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ABSTRACT 

A remarkable and special Galois Theory appears from the study of the arithmetic 

analogue of ordinary differential equations; where functions are replaced by integers, the 

derivative operator replaced by the “Fermat quotient operator” and differential equations 

are replaced by arithmetic differential equations. The main result presented in the thesis 

will be the study of a very special class of arithmetic subgroups of . We also 

introduce a set of functions, that we call Leibniz systems. These functions “generate” 

some examples of the differential subgroups of . As a by-product we found more 

analogies between the ordinary differential operator and the Fermat quotient operator, 

such as the chain rule and the product rule. 
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1 Introduction

1.1 Overview

In [1], an arithmetic theory of differential equations was introduced, in which

differentiable functions x(t) are replaced by integers n, and the differential op-

erator x(t) 7→ dx
dt

is replaced by the Fermat quotient operator δ : n 7→ n−np
p

,

where p is a prime integer. In [2], this theory was used to prove results about

differential invariants of some remarkable groups. The aim of this thesis is to

extend those results to more general groups, that appear as “differential groups”

or δ−subgroups of R×. A δ−subgroup of GLn(R) is a subgroup which is the com-

mon zero locus of finitely many functions of the form f : GLn(R) −→ R, f(a) =

F (a, δ(a), ..., δm(a), det(a)−1) where F is a restricted power series in (m+ 1)n2 + 1

variables. As a by-product we also find more analogies between the operators dx
dt

and δ such as, the chain rule, the product rule and the quotient rule.

In chapter 3 we define and study an interesting class of δ−subgroups of Bn(R),

where Bn(R) is the group of n× n invertible and upper triangular matrices with

entries in R , by introducing the concept of Leibniz Systems. Chapter 3 will

constitute a wide open source of study for future research. Our δ−subgroups are

an arithmetic analogue of the differential algebraic groups of E.R. Kolchin [3],

and P. Cassidy [4]. Differential algebraic groups are themselves analogues of of

differential groups classically considered by S. Lie and E. Cartan in [5].

1
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1.2 Methodology

First we introduce some basic definitions, examples and notation. Most of them

are taken from [2].

Definition 1. Let Zurp = ∪ς{Zp[ς] : ςn = 1, (n, p) = 1} be the maximum unram-

ified extension of the ring Zp. Let R = Rp := Ẑurp be the p−adic completion of

the ring Zurp . This is the unique complete discrete valuation ring of characteristic

zero with maximal ideal generated by p. R has residue field k := R/pR = Fap, the

algebraic closure of Fp. This ring has a unique automorphism φ : R −→ R lifting

the p-power Frobenius automorphism of k. Define the map δ : R −→ R by

δ(x) = φ(x)− xp
p

, x ∈ R

The elements c ∈ R such that δ(c) = 0 will be called the constants. And they are:

zero together with the nth roots of unity in R×.

In the following definition the symbols x, x′, x′′, ... represent variables.

Definition 2. Let R{x} := R[x, x′, x′′, ...] be the polynomial ring in the variables
x, x′, x′′, ... with coefficients in R. Consider the unique extension φ : R{x} −→
R{x}, of the map φ : R −→ R such that

φ(x(i−1)) = (x(i−1))p + px(i) i = 1, 2, 3, ...

Define a map δ : R{x} −→ R{x} by the following formula

δF (x, x′, x′′, ...) = φ(F (x, x′, x′′, ...))− F (x, x′, x′′, ...)p

p

Similarly, define k〈x〉 := k(x, x′, x′′, . . .), to be the field of rational functions in the

variables x, x′, x′′, .... with coefficients in k.

Let’s define the order and the degree of an element in R{x} as follows:
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Definition 3. Let F (x, x′, x′′, ...) ∈ R{x}. The order of F will be

min{n : F ∈ R[x, x′, x′′, ..., x(n)]}

And the degree of F with respect to the variable x(n) will be degx(n)F , the usual

degree.

Example 1. The polynomial F (x, x′, x′′, ...) = 2x(9)(x(3))7 + x + 3 ∈ R{x}, has

order 9 and degx(3)F = 7.

The following example shows the non-linearity of δ. It also illustrates the fact that

the constants with respect to δ are: zero and the nth roots of the unity in R×.

Example 2. Take F (x, x′, x′′, ...) = x+ 2, then letting 2′ = δ(2), we have

δ(x+ 2) = φ(x+ 2)− (x+ 2)p

p

= x′ + 2′ − (x+ 2)p − xp − 2p

p

and

2′ = φ(2)− (2)p

p
= 2− 2p

p

Let’s start the introduction of our “differential subgroups” of R× by defining what

we shall call the rule of exponents:

Definition 4. Let Z[φ] be the ring of all the polynomials with integer coefficients

in the variable φ. Let f(φ) =
t∑
i=0

aiφ
i ∈ Z[φ], then we set,

xf(φ) = x

(
t∑
i=0

aiφ
i

)
=

t∏
i=0

φi(xai)

Notice that Definition 4 implies that, for any f and g in Z[φ] we have

xfg = (xf )g
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Example 3. Let f(φ) = φ2 − φ− 6 ∈ Z[φ], then by Definition 4 we have that

xf(φ) = xφ
2−φ−6 = φ2(x)φ(x−1)x−6 = (xφ−3)φ+2

Next we introduce our “differential groups” or δ−subgroups of R×.

Definition 5. Let f ∈ Z [φ], then define the following subgroups of the multiplica-
tive group R×:

Γf := {λ ∈ R× : λf = 1}, and Γ(n)
f = (1 + pnR) ∩ Γf .

Example 4. When f = 0 or f = r and r ∈ Z\{0} then, Γf = R× or µr ∩ R×

respectively. Here µr represents the set of all rth roots of unity in an algebraic

closure of K = R[ 1
p
].

Definition 6. We have a Γf−action on R{x} defined by

(λ, x(i)) 7→ δi(λx) λ ∈ Γf

Let’s denote this by k 〈x〉Γf , the field of elements of k 〈x〉 fixed by the induced
action on k 〈x〉. For any v ∈ R{x}(p) we denote by v ∈ k 〈x〉 the image of v. For
u ∈ R{x}(p) define

k 〈u〉 := k(u, δ(u), δ2(u), ...) ⊂ k 〈x〉

Recall the following result from [2], Proposition 5.14 page 148.

Theorem 1. Consider the element xφ−1 from the ring R {x}(p). Then the ex-
tension k〈xφ−1)〉 ⊆ k〈x〉 is Galois with Galois group Γφ−1. In particular we have
that

k〈xφ−1〉 = k〈x〉Γφ−1 , and Γφ−1 ∼= Z×p .

Our main theorem (Theorem 2) is an extension of Theorem 1 from the linear

polynomial φ− 1 to more general polynomials f(φ) ∈ Z[φ].
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Theorem 2. Let f ∈ Z[φ] be such that p does not divide its leading coefficient.
Consider the element xf(φ) from the ring R {x}(p). Then the extension k〈xf(φ)〉 ⊆
k〈x〉 is algebraic Galois with Galois group Γf(φ). In particular,

k〈xf(φ)〉 = k〈x〉Γf(φ)

In what follows we briefly explain the strategy of the proof of Theorem 2. We

need to introduce some definitions and results.

Definition 7. Let f ∈ Z [φ], then define the map

θλ : k(x, x′, ..., x(n−1)) −→ k(x, x′, ..., x(n−1)), by θλ(x(i)) = (λx)(i)

And the map

ρn : Γf −→ Aut(k(x, x′, ..., x(n−1))/k), by λ 7−→ θλ.

In what follows set yn = δn(xf(φ)), and denote by ηn ∈ k 〈x〉 the image of yn. Note

that η0 = xf(p).

The strategy of the proof of Theorem 2 is as follows: The inclusion ” ⊂ ” will be

clear. To prove the inclusion ” ⊃ ” it will be enough to show the following two

statements.

1.
[
k(x, x′, x′′, ..., x(n)) : k(η0, η1, η2, ..., ηn)

]
≤ |f(p)| pn·deg(f) and

2. The cardinality of the image In of ρn is greater than or equal to |f(p)| pn·deg(f).

To prove Statement 1 we need to control the degree of the elements ηi with respect
to x(i). We can achieve this goal using what we shall call the δ−Pascal triangle
technique, which is one of the main contributions of this research. We will prove
that

degx(i)(ηi) = pdeg(f)

To prove Statement 2 we first estimate the cardinality of the quotients Γf(φ)

Γ(n+1)
f(φ)

. We
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actually found that
∣∣∣∣∣∣ Γf(φ)

Γ(n+1)
f(φ)

∣∣∣∣∣∣ =
∣∣µf(p)

∣∣ pn·deg(f) = |f(p)| pn·deg(f)

And second by proving the following:

• Let n, l be natural numbers, such that, 0 < l < n. Suppose that λ = x+pny0,
y0 in R. Then, for some yl ∈ R, we have

δl(λ) = δl(x) + pn−lyl

• For n ∈ N, and λ ∈ (1 + pnR), we also have,

δn−1(xλ) ≡ δn−1(x)mod p

With the last two claims plus some extra work, we are proving that Ker(ρn) =

Γ(n)
f(φ), which gives the connection between the map ρn and the subgroups Γ(n)

f(φ).

In the following section we explain our definition and use of the δ−Pascal Triangle.

Proofs are relegated to chapter 2.

1.3 The δ−Pascal Triangle Technique

Besides the proof of our main theorem, the δ−Pascal Triangle technique will pro-

vide new analogies between the operators dx
dt

and δ such as the chain rule, the

product rule and the quotient rule.

Definition 8. Let n, k ∈ N, where 0 6 k 6 n. Define the δ−binomial coefficient
of order k and degδk(x) = pn−k, to be

(
n

k

)
x

=
∑

(δ(δ(...(δ(xp
a0 ))p

a1
...)p

ak−1 )p
ak

where ∑ aj = n− k, and aj ≥ 0.

Notice that the degree and the order in this definition are taken in the sense of
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Definition 3 but after we write each term (δ(δ(...(δ(xpa0 ))pa1 ...)pak−1 )pak in terms

of the variables x, x′, x′′, ..., x(k).

The following example shows how the formula in the Definition 8 keeps track of

the order and the degree of all terms in φn(x), and encapsulates its complexity.

Example 5. In particular
(
n
0

)
x

= xp
n ,
(
n
n

)
x

= δn(x), and

(
3
2

)
x

= δ2(xp) + δ(δ(x))p + (δ2(x))p

The following definition and lemma show the “binomial” behavior of
(
n
k

)
x
.

Definition 9. Define the following expressions:

(
n

k

)∗
x

=
∑∑
aj=n−k

δ(δ(δ...(xp
a0 ))p

a1
...)p

ak
and

(
n
k

)∗∗
x

=
∑∑
aj=n−k

(δ(δ...(xp
a0 ))p

a1
...)p

ak+1

where 0 ≤ j ≤ k.

This definition will be used to show the following statement, and claim:

φ(
(
n

k

)
x

) =
(
n

k

)∗∗
x

+ p

(
n

k

)∗
x

Claim 1. Let n ∈ N, and 0 6 k 6 n+ 1, then,

(
n+ 1
k

)
x

=
(
n

k

)∗∗
x

+
(

n

k − 1

)∗
x

This result and the fact that the expression
(
n
k

)
x

has exactly
(
n
k

)
terms, justify

the Pascal terminology.

In what follows, we will state without proof some results. These results will be

proven in chapter 2.

Now we present a formula that will be useful in the proof of our results.

Theorem 3. Let n ∈ Z and n > 0, then,

φn(x) =
n∑
k=0

pk
(
n

k

)
x
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Now we will explain in the next generic example how we work with Theorem 3 to

obtain our results.

Example 6. Let A = BC, then φn(A) = φn(BC). Since φn is a ring homomor-
phism we obtain that

φn(A) = φn(B)φn(C)

Next we apply Theorem 3 to the last equation and we obtain

n∑
k=0

pk
(
n

k

)
A

=
(

n∑
k=0

pk
(
n

k

)
B

)(
n∑
k=0

pk
(
n

k

)
C

)

Then we multiply the two summations in the right hand side of the last equation

and we separate the terms of “order n”. From this example we can obtain the

equivalent to the product rule in the theory of arithmetic differential equations.

Using this approach we can also keep track of the degree of each term in the last

equation.

Definition 10. Let n ∈ N, and u ∈ R{x}. Let Ou(n) be the R−submodule of
R{x} defined as

Ou(n) = {T ∈ R{u} : orderu(T ) ≤ n}  

and if u = x we write O(n) for short. We also define Ou,v(n) to be the set of all

finite linear combinations over R of products of elements in Ou(n), Ov(n).

dt

Theorem.3 implies the following theorem, where one can see the similarities be-

tween δ  and the usual derivative dx .

Theorem 4. (The Chain Rule) Let m ∈ Z and n ∈ N then,

δn(xm) ≡
(
m (xp

n

)m−1δn(x) + T
)
mod(p)

where T ∈ O(n− 1).

(The Product Rule) Let u, v ∈ R{x}, then,

δn(uv) ≡
(
up

n

δn(v) + vp
n

δn(u) + T
)
mod(p)
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where T ∈ Ou,v(n− 1).

It is clear, from the chain rule and using the fact that δ and φ commute, that we

have the following more general result:

Corollary 1. For y = xmφ
t = (xφt)m and t ∈ N we have

δn(xmφ
t

) ≡
(
m
(
xφ

t
)pn(m−1)

δn(x)p
t

+ T

)
mod(p)

where T ∈ O(n− 1).

The next corollary explain one of the achievements of Theorem 3.

Corollary 2. Let n ∈ N, f ∈ Z[φ] where p does not divide the leading coefficient

of f . Assume that y = xf(φ) then,

degδn(x)(δn(y)) = pdeg(f)

Example 7. Let y = φ(x)
xm

= xφ−m. Using Theorem 4, Corollary 2, for l = 1 and

the fact that φ commutes with δ, we obtain:

δn(y) ≡
(
x−mp

n

(δn(x))p − xp
n+1−2mpn(δn(xm)) + T

)
mod(p), T ∈ O(n− 1)

since δn(φl(x)) = (δn(x))pl , and degδn(x)(δn(y)) = p, for n ∈ N. In the case where

m = 1, we obtain that degδn(x)(δn(y)) = p, which is and important part in the

proof of Theorem 1.



2 The δ−Pascal Triangle and The

Proof of the Main Theorem

Besides the proof of our main theorem, in this chapter we found a formula for φn(x)

using The δ−Pascal Triangle Technique. This formula constitute an important

part in the proof of our main theorem. As we also said in the introduction,

this formula is important, not only for the porpoises of this thesis, but for other

applications in the theory of arithmetic differential equations as well.

2.1 The δ−Pascal Triangle

Recall from the introduction the following definitions

Definition 11. Let n, k ∈ N, where 0 6 k 6 n. Define the δ−binomial coefficient
of order k and degδk(x) = pn−k, to be

(
n

k

)
x

=
∑

(δ(δ(...(δ(xp
a0 ))p

a1
...)p

ak−1 )p
ak

where ∑ aj = n− k, and aj ≥ 0.

Also recall that the degree and the order in this definition are taken in the sense

of Definition 3 but after we write each term (δ(δ(...(δ(xpa0 ))pa1 ...)pak−1 )pak in terms

of the variables x, x′, x′′, ..., x(k).

10
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Definition 12. Define the following expressions:

(
n

k

)∗
x

=
∑∑
aj=n−k

δ(δ(δ...(xp
a0 ))p

a1
...)p

ak
and

(
n
k

)∗∗
x

=
∑∑
aj=n−k

(δ(δ...(xp
a0 ))p

a1
...)p

ak+1

.

Lemma 1. Let n ∈ N, and 0 6 k 6 n + 1, then, the following formula is an
identity

φ(
(
n

k

)
x

) =
(
n

k

)∗∗
x

+ p

(
n

k

)∗
x

Proof. From the last definition we have that

φ(
(
n

k

)
x

) =
∑

φ
(

(δ(δ(...(δ(xp
a0 ))p

a1
...)p

ak−1 )p
ak
)

=
∑(

(δ(δ(...(δ(xp
a0 ))p

a1
...)p

ak−1 )p
ak+1

+ pδ
(

(δ(δ(...(δ(xp
a0 ))p

a1
...)p

ak−1 )p
ak
))

=
∑∑
aj=n−k

(δ(δ...(xp
a0 ))p

a1
...)p

ak+1
+ p

∑∑
aj=n−k

δ(δ(δ...(xp
a0 ))p

a1
...)p

ak

=
(
n

k

)∗∗
x

+ p

(
n

k

)∗
x

Lemma 2. Let n ∈ N, and 0 6 k 6 n+ 1, then,

(
n+ 1
k

)
x

=
(
n

k

)∗∗
x

+
(

n

k − 1

)∗
x

This result and the fact that the expression
(
n
k

)
x

has exactly
(
n
k

)
terms, justify

the Pascal terminology.

Proof. The proof is by induction over n. For n = 1 in the statement, the possibil-

ities for k in the left hand side are:

(
2
0

)
x

= xp
2

(
2
1

)
x

= δ(xp) + (δ(x))p(
2
2

)
x

= δ2(x)
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for k = 0, 1, 2 respectively.

For the right hand side we have:

(
1
0

)∗∗
x

+
(

1
−1

)∗
x

= xp
2

(
1
1

)∗∗
x

+
(

1
0

)∗
x

= (δ(x))p + δ(xp)(
1
2

)∗∗
x

+
(

1
1

)∗
x

= δ2(x)

for k = 0, 1, 2 respectively. All of the above imply that

(
n+ 1
k

)
x

=
(
n

k

)∗∗
x

+
(

n

k − 1

)∗
x

n = 1

which is the first induction steep.

Now suppose the statement is true for all integers t, 0 6 t 6 n. We claim that

(
n+ 2
k

)
x

=
(
n+ 1
k

)∗∗
x

+
(
n+ 1
k − 1

)∗
x

0 6 t 6 n

In fact

(
n+ 2
k

)
x

=
∑∑

aj=n+2−k

(δ(δ...(xp
a0 ))p

a1
...)p

ak

=
∑∑

ak>1

aj=n+2−k

(δ(δ...(xp
a0 ))p

a1
...)p

ak +
∑∑

ak=0

aj=n+2−k

(δ(δ...(xp
a0 ))p

a1
...)p

ak

=
∑∑

aj=n+1−k

(δ(δ...(xp
a0 ))p

a1
...)p

ak+1
+

∑∑
aj=n+2−k

δ(δ(δ...(xp
a0 ))p

a1
...)p

ak

=
(
n+ 1
k

)∗∗
x

+
(
n+ 1
k − 1

)∗
x

Next we present our formula for φn(x). This formula is useful because it keeps

track of the degree and order of all its terms.

Theorem 5. Let n ∈ Z and n > 0, then,

φn(x) =
n∑
k=0

pk
(
n

k

)
x
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Proof. Again by induction on n. For n = 1 the result is evident. Now suppose

the statement is true for 0 6 t 6 n. Since φ is additive and fixes p, it follows

φn+1(x) =
n∑
k=0

pkφ((nk)x)

=
n∑
k=0

pk[(nk)
∗∗
x

+p(nk)
∗
x
]

= [(n0)
∗∗
x

+p(n0)
∗
x
]+p[(n1)

∗∗
x

+p(n1)
∗
x
]+...+pn−1[( n

n−1)
∗∗
x

+p( n
n−1)

∗
x
]+pn[(nn)

∗∗
x

+p(nn)
∗
x
]

= (n0)
∗∗
x

+p[(n0)
∗
x
+(n1)

∗∗
x

]+p2[(n1)
∗
x
+(n2)

∗∗
x

]+...+pn[( n
n−1)

∗
x
+(nn)

∗∗
x

]+pn+1(nn)
∗
x

=
n+1∑
k=0

pk(n+1
k )

x

The last equality follows by the Lemma 2.

Theorem 5 implies the following theorem, where one can see the similarities be-

tween δ and the usual derivative dx
dt

.

Theorem 6. (The Chain Rule) Let m ∈ Z and n ∈ N then,

δn(xm) ≡
(
m (xp

n

)m−1δn(x) + T
)
mod(p)

where T ∈ O(n− 1).

(The Product Rule) Let u, v ∈ R{x}, then,

δn(uv) ≡
(
up

n

δn(v) + vp
n

δn(u) + T
)
mod(p)

where T ∈ Ou,v(n− 1).

Proof. For the chain rule, let y = xm then by Theorem 3 implies that φn(y) =
φn(xm), and since φ is a ring homomorphism we obtain that

n∑
k=0

pk
(
n

k

)
y

=
(

n∑
k=0

pk
(
n

k

)
x

)m
.
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Hence

pn
(
n
n

)
y

+
n−1∑
k=0

pk
(
n

k

)
y

=
(
pn
(
n
n

)
x

+
n−1∑
k=0

pk
(
n

k

)
x

)m

If we set that au =
n−1∑
k=0

pk
(
n
k

)
u
, then we get

pn
(
n
n

)
y

+ ay =
(
pn
(
n
n

)
x

+ ax
)m

but

(
pn
(
n
n

)
x

+ ax
)m =

(
pn
(
n
n

)
x

)m +m
(
pn
(
n
n

)
x

)m−1
ax + · · ·+mpn

(
n
n

)
x
am−1
x + amx

Grouping the elements of order n and using the fact that ay ∈ O(n− 1), we have
that

pn
(
n
n

)
y

=
[(
pn
(
n
n

)
x

)m +m
(
pn
(
n
n

)
x

)m−1
ax + · · ·+mpn

(
n
n

)
x
am−1
x

]
+ (ax − ay).

Dividing by pn we obtain that

(
n
n

)
y

= pn(m−1)(n
n

)m
x

+mpn(m−2)(n
n

)m−1
x

ax + · · ·+m
(
n
n

)
x
am−1
x + (ax − ay)

pn
.

Since ax =
(
n
0

)
x

= xp
n and

(
n
n

)
u

= δn(u) we get that

δn(y) = pn(m−1)(n
n

)m
x

+mpn(m−2)(n
n

)m−1
x

ax + · · ·+mδn(x)xam−1
x + (ax − ay)

pn

Taking the last equation modulo p we obtain our desired result.

For the product rule let y = uv where u, v ∈ R{x}. Then Theorem 3 implies that

φn(y) = φn(uv) = φn(u)φn(v)

and

n∑
k=0

pk
(
n

k

)
y

=
(

n∑
k=0

pk
(
n

k

)
u

)(
n∑
k=0

pk
(
n

k

)
v

)
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Take bw :=
n−1∑
k=0

pk
(
n
k

)
w
. Then we have

pn
(
n
n

)
y

+ by =
(
pn
(
n
n

)
u

+ bu
) (
pn
(
n
n

)
v

+ bv
)

= p2n(n
n

)
u

(
n
n

)
v

+ pn
(
n
n

)
u
bv + pn

(
n
n

)
v
bu + bubv

Isolating
(
n
n

)
y

we obtain the following

(
n
n

)
y

= pn
(
n
n

)
u

(
n
n

)
v

+
(
n
n

)
u
bv +

(
n
n

)
v
bu + bubv − by

pn

Again projecting the last equation modulus p we obtain our desired result.

It is clear, from the chain rule and using the fact that δ and φ commute, that we

have the following more general result:

Corollary 3. For y = xmφ
t = (xφt)m and t ∈ N we have

δn(xmφ
t

) ≡
(
m
(
xφ

t
)pn(m−1)

δn(x)p
t

+ T

)
mod(p)

where T ∈ O(n− 1).

The next corollary explain one of the achievements of Theorem 3.

Corollary 4. Let n ∈ N, f ∈ Z[φ] where p does not divide the leading coefficient

of f . Assume that y = xf(φ) then,

degδn(x)(δn(y)) = pdeg(f)

Proof. Let n ∈ N and f(φ) =
t∑
i=0

aiφ
i ∈ Z[φ]. Without loss of generality we

can assume that all the coefficients of f(φ) are positive, otherwise we will have
denominators but this fact does not change the result. Let y = xf(φ) then

δn(y) = δn(xf(φ)) = δn

(
t∏
i=0

φi(xai)
)
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Now using the product rule for t+ 1 factors we get

δn(y) = δn(xf(φ))

= δn

(
t∏
i=0

φi(xai)
)

=
t∑
i=0

 t∏
j 6=i

(xajφ
j

)p
n

 δn(xaiφ
i

) + T + pA

=
t∑
i=0

(
xp

n[f(φ)−aiφi]
)
δn(xaiφ

i

) + T + pA

where T ∈ O(n− 1) and A ∈ R. Taking the last equation modulo p and using the
chain rule, we obtain the following result:

δn(y) ≡
(

t∑
i=0

aix
pn[f(p)−pi] (δn(x))p

i

+ T

)
mod(p)

From the last equation and since p - at one can see that

degδn(x)(δn(y)) = pdeg(f).

2.2 Differential Groups

In this section we introduce and study some remarkable differential groups also

referred to as δ−subgroups of R×. These differential groups will be the Galois

Groups in the invariant theory that we address in this thesis.

Before we provide the definition of our δ−subgroups let’s define first the rule of

exponents.

Definition 13. Let Z[φ] be the set of all the polynomials with integer coefficients
in the variable φ. Suppose that f(φ) =

t∑
i=0

aiφ
i ∈ Z[φ], then,

xf(φ) = x

(
t∑
i=0

aiφ
i

)
=

t∏
i=0

φi(xai)
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Notice that Definition 13 implies composition. For any f and g in Z[φ] we have

xfg = (xf )g

Let’s introduce now our differential subgroups.

Definition 14. Let f ∈ Z [φ], then define the sets

Γf := {λ ∈ R× : λf = 1}, and Γ(n)
f = (1 + pnR) ∩ Γf .

Clearly Γf is a subgroup of R× under multiplication.

The next result shows that the subgroups Γf are “sufficiently” nontrivial. It also

illustrates, with the particular case when f(φ) = φ−m, the way how we will prove

the more general case, where f ∈ Z[φ].

Lemma 3. For any ζ ∈ µp−m there is a sequence {(λk, xk−1)}∞k=1 ⊂ R2, defined
recursively as follows: λ1 = ζ, x0 = 0, and λk+1 = λk + pkxk. This sequence has
the following property:

φ(λk) ≡ λmk mod(pk) k ∈ N

Proof. We construct this sequence by induction on k. For the first induction step,
k = 0, it is clear, because φ(λ1) = λm1 + pδ(λ1) = λm1 . Then we have first pair
(λ1, x0). For the induction hypothesis step: Assume (λk, xk−1) has the following
property,

φ(λk) ≡ λmk mod(pk)

We need to find the next pair (λk+1, xk).

We let λk+1 = λk + pkyk, then,

λmk+1 = (λk + pkyk)m = λmk +mλm−1
k (pkyk) + p2kA

where A ∈ R. On the other hand,

φ(λk+1) = φ(λk) + pkφ(yk) = λmk + pkB + pkφ(yk)
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where B ∈ R. This second equality comes from the induction hypothesis. So we
need xk such that

xpk −mλkxk +B ≡ 0mod(p)

This equation has all its solutions in the algebraically closed field R/pR.

Next we take one of the pre-images of the projection mod(p) and we call it yk.
This yk satisfies the desired condition,

λk+1 = λk + pkyk

Let xk = yk, this condition gives the next pair (λk+1, xk), in our induction proof.

Lemma 3 prove the non triviality of the subgroup Γφ−m of R×. In the next theorem

we extend Lemma 3 to more general polynomials.

Theorem 7. Let p be a large enough prime number. Assume that the polynomial
f(φ) =

l∑
i=0

aiφ
i ∈ Z[φ] with p - f(p) and al > 0. Then for any ζ ∈ µf(p), there is a

sequence {(λk, xk−1)}∞k=1 ⊂ R2, such that λ1 = ζ, x0 = 0, and λk+1 = λk + pkxk,
with the property that

(λk)f
+
≡ (λk)f

−
mod

(
pk
)

k ∈ N

where f+(φ) =
l∑

i=0
a+
i φ

i and f−(φ) =
l−1∑
i=0

a−i φ
i are the positive and the negative

parts of f respectively, i.e. f = f+ − f−.

Proof. We construct this sequence by induction over k.

Step1. (k = 1). Since the constants with respect to the derivation δ are the nth

roots of unity prime to p, we get that

λ
f(φ)
1 = λ

f(p)
1 = 1

Step 2. Assume the statement for k, and prove it, for k + 1.
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Let λk+1 = λk + pkxk, with the property that

λ
f+(φ)
k ≡ λf

−(φ)
k mod(pk)

From the recursion and from the rule of exponents, we have that

λ
f+(φ)
k+1 = (λk + pkxk)f

+(φ)

=
l∏
i=0

φi(λk + pkxk)a
+
i

=
l∏
i=0

φi(λa
+
i

k + pka+
i λ

a+
i
−1

k xk)

=
l∏
i=0

[φi(λa
+
i

k ) + pka+
i φ

i(λa
+
i
−1

k )φi(xk)]

= λ
f+(φ)
k + pk

l∑
i=0

a+
i λ

f+(φ)
k λ−φ

i

k xφ
i

k

= λ
f−(φ)
k + pk+1A+ pk

l∑
i=0

a+
i λ

f+(φ)
k λ−φ

i

k xφ
i

k

Then for f+(φ) we have that

λk+1
f+(φ) = λ

f−(φ)
k + pk+1A+ pk

l∑
i=0

a+
i λ

f+(φ)
k λ−φ

i

k xφ
i

k

where A ∈ R. Similarly for f−(φ) we have

λ
f−(φ)
k+1 = λ

f−(φ)
k + pk

l−1∑
i=0

a−i λ
f−(φ)
k λ−φ

i

k xφ
i

k

For the equations to be congruent modulus pk+1 the following holds:

l∑
i=0

aiλ
−pi
1 xp

i

k ≡ 0mod(p), λ1 ∈ µf(p)

The reduction modulo p of the left hand side has all its roots in the algebraically
closed field k = R/pR = Fap. Next we take one of the pre-images of one of these
roots and we call it xk. This xk satisfies the desired conditions,

λk+1 = λk + pkxk, and λ
f+(φ)
k+1 ≡ λf

−(φ)
k+1 mod(pk+1)

This condition gives the next pair (λk+1, xk), in our induction proof.
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Corollary 5. Let f(φ) =
l∑

i=0
aiφ

i and p be such that p - al, a0 as in Theorem 7.
Then,

∣∣∣∣∣∣ Γf(φ)

Γ(n+1)
f(φ)

∣∣∣∣∣∣ ≥ ∣∣µf(p)
∣∣ pn·deg(f) = |f(p)| pn·deg(f) (2.2.1)

Proof. To prove this corollary we will use the construction from the proof of
Theorem 7 to count all the possible choices for the roots of the polynomial hf (x) ∈
k[x]. Since λ0 6= 0, and p - a0, then the polynomial

hf (x) =
l∑
i=0

aiλ
(ai−1)(f(p)−aipi)
0 xp

i

+Bn ∈ k[x]

doesn’t have multiple roots. On the other hand, since p - al, a0 and k = R/pR

is an algebraically close field, then the set {x ∈ k = R/pR : hf (x) = 0} has
pl elements. From the proof of Theorem 7, one can see that all the elements
λ ∈ Γf

Γ(n+1)
f

= Γf mod (pn+1) have the form

λ = λ0 +
n∑
i=0

pixi λ0 ∈ µf(p)

and the xi are such that xi ∈ {x ∈ k : hf (x) = 0}. Since p - f(p) then we have

that
∣∣∣∣∣ Γf(φ)

Γ(n+1)
f(φ)

∣∣∣∣∣ ≥ ∣∣∣µf(p)

∣∣∣ pn·deg(f) = |f(p)| pn·deg(f) by direct counting.

2.3 δ−Galois Theory: The Proof of the Main

Theorem

Now we have created the preamble to give the proof of our main theorem. This

theorem, as we said in the overview, is a generalization of the following

Theorem 8. [2] Consider the element xφ−1 from the ring R {x}(p). Then the
extension k〈xφ−1)〉 ⊆ k〈x〉 is Galois with Galois group Γφ−1. In particular we have
that

k〈xφ−1〉 = k〈x〉Γφ−1 , and Γφ−1 ∼= Z×p
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In our main theorem we extend Theorem 8 from the case of linear polynomial

φ− 1 to a rather general polynomials f(φ) ∈ Z[φ] as follows:

Theorem 9. (Main Theorem) Let f ∈ Z[φ] be such that p does not divide its
leading coefficient and its constant term. Consider the element xf(φ) from the ring
R {x}(p). Then the extension k〈xf(φ)〉 ⊆ k〈x〉 is Galois with Galois group Γf(φ).
In particular,

k〈xf(φ)〉 = k〈x〉Γf(φ)

To prove Theorem 9 we need to introduce first some definitions and a lemma.

Definition 15. Let f ∈ Z [φ], then define the map

θλ : k(x, x′, ..., x(n−1)) −→ k(x, x′, ..., x(n−1)), by θλ(x(i)) = (λx)(i).

And the map

ρn : Γf −→ Aut(k(x, x′, ..., x(n−1))/k), by λ 7−→ θλ.

Lemma 4. Let n, l be natural numbers, such that, 0 < l < n. Suppose that
λ = x+ pny0, y0 in R. Then, for some yl ∈ R, we have

δl(λ) = δl(x) + pn−lyl

And for n ∈ N, and λ ∈ (1 + pnR), we also have that,

δn−1(xλ) ≡ δn−1(x)mod p

Proof. The proof will be by induction on l. The first induction step is clear. For
the induction hypothesis step: Assume that the statement is true for l, i.e.,

δl(λ) = δl(x) + pn−lyl yl ∈ R, 0 < l + 1 < n
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then,

pδl+1(λ) = pδl+1(x) + pn−lφ(yl) + (δl(x))p − (δl(x) + pn−lyl)p

Dividing the last equation by p we get,

δl+1(λ) = δl+1(x) + pn−l−1φ(yl)− pn−l−1
p∑
k=1

(
p

k

)
(δl(x))p−kp(k−1)(n−l)ykl

Then we obtain, δl+1(λ) = δl+1(x) + pn−l−1yl+1, where yl+1 is clearly in R. To

prove the second part of the lemma we take y0 = αx and l = n− 1.

Corollary 6. Let n ∈ N. Then we have that

Γ(n)
f(φ) = Ker(ρn).

Proof. [⊆]: Let λ ∈ Γ(n)
f(φ). Since Γ(n)

f(φ) = Γf(φ) ∩ (1 + pnR), we get that λ ∈ Γf(φ)

and λ ∈ (1 + pnR). Then from Lemma 4 implies that

δn−1(xλ) ≡ δn−1(x)mod p

Hence

Γ(n)
f(φ) ⊆ Ker(ρn)

[⊇]: Let λ ∈ Ker(ρn). Then

δi−1(xλ) ≡ δi−1(x)mod(p), 0 < i+ 1 < n.

Then for x = 1 there is a sequence {ri : i = 1, ..., n− 1} such that

λ = 1 + pr0

λ′ = pr1

λ(n−1) = prn−1

We claim that pn−1 divides r0. If we compare the first two equations we obtain
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the following:

(1 + r0p)′ = pr1

this implies that

1 + pφ(r0)− (1 + r0p)p = p2r1

Then we get that p | φ(r0), then p | r0. We can conclude that λ = 1 + r1p
2. If we

do the same with the first three equations we obtain that p2 | r0. Following in the

same fashion we obtain that pn−1 divides r0, and then, 1 + rn0p ∈ (1 + pnR).

In what follows set yn = δn(xf(φ)), and denote by ηn ∈ k 〈x〉 the image of yn. Note

that η0 = xf(p).

The strategy of the proof of Theorem 9 is as follows: The inclusion ” ⊂ ” will be

clear. To prove the inclusion ” ⊃ ” it will be enough to show the following two

lemmas.

Lemma 5.
[
k(x, x′, x′′, ..., x(n)) : k(η0, η1, η2, ..., ηn)

]
≤ |f(p)| pn·deg(f).

Proof. Using Corollary 4.

Lemma 6. The cardinality of the image In of ρn is greater than or equal to

|f(p)| pn·deg(f).

Proof. The first isomorphism theorem implies that In ∼=
Γf(φ)

Ker(ρn) . From Corollary
6 we obtain that

|In| =
∣∣∣∣ Γf(φ)

Ker(ρn)

∣∣∣∣ =

∣∣∣∣∣∣Γf(φ)

Γ(n)
f(φ)

∣∣∣∣∣∣ ≥ |f(p)| pn·deg(f)
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Proof of the Main theorem

Proof. Consider the extensions

k(η0, η1, ..., ηn−1) ⊂ k(x, x′, ..., x(n−1))Γf ⊂ k(x, x′, ..., x(n−1))

α β

By the Lemma 6 the degree of β equals |f(p)| pn·deg(f). From Lemma 5, we have

that, the extension β ◦α has at most degree |f(p)| pn·deg(f). This forces α to be an

equality.



3 Subgroups of Bn(R)

In this chapter we define and study an interesting class of subgroups of Bn(R),

the group of n× n invertible and upper triangular matrices with entries in R, by

introducing the concept of Leibniz Systems. The present chapter will constitute

a wide open source of study for future research.

3.1 Leibniz Systems

Definition 16. A Leibniz system of size n is a collection f = (fij)1≤i,j≤n, fij :

(R×)n −→ R[ 1
p
] satisfying the following condition:

fij(x1y1, x2y2, ..., xnyn) =


fi1(x1, x2, ..., xn)f1j(y1, y2, ..., yn) + . . . + fin(x1, x2, ..., xn)fnj(y1, y2, ..., yn), j > i

xiyj i = j

0 j < i

Denote by L the set of all Leibniz systems. Let Si are subgroups of R×, then a
Leibniz group, is a group of the form

Gf (R) = {(fij(a)) ∈ Bn(R) : a ∈
n∏
i=1

Si}

where f ∈ L.

Obviously Gf (R) is a subgroup of Bn(R).

Example 8. For n = 2 let f = (fij)1≤i,j≤2 be such that f12(x, y) = k(x − y),

25
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f11 = x and f22 = y, where k ∈ R[ 1
p
]. It is easy to check that f form a Leibniz

system.

Lemma 7. The Leibniz system f from the last example is the only Leibniz system

for n = 2.

Proof. It is clear that the function f12 = k(x−y) where k ∈ R[ 1
p
], has the property

f(aa′, dd′) = af(a′, d′) + d′f(a, d)

for all a, a′, d, d′ ∈ R×. On the other hand, let f be a function that has the
property

f(xx′, yy′) = xf(x′, y′) + y′f(x, y)

then, f(1, 1) = f(1, 1) + f(1, 1), so f(1, 1) = 0 . Since

f(xx′, 1) = xf(x′, 1) + f(x, 1) = x′f(x, 1) + f(x′, 1)

then, f(x, 1) = (x− 1)f(x′,1)
x′−1 , so fixing f(x′,1)

x′−1 = k1, we obtain f(x, 1) = k1(x− 1).
From the property we also have,

f(1, yy′) = f(1, y′) + y′f(1, y) = f(1, y) + yf(y′, 1)

similarly we get, f(1, y) = k2(y − 1), and since

f(x1, 1y) = xf(1, y) + f(x, 1) = k2x(y − 1) + k1(x− 1)

we obtain k1 = −k2 = k, and f(x, y) = k(x− y) for some k ∈ R[ 1
p
].

Theorem 10. The set {

 a f(a, b)

0 b

 ∈ B2(R)} is a subgroup of B2(R), if and

only if, f(x, y) = k(x− y) for some k ∈ R[ 1
p
].

Proof. Use Lemma 7.

For the case n = 3, we have the following example:
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Example 9. To have a Leibniz system f = (fij)1≤i,j≤3, where f11 = x, f22 = y,
f33 = z and the fij(x, y, z) j > i, we need the following conditions to hold:

f12(xx′, yy′, zz′) = xf12(x′, y′, z′) + y′f12(x, y, z)

f13(xx′, yy′, zz′) = xf13(x′, y′, z′) + f12(x, y, z)f21(x′, y′, z′) + z′f13(x, y, z)

f21(xx′, yy′, zz′) = yf21(x′, y′, z′) + z′f21(x, y, z)

Since the functions in a Leibniz system are functions that can be viewed as func-

tions of diagonal matrices, one can see that they only produce Abelian subgroups

of Bn(R). Notice that they define homomorphisms from R× to Bn(R).

Definition 17. Let ϕ : R −→ R be an additive map, i.e., ϕ(x+y) = ϕ(x) +ϕ(y);

and ψ : R× −→ R be an homomorphism, i.e., ψ(xy) = ψ(x) + ψ(y).

A concrete example of a function ψ from the last definition will be

ψ(t) = 1
p
log(1 + p

δ(t)
tp

)

this function was introduced by A. Buium in [1].

Example 10. Let S be a subgroup of R× and x, z ∈ S. Consider the subset D of
B3(R) of matrices of the form


x xψ(xz) 0

0 x 0

0 0 z


Then D is a Leibniz subgroup of B3(R).

Using the last example we can construct an example of a Leibniz group of Bn(R)

as follows:

Example 11. Let A =

 x xψ(x)

0 x

 or A =


x xψ(xz) 0

0 x 0

0 0 z

, where x, z ∈
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S < R×, and n ∈ 2N ∪ 3N. Then the subgroup

G(S) = {(aij) ∈ Bn(R) : aii = A, aij = 0, i 6= j}

is a Leibniz group of Bn(R).

In particular if in the last two examples we take ψ(t) = 1
p
log(1 + p δ(t)

tp
) the Leibniz

group became a Leibniz δ−subgroup of Bn(R).

3.2 A B4(R) Example

In this section we will illustrate the differences in finding Borel subgroups in Bn(R)

when n is even or odd. One of these differences is the symmetry in the properties

of the functions in the differential systems. This fact will be shown in the following

example.

Example 12. Let ϕ : R −→ R be an additive map, and f a function with the
following property,

f(x+ y) = f(x) + f(y) + xϕ(y) + yϕ(x)

then the set D of all the matrices of the form


1 ϕ(x) x f(x)

0 1 0 x

0 0 1 ϕ(x)

0 0 0 1


is a subgroup of B4(R). In particular if we take f(x) = xh(φ)(x), where ϕ =
h(φ) ∈ Z[φ]. It is clear that

f(x+ y) = (x+ y)h(φ)(x+ y)

= xh(φ)(x) + yh(φ)(y) + xh(φ)(y) + yh(φ)(x)

= f(x) + f(y) + xϕ(y) + yϕ(x)
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and D will be also a δ−subgroup of B4(R).

At this point we have produced several δ−subgroups Bn(R). Another example

will be:

Example 13. Consider the subset of B(R) of matrices of the form


x xψ(x) k(x− 1)

0 x 0

0 0 1


Where x ∈ G < R×, then, it is also a commutative subgroup of B3(R).

Let x ∈ S where S is a subgroup of R×. Assume that f is a function with the
following property

f(xy) = xf(y) + yf(x) + xyψ(x)ψ(y) (3.2.1)

If such a function exists then, the subset of B3(R) of matrices of the form


x xψ(x) f(x)

0 x xψ(x)

0 0 x


then, it is also a commutative subgroup of Bn(R). If we divide equation 3.2.1 by
xy we obtain,

f(xy)
xy

= f(y)
y

+ f(x)
x

+ ψ(x)ψ(y) (3.2.2)

And if we take h(x) = f(x)
x

, equation 3.2.2 becomes,

h(xy) = h(x) + h(y) + ψ(x)ψ(y) (3.2.3)

In the following example we show a concrete function h with the property in

equation 3.2.3:

Example 14. Le h be the the following function

h(x) = φ(ψ(x)) + 1
2ψ(x)2
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We can also see from equation 3.2.1 that,

f(xn) = nxn−1f(x) + nxnψ(x)2, and h(xn) = nh(x) + nψ(x)2, n > 1

3.3 More Subgroups of Bn(R)

Let’s start this section by analyzing the next example:

Example 15. For B4(R), assume that the map ψ : R× −→ R is a group homo-
morphism, then, the set of all matrices in B4(R) of the form

E4(x) =



1 ψ(x) 1
2!ψ(x)2 1

3!ψ(x)3

0 1 ψ(x) 1
2!ψ(x)2

0 0 1 ψ(x)

0 0 0 1


is a subgroup of B4(R).

In general for Bn(R), we have,

Theorem 11. The set of all matrices of the form

En(x) =



1 ψ(x) 1
2!ψ(x)2 · · · 1

(n−1)!ψ(x)n−1

0 1 ψ(x)
. . .

...

0 0 1
. . . 1

2!ψ(x)2

...
...

...
. . . ψ(x)

0 0 0 · · · 1


is a subgroup of Bn(R).

And the map Eψ
n : R× −→ Bn(R) defined by

Eψn (x) =



1 ψ(x) 1
2!ψ(x)2 · · · 1

(n−1)!ψ(x)n−1

0 1 ψ(x)
. . .

...

0 0 1
. . . 1

2!ψ(x)2

...
...

...
. . . ψ(x)

0 0 0 · · · 1
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is a group homomorphism.

Proof. By direct computation.

Again if we take ψ(t) = 1
p
log(1 + p δ(t)

tp
) the subgroup H = {En(x) : x ∈ R×} is a

δ−subgroup of Bn(R). We can also replace R× by any Γf(φ) from chapter 2 and

obtain a variety of examples of δ−subgroups of Bn(R).

3.4 More Leibniz δ−Subgroups of Bn(R)

In the present section we will discus more examples of Leibniz δ−Subgroups of

Bn(R).

We can check easily that if make a “small” perturbation in the entry a1n of En(x),

(En(x) from the last section) we still obtain a subgroup of Bn(R), as follows:

Example 16. Let t ∈ N, and x ∈ R×, then set S of all the matrices of the form

Sn(x) =



1 ψ(x) 1
2!ψ(x)2 · · · 1

(n−1)! [ψ(x)n−1 +
t∑
i=1

φi(ψ(x))]

0 1 ψ(x)
. . .

...

0 0 1
. . . 1

2!ψ(x)2

...
...

...
. . . ψ(x)

0 0 0 · · · 1



is a Leibniz δ−subgroup of Bn(R).

Another example will be:

Example 17. Let x ∈ R×, then set S of all the matrices of the form

S4(x) =


1 ψ(x) 1

2! [ψ(x)2 + φ(ψ(x))] 1
3! [ψ(x)3 + 3ψ(x)φ(ψ(x)) + φ2(ψ(x)]

0 1 ψ(x) 1
2! [ψ(x)2 + φ(ψ(x))]

0 0 1 ψ(x)

0 0 0 1



is a Leibniz δ−subgroup of B4(R).



32

It is clear that the first row of Sn(x) determines the matrix. Then we can define

the matrix by knowing this row, for example:

Example 18. For the case when n = 5 we have that the functions in the first row

are:

L0(x) = 1

L1(x) = ψ(x)

L2(x) =
1
2!

[ψ(x)2 + φ(ψ(x))]

L3(x) =
1
3!

[ψ(x)3 + 3ψ(x)φ(ψ(x)) + φ2(ψ(x))]

L4(x) =
1
4!

[ψ(x)4 + 4ψ(x)φ2(ψ(x)) + 6ψ(x)2φ(ψ(x)) + 3φ(ψ(x)2) + φ3(ψ(x))]

and they form a Leibniz system.

In this fashion we can find more Lk function:

Example 19. For n = 6, 7 we have

L5(x) = 1
5! [ψ(x)5 +5ψ(x)φ3(ψ(x))+10ψ(x)2φ2(ψ(x))+10ψ(x)3φ(ψ(x))+15ψ(x)φ(ψ(x)2)+10φ(ψ(x))φ2(ψ(x))+

φ4(ψ(x))],

L6(x) = 1
6! [ψ(x)6+6ψ(x)φ4(ψ(x))+15ψ(x)2φ3(ψ(x))+20ψ(x)3φ2(ψ(x))+15ψ(x)4φ(ψ(x))+60ψ(x)φ(ψ(x))φ2(ψ(x))+

45ψ(x)2φ(ψ(x)2) + 15φ(ψ(x)3) + 10φ2(ψ(x)2) + 15φ(ψ(x))φ3(ψ(x)) + φ5(ψ(x))].

3.5 Coboundaries

In this section we study coboundaries. Knowing the properties of these cobound-

aries, will make easier the study of the Leibniz systems.

Definition 18. A function ∂A : R× × R× −→ R is called coboundary if there
exist an expression A(x) such that

∂A(x, y) = A(xy)−A(x)−A(y).
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Example 20. The function ∂A(x, y) = ψ(x)ψ(y) is a coboundary, by taking
A(x) = 1

2ψ(x)2. Another more complex coboundary is

∂A(x, y) = ψ(x)φ(ψ(y)) + ψ(y)φ(ψ(x))

In this case we can take A(x) = ψ(x)φ(ψ(x)).

It is clear from the definition that these coboundaries are symmetric in the fol-
lowing sense:

∂A(x, y) = ∂A(y, x).

Definition 19. Let k ∈ Z then we define the truncated binomial coefficient to be
the number

( k←−
i

)
=



(
k
i

)
if 0 ≤ i < k − 1

1 i = k − 1

0 i = k

Clearly k must be bigger that 1.

Example 21. Using the truncated binomial notation we obtain that:

L6(x) = 1
6! [

6∑
i=0

( 6←−
i

)
ψ(x)iφ5−i(ψ(x)) + 60ψ(x)φ(ψ(x))φ2(ψ(x)) + 45ψ(x)2φ(ψ(x)2) + 15φ(ψ(x)3) + 10φ2(ψ(x)2) +

15φ(ψ(x))φ3(ψ(x))].

Definition 20. Let k ∈ N, define the functions Lk : R× −→ R by:

L0(x) = 1

L1(x) = ψ(x)

L2(x) =
1
2!

[ψ(x)2 + φ(ψ(x))]

L3(x) =
1
3!

[ψ(x)3 + 3ψ(x)φ(ψ(x)) + φ2(ψ(x))]

...

Lk(x) =
1
k!

[
k∑
i=0

(
k←−
i

)
ψ(x)iφk−1−i(ψ(x)) +Ak(x)].

Theorem 12. Let k ∈ N, then

∂Lk(x, y) =
k−1∑
i=1

Li(x)Lk−i(y) = Lk(xy)− L(x)− L(y).
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Proof. By the definition of Lk.

3.6 Functions of Matrices

In this section we extend the function ψ from R× to the set of some special matrices

in GLn(R).

Definition 21. Let n ∈ N, define the following set

Dn(R) = {A ∈ GLn(R) : A = PJP−1, σ(A) ⊆ R×}.

Here σ(A), as usual, stands for the spectrum of the matrix A, i.e., the set of all

eigenvalues of A, and A = PJP−1 is the Jordan canonical form of the matrix A.

Now we define the extension of ψ, which will be also called ψ when the context is

understood, as follows:

Definition 22. Let A ∈ Dn(R), and En(x) as in Section 3.3, then we define the
function ψ : Dn(R) −→ GLn(R) as follows:

ψ(A) = Pdiag(ψ(Jk))P−1

Where A = PJP−1 is the Jordan canonical form of A, J = diag(Jk),

Jk(λk) =



λk 1 0 · · · 0

0 λk 1
...

...

0 0
. . . 1 0

... · · · 0 λk 1

0 · · · · · · 0 λk


and ψ (Jk(λk)) = En(x).

Notice that we can use also The other matrices defined in last section instead

En(x), and everything will be as in the last example.
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