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ABSTRACT

The populations in the western United States have increased significantly
over the last few decades resulting in increased development pressures on
undeveloped and pristine lands. Population growth and increased human
activities have also changed the overall ecosystems more rapidly and extensively
in recent years than in the past, emphasizing the need for protecting natural land
and ecosystems. This dissertation conducts analyses to highlight the importance

of protected areas and wildlife habitat.



Chapter 1 explores the use of Poisson and negative binomial regression
models to examine winter habitat use by mountain goats in the Kenai Mountains
of South-Central Alaska. Using GPS collared locations data, these models
produce parameter estimates similar to discrete choice models, popular in
resource selection studies, but with less computational complexity. The potential
serial (or spatial) correlations present in the data are controlled for by
incorporating spatial effects in a Gaussian conditional autoregressive framework.
The results support the existing literature on mountain goat habitat use with
most of the terrain features statistically significant across individual goat models.
The distance to the nearest escape terrain is found to be the most consistent and
highly significant determinant of goat habitat selection, where individual goats
tend to increase the number of visits by 37.5 to 71.6 percent more to a particular
location that is 100m closer to escape terrain. The statistical significance of
spatial parameter highlights the importance of neighborhood effects in habitat

selection by mountain goats.

Chapter 2 seeks to achieve two objectives. First, using regression based
test of equivalence, the predicted habitat use by mountain goats are compared for
two different sources of data. For mountain goats, the findings suggest that the
predicted habitat uses from GPS collar and aerially surveyed locations are
equivalent. Second, using the aerially surveyed goat locations data, the Bayesian
inference techniques with respect to negative binomial regressions are employed
to explore the effects of winter recreation on mountain goat habitat selection. In

addition to the landscape features, the model comparison based on Bayes factor



suggests that human recreation is an important factor affecting goats’ habitat use.
Goats tend to avoid areas with higher human recreational activities represented
by ski-tracks, and hiking trails; increase in the ski-tracks area by one square km
within a buffer of 5 km reduces goat count by approximately 2.5 percent at a
particular geographic location. This highlights the potential conflict between
human recreation and winter habitat and provides an input into policy

discussions on conservation of mountain goat habitat.

Chapter 3 of this dissertation analyzes the statistical properties of
estimated parameters in the hedonic studies with special reference to the
distance variables used to represent the proximity to environmental amenities or
dis-amenities. Using Monte Carlo simulations, the findings suggest that when
there are single locations available for each of the landmarks in the study area,
including two or more distance variables in regression results in inconsistent
parameter estimates associated with the distance variables. Nevertheless, when
multiple locations are available for each of the landmark types and the distance
variables capture the proximity to the nearest landmark location of each type, the
parameters are consistently estimated. These findings are important in studies

focusing on the estimation of welfare values based on distance variables.

The major objective of Chapter 4 is to examine the effects of proximity to
wilderness areas on residential property values in Yavapai County, Arizona by
utilizing geographic information system and recently developed spatial models.

On average, a residential property located one mile closer to a nearest wilderness

vii



area is estimated to have values $4730 and $5024 higher based on Euclidean and

road distance as a measure of proximity respectively.
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CHAPTER 1

Habitat Selection by Mountain Goats: An application of Bayesian

MCMC inference in spatial count model using GPS collared data

1.1 Introduction

The amount and distribution of escape terrain (steep, broken and sloped
topography), forage, and snow depth are the primary determinants of mountain
goat winter range (Chadwick, 2002; Gross et al., 2002; Schoen and Kirchoff,
1982). Goats either frequent such alpine areas where strong winds expose forage
(Fox, 1983), especially south facing wind-swept ridges (Hansen and Archer,
1981), or migrate to lower elevation forests and thick patches of alder to escape
deep snow (Fox et al., 1989; Hebert and Turnbull, 1977). These same locations
may overlap with human recreation, or potentially be altered by climate change.
For outdoor recreation, the rate and intensity of participation among Alaskans
are higher than for residents of other states and are projected to continue
(Bowker, 2001) suggesting an increasing demand for backcountry recreation (eg.,
heliskiing, cross-country skiing and snow machining) within mountain goat
ranges (steep, high-elevation terrain) of the Kenai Peninsula. The Chugach
National Forest and the Alaska Department of Fish and Game, manage these
habitats and mountain goat numbers on the Kenai Peninsula (South-central,

Alaska). Both agencies are concerned about increasing human activity displacing
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goats from important wintering areas, and long-term climatic events potentially
reducing goat habitats. Both factors may negatively affect mountain goat
populations, whose numbers on the Kenai Peninsula have been declining for

decades (McDonough and Selinger, 2008).

For agencies to effectively manage mountain goats, they require
information describing the relationship between these species and the human use
and climatic factors affecting them. A first step lies in quantifying and evaluating
which variables or combination of variables that best predict habitats for
mountain goats on the Kenai Peninsula. Such habitat information enables
subsequent predictive modeling for how human use or climate change may affect
the quality and quantity of goat habitat, while providing a basis to evaluate how
changing environments may affect the presence of mountain goat assemblages on

the Peninsula.

This chapter addresses these concerns by generating a habitat model for
mountain goats inhabiting the Kenai Peninsula. This study uses count regression
modeling technique for GPS-collared (global positioning systems) location data
and extends the use of spatial analysis to incorporate spatial correlation present
in the data. More precisely, Poisson and Negative Binomial models are used in
the spatial framework based on Gaussian Conditional Autoregressive (CAR)
formulation. Although some recent studies have used count regression in the
habitat selection and use studies based on GPS-collared data (Harris et al., 2014;
Nielson and Sawyer, 2013), to the best of my knowledge, the application of CAR
formulation to account for spatial correlation has not been used in the habitat

2



selection/use studies and is a novel method used in this study. The results from
the model outcomes are then used to produce suitable habitat for mountain goats
in the mountains of the Kenai Peninsula. The following section provides a brief
review of selected literatures followed by the methods used in this study. Study
area and data are described next followed by results. The final section provides

discussions and conclusion.

1.2 Review of Selected Literatures

There exists a wide selection of literature analyzing the habitat selection
and use for different species. The following sections provide a brief discussion of

some selected literatures that focus on the habitat use by different species.

1.2.1 Studies on habitat selection by species other than mountain

goat

Wintle et al. (2005) review fauna habitat modeling and model evaluation
methods including a case study of habitat modeling for seven species in New
South Wales (NSW). The purpose of the authors is to put together recent
developments in wildlife habitat modeling into one modeling and evaluation
framework and present those methods that seem to be most appropriate for
predicting the distribution of species habitat in a conservation planning context

in which technical expertise is limited. The most important factor determining



which modeling method to apply in any given situation depends on the nature of
the available data. There are five main levels of data availability: 1) little or no
data, 2) presence-only (or ad hoc) data, 3) presence-absence (or binary) data, 4)
ordinal categorical data, and 5) count data. Out of these five levels of data, the
situations with ordinal categorical and/or count data are not dealt by the authors
because these situations arise very rarely in conservation planning due to

prohibitive costs associated with capture of the data.

Pereira and Itami (1991) use multivariate statistical techniques to develop
habitat suitability models for the Mt. Graham red squirrel. The Mr. Graham red
squirrel, an endangered species, is very selective in choosing locations, not only
for midden but also for general activity areas. The major objectives of the study
are to predict the probability of red squirrel presence or absence, based on a
series of environmental and location-based descriptor variables. In addition to
the multivariate statistical models, the authors use Habitat Evaluation
Procedures/Habitat Suitability Indices (HEP/HIS) in their analysis. On the basis
of the impact assessment results, the authors argue that the Mt. Graham red
squirrel is in danger of extinction, and preservation of its habitat is a necessary

condition for long-term survival.

Harris et al. (2008) examine elephant habitat use in two different
ecosystems: arid Etosha National park in Namibia and tropical woodlands of
South Africa (Tembe Elephant Park) and Mozambique (Maputo Elephant
Reserve). The major objective of the study is to quantify the habitat

characteristics and express similarities in elephant habitat choices as ‘rules’. This

4



is done by considering the distances that elephants move together with features
of landscape-data. GIS data are combined with three most appropriate variables:
proportions of different vegetation types, access to water, and distances from
human settlements. Other things being equal, the elephants are found to move
short distances, keep close to water, select the highest vegetation cover, and avoid

people.

1.2.2 Studies on mountain goats and their habitat use

Coté and Festa (2001) assess the effects of maternal characteristics, forage
quality and population density on kid birthdate, mass and survival in a
population of marked mountain goats in Alberta. They find that the mountain
goats are constrained to give birth in a short birth season synchronized with
forage productivity. From 1993 to 1997, the median birthdate did not vary
statistically. Moreover, the authors do not find significant variation in the kid
birthdate even when the effects of maternal age, social rank, previous breeding
experience (primiparous vs multiparous) and density are considered. For kid
mass, it is found that the mountain goat kids gain mass linearly during summer.
Similarly, overall kid survival was 78.5 percent to weaning and 60.3 percent to 1

year.

Singer and Doherty (1985) reports mountain goat responses to highway
underpasses, road construction activity, lead-in fencing, and restrictive walls as

the mountain goats traveled to and from a natural mineral lick in Glacier



National Park, Montana. Mountain goat selection of crossing routes with security
cover suggests that they are most disturbed during the pre-construction period.
The use of more open exposed route was found to be increased during general
construction. After completion of both bridges, only 5 of 250 groups moved
around the ends of the facilities to cross the highway, but they were singles and

only 0.4 percent of all crossing goats.

Gross et al (2002) use logistic regression to develop habitat models from
observation of mountain goats in alpine habitats near Mr. Evans, Colorado. The
goal of the authors is to determine whether habitat use by mountain goats could
be predicted from GIS-based data and to evaluate seasonal differences in the
intensity and spatial patterns of habitat use. The results of the study show large
differences between typical group size and average group size indicating that
distributions of sizes are skewed toward large groups. A comparison of attributes
of active sites and the entire study area revealed differences in the distribution of
predictor variables between areas used and those of the entire study area.
Observed mountain goats selected sites closer to escape terrain and at
intermediate elevations within the study site. Moreover, predicted habitat
suitability increased with proximity to escape terrain and with southern
exposure. The coefficients of elevation and slope are positive whereas the
coefficients of squares of elevation and slope are negative indicating that habitat
use by mountain goats is most strongly associated with mid-elevations and
intermediate slopes. The results show little difference between summer and

winter habitat used by mountain goats.



Poole et al. (2009) examine winter habitat selection and wintering
strategies by mountain goats in two adjacent areas of southeastern British
Columbia using 15 GPS collared mountain goats in each areas. Using the multiple
logistic regression analysis, the authors find topographic variables among the
most important determinants, where mountain goats tend to select upper mid-
elevations and warmer aspects. Moreover, goats tend to be closer to the escape

terrain possibly to avoid predators.

Multiple logistic regressions and discrete choice modeling (resource
selection function) have been the common statistical method employed in the
studies of mountain goat habitat use where the goat locations data become
available. As mentioned above, some recent studies have employed negative
binomial regression to GPS collared data. This paper takes into account the
spatial CAR formulation in the count regression models by using goat locations to

examine the habitat use by mountain goat.

1.3 Methods

For mountain goats, a good deal of research uses remotely sensed images,
geographical information systems (GIS) and GPS data to identify suitable habitat
of ungulates. The GPS collar data helps researchers track individual animals over
a given period and allows for modeling resource use by capturing serial or spatial
correlation, resulting from animal movements within a geographical region

(Legendre and Fortin, 1989; Lichstein et al., 2002; Ramsey and Usner, 2003). It



is highly likely that species more often use resources that are close to its current
location, and GPS collar data, therefore, permits incorporating these spatial
components into the modeling. Discrete choice modeling is a widely used
technique that accommodates the probability of individual choices, and the
movement of animals can be included in the model to control the resulting serial
correlation. (Cooper and Millspaugh, 1999; Harris et al., 2008; Manly et al.,

2002; Nielson et al., 2009).

In this study, spatial count regression models (Poisson and negative
binomial regression models) are employed using GPS-based goat locations. These
count regression models produce coefficient estimates similar to those generated
by discrete choice models, but in a computationally efficient way. More precisely,
when the probability of individual choices is exclusively the function of choice
specific attributes, Poisson regression produces identical parameter estimates as
the discrete choice model (Guimaraes et al., 2003). The relatively simple count
regression models allow researchers to extend these models to incorporate
neighboring cells' spillover effects. In the presence of spatial interdependency,
the inclusion of spatial autocorrelation into regression model helps improve the

consistency of coefficient estimates (Dormann, 2007).

As mentioned above, this study uses Poisson and Negative Binomial model
in the spatial framework based on Gaussian Conditional Autoregressive (CAR)
formulation. Moreover, this study extends the use of spatial analysis to Poisson
and negative binomial regression models which are useful not only for this study
which uses GPS based locations data, but also for the data representing species

8



distributions exhibiting discrete values at different locations (such as bird counts,

aerially surveyed mammals, etc).

1.3.1 Basic Model

Following Cooper and Millspaugh (1999), the basic model starts with the
discrete choice model that specifies the probability of choosing a particular
alternative derived under the random utility theoretical framework popular in
economic theories. Under the random utility framework, the movement of an
ungulate from any location to a particular location j can be viewed as the utility of

location j being higher than all other alternatives. Therefore, if U, denotes the

utility from location 7, the probability that the ungulate chooses a particular

location j is given by

P, =Pr(U,>U,),Vj#i

J

=Pr(U,-U,),vj =1

J

In the absence of spatial effects, it may be assumed that utility from
location j depends exclusively on the landscape characteristics of that location so
that the utility obtained by an ungulate by choosing location j can be represented

as
U,=px;+¢; (1.1)
where, x; is the vector of observed variables on attributes of alternative choice j,

¢; is the unobserved error term and S is the parameter to be estimated. If ¢; are

9



independent and have an extreme-type-value 1 Weibull distribution, the

probability of choosing site j among all other alternatives is given by

P exp(,b’xj)
’ ijlexp(ﬁxj)

(1.2)

where, J is the total number of available alternative locations.

If the probability of choosing a particular alternative depends exclusively
on the vector of that alternative's attributes, the results from standard conditional
logit model (or discrete choice model) could be identically estimated by running a
simple Poisson regression model with the response variable being the number of
times a particular location is chosen (see Appendix A for the equivalency between
Poisson and Conditional logit model). The transition from a conditional logit to a
Poisson model has at least one notable advantage: it helps to overcome the
problem of estimation associated with the large number of choices by reducing
the computational complexity. Partly because of this added benefit, it allows
researchers to include spatial covariates to explain the effects of neighboring

locations' attributes on an ungulate's choices.

Suppose Y; is a response variable representing the number of times an
ungulate appears in a particular location j (j = 1, 2, ..., J). Suppose explanatory
variables are denoted by xj, the landscape characteristics of location j. Then the
standard Poisson distribution for the response variable is given by

_exp(-4) A

P(Y =y) .

(1.3)
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where, 1=E(Y)=V(Y). One limitation of the Poisson model is that the mean

and variance are equal. The negative binomial model is an alternative to the
Poisson model that allows the variance to deviate from mean and captures cross-
section heterogeneity. The negative binomial distribution for the response

variable Y'is given by

Pr(Y:y):1;(!??:))(9?,1ﬂeiﬁy (1.4)

where, 1=E(Y)and V(Y)=A4+1°6, and 6 captures the cross-section

heterogeneity.

1.3.2 Model with Spatial Component

The probability distributions given by the conditional logit model
(equation (1.2)), Poisson model (equation (1.3)) and negative binomial model
(equation (1.4)) assume that the choice decision depends only on the
characteristics of location j and therefore ignores the attributes of neighboring
locations. However, it is reasonable to assume that the characteristics of
neighboring locations have significant influence on animals’ choices. This is
especially true in case of mountain goats, which prefer landscapes with higher
forage availability and at the same time try to remain within the close proximity

of the escape terrain to avoid predators (Gross et al., 2002; Poole et al., 2009).
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Theoretically, including the attributes of neighboring locations, the utility

function (equation (1.1)) takes the form
J
U, :,[)’xj+Zwﬁ,Bxi+gj (1.5)

where, w; is the weighing sequence defined in terms of the distance between

locations j and i. For estimation purposes, the spatial effects are included into the

count regression models. Therefore, if y is the vector of spatial random effect for

each location, the parameter estimates follows
E(Y|B)=exp(xf+7) (1.6)
Here, the parameter y is the assumed to be normally distributed with
y~N(0,0°Q™)

the precision matrix Q = Qj given by

1H|y|-N, i=j
Qij =Y i~J
0 otherwise

where, the notation i ~ j implies that locations 7 and j are neighboring locations

and N; is the number of neighbors of location i. The parameter y determines the
overall degree of spatial dependence, so that = 0 implies locations are spatially

independent and as y increases the degree of spatial dependence increases.
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1.3.3 Estimation Method

Using the standard conditional logit model, the estimation method follows

maximization of log likelihood given by
J
InL=>n;InP, (1.7)
Jj=1

where, n, =1 if the ungulate picks choice j and n, =0 otherwise. If nj is

independently Poisson distributed, following Guimaraes et al. (2003), it can be
shown that the log likelihood is given by

J J
InL=%n,InP,~N+NInN->'Inn,! (1.8)

j=1 j=1

The first term on the right hand side of equation (1.8) is exactly identical
to the log likelihood in equation (1.7) and the remaining terms are independent of
the parameters.! The maximization of likelihood therefore provides identical

parameter estimates.

In order to incorporate spatial dependency, this study considers models in
a Bayesian context. Since the resulting parameters are not analytically tractable
because of the high dimensional posterior distributions, parameters are
estimated using a Markov chain Monte Carlo (MCMC) method. MCMC generates

approximate samples for the posterior distribution from which the mean and

1 The details of equivalence between conditional logit and Poisson models are provided in the

Appendix A.
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standard error of the parameter estimates are obtained. There are various
samplers available, such as Gibbs sampler and Metropolis Hastings (MH)
sampler. This study uses R Statistical Software (2013) to estimate parameters by
using built-in R package 'spatcounts' developed by Schabenberger (2009). This

package uses independence MH sampler, relying on a Student's t-distribution

with v =20 degrees of freedom. Were p(8|y) the posterior distribution, then the
independence MH sampler algorithm used in our models can be summarized in
the following steps.

Step 1: Choose a starting value #(0) and the number of iterations

T.Set t=1.
Setp 2:

a) Calculate the mode 6 _ . and the inverse curvature at the mode

mode

_H(6

mode

)" of the target distribution.

b) Propose a candidate value

eq(e)—iﬁ(/)y_ﬂ)a (”]

1/2
where 0:(—V—HH(9 )lj .

mode
14
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p(ély) q(6)

_ dset 8 =6,
p(et—1|y) q(e) ana se

c) Accept 6 with probability min<1,

otherwise set §' =6'".

Step 3: If t =T stop the algorithm. Otherwise set t =t +1 and

return to Step 2.

The maximum iteration is set at T = 20,000 for each of the Poisson and
negative binomial models. For the models without spatial components, first
models are estimated and corresponding Akaike's Information Criteria (AIC) are
used to identify the model with the best fit. However, in the context of spatial
regression models, Deviance Information Criterion (DIC) is used. DIC is
particularly useful in Bayesian model selection problems and is a popular

criterion designed to compare hierarchical models. It is computed as

DIC=2D(6|y)-D(9)

where D(8|y) is the estimated posterior mean of the deviance and D(8) is the

deviance of the estimated posterior means. The model with the lower values of

AIC and DIC are preferred.

1.4 Study Area and Data

The study area includes interior mountains within the Kenai Peninsula of

South Central Alaska (Figure 1. 1). This study uses the data obtained from Alaska
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Department of Fish and Game which deployed Tellus 2D GPS collars
(manufactured by Televilt) on 12 mountain goats in two different areas (seven
goats in the Gilpatric Mountains and five near Spencer Glacier) in October 2007.
The data on ten mountain goats were successfully retrieved in May 2008.
Because of GPS errors on some of the goats, this study uses only the goat
locations of five and three goats during winters of 2007 and 2008, respectively.
Winter period are identified as the period from January 1 to March 31 following
Smith (1977) and Poole et al. (2009). These data sets for eight goats during
winter consist of mountain goat GPS locations recorded at an interval of one hour
with only 7% missing observations. Nielson et al. (2009) show that if 10% or
more of fixes are unsuccessful it can bias results but do not investigate the lower

levels of missing data in the current sample.

With GPS locations from all of these goats, a minimum convex polygon is
created. This area is then buffered by 5 km, the maximum distance moved by a
goat in one hour within this data set. The entire area is used to classify the
suitable habitat for mountain goats. Nevertheless, the analyses are performed at
finer scales, and hence, the regression parameters are estimated using a smaller
area for each goat. For the smaller area, minimum convex polygon (MCP) is
created from the GPS locations of each goat during the given winter period and a
systematic rectangular grid (of 60 x 60m resolution) is created within each MCP.
The number of goat locations recorded within each 60 x 60m grid cell in the
three months period of winter is considered the response (dependent) variable
for the count regression models.
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Explanatory variables include elevation, distance from escape terrain
(DistEsc), aspect, vector ruggedness measure (VRM), shrub and rock. This study
uses digital elevation model (DEM) raster images of 60m x 60m resolution to
extract slope, aspect and VRM.2 Aspect is converted to a continuous variable by
taking the cosine of the angle so that its value ranges from -1 to +1, representing
south to north. VRM is calculated using the ArcGIS Script (Sappington et al.,
2007) over a 3 x 3 neighborhood cell, and is converted to a 0-100 scale. Higher

values of VRM represents more rugged terrain.

There is no consensus among the existing studies defining escape terrain.
For example, Gross et al. (2002) consider slope greater than 33 degrees whereas
Poole and Heard (2003) categorize areas with slope greater than 45 degrees as
escape terrain. In this study, the landscape grid with slope greater than 40
degrees is arbitrarily considered as the escape terrain and the distances from
each cell grid to a nearest escape terrain is calculated (scaled to 100m). Following
the standard procedure to include dummy variables in a regression model, only
two categorical variables (shrub and rock) are used; the third category (forest) is

considered a base category.

2 The variables slope and distance to nearest escape terrain are found to be highly correlated.
Distance to a nearest escape terrain is considered more important characteristic based on the
existing literature (Poole et al, 2008, Gross et al, 2002) and as such, slope is dropped from the

models.
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1.5 Results

1.5.1 Spatial count regression

Table 1. 1 and Table 1. 2 report parameter estimates generated by Poisson
and Negative Binomial regressions without spatial components, while Table 1. 3
and Table 1. 4 present regression results with spatial components.3 The
coefficients for each goat are estimated separately. Each column contains the
parameters and their standard errors for an individual goat.4 As this study
focuses on introducing the spatial count regression model, models are kept
simple by including only the most important variables. Based on previous
literature (Gross et al., 2002; Poole et al., 2009), positive signs are expected for
parameters describing elevation, VRM, rock and shrub, and negative signs for
Aspect (cosine of aspect) and DistEsc (distance to nearest escape terrain). With
few exceptions, most coefficients are statistically significant and have the

expected signs.

Results from simple count regression models are not comparable directly
with the spatial count regressions because the two methods are different and

additional parameters are included in the spatial count regression models. The

3 Results from discrete choice models are presented in Appendix B. When distances from
previous locations are not included, the coefficients from discrete choice models are exactly

identical to the Poisson model without intercept term.

4 Attempts are made to consider pooling the data and estimating the joint coefficients but rejected

based on the likelihood ratio test.
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parameter y is statistically significant emphasizing the spatial dependency

(Table 1. 3 and Table 1. 4). Moreover, if the insignificant coefficients are ignored,
and models are compared based on the estimated coefficients about whether they
meet the expected sign, the spatial count regression could be considered to better
predict goat choices. For example, all of the statistically significant coefficients
for elevation are positive in the spatial count regression models but some of the

coefficients have negative signs in simple regressions.

Coefficients for continuous variables in a count regression model can be
loosely interpreted as the rate ratio corresponding to a one-unit difference in the
predictor. In all the models of this study, the dependent variable is the number of
times a goat visited a particular location (grid-cell). For estimation, the
explanatory variables are deviated from their mean values. Therefore, the
statistically significant coefficient for elevation in the Poisson model (Table 1. 3)
ranges from 0.5 to 0.94 across different models which implies that goats
increases the intensity of use by 1.65 to 2.6 times in areas that are one unit
higher than the mean elevation values. Similarly, the numbers of visits to a
particular location by goats are 1.12 to 1.54 times higher for 1 percentage point

greater values in VRM index from their mean values.

The coefficients on DistEsc are most consistent and statistically significant
throughout the regression models emphasizing the importance of escape terrain
on goat preferences. The coefficients on DistEsc from spatial Poisson regression
across models ranges from -1.26 to -0.47 indicating the number of visits to
increase by 37.5 to 71.6 percent when a location is closer to the escape terrain
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measured by one unit greater than their mean values. The negative and
significant parameters corresponding to Aspect implies that mountain goats
prefer cliffs with southerly aspect. Similarly, mountain goats prefer barren rock
and shrub as implied by positive signs on their corresponding coefficients across

individual models.

1.5.2 Habitat Classification Map

This study uses the regression coefficients from spatial Poisson and
negative binomial models to classify suitable habitat for mountain goats
inhabiting the Kenai Peninsula (Figure 1. 2). First, separate maps describing
habitat suitability for each mountain goat are obtained by using the coefficients
from each regression model. Raster grids from each model are then combined to
gain a single raster image representing the average values. The five different
ranges of suitability are classified with quantile classification in ArcGIS. Figure 1.
2 also shows actual goat locations overlaid on the classified map. It is found that
84 and 79 percent of goat locations are contained within the predicted top 20
percent (most preferred) areas from spatial Poisson and negative binomial

models respectively.

1.6 Discussions and Conclusion

Habitat models producing accurate maps help wildlife managers define
important habitats thereby helping conserve wildlife populations. The aim of the

present study is to classify suitable mountain goat habitat in Kenai Peninsula
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and, while doing so, provide an improved estimation procedure with the GPS
based location data, namely spatial count regression. These count regression

models also produce regression coefficients similar to the discrete choice models.

One issue in using GPS collar for generating species and habitat
relationships is serial correlation in animal movements (Ramsey and Usner,
2003). It is highly likely that two consecutive locations will be close to one
another as there is always a maximum feasible distance moved by an animal. One
approach to control for such correlation would be to include the distance moved
by an ungulate as an explanatory variable in the regression model. Discrete
choice models have this noticeable advantage over simple Poisson models, since
the distance moved by an animal could be incorporated into the model. However,
this requires maximization of the likelihood function, which increases the
computation burden and becomes infeasible while dealing with large data sets.
The alternative to a maximum likelihood method, such as a conditional logit
model that can be fitted with some standard statistical packages, requires much
effort in data manipulation and organization before running the estimation
procedure, especially when the distance moved by an animal is to be included.
Incorporating distance as a variable in count regression models is theoretically
very complicated, if not impossible. However, count regression models allow
researchers to address the issue of spatial or serial correlations by including the

effects of neighboring locations into the model.

As this study introduces spatial effects into the model, models are kept
simple by including mainly terrain features. Instead, emphasis is given more on
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the implementation of methods to incorporate spatial effects for the data derived
from GPS collared animal locations rather than to explore any additional
determinants of goat habitat use. However, depending on the availability of data,
these models can be extended to include variables reflecting human activities and
climate change. Knowledge of the ecological foundations forming mountain goat
habitat fosters management of these areas, and enables ecologists to assess how
such recreation overlaps with them. Accurate maps of goat habitat describing
locations animals frequent during winter would help attenuate such effects.
Moreover, such areas can serve as scientific controls, or benchmarks, to evaluate
and compare seasonal movements and distributions of animals in the absence of
human disturbance, since recreational activities hold potential to displace goats
from preferred wintering areas. If so, reducing the quality or quantity of winter
ranges can detrimentally affect these ungulate populations (McDonough and

Selinger, 2008).
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CHAPTER 2

Does winter recreation influence mountain goat habitat selection?

2.1 Introduction

In Alaska, mountain goats hold high value to locals and visitors for both
consumptive (hunting) and non-consumptive (watching) purposes. The Chugach
National Forest and the Alaska Department of Fish and Game manage mountain
goat habitat and goat numbers on the Kenai Peninsula. Both agencies are
concerned about the increasing human activity displacing goats from wintering
areas. Mountain goat, being one of the big game animals, shares the total revenue
generated from outdoor recreation such as hunting and wildlife viewing.
According to National Survey of Fishing, Hunting and Wildlife Associated
Recreation 2011, one million residents and non-residents spent $3.4 billion on
wildlife recreation in Alaska. Given the huge economic benefits of wildlife, and
that the wildlife population has direct relationship with wildlife associated
recreational activities, maintaining sustainable wildlife population and its habitat

is crucial to continue generating economic revenues from this sector.

This study seeks to achieve two main objectives relating to wildlife habitat
use with special emphasis on mountain goat habitat in Kenai Mountains of

Alaska. First, regression based test of equivalency is used to compare the
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predictions of intensity of habitat use by mountain goats from model outcomes
using two different sources of data, GPS collared locations and aerially surveyed
locations. Although both sources of data contain actual locations of mountain
goats, they fall under different study designs popularly employed in resource
selection studies as described by Manly et al. (2002); aerial surveys are examples
of Design I where measurements are made at the population level whereas GPS
collared locations are applications of Design II and Design III with individual
animals being identified or collected for the study. Typically Design I are
inexpensive compared to Design II and III because individual animals are not
captured, collected or relocated (Manly et al., 2002, p. 8). The GPS collared
locations data, on the other hand, have advantages particularly in terms of
increased precision and accuracy and are increasingly used in habitat selection
studies (Whittington et al., 2005; Sawyer et al., 2006; Frair et al., 2010).
Nevertheless, the use of GPS technology in habitat selection studies has its own
limitation arising from the tradeoff between sample size and the cost of GPS units
(Hebblewhite and Haydon, 2010). Comparison of resource selection by animal
from different sample designs is expected to be helpful to researchers for
considering analysis options when data are constrained by either the costs or the

availability of information on available/use resources in the study area.

The second objective central to this study is to examine the effect of
human winter recreation on mountain goat habitat selection. While factors
affecting wildlife population are numerous, conflict of resource use may be

considered as one of the potential components. For instance, geographical
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locations suitable for mountain goat winter habitat may be used by human winter
recreationist thereby reducing the home range of these animals. Understanding
the influence of human disturbance on habitat of mountain goat is fundamental
to achieving the objective of conserving these ungulates. To this end, Bayesian
model comparison method is employed to highlight the significance of conflict

between winter recreation and mountain goat habitat use.

2.2 Data and Study area

The study area includes the mountains of Kenai Peninsula, Alaska. Within
Kenai Mountains, goat locations data obtained from two different sources and
methods are used to examine habitat use by mountain goat. First, GPS Collar
data of five mountain goats in Gilpatrick Mountains and near Spencer Glacier are
used to examine habitat use by goats. These data contains actual locations of
animals during the winter period (January-March) of 2007 and 2008, where GPS
fixes occur at one hour intervals. The second set of data includes locations of
mountain goats observed from aerial flight survey in winter period of 2005 in the
Kenai Mountains. Since GPS collared goat locations are clustered in small ranges,
the study area is defined by creating Minimum Convex Polygon (MCP) using all
goat locations observed in aerial survey, which covers wider geographical area

than the GPS locations.

For GPS Collared location data, Minimum Convex Polygons (MCPs) are

created to represent home range for each goat separately. Then geographical
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characteristics of the landscape within each MCP are extracted from DEM raster
image of 6o0mx60m. Number of cells within each MCP varied from 345 to 5541
for different goats. Since this study focuses on employing count regression
(Poisson and Negative Binomial) models to estimate the parameters of interest, a
count-variable is generated by counting the number of times a goat appears in a
particular grid cell during the study period of three months. This count-variable
is used as response (dependent) variable in our regression models, which

represents the intensity of habitat use by mountain goat at any given location.

For aerially surveyed data, the data set consists of a total of 288 goat
locations observed during the winter period in 2005. These data include the
locations as well as the number of goats observed at each of the locations. In
order to consider available/unused resources, using each raster grid within the
entire study area would not be feasible due to relatively larger geographical area
resulting in extremely large number of grid cells within the study area. Instead,
geographical points equal in number of goat locations are randomly generated
using ArcMap, and are considered as locations of unused resources. The goat
points and random points are combined and corresponding landscape

characteristics are extracted from the raster image of 60mx60m for each point.

This study uses DEM raster image of cell size 60m to extract slope, aspect
and Vector Ruggedness Measure (VRM). VRM is calculated using the ArcGIS
Script (Sappington et al., 2007) over a 3 x 3 neighborhood cells, finally
converting to 0-100 scale, higher values corresponding to more rugged surface

(broken terrain). Distance from escape terrain, described as steep slopes of
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broken rocky terrain (Gross et al., 2002), has been found to be one of the most
important factors affecting goats' decision on habitat use in the existing literature
(Gross et al., 2002; Poole and Heard, 2003; Poole et al., 2009). Landscape grids
with slope greater than 40 degrees are defined as escape terrain. From each
raster cell, distance to a nearest escape terrain is calculated in ArcMAP using
‘near’ tool. Aspect is converted to a continuous variable by taking Cosine of the

angle so that its value ranges from -1 to +1 representing from south to north.

Additional variables corresponding to available landscape cover types are
also included as explanatory variables in the regression models. Following the
standard statistical procedure to treat binary independent variables in a
regression model, only two features, rock and shrub, are included because within
each MCP of individual goats, other features are either not available or, when
available, are inadequate in number of observations to be included into the
models. The same cover-type features are included in the models utilizing the
aerial data so as to make the results comparable to those obtained from GPS
collar data. A brief description of variables used in this study is provided in Table

2. 1.

In order to examine the effect of winter recreation on mountain goat
habitat, the data on ski-tracks observed during the flight survey are used. The
area of ski-tracks within 5 km buffers of each of goats’ locations and random
points are calculated. In addition to ski area, two variables corresponding to
hiking trails in the study area are considered: distance to the nearest trail from

each location, and the trail-length within 5 km buffer of each location.
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2.3 Methods

This study uses Poisson and negative binomial models to estimate the
coefficients. For the count regression models, suppose Yj is a response variable
and represents the goat count in a particular locationj (j = 1, 2, ..., J). The

standard Poisson distribution for the response variable is

exp(—-4)A4Y
P(Y:y):# (2.1)
y!
where, A=E(Y) and V(Y )=A. Similarly the negative binomial (NB)
distribution for the response variable is
0 y
Pr(Y=y)=F(y+0)( 4 J ( A j (2.2)
yilr(8) \6+41) (6+4

where 6 captures the cross-section heterogeneity. The mean and variance of NB

distribution are A=E(Y) and V(Y)= A4+ 1°0 respectively. The equation being

estimated is then written as
f(4)=In(1)=PBx

where, B and x are the coefficient and variable matrices respectively.
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2.3.1 Estimation

This study uses 'glm' and 'glm.nb' functions in R (R Core Team, 2013) to
obtain parameter estimates of Poisson and Negative Binomial regression models.
However, the program codes are written in R to maximize the likelihood function
for the discrete choice models (R Codes are provided in Appendix D). For GPS
collar data, the regression coefficients are estimated individually for each goat.5
The regression coefficients from GPS collar data and aerial survey data are not
directly comparable as they are performed at different geographical scales.
Therefore, first classified raster grids are generated with equal interval of values
from 0 to 100 to represent predicted habitat use by mountain goats from both
sources of data. Then regression based test of equivalence (described below) is
performed. Finally, the negative binomial regressions are estimated using
Bayesian method for aerially observed mountain goat locations with and without
some additional features representing the proxy related to human recreational

activities.

5 An attempt was made to pool the data for all goats, but rejected the model based on likelihood

ratio test.
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2.3.2 Regression-based test of equivalence for model results from two

data sets

Before using the aerially surveyed data, the regression-based equivalence
test is performed to confirm that the results from two different data sets produce
predictions that are statistically equivalent. In order to achieve this, I adopted the
method from Robinson et al (2005), the procedure of which is briefly described

below.

1. Poisson and negative binomial models without spatial components are
estimated and predicted values are mapped to a raster image. These
predictions from GPS data and aerial data are then transformed to 1-100
range from the raster grid with higher values corresponding to more
suitable habitat.

2. The results from GPS data are deviated from mean to ensure that the
estimates of slope and intercept are independent. This allowed me to
perform test of equivalence on both intercept and slope independently.

3. The regions of equivalence are established at 10 percentage for both
intercept and slope (RE’, RE” ) .
4. Linear regressions are fitted with mean deviated GPS model results as

predictor variable and aerial model results as response variable.

5. Two one-sided 95% confidence intervals for both intercept and slope are

calculated (CE‘ ,CE" )
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The regression based test of equivalence suggests that if the computed
confidence intervals fall within the regions of equivalence, the predictions from

two approaches are equivalent.

2.3.3 Bayesian Estimation

Bayesian inference approach starts with the probability model for data y,
which is specified by a vector of d unknown parameters 0 =(6,,6,,...,6,)
considered as random variables. Before data are observed, prior beliefs about the
parameter vector are represented by prior probability distribution p(0). The

prior distribution reflects the researcher's uncertainty about the parameters and
is subjective in that any two persons may have different prior beliefs about the
same parameter vector 0. Once the data are observed, the prior beliefs are

revised using Bayes' theorem to construct the conditional distribution of

parameter p(0|y) called posterior distribution. From the Bayes theorem, we

have,

_p(y18)p(6)

p(0ly) )

where, p(y)= I p(y10)p(0)do is the density of the marginal distribution of y.

For estimation purposes, the posterior distribution is obtained up to a constant of

proportionality depending on the data and is written as
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p(01y)=p(y10)p(0)

Therefore, the posterior distribution is proportional to the likelihood times the

prior.

In this paper, Bayesian inference technique is used to estimate the

parameter vector for negative binomial regression with the likelihood

p(y|e):ﬁ%qf(l—q»yf

i=1

where,
a
o A
and
A =exp(xB)

Here, the model specific parameter vector is @ =(f,), where « is the
over-dispersion parameter. The prior for § and « are chosen as § ~ N (0,0“11)

and & ~Gamma(a,b). Since the posterior distribution is not analytically

tractable, Markov chain Monte Carlo (MCMC) method is applied to generate
approximate samples from the posterior distribution. Particularly, this study

employs Random Walk Metropolis Algorithm within the negative binomial

regression model where (B|«) and (o|B) are drawn with two different random

walks.
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2.3.4 Model Comparison using Bayes Factor

The posterior mean and corresponding standard deviation of model
specific parameters reflect the importance of individual parameters associated
with the variables entering into the model. In addition, it is often of interest to
compare the fit of two or more competing models, which allows researchers to
select the best model for the given data. The model comparison problem, in this
paper, is addressed to emphasize the role of human recreational activities on
mountain goat habitat selection. In the Bayesian context, the pair-wise model

selection proceeds by comparing models through their posterior odds ratio given

by
Posterior odds = Prior odds x Bayes Factor
More precisely, the posterior odds ratio of two models M, and M, is

written as

p(M,|y) _p(M,) p(y|M,) (2.9)

p(M,ly) p(M,)p(y|M,)
where,

p(ylMi):_[p(ei|Mi)f(y|Mi’0i)dei (2.4)

is the marginal likelihood of model M;, and 0, is the model specific parameter

vector (Chib and Jeliazkov, 2001). If one assigns equal priors to the models, the

prior odds ratio (first fraction on the right hand side of equation (2.3)) drops out
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so that the posterior odds ratio equals Bayes Factor (second fraction on the right

hand side of equation (2.3)), which, in turn, is the ratio of marginal likelihoods.

The marginal likelihood of each model is approximated using Laplace

method®. Representing the marginal likelihood as
p(y)=[p(0)exp[Inf(y|0)]dO

and integrating the quadratic approximation for the log-likelihood centered at its
mode, the maximum likelihood estimate (MLE), the approximated marginal-
likelihood is given by
- (27)"

det(Q)
where @ is the MLE and Q is the observed information matrix (negative Hessian

of the log-likelihood) evaluated at MLE. The approximated marginal likelihood is

then used to compute Bayes factor.

Raftery (1996), following Jeffreys (1961), proposes the scale for

interpreting Bayes factor. If BF, denotes the Bayes Factor for comparing model
M, against model M, (defined as the ratio of marginal likelihoods of M, to

M,),

2In(BF, ) <0 Negative evidence for M, (supports M, )

6 I modified the R code for the function rnegbinRw from R package bayesm by Rossi (2012) so as

to extract marginal likelihood from Laplace method. See Appendix for the detail code.
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o<2In(BF,)<2.2 Very weak evidence for M,

2.2<2In(BF, ) <6 Positive (moderate) evidence for M,
6<2In(BF, )<10 Strong evidence for M,
10<2In(BE,) Very strong evidence for M,

2.4 Results

Estimated coefficients for Poisson and negative binomial models for each
of the individual goats are shown in Table 2. 2 and Table 2. 3 respectively. With
few exceptions, most of the estimated coefficients for individual goats meet
expected signs. For example, goats prefer higher elevation, with rugged terrain
features and areas closer to the escape terrain. These model results are used to
create map layers of predicted habitat use by mountain goats. Then, for each of
the models (Poisson and negative binomial) the predicted maps are combined to
gain a single layer of predicted habitat use for the entire study area. Figure 2. 2
and Figure 2. 4 show the predicted habitat use obtained from GPS collared data

using Poisson and negative binomial models respectively.

Similar analysis is performed for aerially surveyed goat locations data.
Table 2. 4 shows the estimated coefficients from Poisson and negative binomial

regressions. The parameter 6, which captures the cross-section heterogeneity, is
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statistically significant and highlights the importance of negative binomial
models for these data. The coefficients of the estimated models are used to create
map layer, which are shown in Figure 2. 3 and Figure 2. 5. The maps layers from
two different data sources are visibly similar for both Poisson and negative
binomial models. In order to establish the equivalency between these predicted
map layers, the regression based test of equivalency is performed separately for

each of the count models as described in Section 2.3.2.

The results of comparison between predicted habitat-use from two sources
of data are shown in Table 2. 5. At the mean values, the confidence intervals are
contained within the regions of equivalence for both intercept and slope for each
of the models. This suggests that the predicted habitat use by mountain goats
from two different sources of data are statistically equivalent suggesting that both

types of data are useful in habitat use studies on mountain goat.

2.4.1 Bayesian model comparison

Table 2. 6 reports the posterior mean and standard deviation for four
models. Model M, includes only the variables representing landscape
characteristics, while models M,, M», and M; include an additional variable as a
proxy for capturing human related recreational activities. All of the statistically
significant coefficient estimates have expected signs. Moreover, the negative and
significant estimates of SkiArea and TrailLength in models M; and M,, and the

positive and significant estimates of TrailDist in Model Mj signifies the adverse
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effect of human activities on the goat habitat use. Particularly, the posterior mean
of -0.0253 for SkiArea in model M; implies that as Ski-track area increases by one
square km within a buffer of 5 km of a given geographical location, one would
expect, on an average, the goat count to decline by 2.5 percentage. Similarly, the
model coefficients for TrailLength from M. can be interpreted as when trail-
length increases by 1 km within a buffer of 5 km of a location, the mean goat
count is expected to decline by 3.18 percentage. As expected, the coefficient on
TrailDist is positive implying that the goat numbers are expected to be higher at
locations farther away from hiking trail. In particular, other things remaining
same, the goat numbers are expected to be 5.9 percent higher at a location that is

1 km farther away from a nearest hiking trail.

Table 2. 7 shows the logarithm of marginal likelihoods and the
corresponding twice logarithm of Bayes Factor for the three models. For each of
the three models (M, M., and Ms), twice log of Bayes Factor is greater than 10
indicating that the data shows very strong evidence for these models as compared

to the base model M,.

2.5 Discussion and Conclusion

The decline in the number of goats due to increasing human recreation
may result in the loss of net economic benefit to society. Only in the presence of
unlimited geographically suitable locations, such decline in number of goat could

represent a displacement from one location to the other, potentially offsetting
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such losses. Swanson et al. (1989) reports net willingness to pay for mountain
goat hunting of $73 and $99 per trip (1984-85 unadjusted value) for residents
and non-residents of South-East Alaska respectively. If we assume that the
increase in winter recreation and the resulting decrease in goat numbers lead to a
decline in 100 resident and 50 non-resident hunting trips, there will be a loss of
$12,250 in the net willingness to pay value from mountain goat hunting.
However, this change in net value does not take into account the loss of value
from source other than hunting, such as wildlife viewing. On the other hand, gain
in the economic value from winter recreation could potentially reduce the loss of
net economic value. The interaction of human recreation with goat habitat calls
for an intensive benefit-cost analysis which could provide an insight to land
management agencies. While almost all of the outdoor recreations hold economic
value (market and/or non-market), the resource allocation decision has to be
made so as to maximize the net economic benefit when these recreations overlap
in a given geographic region. The interaction of human winter recreation and
mountain goat habitat use necessitate a detailed cost benefit analysis comparing
the net economic benefits generated from various outdoor recreation activities

together with the conservation of wildlife habitat.
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Table 2. 1: Descriptions of Variables

Variables Description of Variables
Number of times the goat is present in particular cell
Count (Dependent Variable in all count regression
models)
Elevation Elevation (in 100 m)
ElevationSq Square of Elevation
Aspect Cosine of Aspect
VRM Vector Ruggedness Measure (0-100)
Distance from nearest Escape Terrain (in 100m);
DistEsc Escape Terrain represented by grid cells with
Slope 40 degrees or more
Shrub Shrub
Rock Rock
) Area of ski-tracks formed by winter recreationists
SkiArea . .
within a buffer of 5 km (in square km)
TrailLength Total trail length within 5 km buffer (in km)
. Distance to the nearest trail from each location (in
TrailDist

km)
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Table 2. 4: Poisson and Negative Binomial Regression Results (Aerial Data)

Poisson Neg. Bin
Constant -2,752" -3.452""
(0.484) (0.683)
DistEsc -0.203™ -0.205™"
(0.026) (0.035)
Elevation 0.678™ 0.814"
(0.101) (0.145)
ElevationSq -0.034™" -0.040™"
(0.005) (0.008)
Aspect -0.354" -0.336™"
(0.063) (0.096)
VRM 0.040" 0.035
(0.018) (0.030)
Rock 0.063 0.084
(0.103) (0.164)
Shrub 0.086 0.077
(0.085) (0.139)
Theta 1.086™"
(0.138)
Log-likelihood -925 -801
AIC 1867 1621
N 576 576

Standard errors in parentheses. * p < 0.05, ™ p < 0.01, ™ p < 0.001.
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Table 2. 5: Summary of equivalence-based regression results

Model Region of Equivalence Confidence Interval
Coefficients RE- RE+ CI- CI+
Poisson Model

Intercept 62.4847 76.3702 75.0585 75.0721
Slope 0.9000 1.1000 0.9781 0.9790
NB Model

Intercept 65.2849 79.7026  75.7422 75.7584
Slope 0.9000 1.1000 1.0886 1.0897
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Table 2. 6: Posterior mean and standard deviation of negative binomial

regression coefficients

Mo M1 M2 M3

Constant -0.4869 -0.3033 -0.4705 -0.9036"

(0.2659) (0.2784) (0.2686) (0.2849)
Elevation 0.1084™" 0.1068™" 0.1132" 0.103™"

(0.0262) (0.0269) (0.0259) (0.0262)
CosAspect -0.2662™ -0.2053" -0.2506" -0.2448"

(0.0986) (0.1012) (0.0984) (0.0993)
DistEsc -0.247" -0.2486™" -0.2438™ -0.254""

(0.0336) (0.0336) (0.0342) (0.0346)
VRM -0.0035 -0.0028 -0.0091 0.008

(0.0299) (0.0303) (0.0306) (0.0306)
Rock 0.0698 0.0821 0.0921 0.0012

(0.1733) (0.1744) (0.1746) (0.1734)
Shrub 0.2209 0.3352" 0.35" 0.3154"

(0.1409) (0.145) (0.1475) (0.1429)
SkiArea -0.0253™

(0.0071)
TrailLength -0.0323"
(0.0118)
TrailDist 0.057""
(0.0124)

a 0.9655™ 1.0012™ 0.9825™ 1.0141™

(0.1219) (0.1267) (0.1251) (0.1298)

Standard deviations of the posterior mean are in parentheses. The stars,

provided for reader's convenience, are defined as * p < 0.05, ” p < 0.01, ™ p
< 0.001. The variables SkiArea, TrailLength, and TrailDist are measured in
sq.km., km. and km. respectively.
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Table 2. 7: Logarithm of marginal likelihood and twice log of Bayes Factors

2In(BF,)
Models In(ML)
(against Model M,)
M, -787.96 --
M, -775.19 25.55
M, -778.73 18.47
M, -772.38 31.17
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CHAPTER 3

Statistical behavior of distance variables in hedonic property value

models

3.1 Introduction

The use of distance variable as a measure of proximity to environmental
amenity or dis-amenity is common in hedonic studies (Brasington and Hite,
2005; Noonan et al., 2007; Neumann et al., 2009). However, the effects of
distances to amenities (or disamenities) on housing prices are generally not
consistent indicators of the true price impact of those amenities (or
disamenities), especially when more than two landmark locations posing
amenities (or disamenities) to the house values are included in the model
specification (Ross et al., 2011). The inconsistency behavior of the distance
variables raises concerns about the implication of welfare estimates from studies

that primarily employ more than two distance variables.

The main objective of this study is to examine the behavior of statistical
properties, particularly in terms of the estimated coefficients and standard errors,
of distance variables in hedonic studies under two different scenarios. First case
describes an instance where there are unique locations of multiple types of

landmarks (such as wilderness area, central business district, airport) and
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distance variables associated with each of those unique locations appear in the
hedonic regression models. Under such case this study finds that the estimated
coefficients behave inconsistently as soon as more than two distance variables are
included in the model specification. Second example focuses on the case where
there are multiple locations for each type of different landmarks (such as five
high schools, four parks in the study area) and the proximity to each of these
landmarks is measured by distance to the nearest landmark location. When these
proximity variables as measured by distance to the nearest landmark locations
appear in the hedonic regression models, the inconsistency behavior no longer
remains as long as all of the true distance variables are included. To demonstrate
this point, a set of simulations are conducted to assess the statistical properties of
the estimated coefficients of proximity or distance variables. Next section
provides illustrative example of unique and multiple landmark locations followed

by two sets of simulations. The final section concludes.

3.2 Illustrative Example

The distinction between unique landmarks and multiple landmark
locations of a given type can be explained with the help of the following
illustrative example. Figure 3. 1 shows the spatial locations of housing units in a
given geographical space and three types of landmarks: points A, B and C. Panel
(a) of Figure 3. 1 has unique locations of the landmarks, where there is exactly

one landmark location of a given type (Ai, B; and C). The irresolvable
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identification limitations in the hedonic price analysis exist when the distance to
each of these landmark locations appear in the regression model. Panel (b) of the
figure shows multiple landmark locations of a given type. For example, A,, Ao,
and A; are three locations of the landmark type A, such as wilderness area. When
the hedonic price model includes only the distance to a nearest landmark, the
coefficients can be estimated consistently, provided that all of such distance
variables appear in the regression model that have true effect on the house price.
In other words, if all of the landmarks play important role in the determination of
house price, the nearest distance to each of the landmarks must appear in the

regression model to ensure that the coefficients are consistently estimated.

3.3 Monte Carlo Simulations

The simulations performed in this study follow Ross et al. (2011) in terms
of choosing parameter values and simulation procedure. Particularly two sets of
simulations are conducted. In the first set of simulations, the unique landmark
locations are generated during the data generating process (DGP) and the
distance to these landmark locations appear in determining true value of house
price. The coefficients are also estimated for distance to these unique landmarks

in addition to some hypothetical landmark locations.

The second set of simulations are constructed in the similar way except
that the distance to the nearest landmark of given type appear in both true DGP

and in the estimation of various regression models.
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3.3.1 Monte Carlo Simulation I

In each iteration of Monte Carlo simulations, 400 random locations are
generated on the space whose co-ordinates are randomly drawn from uniform
distribution between -10 and 10. These random locations are deemed to
represent house locations, whose values depend on an intercept term, a random
variable x and distances to a pre-specified number of landmarks. The landmark
locations are randomly generated over the geographical space whose co-ordinates
are uniformly distributed between -20 and 20. Denoting the house price by Y, the

true data generating process is based on the following equations:

Y=a+px+yD"+¢ (3.1)
Y=a+px+yD"+y,D"+¢ (3.2)
Y=a+px+yD"+y,D’ +y,D +¢ (3.3)

where, x ~ N(0,1), € ~ N(0,2) and D*, D®, and D are distance to the true
landmark locations (A, B, and C). When present in the equation of true DGP, the
parameters values are setto a=1, f=2, ,=-0.25, y,=-0.1,and 7, =-0.2.
The distance coefficients are negative to imply that the landmarks are amenities.

In each trial, additional sets of hypothetical landmark locations are generated, in

addition to the true landmark locations. The distance to these hypothetical

landmark locations are denoted by d*, d°, d° and so on. In each of the 10,000
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trials, once the dataset is generated, a linear model is estimated for a given set of
explanatory variables that include a combination of true and/or hypothetical
distance variables and the estimated coefficients are stored. The results of the

first sets of simulations are shown in Table 3. 1, Table 3. 2, and Table 3. 3.

Table 3. 1 shows the means and standard deviations of the estimated
coefficients for different linear models, where the true DGP includes distance to
only one landmark location (D*) as is shown in equation (3.1). The results

suggest that when the regression model includes two or less number of distance
variables, the coefficients are consistently estimated. However, when more than
two distance variables appear in the regression model, the estimated coefficients
are no longer statistically significant, especially in terms of distance to the true
landmark location. In addition, the estimated coefficient for the intercept term
remains no longer statistically significant when the regression model contains

two or more distance variables.

Table 3. 2 reports the means and standard errors of the estimated
coefficients for various linear models, where the true DGP includes distances to
two landmark locations (D4 and DB) given by equation (3.2). The estimated
coefficients behave in the similar fashion even when the true DGP contains two
distance variables. The most important and interesting point to note here is that
even if the distance variables D4 and D? appear in the true DGP, the estimated
coefficient for DB is not statistically significant when the regression model has
exactly same variables as in true DGP, although the mean value of the estimated

coefficient is very close to the true value used in the true DGP (Model 3 in Table
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3. 2). When more than two distance variables appear in the regression model, the
standard deviation of true distance variables are high enough to make them

statistically insignificant.

The statistical properties of the estimated regression coefficients of
distance variables shows further inconsistency as more distance variables are
included in the true DGP. This is reported in Table 3. 3, which shows means and
standard deviations of the estimated coefficients for various models based on the
true DGP given by equation (3.3). When there are three distance variables, none
of the distance variables are statistically significant, whether or not those
variables appear in the true DGP. All of these simulations imply that when the
regression model includes two or more distance variables corresponding to
unique locations in the space, the statistical significance of the estimated

coefficient does not convey the true importance of the landmark locations.

3.3.2 Monte Carlo Simulation II

In the next set of Monte Carlo simulations, the distance variables entering
into the true DGP as well as the regression models are slightly different in nature.
Here, the assumption is that there are multiple landmarks of a given type located
within the study area and the value of a house depends only on the proximity to
the nearest landmark. For example, if the study area of a hedonic model analysis

is a city, where there are multiple public parks, it is reasonable to assume that the
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house price is affected by the characteristics suggesting how far the nearest public

park is located, but is not significantly affected by any other public parks.

In each trial of the simulation, 400 random points are generated to
represent house locations on the space whose co-ordinates are randomly drawn
from uniform distribution between -10 and 10. Additionally, three landmark
locations of each type are randomly generated over the geographical space whose
co-ordinates are uniformly distributed between -20 and 20. For example, if A
denotes a given landmark, then three points, such as A;, A., and A, are generated
over the space and the distance to the nearest A is calculated for each house

location.

Denoting the house price by Y, the true data generating process is based

on the following equations:

Y=a+pBx+yD™ +¢ (3-4)
Y=a+pBx+yD"+y,D" +¢ (3.5)
Y =a+pBx+yD"+y,D" +y,D" +¢ (3.6)

where, x ~ N(0,1), € ~ N(0,2) and D™, D", and D™ are distances to the
nearest true landmark locations A, B, and C. When present in the equation of true
DGP, the parameters values are setto =1, f=2, y, =-0.25, ¥, =-0.1, and

7, =—0.2. In each trial, additional sets of hypothetical landmark locations are

generated; again three locations for each type of hypothetical landmark. The

distance to the nearest of these hypothetical landmark locations are denoted by
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d™, d®, d™ and so on. In each of the 10,000 trials, once the dataset is
generated, a linear model is estimated for a given set of explanatory variables that
include a combination of true and/or hypothetical distance variables and the
estimated coefficients are stored. The results of the simulations are shown in

Table 3. 4, Table 3. 5, and Table 3. 6.

Table 3. 4 reports the mean and standard deviations of the estimated
coefficients for various models when the true DGP includes only one distance
variable given by equation (3.4). As the results clearly indicate, the coefficients
are consistently estimated for any true variable appearing in the regression
model. One more point to note here is that the inclusion of addition distance
variables relating to the nearest hypothetical landmark locations does not
influence the level of significance of the true distance and non-distance

coefficient estimates.

Table 3. 5 and Table 3. 6 report the results from simulations where the
true DGP includes two and three distance variables corresponding to the nearest
true landmark locations. The means of coefficient estimates and their standard
deviations indicate that the coefficients are consistently estimated as long as true
distance variables are included in the regression model. The estimated
coefficients for distance variable D" in Model 3 of Table 3. 6 have very high
standard deviation implying that the variable is not statistically significant.
However, this may have been caused by the problem of omitted variable bias as
true DGP includes three distance variables whereas regression model includes

only two. When all of the true distance variables are included in the regression
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model the problem of inconsistency disappears. Moreover, as expected, the
standard deviations of the estimated coefficients of true distance variables
increase when more distance variables (relating to hypothetical landmark
locations) are added to the regression model. However, the cost of including
additional distance variables is not as high as compared to omitting true distance
variables. In any case, the coefficients of distance variables corresponding to
hypothetical landmark locations turn out to be statistically insignificant as

expected.

3.4 Conclusion

Hedonic price models are one of the revealed preference methods used in
the non-market valuation studies. These models are useful in estimating the
welfare measures as property values can capture the value of all possible changes
in environmental quality at a housing site in a single number (Freeman, 2003).
Hedonic studies often use distance variables as a measure of proximity to
environmental amenities/dis-amenities which proves useful in policy
implication. For example, local government may realize increased tax revenue by
protecting areas with richer environmental amenities, if such amenities raise

values of nearby properties.

Given the importance of distance variables, the reliability of estimated
coefficients is very important for gaining optimum policy decisions. This study

attempts to answer the questions raised in recent literatures on including
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distance variables in hedonic studies. If the objective of any hedonic study is to
capture the optimal location rather than estimating the welfare estimates
corresponding to the distance variable itself, one suggestion would be to use
longitude and latitude in the regression as suggested by Ross et al. (2011).
However, if the objective is to estimate welfare measures from distance variables,
it is suggested that researchers should be cautious to use them only when
multiple types of landmark locations are present in the study area and the

distance to nearest landmark location for each type is considered.
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Table 3. 1: Means and Standard deviations of Monte Carlo Simulation (Number
of landmarks of a given type = 1, True number of Landmark locations in DGP = 1)

Model 1 Model 2 Model 3 Model 4 Model 5
Constant -4.812* 1.004%** 1.001 1.021 0.972
(2.053) (0.332) (0.746) (1.550) (2.645)
X 1.99Q9*** 1.99Q*** 2.001%%* 1.99Q*** 2.000%%*
(0.118) (0.099) (0.100) (0.100) (0.101)
D4 -0.250%** -0.250% -0.251 -0.249
(0.019) (0.111) (0.257) (0.424)
d* -0.001 -0.001 -0.001
(0.112) (0.411) (0.377)
d’ 0.001 0.002
(0.386) (0.377)
d¢ -0.002 -0.001
(0.167) (0.441)
R Squared 0.452 0.593 0.594 0.595 0.596
N 400 400 400 400 400

Notes: True DGP : Y =a+ Sx+y,D" + &, where =1, =2, y,=-0.25 and
€ ~ N(0,2). Standard deviations in parentheses. * p < 0.05, ™ p < 0.01, ™ p <

0.001.
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Table 3. 2: Means and Standard deviations of Monte Carlo Simulation (Number
of landmarks of a given type = 1, True number of Landmark locations in DGP = 2)

Model 1 Model 2 Model 3 Model 4 Model 5
Constant -4.726 -0.647 1.009 1.013 1.028
(3.391) (1.290) (0.778) (1.576) (2.594)
X 1.99Q9*** 2.002%** 2.001%%* 2.000%%* 2.000%**
(0.116) (0.104) (0.101) (0.101) (0.101)
D -0.252%%¥ -0.251%% -0.250 -0.246
(0.069) (0.093) (0.173) (0.505)
D? -0.099 -0.101 -0.105
(0.093) (0.192) (0.355)
d° 0.000 0.004
(0.187) (0.483)
d’ -0.013 -0.004
(0.179) (0.459)
R Squared 0.484 0.586 0.604 0.605 0.607
N 400 400 400 400 400

Notes: True DGP: Y =a+ fx+y,D" + y,D” + &£, where =1, =2, y,=-0.25,
7, =-0.1 and € ~ N(0,2). Standard deviations in parentheses. * p < 0.05, * p <

0.01, ™ p < 0.001.
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Table 3. 3: Means and Standard deviations of Monte Carlo Simulation (Number
of landmarks of a given type = 1, True number of Landmark locations in DGP = 3)

Model 1 Model 2 Model 3 Model 4 Model 5

Constant -7.984 -3.871 -1.942 0.985 1.000
(4.170) (2.804) (4.201) (1.617) (2.654)
X 2.001%%* 2.001%** 2.001%%* 2.000%%* 2.000%**
(0.123) (0.110) (0.105) (0.102) (0.100)
D4 -0.261 -0.265 -0.248 -0.245
(0.150) (0.628) (0.253) (0.452)
DE -0.116 -0.097 -0.102
(0.628) (0.292) (0.538)
D€ -0.204 -0.199
(0.321) (0.524)
d‘ -0.019 -0.005
(0.225) (0.466)
R Squared 0.477 0.561 0.615 0.637 0.639
N 400 400 400 400 400

Notes: True DGP: Y =a+ fx+ y,D" +y,D" + y5 +&,where =1, f=2, y,=-0.25
, ¥,=—0.1, ,=-0.2 and € ~ N(0,2). Standard deviations in parentheses. * p <

0.05, " p <0.01, ™ p < 0.001.
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Table 3. 4: Means and Standard deviations of Monte Carlo Simulation (Number
of landmarks of a given type = 3, True number of Landmark locations in DGP = 1)

Model 1 Model 2 Model 3 Model 4 Model 5
Constant -1.630 1.002%** 0.999* 0.995 0.994
(1.533) (0.290) (0.473) (0.690) (0.960)
X 1.99Q9*** 1.99Q9*¥* 2.001%%* 2.000%** 2.001%**
(0.109) (0.100) (0.100) (0.099) (0.100)
D™ -0.250%%* -0.250%%* -0.250%%* -0.250%%*
(0.027) (0.032) (0.038) (0.046)
d™ 0.000 0.000 0.000
(0.032) (0.038) (0.046)
dm 0.000 -0.000
(0.038) (0.046)
d -0.002 0.001
(0.125) (0.046)
R Squared 0.471 0.558 0.559 0.561 0.562
N 400 400 400 400 400

Notes: True DGP : Y =a+ Bx+y,D™ +&,where =1, =2, y,=-0.25 and
€ ~ N(0,2). Standard deviations in parentheses. * p < 0.05, ™ p < 0.01, ™ p <

0.001.
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Table 3. 5: Means and Standard deviations of Monte Carlo Simulation (Number
of landmarks of a given type = 3, True number of Landmark locations in DGP =

2)

Model 1 Model 2 Model 3 Model 4 Model 5
Constant -2.713 -0.063 0.997* 1.000 1.007
(1.649) (0.680) (0.478) (0.690) (0.985)
X 1.99Q9*** 2.000%%* 2.000%** 1.998*** 2.000%**
(0.111) (0.102) (0.101) (0.101) (0.101)
D™ -0.251%%% -0.250%%% -0.250%%*% -0.250%%%
(0.056) (0.032) (0.039) (0.046)
D" -0.100** -0.100** -0.100%
(0.032) (0.038) (0.046)
d™ -0.000 -0.000
(0.038) (0.046)
dr -0.000 0.000
(0.134) (0.046)
R Squared 0.466 0.552 0.567 0.567 0.569
N 400 400 400 400 400

Notes: True DGP: Y =a+ fx+ 3, D™ +y,D" + &, where =1, =2, y,=-0.25,
7, =-0.1 and € ~ N(0,2). Standard deviations in parentheses. * p < 0.05, ” p <

0.01, ™ p < 0.001.

72



Table 3. 6: Means and Standard deviations of Monte Carlo Simulation (Number
of landmarks of a given type = 3, True number of Landmark locations in DGP =

3)

Model 1 Model 2 Model 3 Model 4 Model 5

Constant -4.812* -2.190 -1.119 0.994 1.012
(2.053) (1.406) (1.773) (0.698) (0.962)
X 1.99Q9*** 1.99Q9*** 2.001%%* 1.999*** 2.000%**
(0.118) (0.108) (0.106) (0.102) (0.101)
D™ -0.251* -0.253% -0.250%%* -0.251%%%
(0.115) (0.110) (0.038) (0.045)
D" -0.101 -0.100** -0.100%
(0.109) (0.038) (0.046)
D¢ -0.200%** -0.201%%*
(0.038) (0.046)
d™ -0.002 0.000
(0.167) (0.045)
R Squared 0.452 0.527 0.554 0.594 0.595
N 400 400 400 400 400

Notes: True DGP: Y =a + Bx+y,D" + y,D" + 7, + £, where a=1, =2,
7,=-0.25, ,=-0.1, 7,=-0.2 and € ~ N(0,2). Standard deviations in

parentheses. “p < 0.05, ™ p < 0.01, ™ p < 0.001.
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CHAPTER 4

Effects of proximity to wilderness areas on residential property

values: An application of spatial hedonic model

4.1 Introduction

The natural protected areas such as wilderness? are valued by society for
various reasons including the provision of recreational opportunities, educational
and philosophical values, protection of biodiversity and the economic benefits to
areas near wilderness (Wright, 2000). While a myriad of benefits associated with
the designated wilderness areas has been identified (Morton, 1998), there often

exists the contested policy debate, which arise from the economic tradeoffs that

7 The Wilderness Act of 1964 defines the wilderness as ‘an area where the earth
and its community of life are untrammeled by man’. This further is elaborated to
mean the area which 1) generally appears to have been affected primarily by the
forces of nature, with the imprint of man’s work substantially unnoticeable, 2)
has outstanding opportunities for solitude or a primitive and unconfined type of
recreation, 3) has at least five thousand acres of land or is of sufficient size as to
make practicable its preservation and use in an unimpaired condition, and 4)
may also contain ecological, geological, or other features of scientific,

educational, scenic, or historical value.
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these protected areas, on the one hand, limit the commercial activities and
adversely affect the employment and income generation through extraction
industries such as logging and mining (Patric and Harbin, 1998), and on the
other hand, preserve natural amenities and provide recreational opportunities

that could attract tourists, migrants as well as new businesses (Duffy-Deno,
1998).

The economic values that people place on natural and environmental
amenities may also play important role in making decisions regarding choices for
residential location. While traditional models of urban economics focus on the
tradeoff between housing costs and commuting costs (Wu and Gopinath, 2008),
a growing number of recent studies have explored the role of environmental
amenities as a possible source of households’ choice in making decision regarding
residential location (Schmidt and Courant, 2006; Hand et al., 2008a; Iz6n et al.,
2010). As forest resources and protected areas provide many opportunities for
recreation as well as hold other non-market benefits, individuals are even willing
to accept lower wages to live in close proximity to such areas (Schmidt and

Courant, 2006).

The case of protected wilderness areas is particularly important in the
western United States because most of the wilderness areas are located in these

regions. Population growth in the West and the South regions were almost four
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times over the last decade8 as compared to other regions resulting in increased

development pressures on undeveloped lands.

Unlike the market goods, the market for environmental amenities does not
yield an observable price, urging researchers to seek alternative methods in order
to elicit values of environmental resources. Researchers have used various
techniques to measure the benefits of environmental goods such as contingent
valuation, choice experiments, travel costs, hedonic pricing methods, etc. Using
the hedonic price methods, this study focuses on employing geographic
information system (GIS) and recently developed spatial econometric methods in
estimating the marginal implicit price of living in proximity to congressionally
designated wilderness area. GIS and non-market valuation methods are
particularly useful in providing information to public land managers and are
considered helpful in making many natural resource management decisions.
Recent developments in the spatial econometrics have utilized various techniques
to provide spatially-explicit analyses and representations of non-market values of
different environmental and natural amenities (Baerenklau et al., 2010). The use

of spatial econometrics in the valuation of environmental amenities has been

8 Population growth in South and West regions over the period from 2000 to
2010 were 14.3 and 13.8 percent, whereas in Northeast and Midwest regions
population growth were 3.2 and 3.9 percent respectively. (Source: U.S. Census

Bureau, Census 2010, Census 2000)
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particularly important because of their ability to deal with spatial dependency

and spatial heterogeneity present on the data.

This study uses single family residential property value data to examine
the effects of proximity to wilderness areas on house prices in Yavapai county of
Arizona. Two measures of proximity to wilderness areas are considered:
Euclidean distance and driving distance to a nearest wilderness area. Using the
generalized methods of moments (GMM), spatial hedonic methods are applied to
estimate the parameters for variables of interest and the results are compared
with ordinary least squares (OLS) estimates. In addition, spatial bootstrap
techniques are used to test for the spatial dependence. Bootstrap methods are
based on the empirical distribution of the estimated parameters and is more
flexible than the theoretical asymptotic approach in that in a heteroskedastic and
non-normal distributional environment, the spatial bootstrap test has a better

overall performance compared to the asymptotic counterpart (Lin et al., 2011).

4.2 Hedonic Model

The hedonic price theory provides the basis for deriving welfare measures
from observed differences in prices of the houses (Freeman, 2003). The
fundamental notion of hedonic price models, more formally introduced by Rosen
(Rosen, 1974), lies on the attributes approach to consumer theory (Lancaster,
1966) where utility is the function of attributes of goods. In the context of

measuring welfare values pertaining to environmental amenities and dis-
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amenities, the central assumption of hedonic price theory is based on the
hypothesis that nearby features relating to such environmental characteristics are
capitalized into the property values. The ability of the econometric models to
decompose the property values to reflect those of individual attributes has made
hedonic model a very popular method of non-market valuation. A good deal of
empirical research on residential property values have applied hedonic price
theory to derive welfare measures of numerous public goods such as open space,
water bodies (lakes and rivers), wetlands, urban parks, forest, air quality, etc
(Doss and Taff, 1996; Bastian et al., 2002; Chay and Greenstone, 2005; Hand et

al., 2008b; Cho et al., 2011; Larson and Perrings, 2013).

4.2.1 Basic Theory

The basic theory behind the hedonic pricing model can be explained by
using the utility maximization problem of an individual consumer. If an
individual owns the property j, her utility function can be written as (Freeman,

2003):
U=U(S;,N,,Q;,X)

where S s N; and Q , are the vector of structural, neighborhood and

environmental characteristics respectively and X is a Hicksian composite good

(representing goods other than the property j). If P, denotes the price of the
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property j, the individual will maximize her utility U(.) subject to the budget

constraint:
M-P-X=0

Assuming that the property or housing market is in equilibrium with all
the individuals maximizing their utility, and that the market clears at the existing

prices, the hedonic price function can be written as
P,=P,(5;N;,Q;) (4.1)

The utility maximization of the individual can be used to derive marginal
implicit price of the particular characteristics of the property. For example, the
first order conditions of the utility maximization problem lead to

oU /9q _ 9P,
U /X oq

where, dP; /dq is the marginal implicit price of characteristic g;. Importantly,

this marginal implicit price can be interpreted as the willingness to pay (WTP)

value for one unit increase in the characteristic q;.

Although researchers have tried various functional forms for the hedonic
price function, the semi-log model (transforming only dependent variable) has
been most frequently used in the literature. Alternatively, one could use Box-Cox
transformation to decide between linear or log-linear form of the model. The
econometric model for the hedonic price function (4.1) can be written more
generally as
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Y=XB+u (4.2)

where, Y = InP (semi-log model) or Y =P (simple linear model) denotes the
vector of dependent variable, X is the matrix of explanatory variables that
includes all of structural, neighborhood and environmental variables, B is the

vector of parameters and u is the vector of stochastic errors.

4.2.2 Spatial Regression

With the advance of spatial econometric techniques (Anselin, 1988),
recent literatures on hedonic pricing models have been able to address the
econometric issues involving spatial correlation present in the data. Particularly,
two questions are addressed. First question deals with identifying whether or not
there is spatial correlation present in the data. Assuming an affirmative answer to
this question as suggested by some statistical tests, second question is to
potentially recognize the suitable spatial model for the given data. In a typical
spatial regression model, there are two basic ways to incorporate spatial effects
suggesting two basic reasons for explaining the presence of spatial correlation:
the spatial-lag model and the spatial-error model. The spatial-lag model are
designed to incorporate spatial autoregressive effects present in the dependent
variable and assumes that the spatially weighted average of property prices in a
neighborhood affects the price of each property. The spatial-error model, which

takes into account the spatial autoregressive effects through the stochastic errors,
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assumes that the errors are correlated over geographical space due to omitted

variables.

When the true data generating process (DGM) follows one of the spatially
dependent models, inappropriate model specification results in either the biased
coefficient estimates or the loss of efficiency of the estimates. The cost of ignoring
spatial dependence in the dependent variable is relatively high as they produce
biased estimates if this type of dependence is ignored (LeSage and Pace, 2009, p.

156).

4.2.3 Spatial Lag Model

Formally, a spatial lag model is expressed as (Anselin, 1988):
Y=AWY+XB+u (4.3)
The motivation for a spatial-lag specification is based on the assumption
that the house price is a function of its own characteristics as well as the

characteristics of neighboring properties (Anselin and Lozano-Gracia, 2009).

This is also evident from the reduced form, which can be written as:

Y=AXp+e (4.4)

where Yis nx1 column vector of log of prices, A =[I-AW]is nxn inverse

matrix with 4 being a spatial autocorrelation parameter and W an nxn spatial

weight matrix, X is nxk matrix of explanatory variables including all of
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structural, neighborhood and environmental variables, B is kx1 vector of

parameters to be estimated and € =[I- /IW]f1 u is nx1 column vector of

stochastic errors. In this form of spatial-lag specification the stochastic error

terms (€) are assumed independently and identically distributed with zero mean

and constant variance. Alternatively, equation (4.3) can be written in the compact

form as

Y=Zy+u (4.5)

with Z =[X,WY] and y =B, 4], which suggests the presence of a potential

correlation between WY and u in a typical spatial-lag specification and
motivating the use of instrumental variable approach in the estimation

procedure.

The spatial model differs from a non-spatial model mainly due to the
assumption that the house price at a given location depends not only on the
characteristics of the house at the same location but also on the characteristics of
houses in neighboring areas. For a spatial lag specification, this implies that the
total effect on the house price of a marginal change in an independent variable

comprises of own effect and spillover effects. Expanding equation (4.4),

Yl 11 a12 te aln Xn X12 te 1k ﬁl 81
Y2 _ 21 22 2n X21 X22 sz ﬁz + 82
Yn anl an2 ann an an Xnk ﬂk gn
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Now, if X, denotes nx1 vector of k™ explanatory variable, the Jacobian matrix

of Y with respective of X, is given by

oY, /oX,, dY,/dX, .. Y, /oX,

oY |9Y,/dX, 9Y,/dX,, .. 9Y,/dX,

X, ' s :
dY, /X, 0Y, /dX, .. oY, /dX,

Thus, each row of the Jacobian matrix suggests that the house price of location j
depends not only on the characteristics of location j, but also other locations (Kim
et al., 2003). Thus the total impact of a marginal change in one of the explanatory
variable on the housing price can be broken up into direct and indirect impacts.
The direct impact refers to the changes in the housing price of location j due to a
marginal change in one housing characteristic (say driving distance to a nearest
wilderness area) of location j. The indirect impact, on the other hand, is the sum
of the induced impacts, i.e., the change in the price of a property at location j

resulting from a marginal change the housing characteristic of other locations.

In terms of the estimated parameters, the Jacobian matrix can be written

as

ﬁkau ﬂkam ﬁkaln
aY — ﬁkam ﬂkazz ﬁka2n _

lBkam lBkanz ﬂkann

Therefore, the marginal effects from a log-linear hedonic pricing model is
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N g [1-pW] 4.6)

4.2.4 Spatial Error Model

The spatial-error model incorporates the spatial error autocorrelation
which results when omitted variables follow a spatial structure such that the error
variance-covariance matrix is no longer diagonal (Anselin and Lozano-Gracia,

2009). The spatial-error model can be formally written as

Y=XB+u

u=pWu+e 4.7)

where u is the vector of error terms, p is the spatial correlation parameter, and

e={¢,¢,,...,£,} is the vector of independently distributed error terms with mean

zero. Depending on the specification, the variances of error terms {¢,,¢,,..., €,}

may be assumed non-constant so as to allow for heteroskedasticity. The reduced

form of the spatial-error model can be written as
Y=XB+¢ (4.8)

where, {=Me=[I- pW]ﬂ €. In contrast to the spatial-lag model, the change in

the dependent variable with respect to a marginal change in one of the housing
characteristics for a spatial-error model is given by the corresponding coefficient

estimate, as is evident from equation (4.8).
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4.2.5 Spatial lag model with auto-correlated disturbance term

Spatial-lag model can be combined with spatial error model to account for
the presence of autocorrelation in both dependent variable and disturbance term,
which can be formally written as

Y=AWY+XpB+u

u=pWu+e 4.9)

which can be compactly written as

Y=Zy+( (4.10)

4.3 Estimation Method

This study focuses on estimating and comparing various spatial hedonic
models with the non-spatial simple regression model. First, non-spatial simple
hedonic model is estimated by ordinary least squares (OLS) method and the
results are used to test for spatial correlation and the presence of
heteroskedasticity. Using the OLS models, bootstrap method is employed to test
for the spatial correlation, which suggests the use of spatial lag model with
autocorrelation error distribution. In order to account for the spatial dependency,
various spatial models are estimated. Particularly, four spatial models are
estimated: 1) spatial two stage least squares (S2SLS), 2) spatial two stage least
squares with a heteroskedasticity and autocorrelation consistent (HAC) estimator

of the variance covariance matrix (S2SLS-HAC), 3) generalized spatial two stage
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least squares (GS2SLS), and 4) generalized spatial two stage least squares with

heteroskedastic error term (GS2SLS-HET).

Estimations of all of the spatial models are based on the generalized
method of moments (GMM). The alternative to GMM estimator is to employ the
(quasi) maximum likelihood (ML) procedure. Although the asymptotic properties
of the ML estimator have been established (Lee, 2004), the cost of computing the
estimator is significantly high when the sample size is large and some of the
assumptions are stronger than those required by GMM (Piras, 2010). This is
because the ML estimation procedure requires the maximization of likelihood
function that involves matrix operations the dimension of which depends on the
sample size. In response to this, Kelejian and Prucha (1999) introduced GMM
estimator for the autoregressive parameter with the disturbance generated by
autoregressive process and prove the asymptotic properties under
homoscedasticity assumptions. Kelejian and Prucha (2010) developed a
methodology for GMM estimator with heteroskedastic innovation that is both

consistent and asymptotically normal.

4.3.1 Spatial two stage least squares (S2SLS)

This method is an extension of the conventional two-stage least square
procedure, where the instruments are selected based on the spatial weight

matrix. In a typical setting, the matrix of instruments can be defined as
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H=(X,WX,WX,..,WX)

where, 7 <2 and the S2SLS parameter estimate is given by

-1 A

Vsusis =0° (ZTZ) Z'Y
where Z =PZ = (X,V/V\Y) , WY =PWY and P = H(HTH)f1 H' . Statistical
inference is generally based on the asymptotic variance covariance matrix
Var(Vg,gs) =67 (ZTZ)

T
A, €
with ¢® =

and e=Y -Zy,, . (Kelejian and Prucha, 1999; Piras,
n

2010).

4.3.2 Spatial two stage least squares with heteroskedastic and

autocorrelation consistent estimator (S2SLS-HAC)

The spatial HAC estimator, proposed by Kelejian and Prucha (2007), is
based on the estimated disturbances and allows for heteroskedasticity of
unknown forms across spatial units. The disturbance vector is assumed to be

generated by the process
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where  is a vector of innovations and R is an nxn non-stochastic matrix with

unknown elements. The asymptotic distribution of corresponding IV estimators

will have the variance-covariance (VC) matrix given by
Y-n"H'TH

where £ =RR" is the variance covariance of €. Kelejian and Prucha (2007)

propose to estimate the (r, s) element of W by

n

SR LA L[ d
Vs = Ezzhirhjsging[F]]

i=1 j=1

where the subscripts refer to the elements of the matrix of instruments H and
residuals €, and K( ) is a Kernel function used to form the weights for different

covariance elements which depends on the distance measures. Finally, the

asymptotic variance covariance matrix of the parameter vectors is given by

A = -1

&=n(2'Z) Z'H(H'H) ¥(H'H) H'Z(Z'Z)

4.3.3 Generalized spatial two stage least square estimators

The S2SLS-HAC estimator discussed in the previous section assumes that
the disturbance terms follow the spatial autoregressive structure generated by the
some unknown process. An alternative to this is to allow the disturbance terms to

take a specific form as

e=pWe+§
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If € are assumed to be homoscedastic, the GSTSLS method is used

(Kelejian and Prucha, 1999). On the other hand, if § are assumed to be
independent (with zero mean and non-constant variance o; ), GSTSLS-HET

method is used to capture the heteroskedastic error structure(Kelejian and

Prucha, 2010).

4.3.4 Spatial Weights

The spatial weights used in this study are based on the nearest six
neighbors. The number of neighbors is based on the average number of neighbors
obtained after creating Thiessen Polygons by using all the house locations in the
study area. The models and marginal effects using Thiessen Polygons are also

estimated and the results are provided in Appendix C.

4.3.5 The Marginal Effects

One of the objectives of this paper is to estimate the marginal effects of a
change in an environmental variable on the house price. Under the assumption
that every household is in equilibrium with respect to a given set of house prices
so that the prices clear for a given supply, the marginal implicit price may be
interpreted as a measure of a household’s marginal utility (Koschinsky et al.,
2012). In a log-linear specification of a non-spatial model such as equation (4.2),
the marginal effect of a given characteristic, say x,, is given by
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mwrp, =Y 9P _ s p
foox;  ox

1

This welfare measure assumes that there are no spillover effects. However,
when the data possesses spatial dependency, the marginal effects must be
calculated to incorporate any spillover effects. Whenever the estimation model
includes spatial lag parameter A, the marginal willingness to pay is given by

equation (4.6) which can be re-written for a given variable x, as

mwrp, =Y 9P _ 4 LJP
foox;  ox 1-4

1

4.3.6 Bootstrap test for Spatial Dependency

Bootstrapping is a non-parametric approach to statistical inference that
substitutes computation for more traditional distributional assumptions and
asymptotic results. One of the important advantages of bootstrap techniques is
that it does not require distributional assumptions, the bootstrap can provide
more accurate inferences when the data are not well behaved or when the sample

size is small.

The bootstrap procedure applied in this paper is based on Lin et al (2011),

which can be summarized in the following steps:

1. Estimate the OLS model y = XS+ ¢, and compute relevant test statistics.

01



2. Transform the regression residuals £ = y— X/ into re-scaled, re-centered,

leverage-adjusted series:

e = l—12

N -1 — i ] 1 AJ1— h2
where, h is the diagonal vector of hat matrix X (XX)" X’

3. Resample e with replacement to obtain e . To account for the general

heteroskedasticity, let &, = ¢, v, with v, a random variable satisfying:

V. =

1

—1 with probability 1/2
1 with probability 1/2

4. Using the fixed spatial weight matrix W and exogenous explanatory

variables X, the bootstrapped sample is (7, X), where §j= X5 +¢". Using
this bootstrap sample, estimate model ﬁ =Xp +¢é and compute relevant
test statistic.

5. Repeat steps 3 and 4 to generate large number of bootstrap observations

of the test-statistics.

Once the bootstrapped test statistics are generated, the empirical p-values

are computed, which are given by P(I)= #{I > O} , where I is the test-statistic

in jth bootstrap procedure. Noting that the Moran’s index I can take positive or

negative value, two-tail test is performed and as such the p-value for Moran’s I is

defined by 2min(P(1,),1-P(1,)).
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4.4 Data for Empirical Estimation

The area of study includes the Yavapai county of Arizona (Figure 4. 1). The
dataset used in this study is assembled from various sources with series of
structural, neighborhood and environmental variables for each single family
housing units. The data on housing characteristics including sale prices originate
from the Yavapai County Parcel Dataset, which are obtained from Yavapai
County office, Arizona. The dataset includes 3169 single-family housing units
sold within a year round between October 2008 and October 2009. Since some of
the house prices are reported as low as $1 indicating a possibility of
gifts/donations, which would not represent the true value, potential outliers are
removed by using a cut off value of $40,000. Thus the sale prices in the final
sample of 2738 houses ranges from $40,000 to $2,880,000, with a mean value
of $233,600. Table 4. 1 reports the names and description of variables used in
this study. The structural variables of the housing units included in this analysis
are land parcel size, total floor area of the housing structure, story height and
house age of the house. The parcel database did not contain other structural
variables such as number of rooms and number of bathrooms, which prevented

me from including such variables in the analysis.

In addition to the parcel data, some other GIS data used in this study are
also obtained from Yavapai County office, such as hiking trail, water body and

land use. The GIS data on wilderness areas are downloaded from The University
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of Montana’s Wilderness.net (http://www.wilderness.net). Similarly, the GIS

data on US forest areas are obtained from land use data published by Arizona
Land Resource Information System in cooperation with Bureau of Land
Management, Arizona State Office. Currently, there are 757 wilderness areas in
the National Wilderness Preservation System that are located in 44 states
including Puerto Rico with the total area of 109,511,966 acres. There are 19
designated wilderness areas in the Yavapai county, five of which are managed by
Bureau of Land Management (BLM) and remaining 14 are managed by US forest
service. The total designated area of the wilderness in Yavapai County is 551.5 sq.

miles, which is approximately 7 percentage of the total area in the County.

In order to capture the neighborhood characteristics, four variables are
used from two additional sources of data. First three variables Urban, PopDensity
and White are generated from Census Data 2010 to capture the Census Block
Group characteristics. Additionally, school districts may potentially have
influence on individual’s choice of location and thereby affecting home prices. A
comprehensive school district test score index is created from 2012 AIMS
(Arizona’s Instrument to Measure Standard) and is included in the regression

models to capture the potential neighborhood effect.

All of the environmental variables included in the models are the distance
variables measuring the proximity to natural amenities. Each of the distance
variables representing the proximity to a nearest amenity is calculated by
utilizing the tools available in ESRI’s ArcGIS software. The “near” tool in ArcGIS

is used to calculate the Euclidean distance to the nearest amenities. Similarly, the
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driving distances are calculated by utilizing the OD (Origin Destination) cost
matrix function available in the Network Analysis Extension in ArcGIS. In
addition to the variables presented in Table 4. 1, the house prices may also be
affected by characteristics such as crime rates, hazardous waste disposal sites,
etc. However, these information are either available in the aggregate form for the

entire county or are not available in the region.

4.5 Empirical Results

4.5.1 Model Results

As mentioned above, the major objective of this paper is to examine the
effect of proximity to a wilderness area on residential house prices. Attempts are
made to achieve this objective by estimating various regression models with and
without spatial component. Although the proximities to nearest water bodies,
hiking trails and forest areas are also included in the regression models and the
results are briefly discussed below, this study focuses more on the two measures
of proximity to wilderness area: Euclidean distance and driving distance to the

nearest wilderness area from each house location.

Before running the spatial regression, bootstrap test of spatial dependency
is performed. Table 4. 2 report the test statistics for Moran I and Lagrange
Multiplier for lag and error models with bootstrap confidence intervals. Both lag
and error model specifications are statistically significant except for the robust

lag model. Although robust standard deviation turns out to be statistically
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insignificant, the generalized models show statistical significant lag parameter

across all spatial models and therefore lag model specifications are retained.

Table 4. 3 reports the estimated coefficients and standard errors from OLS
and four variations of spatial models. The estimated coefficients for structural
and neighborhood variables are robust across models. Generally the parameter
values are slightly larger for OLS method as compared to S2SLS models.
Although the standard errors are greater for spatial models, they are only
marginally greater for most of the parameters and do not affect the statistical
significance of the estimated coefficients except for some environmental (or
proximity/distance) variables. For example, the distance to the nearest water
body is statistically significant at 1 percent for OLS and S2SLS, but is significant
at 5 and 10 percent for GSTSLS and GSTSLS-HET methods. All of the statistically
significant distance variables have negative sign showing that the property values

are usually higher if they are located closer to these amenities.

The model results in Table 4. 4 differ from Table 4. 3 in terms of the three
distance variables; the distances to nearest major road, nearest forest area and
nearest wilderness area, which are the driving distances instead of Euclidean
distances used in Table 4. 3. The difference between Euclidian distance and
driving distance are not only in terms of the length, but they may vary dis-
proportionately for different property locations especially when the distances are
of reasonable length. In other words, if the Euclidian distance to the nearest
wilderness area from property A is longer than from property B, it does not
necessarily imply that the driving distance from property A is longer than from
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property B. Moreover, the driving distance to the nearest wilderness area is
measured from house location to the access point of the wilderness area whereas
the Euclidean distance is measured from the property location to the nearest

point of the wilderness area. This distinction is shown in Figure 4. 2.

The estimated coefficients in Table 4. 4 are similar in sign and significance
for structural and neighborhood characteristics. Again, the distances to the
nearest water body and trail are statistically significant and have expected sign.
The driving distance to the nearest forest area is no longer statistically significant
for all of the spatial models. One possible explanation for such a difference in
Euclidian versus driving distance with respect to forest is that the forest area
provides fewer recreational opportunities therefore generating insignificant effect
corresponding to driving distance, but the physical house location within the
vicinity of forest area could potentially raise household utility level through the

sense of having an open space surrounding the property.

4.5.2 Marginal effects

The marginal effects are calculated for all of the estimated coefficients, and
are broken up into direct and indirect effects for all the spatial models. The direct
effects indicate the actual change in the property value due to an one unit change
in explanatory variables whereas indirect effects give the spillover effects on the
property values through the spatial dependence. Table 4. 5 and Table 4. 6 report

the direct and indirect effects based on the model estimates of Table 4. 3. Since
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OLS does not take into account the spatial dependency, the marginal effects
reported are the total effects and are same in Table 4. 5 and Table 4. 6. For
distance to the nearest wilderness area, these results show that the direct increase
in property values ranges from $3539 to $3978 across models if the property is
located one mile close to the wilderness area. Similarly, the increase in property
values through spillover effects ranges from $451 to $752 across four spatial

models.

The marginal effects for the proximity to wilderness area as is measured by
the driving distances are reported in Table 4. 7 and Table 4. 8. These effects are
slightly higher than that of the Euclidian distances. The direct marginal effects of
the proximity of wilderness area range from $3824 to $4201 and the indirect
marginal effects range from $486 to $823 across models. The 95% confidence
intervals for all of the marginal effects are computed by using Krinsky Robb
method (Krinsky and Robb, 1986). The confidence intervals for marginal effects
corresponding to driving distance to nearest wilderness area indicate the

statistical significance of the estimated values.

4.6 Conclusions

This paper uses spatial hedonic models to analyze the effect of proximity
to designated wilderness area on the residential property values in the Yavapai
County, Arizona. The data are assembled from various sources with a series of

structural, neighborhood and environmental variables. Although the most
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important variable of interest is the designated wilderness area, proximity to
other environmental variables are also included (water body, hiking trail, parks,
and forests). Proximity to the major roads, forest and wilderness area are

measured in terms of Euclidian distance as well as driving distance.

Bootstrap method of statistical test for spatial dependency is performed,
which suggests the presence of spatial autocorrelation in both dependent variable
and disturbance term. In order to account for the spatial dependency, four
variations of spatial models are employed (spatial two stage least squares with
and without heteroskedasticity and generalized spatial two stage least squares
with and without heteroskedasticity) and the results are compared with the basic
linear regression. All of the spatial models are estimated using generalized
method of moments (GMM) in R statistical software. The results from spatial
models are used to calculate the marginal willingness to pay for the variables of
interest which are broken into the direct effects and indirect effects. Krinsky and
Robb method is used to calculate the confidence interval for both direct and

indirect effects.

The findings of this paper confirm the importance of wilderness area to
home-owners, which can be valuable to policy makers. However, the estimated
coefficients on distances to wilderness area provide only a partial measure of the
total economic value of such lands. The actual magnitudes of the value might be
much larger and demands a detailed cost benefits analysis of wilderness

management.
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Table 4. 1: Variables names and descriptions

Variables Descriptions

Dependent variable

SalesPrice Natural logarithm of sales price ($) of the single
family homes

Structural Characteristics

ParcelSize Total land parcel size in acres
Height Height of the roof line in feet
FlArea Natural logarithm of total floor area in square feet

of the housing units

HAge Age of the house on 2009 in years (2009 —
construction year)

Elevation Elevation of house location (in km)
Neighborhood Variables

Urban Indicator variable for house located in urban areas

PopDensity Block group population density in Census 2010

White Proportion of White population in Census 2010 (in
100)

TestScoreIndex Comprehensive school district test score index

constructed by using 2012 AIMS (Arizona’s
Instrument to Measure Standard) result (0-100
scale)

Environmental Variables and Variables of interest
WaterDist Euclidian distance from house location to a nearest
water body (in miles)

TrailDist Euclidian distance from house location a nearest
hiking/biking trail (in miles)

ParkDist Euclidian distance from house location to a nearest
parks (in miles)

WilderDist Euclidian distance from house location to a nearest
designated wilderness area (in miles)
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Table 4. 1 (contd.)

Variables Descriptions

RoadDist Euclidian distance from house location to a nearest
Major Road (in miles)

ForestDist Euclidian distance from house location to a nearest
US Forest Area (in miles)

RoadDDist Driving distance from house location to a nearest
Major Road (in miles)

ForestDDist Driving distance from house location to a nearest
forest area (in miles)

WilderDDist Driving distance from the house location to the

nearest wilderness area (in miles)
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Table 4. 2: Computed spatial test statistics and bootstrapped
confidence intervals

Bootstrapped 95% CI

Test Statistic Estimate (p-value)

[0.025% 0.975%] (p-value)
Moran-I 0.2694 (0.000) [-0.02403, 0.01578] (0.000)
LM-error 681.0467 (0.000) [0.00130, 5.65685] (0.000)
LM-lag 375.6682 (0.000) [0.00095, 5.44244] (0.000)
LM-error 305.6711 (0.000) [0.00105, 5.35781] (0.000)
LM-lag 0.2927 (0.588) [0.00089, 5.17939] (0.590)
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Table 4. 3: Estimation results from OLS, S2SLS, S2SLS-HAC, GSTSLS,

GSTSLS-HET
. S2SLS- GSTSLS-
Variables OLS S2SLS GSTSLS
HAC HET
Constant 4.775%** 3.972%%* 3.972*%**  4.06Q9*** 4.089***
(0.201) (0.409) (0.566) (0.456) (0.510)
Structural Characteristics
ParcelSize 0.102%** 0.101*%* 0.101%%* 0.133%** 0.137*%*
(0.014) (0.019) (0.024) (0.016) (0.021)
Height 0.126%** 0.114%** 0.114%%** 0.097%** 0.096***
(0.010) (0.015) (0.018) (0.010) (0.013)
FlArea 0.527%** 0.505***  0.505%**  0.506%** 0.505%%*
(0.020) (0.038) (0.051) (0.021) (0.034)
HAge -0.004***  -0.004*** -0.004*** -0.006*** -0.006***
(0.001) (0.001) (0.001) (0.001) (0.001)
Elevation -0.011 -0.017 -0.017 0.018 0.023
(0.042) (0.046) (0.059) (0.062) (0.076)
Neighborhood Variables
Urban -0.036* -0.023 -0.023 -0.027 -0.028
(0.019) (0.018) (0.020) (0.024) (0.024)
PopDensity 0.007 0.005 0.005 0.008 0.008
(0.006) (0.005) (0.006) (0.007) (0.008)
White 0.024*** 0.021***  0.021***  0.015*** 0.015%**
(0.002) (0.002) (0.003) (0.003) (0.003)
TestScoreIndex  0.008%** 0.007***  0.007***  0.007*** 0.007%**
(0.001) (0.001) (0.001) (0.001) (0.001)
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Table 4. 3 (contd.)

) - GSTSLS-
Variables OLS S2SLS GSTSLS
HET
Environmental Variables and Variables of Interest
WaterDist -0.021***  -0.019***  -0.019***  -0.015** -0.015%
(0.005) (0.005) (0.006) (0.008) (0.008)
TrailDist -0.023%**  -0.020%**  -0.020%** -0.020%** -0.020%**
(0.004) (0.005) (0.006) (0.006) (0.007)
ParkDist 0.004 0.003 0.003 0.003 0.003
(0.004) (0.004) (0.004) (0.005) (0.005)
RoadDist 0.010 0.008 0.008 0.005 0.005
(0.008) (0.009) (0.011) (0.011) (0.013)
ForestDist -0.015%**  -0.013***  -0.013***  -0.011%% -0.011%*
(0.003) (0.003) (0.004) (0.005) (0.005)
WilderDist -0.018%**  -0.015%**  -0.015%**  -0.017***  -0.017%**
(0.003) (0.003) (0.004) (0.004) (0.005)
A 0.115%* 0.115%* 0.158%%** 0.162%**
(0.047) (0.057) (0.044) (0.049)
Y 0.424 0.453***
(0.040)

Standard errors in parentheses. * p < 0.10, ™ p < 0.05, *" p < 0.01.

104



Table 4. 4: Estimation results from OLS, S2SLS, S2SLS-HAC, GSTSLS,

GSTSLS-HET
Variables OLS S2SLS Sjjg" gstsLs OO
Constant 4.921%%* 4.127%%* 4.127%%* 4.159%** 4.168%**
(0.201) (0.403) (0.557) (0.441) (0.503)
Structural Variables
ParcelSize 0.130%** 0.125%** 0.125%** 0.147%** 0.150*%*
(0.014) (0.018) (0.023) (0.016) (0.021)
Height 0.125%#** 0.113%%** 0.113%%** 0.097%** 0.096***
(0.010) (0.014) (0.018) (0.010) (0.013)
FlArea 0.521%%* 0.500%**  0.500%**  0.502%** 0.502%**
(0.020) (0.037) (0.052) (0.021) (0.034)
HAge -0.004***  -0.004***  -0.004*** -0.006%** -0.006***
(0.001) (0.001) (0.001) (0.001) (0.001)
Elevation -0.004 -0.005 -0.005 0.028 0.032
(0.039) (0.042) (0.050) (0.057) (0.070)
Neighborhood Variables
Urban -0.037*% -0.024 -0.024 -0.029 -0.030
(0.019) (0.018) (0.020) (0.024) (0.024)
PopDensity 0.008 0.006 0.006 0.008 0.008
(0.006) (0.005) (0.006) (0.007) (0.007)
White 0.024%** 0.021*%* 0.021*%* 0.015%** 0.015%**
(0.002) (0.002) (0.003) (0.003) (0.003)
TestScoreIndex 0.007%** 0.007*%* 0.007%%* 0.006%** 0.006***
(0.001) (0.001) (0.001) (0.001) (0.001)
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Table 4. 4 (contd.)

Variables OLS S2SLS S;Sis_ gstsLs OO
Environmental Variables and Variables of Interest
WaterDist -0.028***  -0.025%**  -0.025%**  -0.021%** -0.021**
(0.005) (0.005) (0.006) (0.007) (0.008)
TrailDist -0.019***  -0.016*** -0.016** -0.015%* -0.015%*
(0.004) (0.005) (0.006) (0.006) (0.008)
ParkDist 0.005 0.004 0.004 0.003 0.003
(0.004) (0.004) (0.004) (0.005) (0.005)
RoadDDist 0.009** 0.008 0.008 0.005 0.005
(0.005) (0.005) (0.006) (0.006) (0.007)
ForestDDist -0.005%* -0.004* -0.004 -0.003 -0.003
(0.002) (0.002) (0.003) (0.003) (0.004)
WilderDDist -0.018***  -0.016***  -0.016***  -0.018%** -0.018%**
(0.002) (0.002) (0.003) (0.003) (0.004)
A 0.114** 0.114** 0.162%%* 0.167%**
(0.045) (0.055) (0.042) (0.048)
P 0.420 0.439*%**
(0.041)

Standard errors in parentheses. * p < 0.10, * p < 0.05, " p < 0.01.
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CHAPTER 5

Conclusion and Future Research

5.1 Dissertation Summary

The objective of this dissertation is to highlight the importance of wildlife
habitat and protected areas. It focuses on providing geo-spatial methods and
applications in relation to wildlife habitat selection, human-wildlife interactions
and economic benefits of protected wilderness areas. Chapter 2 and 3 focus on
the intensity of habitat use by mountain goats in Kenai Peninsula, Alaska, and
Chapter 3 and 4 focus on hedonic methods in analyzing the effects of proximity to

natural amenities on house prices.

The aim of Chapter 1 is to provide an improved method in habitat
selection/use study with special focus on mountain goat habitat use. Using the
GPS collared goats’ locations, the intensity of habitat use by mountain goats are
predicted. Poisson and negative binomial regression models are extended to
incorporate spatial effects under Gaussian CAR approach. These models highlight
the importance of nearby areas (spatial dependence) in the habitat selection by
animals. With the advance in GPS technology, there is an increasing trend in
using satellite telemetry data in wildlife habitat selection/use studies. The

locations from GPS collar are accurate and are very useful in studying the habitat
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selection and movement behavior of animals. This, however, poses challenges in
developing methodologies that accommodate the advancement in available data.
Researchers have used various methods to understand the habitat selection/use

by animals using GPS collar data. The methods applied in this chapter are

expected to be useful for other similar studies involving GPS locations of animals.

Chapter 2 focuses on comparing habitat use prediction from two sources
of data and exploring the effects of winter recreational activities on mountain
goat habitat selection. Regression based test of equivalency is performed to
compare the predicted habitat use based on the model outcomes from GPS collar
and Aerial survey of goat locations. While this may or may not be valid for all
animals, the map layers obtained from two different survey methods for
mountain goats are found to be equivalent, which is important for researchers
focusing on one particular survey method to create suitable habitat map for
mountain goats. This chapter also explores the effects of winter recreational
activities on goat habitat use. As goats tend to avoid areas utilized by human
winter recreationists, wildlife managers may take advantage of the outcomes of
this research in identifying more suitable goat habitat and preserving those areas
from recreational and other forms of human disturbances. The Bayesian method
of model comparison is another contribution this chapter, which is expected to be
useful in selecting appropriate model in studies using negative binomial

regressions.

Chapter 3 explores the inconsistency issues associated with the distance
variables used in hedonic price models. In particular, simulations are performed
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to examine the statistical behaviors of estimated coefficients when explanatory
variables include one or more distance variables. The coefficients of distance
variables turn out to be inconsistent when there are multiple points representing
landmarks (referring to environmental amenities or disamenities) and distances
to two or more of such landmarks appear in the model specifications. However,
when there are multiple locations for each type of unique landmark locations, the
coefficients are correctly estimated with expected standard deviations as long as
the distance variables appearing into the regression models are distances to the
nearest landmark locations. The results are particularly important because many
studies have major objective of estimating welfare measures based on the
distance variables and as such the use of distance variables may not be
completely avoided. Therefore, the implications of this chapter will be useful in

future hedonic studies using distance variables.

Chapter 4 examines the effects of proximity to wilderness areas on
residential property values. Using the GMM approach, spatial hedonic methods
are applied to estimate the marginal effects of living in proximity to protect
wilderness areas. On average, a residential property located one mile closer to a
nearest wilderness area is estimated to have values $4730 and $5024 higher

based on Euclidean and road distance as a measure of proximity respectively.
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5.2 Avenues for Future Research

This dissertation manuscript can be considered complete in its form, but it
presents further avenues for future research. Specific to habitat models (Chapter
1), exploring alternative methods accounting for spatial dependency would allow
researchers to choose better method that accurately predict habitat. For example,
the alternative spatial error specification such as simultaneous autoregressive
formulation can be employed in the count regression models. Similarly, the
discrete choice models may be improved by incorporating features accounting for

spatial dependency.

Throughout this dissertation, habitat use and selection (Chapter 1 and 2)
are modeled for a single species using mountain goats. These models can be
improved by considering multiple species utilizing similar resources. Moreover,
additional information on climate change can be incorporated to improve

prediction of habitat use by animals.

Regarding to wilderness area (Chapter 4), two potential areas of
extensions remain for future research. First, the application of hedonic method
itself can be extended by combining the information on changes in land use with
data on house prices over a longer time period to examine the temporal trends of
in welfare values of protected wilderness areas. Second, hedonic method may be
combined to other non-market valuation methods to estimate the overall values

of wilderness areas.
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Appendix A: The equivalence between Conditional Logit Model and

Poisson Regression

The following derivation is based on Guimaraes et al (2003). Suppose the
individual choice decisions are based on the vector of choice-specific attribute

variables alone so that the probability of choosing a particular location j is

) = exp(,[)’xj)
LY ex(Bx,)

Then log likelihood of the conditional logit model is

J
InL,=> n.Inp, (A1)
cl J J

j=1
where nj is the number of times location j is chosen.

Now suppose n; is independently Poisson distributed with

E (n j ) =1, =exp (a+ Bx; ) , the log likelihood function for the Poisson process

exp(—-4)A4°

P(Y=y)= -

can be written as

=3
=

I
.M\

<
]
—_

(-4, +n,In 4, —Inn,!)
(A.2)

I
M* .

[—exp(a’+,8xj)+nj (0{+,[J’xj)—ln n !]

~.
I
LR

The first order condition to maximize log likelihood with respect to « is given as
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dlnL
ana” =Z[nj —exp(a+,8xj)] =0

J=1

which implies

a:lnN—ln[iexp(ﬂxj)j (A.3)

j=1

Now substituting & back to the log likelihood, we get

InL, —N+N1nN—ZJ:nj lnLZJ:exp(ﬁxj)j+ZJ:njﬂxj —Zjllnnj !
j=l j=l j=l =1 (A.4)

J J
=>nInp,~N+NInN-) Inn,!

j=1 j=1

The first term of equation (A.4) is identical to log likelihood in equation
(A.1). The remaining terms are independent of parameters, and hence both
methods produce identical estimates. The estimation process for standard
conditional logit model is performed by maximizing the log likelihood given by
equation (A.1). Writing program codes and maximizing the log likelihood creates
computational burden and is time consuming. However, in some statistical
softwares (R, Stata, etc,), specific packages have been developed to obtain
parameter estimates of conditional logit models. With some efforts in data
organization, these canned procedures can help researchers estimate unknown

parameters quickly and efficiently.
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Appendix C: Spatial weights based on Thiessen Polygon

Table C1: Estimation results from OLS, S2SLS, S2SLS-HAC, GSTSLS, GSTSLS-
HET (Spatial Weights based on Thiessen Polygon)

S2SLS- GSTSLS-
Variables OLS S2SLS HAC GSTSLS HET
Constant 4.775%** 3.605***  3.605%** 3.835%** 3.863%**
(0.201) (0.434) (0.581) (0.408) (0.480)
Structural Characteristics
ParcelSize 0.102%%* 0.101%** 0.101%** 0.127%** 0.131%**
(0.014) (0.018) (0.023) (0.015) (0.021)
Height 0.126*%* 0.113%%** 0.113%%** 0.108%** 0.108%**
(0.010) (0.014) (0.017) (0.010) (0.013)
FlArea 0.527***  0.497***  0.497***  0.495*** 0.494***
(0.020) (0.037) (0.048) (0.021) (0.035)
HAge -0.004***  -0.004*** -0.004*** -0.005"**  -0.005%**
(0.001) (0.001) (0.001) (0.001) (0.001)
Elevation -0.011 -0.016 -0.016 0.038 0.048
(0.042) (0.046) (0.055) (0.054) (0.064)
Neighborhood Variables
Urban -0.036 -0.019 -0.019 -0.024 -0.025
(0.019) (0.018) (0.020) (0.022) (0.022)
PopDensity 0.007 0.006 0.006 0.009 0.009
(0.006) (0.005) (0.006) (0.007) (0.007)
White 0.024***  0.020%**  0.020***  0.018%** 0.017***
(0.002) (0.002) (0.003) (0.002) (0.003)
TestScoreIndex 0.008***  0.007***  0.007***  0.007%** 0.006%**
(0.001) (0.001) (0.001) (0.001) (0.001)
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Table C1 (contd.)

S2SLS- GSTSLS-
Variables OLS S2SLS HAC GSTSLS HET
Environmental Variables
WaterDist -0.021***  -0.019***  -0.019**  -0.017* -0.017*
(0.005) (0.005) (0.006) (0.007) (0.007)
TrailDist -0.023%**  -0.019***  -0.019** -0.017***  -0.017**
(0.004) (0.005) (0.006) (0.005) (0.006)
ParkDist 0.004 0.002 0.002 0.003 0.003
(0.004) (0.004) (0.004) (0.005) (0.005)
RoadDist 0.010 0.007 0.007 0.002 0.002
(0.008) (0.009) (0.010) (0.009) (0.012)
ForestDist -0.015%**  -0.012***  -0.012** -0.012*%* -0.012%*
(0.003) (0.003) (0.004) (0.004) (0.005)
WilderDist -0.018%**  -0.014*** -0.014*** -0.017***  -0.017***
(0.003) (0.003) (0.004) (0.004) (0.005)
A 0.159%** 0.159**  0.158***  0.159%**
(0.047)  (0.056)  (0.039) (0.046)
Y 0.325 0.401%**
(0.043)

Standard errors in parentheses. * p < 0.10, * p < 0.05, " p < 0.01.
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Table C 2: Estimation results from OLS, S2SLS,S2SLS-HAC, GSTSLS, GSTSLS-
HET (Spatial weights based on Thiessen Polygon)

S2SLS- GSTSLS-
Variables OLS S2SLS HAC GSTSLS HET
Constant 4.921%%* 3.883***  3.883***  4.003%** 4.012%**
(0.201) (0.437) (0.586) (0.404) (0.484)
Structural Characteristics
ParcelSize 0.130%** 0.124%%* 0.124%%* 0.145%** 0.148%**
(0.014) (0.018) (0.022) (0.015) (0.020)
Height 0.125%** 0.113*** 0.113*** 0.108%** 0.107%**
(0.010) (0.014) (0.017) (0.010) (0.013)
FlArea 0.521%%% 0.495%**  0.495%**  0.492%** 0.491%%*
(0.020) (0.037) (0.048) (0.020) (0.035)
HAge -0.004***  -0.004*** -0.004*** -0.005*** -0.006***
(0.001) (0.001) (0.001) (0.001) (0.001)
Elevation -0.004 -0.004 -0.004 0.038 0.045
(0.039) (0.042) (0.048) (0.050) (0.060)
Neighborhood Variables
Urban -0.037 -0.023 -0.023 -0.027 -0.028
(0.019) (0.018) (0.020) (0.022) (0.022)
PopDensity 0.008 0.007 0.007 0.009 0.010
(0.006) (0.005) (0.006) (0.007) (0.007)
White 0.024***  0.020***  0.020***  0.018%** 0.018***
(0.002) (0.002) (0.003) (0.002) (0.003)
TestScoreIndex 0.007%%* 0.006%**  0.006%**  0.006%** 0.006***
(0.001) (0.001) (0.001) (0.001) (0.001)
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Table C2 (contd.)

S2SLS- GSTSLS-
Variables OLS S2SLS HAC GSTSLS HET
Environmental Variables
WaterDist -0.028***  -0.025*** -0.025%** -0.023*** -0.023**
(0.005) (0.005) (0.006) (0.007) (0.007)
TrailDist -0.019***  -0.015**  -0.015**  -0.013* -0.013*
(0.004) (0.005) (0.006) (0.005) (0.006)
ParkDist 0.005 0.004 0.004 0.004 0.004
(0.004) (0.004) (0.004) (0.005) (0.005)
RoadDDist 0.009* 0.007 0.007 0.005 0.005
(0.005) (0.005) (0.006) (0.006) (0.007)
ForestDDist -0.005% -0.004 -0.004 -0.004 -0.004
(0.002) (0.002) (0.003) (0.003) (0.003)
WilderDDist -0.018*** = -0.016%** -0.016*** -0.017***  -0.017***
(0.002) (0.002) (0.003) (0.003) (0.003)
A 0.141%* 0.141* 0.153%%** 0.155%%**
(0.046) (0.056) (0.038) (0.046)
P 0.333 0.389***
(0.044)

Standard errors in parentheses. * p < 0.10, * p < 0.05, " p < 0.01.
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Appendix D: R Codes

HHAHAABHHARBHAHABHAHBHH#HHSH
HUHARBHHARBHAHABHHHRRHHSA
R Codes used in Chapter 1

HHAHRAFHAARBHAARRHAHARHH#HHA
HHAHRAFHAARBHAAARHAABHHHA

# Set working directory
setwd("D:/naresh/...")

# Load required packages
library(MASS)

library(sp)

library(mgcv)
library(spdep)
library(BayesX)
library(spatcounts)

# Load data (repeat this process for each individual goats)
features <- read.table(file="2007g2f.txt", header=T, sep="\t")
locations <- read.table(file="2007g2.txt", header=T, sep="\t")

# Scaling the variables

features$elev <- features$elevation/100

features$elevsq <- features$elev” 2

features$caspect <- cos(features$aspect*pi/180)

features$vrm100 <- features$vrm*100

features$distesc1o <- features$distesc/100

features$rock <- as.numeric(features$lc_code==24)

features$shrub <- as.numeric(features$lc_code >= 14 & features$lc_code <=15)

# Creating X matrix

Xdf <- subset(features, select = c("elev","elevsq","caspect”,
"vrm100","distesc10","rock","shrub"))

X <- data.frame(Xdf)

# Deviate from mean
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X.mdv <- X - matrix(mean(X), nrow=nrow(X), ncol=ncol(X), byrow=T)

# Creating response variable
features$ct <- rep(NA, nrow(features))
for(i in 1:nrow(features)){
features$ct[i] <- length(na.omit(locations$cellid[locations$cellid==
features$cellid[i]]))

# Creating Y as Yin in spatcounts
Y <- data.frame(features$ct)

# Spatial regions

region <- 1:nrow(features)

region <- data.frame(region)
coordinates(features) <- c¢("ptx","pty")

nan

coordinates(locations) <- ¢("ptx","pty")

# Neighbor list
f_nb <- dnearneigh(features, 0, 85)

# Weight Matrix
weightmat <- nb2listw(f_nb, style="B")

# Creating gmat as sim.gmat in spatcounts
gmat <- listw2mat(weightmat)
gmat <- data.frame(gmat)

# The following series of commands are used to create

# nmat as sim.nmat in spatcounts

nb.map <- nb2gra(f_nb)

nlist <- get.neighbor(nb.map, 1:nrow(features))

nlist <- lapply(nlist,function(v){if(length(v)<2)v[2]<-"0"
v})

nlist <- lapply(nlist,function(v){if(length(v)<3)v[3]<-"0"
v})

nlist <- lapply(nlist,function(v){if(length(v)<4)v[4]<-"0"
v})

nlist <- lapply(nlist,function(v){if(length(v)<5)v[5]<-"0"
v})

139



nlist <- lapply(nlist,function(v){if(length(v)<6)v[6]<-"0"

v})

nlist <- lapply(nlist,function(v){if(length(v)<7)v[7]<-"0"
v})

nlist <- lapply(nlist,function(v){if(length(v)<8)v[8]<-"0"
v})

nlist.mat <- do.call(rbind,nlist)

n.neigh <- card(f_nb)
nmat <- cbind(1:nrow(nlist.mat), nlist.mat[,], n.neigh)
nmat <- apply(nmat, 2, as.numeric)
rownames(nmat) <- 1:nrow(nmat)
colnames(nmat) <- ¢("V1","V2","V3","V4","V5",
"V6","V7","V8","V9","V10")
nmat <- data.frame(nmat) # This is the final nmat as sim.nmat in spatcounts

# Poisson model estimation (for negative binomial, replace “Poi” by “NB”)
poi.sp1 <- est.sc(Y, ~ X.mdv[,1] + X.mdv[,3] + X.mdv[,4] + X.mdv[,5] +
X.mdv[,6] + X.mdv{[,7] - 1,
region, model="Poi", gmat, nmat, totalit=20000)

# DIC Computation
DIC.poi <- DIC(Y, ~ X.mdv[,1] + X.mdv[,3] + X.mdv[,4] + X.mdv[,5] +
X.mdv[,6] + X.mdv[,7] - 1,
region, poi.sp1, burnin = 1000)

# Burn-in range
range <- 1001:20000

# Log Likelihood matrix (Individual Log Likelihood)
1l.poi <- LogLike(Y, ~ X.mdv[,1] + X.mdv[,3] + X.mdv[,4] + X.mdv[,5] +
X.mdv[,6] + X.mdv{[,7] - 1,
region, poi.sp1, burnin = 1000)

# Mean Log Likelihood for all iterations
m.ll.poi <- mean(apply(ll.poi$ll,2,sum))

# Parameter Estimates
beta <- round(apply(poi.sp1$beta[,range],1,mean),2)
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# Mean gamma and psi
gamai <- round(apply(poi.sp1$gammal,range],1,mean),2)
psi1 <- mean(poi.sp1$psi[range])

# Standard deviation of psi
sdpsi <- round(sd(poi.sp1$psi[range]),2)

# Number of parameters
k <-length(beta)

# Standard Errors, Z-scores and Confidence Interval

st.d <- round(apply(poi.sp1$beta[,range],1,sd),3)

zscore <- round(beta/st.d, 2)

ci.poi <- round(apply(poi.sp1$beta[,range],1,quantile, c(0.025, 0.975)), 3)

# Results for parameter estimates
result.poi1 <- data.frame(beta, st.d, zscore, t(ci.poi))

# AIC Calculation
aic <- - 2 *m.ll.poi + 2 * k

# Results for gamma and psi

gmpsi <- round(c(mean(gamazi), psit, aic, DIC.poi$DIC),2)

sdgmpsi <- round(c(sd(gamazi), sdpsi, NA, NA),3)

zgmpsi <- round(gmpsi/sdgmpsi, 2)

cigmpsi <- cbind(round(quantile(gamazi,probs=c(0.025,0.975)),3),
round(quantile(poi.sp1$psi[range],probs=c(0.025,0.975)),3), NA, NA)

result.poi2 <- data.frame(gmpsi, sdgmpsi, zgmpsi,t(cigmpsi))
colnames(result.poi2) <- c("beta", "st.d", "zscore", "X2.5.", "X97.5.")
result.poi <- rbind(result.poi1,result.poi2)
colnames(result.poi) <- c("Coefficients", "St. Error",
"Z-Score", "Conf.int 0.025", "0.975")
vname <- ¢("Elevation", "CosAspect",
"VRM", "DistEsc", "Rock", "Shrub", "Gamma", "Psi", "AIC", "DIC")

rownames(result.poi) <- vnhame

# save results and run model for another goat
# This creates table for a single goat model (Table 1.3)
write.table(result.poi,
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file = "D:/naresh/.../g2.txt",
Sep - "\t")
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HHAAABHHARBHAHABHHHBHH#HHSH
HUHHARBHHHARBHAHABHHHRRHHSA
# R Codes used in Chapter 2

HUHBHBHBHHHHHHHHAAAAAAAH
HHAHRAFHHARBHAAARHAHBHHHA

# Set Working Directory
setwd("D:/naresh/...")

# Load Required Packages
library(MASS)

# - --- Functions ---
# The following functions are heavily borrowed from

# package "bayesm" and modified to obtain marginal

# likelihood

llnegbin <- function(par, X, y, nvar) {

beta <- par[1:nvar]
alpha <- exp(par[nvar + 1]) + 1e-50
mean <- exp(X %*% beta)
prob <- alpha/(alpha + mean)
prob <- ifelse(prob < 1e-100, 1e-100, prob)
out <- (dnbinom(y, alpha, prob, log = TRUE))
return(sum(out))

¥

Ipostbetai <- function(beta, alpha, X, y, betabar, A) {
lambda <- exp(X %*% beta)
p <- alpha/(alpha + lambda)
residual <- as.vector(beta - betabar)
sum(alpha * log(p) +y * log(1 - p)) - 0.5 * (t(residual) %*%
A %*% residual)
¥

Ipostalpha <- function(alpha, beta, X, y, a, b) {
sum(log(dnbinom(y, size = alpha, mu = exp(X %*% beta)))) +
(a-1) *log(alpha) - b * alpha

¥

negbinmemcRW <- function (y,X,NITER,
marginal.likelihood = ¢("none","Laplace")) {
nvar <- ncol(X)
nobs <- length(y)
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betabar <- rep(0, nvar)
par <- rep(0, (nvar + 1))
betao <- rep(0, nvar)

mle <- optim(par, llnegbin, X =X,y =y, n

var = nvar, method = "L-BFGS-B",
upper = c¢(Inf, Inf, Inf, log(1e+08)), hessian = TRUE,
control = list(fnscale = -1))

beta_mle <- mle$par[1:nvar]
alpha_mle <- exp(mle$par[nvar + 1])
varcovinv <- -mle$hessian

betacvar <-s_beta * solve(varcovinv[1:nvar, 1:nvar])
betaroot <- t(chol(betacvar))

alpha <- alpha_mle

alphacvar <- s_alpha/varcovinv[nvar + 1, nvar + 1]
alphacroot <- sqrt(alphacvar)

beta <- betao

oldlpostbeta <- 0

nacceptbeta <- 0

nacceptalpha <- o

clpostbeta <- 0

alphadraw <- rep(o, NITER)

betadraw <- matrix(double(NITER*nvar),ncol=nvar)
llike <- rep(0, NITER)

logmarglike <- NULL

for (r in 1:NITER) {
betac <- beta + betaroot %*% rnorm(nvar)
oldlpostbeta <- lIpostbetai(beta, alpha, X, y, betabar, A)
clpostbeta <- lIpostbetai(betac, alpha, X, y, betabar, A)
1diff <- clpostbeta - oldlpostbeta
acc <- min(1, exp(ldiff))
if (acc < 1){
unif <- runif(1)
¥

else {

¥
if (unif <= acc) {
beta <- betac
nacceptbeta <- nacceptbeta + 1

unif <- 0

’
logalphac <- rnorm(1, mean = log(alpha), sd = alphacroot)
oldlpostalpha <- Ipostalpha(alpha,beta, X, y, a, b)
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clpostalpha <- lpostalpha(exp(logalphac), beta, X, y, a, b)
1diff <- clpostalpha - oldlpostalpha
acc <- min(1, exp(ldiff))
if (acc < 1){
unif <- runif(1)
¥

else {
unif <- 0
I3

if (unif <= acc) {
alpha <- exp(logalphac)
nacceptalpha <- nacceptalpha + 1

¥

betadraw[r, ] <- beta

alphadraw[r] <- alpha

llike[r] <- llnegbin(c(beta, alpha), X, y, nvar)
}

if (marginal.likelihood == "Laplace") {
theta.tilde <- mle$par
Sigma.tilde <- varcovinv
logmarglike <- (length(theta.tilde)/2) * log(2 * pi) +
log(sqrt(det(Sigma.tilde))) +
lInegbin(theta.tilde,X,y,nvar)
s

return(list(llike = llike, betadraw = betadraw,
alphadraw = alphadraw,
logmarglike = logmarglike,
acceptrbeta = nacceptbeta/NITER * 100,
acceptralpha = nacceptalpha/NITER * 100))

# Read data
data50 <- read.table("D:/naresh/.../data50.txt",
header =T, sep = "\t")

# Scaling the variables (data50)
dataso$elevation1 <- dataso$elevation/100
dataso$elevationsq <- dataso$elevation1*2
dataso$cosaspect <- cos(dataso$aspect*pi/180)
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data50$vrmi <- data50$vrm*100
dataso$distesc1 <- dataso$distesc/100
dataso$traildist1 <- dataso$traildist/1000

# Create Dummy variables (data50)
data50$shrub <- as.numeric(

data50$lc_code >= 14 & data50$lc_code <= 15)
datas50$rock <- as.numeric(data5o$lc_code == 24)

# Scale ski-area and trail length from sq.m and m

# to sq.km and km respectively

dataso$tlengthskm <- dataso$tlengthskm/1000
dataso$skiareaskm <- data5o$skiareaskm/1000000

#Data

# Construct matrix for X variables

X1 <- cbind('constant' = rep(1,nrow(datas0)),
as.matrix(subset(datas0,select=c(
'elevation1', 'cosaspect’,'distesc1’,'vrm1',
'rock’,'shrub")))

)

X2 <- cbind('constant’ = rep(1,nrow(datas0)),
as.matrix(subset(datas0,select=c(
'elevation1', 'cosaspect’,'distesc1’,'vrm1','rock’,
'shrub','skiareaskm")))

)

X3 <- cbind('constant’ = rep(1,nrow(datas0)),
as.matrix(subset(datas0,select=c(
'elevation1', 'cosaspect’,'distesc1’,'vrm1','rock’,
'shrub’,'tlengthskm")))

)

X4 <- cbind('constant' = rep(1,nrow(data50)),
as.matrix(subset(datas0,select=c(
'elevationi', 'cosaspect’,'distesc1’,'vrm1’,'rock’,
'shrub’,'traildist1")))

# Codes for X = X1; for other models, replace X1 by X2, X3 and X4
X <-X1

nobs <- nrow(X)
nvar <- ncol(X)
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NITER <- 50000

# Prior

A = 0.01 * diag(nvar)
a=o0.5

b=o0.1

s_alpha <-2.93

s_beta <- 2.93/sqrt(nvar)

# Store m1 and run model to with m2, m3 and m4 for X2, X3 and X4
mi1 <- negbinmecmcRW/(data50$count,X,NITER,marginal.likelihood="Laplace")

range = 5000:NITER # burn-in iteration

# Printing table of results
# Repeat the following codes by replacing m1 for m2, m3 and m4
n <- nobs
theta <- round(apply(mi$betadraw[range,],2,mean),4)
SEs <- round(apply(mi$betadraw[range,],2,sd),4)
k <-length(theta)
tval <- theta/SEs
pval <- 2*(1-pt(abs(tval), n-k))
star <- rep(" ,k)
for(j in 1:k){
star[j] <- if(pval[j]<o.001){"***"}
else if(pval[j] < 0.01){"**"}
else if(pval[j] < 0.05){"*"}
else if(pval[j] < 0.1){"."}
else {""}
¥

# Create table of result for a given model (Table 2.6)
cat(paste("\n", colnames(X),"\t",
theta,star, "\n"’ "\t","(",SES,")","\H”,

nn

sep=""), file = "resultmi.txt")

# posterior mean and standard deviation of alpha
mean(mi$alphadraw[range])
sd(mi$alphadraw([range])
mean(m2$alphadraw[range])
sd(m2$alphadraw[range])
mean(m3$alphadraw[range])
sd(m3$alphadraw[range])
mean(m4$alphadraw[range])
sd(mg4$alphadraw[range])
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# marginal likelihood
mi$logmarglike
m2$logmarglike
m3$logmarglike
m4$logmarglike

logBayesFactor.m2 <- m2$logmarglike-m1$logmarglike
logBayesFactor.m3 <- m3$logmarglike-m1$logmarglike
logBayesFactor.m4 <- m4$logmarglike-m1$logmarglike

# 2 In BF

2 * JogBayesFactor.m2
2 * JogBayesFactor.m3
2 * JogBayesFactor.m4
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RARAH#BRBRAAAHBRRRAAHHHRS
RERFHHBRRHAHH AR RHAAHHHRA

R Codes used in Chapter 3
HHAHRAFHHARBHAAARHAHBHHHA
HHAAABHHARBHAHABHHHBHH#HHSA

HAHBHABHARRHARRAHRHARRAHRHH SR AR RHH#RHHH
-------------------- Functions -
HUERBHBHBHHBHRHHAHARAAAAAAR AR R R R R R R ##H#HH

# Extract coefficients from regression
Im.coef <- function(model) {

beta <- coef(model)

smry <- summary(model)

r2 <- smry$r.squared

k <- smry$dff1]

n <- sum(smry$df[1:2])

return(c(beta, r2 =r2, n = n, k = k))

b

# Generate Data and Run Regression returning coefficients of the regression
# This function does not handle cases when more than three distance
# variables are included. For such cases, alternate codes are available upon

# request.

reg.Im.dist <- function(Hloc, n = n, n.Im = n.lm,

beta1 = betai, beta2 = beta2, gammai = gammai, gamma2 = gammaz,

gamma3 = gammaj, nD = nD, reg.rhs = reg.rhs) {

nD <-nD
reg.rhs <- reg.rhs

n.m <- n.lm

A <- data.frame(
x = runif(n.lm, -20, 20),
y = runif(n.Im, -20, 20))

B <- data.frame(
x = runif(n.lm, -20, 20),
y = runif(n.Im, -20, 20))

C <- data.frame(

X = runif(n.lm, -20, 20),
y = runif(n.Im, -20, 20))
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DA <- crossdist(Hloc[, 1], Hloc|[, 2], Al, 1], A[, 2])
min.DA <- apply(DA, 1, min) # nearest A

DB <- crossdist(Hloc][, 1], Hloc[, 2], BI, 1], B[, 2])
min.DB <- apply(DB, 1, min) # nearest B

DC <- crossdist(Hloc[, 1], Hloc[, 2], C[, 11, C[, 2])
min.DC <- apply(DC, 1, min) # nearest C

X <- rnorm(n)
err <- 2

if(!is.na(nD)){
if(nD > 3)
stop("can not handle more than 3 types of landmarks")

if(nD == 1){
Y <- beta1 + beta2 * x + gammai * min.DA +
rnorm(n, mean = 0, sd = err)

if(nD == 2){

Y <- beta1 + beta2 * x + gamma1 * min.DA + gammaz2 * min.DB +

rnorm(n, mean = 0, sd = err)
b
if(nD == 3){

Y <- beta1 + beta2 * x + gamma1 * min.DA +
gammaz2 * min.DB + gamma3 * min.DC +
rnorm(n, mean = 0, sd = err)

¥
h
if(is.na(nD)){
Y <- beta1 + beta2 * x + gamma1 * min.DA +

gammaz2 * min.DB + gamma3 * min.DC +

rnorm(n, mean = 0, sd = err)

h

a <- data.frame(
X = runif(n.lm, -20, 20),
y = runif(n.Ilm, -20, 20))

b <- data.frame(
X = runif(n.lm, -20, 20),
y = runif(n.Im, -20, 20))

¢ <- data.frame(
x = runif(n.lm, -20, 20),
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y = runif(n.Im, -20, 20))

da <- crossdist(Hloc[, 1], Hloc[, 2], a[, 1], a[, 2])
min.da <- apply(da, 1, min) # nearest A

db <- crossdist(Hloc|[, 1], Hloc[, 2], b[, 1], b[, 2])
min.db <- apply(db, 1, min) # nearest B

dc <- crossdist(Hloc[, 1], Hloc[, 2], c[, 1], c[, 2])
min.dc <- apply(dc, 1, min) # nearest C

td <- ¢("min.DA", "min.DB", "min.DC")
fd <- ¢("min.da", "min.db", "min.dc")

fm1 <-"Y ~ x"

form <- as.formula(paste(fm1, paste(
if(is.na(reg.rhs[1])) {paste("")} else {paste(td[1:reg.rhs[1]], collapse = "+")},
if(is.na(reg.rhs[2])) {paste("")} else {paste(fd[1:reg.rhs[2]], collapse = "+")},
sep = if(is.na(reg.rhs[1]) | is.na(reg.rhs[2])) {""} else {" + "}),
sep = if(is.na(reg.rhs[1]) & is.na(reg.rhs[2])) {""} else {" + "}))

olsmain <- Im(form)
Im.coef(olsmain)

¥

# Simulate regression r times and stores the results as a list
mcme.lm.dist <- function(r, n = 400, nlm =1,
beta1 = 1, beta2 = 2, gammai = -.25, gamma2 = -.1,
gammas = -.2, nD = NA, reg.rhs = ¢(NA, NA)) {
Hloc <- lapply(1:r, function(i) data.frame(x = runif(n, -10, 10), y = runif(n, -10,
10)))
betas <- sapply(Hloc, reg.Im.dist, n = n, n.lm = n.Im, nD = nD,
beta1 = beta1, beta2 = beta2, gamma1 = gammai, gamma2 = gammaz2,
gammags = gammags, reg.rhs = reg.rhs)
coef.list <- lapply(seq_len(nrow(betas)), function(i) betasl[i, ])
names(coef.list) <- rownames(betas)
return(coef.list)

¥

# Set the working directory
setwd("D:/naresh/...")

# Load Required R-packages and source file
library(spatstat)
library(memisc)



# Set seed to make it reproducible
set.seed(5125)

# The following values are used for illustrative graph

# Number of house locations
n<-10

# House Locations randomly created over the space [(-2,-2), (2,2)]
Hloc <- data.frame(

x = runif(n, -2, 2),

y = runif(n, -2, 2))

# Landmark A locations
A <- data.frame(

X= C(-l, -1, 2)’

y = ¢(-1, 1, 1.5))

# Landmark B locations
B <- data.frame(

X= C(-l, o, 1)’

y = c(1, 0, -1))

# Landmark C locations
C <- data.frame(

X= C(l, 0.5, _1°5)’

y =c(1, -2, -1))

# Print all the graphs to a single file
png(file = pasteo("../results/", "SimLoc11.png"),
width = 1200, height = 800, res = 120)

# Set graphical parameter for plot region
op <- par(

oma = ¢(3, 0, 3, 0),

mfrow = c(1, 2)

)

# Plot house locations and unique landmark locations

plot(Hloc, xlab ="", ylab = "", pch = 21, bg = "darkgreen",
axes = FALSE, xlim = ¢(-2,2), ylim = ¢(-2,2))

points(A[1, ], col = "red", cex = 1.5, pch = 17)
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points(B[1, ], col = "blue", cex = 1.5, pch = 16)
points(Cl[1, ], col = "brown", cex = 2, pch = 18)
title("(a) Unique Landmarks")
text(A[1,1],A[1,2]+0.3,expression(A[1]))
text(B[1,1]-0.3,B[1,2],expression(B[1]))
text(C[1,1],C[1,2]+0.3,expression(C[1]))

box()

# Plot house locations and multiple landmark locations
plot(Hloc, xlab ="", ylab = "", pch = 21, bg = "darkgreen",
axes = FALSE, xlim = ¢(-2,2), ylim = ¢(-2,2), bty = "1")
points(A, col = "red", cex = 1.5, pch = 17)
points(B, col = "blue", cex = 1.5, pch = 16)
points(C, col = "brown", cex = 2, pch = 18)
title(pasteo("(b) Multiple Landmark Locations", "\n",
"of a given type"))
text(A[1,1],A[1,2]+0.3,expression(A[1]))
text(B[1,1]-0.3,B[1,2],expression(B[1]))
text(C[1,1],C[1,2]+0.3,expression(C[1]))
text(A[2,1],A[2,2]+0.3,expression(A[2]))
text(B[2,1]-0.3,B[2,2],expression(B[2]))
text(C[2,1],C[2,2]+0.3,expression(C[2]))
text(A[3,1],A[3,2]+0.3,expression(A[3]))
text(B[3,1]-0.3,B[3,2],expression(B[3]))
text(C[3,1],C[3,2]+0.3,expression(C[3]))
box()

# Reset graphical parameters to allow writing title
par(op)

# Print title of the graph in the graphical device above the plot region
mtext("Illustration of House and Landmark locations", cex = 2,
line = 1.5, font = 2)

# Reset graphical parameters to print legend
op <- par(usr = ¢(0,1,0,1), xpd = NA)

# Plot legend of the graph
legend(x = 0.5,y = 0,
c¢("House-locations", "Landmarks A", "Landmarks B", "Landmarks C"),
pch = ¢(21, 17, 16, 18), pt.bg = "darkgreen",
pt.cex = c¢(1, 1.5, 1.5, 2),
col = ¢("black", "red", "blue", "brown"),
yjust = 1, xjust = 0.5, xpd = NA, horiz = TRUE
)

# Close the device, so the graph is saved as a png file. (Figure 4.1)
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dev.off()

# Reset seed
rm(.Random.seed)

# End Part A

# Choose parameters to generate data for the hedonic specification
#

# P =Db1+ b2*x + g1*dA + g2*dB + g3*dC + e

#

# where P = House Price

#  x =random variable x ~ N(0,1)

dA = distance to the nearest A

dB = distance to the nearest B

dC = distance to the nearest C

e = random error term, e ~ N(0,2)

H H KR

mcme.out.sum <- function(meme.out){

out <- sapply(mcmc.out, mean)

out.coef <- out[! names(out) %in% c("r2", "n", "k")]

n <-out[["n"]]

k <- out[["k"]]

out.se <- sapply(mcmec.out, sd)

outcoef.se <- out.se[! names(out) %in% c("r2", "n", "k")]

out.t <- out.coef/outcoef.se

out.p <- 2 * pt(abs(out.t), df = n-k, lower.tail = F)

r2 <-out[["r2"]]

df = data.matrix(data.frame(out.coef, outcoef.se,
out.t, out.p))

colnames(df) <- c¢("Coef", "SE", "z", "Pr(>|z|)")

reslist <- list(df = df, r2 =r2, n = n)

class(reslist) <- "mcme"

return(reslist)

¥

getSummary.memc <-
function(obj, alpha = 0.05, ...)
{
smry <- obj
coef <- smry$df
lower <- gnorm(p = alpha/2, mean = coefl, 1], sd = coef], 2])
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upper <- qnorm(p = 1 - alpha/2, mean = coefl, 1], sd = coef], 2])
coef <- cbind(coef, lower, upper)
colnames(coef) <- c¢("est", "
n <- smry$n
r2 <- smry$ra
sumstat <- ¢("N" = n, "R-Squared" = r2)
list(coef = coef, sumstat = sumstat)
¥
setSummaryTemplate(mcme = ¢("R Squared" = "($R-Squared:f)", "N" =

"($N:d)")

"non

Se"’ ”Stat”, Hpﬂ’ ler , uprﬂ)

b1 <-1

b2 <-2

g1 <--0.25
g2 <--0.10
g3 <--0.2

mcmec.out1 <- meme.lm.dist(r = 10000, n = 400, n.lm =1, nD =1,
reg.rhs = ¢(NA, 1),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out1.11 <- memec.out.sum(memec.outi1)

mcme.out2 <- meme.lm.dist(r = 10000, n = 400, n.Im =1, nD =1,
reg.rhs = c(1, NA),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out2.11 <- meme.outsum(meme.out2)

mcme.out3 <- meme.lm.dist(r = 10000, n = 400, n.Im = 1, nD =1,
reg.rhs = c(2, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammas = g3)
out3 <- mcme.out.sum(meme.out3)
out3.11 <- meme.out.sum(meme.out3)

mcmec.out4 <- meme.lm.dist(r = 10000, n = 400, nlm =1, nD =1,
reg.rhs = c¢(3, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out4.11 <- mecme.out.sum(meme.out4)

mcme.out5 <- meme.Im.dist(r = 10000, n = 400, nlm =1,nD =1,
reg.rhs = ¢(3, 1),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out5.11 <- meme.out.sum(meme.outs)

tabinlmi <- mtable("del" = outs.11, "TD1-1" = out1.11, "TD1-2" = out2.11, "TD1-3"
= out3.11,
"TD1-4" = out4.11, "TD1-5" = out5.11); tabinlm1
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mcmec.out1l <- meme.lm.dist(r = 10000, n = 400, n.Ilm =1, nD = 2,
reg.rhs = ¢(NA, 1),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out1.21 <- meme.out.sum(mecme.out1)

mcmec.out2 <- meme.lm.dist(r = 10000, n = 400, nlm =1, nD = 2,
reg.rhs = c(1, NA),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out2.21 <- mecmece.out.sum(memec.out2)

mcmec.out3 <- meme.lm.dist(r = 10000, n = 400, n.lm =1, nD = 2,
reg.rhs = c¢(2, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammas = g3)
out3.21 <- mcmece.out.sum(mecme.out3)

mcmec.out4 <- meme.lm.dist(r = 10000, n = 400, n.lm =1, nD = 2,
reg.rhs = c¢(3, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out4.21 <- memc.out.sum(meme.out4)

mcme.out5 <- meme.Im.dist(r = 10000, n = 400, nlm =1,nD = 2,
reg.rhs = ¢(3, 1),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out5.21 <- meme.out.sum(meme.outs)

tab2nlmi <- mtable("del" = out5.21,"TD2-1" = out1.21, "TD2-2" = out2.21, "TD2-
3" = out3.21,
"TD2-4" = out4.21, "TD2-5" = out5.21); tab2nlm1

mcmec.out1 <- meme.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 3,
reg.rhs = ¢(NA, 1),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out1.31 <- meme.out.sum(meme.out1)

mcme.out2 <- meme.lm.dist(r = 10000, n = 400, n.lm =1, nD = 3,
reg.rhs = c(1, NA),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out2.31 <- mcmece.out.sum(mecmec.out2)

mcme.out3 <- meme.lm.dist(r = 10000, n = 400, n.Im =1, nD = 3,
reg.rhs = c(2, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
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out3.31 <- mcme.out.sum(meme.out3)

mcmec.out4 <- meme.lm.dist(r = 10000, n = 400, nlm=1,nD = 3,
reg.rhs = c¢(3, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out4.31 <- mcmece.out.sum(mecmec.out4)

mcme.out5 <- meme.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 3,
reg.rhs = ¢(3, 1),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammas = g3)
out5.31 <- meme.out.sum(meme.outs)

tabgnlmi1 <- mtable("del" = out5.31,"TD3-1" = out1.31, "TD3-2" = out2.31, "TD3-
3" = out3.31,
"TD3-4" = out4.31, "TD3-5" = out5.31); tab3nlm1

mcmec.out1 <- meme.lm.dist(r = 10000, n = 400, n.lm = 3, nD =1,
reg.rhs = ¢(NA, 1),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out1.15 <- meme.out.sum(meme.out1)

mcmec.out2 <- meme.lm.dist(r = 10000, n = 400, nlm=3,nD =1,
reg.rhs = c(1, NA),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out2.15 <- meme.out.sum(meme.out2)

mcmec.out3 <- meme.lm.dist(r = 10000, n = 400, nlm =3, nD =1,
reg.rhs = c¢(2, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out3.15 <- meme.out.sum(meme.out3)

mcmec.out4 <- meme.lm.dist(r = 10000, n = 400, nlm =3, nD =1,
reg.rhs = c¢(3, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammas = g3)
out4.15 <- meme.out.sum(meme.out4)

mcme.out5 <- meme.lm.dist(r = 10000, n = 400, n.lm = 3, nD =1,
reg.rhs = ¢(3, 1),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
outs.15 <- memec.out.sum(meme.outs)

tabinlms <- mtable("del" = outs.15, "TD1-1" = out1.15, "TD1-2" = out2.15, "TD1-
3" = out3.15,
"TD1-4" = out4.15, "TD1-5" = out5.15); tabinlms
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mcmec.out1l <- meme.lm.dist(r = 10000, n = 400, n.Ilm = 3, nD = 2,
reg.rhs = ¢(NA, 1),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out1.25 <- memc.out.sum(mecme.out1)

mcmec.out2 <- meme.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 2,
reg.rhs = c(1, NA),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out2.25 <- meme.out.sum(memece.out2)

mcmec.out3 <- meme.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 2,
reg.rhs = c¢(2, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammas = g3)
out3.25 <- memce.out.sum(memec.out3)

mcmec.out4 <- meme.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 2,
reg.rhs = c¢(3, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammas = g3)
out4.25 <- memc.out.sum(meme.out4)

mcme.out5 <- meme.Im.dist(r = 10000, n = 400, n.lm = 3, nD = 2,
reg.rhs = ¢(3, 1),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out5.25 <- mcme.out.sum(meme.outs)

tab2nlms <- mtable("del" = outs.25, "TD2-1" = out1.25, "TD2-2" = out2.25,
"TD2-3" = out3.25,
"TD2-4" = out4.25, "TD2-5" = out5.25); tab2nlms

mcmec.out1l <- meme.lm.dist(r = 10000, n = 400, n.Im =3, nD = 3,
reg.rhs = ¢(NA, 1),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out1.35 <- meme.out.sum(meme.out1)

mcme.out2 <- meme.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 3,
reg.rhs = c(1, NA),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
out2.35 <- mcmece.out.sum(mecmece.out2)

mcme.out3 <- meme.lm.dist(r = 10000, n = 400, n.Ilm = 3, nD = 3,
reg.rhs = c(2, NA),
beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gammas = g3)
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out3.35 <- mcmece.out.sum(memec.out3)

mcmec.out4 <- meme.lm.dist(r = 10000, n = 400, nlm = 3, nD = 3,
reg.rhs = c¢(3, NA),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammas = g3)
out4.35 <- mcemc.out.sum(memec.out4)

mcme.out5 <- meme.lm.dist(r = 10000, n = 400, nlm = 3, nD = 3,
reg.rhs = c(3, 1),
beta1 = b1, beta2 = b2, gammai = g1, gamma2 = g2, gammags = g3)
out5.35 <- mecme.out.sum(meme.outs)

tabgnlms <- mtable("del" = outs.35, "TD3-1" = out1.35, "TD3-2" = out2.35,
"TD3-3" = out3.35, "TD3-4" = out4.35, "TD3-5" = out5.35); tab3nlms

var.label11 <- ¢("(Intercept)" = "Constant",
"min.DA" = "$D"AS$",

"min.DB" = "$d"a$",
"min.DC” — ”$dAb$",
"min.da" — "$dAC$",

"min.db" = "$d"d$",
"min.dc" = "$d"e$")

var.label12 <- c("(Intercept)" = "Constant",
"min.DA" = "$D"A$",
"mil’l.DB" — "$DAB$",
"min.DC" = "$d"a$",

"min.da" — "$d/\b$”,
"min.db" — "$dAC$",
"min.de” = "$d"d$")

var.label13 <- c¢("(Intercept)" = "Constant",
"min.DA" = "$D"AS$",

"min.DB" = "$D~B$",
"min.DC" = "$D~C$",
"min.da" — u$d/\a$n,

"min.db" ="$d"b$",
"min.dc" — n$d/\c$u)

var.label51 <- ¢("(Intercept)" = "Constant",
"min.DA" = "$D"{nA}$",
"min.DB" = "$d"{na}$",
"min.DC" = "$d"{nb}$",
"min.da" = "$d*{nc}$",
"min.db" = "$d"{nd}$",
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"min.dc" = "$d"{ne}$")

var.label52 <- c("(Intercept)" = "Constant",
"min.DA" _ "$DA{nA}$",

"min.DB" = "$D"{nB}$",
"min.DC" = "$d~{na}$",
"min.da" = "$d"{nb}$",
"min.db" = "$d"{nc}$",
"min.dc" = "$d"{nd}$")

var.label53 <- c¢("(Intercept)" = "Constant",
"min.DA" = "$D"{nA}$",

"min.DB" = "$D"{nB}$",
"min.DC" = "$D"*{nC}$",
"min.da" = "$d"{na}$",
"min.db" = "$d"{nb}$",
"min.dc" = "$d"{nc}$")

(tabinlm1 <- relabel(tabinlmi, var.label11))
(tabinlms <- relabel(tabinlms, var.label51))
(tab2nlmzi <- relabel(tab2nlm1i, var.label12))
(tab2nlms <- relabel(tab2nlms, var.label52))
(tabgnlmi <- relabel(tab3nlmi, var.label13))
(tab3nlmjs <- relabel(tab3nlms, var.label53))

write.mtable(tabinlmi, file = "./sim-text-files/tabinlm1.txt")

write.mtable(tab2nlmai, file = "./sim-text-files/tab2nlmi.txt")
write.mtable(tabgnlmai, file = "./sim-text-files/tabgnlmi.txt")
write.mtable(tabinlmg, file = "./sim-text-files/tabinlms.txt")
write.mtable(tab2nlms, file = "./sim-text-files/tab2nlms.txt")
write.mtable(tab3nlms, file = "./sim-text-files/tab3nlms.txt")

doc.file.fun <- function(txt, path){
tab <- read.table(pasteo(path, txt, ".txt"), header = T, sep = "\t")
doc <- RTF(pasteo(path, txt, ".doc"))
addTable(doc, tab)
done(doc)
¥

# Create Tables 3.1 — 3.6

doc.file.fun(txt = "tabinlm1", path = "./sim-text-files/")
doc.file.fun(txt = "tabinlms", path = "./sim-text-files/")
doc.file.fun(txt = "tab2nlm1", path = "./sim-text-files/")
doc.file.fun(txt = "tab2nlms", path = "./sim-text-files/")
doc.file.fun(txt = "tab3gnlm1", path = "./sim-text-files/")
doc.file.fun(txt = "tabgnlms", path = "./sim-text-files/")
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HHAARBHHARBHAHABHHHBHH#HHH
HUHAARBHHAARBHAHABHHHRRHHSA
R Codes used in Chapter 4

HUHBHBHBHHHHHHHHAAAAAAAH
HHAHRAFHHARBHAHAARHAARHHHA

# Load required packages
library(sp, quietly = TRUE)
library(rgeos)
library(maptools); gpclibPermit()
library(spgwr, quietly = TRUE)
library(memisc)

library(rtf)

library(car)

library(doBy)

library(sphet)

library(rgdal)

library(spdep)

library(RANN)

library(lmtest)
library(sandwich)
library(MSBVAR)
library(ggplot2)
library(gridExtra)

# Set working directory
setwd("D:/naresh/...")
getwd() # check working directory

# Source created R functions
HUBUUHHUH BB B BB HHHHBHHHHHHHHHH

# mmmmmmm oo Functions
HAHBHABRARRHARRAHBHARRAHRHA#RRH

# calc moran stat for Im model
moran.lm.stat <- function(model) {
beta <- model[["coefficients"]]
N <- length(model$model[[1]])
eps <- resid(model)
sigma.sq <- (t(eps) %*% eps) / N

yhat <- X.mat %*% beta

Ystar.mat <- model[["y"]]

J <-(1/(N * sigma.sq)) *

(t(W.mat %*% yhat) %*% M.mat %*% (W.mat %*% yhat) +
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Tr * sigma.sq)
eWe <- t(eps) %*% W.mat %*% eps

moran.I <- (eWe)/(t(eps) %*% eps)
LM.error <- (eWe/sigma.sq)*2 / Tr
LM.lag <- (1/(N*J)) *
((t(eps) %*% W.mat %*% (Ystar.mat)) / sigma.sq)”"2

LM.error.star <- ((eWe / sigma.sq) -
(Tr / (N * J)) *
(t(eps) %*% W.mat %*% Ystar.mat) / sigma.sq)”2 /
(Tr* (1 -Tr /(N *J)))
LM.lag.star <-
(((t(eps) %*% W.mat %*% Ystar.mat) / sigma.sq) -
(eWe / sigma.sq))™2 /
(N*J-Tr)
return(list(moran.I = moran.I[1,1], LM.error = LM.error[1,1],
LM.lag = LM.lag[1,1],
LM.error.star = LM.error.star[1,1],
LM.lag.star = LM.lag.star[1,1]))

b

# re-sample error and apply wild bootstrap for Im model
b.moran.lm <- function(estar, r) {
e.hat.star <- lapply(1:r,
function(i) sample(estar, N, replace = T))
r.moran <- sapply(e.hat.star, b.moran.lm.stat)
list(moran.I = as.numeric(r.moran[1,]),
LM.error = as.numeric(r.moran[2,]),
LM.lag = as.numeric(r.moran[3,]),
LM.error.star = as.numeric(r.moran[4,]),
LM.lag.star = as.numeric(r.moran[5, ]))

¥

# wild bootstrap for Im model

b.moran.Im.stat <- function(eps) {
upsilon <- sample(c(-1, 1), N, replace = TRUE)
e.tilde <- eps * upsilon
z.star <- X.mat %*% beta.lm + e.tilde
y.tilde <- z.star
Im.model <- Im(y.tilde[, 1] ~ X.mat[, -1], y=TRUE)
moran.lm.stat(Im.model)

¥

# Load data (data.sp2 is the SpatialPointsDataFrame with
# features representing each house location, created in
# ESRI’s ArcGIS)

162



load("DataSP.RData")

# Formulas for different models

fm1 <- (InsalesPrice ~ parcelSize + storyHeight +
InTotalFlArea + houseAge + elevationkm)

fm2 <- update(fmi, ~ . + urban + InPop10SqMi +
whiteP + meanTestScoreIndex)

fm3 <- update(fm2, ~ . + waterEucMile + trailEucMile +
parkEucMile)

fmg4 <- update(fm3, ~ . + roadEucMile + forestEucMile +
wilderEucMile)

fm6 <- update(fm3, ~ . + majorRoadNetworkMile +
forestNetworkMile + wilderNetworkMile)

# Create neighbor object from SpatialPointDataFrame
# nearest 6 neighbors
yava.nbs <- knn2nb(knearneigh(data.sp2, k = 6))

# Coordinates of data, IDs
coords <- coordinates(data.sp2)

# Weight lists (row standardised and binary)
# weight for nearest 5 neighbors
yava.lw.w <- nb2listw(yava.nbs, style="W")

# OLS Regressions
ols1 <- Im(fm4, data=data.sp2)
ols2 <- Im(fm6, data=data.sp2)

# Spatial 2SLS Models
sp2sls.m1 <- stsls(fm4,

data = data.sp2, listw = yava.lw.w, robust = T)
sp2sls.m2 <- stsls(fm6,

data = data.sp2, listw = yava.lw.w, robust = T)

# GM method (sphet) to estimate spatial models
# with heteroskedastic innovation
Femm

# Create distance
id <- seq(1: nrow(coords))
tmp <- distance(coords, region.id=id, output = TRUE,
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type = "NN", nn = 6, shape.name = "shapefile",

region.id.name = "id",

firstline = TRUE, file.name = "yava_nn_5.GWT")
coldist <- read.gwt2dist(file = "yava_nn_5.GWT",

region.id = id, skip = 1)

# STLS estimation with HAC
sphet.m1 <- stslshac(fm4,
data = data.sp2, listw = yava.lw.w,
distance = coldist, HAC = TRUE,
type = "Triangular")
sphet.m2 <- stslshac(fm6,
data = data.sp2, listw = yava.lw.w,
distance = coldist, HAC = TRUE,
type = "Triangular")

# General Spatial 2SLS (spdep)
gstls.m1 <- gstsls(fmg4,

data = data.sp2, listw = yava.lw.w)
gstls.m2 <- gstsls(fm6,

data = data.sp2, listw = yava.lw.w)

# General Spatial 2SLS-HET (sphet)
gstlshet.m1 <- gstslshet(fmg4,

data = data.sp2, listw = yava.lw.w, initial.value = 0.2)
gstlshet.m2 <- gstslshet(fmé6,

data = data.sp2, listw = yava.lw.w, initial.value = 0.2)

# Write the regression results into a file:

options(signif.symbols = c¢("***" = 0.01, "**" = 0.05, "*" = 0.1))

M1iTable <- mtable("OLS" = ols1, "S2SLS" = sp2sls.m1,
"S2SLS-HAC" = sphet.m1, "GSTSLS" = gstls.m1,
"GSTSLS-HET" = gstlshet.m1, summary.stats=FALSE)

label.var <- ¢("(Intercept)" = "Constant","parcelSize" = "ParcelSize",

"storyHeight" = "Height",

"InTotalFlArea" = "FlArea",

"houseAge" = "HAge",

"urban" = "Urban",

"elevationkm" = "Elevation",

"InPop10SqMi" = "PopDensity",

"whiteP" = "White",

"meanTestScoreIndex" = "TestScoreIndex",

"waterEucMile" = "WaterDist",

"trailEucMile" = "TrailDist",

"parkEucMile" = "ParkDist",

"roadEucMile" = "RoadDist",
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"forestEucMile" = "ForestDist",
"wilderEucMile" = "WilderDist",
"wilderNetworkMile" = "WilderDDist",
"forestNetworkMile" = "ForestDDist",
"majorRoadNetworkMile" = "RoadDDist")
MiTable <- relabel(M1Table,label.var)

M2Table <- mtable("OLS" = ols2, "S2SLS" = sp2sls.m2,
"S2SLS-HAC" = sphet.m2, "GSTSLS" = gstls.m2,
"GSTSLS-HET" = gstlshet.m2, summary.stats=FALSE)

M2Table <- relabel(M2Table, label.var)

# Mean Sales Price
Pbar <- mean(data.sp2$salesPrice)

# Direct and indirect effects m1 (EucMile)

Im.stslsm1 <- impacts(sp2sls.m1, listw = yava.lw.w)
Im.stslsm2 <- impacts(sp2sls.m2, listw = yava.lw.w)
Im.sphetm1 <- impacts(sphet.m1i, listw = yava.lw.w)
Im.sphetm2 <- impacts(sphet.m2, listw = yava.lw.w)
Im.gstlsm1 <- impacts(gstls.mi, listw = yava.lw.w)
Im.gstlsm2 <- impacts(gstls.m2, listw = yava.lw.w)
Im.gstlshetm1 <- impacts(gstlshet.m1, listw = yava.lw.w)
Im.gstlshetm2 <- impacts(gstlshet.m2, listw = yava.lw.w)

# Data Frame

Imdf.stslsm1 <- data.frame(attr(Im.stslsmi,"bnames"),Im.stslsm1[1:3])
Imdf.stslsm2 <- data.frame(attr(Im.stslsm2,"bnames"),Im.stslsm2[1:3])
Imdf.sphetm1 <- data.frame(attr(Im.sphetm1,"bnames"),Im.sphetm1[1:3])
Imdf.sphetm2 <- data.frame(attr(Im.sphetm2,"bnames"),Im.sphetm2[1:3])
Imdf.gstlsm1 <- data.frame(attr(Im.gstlsm1,"bnames"),Im.gstlsm1[1:3])
Imdf.gstlsm2 <- data.frame(attr(Im.gstlsm2,"bnames"),Im.gstlsm2[1:3])
Imdf.gstlshetm1 <- data.frame(attr(Im.gstlshetmi,"bnames"),Im.gstlshetm1[1:3])
Imdf.gstlshetm2 <-
data.frame(attr(Im.gstlshetm2,"bnames"),Im.gstlshetm2[1:3])

# Direct Effects data frame

DirectEffects <- data.frame(row.names = Imdf.stslsmi[, 1])
DirectEffects$S2SLS <- round(Imdf.stslsmi[, 2] * Pbar, 0)
DirectEffects$S2SLSHAC <- round(Imdf.sphetmil, 2] * Pbar, 0)
DirectEffects$ GSTSLS <- round(Imdf.gstlsmi[, 2] * Pbar, 0)
DirectEffects$ GSTSLSHET <- round(Imdf.gstlshetm1i[, 2] * Pbar, 0)

# InDirect Effects data frame
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InDirectEffects <- data.frame(row.names = Imdf.stslsmi[, 1])
InDirectEffects$S2SLS <- round(Imdf.stslsmi[, 3] * Pbar, 0)
InDirectEffects$S2SLSHAC <- round(Imdf.sphetmil[, 3] * Pbar, 0)
InDirectEffects$GSTSLS <- round(Imdf.gstlsmi[, 3] * Pbar, 0)
InDirectEffects$ GSTSLSHET <- round(Imdf.gstlshetmi[, 3] * Pbar, 0)

# Total Effects data frame

TotalEffects <- data.frame(row.names = Imdf.stslsmi[, 1])
TotalEffects$OLS <- round(ols1$coef[-1]*Pbar)
TotalEffects$S2SLS <- round(Imdf.stslsmi[, 4] * Pbar, 0)
TotalEffects$S2SLSHAC <- round(Imdf.sphetmil, 4] * Pbar, 0)
TotalEffects$GSTSLS <- round(Imdf.gstlsm1i[, 4] * Pbar, 0)
TotalEffects$ GSTSLSHET <- round(Imdf.gstlshetm1i[, 4] * Pbar, 0)

rownames(TotalEffects) <- label.var[which(names(label.var) %in%
rownames(TotalEffects))]

rownames(DirectEffects) <- label.var[which(names(label.var) %in%
rownames(DirectEffects))]

rownames(InDirectEffects) <- label.var[which(names(label.var) %in%
rownames(InDirectEffects))]

HRARAHHBRRHAAH BB RRAAAH AR RRAAHH BB R AR AHHHRHRAH

# Krinsky and Robb method for se of Direct Marginal Effects

# OLS model

ols1.beta <- ols1$coefficients

ols1.vcov <- veov(ols1)

olsibeta.sim <- rmultnorm(10000, mu = ols1.beta, vimat = ols1.vcov)
olst.mwtp <- olsibeta.sim * Pbar

olsi.ci <- apply(olsi.mwtp, 2, quantile, ¢(0.025, 0.975))

ols1.cif <- round(ols1.ci[,-1],0)

# S2SLS

sp2slsmi.beta <- coef(sp2sls.m1)

sp2slsmi.vcov <- summary(sp2sls.m1)$var

sp2slsmibeta.sim <- rmultnorm(10000, mu = sp2slsmi.beta, vmat =
sp2slsm1.vcov)

sp2slsmi.mwtp <- sp2slsmibeta.sim * Pbar

sp2slsmi.ci <- apply(sp2slsm1.mwtp, 2, quantile, ¢(0.025, 0.975))
sp2slsmi.cif <- round(sp2slsmai.ci[,c(-1,-2)])

# S2SLSHAC

sp2slsmihac.beta <- coef(sphet.m1)

sp2slsmihac.vcov <- summary(sphet.m1)$var

sp2slsmihacbeta.sim <- rmultnorm(10000, mu = sp2slsmihac.beta, vmat =
sp2slsmihac.vcov)
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sp2slsmihac.mwtp <- sp2slsmihacbeta.sim * Pbar
sp2slsmihac.ci <- apply(sp2slsmihac.mwtp, 2, quantile, c(0.025, 0.975))
sp2slsmihac.cif <- round(sp2slsmihac.ci[,c(-1,-2)],0)

# GSTSLS

gstlsmi.beta <- coef(gstls.m1)[-length(coef(gstls.m1))]

gstlsmi.vcov <- gstls.m1$secstep_var

gstlsmibeta.sim <- rmultnorm(10000, mu = gstlsm1.beta, vmat = gstlsm1.vcov)
gstlsm1.mwtp <- gstlsmibeta.sim * Pbar

gstlsmi.ci <- apply(gstlsm1.mwtp, 2, quantile, c(0.025, 0.975))

gstlsmi.cif <- round(gstlsmai.ci[,c(-1,-2)],0)

# GSTSLSHET

gstlsmihet.beta <- coef(gstlshet.m1)

gstlsmihet.vcov <- summary(gstlshet.m1)$var

gstlsmihet.sim <- rmultnorm(10000, mu = gstlsmihet.beta, vmat =
gstlsmihet.vcov)

gstlsmihet.mwtp <- gstlsmihet.sim * Pbar

gstlsmihet.ci <- apply(gstlsmihet.mwtp, 2, quantile, c(0.025, 0.975))
gstlsmihet.cif <- round(gstlsmihet.ci[,c(-1,-17,-18)],0)

# Print single model
cat("\n",
paste(DirectEffects$ GSTSLSHET,"\n","[",round(gstlsm1het.cif[1,],0),", ",
round(gstlsmihet.cif[2,],0),"]","\n", sep = ""), "\n")

# Print Direct Margina Effects and confidence interval for all models
cat(
paste("Variables", "\t", "OLS", "\t", "S2SLS", "\t", "S2SLSHAC",
"\t", "GSTSLS", "\t", "GSTSLSHET", sep =""), "\n",
paste(rownames(TotalEffects), "\t", TotalEffects$OLS, "\t",
DirectEffects$S2SLS, "\t", DirectEffects$S2SLSHAC, "\t",
DirectEffects$ GSTSLS, "\t", DirectEffects$ GSTSLSHET, "\n", "\t",
"[", ols1.ciff1,], ", ", ols1.cif[2,], "]", "\t",
"[", sp2slsmi.cif[1,],", ", sp2slsm1i.cif[2,],"]", "\t",
"[", sp2slsmihac.cif1,],", ", sp2slsmihac.cif[ 2,],"]", "\t",
"[", gstlsmi.cif1,], ", ", gstlsm1.cif[2,], "]", "\t",
"[", gstlsmihet.cif[1,], ", ", gstlsmihet.cif[2,], "]",
"\n", sep =""),
file="DirectEffects.txt")

DirectDF <- read.table("DirectEffects.txt", header = TRUE, sep="\t")

HH#H - -

HH##

#H##

# Krinsky and Robb method for se of Indirect Marginal Effects
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# OLS model nothing difference

olsi.beta <- ols1$coefficients

ols1.vcov <- veov(ols1)

olsibeta.sim <- rmultnorm(10000, mu = ols1.beta, vmat = ols1.vcov)
ols1.mwtp <- olsibeta.sim * Pbar

olsi1.ci <- apply(olsi.mwtp, 2, quantile, ¢(0.025, 0.975))

ols1.cif <- round(ols1.ci[,-1],0)

# S2SLS

sp2slsmi.beta <- coef(sp2sls.m1)

sp2slsmi.vcov <- summary(sp2sls.m1)$var

sp2slsmibeta.sim <- rmultnorm(10000, mu = sp2slsmi.beta, vmat =
sp2slsmi.vcov)

sp2slsm1.mwtpin <- sp2slsmibeta.sim * Pbar * (1/(1-sp2slsmi.beta[1])-1)
sp2slsmi.ciin <- apply(sp2slsm1.mwtpin, 2, quantile, c¢(0.025, 0.975))
sp2slsmi.cifin <- round(sp2slsmai.ciin[,c(-1,-2)])

# S2SLSHAC

sp2slsmihac.beta <- coef(sphet.m1)

sp2slsmihac.vcov <- summary(sphet.m1)$var

sp2slsmihacbeta.sim <- rmultnorm(10000, mu = sp2slsmihac.beta, vmat =
sp2slsmihac.vcov)

sp2slsmihac.mwtpin <- sp2slsmihacbeta.sim * Pbar * (1/(1-
sp2slsmihac.beta[1])-1)

sp2slsmihac.ciin <- apply(sp2slsmihac.mwtpin, 2, quantile, c(0.025, 0.975))
sp2slsmihac.cifin <- round(sp2slsmihac.ciin[,c(-1,-2)],0)

# GSTSLS

gstlsmi.beta <- coef(gstls.m1)[-length(coef(gstls.m1))]

gstlsmi.vcov <- gstls.m1$secstep_var

gstlsmibeta.sim <- rmultnorm(10000, mu = gstlsmi.beta, vmat = gstlsm1.vcov)
gstlsm1.mwtpin <- gstlsmibeta.sim * Pbar * (1/(1-gstlsmi.beta[1])-1)
gstlsmi.ciin <- apply(gstlsm1.mwtpin, 2, quantile, ¢(0.025, 0.975))
gstlsmi.cifin <- round(gstlsm1i.ciin[,c(-1,-2)],0)

# GSTSLSHET

gstlsmihet.beta <- coef(gstlshet.m1)

gstlsmihet.vcov <- summary(gstlshet.m1)$var

gstlsmihet.sim <- rmultnorm(10000, mu = gstlsmihet.beta, vimat =
gstlsmihet.vcov)

gstlsmihet.mwtpin <- gstlsmihet.sim * Pbar * (1/(1-
gstlsmihet.beta[length(gstlsmihet.beta)-1])-1)

gstlsmihet.ciin <- apply(gstlsm1het.mwtpin, 2, quantile, c(0.025, 0.975))
gstlsmihet.cifin <- round(gstlsmihet.ciin[,c(-1,-17, -18)],0)

# Print single model
Cat("\n",
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paste(InDirectEffects$ GSTSLSHET,"\n","[",round(gstlsm1het.cifin[1,],0),", ",
round(gstlsmihet.cifin[2,],0),"]","\n", sep = ""), "\n")

# Print Direct Margina Effects and confidence interval for all models
cat(
paste("Variables", "\t", "OLS", "\t", "S2SLS", "\t", "S2SLSHAC",
"\t", "GSTSLS", "\t", "GSTSLSHET", sep =""), "\n",
paste(rownames(TotalEffects), "\t", TotalEffects$OLS, "\t",
InDirectEffects$S2SLS, "\t", InDirectEffects$S2SLSHAC, "\t",
InDirectEffects$ GSTSLS, "\t", InDirectEffects$ GSTSLSHET, "\n", "\t",
"[", ols1.cif[1,], ", ", ols1.cif[2,], "]", "\t",
"[", sp2slsmi.cifin[1,],", ", sp2slsm1.cifin[2,],"]", "\t",

"non

"[", spaslsmthac.cifin[1,],", ", sp2slsmihac.cifin(2,1,"]", "\t",

"[", gstlsmi.cifin[1,], ", ", gstlsm1i.cifin[2,], "]", "\t",

"[", gstlsmihet.cifin[1,], ", ", gstlsmihet.cifin[2,], "]",

H\nﬂ’ Sep = HH)’
file="InDirectEffects.txt")

InDirectDF <- read.table("InDirectEffects.txt", header = TRUE, sep="\t")
InDirectDF

rtf <- RTF("MWTP.doc", width = 8.5, height = 11, font.size = 12, omi = ¢(1,1,1,1))

addHeader(rtf, "Table : Marginal Effects for different estimators (Direct Effects)",
font.size = 12)

addTable(rtf, DirectDF, font.size=12)

addPageBreak(rtf)

addHeader(rtf, "Table : Marginal Effects for different estimators (Indirect
Effects)",
font.size = 12)
addTable(rtf, InDirectDF, font.size = 12)
done(rtf)

# Marginal Effects with Driving Distance

# Direct Effects data frame

DirectEffects2 <- data.frame(row.names = Imdf.stslsm2[, 1])
DirectEffects2$S2SLS <- round(Imdf.stslsm2[, 2] * Pbar, 0)
DirectEffects2$S2SLSHAC <- round(Imdf.sphetmz2[, 2] * Pbar, 0)
DirectEffects2$GSTSLS <- round(Imdf.gstlsm2[, 2] * Pbar, 0)
DirectEffects2$GSTSLSHET <- round(Imdf.gstlshetm2[, 2] * Pbar, 0)

# InDirect Effects data frame
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InDirectEffects2 <- data.frame(row.names = Imdf.stslsm2[, 1])
InDirectEffects2$S2SLS <- round(Imdf.stslsm2[, 3] * Pbar, 0)
InDirectEffects2$S2SLSHAC <- round(Imdf.sphetm2[, 3] * Pbar, 0)
InDirectEffects2$GSTSLS <- round(Imdf.gstlsm2[, 3] * Pbar, 0)
InDirectEffects2$GSTSLSHET <- round(Imdf.gstlshetmz2[, 3] * Pbar, 0)

# Total Effects data frame

TotalEffects2 <- data.frame(row.names = Imdf.stslsm2[, 1])
TotalEffects2$OLS <- round(ols2$coef[-1]*Pbar)
TotalEffects2$S2SLS <- round(Imdf.stslsm2[, 4] * Pbar, 0)
TotalEffects2$S2SLSHAC <- round(Imdf.sphetm2][, 4] * Pbar, 0)
TotalEffects2$GSTSLS <- round(Imdf.gstlsm2[, 4] * Pbar, 0)
TotalEffects2$GSTSLSHET <- round(Imdf.gstlshetm2[, 4] * Pbar, 0)

rownames(TotalEffects2) <- label.var[which(names(label.var) %in%
rownames(TotalEffects2))]

rownames(DirectEffects2) <- label.var[which(names(label.var) %in%
rownames(DirectEffects2))]

rownames(InDirectEffects2) <- label.var[which(names(label.var) %in%
rownames(InDirectEffects2))]

HAHBABHABHRHHRHBHBHBHR AR A BHABHR AR A BHBHRHRHABHBEHHH

# Krinsky and Robb method for se of Direct Marginal Effects

# OLS model

ols2.beta <- ols2$coefficients

ols2.vcov <- veov(ols2)

ols2beta.sim <- rmultnorm(10000, mu = ols2.beta, vmat = ols2.vcov)
ols2.mwtp <- ols2beta.sim * Pbar

ols2.ci <- apply(ols2.mwtp, 2, quantile, ¢(0.025, 0.975))

ols2.cif <- round(ols2.ci[,-1],0)

# S2SLS

sp2slsm2.beta <- coef(sp2sls.m2)

sp2slsm2.vcov <- summary(sp2sls.m2)$var

sp2slsm2beta.sim <- rmultnorm(10000, mu = sp2slsm2.beta, vmat =
sp2slsm2.vcov)

sp2slsm2.mwtp <- sp2slsm2beta.sim * Pbar

sp2slsm2.ci <- apply(sp2slsm2.mwtp, 2, quantile, ¢(0.025, 0.975))
sp2slsma2.cif <- round(sp2slsmz2.ci[,c(-1,-2)1)

# S2SLSHAC

sp2slsm2hac.beta <- coef(sphet.m2)

sp2slsm2hac.vcov <- summary(sphet.m2)$var

sp2slsm2hacbeta.sim <- rmultnorm(10000, mu = sp2slsm2hac.beta, vimat =
sp2slsm2hac.vcov)

sp2slsm2hac.mwtp <- sp2slsm2hacbeta.sim * Pbar
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sp2slsm2hac.ci <- apply(sp2slsm2hac.mwtp, 2, quantile, ¢(0.025, 0.975))
sp2slsm2hac.cif <- round(sp2slsm2hac.ci[,c(-1,-2)],0)

# GSTSLS

gstlsm2.beta <- coef(gstls.m2)[-length(coef(gstls.m2))]

gstlsm2.vcov <- gstls.m2$secstep_var

gstlsm2beta.sim <- rmultnorm(10000, mu = gstlsm2.beta, vmat = gstlsm2.vcov)
gstlsm2.mwtp <- gstlsm2beta.sim * Pbar

gstlsm2.ci <- apply(gstlsm2.mwtp, 2, quantile, ¢(0.025, 0.975))

gstlsm2.cif <- round(gstlsm2.ci[,c(-1,-2)],0)

# GSTSLSHET

gstlsm2het.beta <- coef(gstlshet.m2)

gstlsm2het.vcov <- summary(gstlshet.m2)$var

gstlsm2het.sim <- rmultnorm(10000, mu = gstlsm2het.beta, vimat =
gstlsm2het.vcov)

gstlsm2het.mwtp <- gstlsm2het.sim * Pbar

gstlsm2het.ci <- apply(gstlsm2het.mwtp, 2, quantile, ¢(0.025, 0.975))
gstlsm2het.cif <- round(gstlsm2het.ci[,c(-1,-17,-18)],0)

# Print single model
cat("\n",
paste(DirectEffects2$GSTSLSHET,"\n","[",round(gstlsm2het.cif[1,],0),", ",
round(gstlsm2het.cif[2,],0),"]","\n", sep = ""), "\n")

# Print Direct Margina Effects and confidence interval for all models
cat(
paste("Variables", "\t", "OLS", "\t", "S2SLS", "\t", "S2SLSHAC",
"\t", "GSTSLS", "\t", "GSTSLSHET", sep = ""), "\n",
paste(rownames(TotalEffects2), "\t", TotalEffects2$OLS, "\t",
DirectEffects2$S2SLS, "\t", DirectEffects2$S2SLSHAC, "\t",
DirectEffects2$GSTSLS, "\t", DirectEffects2$GSTSLSHET, "\n", "\t",
"[", ols2.cif[1,], ", ", ols2.cif[2,], "]", "\t",

"non

"[", spaslsma.ciff1,],", ", spasism2.cif[2,1,"]", "\L",

"non

"[", Sp2SISm2haC.Cif[1a]9 L) SP2SISm2hac'Cif[29]an]"5 "\t"’

"non

"[", gstlsma.cif[1,], ", ", gstlsm2.cif[2,], "]", "\t",

"[", gstlsm2het.cif[1,], ", ", gstlsm2het.cif[2,], "]",

"\n"’ Sep — "")’
file="DirectEffects2.txt")

DirectDF2 <- read.table("DirectEffects2.txt", header = TRUE, sep="\t")

HH#H - -—=

HH##

#HH##

# Krinsky and Robb method for se of Indirect Marginal Effects
# OLS model nothing difference
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ols2.beta <- ols2$coefficients

ols2.vcov <- veov(ols2)

ols2beta.sim <- rmultnorm(10000, mu = ols2.beta, vmat = ols2.vcov)
ols2.mwtp <- ols2beta.sim * Pbar

ols2.ci <- apply(ols2.mwtp, 2, quantile, c(0.025, 0.975))

ols2.cif <- round(ols2.ci[,-1],0)

# S2SLS

sp2slsm2.beta <- coef(sp2sls.m2)

sp2slsm2.vcov <- summary(sp2sls.m2)$var

sp2slsm2beta.sim <- rmultnorm(10000, mu = sp2slsm2.beta, vmat =
sp2slsm2.vcov)

sp2slsm2.mwtpin <- sp2slsm2beta.sim * Pbar * (1/(1-sp2slsm2.beta[1])-1)
sp2slsm2.ciin <- apply(sp2slsm2.mwtpin, 2, quantile, ¢(0.025, 0.975))
sp2slsma2.cifin <- round(sp2slsma2.ciin[,c(-1,-2)])

# S2SLSHAC

sp2slsm2hac.beta <- coef(sphet.m2)

sp2slsm2hac.vcov <- summary(sphet.m2)$var

sp2slsm2hacbeta.sim <- rmultnorm(10000, mu = sp2slsm2hac.beta, vmat =
sp2slsm2hac.vcov)

sp2slsm2hac.mwtpin <- sp2slsm2hacbeta.sim * Pbar * (1/(1-
sp2slsm2hac.beta[1])-1)

sp2slsm2hac.ciin <- apply(sp2slsm2hac.mwtpin, 2, quantile, ¢(0.025, 0.975))
sp2slsm2hac.cifin <- round(sp2slsm2hac.ciin[,c(-1,-2)],0)

# GSTSLS

gstlsm2.beta <- coef(gstls.m2)[-length(coef(gstls.m2))]

gstlsm2.vcov <- gstls.m2$secstep_var

gstlsm2beta.sim <- rmultnorm(10000, mu = gstlsm2.beta, vmat = gstlsm2.vcov)
gstlsm2.mwtpin <- gstlsm2beta.sim * Pbar * (1/(1-gstlsm2.beta[1])-1)
gstlsm2.ciin <- apply(gstlsm2.mwtpin, 2, quantile, ¢(0.025, 0.975))
gstlsm2.cifin <- round(gstlsm2.ciin[,c(-1,-2)],0)

# GSTSLSHET

gstlsm2het.beta <- coef(gstlshet.m2)

gstlsm2het.vcov <- summary(gstlshet.m2)$var

gstlsm2het.sim <- rmultnorm(10000, mu = gstlsm2het.beta, viat =
gstlsm2het.vcov)

gstlsm2het.mwtpin <- gstlsm2het.sim * Pbar * (1/(1-
gstlsm2het.beta[length(gstlsm2het.beta)-1])-1)

gstlsm2het.ciin <- apply(gstlsm2het.mwtpin, 2, quantile, c(0.025, 0.975))
gstlsm2het.cifin <- round(gstlsmz2het.ciin[,c(-1,-17, -18)],0)

# Print single model
Cat("\n",
paste(InDirectEffects2$GSTSLSHET,"\n","[",round(gstlsm2het.cifin[1,],0),", ",
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round(gstlsm2het.cifin[2,],0),"]","\n", sep =""), "\n")

# Print Direct Margina Effects and confidence interval for all models
cat(
paste("Variables", "\t", "OLS", "\t", "S2SLS", "\t", "S2SLSHAC",
"\t", "GSTSLS", "\t", "GSTSLSHET", sep =""), "\n",
paste(rownames(TotalEffects2), "\t", TotalEffects2$OLS, "\t",
InDirectEffects2$S2SLS, "\t", InDirectEffects2$S2SLSHAC, "\t",
InDirectEffects2$GSTSLS, "\t", InDirectEffects2$GSTSLSHET, "\n", "\t",
"[", ols2.cif[1,], ", ", ols2.cif[2,], "]", "\t",
"[", sp2slsm2.cifin[1,],", ", sp2slsm2.cifin[2,],"]", "\t",

nn

"[", sp2slsmz2hac.cifin[1,],", ", sp2slsm2hac.cifin[2,],"]", "\t",

"non

"[", gstlsma.cifin[1,], ", ", gstlsm2.cifin[2,], "]", "\t",

"[", gstlsm2het.cifin[1,], ", ", gstlsm2het.cifin[2,], "]",
H\nﬂ’ Sep = HH)’
file="InDirectEffects2.txt")
InDirectDF2 <- read.table("InDirectEffects2.txt", header = TRUE, sep="\t")

# End
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