicely with the direct sampling results and offer a significant

improvement on computational cost while maintaining flexibility in propagating un-

certainties with different distribution shapes and magnitudes. This work has shown

that it is possible to propagate realistic nuclear data uncertainties through critical

transport problems using the PCA dimension reduction technique along with ap-

plying the PCE-SCM method, and still obtain statistically significant results while

dramatically reducing the computational cost.

6.2 Actinide Suite Uncertainty Propagation

One of the novel aspects of the present work is the availability of cross-isotope cor-

relations in the PFNS uncertainties resulting from the actinide suite evaluations

presented in Chapter 4.1. Never before have cross-isotope correlations been taken

into account in either of the uncertainty quantification evaluation process or the un-
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certainty propagation through critical assemblies. These cross-isotope correlations

are included in the following sections where the PFNS uncertainties in the uranium

and plutonium actinide suites are propagated through the Big Ten and Flattop as-

semblies. Unlike in Chapter 6.1 where the PFNS covariance matrices are taken from

the ENDF/B-VII.1 nuclear data library [1] and used to obtain realizations, the model

parameter covariance matrices along with LA model calculations are used in the fol-

lowing sections to obtain realizations of the PFNS. This approach avoids the linear

assumptions made in the final calculation of the PFNS covariance matrices allowing

LA model nonlinearities to persist through the uncertainty propagation calculations.

Sampling from the model parameters leads to a substantial difference in the

input PFNS uncertainties and correlations compared to sampling directly from the

PFNS covariance matrix seen in Chapter 6.1. In the following sections presenting

numerical results from the propagation of uncertainties, the model parameters are

sampled using a PCA on the model parameter covariance matrix and the brute force

direct sampling method assuming a Gaussian distribution for each of the principal

components. Compared with the Lady Godiva and Jezebel assemblies, the Big Ten

and Flattop assemblies take substantially longer to calculate the integral quantities

using MCNP5-1.60. For example, the Lady Godiva and Jezebel assembly calculations

each take on the order of a half hour computational time while the Big Ten assembly

takes between 8-9 hours using the same 4 threaded processors. Therefore, instead of

running 10,000 brute force realizations of the PFNS through the assemblies, the Big

Ten and Flattop results are obtained using 1,000 realizations.

In Figs. 6.10 and 6.11 the relative uncertainty and correlation matrix, respec-

tively, of the PFNS for the n(0.5 MeV)+235U fission reaction found in the actinide

suite evaluation in Chapter 4.1 are compared with the PFNS sampled statistics re-

sulting from each of the model parameter realizations passing through the LA model

calculation. The differences between the expected input uncertainties and correla-
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Figure 6.10: The relative uncertainty of the PFNS for the n(0.5 MeV)+235U fission
reaction obtained from the actinide suite evaluation in Chapter 4.1 compared with
the sampled statistics coming from the model parameters.

tions and the actual input quantities are mainly due to the rigidity of the LA model

causing the shape of the sampled statistics to be fixed and the nonlinearities in the

LA model causing the magnitude of the uncertainties to be increased. The sampled

model parameter statistics behave very well compared with the results of the ac-

tinide suite evaluation in Tables 4.2 and 4.3 even with the significant differences in

the PFNS statistics. In order to include the cross-isotope correlations the sampling

is chosen to come from the model parameters for simplicity and efficiency.
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Figure 6.11: The correlation matrix of the PFNS for the n(0.5 MeV)+235U fission
reaction obtained from (a) the actinide suite evaluation in Chapter 4.1 compared
with (b) the sampled statistics coming from the model parameters.

6.2.1 Impact of Cross-isotope Correlations

Along with the uncertainty quantification work presented in Chapter 4.1, the evalu-

ation process led to a new evaluation of the mean values of the PFNS for each of the

uranium and plutonium suites of actinides. Before propagating the uncertainties, the

mean values of the newly evaluated PFNS are used to obtain the integral quantities

in the Big Ten assembly and compared against the most recent releases of the U.S.

nuclear data libraries [63, 1] and experimental measurements where available.

In Table 6.7 the calculated integral quantities of the Big Ten assembly show only

a few small differences between the U.S. nuclear data libraries and the present eval-

uation work. Each of the spectral indices are all within the Monte Carlo statistical
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Integral Data Library Present Experimental
Parameter ENDF/B-VII.0 ENDF/B-VII.1 Work Benchmark∗

keff 0.99496(7) 0.99460(7) 0.99243(7) 0.9948(13)
I(238f) 0.0353(6) 0.0358(7) 0.0353(6) 0.03739(34)
I(237f) 0.312(2) 0.313(3) 0.311(2) 0.3223(30)
I(239f) 1.163(5) 1.162(5) 1.163(5) 1.1936(84)

∗Taken From ICSBEP Handbook [13]

Table 6.7: Big Ten critical assembly integral quantities calculated using the
ENDF/B-VII libraries compared with the present evaluation work and the exper-
imentally measured values.

uncertainties while the effective multiplication factor shows the most differences be-

tween each of the libraries. The ENDF/B-VII.0 and ENDF/B-VII.1 keff results

are reasonably close to each other, within the 99% confidence interval for each cal-

culation, while the present work is about 0.2% below that of the ENDF/B-VII.1

calculation. The lower effective multiplication factor can be attributed to the in-

creased low outgoing-energy tail on the newly evaluated PFNS taking away from

some of the neutrons emitted from the peak of the distribution in the 1–3-MeV

range. Even though the Big Ten assembly is considered to be in the fast energy

range, the neutrons with lower energy that induce fission generally lead to a smaller

number of subsequent fission neutrons being emitted compared with high incident

energy fission events. This effect on the multiplication factor is noticeable and is the

reason for the lowered effective multiplication factor.

In comparison to the benchmarked experimental measurements, the spectral in-

dices from all of the data libraries including the present work are all low and outside

of the experimental uncertainties. This is attributed to the quality of the entire data

library being used and not just the PFNS evaluations. The cross sections, angular

distributions and other fission quantities, such as the average number of neutrons re-

leased in a fission event, may need to be re-evaluated in order to adequately compare

the calculations to the measurements. The effective multiplication factors calculated
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using MCNP5-1.60 with each of the ENDF/B-VII data libraries in Table 6.7 are in

very good agreement with the experimental keff benchmark while the newly evalu-

ated PFNS data library is about 0.2% below the experimental uncertainties. Once

again, this difference is the result of the impact that the increased low outgoing

energy tail in the PFNS has on the effective multiplication factor.

In an effort to understand the impact that the cross-isotope correlations have

on the uncertainties in the effective multiplication factor and the 238U, 237Np and

239Pu fission reaction spectral indices (see Eqs. (2.5)–(2.7)), the uncertainties in

the PFNS for the uranium suite of actinides are propagated through the Big Ten

assembly. Compared with the fast-critical systems like Godiva, Jezebel and the

Flattop assemblies, the Big Ten assembly is considered to be in the fast energy

range even with the intermediate enrichment of the uranium material. With a more

balanced material composition in the Big Ten assembly, the cross-isotope correlations

should have a larger impact compared with the other fast critical assemblies where

the majority of fissioning events occur in the 235U or 239Pu isotopes depending on

the primary material in each assembly.

In the uncertainty propagation work presented in Chapter 6.1 the covariance

matrices for the PFNS reactions were treated independently and uncorrelated. In

the same sense, Fig. 6.12 shows the overall PFNS correlations if the uranium isotopes

present in the Big Ten assembly were assumed to be fully uncorrelated. All of the

off-diagonal elements between uranium isotopes are set to zero guaranteeing that the

uncertainties in the PFNS are uncorrelated. In this case, the PFNS for each of the

uranium isotopes can be sampled independently requiring the individually quantified

uncertainties to be subsequently combined to determine the total uncertainties by,

σ̃total =

√√√√ I∑
i=1

σ̃2
i , (6.4)
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Figure 6.12: The correlation matrix excluding cross-isotope correlations of the PFNS
for the n(0.5 MeV)+234,235,236,238U fission reactions resulting from the actinide suite
evaluation in Chapter 4.1.

where σ̃i is the relative uncertainty from source i.

Using the posterior model parameter correlations in Table 4.3 and Eq. (3.22), the

cross-correlations between the uranium isotopes are computed. Figure 6.13 shows

the PFNS correlations for the uranium isotopes present in the Big Ten assembly.

Comparing the correlations in the Figs. 6.12 and 6.13, the cross-isotope correlations

are significant which lead to differences in the quantified uncertainties.

In Table 6.8 the Monte Carlo statistics in the second column refer to a sample

calculation for each of the integral quantities. When the statistics of the integral
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Figure 6.13: The correlation matrix including cross-isotope correlations of the PFNS
for the n(0.5 MeV)+234,235,236,238U fission reactions resulting from the actinide suite
evaluation in Chapter 4.1.

quantities calculated using the MCNP5-1.60 tool for each realization of the PFNS

are the same magnitude or larger than the uncertainties calculated coming from the

PFNS uncertainties, then the uncertainties calculated should not be fully trusted

because the Monte Carlo statistics could be influencing the results. All of the un-

certainties calculated for the I(239f) spectral index in Table 6.8 are small compared

with not only the experimental measurement precision (0.70%) but also to the Monte

Carlo statistics. Therefore, the I(239f) spectral index uncertainty is not considered

to be heavily influenced by the PFNS uncertainties and not discussed any further.

The remaining integral quantities in Table 6.8 including the keff , and the I(238f)
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Uncertainty (%)
Integral Monte Carlo Uncorrelated Correlated

Parameter Statistics (%) 234U 235U 236U 238U Total Total
keff 0.010 0.010 1.437 0.009 0.430 1.500 1.818
I(238f) 2.000 1.557 6.707 1.525 2.359 7.436 8.303
I(237f) 0.300 0.543 1.644 0.546 0.703 1.947 1.974
I(239f) 0.400 0.086 0.160 0.075 0.085 0.214 0.190

Table 6.8: Big Ten critical assembly quantified uncertainties due to the uranium
suite PFNS uncertainties. The effect of the cross-isotope correlations can be seen
in the differences between the total uncertainties in the uncorrelated and correlated
results.

and I(237f) spectral indices each have calculated uncertainties that are large com-

pared to both the experimental measurement uncertainties (∼ 0.13% for keff ) and

the Monte Carlo precision to which they were calculated. Not only are the calcu-

lated uncertainties large, but there are significant differences between the correlated

and uncorrelated total uncertainties. For example, the uncorrelated total uncertain-

ties in keff and I(238f) are under-predicted by about 17.5% and 10.4%, respectively,

compared with the correlated total uncertainty calculated. Because this is not an in-

significant amount of under-prediction, the correlations between the uranium isotopes

in the PFNS uncertainties can have a large impact on the uncertainties quantified

for this specific application.

In Figs. 6.14 and 6.15 the probability density function (PDF) is shown for the

keff and I(238f) integral parameters, respectively. Because the uncertainties of the

PFNS for the 234U and 236U fission reactions are calculated to be very small and

generally negligible, only the correlated PFNS and the uncorrelated PFNS for the

235U and 238U fission reaction PDFs are shown. In both Figs. 6.14 and 6.15, the

correlated PDF shows a slightly wider distribution with a shorter peak compared to

the uncorrelated PDFs and that is the result of the under-prediction of the uncorre-

lated uncertainty propagation. Even though the Big Ten assembly is composed on
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Figure 6.14: The probability density of the effective multiplication factor, keff , re-
sulting from propagating the uranium suite PFNS uncertainties through the Big Ten
assembly.

average of only 10% 235U, the majority of the uncertainties come from the 235U PFNS

uncertainties because the fission cross section of 235U still dominates the fission cross

section of the remaining uranium isotopes present partly because of the 238U(n,f)

reaction threshold. Both of these integral quantities were calculated to have roughly

the same relative uncertainty due to the uncertainties in the correlated PFNS nuclear

data with some obvious non-Gaussian features leading to a long tail on the low side

of the keff and I(238f) spectral index.

In conclusion, the PFNS uncertainties can and do lead to large uncertainties in

some of the integral quantities compared to the experimental measurement uncer-
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Figure 6.15: The probability density of the 237Np(n,f) reaction spectral index result-
ing from propagating the uranium suite PFNS uncertainties through the Big Ten
assembly.

tainties. And probably a more important result, the cross-isotope correlations found

in the uncertainty quantification of the actinides in Chapter 4.1 lead to significant

differences in propagated uncertainties in the Big Ten assembly.

6.2.2 Unified Monte Carlo and Total Monte Carlo Method

With a new evaluation of the PFNS for each of the uranium and plutonium actinides

presented in Chapter 4.1, the mean values for each of the integral quantities in the

Flattop assemblies are calculated and compared against the results from the most
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recent releases of the U.S. nuclear data libraries [63, 1] and the available experimental

measurements.

Integral Data Library Present Experimental
Parameter ENDF/B-VII.0 ENDF/B-VII.1 Work Benchmark∗

keff 0.99917(10) 0.99878(10) 0.99892(10) 1.0000(14)
Leakage 0.31750(3) 0.31799(3) 0.31774(3) -
I(238f) 0.1876(3) 0.1877(3) 0.1869(3) 0.1916(21)
I(237f) 0.910(1) 0.911(1) 0.909(1) 0.910(13)
I(239f) 1.402(2) 1.404(2) 1.404(2) -

∗Taken From ICSBEP Handbook [13]

Table 6.9: Flattop-23 critical assembly integral quantities calculated using the
ENDF/B-VII libraries compared with the present evaluation work.

In Table 6.9 the computed integral quantities from the U.S. nuclear data libraries,

the present evaluation work and the available experimental benchmarks are shown

for the Flattop-23 assembly. All of the calculations between the ENDF/B-VII.0,

ENDF/B-VII.1 libraries and the modified ENDF/B-VII.1 library with the newly

evaluated PFNS all agree in the 95% confidence interval meaning the new PFNS

evaluation of the central value has a small impact on the central values of the integral

parameters. The largest difference in the libraries exist for the calculated leakage

where the new evaluation lies in between the two most recent versions of the U.S.

nuclear data library. Comparing between the new evaluation and the experimental

benchmarks available for the keff and the I(238f) and I(237f) spectral indices, the

results all generally agree within the experimental uncertainties quoted. The largest

discrepancy between the present work and the experimental benchmark is the I(238f)

spectral index calculation which is within the 99% confidence interval.

For the Flattop-25 assembly, the computed integral quantities are shown in Ta-

ble 6.10. All of the data libraries including the present work calculate the keff value

higher than the experimental benchmark calculation but they are within 1-σ of the

experimental uncertainties. All of the spectral indices are calculated almost exactly
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Integral Data Library Present Experimental
Parameter ENDF/B-VII.0 ENDF/B-VII.1 Work Benchmark∗

keff 1.00291(9) 1.00271(9) 1.00278(9) 1.0000(30)
Leakage 0.31328(3) 0.31324(3) 0.31244(3) -
I(238f) 0.1444(4) 0.1446(4) 0.1430(4) 0.1492(16)
I(237f) 0.771(1) 0.772(1) 0.765(1) 0.78(1)
I(239f) 1.360(2) 1.360(2) 1.357(2) 1.385(12)

∗Taken From ICSBEP Handbook [13]

Table 6.10: Flattop-25 critical assembly integral quantities calculated using the
ENDF/B-VII libraries compared with the present evaluation work.

between the two U.S. data libraries while the present evaluation of the uranium

PFNS leads to slightly lower results while all of the libraries calculate the spectral

indices low in comparison to the experimental benchmark values outside of the 1-σ

band.

Integral Data Library Present Experimental
Parameter ENDF/B-VII.0 ENDF/B-VII.1 Work Benchmark∗

keff 1.00012(10) 1.00000(10) 0.99866(10) 1.0000(30)
Leakage 0.33991(3) 0.33981(3) 0.33917(3) -
I(238f) 0.1771(3) 0.1776(3) 0.1750(3) 0.1799(20)
I(237f) 0.853(1) 0.854(1) 0.846(1) 0.856(12)
I(239f) 1.379(2) 1.380(2) 1.377(2) -

∗Taken From ICSBEP Handbook [13]

Table 6.11: Flattop-Pu critical assembly integral quantities calculated using the
ENDF/B-VII libraries compared with the present evaluation work.

The calculated central values in Table 6.11 for the Flattop-Pu assembly have some

trends similar to the Flattop-25 assembly for the calculated spectral indices while

the keff from the present evaluation work is calculated much lower in comparison

to the experimental benchmark and both the U.S. nuclear data libraries. Even with

the present evaluation calculation of the keff integral quantity, the results are still

within 1-σ of the experimental benchmark uncertainties quoted.
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In general, all of the calculations of the integral quantities agree between both

of the U.S. nuclear data libraries, the present evaluation of the PFNS and the ex-

perimental benchmark calculations. In some cases where the present work seems to

calculate the integral quantity further away from the experimental benchmark cal-

culation, this does not mean that the newly evaluated PFNS is to blame. In fact,

because the newly evaluated PFNS includes much more experimental data with some

recent measurements not previously used and with the inclusion of the anisotropy

parameter in the LA model, the work shown in Chapter 4.1 on evaluating the ura-

nium and plutonium actinide suites should result in a much better evaluation of the

PFNS for all of the included actinides. Therefore, more of the nuclear data library

should also be studied and re-evaluated so that the source of all of the discrepancies

with experimental benchmarks can be further understood before concluding that this

new evaluation of the PFNS is incorrect.

To determine how the uncertainties in the correlated PFNS impact the uncer-

tainties in the Flattop assembly integral quantities, both the uranium and plutonium

PFNS uncertainties are propagated using MCNP5-1.60 utilizing both the standard

direct sampling using the posterior model parameter covariance found in the ac-

tinide suite evaluation work in Chapter 4.1 and the UMC+TMC approach discussed

in Chapter 5.2.2.

Integral Monte Carlo Uncertainty (%)
Parameter Statistics (%) Direct Sampling UMC+TMC Experimental

keff 0.010 0.521 0.020 0.13
Leakage 0.009 1.180 0.035 -
I(238f) 0.160 7.556 0.114 1.10
I(237f) 0.110 2.334 0.101 1.43
I(239f) 0.142 0.383 0.030 -

Table 6.12: Flattop-23 critical assembly quantified uncertainties due to the uranium
suite PFNS uncertainties. The cross-isotope correlations are included in the quan-
tification of the integral parameter uncertainties.
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The uncertainties quantified for the integral parameters are displayed in Ta-

ble 6.12 for the Flattop-23 critical assembly. One thing that is apparent in all of

the results shown is that the magnitude of the UMC+TMC quantified uncertainties

is much smaller than the direct sampling results. This is easily explained by the

missing cross-experiment correlations used in the evaluation procedures for both the

Kalman filter and UMC method. More details on the reasoning behind the extremely

small uncertainties predicted by the UMC+TMC method will be discussed at the

conclusion of this section.

Integral Monte Carlo Uncertainty (%)
Parameter Statistics (%) Direct Sampling UMC+TMC Experimental

keff 0.009 0.667 0.008 0.30
Leakage 0.010 1.141 0.063 -
I(238f) 0.280 7.497 0.136 1.07
I(237f) 0.131 2.346 0.129 1.28
I(239f) 0.147 0.355 0.019 0.87

Table 6.13: Flattop-25 critical assembly quantified uncertainties due to the uranium
suite PFNS uncertainties. The cross-isotope correlations are included in the quan-
tification of the integral parameter uncertainties.

In Table 6.13 the uncertainties in the Flattop-25 assembly are very similar in com-

parison to the uncertainties in the Flattop-23 assembly in Table 6.12. Both of the

Flattop uranium core assemblies are nearly the same size and are both surrounded

by a depleted uranium reflector. The main difference between the two assemblies

is that the Flattop-23 assembly is highly enriched in 233U while the Flattop-25 as-

sembly is highly enriched in 235U. Regardless of their material compositions, the

direct sampling, UMC+TMC and experimental uncertainties behave similarly. The

uncertainty calculated for keff in both assemblies resulting from the direct sampling

approach is more than double that of the experimental uncertainties while the I(237f)

spectral index calculated uncertainties are slightly less than double that of the ex-

perimental uncertainties. The I(239f) spectral index uncertainties are calculated to
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be relatively small compared with the experimental uncertainties for the Flattop-25

assembly with the uncertainties calculated for both assemblies closest to the associ-

ated Monte Carlo statistics. Last, for both the Flattop-23 and Flattop-25 assemblies,

the calculated uncertainties for the I(238f) spectral index are ∼ 7.5% compared with

the ∼ 1.1% experimental uncertainty. This proves to be relatively large compared

with the experimental uncertainty where some more research on the evaluation of

the uranium suite of actinides potentially including some the these integral data to

help constrain the evaluation could be done to reduce the PFNS uncertainties.

Uncertainty (%)
Integral Monte Carlo Direct Sampling UMC+TMC

Parameter Statistics (%) U Pu U Pu Experimental
keff 0.010 0.111 0.360 0.004 0.029 0.30

Leakage 0.009 0.296 0.277 0.025 0.026 -
I(238f) 0.171 0.135 2.961 0.144 0.227 1.11
I(237f) 0.118 0.059 1.165 0.043 0.137 1.40
I(239f) 0.145 0.016 0.219 0.012 0.033 -

Table 6.14: Flattop-Pu critical assembly quantified uncertainties due to both the
uranium and plutonium suite PFNS uncertainties separately. The cross-isotope cor-
relations are included in the quantification of the integral parameter uncertainties.

Because the Flattop-Pu assembly contains both a plutonium core and a depleted

uranium reflector, the quantified uncertainties of each of the integral parameters

are shown in Table 6.14 resulting from both the uranium and plutonium PFNS

correlated uncertainties. In general, the uncertainties quantified for the integral

parameters resulting from the PFNS in the uranium reflector are much smaller than

the uncertainties from the plutonium core. The only integral parameter that does

not show this trend is the leakage uncertainty which is calculated to be larger coming

from the PFNS in the uranium reflector than from the plutonium core. The reason

for this is clearly due to the geometry of the assembly with the PFNS in the uranium

reflector core, located as the outer shell of the assembly, accounting for a significant
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influence on the leakage of the system. The same argument can be made for why

the PFNS in the plutonium core leads to significantly larger uncertainties in spectral

indices which are calculated at the very center of the assembly far away from the

depleted uranium reflector. In terms of trends in the uncertainties noticed in the

Flattop-Pu assembly, the PFNS uncertainties impact the assembly very similarly

to the uncertainties calculated for the Flattop-23 and Flattop-25 assemblies with

the smaller magnitudes of the uncertainties quantified for the Flattop-Pu being the

major difference.

In all of the uncertainty quantification results shown in Tables 6.12–6.14 all of

UMC+TMC uncertainties are an order of magnitude or more smaller in compari-

son to the direct sampling uncertainties, considered to be the “benchmark” results.

The reason for this is the posterior covariance matrices calculated from the Kalman

filter in the actinide suite evaluation work in Chapter 4.1 have all been re-scaled

because the evaluated uncertainties were deemed to be too small due to the missing

cross-experiment correlations. In the UMC+TMC methodology, there is not a place

where this similar re-scaling can be done to correct for the missing cross-experiment

correlations. This means that the UMC+TMC method suffers by predicting uncer-

tainties that are smaller than what is generally accepted and should only be used as

an uncertainty propagation and quantification methodology when cross-experiment

correlations are correctly taken into account.

6.2.3 Summary

In propagating the cross-correlated PFNS uncertainties through the Big Ten and

Flattop assemblies several observations can be made about the sampling method, the

impact of the cross-correlations and the newly implemented UMC+TMC method.

By sampling from the model parameters and using the LA model calculation for
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each realization of the model parameters, the sampling statistics deviate far from the

evaluated PFNS uncertainties that have been proposed for the next release of the

ENDF/B-VII nuclear data library prepared directly from the actinide suite evalua-

tion work in Chapter 4.1. Because of the rigidity and nonlinearities present in the LA

model, the uncertainties and correlations in the PFNS are found to be significantly

different in both shape and magnitude. However, in order to propagate cross-isotope

correlations present in the PFNS uncertainties, sampling using the model parameter

covariance matrix becomes necessary for computational efficiency and simplicity.

The impact that the cross-isotopes correlations can have on the quantified integral

parameters was investigated for the Big Ten assembly. Because of the material

composition and the energy range of the assembly, the effects of the correlations can

be summarized as follows:

• The keff uncertainties were calculated to be 17.5% smaller using the uncorre-

lated PFNS.

• The I(238f) spectral index uncertainties were calculated to be 10.4% smaller

using the uncorrelated PFNS.

• The I(237f) spectral index uncertainties were calculated to be 1.4% smaller

using the uncorrelated PFNS.

• The I(239f) spectral index uncertainties were smaller than the Monte Carlo

statistics from the MCNP5-1.60 calculations.

In conclusion, the cross-isotope correlations impacted the Big Ten uncertainty prop-

agation results a significant amount and should be used where possible to conserva-

tively predict the uncertainties in the final integral parameters.

The newly implemented UMC+TMC method was used to quantify the uncertain-

ties in the integral parameters and comparisons were made with the direct sampling
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approach applied to the posterior model parameter covariance matrix resulting from

the actinide suite evaluation work. The UMC+TMC method sampled from the

prior model parameters, then formally included all of the experimental data avail-

able to constrain the weight of each realization and finally each PFNS realization

went through each of the Flattop assembly simulations using MCNP5-1.60. In all

of the cases where the quantified uncertainties were larger than the Monte Carlo

statistics, the UMC+TMC uncertainties were generally found to be an order of mag-

nitude lower compared with the calculated direct sampling uncertainties. Much like

the Kalman filter and the UMC method used to quantify the PFNS uncertainties,

the UMC+TMC method suffers from the fact that cross-experiment correlations

and model deficiencies are not accounted for in the evaluation procedure, leading to

extremely small uncertainties in the final integral parameters. Fortunately for the

Kalman filter and the UMC method, the posterior uncertainties in the covariance

matrix are scaled up to a reasonable value from their originally calculated uncer-

tainties, and the PFNS realizations are drawn from this re-scaled phase space. In

the UMC+TMC method, because the covariance matrix formulation is bypassed,

there is not a point at which the uncertainties can be scaled up to a reasonable value

causing the extremely small quantified uncertainties. This method has been shown

to work, but without the proper cross-experiment correlations available, the quan-

tified integral parameter uncertainties are calculated to be much too small to have

confidence in the result.
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Conclusions and Future Work

This work focused on evaluating and quantifying nuclear data uncertainties and prop-

agating these uncertainties through neutron transport simulations of several impor-

tant critical assemblies. To quantify the uncertainties in the prompt fission neutron

spectrum (PFNS), two approaches were used: the first-order, linear Kalman filter

and the unified Monte Carlo (UMC) method. The Kalman filter was implemented

for the evaluation of the PFNS and its associated uncertainties for both the uranium

and plutonium suites of actinides resulting in new evaluations including cross-isotope

correlations in the PFNS uncertainties. One important aspect of this evaluation work

was that the PFNS for the minor actinides, for which little experimental data exist,

were evaluated consistently using the experimental data of the major actinides to

constrain the Los Alamos (LA) model parameters. Presently in the ENDF/B-VII.1

nuclear data library, the evaluated PFNS for any given set of actinides rely on dif-

ferent physics models including evaporation, Watt and LA model theories, and this

work provided a way to consistently evaluate these actinides along with their uncer-

tainties within the framework of a single theoretical model. In general, the resulting

PFNS evaluations were in agreement with the available experimental data and have

been submitted for review and testing on various integral benchmarks. Also, for
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the first time, cross-isotope correlations for the PFNS are provided through the LA

model calculations and were used for a handful of applications in the uncertainty

propagation portion of the present work. This uncertainty quantification and eval-

uation effort on the PFNS has been submitted for publication in the peer-reviewed,

Nuclear Science and Engineering journal.

The UMC approach, which is a new method only having been studied on a toy

problem, was implemented in an effort to compare alternative evaluation method-

ologies with the Kalman filter approach. Because the original implementation of the

UMC method was not considered to be mathematically rigorous, several variations

of the UMC approach were implemented for the evaluation of the PFNS, to further

understand its advantages and limitations. It was found that while excluding the use

of experimental data, the original UMC sampling algorithm was flawed in the ap-

plication of this specific problem, leading to significant differences from the Kalman

filter. We suggested a new approach to sample from a Gaussian distribution of the

prior model parameters rather than a uniform distribution, and this led to very good

agreement with the Kalman filter results. When experimental data was included

in the evaluation using the two UMC approaches, the results were very similar due

to the constraints put on the model parameters from the experimental data. Most

importantly, the UMC implementations were capable of capturing the nonlinearities

present in the LA model leading to a slightly different evaluation compared to the

Kalman filter results. However, because these nonlinearities are mostly present in

the high outgoing-energy tail of the PFNS, the impact on applications is considered

to be negligible. In other words, the Kalman filter is perfectly suited to accurately

evaluate the PFNS using the LA model.

In a second part of this work, we investigated the impact that the PFNS uncer-

tainties have on the metrics of several nuclear engineering applications. The uncer-

tainties quantified for the PFNS were propagated through neutron transport simula-
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tions of the Lady Godiva, Jezebel, Big Ten and Flattop assemblies using two forward

propagation methods: a “brute force” direct sampling approach and the polynomial

chaos expansion - stochastic collocation method (PCE-SCM). First, the PCE-SCM

approach was used to quantify the uncertainties in the Lady Godiva and Jezebel

assemblies originating from the PFNS uncertainties available in the ENDF/B-VII.1

nuclear data library. In particular the 235U PFNS covariance matrix, made available

by the author of this work for the release of the ENDF/B-VII.1 data library [1],

and the 239Pu PFNS covariance matrix were decomposed using the principal com-

ponent analysis (PCA). It was found that the matrices contained a maximum of

three principal components describing the uncertainties and correlations present in

each of the PFNS evaluations. By reducing the random dimension of the PFNS un-

certainties, the implementation of the PCE-SCM demonstrated orders of magnitude

computational savings compared with direct sampling to obtain the full characteri-

zation of the output quantity uncertainties in terms of the moments and probability

distributions. This work provided a strong case for using these powerful stochastic

spectral methods to obtain the uncertainties in the effective multiplication factor,

total leakage and fission reaction spectral indices of these important critical assem-

blies in a computationally efficient manner. Note that this portion of work using

the PCE-SCM methods to propagate the PFNS uncertainties has been submitted

for publication in the peer-reviewed, Nuclear Science and Engineering journal.

Finally, the uncertainties quantified across the suite of uranium and plutonium

actinides were used to propagate the cross-isotope correlations in the PFNS un-

certainties through the Big Ten and Flattop assemblies. Direct sampling from the

model parameters was done and each PFNS realization was obtained through an

LA model calculation. For the Big Ten assemblies, the PFNS uncertainties were

considered uncorrelated and correlated to study the impact that the cross-isotope

correlations have on the moments of output quantity uncertainties. In general, it

was found that the cross-isotope correlations led to larger predicted uncertainties in
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the output quantities with the largest relative difference being ∼ 17.5% for the ef-

fective multiplication of the system, suggesting that these cross-isotope correlations

are very important for these applications. A new method, the unified Monte Carlo

+ total Monte Carlo (UMC+TMC) method was also implemented to propagate the

correlated uncertainties through the Flattop assemblies. Compared with the direct

sampling from the posterior model parameter covariance matrix, the UMC+TMC

method predicted all of the output quantity uncertainties to be smaller by an or-

der of magnitude or more, while the direct sampling uncertainties were reasonably

predicted compared with the available experimental uncertainties. This result was

expected and is mainly due to the missing cross-experiment correlations in all the

evaluation methodologies used here. When reasonable cross-experiment correlations

become available, the UMC+TMC method is expected to be an effective method for

propagating uncertainties from the prior parameters, allowing for nonlinearities in

both the LA model and the transport simulations to propagate to the final quantified

uncertainties in the output variables.

As a result of this work, many interesting and important research topics remain.

The most glaring obstacle that remains, especially for the uncertainty quantification

methods presented in this work, is the availability of cross-experiment correlations.

At this point, these correlations are not considered and due to this missing infor-

mation that would be used in the implementations of the Kalman filter and UMC

method, ad hoc corrections are made based mainly on expert judgement. These ad-

hoc corrections, a simple re-scaling of posterior uncertainties in some cases, have been

demonstrated to be effective, but cannot be implemented easily in the UMC+TMC

method. Researching and understanding everything that the experimentalists did

in the past and assigning correlations between separate experiments is not a trivial

task. Fortunately, significant efforts are being placed on this subject and hopefully

cross-experiment correlations will be available in the near future that can be used to

re-evaluate not only the PFNS and its uncertainties but many other nuclear reactions
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as well.

In terms of the evaluation methods and uncertainty quantification, the work pre-

sented here can be quickly extended in several areas. First, the actinide suite eval-

uation work can be extended to include other actinides, e.g., thorium, neptunium,

americium, protactinium, where it will be important to study other differential, semi-

integral and integral data that can be used in the evaluation to help constrain the

evaluated model parameters. Also, this work should be extended to include higher

incident neutron energies, above the threshold for second-chance fission, requiring

theoretical physics components like a pre-equilibrium spectrum calculation in ad-

dition to the modified LA model. Also, because more measurements exist for the

energy dependent average multiplicity, ν̄(E), compared with the PFNS, this quan-

tity could be used to help constrain the PFNS evaluation at higher incident neutron

energies. Several research directions still remain for the implementation of the UMC

evaluation methodology studied in this work. First, improvements should be made to

increase the parallel computing capability, inherent in the UMC approach. Already

underway, several quadrature-based sampling methods are being explored as a way

of improving the UMC method with respect to the computational cost of the “brute

force” Monte Carlo implementation. Another research direction that has already

brought significant attention to the nuclear data evaluation community is the use

of new and improved theoretical models such as the Monte Carlo Hauser-Feshbach

(MCHF) model. Because of the stochastic nature of the MCHF model, it remains to

be seen if the UMC evaluation method can be used with this new model to evaluate

new nuclear data, including neutron multiplicity distributions and neutron-neutron

correlations, far beyond the capabilities of the LA model.

The first obvious extension to the uncertainty propagation and quantification re-

search presented in this work is to apply the same PCA, PCE-SCM and uncertainty

propagation methods for the PFNS to many other important nuclear engineering
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applications including: nuclear energy and reactor physics, radiation shielding and

dosimetry, criticality safety, nuclear medicine, astrophysics and other complex multi-

physics systems in the presence of significant nonlinearities. Another obvious ex-

tension is to perform the same analysis on other evaluated nuclear data, i.e. cross

sections and fission neutron multiplicities, to study the impact of these quantified

uncertainties on various applications. Due to the computational cost of simulating

some of the highly complex nonlinear systems that are being modeled, such as nu-

clear reactor and weapon simulations, it would interesting to study the applicability

of some of these stochastic spectral methods on these systems with the potential of

improving the amount of information gained while reducing the computational cost

of quantifying uncertainties.
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Appendix A

Matrix Inversion Identities

The following identities help when trying to invert a matrix of the form (A+BCD).

More detailed derivations of the “matrix inversion lemma” or “Sherman-Morrison-

Woodbury Identity” can be found in further reading [104, 105].

In inverting the matrix (A+BCD), a couple of identities need to be introduced.

First is inverting a matrix (I+P):

(I+P)−1 = (I+P)−1(I+P−P)

= I− (I+P)−1P (A.1)

The second identity is helpful in manipulating complicated matrix multiplications:

P+PQP = P(I+QP)

= (I+PQ)P

(P−1 +Q)−1 = ((I+QP)P−1)−1 = P(I+QP)−1

= (P−1(I+PQ))−1 = (I+PQ)−1P (A.2)
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To invert the sum of matrices of the form (A+BCD), A must be invertible:

(A+BCD)−1 = (A[I+A−1BCD])−1

= [I+A−1BCD]−1A−1

= [I− (I+A−1BCD)−1A−1BCD]A−1

= A−1 − (I+A−1BCD)−1A−1BCDA−1 (A.3)

The third line in Eq. (A.3) used the identity in Eq. (A.1). Now repeatedly using the

identity in Eq. (A.2) results in:

(A+BCD)−1 = A−1 − (I+A−1BCD)−1A−1BCDA−1

= A−1 −A−1(I+BCDA−1)−1BCDA−1

= A−1 −A−1B(I+CDA−1B)−1CDA−1

= A−1 −A−1BC(I+DA−1BC)−1DA−1

= A−1 −A−1BCD(I+A−1BCD)−1A−1

= A−1 −A−1BCDA−1(I+BCDA−1)−1 (A.4)

In case when C is also invertible the inverse can take the form:

(A+BCD)−1 = A−1 −A−1B(I+CDA−1B)−1CDA−1

= A−1 −A−1B[C−1(I+CDA−1B)]−1DA−1

= A−1 −A−1B(C−1 +DA−1B)−1DA−1 (A.5)

In another related special case when C is invertible, the matrix (A + BCD)−1BC
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can be manipulated to take the form:

(A+BCD)−1BC = [(I+BCDA−1)A]−1BC

= A−1(I+BCDA−1)−1BC

= A−1B(I+CDA−1B)−1C

= A−1B[C−1(I+CDA−1B)]−1

= A−1B(C−1 +DA−1B)−1 (A.6)

The matrix inversion manipulations shown in Eqs. (A.3)–(A.6) using only stan-

dard matrix inversion properties and the identities in Eqs. (A.1) and (A.2) are useful

when manipulating the Kalman filter update equations to a more useful computa-

tional form.
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Exponential Matrix Integrals

We wish to calculate the moments of multivariate Gaussian distribution. First we

define the elements of the mean as,

⟨xi⟩ =

∞∫
−∞

· · ·
∞∫

−∞
xi exp

{
−1

2

(
x⃗− b⃗

)T
A
(
x⃗− b⃗

)}
dx⃗

∞∫
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· · ·
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−∞
exp

{
−1

2

(
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)T
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(
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)}
dx⃗

, (B.1)

and the elements of the covariance matrix as,

Pi,j =

∞∫
−∞

· · ·
∞∫

−∞
xixj exp

{
−1

2

(
x⃗− b⃗

)T
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(
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(
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)T
A
(
x⃗− b⃗
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− ⟨xi⟩ ⟨xj⟩ , (B.2)

where the indices are defined for i, j = 1, . . . , N , with the x⃗ and b⃗ vectors having

N elements and A being a real, symmetric N -by-N matrix. Because A is real and

symmetric it can be diagonalized such that,

A = SDS−1 = SDST , (B.3)

A−1 = SD−1S−1 = SD−1ST , (B.4)
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where the S matrix is orthonormal with the determinant equal to unity, |S| = 1. The

D and D−1 matrices are strictly diagonal. Now we perform a change of variables,

x⃗− b⃗ = Sy⃗ , (B.5)

dx⃗ = Sdy⃗ = |S|dy1dy2 · · · dyN . (B.6)

Inserting the definitions in Eqs. (B.5)–(B.6) into Eq. (B.1) and using the property

in Eq. (B.3) we find the elements for the mean are now,

⟨xi⟩ = bi +
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The [Sy⃗]i term can be expanded,

[Sy⃗]i =
N∑
k=1

Si,kyk , (B.8)

while the exponent term can also be expanded,

y⃗TDy⃗ =
N∑
l=1

dly
2
l , (B.9)

where the dl are the diagonal elements of the matrix D. Inserting these definitions

into Eq. (B.7) we have,

⟨xi⟩ = bi +
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}
dy⃗

∞∫
−∞

· · ·
∞∫

−∞
exp

{
−1

2

N∑
l=1

dly2l

}
dy⃗

. (B.10)
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Notice that, while the expression remains rather complex, each integral in the nu-

merator of Eq. (B.10) comes down a simple integration that can be done for the k-th

term,

C

∞∫
−∞

yk exp

{
−1

2
dky

2
k

}
dyk = 0 , (B.11)

where C is a nonzero constant defined by the integration terms moved outside of

the k-th integral. Due to the evaluated integral in Eq. (B.11), the numerator in

Eq. (B.10) is zero leading to the final expression for the components of the mean,

⟨xi⟩ = bi , (B.12)

or, generalized as the mean vector,

⟨x⃗⟩ = b⃗ . (B.13)

Now, inserting the definitions in Eqs. (B.5)–(B.6) into Eq. (B.2) and applying

Eq. (B.3), we find the elements for the covariance are now,

Pi,j =

∞∫
−∞

· · ·
∞∫

−∞
([Sy⃗]i + bi) ([Sy⃗]j + bj) exp

{
−1

2
y⃗TDy⃗

}
dy⃗

∞∫
−∞

· · ·
∞∫

−∞
exp

{
−1

2
y⃗TDy⃗

}
dy⃗

− ⟨xi⟩ ⟨xj⟩ . (B.14)

Now we expand the non-exponential terms in Eq. (B.14) as,

([Sy⃗]i + bi) ([Sy⃗]j + bj) = [Sy⃗]i[Sy⃗]j + bj[Sy⃗]i + bi[Sy⃗]j + bibj . (B.15)

Inserting the expansion in Eq. (B.15) into Eq. (B.14) it is clear that the final term

does not depend on the variables of integration and can be moved outside the inte-

grals. Using the solution for elements of the mean, in Eq. (B.12), the final term in

164



Appendix B. Exponential Matrix Integrals

Eq. (B.14) cancels out leaving,

Pi,j =

∞∫
−∞

· · ·
∞∫

−∞
([Sy⃗]i[Sy⃗]j + bj[Sy⃗]i + bi[Sy⃗]j) exp

{
−1

2
y⃗TDy⃗

}
dy⃗

∞∫
−∞

· · ·
∞∫

−∞
exp

{
−1

2
y⃗TDy⃗

}
dy⃗

. (B.16)

Also, the bj[Sy⃗]i and bi[Sy⃗]j terms in the expanded Eq. (B.16) lead to integrals

analogous to the ones in Eq. (B.10) where the integrals are equal to zero in the

numerator. Now Eq. (B.16) is simplified to,

Pi,j =

∞∫
−∞

· · ·
∞∫

−∞
[Sy⃗]i[Sy⃗]j exp

{
−1

2
y⃗TDy⃗

}
dy⃗

∞∫
−∞

· · ·
∞∫

−∞
exp

{
−1

2
y⃗TDy⃗

}
dy⃗

. (B.17)

Expanding the Sy⃗ terms leads to,

Pi,j =

∞∫
−∞

· · ·
∞∫

−∞

(
N∑
k=1

Si,kyk

)(
N∑
k=1

Sj,lyl

)
exp

{
−1

2
y⃗TDy⃗

}
dy⃗

∞∫
−∞

· · ·
∞∫

−∞
exp

{
−1

2
y⃗TDy⃗

}
dy⃗

. (B.18)

Once again, seen in Eqs. (B.10) and (B.11), when l ̸= k, the numerator is equal to

zero leaving only the terms when l = k. The final, simplified form of the covariance

matrix is then,

Pi,j =
N∑
k=1

Si,kSj,k

∞∫
−∞

y2k exp
{
−1

2
dky

2
k

}
dyk

∞∫
−∞

exp
{
−1

2
dky2k

}
dyk

. (B.19)

It is easy to show that the ratio of univariate integrals in Eq. (B.19) is,

∞∫
−∞

y2k exp
{
−1

2
dky

2
k

}
dyk

∞∫
−∞

exp
{
−1

2
dky2k

}
dyk

= d−1
k , (B.20)
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leading to a very clean definition for the elements of the covariance matrix, and with

a little investigating, they can also be identified as the elements in Eq. (B.4) leading

to,

Pi,j =
N∑
k=1

Si,kSj,kd
−1
k =

[
SD−1ST

]
i,j

=
[
A−1

]
i,j
, (B.21)

or, generalized as the covariance matrix,

P = A−1 . (B.22)
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