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Considerations of the
Padé Approximant
Technique in the
Synthesis of Recursive
Digital Filters

FRANCIS BROPHY and ANDRES C. SALAZAR,
Member, IEEE

Abstract—The Padé approximant technique provides a quick
design of recursive digital filters. An added advantage of the
technique lies in that spectrum shaping requirements as well as
linear phase constraints can be handled easily, even for higher
order filters. This is important in supplying initial guesses of
the filter parameters to iterative routines that would then seek
a locally optimal design solution. These advantages are among
those discussed in a partly tutorial presentation of the tech-
nique that relates to filter needs found in data transmission
systems. In addition, the question of stability is treated and a

ew criterion is presented. The criterion provides sufficient
conditions in esta 'lishing stability for a filter designed by using
the Padé approximant technique.

1. Introduction

The design of spectrum-shaping recursive digital fil-
ters in the z-plane often requires the use of a routine

Manuscript received December 28, 1972; revised June 29,
1973.

';I"Yhe?) authors are with Bell Laboratories, Holmdel, N.J.
07733.

that calculates the extremum of an object function of
several variables. The function is generally nonlinear
and positive definite and indicates the “closeness” of
the designed spectrum to the desired spectrum. In
some cases, depending on the complexity of the func-
tion, the number of iterations or even convergence to
an extremum is dependent on the initial guess for the
o« and p (feedforward and feedback) parameters.

By working in the time domain the degrees of free-
dom available can be used to match a set of time
samples exactly, thus reducing the design to the solu-
tion of a linear system of equations. While this ap-
proach, call the Padé approximant,’ does not lead to
a locally optimal solution as an iterative technique
would, it nevertheless provides a viable solution in a
fraction of the time.

In the following we show how the Padé approxi-
mant technique can yield a simple digital filter design
for spectrum shaping networks with linear (or non-
linear, if so desired) phase constraints often required
in data transmission systems. The problem of stabil-
ity is discussed and sufficient conditions are given to
ensure that the design procedure will not lead to an
unstable filter.

1. Padé Approximate in Digital Filter Design

Let H(w) denote in the interval [- 27W, 2rW] the
bounded filter amplitude characteristic that is to be
synthesized. Since H(w) e L, [-27W, 2rWl,p=1it
has a Fourier series expansion

H(w)= L hye-imi¥ (1)

1<“Prony’s method” is related to the Padé approximant tech-
giqui ghrough a transformation of variables (see [1] for more
etails).
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where h, are the samples of the impulse response of
H(w) at the appropriate sampling period 1/2W s.
Also, given e > 0, there exists an integer K such that

1 K -1 21W :
— 3 Kz J. IH(w)?dw - €.
2w ‘ -ZK: 2m -27W

In fact, the associated Fourier expansion of H(w),
viz., ’

K
Z hne-jnwlzw ,
-K
is the best approximation in the mean (L,) to H(w)
on the interval [-2rW, 27 W] using only 2K + 1 co-
efficients.
By adding the constant delay K/2W to H(w) we can

reindex the samples {h,}"x to {h,}5. Also, normal-

ization on H(w) can be induced by dividing {h,}5 by
he # O so that {h,}s now represents the samples of a
time function whose Fourier transform closely ap-
proximates a delayed and normalized version of H(w).

A realizable digital filter transfer function has the

form of a rational function? inz™!:

1+a,27 vz 2+ +ayz™
-1y = 1 2 M
GE") 1- 8,271 - 8,272 - Rz 2)
If 27! = 0 is not a point of singularity then
> > >
G(z')= 2 &nl(a,B)2™ (3)
n=0
is the Maclaurin series where a =(a;, 0y, ", 0y )and

E = (B,, B2, * -, Bn) for a positive radius of conver-
gence 0 < lz7'1 < ro. If stability constraints® are
plagetl on the g’s we then have that r, > 1. The term
gn(a, B) is easily found recursively from

8., B) =B1gn 1 @ B)+ -+ Bylan (&, B+, (4)

wherego(&,é) =landa, =0ifn> M.
- If we represent h, as the response samples of the
digital filter we wish to synthesize we can equate (1),
(z = &™/?W)_and (4) and find equations involving the
« and § parameters:

hn =Blgn—1 +ﬁ2gn—2 +e +BNgn-N +an,

1<n<M (5)
(6)

where the arguments of g, have been dropped.
Clearly there are not enough degrees of freedom in
G(z™') upon fixing M and N to generate any response
{h,}:.o that satisfies ZIh,l < . However, there is a

hn =B18n1 +B28n-2 + +nEnon, n>M

2 For notational convenience G is normalized to 1 at 27! = 0.
. 3 A filter is stable if bounded output results from bounded
input. .

501

possibility of minimizing &, the weighted squared dif-
ference between the two responses through the Tth
sample, T> M + N:

T
E;=Zu/n(hn_gn)z,uln>oa n=1,2,---T.
n=1

Since g, is a nonlinear function of the o and § param-
eters the minimization of & for T > M + N can be
achieved only through iterative means. In one case,
however, viz., T = M + N, the « and § parameters
which minimize & can be found by solving M + N
linear equations.® By assumingg, =h,,n=1, - M,
we can then solve (6) for the 8’s that produce g, = h,,,
n=M+1,M+2,--+,M+ N, Further we note that for
a given set of {8,}-, we can solve (5) for a’s so that
gn =h,,n=1,2,---, M. This procedure amounts to
equating the truncated power series of (1), i.e.,

M+N

2 ha2™,

n=0

to the first M + N + 1 terms of the MacLaurin series
(3). This approximation of a power series by a ra-’
tional function is commonly referred to as the Padé
approximate procedure. This technique generates the
M + N + 1 samples {h,}¥*N exactly but produces a
tail {gn}y, n+1 that can serve to yield a better approx-
mation to H(w). .

Time domain synthesis of analog filters (i.e., s plane)
utilizing this method is well documented [3]. By ap-
proximating the desired digital filter response by re-
producing the first M + N + 1 samples (h, is given free
by initial normalization) it is hoped that the overall
time or frequency response from the approximating
filter will not deviate unreasonably from the desired
one. There is, however, no guarantee that the 8’s com-
pose a stable filter. In Section III we will discuss
stability considerations of the Padé technique.

I11. Stability of the Padé Approximant

Since the Padé approximant produces a rational
function approximation, we know how the stability of
the approximation can be related to the moduli of the
poles of the approximant. We would like to know,
however, if we can relate the stability of the proposed
Padé approximant to some measure other than the
poles.

We can state the matrix equation of the Padé ap-
proximant in the following form by reindexing {£.}3%
and {h,}5 to {g,}"n+, and {h,} N.,, respectively.

4This special case has been discussed in [2] and [6] for syn-
thesis of a ‘‘time’’ sequence {h ,j.
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BB ho By hy-s] [h]?
hoy  ho hn -
he, -
L_h—N-Irl honea " hoy ho B _hN_J
We define
’_Qi Qi1 Qisn -1
Qi1 q;
Q;= (9)
| di-N+1 g B

where q; = h; or g; and @; = H; or G;. Note that for
the Toeplitz forms G; there is a recurrence relation:

Gis2 = BG;,, or G,, =B"** H,

since G, = Hy and G,
companion® matrix, B = H, Hy'.

— -

B: B2 By

10 0

1 0
B= 1 (10)

_ 10 |
We note that

H, =BH, (11)
where B has eigenvalues {A;, A,, - - -+ , Ay}.5 We

know, in addition, that the eigenvector corresponding

to A; is (1, Af! '2,-“,)\,7”"’,)\,7””). We can de-
compose B in terms of this eigensystem to get
B=PAP!' and G, =PA"P'H, (12)

where A is a diagonal eigenvalue matrix and P is an
N X N matrix whose columns are the eigenvectors of
B.

From (12) we can see that a bounded impulse re-
sponse {g,} is possible only if I\, I< 1,k =1, 2,
-+ - N. Since g, = 0 necessarily for a stable filter, this
means A, < 1. The converse is also true,i.e., A\,/1< 1
implies filter stability. This can be most easily seen

5H, is invertible since it is nonsingular for cases of interest,
(e.g., H(z™!) is not_a rational function). Fast techniques for
1nvert1ng Hj are available [4].
b 61t does not seem overly restrictive to assume simple roots
ere,

= H,, where B is the N X N
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by noting that the eigenvalues of B are precisely the
roots of the denominator polynomial of G(z™ ') since
B is its companion matrix. This development, of
course, is well known in linear system theory. The
point we make here, however, is that the expression
for B, namely B = H,H;!, involves only the first
2N + 1 samples of the target sequence {h,}. Hence,
we can test H,Hg! for its eigenvalue of maximum
modulus. If it is less than one, the Padé procedure
yields a stable filter. Hence, a valuable condition for
stability of the synthesized Padé filter is easily ob-
tained in this fashion.

To see thls let index the column vectors of H, -
by{o, T Nx}Whel'e ' = (hgo, hpry- v,
hkNl)fork=0 1, 2, ,N - 1 SmceHo was as-
sumed invertible we have then that {hk}N ! form a

linearly independent set of vectors. Let ¥ be a non-
zero vector in RN (Euclidean N space). Then there
exist constants v¢, 71, ' -, Yn-; (not all zero) such
that x = Ek_o 'ykﬁk Hence, the squared Euclidean
norm of  is .

2

> N-1 > N-1 (N1 z
T2 = || 3 yphplf = 2 { 2 7khkl}
k=0 1=0 k=0
> N-1 N—l' N-1
IxlZ2 =3 > Y%Ym 2. hRrihm. (13)
k=0 m=0 1=0
Now define

N-1
Crm = Z hklhml,

=0

which forms a strictly positive deflinite matrix, C,,
Similarly, we can form

>
IBx|? =

(14)

But we recall from (11) that Bh,e —hk,,,, k=0,1,
N - 1 [Where I’l"l _(h'NO’tha' 4 hNN—l )]. Thus,
we can now wnte

R N-1 (N-1 2
IBxI? = > { > Yrhrera

1=0 k=0
N-1 N-1 N-1
=2 > TeTYm > hevrgbma g, (15)
k=0 m=0 1=0
Form
N-1 :
ck+l.m+1 = Z hk+1.lhm+1,l,
1=0
k,m=0,1,--- ,N-1, (16)

a positive definite matrix, C, .
formulate the following.
Stability Criterion: The digital filter formed by the

We are now ready to
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Fig. 1. Amplitude spectrum for bandpass filter (24th order).

Padé approximant procedure outlined in Section II
for M = N and invertible H, is stableif C, - C, > 0,
that is, the matrix is a strictly positive definite matrix.

Proof: Let us begin by first defining ¥ = (v, 71,
-« ,vn-1). Then (Cov,7) = Ixl? from (13) and the
definition of C, while (C,v, ) = I1B%I? from (15)
and (16). Hence, ((Co - C; )y, 7) > 0, for nontrivial
X. So IZ|? - IBZI? > 0 or IBZI < 1% for arbitrary
% so conclude Bl < 1. But we know that the eigen-
value of maximum modulus of B, namely A,y (B)!is
bounded above by Bl so we have the desired
conclusion.

Armed with this stability criterion we check for the
possibility of instability in a Padé designed filter by
simply following three steps.

Step 1: Obtain the time sequence {h;}%y1, .

Step 2: Form the matrices Co and C,, (total of
N(N + 3)/2 inner products are necessary).

Step 3: Calculate the principal minors of Co - C,
and check for positivity.

The last step is the well-known test for positive def-
initeness of a matrix [5, p. 59]. The usefulness of

following the procedure is appreciated when the alter-

natives for checking stability are considered. For
example, stability can be determined by simply
solving for the set of B’s and then applying a root
finding routine to the resulting polynomial. Equiva-
lently, we can compute H, H;' = B and then apply an
eigenvalue-eigenvector routine to the matrix. Last,
we consider solving for the $’s and then computing
the response {g, };}H of (4). If the response is seen
to decrease the filter is stable. In all three cases, a
sizable amount of computation is involved when com-
pared to the three step stability algorithm discussed
above.

To avoid misrepresentation, it must be pointed out
that stability is still possible even if Co - C; > 0. In

fact, if hy of {h,}5 is chosen to be the peak of the
impulse response of H(w), then C, - C, can not be
expected to be strictly positive definite. However, we
improve the chance that C, - C; > 0 if we choose the
index of the peak closer to N/2.”

Last, we mention that the condition that H, be in-
vertible has always been met easily in all the filter de-
signs we have attempted using the Padé technique.®

V. Examples

Realistic examples have been chosen to illustrate the
development in the previous sections. They consti-
tute two filter designs that are typical of data trans-
mission systems employing digital signal processing.

As the first example® consider the bandpass shape
depicted in Fig. 1 and labeled by curve A. Suppose
that design criteria for this spectrum specify 3-dB loss
points at 200 Hz and 3200 Hz and no more than a
0.25-dB peak to peak ripple over the passband. Linear
phase over the passband as well as slope loss greater
than 12 dB/octave in the rejection bands are other
requirements. The classical approach to designing a

7The intention of our work on the stability question has
been to employ the full symmetry of B = H, H;'. The classical
approach to determining conditions on B so fhat B® - 0 has
not been especially useful in our case in spite of this symmetry.
(See [7] and [8] for a summary of results in this area.)

8We offer this statement in response to the warnings given by
a theorem (commonly found in studies of Toeplitz forms) that
says that the minimum eigenvalue of H,, IAmin(H, )|, mono-
tonically approaches i‘x})f |H(w) (as N—»oo% which, of course, is

zero for most filters of interest—low pass, bandpass; etc.
Hence, H, would not be invertible if IAmin(H,)l = 0. More
important‘iy, machine computation of H, inverse becomes
more difficult as N increases even though Amin(Hy )l # 0.
(See [9, p. 147] and [10, pp. 201-202] for a precise state-
ment of this theorem.)

91n each of the examples the sampling rate is 7200 samples/s.
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Fig. 2. Phase for bandpass filter (24th order).
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Fig. 3. Amplitude spectrum for cosine rolloff filter (10th
order).

filter of this type would be to use several degrees
of freedom to satisfy the amplitude spectrum require-
ments and then attempt phase equalization with the
remaining degrees of freedom. Curve B represents the
amplitude spectrum of a Padé realization of the de-
sired spectrum in 12 second-order sections (24th order
filter). The resultant phase is shown in Fig. 2. The
largest absolute error for the time samples in this reali-
zation is 0.0018 where max |h,|=1.

Similarly, a tenth (N = 10) order recursive digital
filter has been synthesized to match the spectral shape
of the bandpass function with cosine rolloff labeled
A in Fig. 3. (This receiving filter shape can be used
for baseband data transmission on channels with no

frequency offset.) A time sequence comparison re-
veals max |h, - g,| = 0.024 where max |h,| =1. Its
n n

approximately linear phase is shown in Fig. 4. This

example provides us with an opportunity to discuss
the stopband behavior of Padé-realized filters. At
times a minimum loss of 40, 50, or even 80 dB is
specified for a filter with a stopband. This type of
requirement cannot be easily worked into the time
domain terms of the Padé synthesis procedure. Hence,
only iterative routines, working in the frequency do-
main, from the Padé initial « and g values, could work
these requirements into the final design. From our
experience in obtaining initial designs by the Padé
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Fig. 4. Phase for cosine rolloff filter (10th order).

technique we have observed that the stopband loss
ranges from 20 to 40 dB, which in many cases may
be satisfactory.
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