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A Geospatial Approach to Wildlife and Wilderness Management 

 

By 

 

Naresh Nepal 

 

B.A. Economics, Tribhuvan University, 1998 

M.A. Economics, Tribhuvan University, 2001 

Ph.D. Economics. University of New Mexico, 2014 

 

ABSTRACT 

 

The populations in the western United States have increased significantly 

over the last few decades resulting in increased development pressures on 

undeveloped and pristine lands. Population growth and increased human 

activities have also changed the overall ecosystems more rapidly and extensively 

in recent years than in the past, emphasizing the need for protecting natural land 

and ecosystems. This dissertation conducts analyses to highlight the importance 

of protected areas and wildlife habitat.  
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Chapter 1 explores the use of Poisson and negative binomial regression 

models to examine winter habitat use by mountain goats in the Kenai Mountains 

of South-Central Alaska. Using GPS collared locations data, these models 

produce parameter estimates similar to discrete choice models, popular in 

resource selection studies, but with less computational complexity. The potential 

serial (or spatial) correlations present in the data are controlled for by 

incorporating spatial effects in a Gaussian conditional autoregressive framework. 

The results support the existing literature on mountain goat habitat use with 

most of the terrain features statistically significant across individual goat models. 

The distance to the nearest escape terrain is found to be the most consistent and 

highly significant determinant of goat habitat selection, where individual goats 

tend to increase the number of visits by 37.5 to 71.6 percent more to a particular 

location that is 100m closer to escape terrain. The statistical significance of 

spatial parameter highlights the importance of neighborhood effects in habitat 

selection by mountain goats. 

Chapter 2 seeks to achieve two objectives. First, using regression based 

test of equivalence, the predicted habitat use by mountain goats are compared for 

two different sources of data. For mountain goats, the findings suggest that the 

predicted habitat uses from GPS collar and aerially surveyed locations are 

equivalent. Second, using the aerially surveyed goat locations data, the Bayesian 

inference techniques with respect to negative binomial regressions are employed 

to explore the effects of winter recreation on mountain goat habitat selection. In 

addition to the landscape features, the model comparison based on Bayes factor 
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suggests that human recreation is an important factor affecting goats’ habitat use. 

Goats tend to avoid areas with higher human recreational activities represented 

by ski-tracks, and hiking trails; increase in the ski-tracks area by one square km 

within a buffer of 5 km reduces goat count by approximately 2.5 percent at a 

particular geographic location. This highlights the potential conflict between 

human recreation and winter habitat and provides an input into policy 

discussions on conservation of mountain goat habitat. 

Chapter 3 of this dissertation analyzes the statistical properties of 

estimated parameters in the hedonic studies with special reference to the 

distance variables used to represent the proximity to environmental amenities or 

dis-amenities. Using Monte Carlo simulations, the findings suggest that when 

there are single locations available for each of the landmarks in the study area, 

including two or more distance variables in regression results in inconsistent 

parameter estimates associated with the distance variables. Nevertheless, when 

multiple locations are available for each of the landmark types and the distance 

variables capture the proximity to the nearest landmark location of each type, the 

parameters are consistently estimated. These findings are important in studies 

focusing on the estimation of welfare values based on distance variables. 

The major objective of Chapter 4 is to examine the effects of proximity to 

wilderness areas on residential property values in Yavapai County, Arizona by 

utilizing geographic information system and recently developed spatial models. 

On average, a residential property located one mile closer to a nearest wilderness 
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area is estimated to have values $4730 and $5024 higher based on Euclidean and 

road distance as a measure of proximity respectively. 
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CHAPTER 1  

 

Habitat Selection by Mountain Goats: An application of Bayesian 

MCMC inference in spatial count model using GPS collared data  

 

1.1 Introduction 

The amount and distribution of escape terrain (steep, broken and sloped 

topography), forage, and snow depth are the primary determinants of mountain 

goat winter range (Chadwick, 2002; Gross et al., 2002; Schoen and Kirchoff, 

1982).  Goats either frequent such alpine areas where strong winds expose forage 

(Fox, 1983), especially south facing wind-swept ridges (Hansen and Archer, 

1981), or migrate to lower elevation forests and thick patches of alder to escape 

deep snow (Fox et al., 1989; Hebert and Turnbull, 1977). These same locations 

may overlap with human recreation, or potentially be altered by climate change. 

For outdoor recreation, the rate and intensity of participation among Alaskans 

are higher than for residents of other states and are projected to continue 

(Bowker, 2001) suggesting an increasing demand for backcountry recreation (eg., 

heliskiing, cross-country skiing and snow machining) within mountain goat 

ranges (steep, high-elevation terrain) of the Kenai Peninsula. The Chugach 

National Forest and the Alaska Department of Fish and Game, manage these 

habitats and mountain goat numbers on the Kenai Peninsula (South-central, 

Alaska).  Both agencies are concerned about increasing human activity displacing 



2 

 

goats from important wintering areas, and long-term climatic events potentially 

reducing goat habitats.  Both factors may negatively affect mountain goat 

populations, whose numbers on the Kenai Peninsula have been declining for 

decades (McDonough and Selinger, 2008). 

For agencies to effectively manage mountain goats, they require 

information describing the relationship between these species and the human use 

and climatic factors affecting them.  A first step lies in quantifying and evaluating 

which variables or combination of variables that best predict habitats for 

mountain goats on the Kenai Peninsula. Such habitat information enables 

subsequent predictive modeling for how human use or climate change may affect 

the quality and quantity of goat habitat, while providing a basis to evaluate how 

changing environments may affect the presence of mountain goat assemblages on 

the Peninsula. 

This chapter addresses these concerns by generating a habitat model for 

mountain goats inhabiting the Kenai Peninsula. This study uses count regression 

modeling technique for GPS-collared (global positioning systems) location data 

and extends the use of spatial analysis to incorporate spatial correlation present 

in the data. More precisely, Poisson and Negative Binomial models are used in 

the spatial framework based on Gaussian Conditional Autoregressive (CAR) 

formulation. Although some recent studies have used count regression in the 

habitat selection and use studies based on GPS-collared data (Harris et al., 2014; 

Nielson and Sawyer, 2013), to the best of my knowledge, the application of CAR 

formulation to account for spatial correlation has not been used in the habitat 
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selection/use studies and is a novel method used in this study. The results from 

the model outcomes are then used to produce suitable habitat for mountain goats 

in the mountains of the Kenai Peninsula. The following section provides a brief 

review of selected literatures followed by the methods used in this study. Study 

area and data are described next followed by results. The final section provides 

discussions and conclusion. 

 

1.2 Review of Selected Literatures 

There exists a wide selection of literature analyzing the habitat selection 

and use for different species. The following sections provide a brief discussion of 

some selected literatures that focus on the habitat use by different species. 

 

1.2.1 Studies on habitat selection by species other than mountain 

goat 

Wintle et al. (2005) review fauna habitat modeling and model evaluation 

methods including a case study of habitat modeling for seven species in New 

South Wales (NSW). The purpose of the authors is to put together recent 

developments in wildlife habitat modeling into one modeling and evaluation 

framework and present those methods that seem to be most appropriate for 

predicting the distribution of species habitat in a conservation planning context 

in which technical expertise is limited. The most important factor determining 
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which modeling method to apply in any given situation depends on the nature of 

the available data. There are five main levels of data availability: 1) little or no 

data, 2) presence-only (or ad hoc) data, 3) presence-absence (or binary) data, 4) 

ordinal categorical data, and 5) count data. Out of these five levels of data, the 

situations with ordinal categorical and/or count data are not dealt by the authors 

because these situations arise very rarely in conservation planning due to 

prohibitive costs associated with capture of the data. 

Pereira and Itami (1991) use multivariate statistical techniques to develop 

habitat suitability models for the Mt. Graham red squirrel. The Mr. Graham red 

squirrel, an endangered species, is very selective in choosing locations, not only 

for midden but also for general activity areas. The major objectives of the study 

are to predict the probability of red squirrel presence or absence, based on a 

series of environmental and location-based descriptor variables. In addition to 

the multivariate statistical models, the authors use Habitat Evaluation 

Procedures/Habitat Suitability Indices (HEP/HIS) in their analysis. On the basis 

of the impact assessment results, the authors argue that the Mt. Graham red 

squirrel is in danger of extinction, and preservation of its habitat is a necessary 

condition for long-term survival.   

Harris et al. (2008) examine elephant habitat use in two different 

ecosystems: arid Etosha National park in Namibia and tropical woodlands of 

South Africa (Tembe Elephant Park) and Mozambique (Maputo Elephant 

Reserve). The major objective of the study is to quantify the habitat 

characteristics and express similarities in elephant habitat choices as ‘rules’. This 
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is done by considering the distances that elephants move together with features 

of landscape-data. GIS data are combined with three most appropriate variables: 

proportions of different vegetation types, access to water, and distances from 

human settlements. Other things being equal, the elephants are found to move 

short distances, keep close to water, select the highest vegetation cover, and avoid 

people.  

 

1.2.2 Studies on mountain goats and their habitat use 

Côté and Festa (2001) assess the effects of maternal characteristics, forage 

quality and population density on kid birthdate, mass and survival in a 

population of marked mountain goats in Alberta. They find that the mountain 

goats are constrained to give birth in a short birth season synchronized with 

forage productivity. From 1993 to 1997, the median birthdate did not vary 

statistically. Moreover, the authors do not find significant variation in the kid 

birthdate even when the effects of maternal age, social rank, previous breeding 

experience (primiparous vs multiparous) and density are considered. For kid 

mass, it is found that the mountain goat kids gain mass linearly during summer. 

Similarly, overall kid survival was 78.5 percent to weaning and 60.3 percent to 1 

year.  

Singer and Doherty (1985) reports mountain goat responses to highway 

underpasses, road construction activity, lead-in fencing, and restrictive walls as 

the mountain goats traveled to and from a natural mineral lick in Glacier 



6 

 

National Park, Montana. Mountain goat selection of crossing routes with security 

cover suggests that they are most disturbed during the pre-construction period. 

The use of more open exposed route was found to be increased during general 

construction. After completion of both bridges, only 5 of 250 groups moved 

around the ends of the facilities to cross the highway, but they were singles and 

only 0.4 percent of all crossing goats.  

Gross et al (2002) use logistic regression to develop habitat models from 

observation of mountain goats in alpine habitats near Mr. Evans, Colorado. The 

goal of the authors is to determine whether habitat use by mountain goats could 

be predicted from GIS-based data and to evaluate seasonal differences in the 

intensity and spatial patterns of habitat use. The results of the study show large 

differences between typical group size and average group size indicating that 

distributions of sizes are skewed toward large groups. A comparison of attributes 

of active sites and the entire study area revealed differences in the distribution of 

predictor variables between areas used and those of the entire study area. 

Observed mountain goats selected sites closer to escape terrain and at 

intermediate elevations within the study site. Moreover, predicted habitat 

suitability increased with proximity to escape terrain and with southern 

exposure. The coefficients of elevation and slope are positive whereas the 

coefficients of squares of elevation and slope are negative indicating that habitat 

use by mountain goats is most strongly associated with mid-elevations and 

intermediate slopes. The results show little difference between summer and 

winter habitat used by mountain goats. 
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Poole et al. (2009) examine winter habitat selection and wintering 

strategies by mountain goats in two adjacent areas of southeastern British 

Columbia using 15 GPS collared mountain goats in each areas. Using the multiple 

logistic regression analysis, the authors find topographic variables among the 

most important determinants, where mountain goats tend to select upper mid-

elevations and warmer aspects. Moreover, goats tend to be closer to the escape 

terrain possibly to avoid predators. 

Multiple logistic regressions and discrete choice modeling (resource 

selection function) have been the common statistical method employed in the 

studies of mountain goat habitat use where the goat locations data become 

available. As mentioned above, some recent studies have employed negative 

binomial regression to GPS collared data. This paper takes into account the 

spatial CAR formulation in the count regression models by using goat locations to 

examine the habitat use by mountain goat. 

 

1.3 Methods 

For mountain goats, a good deal of research uses remotely sensed images, 

geographical information systems (GIS) and GPS data to identify suitable habitat 

of ungulates. The GPS collar data helps researchers track individual animals over 

a given period and allows for modeling resource use by capturing serial or spatial 

correlation, resulting from animal movements within a geographical region 

(Legendre and Fortin, 1989; Lichstein et al., 2002; Ramsey and Usner, 2003). It 
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is highly likely that species more often use resources that are close to its current 

location, and GPS collar data, therefore, permits incorporating these spatial 

components into the modeling. Discrete choice modeling is a widely used 

technique that accommodates the probability of individual choices, and the 

movement of animals can be included in the model to control the resulting serial 

correlation. (Cooper and Millspaugh, 1999; Harris et al., 2008; Manly et al., 

2002; Nielson et al., 2009). 

In this study, spatial count regression models (Poisson and negative 

binomial regression models) are employed using GPS-based goat locations. These 

count regression models produce coefficient estimates similar to those generated 

by discrete choice models, but in a computationally efficient way. More precisely, 

when the probability of individual choices is exclusively the function of choice 

specific attributes, Poisson regression produces identical parameter estimates as 

the discrete choice model (Guimaraes et al., 2003). The relatively simple count 

regression models allow researchers to extend these models to incorporate 

neighboring cells' spillover effects. In the presence of spatial interdependency, 

the inclusion of spatial autocorrelation into regression model helps improve the 

consistency of coefficient estimates (Dormann, 2007). 

As mentioned above, this study uses Poisson and Negative Binomial model 

in the spatial framework based on Gaussian Conditional Autoregressive (CAR) 

formulation. Moreover, this study extends the use of spatial analysis to Poisson 

and negative binomial regression models which are useful not only for this study 

which uses GPS based locations data, but also for the data representing species 
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distributions exhibiting discrete values at different locations (such as bird counts, 

aerially surveyed mammals, etc).  

 

1.3.1 Basic Model 

Following Cooper and Millspaugh (1999), the basic model starts with the 

discrete choice model that specifies the probability of choosing a particular 

alternative derived under the random utility theoretical framework popular in 

economic theories. Under the random utility framework, the movement of an 

ungulate from any location to a particular location j can be viewed as the utility of 

location j being higher than all other alternatives. Therefore, if 
i

U  denotes the 

utility from location i, the probability that the ungulate chooses a particular 

location j is given by 

( )

( )

Pr ,

Pr ,

i

j i

j jP U U j i

UU j i

= >

= −

∀ ≠

∀ =
 

In the absence of spatial effects, it may be assumed that utility from 

location j depends exclusively on the landscape characteristics of that location so 

that the utility obtained by an ungulate by choosing location j can be represented 

as 

 j j jxU β ε= +   (1.1) 

where, xj is the vector of observed variables on attributes of alternative choice j, 

jε  is the unobserved error term and β  is the parameter to be estimated. If jε  are 
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independent and have an extreme-type-value 1 Weibull distribution, the 

probability of choosing site j among all other alternatives is given by 

 
( )

( )
1

exp

exp

j

j J

jj

x

x
P

β

β
=

=
∑

  (1.2) 

where, J is the total number of available alternative locations.  

If the probability of choosing a particular alternative depends exclusively 

on the vector of that alternative's attributes, the results from standard conditional 

logit model (or discrete choice model) could be identically estimated by running a 

simple Poisson regression model with the response variable being the number of 

times a particular location is chosen (see Appendix A for the equivalency between 

Poisson and Conditional logit model). The transition from a conditional logit to a 

Poisson model has at least one notable advantage: it helps to overcome the 

problem of estimation associated with the large number of choices by reducing 

the computational complexity. Partly because of this added benefit, it allows 

researchers to include spatial covariates to explain the effects of neighboring 

locations' attributes on an ungulate's choices. 

Suppose Yi is a response variable representing the number of times an 

ungulate appears in a particular location j (j = 1, 2, ..., J). Suppose explanatory 

variables are denoted by xj, the landscape characteristics of location j. Then the 

standard Poisson distribution for the response variable is given by 

 ( )
( )exp

!

y

P Y y
y

λ λ−
= =   (1.3) 
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where, ( ) ( )V YE Yλ = = . One limitation of the Poisson model is that the mean 

and variance are equal. The negative binomial model is an alternative to the 

Poisson model that allows the variance to deviate from mean and captures cross-

section heterogeneity. The negative binomial distribution for the response 

variable Y is given by 

 
( )

( )
( )

Pr
!

y

Y y
y

y
θθ θ λ

θ θ λ θ λ

Γ +

Γ + +

  
= =    

   
 (1.4) 

where, ( )E Yλ = and ( ) 2V Y λ λ θ= + , and θ  captures the cross-section 

heterogeneity.  

 

1.3.2 Model with Spatial Component 

The probability distributions given by the conditional logit model 

(equation (1.2)), Poisson model (equation (1.3)) and negative binomial model 

(equation (1.4)) assume that the choice decision depends only on the 

characteristics of location j and therefore ignores the attributes of neighboring 

locations. However, it is reasonable to assume that the characteristics of 

neighboring locations have significant influence on animals’ choices. This is 

especially true in case of mountain goats, which prefer landscapes with higher 

forage availability and at the same time try to remain within the close proximity 

of the escape terrain to avoid predators (Gross et al., 2002; Poole et al., 2009). 
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Theoretically, including the attributes of neighboring locations, the utility 

function (equation (1.1)) takes the form 

 
1

J

j j ji i j
i

x w xU β β ε
=

= + +∑  (1.5) 

where, 
jiw  is the weighing sequence defined in terms of the distance between 

locations j and i. For estimation purposes, the spatial effects are included into the 

count regression models. Therefore, if γ  is the vector of spatial random effect for 

each location, the parameter estimates follows 

 ( ) ( )| expE Y xβ β γ= +  (1.6) 

Here, the parameter γ  is the assumed to be normally distributed with  

( )2 1~ 0,N Qγ σ −  

the precision matrix Q = Qij given by  

1 |

~

0

| i

ij

i j

Q i j

otherwi

N

se

ψ

ψ

+ =


−= 

⋅




 

where, the notation i ~ j implies that locations i and j are neighboring locations 

and Ni is the number of neighbors of location i. The parameter  determines the 

overall degree of spatial dependence, so that = 0 implies locations are spatially 

independent and as  increases the degree of spatial dependence increases. 

 

ψ

ψ

ψ
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1.3.3 Estimation Method 

Using the standard conditional logit model, the estimation method follows 

maximization of log likelihood given by 

 
1

n ll n
J

j j
j

n PL
=

=∑   (1.7) 

where, 1=jn  if the ungulate picks choice j and 0=jn  otherwise. If nj is 

independently Poisson distributed, following Guimarães et al. (2003), it can be 

shown that the log likelihood is given by 

 
1 1

lnln ln ln !
JJ

j j j
j j

L Nn P N N n
= =

= − + −∑ ∑  (1.8) 

The first term on the right hand side of equation (1.8) is exactly identical 

to the log likelihood in equation (1.7) and the remaining terms are independent of 

the parameters.1 The maximization of likelihood therefore provides identical 

parameter estimates.  

In order to incorporate spatial dependency, this study considers models in 

a Bayesian context. Since the resulting parameters are not analytically tractable 

because of the high dimensional posterior distributions, parameters are 

estimated using a Markov chain Monte Carlo (MCMC) method. MCMC generates 

approximate samples for the posterior distribution from which the mean and 

                                                   

1 The details of equivalence between conditional logit and Poisson models are provided in the 

Appendix A. 
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standard error of the parameter estimates are obtained. There are various 

samplers available, such as Gibbs sampler and Metropolis Hastings (MH) 

sampler. This study uses R Statistical Software (2013) to estimate parameters by 

using built-in R package 'spatcounts' developed by Schabenberger (2009).  This 

package uses independence MH sampler, relying on a Student's t-distribution 

with 20ν =  degrees of freedom. Were ( )|p yθ  the posterior distribution, then the 

independence MH sampler algorithm used in our models can be summarized in 

the following steps. 

Step 1: Choose a starting value ( )0θ  and the number of iterations 

T. Set . 

Setp 2:  

a) Calculate the mode modeθ  and the inverse curvature at the mode 

( )
1

modeH θ
−

− of the target distribution.  

b) Propose a candidate value 

 ( )
( )( )

( )

( )1 /22

1
ˆ1 /2 1ˆ ˆ~ 1

/2
q

ν

ν θ θ
θ θ ν

σ σν νπ

− +
−

−
 Γ +  − = +    Γ   

  

where ( )
1/2

11
modeH

ν
σ θ

ν

− 
− 
 

+
= .  

1t =
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c) Accept θ̂  with probability 
( )

( )
( )
( )

1

1

ˆ|

ˆ
min 1,

|

t

t

p q

p y

y

q

θ θ

θ θ

−

−

 
 
 
  

 and set ˆtθ θ= , 

otherwise set 1t tθ θ −= . 

Step 3: If t T= stop the algorithm. Otherwise set 1t t= +  and 

return to Step 2.  

The maximum iteration is set at T = 20,000 for each of the Poisson and 

negative binomial models. For the models without spatial components, first 

models are estimated and corresponding Akaike's Information Criteria (AIC) are 

used to identify the model with the best fit. However, in the context of spatial 

regression models, Deviance Information Criterion (DIC) is used. DIC is 

particularly useful in Bayesian model selection problems and is a popular 

criterion designed to compare hierarchical models. It is computed as  

( ) ( )2 |yIC D DD θ θ−=  

where ( )|D yθ  is the estimated posterior mean of the deviance and ( )D θ  is the 

deviance of the estimated posterior means. The model with the lower values of 

AIC and DIC are preferred. 

 

1.4 Study Area and Data 

The study area includes interior mountains within the Kenai Peninsula of 

South Central Alaska (Figure 1. 1). This study uses the data obtained from Alaska 
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Department of Fish and Game which deployed Tellus 2D GPS collars 

(manufactured by Televilt) on 12 mountain goats in two different areas (seven 

goats in the Gilpatric Mountains and five near Spencer Glacier) in October 2007.  

The data on ten mountain goats were successfully retrieved in May 2008. 

Because of GPS errors on some of the goats, this study uses only the goat 

locations of five and three goats during winters of 2007 and 2008, respectively. 

Winter period are identified as the period from January 1 to March 31 following 

Smith (1977) and Poole et al. (2009). These data sets for eight goats during 

winter consist of mountain goat GPS locations recorded at an interval of one hour 

with only 7% missing observations. Nielson et al. (2009) show that if 10% or 

more of fixes are unsuccessful it can bias results but do not investigate the lower 

levels of missing data in the current sample. 

With GPS locations from all of these goats, a minimum convex polygon is 

created. This area is then buffered by 5 km, the maximum distance moved by a 

goat in one hour within this data set. The entire area is used to classify the 

suitable habitat for mountain goats. Nevertheless, the analyses are performed at 

finer scales, and hence, the regression parameters are estimated using a smaller 

area for each goat. For the smaller area, minimum convex polygon (MCP) is 

created from the GPS locations of each goat during the given winter period and a 

systematic rectangular grid (of 60 × 60m resolution) is created within each MCP. 

The number of goat locations recorded within each 60 × 60m grid cell in the 

three months period of winter is considered the response (dependent) variable 

for the count regression models.  
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Explanatory variables include elevation, distance from escape terrain 

(DistEsc), aspect, vector ruggedness measure (VRM), shrub and rock. This study 

uses digital elevation model (DEM) raster images of 60m × 60m resolution to 

extract slope, aspect and VRM.2 Aspect is converted to a continuous variable by 

taking the cosine of the angle so that its value ranges from -1 to +1, representing 

south to north. VRM is calculated using the ArcGIS Script (Sappington et al., 

2007) over a 3 × 3 neighborhood cell, and is converted to a 0-100 scale. Higher 

values of VRM represents more rugged terrain.  

There is no consensus among the existing studies defining escape terrain. 

For example, Gross et al. (2002) consider slope greater than 33 degrees whereas 

Poole and Heard (2003) categorize areas with slope greater than 45 degrees as 

escape terrain. In this study, the landscape grid with slope greater than 40 

degrees is arbitrarily considered as the escape terrain and the distances from 

each cell grid to a nearest escape terrain is calculated (scaled to 100m). Following 

the standard procedure to include dummy variables in a regression model, only 

two categorical variables (shrub and rock) are used; the third category (forest) is 

considered a base category.  

 

                                                   
2 The variables slope and distance to nearest escape terrain are found to be highly correlated. 

Distance to a nearest escape terrain is considered more important characteristic based on the 

existing literature (Poole et al, 2008, Gross et al, 2002) and as such, slope is dropped from the 

models.  
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1.5 Results 

1.5.1 Spatial count regression 

Table 1. 1 and Table 1. 2 report parameter estimates generated by Poisson 

and Negative Binomial regressions without spatial components, while Table 1. 3 

and Table 1. 4 present regression results with spatial components.3 The 

coefficients for each goat are estimated separately.  Each column contains the 

parameters and their standard errors for an individual goat.4 As this study 

focuses on introducing the spatial count regression model, models are kept 

simple by including only the most important variables. Based on previous 

literature (Gross et al., 2002; Poole et al., 2009), positive signs are expected for 

parameters describing elevation, VRM, rock and shrub, and negative signs for 

Aspect (cosine of aspect) and DistEsc (distance to nearest escape terrain). With 

few exceptions, most coefficients are statistically significant and have the 

expected signs.  

Results from simple count regression models are not comparable directly 

with the spatial count regressions because the two methods are different and 

additional parameters are included in the spatial count regression models. The 

                                                   
3 Results from discrete choice models are presented in Appendix B. When distances from 

previous locations are not included, the coefficients from discrete choice models are exactly 

identical to the Poisson model without intercept term. 

4 Attempts are made to consider pooling the data and estimating the joint coefficients but rejected 

based on the likelihood ratio test. 
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parameter ψ  is statistically significant emphasizing the spatial dependency 

(Table 1. 3 and Table 1. 4). Moreover, if the insignificant coefficients are ignored, 

and models are compared based on the estimated coefficients about whether they 

meet the expected sign, the spatial count regression could be considered to better 

predict goat choices. For example, all of the statistically significant coefficients 

for elevation are positive in the spatial count regression models but some of the 

coefficients have negative signs in simple regressions.  

Coefficients for continuous variables in a count regression model can be 

loosely interpreted as the rate ratio corresponding to a one-unit difference in the 

predictor. In all the models of this study, the dependent variable is the number of 

times a goat visited a particular location (grid-cell). For estimation, the 

explanatory variables are deviated from their mean values. Therefore, the 

statistically significant coefficient for elevation in the Poisson model (Table 1. 3) 

ranges from 0.5 to 0.94 across different models which implies that goats 

increases the intensity of use by 1.65 to 2.6 times in areas that are one unit  

higher than the mean elevation values. Similarly, the numbers of visits to a 

particular location by goats are 1.12 to 1.54 times higher for 1 percentage point 

greater values in VRM index from their mean values.  

The coefficients on DistEsc are most consistent and statistically significant 

throughout the regression models emphasizing the importance of escape terrain 

on goat preferences. The coefficients on DistEsc from spatial Poisson regression 

across models ranges from -1.26 to -0.47 indicating the number of visits to 

increase by 37.5 to 71.6 percent when a location is closer to the escape terrain 
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measured by one unit greater than their mean values. The negative and 

significant parameters corresponding to Aspect implies that mountain goats 

prefer cliffs with southerly aspect. Similarly, mountain goats prefer barren rock 

and shrub as implied by positive signs on their corresponding coefficients across 

individual models. 

 

1.5.2 Habitat Classification Map 

This study uses the regression coefficients from spatial Poisson and 

negative binomial models to classify suitable habitat for mountain goats 

inhabiting the Kenai Peninsula (Figure 1. 2). First, separate maps describing 

habitat suitability for each mountain goat are obtained by using the coefficients 

from each regression model. Raster grids from each model are then combined to 

gain a single raster image representing the average values. The five different 

ranges of suitability are classified with quantile classification in ArcGIS. Figure 1. 

2 also shows actual goat locations overlaid on the classified map. It is found that 

84 and 79 percent of goat locations are contained within the predicted top 20 

percent (most preferred) areas from spatial Poisson and negative binomial 

models respectively. 

1.6 Discussions and Conclusion 

Habitat models producing accurate maps help wildlife managers define 

important habitats thereby helping conserve wildlife populations. The aim of the 

present study is to classify suitable mountain goat habitat in Kenai Peninsula 
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and, while doing so, provide an improved estimation procedure with the GPS 

based location data, namely spatial count regression. These count regression 

models also produce regression coefficients similar to the discrete choice models.  

One issue in using GPS collar for generating species and habitat 

relationships is serial correlation in animal movements (Ramsey and Usner, 

2003). It is highly likely that two consecutive locations will be close to one 

another as there is always a maximum feasible distance moved by an animal. One 

approach to control for such correlation would be to include the distance moved 

by an ungulate as an explanatory variable in the regression model. Discrete 

choice models have this noticeable advantage over simple Poisson models, since 

the distance moved by an animal could be incorporated into the model. However, 

this requires maximization of the likelihood function, which increases the 

computation burden and becomes infeasible while dealing with large data sets. 

The alternative to a maximum likelihood method, such as a conditional logit 

model that can be fitted with some standard statistical packages, requires much 

effort in data manipulation and organization before running the estimation 

procedure, especially when the distance moved by an animal is to be included. 

Incorporating distance as a variable in count regression models is theoretically 

very complicated, if not impossible. However, count regression models allow 

researchers to address the issue of spatial or serial correlations by including the 

effects of neighboring locations into the model.  

As this study introduces spatial effects into the model, models are kept 

simple by including mainly terrain features. Instead, emphasis is given more on 
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the implementation of methods to incorporate spatial effects for the data derived 

from GPS collared animal locations rather than to explore any additional 

determinants of goat habitat use. However, depending on the availability of data, 

these models can be extended to include variables reflecting human activities and 

climate change. Knowledge of the ecological foundations forming mountain goat 

habitat fosters management of these areas, and enables ecologists to assess how 

such recreation overlaps with them. Accurate maps of goat habitat describing 

locations animals frequent during winter would help attenuate such effects. 

Moreover, such areas can serve as scientific controls, or benchmarks, to evaluate 

and compare seasonal movements and distributions of animals in the absence of 

human disturbance, since recreational activities hold potential to displace goats 

from preferred wintering areas.  If so, reducing the quality or quantity of winter 

ranges can detrimentally affect these ungulate populations (McDonough and 

Selinger, 2008).  
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CHAPTER 2  

 

Does winter recreation influence mountain goat habitat selection? 

 

2.1 Introduction 

In Alaska, mountain goats hold high value to locals and visitors for both 

consumptive (hunting) and non-consumptive (watching) purposes. The Chugach 

National Forest and the Alaska Department of Fish and Game manage mountain 

goat habitat and goat numbers on the Kenai Peninsula. Both agencies are 

concerned about the increasing human activity displacing goats from wintering 

areas. Mountain goat, being one of the big game animals, shares the total revenue 

generated from outdoor recreation such as hunting and wildlife viewing. 

According to National Survey of Fishing, Hunting and Wildlife Associated 

Recreation 2011, one million residents and non-residents spent $3.4 billion on 

wildlife recreation in Alaska. Given the huge economic benefits of wildlife, and 

that the wildlife population has direct relationship with wildlife associated 

recreational activities, maintaining sustainable wildlife population and its habitat 

is crucial to continue generating economic revenues from this sector. 

This study seeks to achieve two main objectives relating to wildlife habitat 

use with special emphasis on mountain goat habitat in Kenai Mountains of 

Alaska. First, regression based test of equivalency is used to compare the 
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predictions of intensity of habitat use by mountain goats from model outcomes 

using two different sources of data, GPS collared locations and aerially surveyed 

locations. Although both sources of data contain actual locations of mountain 

goats, they fall under different study designs popularly employed in resource 

selection studies as described by Manly et al. (2002); aerial surveys are examples 

of Design I where measurements are made at the population level whereas GPS 

collared locations are applications of Design II and Design III with individual 

animals being identified or collected for the study. Typically Design I are 

inexpensive compared to Design II and III because individual animals are not 

captured, collected or relocated (Manly et al., 2002, p. 8). The GPS collared 

locations data, on the other hand, have advantages particularly in terms of 

increased precision and accuracy and are increasingly used in habitat selection 

studies (Whittington et al., 2005; Sawyer et al., 2006; Frair et al., 2010). 

Nevertheless, the use of GPS technology in habitat selection studies has its own 

limitation arising from the tradeoff between sample size and the cost of GPS units 

(Hebblewhite and Haydon, 2010). Comparison of resource selection by animal 

from different sample designs is expected to be helpful to researchers for 

considering analysis options when data are constrained by either the costs or the 

availability of information on available/use resources in the study area. 

The second objective central to this study is to examine the effect of 

human winter recreation on mountain goat habitat selection. While factors 

affecting wildlife population are numerous, conflict of resource use may be 

considered as one of the potential components. For instance, geographical 
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locations suitable for mountain goat winter habitat may be used by human winter 

recreationist thereby reducing the home range of these animals. Understanding 

the influence of human disturbance on habitat of mountain goat is fundamental 

to achieving the objective of conserving these ungulates. To this end, Bayesian 

model comparison method is employed to highlight the significance of conflict 

between winter recreation and mountain goat habitat use. 

 

2.2 Data and Study area 

The study area includes the mountains of Kenai Peninsula, Alaska. Within 

Kenai Mountains, goat locations data obtained from two different sources and 

methods are used to examine habitat use by mountain goat. First, GPS Collar 

data of five mountain goats in Gilpatrick Mountains and near Spencer Glacier are 

used to examine habitat use by goats. These data contains actual locations of 

animals during the winter period (January-March) of 2007 and 2008, where GPS 

fixes occur at one hour intervals. The second set of data includes locations of 

mountain goats observed from aerial flight survey in winter period of 2005 in the 

Kenai Mountains. Since GPS collared goat locations are clustered in small ranges, 

the study area is defined by creating Minimum Convex Polygon (MCP) using all 

goat locations observed in aerial survey, which covers wider geographical area 

than the GPS locations. 

For GPS Collared location data, Minimum Convex Polygons (MCPs) are 

created to represent home range for each goat separately. Then geographical 



 

33 

 

characteristics of the landscape within each MCP are extracted from DEM raster 

image of 60m×60m. Number of cells within each MCP varied from 345 to 5541 

for different goats. Since this study focuses on employing count regression 

(Poisson and Negative Binomial) models to estimate the parameters of interest, a 

count-variable is generated by counting the number of times a goat appears in a 

particular grid cell during the study period of three months. This count-variable 

is used as response (dependent) variable in our regression models, which 

represents the intensity of habitat use by mountain goat at any given location.  

For aerially surveyed data, the data set consists of a total of 288 goat 

locations observed during the winter period in 2005. These data include the 

locations as well as the number of goats observed at each of the locations. In 

order to consider available/unused resources, using each raster grid within the 

entire study area would not be feasible due to relatively larger geographical area 

resulting in extremely large number of grid cells within the study area. Instead, 

geographical points equal in number of goat locations are randomly generated 

using ArcMap, and are considered as locations of unused resources. The goat 

points and random points are combined and corresponding landscape 

characteristics are extracted from the raster image of 60m×60m for each point.  

This study uses DEM raster image of cell size 60m to extract slope, aspect 

and Vector Ruggedness Measure (VRM). VRM is calculated using the ArcGIS 

Script (Sappington et al., 2007) over a 3 × 3 neighborhood cells, finally 

converting to 0-100 scale, higher values corresponding to more rugged surface 

(broken terrain). Distance from escape terrain, described as steep slopes of 
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broken rocky terrain (Gross et al., 2002), has been found to be one of the most 

important factors affecting goats' decision on habitat use in the existing literature 

(Gross et al., 2002; Poole and Heard, 2003; Poole et al., 2009). Landscape grids 

with slope greater than 40 degrees are defined as escape terrain. From each 

raster cell, distance to a nearest escape terrain is calculated in ArcMAP using 

‘near’ tool. Aspect is converted to a continuous variable by taking Cosine of the 

angle so that its value ranges from -1 to +1 representing from south to north.  

Additional variables corresponding to available landscape cover types are 

also included as explanatory variables in the regression models. Following the 

standard statistical procedure to treat binary independent variables in a 

regression model, only two features, rock and shrub, are included because within 

each MCP of individual goats, other features are either not available or, when 

available, are inadequate in number of observations to be included into the 

models. The same cover-type features are included in the models utilizing the 

aerial data so as to make the results comparable to those obtained from GPS 

collar data. A brief description of variables used in this study is provided in Table 

2. 1. 

In order to examine the effect of winter recreation on mountain goat 

habitat, the data on ski-tracks observed during the flight survey are used. The 

area of ski-tracks within 5 km buffers of each of goats’ locations and random 

points are calculated. In addition to ski area, two variables corresponding to 

hiking trails in the study area are considered: distance to the nearest trail from 

each location, and the trail-length within 5 km buffer of each location.  
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2.3 Methods 

This study uses Poisson and negative binomial models to estimate the 

coefficients. For the count regression models, suppose Yj is a response variable 

and represents the goat count in a particular location j (j = 1, 2, ..., J). The 

standard Poisson distribution for the response variable is  

 ( )
( )exp

!

y

P Y y
y

λ λ−
= =   (2.1) 

where, ( )E Yλ =  and ( )V Y λ= . Similarly the negative binomial (NB) 

distribution for the response variable is 

 ( )
( )

( )
Pr

!

y

Y y
y

y
θθ θ λ

θ θ λ θ λ

Γ +

Γ + +

  
= =    

   
 (2.2) 

where θ  captures the cross-section heterogeneity. The mean and variance of NB 

distribution are ( )E Yλ =  and ( ) 2V Y λ λ θ= +  respectively. The equation being 

estimated is then written as 

( ) ( )lnf λ λ= =βx  

where, β  and x  are the coefficient and variable matrices respectively. 
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2.3.1 Estimation 

This study uses 'glm' and 'glm.nb' functions in R (R Core Team, 2013) to 

obtain parameter estimates of Poisson and Negative Binomial regression models. 

However, the program codes are written in R to maximize the likelihood function 

for the discrete choice models (R Codes are provided in Appendix D). For GPS 

collar data, the regression coefficients are estimated individually for each goat.5 

The regression coefficients from GPS collar data and aerial survey data are not 

directly comparable as they are performed at different geographical scales. 

Therefore, first classified raster grids are generated with equal interval of values 

from 0 to 100 to represent predicted habitat use by mountain goats from both 

sources of data. Then regression based test of equivalence (described below) is 

performed. Finally, the negative binomial regressions are estimated using 

Bayesian method for aerially observed mountain goat locations with and without 

some additional features representing the proxy related to human recreational 

activities. 

 

                                                   
5 An attempt was made to pool the data for all goats, but rejected the model based on likelihood 

ratio test. 
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2.3.2 Regression-based test of equivalence for model results from two 

data sets 

Before using the aerially surveyed data, the regression-based equivalence 

test is performed to confirm that the results from two different data sets produce 

predictions that are statistically equivalent. In order to achieve this, I adopted the 

method from Robinson et al (2005), the procedure of which is briefly described 

below. 

1. Poisson and negative binomial models without spatial components are 

estimated and predicted values are mapped to a raster image. These 

predictions from GPS data and aerial data are then transformed to 1-100 

range from the raster grid with higher values corresponding to more 

suitable habitat. 

2. The results from GPS data are deviated from mean to ensure that the 

estimates of slope and intercept are independent. This allowed me to 

perform test of equivalence on both intercept and slope independently. 

3. The regions of equivalence are established at 10 percentage for both 

intercept and slope ( ),RE RE
− + . 

4. Linear regressions are fitted with mean deviated GPS model results as 

predictor variable and aerial model results as response variable. 

5. Two one-sided 95% confidence intervals for both intercept and slope are 

calculated  ( ),CE CE
− +  
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The regression based test of equivalence suggests that if the computed 

confidence intervals fall within the regions of equivalence, the predictions from 

two approaches are equivalent.  

 

2.3.3 Bayesian Estimation 

Bayesian inference approach starts with the probability model for data y, 

which is specified by a vector of d unknown parameters ( )1 2, ,..., dθ θ θ=θ  

considered as random variables. Before data are observed, prior beliefs about the 

parameter vector are represented by prior probability distribution ( )p θ . The 

prior distribution reflects the researcher's uncertainty about the parameters and 

is subjective in that any two persons may have different prior beliefs about the 

same parameter vector θ . Once the data are observed, the prior beliefs are 

revised using Bayes' theorem to construct the conditional distribution of 

parameter ( )|p yθ  called posterior distribution. From the Bayes theorem, we 

have, 

( )
( ) ( )

( )
|

|p y

p
y

p
p

y
=

θ θ
θ  

where, ( ) ( ) ( )|p y p y dp= ∫ θ θ θ  is the density of the marginal distribution of y. 

For estimation purposes, the posterior distribution is obtained up to a constant of 

proportionality depending on the data and is written as 
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( ) ( ) ( )| |p p py y∝θ θ θ  

Therefore, the posterior distribution is proportional to the likelihood times the 

prior.  

In this paper, Bayesian inference technique is used to estimate the 

parameter vector for negative binomial regression with the likelihood 

( )
( )
( )

( )
1

| 1
!

iyi

i i

i

n

i

p y q
y

y
qαα

α=

Γ +
−

Γ
= ∏θ  

where,  

i

i

q
α

α λ
=

+
  

and  

( )expi iλ ′= x β  

Here, the model specific parameter vector is ( ),α=θ β , where α  is the 

over-dispersion parameter. The prior for β  and α  are chosen as ( )1~ 0,N σ −β I  

and ( )~ ,Gamma a bα . Since the posterior distribution is not analytically 

tractable, Markov chain Monte Carlo (MCMC) method is applied to generate 

approximate samples from the posterior distribution. Particularly, this study 

employs Random Walk Metropolis Algorithm within the negative binomial 

regression model where ( )|αβ  and ( )|α β  are drawn with two different random 

walks.  
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2.3.4 Model Comparison using Bayes Factor 

The posterior mean and corresponding standard deviation of model 

specific parameters reflect the importance of individual parameters associated 

with the variables entering into the model. In addition, it is often of interest to 

compare the fit of two or more competing models, which allows researchers to 

select the best model for the given data. The model comparison problem, in this 

paper, is addressed to emphasize the role of human recreational activities on 

mountain goat habitat selection. In the Bayesian context, the pair-wise model 

selection proceeds by comparing models through their posterior odds ratio given 

by  

 Posterior odds = Prior odds × Bayes Factor    

More precisely, the posterior odds ratio of two models 1M  and 0M  is 

written as  

 
( )
( )

( )
( )

( )
( )

1 1 1

0 0 0

| |

| |

p M p M p y M

p M p M

y

p yy M
=   (2.3) 

where,  

 ( ) ( ) ( ),| ||i i i i i ip y M p f y MM d= ∫ θ θ θ   (2.4) 

is the marginal likelihood of model iM , and iθ  is the model specific parameter 

vector (Chib and Jeliazkov, 2001). If one assigns equal priors to the models, the 

prior odds ratio (first fraction on the right hand side of equation (2.3)) drops out 
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so that the posterior odds ratio equals Bayes Factor (second fraction on the right 

hand side of equation (2.3)), which, in turn, is the ratio of marginal likelihoods.  

The marginal likelihood of each model is approximated using Laplace 

method6. Representing the marginal likelihood as 

( ) ( ) ( )exp ln |p y p f y d =  ∫ θ θ θ  

and integrating the quadratic approximation for the log-likelihood centered at its 

mode, the maximum likelihood estimate (MLE), the approximated marginal-

likelihood is given by  

( ) ( ) ( ) ( )

( )

/2
2

|
det

d

p y p p y
π

= θ θ
Q

� ��  

where θ�  is the MLE and Q is the observed information matrix (negative Hessian 

of the log-likelihood) evaluated at MLE. The approximated marginal likelihood is 

then used to compute Bayes factor.  

Raftery (1996), following Jeffreys (1961), proposes the scale for 

interpreting Bayes factor. If 10BF  denotes the Bayes Factor for comparing model 

1M  against model 0M  (defined as the ratio of marginal likelihoods of 1M  to    

0M ),  

( )102ln 0BF <  Negative evidence for 1M  (supports 0M ) 

                                                   
6 I modified the R code for the function rnegbinRw from R package bayesm by Rossi (2012) so as 

to extract marginal likelihood from Laplace method. See Appendix for the detail code.   
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( )102ln 20 .2BF≤ <  Very weak evidence for 1M  

( )102ln 62.2 BF≤ <  Positive (moderate) evidence for 1M  

( )102ln 06 1BF≤ <  Strong evidence for 1M  

( )1010 2ln BF<  Very strong evidence for 1M
 

 

 

2.4 Results 

Estimated coefficients for Poisson and negative binomial models for each 

of the individual goats are shown in Table 2. 2 and Table 2. 3 respectively.   With 

few exceptions, most of the estimated coefficients for individual goats meet 

expected signs. For example, goats prefer higher elevation, with rugged terrain 

features and areas closer to the escape terrain. These model results are used to 

create map layers of predicted habitat use by mountain goats. Then, for each of 

the models (Poisson and negative binomial) the predicted maps are combined to 

gain a single layer of predicted habitat use for the entire study area. Figure 2. 2 

and Figure 2. 4 show the predicted habitat use obtained from GPS collared data 

using Poisson and negative binomial models respectively.  

Similar analysis is performed for aerially surveyed goat locations data. 

Table 2. 4 shows the estimated coefficients from Poisson and negative binomial 

regressions. The parameter θ , which captures the cross-section heterogeneity, is 
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statistically significant and highlights the importance of negative binomial 

models for these data. The coefficients of the estimated models are used to create 

map layer, which are shown in Figure 2. 3 and Figure 2. 5. The maps layers from 

two different data sources are visibly similar for both Poisson and negative 

binomial models. In order to establish the equivalency between these predicted 

map layers, the regression based test of equivalency is performed separately for 

each of the count models as described in Section 2.3.2.  

The results of comparison between predicted habitat-use from two sources 

of data are shown in Table 2. 5. At the mean values, the confidence intervals are 

contained within the regions of equivalence for both intercept and slope for each 

of the models. This suggests that the predicted habitat use by mountain goats 

from two different sources of data are statistically equivalent suggesting that both 

types of data are useful in habitat use studies on mountain goat. 

  

2.4.1 Bayesian model comparison 

Table 2. 6 reports the posterior mean and standard deviation for four 

models. Model M0 includes only the variables representing landscape 

characteristics, while models M1, M2, and M3 include an additional variable as a 

proxy for capturing human related recreational activities. All of the statistically 

significant coefficient estimates have expected signs. Moreover, the negative and 

significant estimates of SkiArea and TrailLength in models M1 and M2, and the 

positive and significant estimates of TrailDist in Model M3 signifies the adverse 
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effect of human activities on the goat habitat use. Particularly, the posterior mean 

of -0.0253 for SkiArea in model M1 implies that as Ski-track area increases by one 

square km within a buffer of 5 km of a given geographical location, one would 

expect, on an average, the goat count to decline by 2.5 percentage. Similarly, the 

model coefficients for TrailLength from M2 can be interpreted as when trail-

length increases by 1 km within a buffer of 5 km of a location, the mean goat 

count is expected to decline by 3.18 percentage. As expected, the coefficient on 

TrailDist is positive implying that the goat numbers are expected to be higher at 

locations farther away from hiking trail. In particular, other things remaining 

same, the goat numbers are expected to be 5.9 percent higher at a location that is 

1 km farther away from a nearest hiking trail.  

Table 2. 7 shows the logarithm of marginal likelihoods and the 

corresponding twice logarithm of Bayes Factor for the three models. For each of 

the three models (M1, M2, and M3), twice log of Bayes Factor is greater than 10 

indicating that the data shows very strong evidence for these models as compared 

to the base model M0. 

 

2.5 Discussion and Conclusion 

The decline in the number of goats due to increasing human recreation 

may result in the loss of net economic benefit to society. Only in the presence of 

unlimited geographically suitable locations, such decline in number of goat could 

represent a displacement from one location to the other, potentially offsetting 
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such losses. Swanson et al. (1989) reports net willingness to pay for mountain 

goat hunting of $73 and $99 per trip (1984-85 unadjusted value) for residents 

and non-residents of South-East Alaska respectively. If we assume that the 

increase in winter recreation and the resulting decrease in goat numbers lead to a 

decline in 100 resident and 50 non-resident hunting trips, there will be a loss of 

$12,250 in the net willingness to pay value from mountain goat hunting. 

However, this change in net value does not take into account the loss of value 

from source other than hunting, such as wildlife viewing. On the other hand, gain 

in the economic value from winter recreation could potentially reduce the loss of 

net economic value. The interaction of human recreation with goat habitat calls 

for an intensive benefit-cost analysis which could provide an insight to land 

management agencies. While almost all of the outdoor recreations hold economic 

value (market and/or non-market), the resource allocation decision has to be 

made so as to maximize the net economic benefit when these recreations overlap 

in a given geographic region. The interaction of human winter recreation and 

mountain goat habitat use necessitate a detailed cost benefit analysis comparing 

the net economic benefits generated from various outdoor recreation activities 

together with the conservation of wildlife habitat. 
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Table 2. 1: Descriptions of Variables 

Variables Description of Variables 

Count 

Number of times the goat is present in particular cell 

(Dependent Variable in all count regression 

models) 

Elevation Elevation (in 100 m) 

ElevationSq Square of Elevation 

Aspect Cosine of Aspect 

VRM Vector Ruggedness Measure (0-100) 

DistEsc 

Distance from nearest Escape Terrain (in 100m); 

Escape Terrain represented by grid cells with 

Slope 40 degrees or more 

Shrub Shrub 

Rock Rock 

SkiArea 
Area of ski-tracks formed by winter recreationists 

within a buffer of 5 km (in square km) 

TrailLength Total trail length within 5 km buffer (in km) 

TrailDist 
Distance to the nearest trail from each location (in 

km) 
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Table 2. 4: Poisson and Negative Binomial Regression Results (Aerial Data) 

 Poisson Neg. Bin 
Constant -2.752*** -3.452*** 
 (0.484) (0.683) 
   
DistEsc -0.203*** -0.205*** 
 (0.026) (0.035) 
   
Elevation 0.678*** 0.814*** 
 (0.101) (0.145) 
   
ElevationSq -0.034*** -0.040*** 
 (0.005) (0.008) 
   
Aspect -0.354*** -0.336*** 
 (0.063) (0.096) 
   
VRM 0.040* 0.035 
 (0.018) (0.030) 
   
Rock 0.063 0.084 
 (0.103) (0.164) 
   
Shrub 0.086 0.077 
 (0.085) (0.139) 
Theta  1.086*** 

(0.138) 
Log-likelihood -925 -801 
AIC 1867 1621 
N 576 576 

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 2. 5: Summary of equivalence-based regression results 

Model 

Coefficients 

Region of Equivalence Confidence Interval 

RE- RE+ CI- CI+ 

Poisson Model 

Intercept 62.4847 76.3702 75.0585 75.0721 

Slope 0.9000 1.1000 0.9781 0.9790 

NB Model 

Intercept 65.2849 79.7926 75.7422 75.7584 

Slope 0.9000 1.1000 1.0886 1.0897 
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Table 2. 6: Posterior mean and standard deviation of negative binomial 

regression coefficients 

 M0 M1 M2 M3 
Constant -0.4869 -0.3033 -0.4705 -0.9036** 
 (0.2659) (0.2784) (0.2686) (0.2849) 
      
Elevation 0.1084*** 0.1068*** 0.1132*** 0.103*** 
 (0.0262) (0.0269) (0.0259) (0.0262) 
      
CosAspect -0.2662** -0.2053* -0.2506* -0.2448* 
 (0.0986) (0.1012) (0.0984) (0.0993) 
      
DistEsc -0.247*** -0.2486*** -0.2438*** -0.254*** 
 (0.0336) (0.0336) (0.0342) (0.0346) 
      
VRM -0.0035 -0.0028 -0.0091 0.008 
 (0.0299) (0.0303) (0.0306) (0.0306) 
      
Rock 0.0698 0.0821 0.0921 0.0012 
 (0.1733) (0.1744) (0.1746) (0.1734) 
      
Shrub 0.2209 0.3352* 0.35* 0.3154* 
 (0.1409) (0.145) (0.1475) (0.1429) 
     
SkiArea  -0.0253***   
  (0.0071)   
     
TrailLength   -0.0323**  
   (0.0118)  
     
TrailDist    0.057*** 
    (0.0124) 
     
α  0.9655*** 1.0012*** 0.9825*** 1.0141*** 

 (0.1219) (0.1267) (0.1251) (0.1298) 
Standard deviations of the posterior mean are in parentheses. The stars, 
provided for reader's convenience, are defined as * p < 0.05, ** p < 0.01, *** p 
< 0.001. The variables SkiArea, TrailLength, and TrailDist are measured in 
sq.km., km. and km. respectively. 
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Table 2. 7: Logarithm of marginal likelihood and twice log of Bayes Factors 

Models ( )ln ML  

( )102ln BF  

(against Model M0) 

M0 -787.96 -- 

M1 -775.19 25.55 

M2 -778.73 18.47 

M3 -772.38 31.17 
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CHAPTER 3  

 

Statistical behavior of distance variables in hedonic property value 

models 

 

3.1 Introduction 

The use of distance variable as a measure of proximity to environmental 

amenity or dis-amenity is common in hedonic studies (Brasington and Hite, 

2005; Noonan et al., 2007; Neumann et al., 2009). However, the effects of 

distances to amenities (or disamenities) on housing prices are generally not 

consistent indicators of the true price impact of those amenities (or 

disamenities), especially when more than two landmark locations posing 

amenities (or disamenities) to the house values are included in the model 

specification (Ross et al., 2011). The inconsistency behavior of the distance 

variables raises concerns about the implication of welfare estimates from studies 

that primarily employ more than two distance variables.  

The main objective of this study is to examine the behavior of statistical 

properties, particularly in terms of the estimated coefficients and standard errors, 

of distance variables in hedonic studies under two different scenarios. First case 

describes an instance where there are unique locations of multiple types of 

landmarks (such as wilderness area, central business district, airport) and 
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distance variables associated with each of those unique locations appear in the 

hedonic regression models. Under such case this study finds that the estimated 

coefficients behave inconsistently as soon as more than two distance variables are 

included in the model specification. Second example focuses on the case where 

there are multiple locations for each type of different landmarks (such as five 

high schools, four parks in the study area) and the proximity to each of these 

landmarks is measured by distance to the nearest landmark location. When these 

proximity variables as measured by distance to the nearest landmark locations 

appear in the hedonic regression models, the inconsistency behavior no longer 

remains as long as all of the true distance variables are included. To demonstrate 

this point, a set of simulations are conducted to assess the statistical properties of 

the estimated coefficients of proximity or distance variables. Next section 

provides illustrative example of unique and multiple landmark locations followed 

by two sets of simulations. The final section concludes. 

 

3.2 Illustrative Example 

The distinction between unique landmarks and multiple landmark 

locations of a given type can be explained with the help of the following 

illustrative example. Figure 3. 1 shows the spatial locations of housing units in a 

given geographical space and three types of landmarks: points A, B and C. Panel 

(a) of Figure 3. 1 has unique locations of the landmarks, where there is exactly 

one landmark location of a given type (A1, B1 and C1). The irresolvable 
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identification limitations in the hedonic price analysis exist when the distance to 

each of these landmark locations appear in the regression model. Panel (b) of the 

figure shows multiple landmark locations of a given type. For example, A1, A2, 

and A3 are three locations of the landmark type A, such as wilderness area. When 

the hedonic price model includes only the distance to a nearest landmark, the 

coefficients can be estimated consistently, provided that all of such distance 

variables appear in the regression model that have true effect on the house price. 

In other words, if all of the landmarks play important role in the determination of 

house price, the nearest distance to each of the landmarks must appear in the 

regression model to ensure that the coefficients are consistently estimated.   

 

3.3 Monte Carlo Simulations 

The simulations performed in this study follow Ross et al. (2011) in terms 

of choosing parameter values and simulation procedure. Particularly two sets of 

simulations are conducted. In the first set of simulations, the unique landmark 

locations are generated during the data generating process (DGP) and the 

distance to these landmark locations appear in determining true value of house 

price. The coefficients are also estimated for distance to these unique landmarks 

in addition to some hypothetical landmark locations. 

The second set of simulations are constructed in the similar way except 

that the distance to the nearest landmark of given type appear in both true DGP 

and in the estimation of various regression models.  



 

61 

 

 

3.3.1 Monte Carlo Simulation I 

In each iteration of Monte Carlo simulations, 400 random locations are 

generated on the space whose co-ordinates are randomly drawn from uniform 

distribution between -10 and 10. These random locations are deemed to 

represent house locations, whose values depend on an intercept term, a random 

variable x  and distances to a pre-specified number of landmarks. The landmark 

locations are randomly generated over the geographical space whose co-ordinates 

are uniformly distributed between -20 and 20. Denoting the house price by Y, the 

true data generating process is based on the following equations: 

 1

AY x Dα β γ ε= + + +   (3.1) 

 1 2

A BY x D Dα β γ γ ε= + + + +   (3.2) 

 
1 2 3

A B CY x D D Dα β γ γ γ ε= + + + + +   (3.3) 

where, ~ (0,1)x N ,  ~ (0,2)Nε  and AD , BD , and CD  are distance to the true 

landmark locations (A, B, and C). When present in the equation of true DGP, the 

parameters values are set to 1α = , 2β = , 1 0.25γ = − , 2 0.1γ = − , and 3 0.2γ = − . 

The distance coefficients are negative to imply that the landmarks are amenities. 

In each trial, additional sets of hypothetical landmark locations are generated, in 

addition to the true landmark locations. The distance to these hypothetical 

landmark locations are denoted by ad , bd , cd  and so on. In each of the 10,000 
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trials, once the dataset is generated, a linear model is estimated for a given set of 

explanatory variables that include a combination of true and/or hypothetical 

distance variables and the estimated coefficients are stored. The results of the 

first sets of simulations are shown in Table 3. 1, Table 3. 2, and Table 3. 3.  

Table 3. 1 shows the means and standard deviations of the estimated 

coefficients for different linear models, where the true DGP includes distance to 

only one landmark location ( )AD  as is shown in equation (3.1). The results 

suggest that when the regression model includes two or less number of distance 

variables, the coefficients are consistently estimated. However, when more than 

two distance variables appear in the regression model, the estimated coefficients 

are no longer statistically significant, especially in terms of distance to the true 

landmark location. In addition, the estimated coefficient for the intercept term 

remains no longer statistically significant when the regression model contains 

two or more distance variables.  

Table 3. 2 reports the means and standard errors of the estimated 

coefficients for various linear models, where the true DGP includes distances to 

two landmark locations (DA and DB)  given by equation (3.2). The estimated 

coefficients behave in the similar fashion even when the true DGP contains two 

distance variables. The most important and interesting point to note here is that 

even if the distance variables DA and DB appear in the true DGP, the estimated 

coefficient for DB is not statistically significant when the regression model has 

exactly same variables as in true DGP, although the mean value of the estimated 

coefficient is very close to the true value used in the true DGP (Model 3 in Table 
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3. 2). When more than two distance variables appear in the regression model, the 

standard deviation of true distance variables are high enough to make them 

statistically insignificant. 

The statistical properties of the estimated regression coefficients of 

distance variables shows further inconsistency as more distance variables are 

included in the true DGP. This is reported in Table 3. 3, which shows means and 

standard deviations of the estimated coefficients for various models based on the 

true DGP given by equation (3.3). When there are three distance variables, none 

of the distance variables are statistically significant, whether or not those 

variables appear in the true DGP. All of these simulations imply that when the 

regression model includes two or more distance variables corresponding to 

unique locations in the space, the statistical significance of the estimated 

coefficient does not convey the true importance of the landmark locations. 

 

3.3.2 Monte Carlo Simulation II 

In the next set of Monte Carlo simulations, the distance variables entering 

into the true DGP as well as the regression models are slightly different in nature. 

Here, the assumption is that there are multiple landmarks of a given type located 

within the study area and the value of a house depends only on the proximity to 

the nearest landmark. For example, if the study area of a hedonic model analysis 

is a city, where there are multiple public parks, it is reasonable to assume that the 
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house price is affected by the characteristics suggesting how far the nearest public 

park is located, but is not significantly affected by any other public parks.  

In each trial of the simulation, 400 random points are generated to 

represent house locations on the space whose co-ordinates are randomly drawn 

from uniform distribution between -10 and 10. Additionally, three landmark 

locations of each type are randomly generated over the geographical space whose 

co-ordinates are uniformly distributed between -20 and 20. For example, if A 

denotes a given landmark, then three points, such as A1, A2, and A3, are generated 

over the space and the distance to the nearest A is calculated for each house 

location.  

Denoting the house price by Y, the true data generating process is based 

on the following equations:  

 1

nAY x Dα β γ ε= + + +  (3.4) 

 1 2

nA nBY x D Dα β γ γ ε= + + + +  (3.5) 

 
1 2 3

nA nB nCY x D D Dα β γ γ γ ε= + + + + +  (3.6) 

where, ~ (0,1)x N ,  ~ (0,2)Nε  and nAD , nBD , and nCD  are distances to the 

nearest true landmark locations A, B, and C. When present in the equation of true 

DGP, the parameters values are set to 1α = , 2β = , 1 0.25γ = − , 2 0.1γ = − , and 

3 0.2γ = − . In each trial, additional sets of hypothetical landmark locations are 

generated; again three locations for each type of hypothetical landmark. The 

distance to the nearest of these hypothetical landmark locations are denoted by 
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nad , nbd , ncd  and so on. In each of the 10,000 trials, once the dataset is 

generated, a linear model is estimated for a given set of explanatory variables that 

include a combination of true and/or hypothetical distance variables and the 

estimated coefficients are stored. The results of the simulations are shown in 

Table 3. 4, Table 3. 5, and Table 3. 6. 

Table 3. 4 reports the mean and standard deviations of the estimated 

coefficients for various models when the true DGP includes only one distance 

variable given by equation (3.4). As the results clearly indicate, the coefficients 

are consistently estimated for any true variable appearing in the regression 

model. One more point to note here is that the inclusion of addition distance 

variables relating to the nearest hypothetical landmark locations does not 

influence the level of significance of the true distance and non-distance 

coefficient estimates.  

Table 3. 5 and Table 3. 6 report the results from simulations where the 

true DGP includes two and three distance variables corresponding to the nearest 

true landmark locations. The means of coefficient estimates and their standard 

deviations indicate that the coefficients are consistently estimated as long as true 

distance variables are included in the regression model. The estimated 

coefficients for distance variable nBD  in Model 3 of Table 3. 6 have very high 

standard deviation implying that the variable is not statistically significant. 

However, this may have been caused by the problem of omitted variable bias as 

true DGP includes three distance variables whereas regression model includes 

only two. When all of the true distance variables are included in the regression 
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model the problem of inconsistency disappears. Moreover, as expected, the 

standard deviations of the estimated coefficients of true distance variables 

increase when more distance variables (relating to hypothetical landmark 

locations) are added to the regression model. However, the cost of including 

additional distance variables is not as high as compared to omitting true distance 

variables. In any case, the coefficients of distance variables corresponding to 

hypothetical landmark locations turn out to be statistically insignificant as 

expected. 

 

3.4 Conclusion 

Hedonic price models are one of the revealed preference methods used in 

the non-market valuation studies. These models are useful in estimating the 

welfare measures as property values can capture the value of all possible changes 

in environmental quality at a housing site in a single number (Freeman, 2003). 

Hedonic studies often use distance variables as a measure of proximity to 

environmental amenities/dis-amenities which proves useful in policy 

implication. For example, local government may realize increased tax revenue by 

protecting areas with richer environmental amenities, if such amenities raise 

values of nearby properties.  

Given the importance of distance variables, the reliability of estimated 

coefficients is very important for gaining optimum policy decisions. This study 

attempts to answer the questions raised in recent literatures on including 
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distance variables in hedonic studies. If the objective of any hedonic study is to 

capture the optimal location rather than estimating the welfare estimates 

corresponding to the distance variable itself, one suggestion would be to use 

longitude and latitude in the regression as suggested by Ross et al. (2011). 

However, if the objective is to estimate welfare measures from distance variables, 

it is suggested that researchers should be cautious to use them only when 

multiple types of landmark locations are present in the study area and the 

distance to nearest landmark location for each type is considered.  
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Table 3. 1: Means and Standard deviations of Monte Carlo Simulation (Number 
of landmarks of a given type = 1, True number of Landmark locations in DGP = 1)  

 Model 1 Model 2 Model 3  Model 4 Model 5 

Constant -4.812* 1.004** 1.001 1.021 0.972 

 (2.053) (0.332) (0.746) (1.550) (2.645) 

x  1.999*** 1.999*** 2.001*** 1.999*** 2.000*** 

 (0.118) (0.099) (0.100) (0.100) (0.101) 

A
D   -0.250*** -0.250* -0.251 -0.249 

  (0.019) (0.111) (0.257) (0.424) 

a
d    -0.001 -0.001 -0.001 

   (0.112) (0.411) (0.377) 

b
d     0.001 0.002 

    (0.386) (0.377) 

c
d  -0.002    -0.001 

 (0.167)    (0.441) 

R Squared 0.452 0.593 0.594 0.595 0.596 

N 400 400 400 400 400 

Notes: True DGP : 
1

A
x DY α β γ ε+ + += , where 1α = , 2β = , 1 0.25γ = −  and 

( ) ~ 0,2Nε . Standard deviations in parentheses. * p < 0.05, ** p < 0.01, *** p < 

0.001. 
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Table 3. 2: Means and Standard deviations of Monte Carlo Simulation (Number 
of landmarks of a given type = 1, True number of Landmark locations in DGP = 2)  

 Model 1 Model 2 Model 3  Model 4 Model 5 

Constant -4.726 -0.647 1.009 1.013 1.028 

 (3.391) (1.290) (0.778) (1.576) (2.594) 

x  1.999*** 2.002*** 2.001*** 2.000*** 2.000*** 

 (0.116) (0.104) (0.101) (0.101) (0.101) 

A
D   -0.252*** -0.251** -0.250 -0.246 

  (0.069) (0.093) (0.173) (0.505) 

B
D    -0.099 -0.101 -0.105 

   (0.093) (0.192) (0.355) 

a
d     0.000 0.004 

    (0.187) (0.483) 

b
d  -0.013    -0.004 

 (0.179)    (0.459) 

R Squared 0.484 0.586 0.604 0.605 0.607 

N 400 400 400 400 400 

Notes: True DGP: 1 2

A B
Y x D Dα β γ γ ε= + + + + , where 1α = , 2β = , 1 0.25γ = − , 

2 0.1γ = −  and ( ) ~ 0,2Nε . Standard deviations in parentheses. * p < 0.05, ** p < 

0.01, *** p < 0.001. 
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Table 3. 3: Means and Standard deviations of Monte Carlo Simulation (Number 
of landmarks of a given type = 1, True number of Landmark locations in DGP = 3)  

 Model 1 Model 2 Model 3  Model 4 Model 5 

Constant -7.984 -3.871 -1.942 0.985 1.000 

 (4.170) (2.804) (4.201) (1.617) (2.654) 

x  2.001*** 2.001*** 2.001*** 2.000*** 2.000*** 

 (0.123) (0.110) (0.105) (0.102) (0.100) 

A
D   -0.261 -0.265 -0.248 -0.245 

  (0.150) (0.628) (0.253) (0.452) 

B
D    -0.116 -0.097 -0.102 

   (0.628) (0.292) (0.538) 

C
D     -0.204 -0.199 

    (0.321) (0.524) 

a
d  -0.019    -0.005 

 (0.225)    (0.466) 

R Squared 0.477 0.561 0.615 0.637 0.639 

N 400 400 400 400 400 

Notes: True DGP: 1 2 3

A B C
Y x D Dα β γ γ γ ε= + + + ++ , where 1α = , 2β = , 1 0.25γ = −

, 2 0.1γ = − , 3 0.2γ = −  and ( ) ~ 0,2Nε . Standard deviations in parentheses. * p < 

0.05, ** p < 0.01, *** p < 0.001. 
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Table 3. 4: Means and Standard deviations of Monte Carlo Simulation (Number 
of landmarks of a given type = 3, True number of Landmark locations in DGP = 1)  

 Model 1 Model 2 Model 3  Model 4 Model 5 

Constant -1.630 1.002*** 0.999* 0.995 0.994 

 (1.533) (0.290) (0.473) (0.690) (0.960) 

x  1.999*** 1.999*** 2.001*** 2.000*** 2.001*** 

 (0.109) (0.100) (0.100) (0.099) (0.100) 

nA
D   -0.250*** -0.250*** -0.250*** -0.250*** 

  (0.027) (0.032) (0.038) (0.046) 

na
d    0.000 0.000 0.000 

   (0.032) (0.038) (0.046) 

nb
d     0.000 -0.000 

    (0.038) (0.046) 

nc
d  -0.002    0.001 

 (0.125)    (0.046) 

R Squared 0.471 0.558 0.559 0.561 0.562 

N 400 400 400 400 400 

Notes: True DGP : 1

nA
DY xα β γ ε+ += + , where 1α = , 2β = , 1 0.25γ = −  and 

( ) ~ 0,2Nε . Standard deviations in parentheses. * p < 0.05, ** p < 0.01, *** p < 

0.001. 
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Table 3. 5: Means and Standard deviations of Monte Carlo Simulation (Number 
of landmarks of a given type = 3, True number of Landmark locations in DGP = 
2)  

 Model 1 Model 2 Model 3  Model 4 Model 5 

Constant -2.713 -0.063 0.997* 1.000 1.007 

 (1.649) (0.680) (0.478) (0.690) (0.985) 

x  1.999*** 2.000*** 2.000*** 1.998*** 2.000*** 

 (0.111) (0.102) (0.101) (0.101) (0.101) 

nA
D   -0.251*** -0.250*** -0.250*** -0.250*** 

  (0.056) (0.032) (0.039) (0.046) 

nB
D    -0.100** -0.100** -0.100* 

   (0.032) (0.038) (0.046) 

na
d     -0.000 -0.000 

    (0.038) (0.046) 

nb
d  -0.000    0.000 

 (0.134)    (0.046) 

R Squared 0.466 0.552 0.567 0.567 0.569 

N 400 400 400 400 400 

Notes: True DGP: 1 2

nA nB
Y x D Dα β γ γ ε= + + + + , where 1α = , 2β = , 1 0.25γ = − , 

2 0.1γ = −  and ( ) ~ 0,2Nε . Standard deviations in parentheses. * p < 0.05, ** p < 

0.01, *** p < 0.001. 
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Table 3. 6: Means and Standard deviations of Monte Carlo Simulation (Number 
of landmarks of a given type = 3, True number of Landmark locations in DGP = 
3)  

 Model 1 Model 2 Model 3  Model 4 Model 5 

Constant -4.812* -2.190 -1.119 0.994 1.012 

 (2.053) (1.406) (1.773) (0.698) (0.962) 

x  1.999*** 1.999*** 2.001*** 1.999*** 2.000*** 

 (0.118) (0.108) (0.106) (0.102) (0.101) 

nA
D   -0.251* -0.253* -0.250*** -0.251*** 

  (0.115) (0.110) (0.038) (0.045) 

nB
D    -0.101 -0.100** -0.100* 

   (0.109) (0.038) (0.046) 

nC
D     -0.200*** -0.201*** 

    (0.038) (0.046) 

na
d  -0.002    0.000 

 (0.167)    (0.045) 

R Squared 0.452 0.527 0.554 0.594 0.595 

N 400 400 400 400 400 

Notes: True DGP: 1 2 3

nA nB nC
Y x D Dα β γ γ γ ε= + + + ++ , where 1α = , 2β = , 

1 0.25γ = − , 2 0.1γ = − , 3 0.2γ = −  and ( ) ~ 0,2Nε . Standard deviations in 

parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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CHAPTER 4  

 

Effects of proximity to wilderness areas on residential property 

values: An application of spatial hedonic model 

 

4.1 Introduction 

The  natural protected areas such as wilderness7 are valued by society for 

various reasons including the provision of recreational opportunities, educational 

and philosophical values, protection of biodiversity and the economic benefits to 

areas near wilderness (Wright, 2000). While a myriad of benefits associated with 

the designated wilderness areas has been identified (Morton, 1998), there often 

exists the contested policy debate, which arise from the economic tradeoffs that 

                                                   
7 The Wilderness Act of 1964 defines the wilderness as ‘an area where the earth 

and its community of life are untrammeled by man’. This further is elaborated to 

mean the area which 1) generally appears to have been affected primarily by the 

forces of nature, with the imprint of man’s work substantially unnoticeable, 2) 

has outstanding opportunities for solitude or a primitive and unconfined type of 

recreation, 3) has at least five thousand acres of land or is of sufficient size as to 

make practicable its preservation and use in an unimpaired condition, and 4) 

may also contain ecological, geological, or other features of scientific, 

educational, scenic, or historical value. 
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these protected areas, on the one hand, limit the commercial activities and 

adversely affect the employment and income generation through extraction 

industries such as logging and mining (Patric and Harbin, 1998), and on the 

other hand, preserve natural amenities and provide recreational opportunities 

that could attract tourists, migrants as well as new businesses (Duffy-Deno, 

1998).  

The economic values that people place on natural and environmental 

amenities may also play important role in making decisions regarding choices for 

residential location. While traditional models of urban economics focus on the 

tradeoff between housing costs and commuting costs (Wu and Gopinath, 2008), 

a growing number of recent studies have explored the role of environmental 

amenities as a possible source of households’ choice in making decision regarding 

residential location (Schmidt and Courant, 2006; Hand et al., 2008a; Izón et al., 

2010). As forest resources and protected areas provide many opportunities for 

recreation as well as hold other non-market benefits, individuals are even willing 

to accept lower wages to live in close proximity to such areas (Schmidt and 

Courant, 2006).  

The case of protected wilderness areas is particularly important in the 

western United States because most of the wilderness areas are located in these 

regions. Population growth in the West and the South regions were almost four 
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times over the last decade8 as compared to other regions resulting in increased 

development pressures on undeveloped lands.  

Unlike the market goods, the market for environmental amenities does not 

yield an observable price, urging researchers to seek alternative methods in order 

to elicit values of environmental resources. Researchers have used various 

techniques to measure the benefits of environmental goods such as contingent 

valuation, choice experiments, travel costs, hedonic pricing methods, etc. Using 

the hedonic price methods, this study focuses on employing geographic 

information system (GIS) and recently developed spatial econometric methods in 

estimating the marginal implicit price of living in proximity to congressionally 

designated wilderness area. GIS and non-market valuation methods are 

particularly useful in providing information to public land managers and are 

considered helpful in making many natural resource management decisions. 

Recent developments in the spatial econometrics have utilized various techniques 

to provide spatially-explicit analyses and representations of non-market values of 

different environmental and natural amenities (Baerenklau et al., 2010). The use 

of spatial econometrics in the valuation of environmental amenities has been 

                                                   
8 Population growth in South and West regions over the period from 2000 to 

2010 were 14.3 and 13.8 percent, whereas in Northeast and Midwest regions 

population growth were 3.2 and 3.9 percent respectively. (Source: U.S. Census 

Bureau, Census 2010, Census 2000) 
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particularly important because of their ability to deal with spatial dependency 

and spatial heterogeneity present on the data.  

This study uses single family residential property value data to examine 

the effects of proximity to wilderness areas on house prices in Yavapai county of 

Arizona. Two measures of proximity to wilderness areas are considered: 

Euclidean distance and driving distance to a nearest wilderness area. Using the 

generalized methods of moments (GMM), spatial hedonic methods are applied to 

estimate the parameters for variables of interest and the results are compared 

with ordinary least squares (OLS) estimates. In addition, spatial bootstrap 

techniques are used to test for the spatial dependence. Bootstrap methods are 

based on the empirical distribution of the estimated parameters and is more 

flexible than the theoretical asymptotic approach in that in a heteroskedastic and 

non-normal distributional environment, the spatial bootstrap test has a better 

overall performance compared to the asymptotic counterpart (Lin et al., 2011).  

 

4.2 Hedonic Model 

The hedonic price theory provides the basis for deriving welfare measures 

from observed differences in prices of the houses (Freeman, 2003). The 

fundamental notion of hedonic price models, more formally introduced by Rosen 

(Rosen, 1974), lies on the attributes approach to consumer theory (Lancaster, 

1966) where utility is the function of attributes of goods. In the context of 

measuring welfare values pertaining to environmental amenities and dis-
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amenities, the central assumption of hedonic price theory is based on the 

hypothesis that nearby features relating to such environmental characteristics are 

capitalized into the property values. The ability of the econometric models to 

decompose the property values to reflect those of individual attributes has made 

hedonic model a very popular method of non-market valuation. A good deal of 

empirical research on residential property values have applied hedonic price 

theory to derive welfare measures of numerous public goods such as open space, 

water bodies (lakes and rivers), wetlands, urban parks, forest, air quality, etc 

(Doss and Taff, 1996; Bastian et al., 2002; Chay and Greenstone, 2005; Hand et 

al., 2008b; Cho et al., 2011; Larson and Perrings, 2013).  

 

4.2.1 Basic Theory 

The basic theory behind the hedonic pricing model can be explained by 

using the utility maximization problem of an individual consumer. If an 

individual owns the property j, her utility function can be written as (Freeman, 

2003): 

( )= , , ,j j jU U S N Q X  

where jS , jN  and jQ  are the vector of structural, neighborhood and 

environmental characteristics respectively and X is a Hicksian composite good 

(representing goods other than the property j). If jP  denotes the price of the 
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property j, the individual will maximize her utility ( ).U  subject to the budget 

constraint: 

0jM XP− − =  

Assuming that the property or housing market is in equilibrium with all 

the individuals maximizing their utility, and that the market clears at the existing 

prices, the hedonic price function can be written as 

 ( )= , ,j j j j jP P S N Q   (4.1) 

The utility maximization of the individual can be used to derive marginal 

implicit price of the particular characteristics of the property. For example, the 

first order conditions of the utility maximization problem lead to  

∂∂ ∂
=

∂ ∂ ∂

/

/

jPU q

U X q
 

where, ∂ ∂/jP q  is the marginal implicit price of characteristic jq . Importantly, 

this marginal implicit price can be interpreted as the willingness to pay (WTP) 

value for one unit increase in the characteristic jq .  

Although researchers have tried various functional forms for the hedonic 

price function, the semi-log model (transforming only dependent variable) has 

been most frequently used in the literature. Alternatively, one could use Box-Cox 

transformation to decide between linear or log-linear form of the model. The 

econometric model for the hedonic price function (4.1) can be written more 

generally as 
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 +=Y Xβ u   (4.2) 

where, = lnY P (semi-log model) or =Y P (simple linear model) denotes the 

vector of dependent variable, X is the matrix of explanatory variables that 

includes all of structural, neighborhood and environmental variables, ββββ is the 

vector of parameters and u is the vector of stochastic errors. 

 

4.2.2 Spatial Regression 

With the advance of spatial econometric techniques (Anselin, 1988), 

recent literatures on hedonic pricing models have been able to address the 

econometric issues involving spatial correlation present in the data. Particularly, 

two questions are addressed. First question deals with identifying whether or not 

there is spatial correlation present in the data. Assuming an affirmative answer to 

this question as suggested by some statistical tests, second question is to 

potentially recognize the suitable spatial model for the given data. In a typical 

spatial regression model, there are two basic ways to incorporate spatial effects 

suggesting two basic reasons for explaining the presence of spatial correlation: 

the spatial-lag model and the spatial-error model. The spatial-lag model are 

designed to incorporate spatial autoregressive effects present in the dependent 

variable and assumes that the spatially weighted average of property prices in a 

neighborhood affects the price of each property. The spatial-error model, which 

takes into account the spatial autoregressive effects through the stochastic errors, 



 

82 

 

assumes that the errors are correlated over geographical space due to omitted 

variables.  

When the true data generating process (DGM) follows one of the spatially 

dependent models, inappropriate model specification results in either the biased 

coefficient estimates or the loss of efficiency of the estimates. The cost of ignoring 

spatial dependence in the dependent variable is relatively high as they produce 

biased estimates if this type of dependence is ignored (LeSage and Pace, 2009, p. 

156). 

 

4.2.3 Spatial Lag Model 

Formally, a spatial lag model is expressed as (Anselin, 1988): 

 λ += +WYY Xβ u   (4.3) 

The motivation for a spatial-lag specification is based on the assumption 

that the house price is a function of its own characteristics as well as the 

characteristics of neighboring properties (Anselin and Lozano-Gracia, 2009). 

This is also evident from the reduced form, which can be written as: 

 = +Y AXβ ε   (4.4) 

where Y is ×1n  column vector of log of prices, [ ]λ
−

= −
1

A I W is ×n n  inverse 

matrix with λ  being a spatial autocorrelation parameter and W an ×n n  spatial 

weight matrix, X  is ×n kmatrix of explanatory variables including all of 
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structural, neighborhood and environmental variables, β  is ×1k  vector of 

parameters to be estimated and [ ]λ
−

= −
1

ε I W u  is ×1n  column vector of 

stochastic errors. In this form of spatial-lag specification the stochastic error 

terms ( )ε  are assumed independently and identically distributed with zero mean 

and constant variance. Alternatively, equation (4.3) can be written in the compact 

form as 

 +=Y Zγ u   (4.5) 

with [ ]= ,Z X WY  and [ ]λ= ,γ β , which suggests the presence of a potential 

correlation between WY and u in a typical spatial-lag specification and 

motivating the use of instrumental variable approach in the estimation 

procedure. 

The spatial model differs from a non-spatial model mainly due to the 

assumption that the house price at a given location depends not only on the 

characteristics of the house at the same location but also on the characteristics of 

houses in neighboring areas. For a spatial lag specification, this implies that the 

total effect on the house price of a marginal change in an independent variable 

comprises of own effect and spillover effects. Expanding equation (4.4), 

β ε

β ε

β ε
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Now, if kX  denotes ×1n  vector of thk  explanatory variable, the Jacobian matrix 

of Y with respective of ′
kX  is given by 

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

 
 

∂  =
 ′∂
 
 

∂

∂ ∂ ∂ ∂ ∂ ∂

…

…

� � � �

…

1 1 1 2 1

2 1 2 2 2

1 2

/ / /

/ / /

/ / /

k k nk

k k nk

n k n

k

k n nk

Y X Y X Y X

Y X Y X Y X

Y X Y X Y X

Y

X
 

Thus, each row of the Jacobian matrix suggests that the house price of location j 

depends not only on the characteristics of location j, but also other locations (Kim 

et al., 2003). Thus the total impact of a marginal change in one of the explanatory 

variable on the housing price can be broken up into direct and indirect impacts. 

The direct impact refers to the changes in the housing price of location j due to a 

marginal change in one housing characteristic (say driving distance to a nearest 

wilderness area) of location j. The indirect impact, on the other hand, is the sum 

of the induced impacts, i.e., the change in the price of a property at location j 

resulting from a marginal change the housing characteristic of other locations. 

In terms of the estimated parameters, the Jacobian matrix can be written 

as 

β β β

β β β
β

β β β

 
 

∂  = =
 ′∂
 
 

…

…

� � � �

…

11 12 1

21 22 2

1 2

k k k n

k k k n

k

k

k n k n k nn

a a a

a a a

a a a

Y
A

X
 

Therefore, the marginal effects from a log-linear hedonic pricing model is  
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 [ ]β ρ
−

−
′∂

=
∂ 1

k

k

I
Y

W
X

  (4.6) 

 

4.2.4 Spatial Error Model 

The spatial-error model incorporates the spatial error autocorrelation 

which results when omitted variables follow a spatial structure such that the error 

variance-covariance matrix is no longer diagonal (Anselin and Lozano-Gracia, 

2009). The spatial-error model can be formally written as 

 
ρ

= +

= +

Y Xβ u

u Wu ε
  (4.7) 

where u  is the vector of error terms, ρ  is the spatial correlation parameter, and 

{ }ε ε ε= …1 2, , , nε  is the vector of independently distributed error terms with mean 

zero. Depending on the specification, the variances of error terms { }ε ε ε…1 2, , , n  

may be assumed non-constant so as to allow for heteroskedasticity. The reduced 

form of the spatial-error model can be written as 

 = +Y Xβ ζ   (4.8) 

where, [ ]ρ
−

= −=
1

ε Iζ M W ε . In contrast to the spatial-lag model, the change in 

the dependent variable with respect to a marginal change in one of the housing 

characteristics for a spatial-error model is given by the corresponding coefficient 

estimate, as is evident from equation (4.8). 
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4.2.5 Spatial lag model with auto-correlated disturbance term 

Spatial-lag model can be combined with spatial error model to account for 

the presence of autocorrelation in both dependent variable and disturbance term, 

which can be formally written as 

 
λ

ρ

+ +

=

=

+

WY u

u

Y β

Wu

X

ε
  (4.9) 

which can be compactly written as 

 Y =Zγ+ζ   (4.10) 

 

4.3 Estimation Method 

This study focuses on estimating and comparing various spatial hedonic 

models with the non-spatial simple regression model. First, non-spatial simple 

hedonic model is estimated by ordinary least squares (OLS) method and the 

results are used to test for spatial correlation and the presence of 

heteroskedasticity. Using the OLS models, bootstrap method is employed to test 

for the spatial correlation, which suggests the use of spatial lag model with 

autocorrelation error distribution. In order to account for the spatial dependency, 

various spatial models are estimated. Particularly, four spatial models are 

estimated: 1) spatial two stage least squares (S2SLS), 2) spatial two stage least 

squares with a heteroskedasticity and autocorrelation consistent (HAC) estimator 

of the variance covariance matrix (S2SLS-HAC), 3) generalized spatial two stage 
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least squares (GS2SLS), and 4) generalized spatial two stage least squares with 

heteroskedastic error term (GS2SLS-HET).  

Estimations of all of the spatial models are based on the generalized 

method of moments (GMM). The alternative to GMM estimator is to employ the 

(quasi) maximum likelihood (ML) procedure. Although the asymptotic properties 

of the ML estimator have been established (Lee, 2004), the cost of computing the 

estimator is significantly high when the sample size is large and some of the 

assumptions are stronger than those required by GMM (Piras, 2010). This is 

because the ML estimation procedure requires the maximization of likelihood 

function that involves matrix operations the dimension of which depends on the 

sample size. In response to this, Kelejian and Prucha (1999) introduced GMM 

estimator for the autoregressive parameter with the disturbance generated by 

autoregressive process and prove the asymptotic properties under 

homoscedasticity assumptions. Kelejian and Prucha (2010) developed a 

methodology for GMM estimator with heteroskedastic innovation that is both 

consistent and asymptotically normal.  

 

4.3.1 Spatial two stage least squares (S2SLS) 

This method is an extension of the conventional two-stage least square 

procedure, where the instruments are selected based on the spatial weight 

matrix. In a typical setting, the matrix of instruments can be defined as 
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( )τ= 2, , ,...,H X WX W X W X   

where, τ ≤ 2  and the S2SLS parameter estimate is given by  

( )
−

=
1

2

2
ˆ ˆˆ ˆ T T

S SLSγ σ Z Z Z Y   

where �( )= =ˆ ,Z PZ X WY , � =WY PWY  and ( )
−

=
1

T TP H H H H . Statistical 

inference is generally based on the asymptotic variance covariance matrix 

( ) ( )
−

=
1

2

2
ˆˆ ˆ T

S SLSVar γ σ Z Z   

with =2ˆ
T

n

e e
σ  and = − 2

ˆ
S SLSe Y Zγ  (Kelejian and Prucha, 1999; Piras, 

2010). 

 

4.3.2 Spatial two stage least squares with heteroskedastic and 

autocorrelation consistent estimator (S2SLS-HAC) 

The spatial HAC estimator, proposed by Kelejian and Prucha (2007), is 

based on the estimated disturbances and allows for heteroskedasticity of 

unknown forms across spatial units. The disturbance vector is assumed to be 

generated by the process 

=ε Rξ  
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where ξ  is a vector of innovations and R is an ×n n  non-stochastic matrix with 

unknown elements. The asymptotic distribution of corresponding IV estimators 

will have the variance-covariance (VC) matrix given by 

−= 1 TnΨ H ΣH  

where = TΣ RR  is the variance covariance of ξ . Kelejian and Prucha (2007) 

propose to estimate the (r, s) element of Ψ  by 

εψ ε
= =

 
=   

 
∑∑

*

1 1

1
ˆˆ ˆ

n n
ij

rs ir j i js
i j

h h
n d

d
K  

where the subscripts refer to the elements of the matrix of instruments H and 

residuals ε̂ , and ( )K  is a Kernel function used to form the weights for different 

covariance elements which depends on the distance measures. Finally, the 

asymptotic variance covariance matrix of the parameter vectors is given by 

( ) ( ) ( ) ( )
− −− −

=
1 11 1ˆ ˆ ˆ ˆ ˆ ˆT T T T T TnΦ Z Z Z H H H Ψ H H H Z Z Z  

 

4.3.3 Generalized spatial two stage least square estimators 

The S2SLS-HAC estimator discussed in the previous section assumes that 

the disturbance terms follow the spatial autoregressive structure generated by the 

some unknown process. An alternative to this is to allow the disturbance terms to 

take a specific form as 

 ε =ρWε+ξ   (4.11) 
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If ξ  are assumed to be homoscedastic, the GSTSLS method is used 

(Kelejian and Prucha, 1999). On the other hand, if ξ  are assumed to be 

independent (with zero mean and non-constant variance σ 2

i ), GSTSLS-HET 

method is used to capture the heteroskedastic error structure(Kelejian and 

Prucha, 2010). 

 

4.3.4 Spatial Weights 

The spatial weights used in this study are based on the nearest six 

neighbors. The number of neighbors is based on the average number of neighbors 

obtained after creating Thiessen Polygons by using all the house locations in the 

study area. The models and marginal effects using Thiessen Polygons are also 

estimated and the results are provided in Appendix C. 

 

4.3.5 The Marginal Effects 

One of the objectives of this paper is to estimate the marginal effects of a 

change in an environmental variable on the house price. Under the assumption 

that every household is in equilibrium with respect to a given set of house prices 

so that the prices clear for a given supply, the marginal implicit price may be 

interpreted as a measure of a household’s marginal utility (Koschinsky et al., 

2012). In a log-linear specification of a non-spatial model such as equation (4.2), 

the marginal effect of a given characteristic, say 
i

x , is given by 
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β
∂ ∂

= = =
∂ ∂

ˆ
ix i

i i

Y lnP
MWTP P

x x
  

This welfare measure assumes that there are no spillover effects. However, 

when the data possesses spatial dependency, the marginal effects must be 

calculated to incorporate any spillover effects. Whenever the estimation model 

includes spatial lag parameter λ , the marginal willingness to pay is given by 

equation (4.6) which can be re-written for a given variable ix  as 

1
ˆ 1

ix i

i i

Y lnP
MWTP P

x x
β

λ

∂ ∂
= = =

∂ ∂

 
 

− 
 

 

4.3.6 Bootstrap test for Spatial Dependency 

Bootstrapping is a non-parametric approach to statistical inference that 

substitutes computation for more traditional distributional assumptions and 

asymptotic results. One of the important advantages of bootstrap techniques is 

that it does not require distributional assumptions, the bootstrap can provide 

more accurate inferences when the data are not well behaved or when the sample 

size is small. 

The bootstrap procedure applied in this paper is based on Lin et al (2011), 

which can be summarized in the following steps: 

1. Estimate the OLS model y Xβ ε= + , and compute relevant test statistics. 
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2. Transform the regression residuals ˆˆ y Xε β= −  into re-scaled, re-centered, 

leverage-adjusted series: 

2
1

*

2

ˆ ˆ1
, 1,2,...,

1 1 1

N

j
i

i

j

N
e i N

N Nh h

ε ε

=

 
 − =
 − − − 

= ∑  

where, h is the diagonal vector of hat matrix ( )
1

X X X X
−

′ ′  

3. Resample *e  with replacement to obtain *ê . To account for the general 

heteroskedasticity, let * *ˆ
i i ie e υ=�  with iυ a random variable satisfying: 

1 with probability 1/2

1 with probability 1/2
iυ

−
= 


 

4. Using the fixed spatial weight matrix W and exogenous explanatory 

variables X, the bootstrapped sample is ( ),y X� , where *ˆy X eβ= +� � . Using 

this bootstrap sample, estimate model 
ˆˆ ˆy X eβ= +�� �  and compute relevant 

test statistic. 

5. Repeat steps 3 and 4 to generate large number of bootstrap observations 

of the test-statistics.  

Once the bootstrapped test statistics are generated, the empirical p-values 

are computed, which are given by ( ) { }0# jP I I I= > , where Ij is the test-statistic 

in jth bootstrap procedure. Noting that the Moran’s index I can take positive or 

negative value, two-tail test is performed and as such the p-value for Moran’s I is 

defined by ( ) ( )( )0 02min ,1P I P I− . 
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4.4 Data for Empirical Estimation 

The area of study includes the Yavapai county of Arizona (Figure 4. 1). The 

dataset used in this study is assembled from various sources with series of 

structural, neighborhood and environmental variables for each single family 

housing units. The data on housing characteristics including sale prices originate 

from the Yavapai County Parcel Dataset, which are obtained from Yavapai 

County office, Arizona. The dataset includes 3169 single-family housing units 

sold within a year round between October 2008 and October 2009. Since some of 

the house prices are reported as low as $1 indicating a possibility of 

gifts/donations, which would not represent the true value, potential outliers are 

removed by using a cut off value of $40,000. Thus the sale prices in the final 

sample of 2738 houses ranges from $40,000 to $2,880,000, with a mean value 

of $233,600. Table 4. 1 reports the names and description of variables used in 

this study. The structural variables of the housing units included in this analysis 

are land parcel size, total floor area of the housing structure, story height and 

house age of the house. The parcel database did not contain other structural 

variables such as number of rooms and number of bathrooms, which prevented 

me from including such variables in the analysis. 

In addition to the parcel data, some other GIS data used in this study are 

also obtained from Yavapai County office, such as hiking trail, water body and 

land use. The GIS data on wilderness areas are downloaded from The University 
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of Montana’s Wilderness.net (http://www.wilderness.net). Similarly, the GIS 

data on US forest areas are obtained from land use data published by Arizona 

Land Resource Information System in cooperation with Bureau of Land 

Management, Arizona State Office. Currently, there are 757 wilderness areas in 

the National Wilderness Preservation System that are located in 44 states 

including Puerto Rico with the total area of 109,511,966 acres. There are 19 

designated wilderness areas in the Yavapai county, five of which are managed by 

Bureau of Land Management (BLM) and remaining 14 are managed by US forest 

service. The total designated area of the wilderness in Yavapai County is 551.5 sq. 

miles, which is approximately 7 percentage of the total area in the County. 

In order to capture the neighborhood characteristics, four variables are 

used from two additional sources of data. First three variables Urban, PopDensity 

and White are generated from Census Data 2010 to capture the Census Block 

Group characteristics. Additionally, school districts may potentially have 

influence on individual’s choice of location and thereby affecting home prices. A 

comprehensive school district test score index is created from 2012 AIMS 

(Arizona’s Instrument to Measure Standard) and is included in the regression 

models to capture the potential neighborhood effect. 

All of the environmental variables included in the models are the distance 

variables measuring the proximity to natural amenities. Each of the distance 

variables representing the proximity to a nearest amenity is calculated by 

utilizing the tools available in ESRI’s ArcGIS software. The “near” tool in ArcGIS 

is used to calculate the Euclidean distance to the nearest amenities. Similarly, the 
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driving distances are calculated by utilizing the OD (Origin Destination) cost 

matrix function available in the Network Analysis Extension in ArcGIS. In 

addition to the variables presented in Table 4. 1, the house prices may also be 

affected by characteristics such as crime rates, hazardous waste disposal sites, 

etc. However, these information are either available in the aggregate form for the 

entire county or are not available in the region.  

 

4.5 Empirical Results 

4.5.1 Model Results 

As mentioned above, the major objective of this paper is to examine the 

effect of proximity to a wilderness area on residential house prices. Attempts are 

made to achieve this objective by estimating various regression models with and 

without spatial component. Although the proximities to nearest water bodies, 

hiking trails and forest areas are also included in the regression models and the 

results are briefly discussed below, this study focuses more on the two measures 

of proximity to wilderness area: Euclidean distance and driving distance to the 

nearest wilderness area from each house location.  

Before running the spatial regression, bootstrap test of spatial dependency 

is performed. Table 4. 2 report the test statistics for Moran I and Lagrange 

Multiplier for lag and error models with bootstrap confidence intervals. Both lag 

and error model specifications are statistically significant except for the robust 

lag model. Although robust standard deviation turns out to be statistically 
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insignificant, the generalized models show statistical significant lag parameter 

across all spatial models and therefore lag model specifications are retained. 

Table 4. 3 reports the estimated coefficients and standard errors from OLS 

and four variations of spatial models. The estimated coefficients for structural 

and neighborhood variables are robust across models. Generally the parameter 

values are slightly larger for OLS method as compared to S2SLS models. 

Although the standard errors are greater for spatial models, they are only 

marginally greater for most of the parameters and do not affect the statistical 

significance of the estimated coefficients except for some environmental (or 

proximity/distance) variables. For example, the distance to the nearest water 

body is statistically significant at 1 percent for OLS and S2SLS, but is significant 

at 5 and 10 percent for GSTSLS and GSTSLS-HET methods. All of the statistically 

significant distance variables have negative sign showing that the property values 

are usually higher if they are located closer to these amenities.  

The model results in Table 4. 4 differ from Table 4. 3 in terms of the three 

distance variables; the distances to nearest major road, nearest forest area and 

nearest wilderness area, which are the driving distances instead of Euclidean 

distances used in Table 4. 3. The difference between Euclidian distance and 

driving distance are not only in terms of the length, but they may vary dis-

proportionately for different property locations especially when the distances are 

of reasonable length. In other words, if the Euclidian distance to the nearest 

wilderness area from property A is longer than from property B, it does not 

necessarily imply that the driving distance from property A is longer than from 
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property B. Moreover, the driving distance to the nearest wilderness area is 

measured from house location to the access point of the wilderness area whereas 

the Euclidean distance is measured from the property location to the nearest 

point of the wilderness area. This distinction is shown in Figure 4. 2. 

The estimated coefficients in Table 4. 4 are similar in sign and significance 

for structural and neighborhood characteristics. Again, the distances to the 

nearest water body and trail are statistically significant and have expected sign. 

The driving distance to the nearest forest area is no longer statistically significant 

for all of the spatial models. One possible explanation for such a difference in 

Euclidian versus driving distance with respect to forest is that the forest area 

provides fewer recreational opportunities therefore generating insignificant effect 

corresponding to driving distance, but the physical house location within the 

vicinity of forest area could potentially raise household utility level through the 

sense of having an open space surrounding the property. 

 

4.5.2 Marginal effects 

The marginal effects are calculated for all of the estimated coefficients, and 

are broken up into direct and indirect effects for all the spatial models. The direct 

effects indicate the actual change in the property value due to an one unit change 

in explanatory variables whereas indirect effects give the spillover effects on the 

property values through the spatial dependence. Table 4. 5 and Table 4. 6 report 

the direct and indirect effects based on the model estimates of Table 4. 3. Since 
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OLS does not take into account the spatial dependency, the marginal effects 

reported are the total effects and are same in Table 4. 5 and Table 4. 6. For 

distance to the nearest wilderness area, these results show that the direct increase 

in property values ranges from $3539 to $3978 across models if the property is 

located one mile close to the wilderness area. Similarly, the increase in property 

values through spillover effects ranges from $451 to $752 across four spatial 

models.  

The marginal effects for the proximity to wilderness area as is measured by 

the driving distances are reported in Table 4. 7 and Table 4. 8. These effects are 

slightly higher than that of the Euclidian distances. The direct marginal effects of 

the proximity of wilderness area range from $3824 to $4201 and the indirect 

marginal effects range from $486 to $823 across models. The 95% confidence 

intervals for all of the marginal effects are computed by using Krinsky Robb 

method (Krinsky and Robb, 1986). The confidence intervals for marginal effects 

corresponding to driving distance to nearest wilderness area indicate the 

statistical significance of the estimated values. 

 

4.6 Conclusions 

This paper uses spatial hedonic models to analyze the effect of proximity 

to designated wilderness area on the residential property values in the Yavapai 

County, Arizona. The data are assembled from various sources with a series of 

structural, neighborhood and environmental variables. Although the most 
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important variable of interest is the designated wilderness area, proximity to 

other environmental variables are also included (water body, hiking trail, parks, 

and forests). Proximity to the major roads, forest and wilderness area are 

measured in terms of Euclidian distance as well as driving distance.  

Bootstrap method of statistical test for spatial dependency is performed, 

which suggests the presence of spatial autocorrelation in both dependent variable 

and disturbance term. In order to account for the spatial dependency, four 

variations of spatial models are employed (spatial two stage least squares with 

and without heteroskedasticity and generalized spatial two stage least squares 

with and without heteroskedasticity) and the results are compared with the basic 

linear regression. All of the spatial models are estimated using generalized 

method of moments (GMM) in R statistical software. The results from spatial 

models are used to calculate the marginal willingness to pay for the variables of 

interest which are broken into the direct effects and indirect effects. Krinsky and 

Robb method is used to calculate the confidence interval for both direct and 

indirect effects.  

The findings of this paper confirm the importance of wilderness area to 

home-owners, which can be valuable to policy makers. However, the estimated 

coefficients on distances to wilderness area provide only a partial measure of the 

total economic value of such lands. The actual magnitudes of the value might be 

much larger and demands a detailed cost benefits analysis of wilderness 

management.  
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Table 4. 1: Variables names and descriptions  

Variables Descriptions 

Dependent variable 

SalesPrice Natural logarithm of sales price ($) of the single 
family homes 

Structural Characteristics 

ParcelSize Total land parcel size in acres 

Height  Height of the roof line in feet 

FlArea Natural logarithm of total floor area in square feet 
of the housing units 

HAge Age of the house on 2009 in years (2009 – 
construction year) 

Elevation Elevation of house location (in km) 

Neighborhood Variables 

Urban Indicator variable for house located in urban areas 

PopDensity Block group population density in Census 2010 

White  Proportion of White population in Census 2010 (in 
100) 

TestScoreIndex  Comprehensive school district test score index 
constructed by using 2012 AIMS (Arizona’s 
Instrument to Measure Standard) result (0-100 
scale) 

Environmental Variables and Variables of interest 

WaterDist Euclidian distance from house location to a nearest 
water body (in miles) 

TrailDist Euclidian distance from house location a nearest 
hiking/biking trail (in miles) 

ParkDist Euclidian distance from house location to a nearest 
parks (in miles) 

WilderDist Euclidian distance from house location to a nearest 
designated wilderness area (in miles) 
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Table 4. 1 (contd.) 

Variables Descriptions 

RoadDist Euclidian distance from house location to a nearest 
Major Road (in miles) 

ForestDist Euclidian distance from house location to a nearest 
US Forest Area (in miles) 

RoadDDist Driving distance from house location to a nearest 
Major Road (in miles) 

ForestDDist Driving distance from house location to a nearest 
forest area (in miles) 

WilderDDist Driving distance from the house location to the 
nearest wilderness area (in miles) 
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Table 4. 2: Computed spatial test statistics and bootstrapped 
confidence intervals 

Test Statistic Estimate (p-value) 

Bootstrapped 95% CI 

[0.025% 0.975%]  (p-value) 

Moran-I 0.2694 (0.000) [-0.02403, 0.01578] (0.000) 

LM-error 681.0467 (0.000) [0.00130, 5.65685] (0.000) 

LM-lag 375.6682 (0.000) [0.00095, 5.44244] (0.000) 

LM-error 305.6711 (0.000) [0.00105, 5.35781] (0.000) 

LM-lag 0.2927 (0.588) [0.00089, 5.17939] (0.590) 
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Table 4. 3: Estimation results from OLS, S2SLS, S2SLS-HAC, GSTSLS, 
GSTSLS-HET 

Variables OLS S2SLS 
S2SLS- 

HAC 
GSTSLS 

GSTSLS- 

HET 

Constant 4.775*** 3.972*** 3.972*** 4.069*** 4.089*** 

 (0.201) (0.409) (0.566) (0.456) (0.510) 

Structural Characteristics 

ParcelSize 0.102*** 0.101*** 0.101*** 0.133*** 0.137*** 

 (0.014) (0.019) (0.024) (0.016) (0.021) 

Height 0.126*** 0.114*** 0.114*** 0.097*** 0.096*** 

 (0.010) (0.015) (0.018) (0.010) (0.013) 

FlArea 0.527*** 0.505*** 0.505*** 0.506*** 0.505*** 

 (0.020) (0.038) (0.051) (0.021) (0.034) 

HAge -0.004*** -0.004*** -0.004*** -0.006*** -0.006*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

Elevation -0.011 -0.017 -0.017 0.018 0.023 

 (0.042) (0.046) (0.059) (0.062) (0.076) 

Neighborhood Variables 

Urban -0.036* -0.023 -0.023 -0.027 -0.028 

 (0.019) (0.018) (0.020) (0.024) (0.024) 

PopDensity 0.007 0.005 0.005 0.008 0.008 

 (0.006) (0.005) (0.006) (0.007) (0.008) 

White 0.024*** 0.021*** 0.021*** 0.015*** 0.015*** 

 (0.002) (0.002) (0.003) (0.003) (0.003) 

TestScoreIndex 0.008*** 0.007*** 0.007*** 0.007*** 0.007*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 
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Table 4. 3 (contd.) 

Variables OLS S2SLS 
S2SLS- 

HAC 
GSTSLS 

GSTSLS- 

HET 

Environmental Variables and Variables of Interest 

WaterDist -0.021*** -0.019*** -0.019*** -0.015** -0.015* 

 (0.005) (0.005) (0.006) (0.008) (0.008) 

TrailDist -0.023*** -0.020*** -0.020*** -0.020*** -0.020*** 

 (0.004) (0.005) (0.006) (0.006) (0.007) 

ParkDist 0.004 0.003 0.003 0.003 0.003 

 (0.004) (0.004) (0.004) (0.005) (0.005) 

RoadDist 0.010 0.008 0.008 0.005 0.005 

 (0.008) (0.009) (0.011) (0.011) (0.013) 

ForestDist -0.015*** -0.013*** -0.013*** -0.011** -0.011** 

 (0.003) (0.003) (0.004) (0.005) (0.005) 

WilderDist -0.018*** -0.015*** -0.015*** -0.017*** -0.017*** 

 (0.003) (0.003) (0.004) (0.004) (0.005) 

λ   0.115** 0.115** 0.158*** 0.162*** 

  (0.047) (0.057) (0.044) (0.049) 

ρ     0.424 0.453*** 

     (0.040) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4. 4: Estimation results from OLS, S2SLS, S2SLS-HAC, GSTSLS, 
GSTSLS-HET 

Variables OLS S2SLS 
S2SLS- 

HAC 
GSTSLS 

GSTSLS-
HET 

Constant 4.921*** 4.127*** 4.127*** 4.159*** 4.168*** 

 (0.201) (0.403) (0.557) (0.441) (0.503) 

Structural Variables 

ParcelSize 0.130*** 0.125*** 0.125*** 0.147*** 0.150*** 

 (0.014) (0.018) (0.023) (0.016) (0.021) 

Height 0.125*** 0.113*** 0.113*** 0.097*** 0.096*** 

 (0.010) (0.014) (0.018) (0.010) (0.013) 

FlArea 0.521*** 0.500*** 0.500*** 0.502*** 0.502*** 

 (0.020) (0.037) (0.052) (0.021) (0.034) 

HAge -0.004*** -0.004*** -0.004*** -0.006*** -0.006*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

Elevation -0.004 -0.005 -0.005 0.028 0.032 

 (0.039) (0.042) (0.050) (0.057) (0.070) 

Neighborhood Variables 

Urban -0.037* -0.024 -0.024 -0.029 -0.030 

 (0.019) (0.018) (0.020) (0.024) (0.024) 

PopDensity 0.008 0.006 0.006 0.008 0.008 

 (0.006) (0.005) (0.006) (0.007) (0.007) 

White 0.024*** 0.021*** 0.021*** 0.015*** 0.015*** 

 (0.002) (0.002) (0.003) (0.003) (0.003) 

TestScoreIndex 0.007*** 0.007*** 0.007*** 0.006*** 0.006*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 
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Table 4. 4 (contd.) 

Variables OLS S2SLS 
S2SLS- 

HAC 
GSTSLS 

GSTSLS-
HET 

Environmental Variables and Variables of Interest 

WaterDist -0.028*** -0.025*** -0.025*** -0.021*** -0.021** 

 (0.005) (0.005) (0.006) (0.007) (0.008) 

TrailDist -0.019*** -0.016*** -0.016** -0.015** -0.015** 

 (0.004) (0.005) (0.006) (0.006) (0.008) 

ParkDist 0.005 0.004 0.004 0.003 0.003 

 (0.004) (0.004) (0.004) (0.005) (0.005) 

RoadDDist 0.009** 0.008 0.008 0.005 0.005 

 (0.005) (0.005) (0.006) (0.006) (0.007) 

ForestDDist -0.005** -0.004* -0.004 -0.003 -0.003 

 (0.002) (0.002) (0.003) (0.003) (0.004) 

WilderDDist -0.018*** -0.016*** -0.016*** -0.018*** -0.018*** 

 (0.002) (0.002) (0.003) (0.003) (0.004) 

λ   0.114** 0.114** 0.162*** 0.167*** 

  (0.045) (0.055) (0.042) (0.048) 

ρ     0.420 0.439*** 

     (0.041) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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CHAPTER 5  

 

Conclusion and Future Research 

 

5.1 Dissertation Summary 

The objective of this dissertation is to highlight the importance of wildlife 

habitat and protected areas. It focuses on providing geo-spatial methods and 

applications in relation to wildlife habitat selection, human-wildlife interactions 

and economic benefits of protected wilderness areas. Chapter 2 and 3 focus on 

the intensity of habitat use by mountain goats in Kenai Peninsula, Alaska, and 

Chapter 3 and 4 focus on hedonic methods in analyzing the effects of proximity to 

natural amenities on house prices. 

The aim of Chapter 1 is to provide an improved method in habitat 

selection/use study with special focus on mountain goat habitat use. Using the 

GPS collared goats’ locations, the intensity of habitat use by mountain goats are 

predicted. Poisson and negative binomial regression models are extended to 

incorporate spatial effects under Gaussian CAR approach. These models highlight 

the importance of nearby areas (spatial dependence) in the habitat selection by 

animals. With the advance in GPS technology, there is an increasing trend in 

using satellite telemetry data in wildlife habitat selection/use studies. The 

locations from GPS collar are accurate and are very useful in studying the habitat 



 

118 

 

selection and movement behavior of animals. This, however, poses challenges in 

developing methodologies that accommodate the advancement in available data. 

Researchers have used various methods to understand the habitat selection/use 

by animals using GPS collar data. The methods applied in this chapter are 

expected to be useful for other similar studies involving GPS locations of animals. 

Chapter 2 focuses on comparing habitat use prediction from two sources 

of data and exploring the effects of winter recreational activities on mountain 

goat habitat selection. Regression based test of equivalency is performed to 

compare the predicted habitat use based on the model outcomes from GPS collar 

and Aerial survey of goat locations. While this may or may not be valid for all 

animals, the map layers obtained from two different survey methods for 

mountain goats are found to be equivalent, which is important for researchers 

focusing on one particular survey method to create suitable habitat map for 

mountain goats. This chapter also explores the effects of winter recreational 

activities on goat habitat use. As goats tend to avoid areas utilized by human 

winter recreationists, wildlife managers may take advantage of the outcomes of 

this research in identifying more suitable goat habitat and preserving those areas 

from recreational and other forms of human disturbances. The Bayesian method 

of model comparison is another contribution this chapter, which is expected to be 

useful in selecting appropriate model in studies using negative binomial 

regressions.  

Chapter 3 explores the inconsistency issues associated with the distance 

variables used in hedonic price models. In particular, simulations are performed 
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to examine the statistical behaviors of estimated coefficients when explanatory 

variables include one or more distance variables. The coefficients of distance 

variables turn out to be inconsistent when there are multiple points representing 

landmarks (referring to environmental amenities or disamenities) and distances 

to two or more of such landmarks appear in the model specifications. However, 

when there are multiple locations for each type of unique landmark locations, the 

coefficients are correctly estimated with expected standard deviations as long as 

the distance variables appearing into the regression models are distances to the 

nearest landmark locations. The results are particularly important because many 

studies have major objective of estimating welfare measures based on the 

distance variables and as such the use of distance variables may not be 

completely avoided. Therefore, the implications of this chapter will be useful in 

future hedonic studies using distance variables.  

Chapter 4 examines the effects of proximity to wilderness areas on 

residential property values. Using the GMM approach, spatial hedonic methods 

are applied to estimate the marginal effects of living in proximity to protect 

wilderness areas. On average, a residential property located one mile closer to a 

nearest wilderness area is estimated to have values $4730 and $5024 higher 

based on Euclidean and road distance as a measure of proximity respectively.   
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5.2 Avenues for Future Research 

This dissertation manuscript can be considered complete in its form, but it 

presents further avenues for future research. Specific to habitat models (Chapter 

1), exploring alternative methods accounting for spatial dependency would allow 

researchers to choose better method that accurately predict habitat. For example, 

the alternative spatial error specification such as simultaneous autoregressive 

formulation can be employed in the count regression models. Similarly, the 

discrete choice models may be improved by incorporating features accounting for 

spatial dependency.  

Throughout this dissertation, habitat use and selection (Chapter 1 and 2) 

are modeled for a single species using mountain goats. These models can be 

improved by considering multiple species utilizing similar resources. Moreover, 

additional information on climate change can be incorporated to improve 

prediction of habitat use by animals.  

Regarding to wilderness area (Chapter 4), two potential areas of 

extensions remain for future research. First, the application of hedonic method 

itself can be extended by combining the information on changes in land use with 

data on house prices over a longer time period to examine the temporal trends of 

in welfare values of protected wilderness areas. Second, hedonic method may be 

combined to other non-market valuation methods to estimate the overall values 

of wilderness areas.  
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Appendix A: The equivalence between Conditional Logit Model and 

Poisson Regression 

 

The following derivation is based on Guimarães et al (2003). Suppose the 

individual choice decisions are based on the vector of choice-specific attribute 

variables alone so that the probability of choosing a particular location j is 

 

Then log likelihood of the conditional logit model is  

   (A.1) 

where nj is the number of times location j is chosen. 

Now suppose nj is independently Poisson distributed with 

, the log likelihood function for the Poisson process  

 

can be written as 

   (A.2) 

The first order condition to maximize log likelihood with respect to α  is given as 
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which implies 

   (A.3) 

Now substituting α  back to the log likelihood, we get 

   (A.4) 

The first term of equation (A.4) is identical to log likelihood in equation 

(A.1). The remaining terms are independent of parameters, and hence both 

methods produce identical estimates. The estimation process for standard 

conditional logit model is performed by maximizing the log likelihood given by 

equation (A.1). Writing program codes and maximizing the log likelihood creates 

computational burden and is time consuming. However, in some statistical 

softwares (R, Stata, etc,), specific packages have been developed to obtain 

parameter estimates of conditional logit models. With some efforts in data 

organization, these canned procedures can help researchers estimate unknown 

parameters quickly and efficiently. 

( )
1

ln
exp 0

J
p

j j

j

L
n xα β

α =

∂
 = − + = ∂

∑

( )
1

ln ln exp
J

j

j

N xα β
=

 
= −  

 
∑

( )
1 1 1 1

1 1

ln ln ln exp ln !

ln ln ln !

J J J J

p j j j j j

j j j j

J J

j j j

j j

L N N N n x n x n

n p N N N n

β β
= = = =

= =

 
= − + − + − 

 

= − + −

∑ ∑ ∑ ∑

∑ ∑



 

 

124 

A
p
p
e
n
d
ix
 B
: 
D
is
c
r
e
te
 C
h
o
ic
e
 M
o
d
e
l 
C
o
e
ff
ic
ie
n
ts
 

T
a
b
le
 B
 1
 

 
G
2
_
0
7
 

G
5
_
0
7
 

G
6
_
0
7
 

G
8
4
0
_
0
7
 

G
8
7
0
_
0
7
 

G
5
_
0
8
 

G
6
_
0
8
 

G
8
7
0
_
0
8
 

D
is
ta
n
ce
 (
in
 

10
0
m
) 
fr
o
m
 

P
re
v
io
u
s 

L
o
ca
ti
o
n
  

-0
.0
2
5
7
**
* 

(0
.0
0
0
4
) 

-0
.0
2
8
3
**
* 

(0
.0
0
0
4
) 

-0
.0
2
4
2
**
* 

(0
.0
0
0
4
) 

-0
.0
2
9
3
**
* 

(0
.0
0
0
5
) 

-

0
.0
2
2
6
**
* 

(0
.0
0
0
4
) 

-0
.0
2
14

**
* 

(0
.0
0
0
4
) 

-

0
.0
2
2
2
**
* 

(0
.0
0
0
3
) 

-0
.0
2
0
1*
**
 

(0
.0
0
0
3
) 

  
 

 
 

 
 

 
 

 

 D
is
tE
sc
  

-0
.7
12
1*
**
 

0
.1
3
19
 

-0
.2
9
5
1*
**
 

-0
.8
7
9
4
**
*  

-

0
.6
4
7
2
**
*  

-0
.3
4
13

**
*  

-0
.0
3
4
6
 

-0
.2
0
10

**
 

  
(0
.0
9
7
3
) 

(0
.0
9
8
0
) 

(0
.0
4
6
0
) 

(0
.1
0
0
0
) 

(0
.0
8
9
0
) 

(0
.0
5
0
0
) 

(0
.0
5
4
5
) 

(0
.0
6
6
0
) 

 
 

 
 

 
 

 
 

 

 E
le
v
a
ti
o
n
  

1.
7
5
0
6
**
*  

1.
19
6
0
**
*  

1.
5
2
3
8
**
*  

-0
.3
8
3
9
 

5
.4
0
4
9
**
*  

2
.3
5
4
0
**
*  

4
.7
7
2
9
**
*  

2
.3
7
5
6
**
*  

  
(0
.3
7
9
2
) 

(0
.1
8
16
) 

(0
.4
2
2
5
) 

(0
.2
8
4
1)
 

(0
.4
5
5
5
) 

(0
.5
0
13
) 

(0
.6
5
7
8
) 

(0
.2
8
2
7
) 

 
 

 
 

 
 

 
 

 

 E
le
v
a
ti
o
n
S
q
  

-0
.1
0
15

**
*  

-0
.0
8
7
3
**
*  

-0
.0
5
4
5
**
 

0
.0
2
8
1 

-

0
.2
8
7
7
**
*  

-0
.1
4
15

**
*  

-

0
.2
0
0
2
**
*  

-0
.1
3
5
3
**
*  

  
(0
.0
2
18
) 

(0
.0
15
0
) 

(0
.0
19
3
) 

(0
.0
18
8
) 

(0
.0
2
9
4
) 

(0
.0
2
9
8
) 

(0
.0
3
0
3
) 

(0
.0
18
7
) 

 
 

 
 

 
 

 
 

 

 A
sp
ec
t 
 

0
.2
5
17
 

-2
.1
3
4
1*
**
 

-0
.4
8
6
3
**
*  

0
.2
3
8
1 

-1
.6
5
0
6
**
*  

0
.2
9
7
1 

-

0
.9
3
2
4
**
*  

-1
.0
6
4
8
**
*  

  
(0
.1
5
6
2
) 

(0
.3
3
5
2
) 

(0
.0
6
7
9
) 

(0
.1
5
5
3
) 

(0
.2
8
7
5
) 

(0
.1
8
14
) 

(0
.0
6
9
6
) 

(0
.1
9
19
) 

 
 

 
 

 
 

 
 

 



 

 

125 

T
a
b
le
 B
 1
 (
c
o
n
td
.)
 

 
G
2
_
0
7
 

G
5
_
0
7
 

G
6
_
0
7
 

G
8
4
0
_
0
7
 

G
8
7
0
_
0
7
 

G
5
_
0
8
 

G
6
_
0
8
 

G
8
7
0
_
0
8
 

V
R
M
  

0
.1
2
9
6
**
*  

-0
.0
9
6
6
. 

0
.0
4
2
*  

0
.1
5
5
8
**
*  

0
.7
2
12

**
*  

0
.1
5
4
4
**
 

0
.1
4
0
4
**
*  

0
.5
4
4
6
**
*  

  
(0
.0
3
14
) 

(0
.0
5
3
5
) 

(0
.0
16
6
) 

(0
.0
3
8
8
) 

(0
.0
3
8
1)
 

(0
.0
5
2
9
) 

(0
.0
15
4
) 

(0
.0
3
2
1)
 

 
 

 
 

 
 

 
 

 

 R
o
ck
  

0
.3
3
13

**
*  

1.
18
7
6
**
*  

0
.3
0
2
1.
 

-0
.6
3
7
. 

 
0
.3
7
7
6
**
 

1.
17
4
**
*  

 

  
(0
.0
9
5
4
) 

(0
.3
0
4
4
) 

(0
.1
6
8
) 

(0
.3
6
7
6
) 

 
(0
.1
3
4
2
) 

(0
.1
3
8
) 

 

 
 

 
 

 
 

 
 

 

 S
h
ru
b
  

0
.2
9
19

*  
0
.6
5
3
3
**
*  

0
.1
7
7
4
 

0
.7
7
19

**
*  

-0
.4
9
4
1*
**
 

0
.7
4
9
9
**
*  

0
.7
2
0
2
**
*  

-0
.3
6
8
**
*  

  
(0
.1
2
11
) 

(0
.1
0
7
4
) 

(0
.1
4
6
3
) 

(0
.0
7
3
8
) 

(0
.0
8
15
) 

(0
.1
16
2
) 

(0
.0
8
2
) 

(0
.0
8
2
6
) 

 L
o
g
-

L
ik
el
ih
o
o
d
  

-4
3
6
9
 

-4
9
6
0
 

-5
8
6
6
 

-3
8
2
1 

-4
6
5
9
 

-5
16
1 

-5
7
7
7
 

-5
8
8
4
 

 A
IC
  

8
7
5
4
 

9
9
3
7
 

11
7
4
8
 

7
6
5
8
 

9
3
3
2
 

10
3
3
9
 

11
5
7
0
 

11
7
8
1 

 B
IC
  

8
7
9
8
 

9
9
8
2
 

11
7
9
3
 

7
7
0
2
 

9
3
7
2
 

10
3
8
3
 

11
6
15
 

11
8
2
1 

 N
  

18
4
9
 

2
10
3
 

2
12
8
 

19
18
 

2
0
4
6
 

19
0
8
 

2
12
5
 

2
0
5
7
 

  



 

126 

 

Appendix C: Spatial weights based on Thiessen Polygon  

Table C1: Estimation results from OLS, S2SLS, S2SLS-HAC, GSTSLS, GSTSLS-

HET (Spatial Weights based on Thiessen Polygon) 

Variables OLS S2SLS 

S2SLS- 

HAC GSTSLS 

GSTSLS- 

HET 

Constant 4.775*** 3.605*** 3.605*** 3.835*** 3.863*** 

 (0.201) (0.434) (0.581) (0.408) (0.480) 

Structural Characteristics 

ParcelSize 0.102*** 0.101*** 0.101*** 0.127*** 0.131*** 

 (0.014) (0.018) (0.023) (0.015) (0.021) 

Height 0.126*** 0.113*** 0.113*** 0.108*** 0.108*** 

 (0.010) (0.014) (0.017) (0.010) (0.013) 

FlArea 0.527*** 0.497*** 0.497*** 0.495*** 0.494*** 

 (0.020) (0.037) (0.048) (0.021) (0.035) 

HAge -0.004*** -0.004*** -0.004*** -0.005*** -0.005*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

Elevation -0.011 -0.016 -0.016 0.038 0.048 

 (0.042) (0.046) (0.055) (0.054) (0.064) 

Neighborhood Variables 

Urban -0.036 -0.019 -0.019 -0.024 -0.025 

 (0.019) (0.018) (0.020) (0.022) (0.022) 

PopDensity 0.007 0.006 0.006 0.009 0.009 

 (0.006) (0.005) (0.006) (0.007) (0.007) 

White 0.024*** 0.020*** 0.020*** 0.018*** 0.017*** 

 (0.002) (0.002) (0.003) (0.002) (0.003) 

TestScoreIndex 0.008*** 0.007*** 0.007*** 0.007*** 0.006*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 
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Table C1 (contd.) 

Variables OLS S2SLS 

S2SLS- 

HAC GSTSLS 

GSTSLS- 

HET 

Environmental Variables 

WaterDist -0.021*** -0.019*** -0.019** -0.017* -0.017* 

 (0.005) (0.005) (0.006) (0.007) (0.007) 

TrailDist -0.023*** -0.019*** -0.019** -0.017*** -0.017** 

 (0.004) (0.005) (0.006) (0.005) (0.006) 

ParkDist 0.004 0.002 0.002 0.003 0.003 

 (0.004) (0.004) (0.004) (0.005) (0.005) 

RoadDist 0.010 0.007 0.007 0.002 0.002 

 (0.008) (0.009) (0.010) (0.009) (0.012) 

ForestDist -0.015*** -0.012*** -0.012** -0.012** -0.012** 

 (0.003) (0.003) (0.004) (0.004) (0.005) 

WilderDist -0.018*** -0.014*** -0.014*** -0.017*** -0.017*** 

 (0.003) (0.003) (0.004) (0.004) (0.005) 

λ   0.159*** 0.159** 0.158*** 0.159*** 

  (0.047) (0.056) (0.039) (0.046) 

ρ     0.325 0.401*** 

     (0.043) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.



 

128  

12
8
 

Table C 2: Estimation results from OLS, S2SLS,S2SLS-HAC, GSTSLS, GSTSLS-

HET (Spatial weights based on Thiessen Polygon) 

Variables OLS S2SLS 

S2SLS- 

HAC GSTSLS 

GSTSLS- 

HET 

Constant 4.921*** 3.883*** 3.883*** 4.003*** 4.012*** 

 (0.201) (0.437) (0.586) (0.404) (0.484) 

Structural Characteristics 

ParcelSize 0.130*** 0.124*** 0.124*** 0.145*** 0.148*** 

 (0.014) (0.018) (0.022) (0.015) (0.020) 

Height 0.125*** 0.113*** 0.113*** 0.108*** 0.107*** 

 (0.010) (0.014) (0.017) (0.010) (0.013) 

FlArea 0.521*** 0.495*** 0.495*** 0.492*** 0.491*** 

 (0.020) (0.037) (0.048) (0.020) (0.035) 

HAge -0.004*** -0.004*** -0.004*** -0.005*** -0.006*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

Elevation -0.004 -0.004 -0.004 0.038 0.045 

 (0.039) (0.042) (0.048) (0.050) (0.060) 

Neighborhood Variables 

Urban -0.037 -0.023 -0.023 -0.027 -0.028 

 (0.019) (0.018) (0.020) (0.022) (0.022) 

PopDensity 0.008 0.007 0.007 0.009 0.010 

 (0.006) (0.005) (0.006) (0.007) (0.007) 

White 0.024*** 0.020*** 0.020*** 0.018*** 0.018*** 

 (0.002) (0.002) (0.003) (0.002) (0.003) 

TestScoreIndex 0.007*** 0.006*** 0.006*** 0.006*** 0.006*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 
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Table C2 (contd.) 

Variables OLS S2SLS 

S2SLS- 

HAC GSTSLS 

GSTSLS- 

HET 

Environmental Variables 

WaterDist -0.028*** -0.025*** -0.025*** -0.023*** -0.023** 

 (0.005) (0.005) (0.006) (0.007) (0.007) 

TrailDist -0.019*** -0.015** -0.015** -0.013* -0.013* 

 (0.004) (0.005) (0.006) (0.005) (0.006) 

ParkDist 0.005 0.004 0.004 0.004 0.004 

 (0.004) (0.004) (0.004) (0.005) (0.005) 

RoadDDist 0.009* 0.007 0.007 0.005 0.005 

 (0.005) (0.005) (0.006) (0.006) (0.007) 

ForestDDist -0.005* -0.004 -0.004 -0.004 -0.004 

 (0.002) (0.002) (0.003) (0.003) (0.003) 

WilderDDist -0.018*** -0.016*** -0.016*** -0.017*** -0.017*** 

 (0.002) (0.002) (0.003) (0.003) (0.003) 

λ   0.141** 0.141* 0.153*** 0.155*** 

  (0.046) (0.056) (0.038) (0.046) 

ρ     0.333 0.389*** 

     (0.044) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Appendix D: R Codes 

 
 
######################## 
######################## 
R Codes used in Chapter 1 
######################## 
######################## 
 
# Set working directory 
setwd("D:/naresh/…") 
 
 
# Load required packages 
library(MASS) 
library(sp) 
library(mgcv) 
library(spdep) 
library(BayesX) 
library(spatcounts) 
 
 
# Load data (repeat this process for each individual goats) 
features <- read.table(file="2007g2f.txt", header=T, sep="\t") 
locations <- read.table(file="2007g2.txt", header=T, sep="\t") 
 
 
# Scaling the variables 
features$elev <- features$elevation/100 
features$elevsq <- features$elev^2 
features$caspect <- cos(features$aspect*pi/180) 
features$vrm100 <- features$vrm*100 
features$distesc10 <- features$distesc/100 
features$rock <- as.numeric(features$lc_code==24) 
features$shrub <- as.numeric(features$lc_code >= 14 & features$lc_code <=15) 
 
 
# Creating X matrix 
Xdf <- subset(features, select = c("elev","elevsq","caspect", 
                       "vrm100","distesc10","rock","shrub")) 
X <- data.frame(Xdf) 
 
 
# Deviate from mean 
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X.mdv <- X - matrix(mean(X), nrow=nrow(X), ncol=ncol(X), byrow=T) 
 
# Creating response variable 
features$ct <- rep(NA, nrow(features)) 
for(i in 1:nrow(features)){ 

features$ct[i] <- length(na.omit(locations$cellid[locations$cellid== 
                             features$cellid[i]])) 
} 
 
 
# Creating Y as Yin in spatcounts 
Y <- data.frame(features$ct) 
 
 
# Spatial regions 
region <- 1:nrow(features) 
region <- data.frame(region) 
coordinates(features) <- c("ptx","pty") 
coordinates(locations) <- c("ptx","pty") 
 
 
# Neighbor list 
f_nb <- dnearneigh(features, 0, 85) 
 
 
# Weight Matrix 
weightmat <- nb2listw(f_nb, style="B") 
 
 
# Creating gmat as sim.gmat in spatcounts 
gmat <- listw2mat(weightmat) 
gmat <- data.frame(gmat) 
 
 
# -------- 
# The following series of commands are used to create  
# nmat as sim.nmat in spatcounts 
nb.map <- nb2gra(f_nb) 
nlist <- get.neighbor(nb.map, 1:nrow(features)) 
nlist <- lapply(nlist,function(v){if(length(v)<2)v[2]<-"0" 
  v}) 
nlist <- lapply(nlist,function(v){if(length(v)<3)v[3]<-"0" 
  v}) 
nlist <- lapply(nlist,function(v){if(length(v)<4)v[4]<-"0" 
  v}) 
nlist <- lapply(nlist,function(v){if(length(v)<5)v[5]<-"0"    
  v}) 
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nlist <- lapply(nlist,function(v){if(length(v)<6)v[6]<-"0"    
  v}) 
nlist <- lapply(nlist,function(v){if(length(v)<7)v[7]<-"0"    
  v}) 
nlist <- lapply(nlist,function(v){if(length(v)<8)v[8]<-"0"   
  v}) 
nlist.mat <- do.call(rbind,nlist) 
 
n.neigh <- card(f_nb) 
nmat <- cbind(1:nrow(nlist.mat), nlist.mat[,], n.neigh) 
nmat <- apply(nmat, 2, as.numeric) 
rownames(nmat) <- 1:nrow(nmat) 
colnames(nmat) <- c("V1","V2","V3","V4","V5", 
                    "V6","V7","V8","V9","V10") 
nmat <- data.frame(nmat) # This is the final nmat as sim.nmat in spatcounts 
# -------- 
 
# Poisson model estimation (for negative binomial, replace “Poi” by “NB”) 
poi.sp1 <- est.sc(Y, ~ X.mdv[,1] + X.mdv[,3] + X.mdv[,4] + X.mdv[,5] + 

X.mdv[,6] + X.mdv[,7] - 1, 
                  region, model="Poi", gmat, nmat, totalit=20000) 
 
 
# DIC Computation 
DIC.poi <- DIC(Y, ~ X.mdv[,1] + X.mdv[,3] + X.mdv[,4] + X.mdv[,5] + 

X.mdv[,6] + X.mdv[,7] - 1, 
                  region, poi.sp1, burnin = 1000) 
 
 
# Burn-in range 
range <- 1001:20000 
 
 
# Log Likelihood matrix (Individual Log Likelihood) 
ll.poi <- LogLike(Y, ~ X.mdv[,1] + X.mdv[,3] + X.mdv[,4] + X.mdv[,5] + 

X.mdv[,6] + X.mdv[,7] - 1, 
                  region, poi.sp1, burnin = 1000) 
 
 
# Mean Log Likelihood for all iterations 
m.ll.poi <- mean(apply(ll.poi$ll,2,sum)) 
 
 
# Parameter Estimates 
beta <- round(apply(poi.sp1$beta[,range],1,mean),2) 
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# Mean gamma and psi 
gama1 <- round(apply(poi.sp1$gamma[,range],1,mean),2) 
psi1 <- mean(poi.sp1$psi[range]) 
 
 
# Standard deviation of psi 
sdpsi <- round(sd(poi.sp1$psi[range]),2) 
 
 
# Number of parameters 
k <- length(beta) 
 
 
# Standard Errors, Z-scores and Confidence Interval 
st.d <- round(apply(poi.sp1$beta[,range],1,sd),3) 
zscore <- round(beta/st.d, 2) 
ci.poi <- round(apply(poi.sp1$beta[,range],1,quantile, c(0.025, 0.975)), 3) 
 
 
# Results for parameter estimates 
result.poi1 <- data.frame(beta, st.d, zscore, t(ci.poi)) 
 
 
# AIC Calculation 
aic <- - 2 * m.ll.poi + 2 * k 
 
 
# Results for gamma and psi 
gmpsi <- round(c(mean(gama1), psi1, aic, DIC.poi$DIC),2) 
sdgmpsi <- round(c(sd(gama1), sdpsi, NA, NA),3) 
zgmpsi <- round(gmpsi/sdgmpsi, 2) 
cigmpsi <- cbind(round(quantile(gama1,probs=c(0.025,0.975)),3),  
             round(quantile(poi.sp1$psi[range],probs=c(0.025,0.975)),3), NA, NA) 
 
 
result.poi2 <- data.frame(gmpsi, sdgmpsi, zgmpsi,t(cigmpsi)) 
colnames(result.poi2) <- c("beta", "st.d", "zscore", "X2.5.", "X97.5.") 
result.poi <- rbind(result.poi1,result.poi2) 
colnames(result.poi) <- c("Coefficients", "St. Error",  
                            "Z-Score", "Conf.int 0.025", "0.975") 
vname <- c("Elevation", "CosAspect", 
           "VRM", "DistEsc", "Rock", "Shrub", "Gamma", "Psi", "AIC", "DIC") 
rownames(result.poi) <- vname 
 
# save results and run model for another goat 
# This creates table for a single goat model (Table 1.3) 
write.table(result.poi,  
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            file = "D:/naresh/…/g2.txt", 
            sep = "\t") 
  



 

143  

######################## 
######################## 
# R Codes used in Chapter 2 
######################## 
######################## 
 
# Set Working Directory 
setwd("D:/naresh/...") 
 
# Load Required Packages  
library(MASS) 
 
 
#======================================= 
# ----------------------- Functions  --------------------------- 
# The following functions are heavily borrowed from 
# package "bayesm" and modified to obtain marginal 
# likelihood 
#======================================= 
 
llnegbin <- function(par, X, y, nvar) { 
 beta <- par[1:nvar] 
 alpha <- exp(par[nvar + 1]) + 1e-50 
 mean <- exp(X %*% beta) 
 prob <- alpha/(alpha + mean) 
 prob <- ifelse(prob < 1e-100, 1e-100, prob) 
 out <- (dnbinom(y, alpha, prob, log = TRUE)) 
 return(sum(out)) 
} 
 
lpostbetai <- function(beta, alpha, X, y, betabar, A) { 
 lambda <- exp(X %*% beta) 
 p <- alpha/(alpha + lambda) 
 residual <- as.vector(beta - betabar) 
 sum(alpha * log(p) + y * log(1 - p)) - 0.5 * (t(residual) %*%  
 A %*% residual) 
} 
 
lpostalpha <- function(alpha, beta, X, y, a, b) { 
 sum(log(dnbinom(y, size = alpha, mu = exp(X %*% beta)))) +  
 (a - 1) * log(alpha) - b * alpha 
} 
 
negbinmcmcRW <- function (y,X,NITER,  
         marginal.likelihood = c("none","Laplace")) { 
 nvar <- ncol(X) 
 nobs <- length(y) 
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 betabar <- rep(0, nvar) 
 par <- rep(0, (nvar + 1)) 
 beta0 <- rep(0, nvar) 
  
 mle <- optim(par, llnegbin, X = X, y = y, n 
              var = nvar, method = "L-BFGS-B", 
  upper = c(Inf, Inf, Inf, log(1e+08)), hessian = TRUE, 
  control = list(fnscale = -1)) 
 
 beta_mle <- mle$par[1:nvar] 
 alpha_mle <- exp(mle$par[nvar + 1]) 
 varcovinv <- -mle$hessian 
 
 betacvar <- s_beta * solve(varcovinv[1:nvar, 1:nvar]) 
 betaroot <- t(chol(betacvar)) 
 alpha <- alpha_mle 
 alphacvar <- s_alpha/varcovinv[nvar + 1, nvar + 1] 
 alphacroot <- sqrt(alphacvar) 
  
 beta <- beta0 
 oldlpostbeta <- 0 
 nacceptbeta <- 0 
 nacceptalpha <- 0 
 clpostbeta <- 0 
 alphadraw <- rep(0, NITER) 
 betadraw <- matrix(double(NITER*nvar),ncol=nvar) 
 llike <- rep(0, NITER) 
 logmarglike <- NULL 
  
 for (r in 1:NITER) { 
  betac <- beta + betaroot %*% rnorm(nvar) 
  oldlpostbeta <- lpostbetai(beta, alpha, X, y, betabar, A) 
  clpostbeta <- lpostbetai(betac, alpha, X, y, betabar, A) 
  ldiff <- clpostbeta - oldlpostbeta 
  acc <- min(1, exp(ldiff)) 
  if (acc < 1) { 
   unif <- runif(1) 
  } 
  else { 
   unif <- 0 
  } 
  if (unif <= acc) { 
   beta <- betac 
   nacceptbeta <- nacceptbeta + 1 
  } 
  logalphac <- rnorm(1, mean = log(alpha), sd = alphacroot) 
  oldlpostalpha <- lpostalpha(alpha,beta, X, y, a, b) 
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  clpostalpha <- lpostalpha(exp(logalphac), beta, X, y, a, b) 
  ldiff <- clpostalpha - oldlpostalpha 
  acc <- min(1, exp(ldiff)) 
  if (acc < 1) { 
   unif <- runif(1) 
  } 
  else { 
   unif <- 0 
  } 
  if (unif <= acc) { 
   alpha <- exp(logalphac) 
   nacceptalpha <- nacceptalpha + 1 
  } 
 
  betadraw[r, ] <- beta 
  alphadraw[r] <- alpha 
  llike[r] <- llnegbin(c(beta, alpha), X, y, nvar) 
 } 
  
 if (marginal.likelihood == "Laplace") { 
  theta.tilde <- mle$par 
  Sigma.tilde <- varcovinv 
  logmarglike <- (length(theta.tilde)/2) * log(2 * pi) + 
    log(sqrt(det(Sigma.tilde))) + 

llnegbin(theta.tilde,X,y,nvar) 
 } 
 
 return(list(llike = llike, betadraw = betadraw,  
             alphadraw = alphadraw, 
  logmarglike = logmarglike, 
  acceptrbeta = nacceptbeta/NITER * 100,  
  acceptralpha = nacceptalpha/NITER * 100)) 
} 
 
 
 
 
# ------------------------------------------ 
# Read data 
data50 <- read.table("D:/naresh/.../data50.txt", 

header = T, sep = "\t") 
 
 
# Scaling the variables (data50) 
data50$elevation1 <- data50$elevation/100 
data50$elevationsq <- data50$elevation1^2 
data50$cosaspect <- cos(data50$aspect*pi/180) 
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data50$vrm1 <- data50$vrm*100 
data50$distesc1 <- data50$distesc/100 
data50$traildist1 <- data50$traildist/1000 
 
 
# Create Dummy variables (data50) 
data50$shrub <- as.numeric( 
  data50$lc_code >= 14 & data50$lc_code <= 15) 
data50$rock <- as.numeric(data50$lc_code == 24) 
 
# Scale ski-area and trail length from sq.m and m  
#  to sq.km and km respectively 
data50$tlength5km <- data50$tlength5km/1000 
data50$skiarea5km <- data50$skiarea5km/1000000 
 
 
#Data 
# Construct matrix for X variables 
X1 <- cbind('constant' = rep(1,nrow(data50)), 
            as.matrix(subset(data50,select=c( 
  'elevation1', 'cosaspect','distesc1','vrm1', 

'rock','shrub'))) 
 ) 
X2 <- cbind('constant' = rep(1,nrow(data50)), 
            as.matrix(subset(data50,select=c( 
 'elevation1', 'cosaspect','distesc1','vrm1','rock', 

'shrub','skiarea5km'))) 
 ) 
X3 <- cbind('constant' = rep(1,nrow(data50)), 
            as.matrix(subset(data50,select=c( 
 'elevation1', 'cosaspect','distesc1','vrm1','rock', 
  'shrub','tlength5km'))) 
 ) 
X4 <- cbind('constant' = rep(1,nrow(data50)), 
            as.matrix(subset(data50,select=c( 
 'elevation1', 'cosaspect','distesc1','vrm1','rock', 

'shrub','traildist1'))) 
 ) 
 
 
#======= 
# Codes for X = X1; for other models, replace X1 by X2, X3 and X4 
 
X <- X1 
nobs <- nrow(X) 
nvar <- ncol(X) 
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NITER <- 50000 
 
# Prior 
A = 0.01 * diag(nvar) 
a = 0.5 
b = 0.1 
s_alpha <- 2.93 
s_beta <- 2.93/sqrt(nvar) 
 
# Store m1 and run model to with m2, m3 and m4 for X2, X3 and X4 
m1 <- negbinmcmcRW(data50$count,X,NITER,marginal.likelihood="Laplace") 
 
range = 5000:NITER # burn-in iteration 
 
# ========== 
# Printing table of results  
# Repeat the following codes by replacing m1 for m2, m3 and m4 
n <- nobs 
theta <- round(apply(m1$betadraw[range,],2,mean),4) 
SEs <- round(apply(m1$betadraw[range,],2,sd),4) 
k <- length(theta) 
tval <- theta/SEs 
pval <- 2*(1-pt(abs(tval), n-k))  
star <- rep('' ,k) 
for(j in 1:k){  
 star[j] <- if(pval[j]<0.001){"***"}  
 else if(pval[j] < 0.01){"**"}  
 else if(pval[j] < 0.05){"*"}  
 else if(pval[j] < 0.1){"."}  
 else {""}  
} 
 
# Create table of result for a given model (Table 2.6) 
cat(paste("\n", colnames(X),"\t", 
   theta,star, "\n", "\t","(",SEs,")","\n", 
 sep=""), file = "resultm1.txt") 
 
 
# posterior mean and standard deviation of alpha 
mean(m1$alphadraw[range]) 
sd(m1$alphadraw[range]) 
mean(m2$alphadraw[range]) 
sd(m2$alphadraw[range]) 
mean(m3$alphadraw[range]) 
sd(m3$alphadraw[range]) 
mean(m4$alphadraw[range]) 
sd(m4$alphadraw[range]) 
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# marginal likelihood 
m1$logmarglike 
m2$logmarglike 
m3$logmarglike 
m4$logmarglike 
 
logBayesFactor.m2 <- m2$logmarglike-m1$logmarglike 
logBayesFactor.m3 <- m3$logmarglike-m1$logmarglike 
logBayesFactor.m4 <- m4$logmarglike-m1$logmarglike 
 
# 2 ln BF 
2 * logBayesFactor.m2 
2 * logBayesFactor.m3 
2 * logBayesFactor.m4 
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######################## 
######################## 
 
R Codes used in Chapter 3 
######################## 
######################## 
 
 
######################################  
--------------------Functions------------------------------ 
###################################### 
 
# Extract coefficients from regression 
lm.coef <- function(model) { 
  beta <- coef(model) 
  smry <- summary(model) 
  r2 <- smry$r.squared 
  k <- smry$df[1] 
  n <- sum(smry$df[1:2]) 
  return(c(beta, r2 = r2, n = n, k = k)) 
} 
 
# Generate Data and Run Regression returning coefficients of the regression 
# This function does not handle cases when more than three distance  
# variables are included. For such cases, alternate codes are available upon  
# request. 
 
reg.lm.dist <- function(Hloc, n = n, n.lm = n.lm, 
    beta1 = beta1, beta2 = beta2, gamma1 = gamma1, gamma2 = gamma2,  
    gamma3 = gamma3, nD = nD, reg.rhs = reg.rhs) { 
  
  nD <- nD 
  reg.rhs <- reg.rhs 
  
  n.lm <- n.lm 
  A <- data.frame( 
    x = runif(n.lm, -20, 20), 
    y = runif(n.lm, -20, 20)) 
  
  B <- data.frame( 
    x = runif(n.lm, -20, 20), 
    y = runif(n.lm, -20, 20)) 
  
  C <- data.frame( 
    x = runif(n.lm, -20, 20), 
    y = runif(n.lm, -20, 20)) 
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  DA <- crossdist(Hloc[, 1], Hloc[, 2], A[, 1], A[, 2]) 
  min.DA <- apply(DA, 1, min) # nearest A 
  
  DB <- crossdist(Hloc[, 1], Hloc[, 2], B[, 1], B[, 2]) 
  min.DB <- apply(DB, 1, min) # nearest B 
  
  DC <- crossdist(Hloc[, 1], Hloc[, 2], C[, 1], C[, 2]) 
  min.DC <- apply(DC, 1, min) # nearest C 
  
  x <- rnorm(n) 
  err <- 2 
  
  if(!is.na(nD)){ 
    if(nD > 3) 
      stop("can not handle more than 3 types of landmarks") 
  
    if(nD == 1){ 
      Y <- beta1 + beta2 * x + gamma1 * min.DA +  
        rnorm(n, mean = 0, sd = err) 
    }  
    if(nD == 2){ 
      Y <- beta1 + beta2 * x + gamma1 * min.DA + gamma2 * min.DB + 
        rnorm(n, mean = 0, sd = err) 
    } 
    if(nD == 3){ 
      Y <- beta1 + beta2 * x + gamma1 * min.DA +  
        gamma2 * min.DB + gamma3 * min.DC +  
        rnorm(n, mean = 0, sd = err) 
    } 
  } 
  if(is.na(nD)){ 
    Y <- beta1 + beta2 * x + gamma1 * min.DA +  
      gamma2 * min.DB + gamma3 * min.DC +  
      rnorm(n, mean = 0, sd = err) 
  } 
  
  
  a <- data.frame( 
    x = runif(n.lm, -20, 20), 
    y = runif(n.lm, -20, 20)) 
  
  b <- data.frame( 
    x = runif(n.lm, -20, 20), 
    y = runif(n.lm, -20, 20)) 
  
  c <- data.frame( 
    x = runif(n.lm, -20, 20), 
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    y = runif(n.lm, -20, 20)) 
  
  da <- crossdist(Hloc[, 1], Hloc[, 2], a[, 1], a[, 2]) 
  min.da <- apply(da, 1, min) # nearest A 
  
  db <- crossdist(Hloc[, 1], Hloc[, 2], b[, 1], b[, 2]) 
  min.db <- apply(db, 1, min) # nearest B 
  
  dc <- crossdist(Hloc[, 1], Hloc[, 2], c[, 1], c[, 2]) 
  min.dc <- apply(dc, 1, min) # nearest C 
  
  td <- c("min.DA", "min.DB", "min.DC") 
  fd <- c("min.da", "min.db", "min.dc") 
  
  fm1 <- "Y ~ x" 
  form <- as.formula(paste(fm1, paste( 
      if(is.na(reg.rhs[1])) {paste("")} else {paste(td[1:reg.rhs[1]], collapse = "+")}, 
      if(is.na(reg.rhs[2])) {paste("")} else {paste(fd[1:reg.rhs[2]], collapse = "+")},  
      sep = if(is.na(reg.rhs[1]) | is.na(reg.rhs[2])) {""} else {" + "}), 
      sep = if(is.na(reg.rhs[1]) & is.na(reg.rhs[2])) {""} else {" + "})) 
 
  olsmain <- lm(form) 
  lm.coef(olsmain) 
}   
 
# Simulate regression r times and stores the results as a list 
mcmc.lm.dist <- function(r, n = 400, n.lm = 1, 
    beta1 = 1, beta2 = 2, gamma1 = -.25, gamma2 = -.1,  
    gamma3 = -.2, nD = NA, reg.rhs = c(NA, NA)) { 
  Hloc <- lapply(1:r, function(i) data.frame(x = runif(n, -10, 10), y = runif(n, -10, 
10))) 
  betas <- sapply(Hloc, reg.lm.dist, n = n, n.lm = n.lm, nD = nD, 
             beta1 = beta1, beta2 = beta2, gamma1 = gamma1, gamma2 = gamma2,  
             gamma3 = gamma3, reg.rhs = reg.rhs) 
 coef.list <- lapply(seq_len(nrow(betas)), function(i) betas[i, ]) 
 names(coef.list) <- rownames(betas) 
 return(coef.list) 
} 
 
# Set the working directory  
setwd("D:/naresh/…") 
 
# Load Required R-packages and source file 
library(spatstat) 
library(memisc) 
 
#====================================== 
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#-------------------------------------- 
# Part A: Create Illustrative Graph 
# --------------------------------- 
 
# Set seed to make it reproducible 
set.seed(5125)  
 
# The following values are used for illustrative graph 
 
# Number of house locations 
n <- 10 
 
# House Locations randomly created over the space [(-2,-2), (2,2)] 
Hloc <- data.frame( 
 x = runif(n, -2, 2), 
 y = runif(n, -2, 2)) 
 
# Landmark A locations 
A <- data.frame( 
 x = c(-1, -1, 2), 
 y = c(-1, 1, 1.5)) 
 
# Landmark B locations 
B <- data.frame( 
 x = c(-1, 0, 1), 
 y = c(1, 0, -1)) 
 
# Landmark C locations 
C <- data.frame( 
 x = c(1, 0.5, -1.5), 
 y = c(1, -2, -1)) 
 
#----------------------------------------------------------------------------- 
# Print all the graphs to a single file 
png(file = paste0("../results/", "SimLoc11.png"), 
  width = 1200, height = 800, res = 120) 
 
# Set graphical parameter for plot region 
op <- par( 
  oma = c(3, 0, 3, 0), 
  mfrow = c(1, 2) 
) 
 
# Plot house locations and unique landmark locations 
plot(Hloc, xlab = "", ylab = "", pch = 21, bg = "darkgreen", 
  axes = FALSE, xlim = c(-2,2), ylim = c(-2,2)) 
points(A[1, ], col = "red", cex = 1.5, pch = 17) 
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points(B[1, ], col = "blue", cex = 1.5, pch = 16) 
points(C[1, ], col = "brown", cex = 2, pch = 18) 
title("(a) Unique Landmarks") 
text(A[1,1],A[1,2]+0.3,expression(A[1])) 
text(B[1,1]-0.3,B[1,2],expression(B[1])) 
text(C[1,1],C[1,2]+0.3,expression(C[1])) 
box() 
 
# Plot house locations and multiple landmark locations 
plot(Hloc, xlab = "", ylab = "", pch = 21, bg = "darkgreen", 
  axes = FALSE, xlim = c(-2,2), ylim = c(-2,2), bty = "l") 
points(A, col = "red", cex = 1.5, pch = 17) 
points(B, col = "blue", cex = 1.5, pch = 16) 
points(C, col = "brown", cex = 2, pch = 18) 
title(paste0("(b) Multiple Landmark Locations", "\n", 
  "of a given type")) 
text(A[1,1],A[1,2]+0.3,expression(A[1])) 
text(B[1,1]-0.3,B[1,2],expression(B[1])) 
text(C[1,1],C[1,2]+0.3,expression(C[1])) 
text(A[2,1],A[2,2]+0.3,expression(A[2])) 
text(B[2,1]-0.3,B[2,2],expression(B[2])) 
text(C[2,1],C[2,2]+0.3,expression(C[2])) 
text(A[3,1],A[3,2]+0.3,expression(A[3])) 
text(B[3,1]-0.3,B[3,2],expression(B[3])) 
text(C[3,1],C[3,2]+0.3,expression(C[3])) 
box() 
 
# Reset graphical parameters to allow writing title 
par(op) 
 
# Print title of the graph in the graphical device above the plot region 
mtext("Illustration of House and Landmark locations", cex = 2, 
  line = 1.5, font = 2) 
 
# Reset graphical parameters to print legend 
op <- par(usr = c(0,1,0,1), xpd = NA) 
 
# Plot legend of the graph 
legend(x = 0.5, y = 0, 
  c("House-locations", "Landmarks A", "Landmarks B", "Landmarks C"), 
  pch = c(21, 17, 16, 18), pt.bg = "darkgreen", 
  pt.cex = c(1, 1.5, 1.5, 2),  
  col = c("black", "red", "blue", "brown"), 
  yjust = 1, xjust = 0.5, xpd = NA, horiz = TRUE 
) 
 
# Close the device, so the graph is saved as a png file. (Figure 4.1) 
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dev.off() 
 
# Reset seed 
rm(.Random.seed) 
 
# End Part A 
 
# ========================= 
# Part B: Monte Carlo Simulation 
# ------------------------------ 
 
# Choose parameters to generate data for the hedonic specification 
# 
# P = b1 + b2*x + g1*dA + g2*dB + g3*dC + e 
# 
# where P = House Price 
#       x = random variable x ~ N(0,1) 
#      dA = distance to the nearest A 
#      dB = distance to the nearest B 
#      dC = distance to the nearest C 
#       e = random error term, e ~ N(0,2) 
 
mcmc.out.sum <- function(mcmc.out){ 
   
  out <- sapply(mcmc.out, mean) 
  out.coef <- out[! names(out) %in% c("r2", "n", "k")] 
  n <- out[["n"]] 
  k <- out[["k"]] 
  out.se <- sapply(mcmc.out, sd) 
  outcoef.se <- out.se[! names(out) %in% c("r2", "n", "k")] 
  out.t <- out.coef/outcoef.se 
  out.p <- 2 * pt(abs(out.t), df = n-k, lower.tail = F) 
  r2 <- out[["r2"]] 
  df = data.matrix(data.frame(out.coef, outcoef.se, 
    out.t, out.p)) 
  colnames(df) <- c("Coef", "SE", "z", "Pr(>|z|)") 
  reslist <- list(df = df, r2 = r2, n = n) 
  class(reslist) <- "mcmc" 
  return(reslist) 
} 
 
getSummary.mcmc <- 
 function(obj, alpha = 0.05, ...) 
{ 
  smry <- obj 
  coef <- smry$df 
   lower <- qnorm(p = alpha/2, mean = coef[, 1], sd = coef[, 2]) 
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   upper <- qnorm(p = 1 - alpha/2, mean = coef[, 1], sd = coef[, 2]) 
  coef <- cbind(coef, lower, upper) 
  colnames(coef) <- c("est", "se", "stat", "p", "lwr", "upr") 
  n <- smry$n 
  r2 <- smry$r2 
  sumstat <- c("N" = n, "R-Squared" = r2) 
  list(coef = coef, sumstat = sumstat) 
 } 
setSummaryTemplate(mcmc = c("R Squared" = "($R-Squared:f)", "N" = 
"($N:d)")) 
 
b1 <- 1 
b2 <- 2 
g1 <- -0.25 
g2 <- -0.10 
g3 <- -0.2 
 
# ========== 
mcmc.out1 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 1,  
  reg.rhs = c(NA, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out1.11 <- mcmc.out.sum(mcmc.out1) 
 
mcmc.out2 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 1,  
  reg.rhs = c(1, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out2.11 <- mcmc.outsum(mcmc.out2) 
 
mcmc.out3 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 1,  
  reg.rhs = c(2, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out3 <- mcmc.out.sum(mcmc.out3) 
out3.11 <- mcmc.out.sum(mcmc.out3) 
 
mcmc.out4 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 1,  
  reg.rhs = c(3, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out4.11 <- mcmc.out.sum(mcmc.out4) 
 
mcmc.out5 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 1,  
  reg.rhs = c(3, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out5.11 <- mcmc.out.sum(mcmc.out5) 
 
tab1nlm1 <- mtable("del" = out5.11, "TD1-1" = out1.11, "TD1-2" = out2.11, "TD1-3" 
= out3.11,  
  "TD1-4" = out4.11, "TD1-5" = out5.11); tab1nlm1 
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#---------------------------- 
 
mcmc.out1 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 2,  
  reg.rhs = c(NA, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out1.21 <- mcmc.out.sum(mcmc.out1) 
 
mcmc.out2 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 2,  
  reg.rhs = c(1, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out2.21 <- mcmc.out.sum(mcmc.out2) 
 
mcmc.out3 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 2,  
  reg.rhs = c(2, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out3.21 <- mcmc.out.sum(mcmc.out3) 
 
mcmc.out4 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 2,  
  reg.rhs = c(3, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out4.21 <- mcmc.out.sum(mcmc.out4) 
 
mcmc.out5 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 2,  
  reg.rhs = c(3, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out5.21 <- mcmc.out.sum(mcmc.out5) 
 
tab2nlm1 <- mtable("del" = out5.21,"TD2-1" = out1.21, "TD2-2" = out2.21, "TD2-
3" = out3.21,  
  "TD2-4" = out4.21, "TD2-5" = out5.21); tab2nlm1 
 
#-------------------------------------------- 
 
mcmc.out1 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 3,  
  reg.rhs = c(NA, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out1.31 <- mcmc.out.sum(mcmc.out1) 
 
mcmc.out2 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 3,  
  reg.rhs = c(1, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out2.31 <- mcmc.out.sum(mcmc.out2) 
 
mcmc.out3 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 3,  
  reg.rhs = c(2, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
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out3.31 <- mcmc.out.sum(mcmc.out3) 
 
mcmc.out4 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 3,  
  reg.rhs = c(3, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out4.31 <- mcmc.out.sum(mcmc.out4) 
 
mcmc.out5 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 1, nD = 3,  
  reg.rhs = c(3, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out5.31 <- mcmc.out.sum(mcmc.out5) 
 
tab3nlm1 <- mtable("del" = out5.31,"TD3-1" = out1.31, "TD3-2" = out2.31, "TD3-
3" = out3.31,  
  "TD3-4" = out4.31, "TD3-5" = out5.31); tab3nlm1 
 
 
#====================================== 
 
mcmc.out1 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 1,  
  reg.rhs = c(NA, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out1.15 <- mcmc.out.sum(mcmc.out1) 
 
mcmc.out2 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 1,  
  reg.rhs = c(1, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out2.15 <- mcmc.out.sum(mcmc.out2) 
 
mcmc.out3 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 1,  
  reg.rhs = c(2, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out3.15 <- mcmc.out.sum(mcmc.out3) 
 
mcmc.out4 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 1,  
  reg.rhs = c(3, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out4.15 <- mcmc.out.sum(mcmc.out4) 
 
mcmc.out5 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 1,  
  reg.rhs = c(3, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out5.15 <- mcmc.out.sum(mcmc.out5) 
 
tab1nlm5 <- mtable("del" = out5.15, "TD1-1" = out1.15, "TD1-2" = out2.15, "TD1-
3" = out3.15,  
  "TD1-4" = out4.15, "TD1-5" = out5.15); tab1nlm5 



 

158  

 
 
#------------------------------------------ 
mcmc.out1 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 2,  
  reg.rhs = c(NA, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out1.25 <- mcmc.out.sum(mcmc.out1) 
 
mcmc.out2 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 2,  
  reg.rhs = c(1, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out2.25 <- mcmc.out.sum(mcmc.out2) 
 
mcmc.out3 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 2,  
  reg.rhs = c(2, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out3.25 <- mcmc.out.sum(mcmc.out3) 
 
mcmc.out4 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 2,  
  reg.rhs = c(3, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out4.25 <- mcmc.out.sum(mcmc.out4) 
 
mcmc.out5 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 2,  
  reg.rhs = c(3, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out5.25 <- mcmc.out.sum(mcmc.out5) 
 
tab2nlm5 <- mtable("del" = out5.25, "TD2-1" = out1.25, "TD2-2" = out2.25, 
"TD2-3" = out3.25,  
  "TD2-4" = out4.25, "TD2-5" = out5.25); tab2nlm5 
 
#------------------------------------------ 
 
mcmc.out1 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 3,  
  reg.rhs = c(NA, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out1.35 <- mcmc.out.sum(mcmc.out1) 
 
mcmc.out2 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 3,  
  reg.rhs = c(1, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out2.35 <- mcmc.out.sum(mcmc.out2) 
 
mcmc.out3 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 3,  
  reg.rhs = c(2, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
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out3.35 <- mcmc.out.sum(mcmc.out3) 
 
mcmc.out4 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 3,  
  reg.rhs = c(3, NA), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out4.35 <- mcmc.out.sum(mcmc.out4) 
 
mcmc.out5 <- mcmc.lm.dist(r = 10000, n = 400, n.lm = 3, nD = 3,  
  reg.rhs = c(3, 1), 
  beta1 = b1, beta2 = b2, gamma1 = g1, gamma2 = g2, gamma3 = g3) 
out5.35 <- mcmc.out.sum(mcmc.out5) 
 
tab3nlm5 <- mtable("del" = out5.35, "TD3-1" = out1.35, "TD3-2" = out2.35,  
  "TD3-3" = out3.35, "TD3-4" = out4.35, "TD3-5" = out5.35); tab3nlm5 
 
# ====================== 
 
var.label11 <- c("(Intercept)" = "Constant", 
  "min.DA" = "$D^A$", 
  "min.DB" = "$d^a$", 
  "min.DC" = "$d^b$", 
  "min.da" = "$d^c$", 
  "min.db" = "$d^d$", 
  "min.dc" = "$d^e$") 
 
var.label12 <- c("(Intercept)" = "Constant", 
  "min.DA" = "$D^A$", 
  "min.DB" = "$D^B$", 
  "min.DC" = "$d^a$", 
  "min.da" = "$d^b$", 
  "min.db" = "$d^c$", 
  "min.dc" = "$d^d$") 
 
var.label13 <- c("(Intercept)" = "Constant", 
  "min.DA" = "$D^A$", 
  "min.DB" = "$D^B$", 
  "min.DC" = "$D^C$", 
  "min.da" = "$d^a$", 
  "min.db" = "$d^b$", 
  "min.dc" = "$d^c$") 
 
var.label51 <- c("(Intercept)" = "Constant", 
  "min.DA" = "$D^{nA}$", 
  "min.DB" = "$d^{na}$", 
  "min.DC" = "$d^{nb}$", 
  "min.da" = "$d^{nc}$", 
  "min.db" = "$d^{nd}$", 
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  "min.dc" = "$d^{ne}$") 
 
var.label52 <- c("(Intercept)" = "Constant", 
  "min.DA" = "$D^{nA}$", 
  "min.DB" = "$D^{nB}$", 
  "min.DC" = "$d^{na}$", 
  "min.da" = "$d^{nb}$", 
  "min.db" = "$d^{nc}$", 
  "min.dc" = "$d^{nd}$") 
 
var.label53 <- c("(Intercept)" = "Constant", 
  "min.DA" = "$D^{nA}$", 
  "min.DB" = "$D^{nB}$", 
  "min.DC" = "$D^{nC}$", 
  "min.da" = "$d^{na}$", 
  "min.db" = "$d^{nb}$", 
  "min.dc" = "$d^{nc}$") 
 
(tab1nlm1 <- relabel(tab1nlm1, var.label11)) 
(tab1nlm5 <- relabel(tab1nlm5, var.label51)) 
(tab2nlm1 <- relabel(tab2nlm1, var.label12)) 
(tab2nlm5 <- relabel(tab2nlm5, var.label52)) 
(tab3nlm1 <- relabel(tab3nlm1, var.label13)) 
(tab3nlm5 <- relabel(tab3nlm5, var.label53)) 
 
write.mtable(tab1nlm1, file = "./sim-text-files/tab1nlm1.txt") 
write.mtable(tab2nlm1, file = "./sim-text-files/tab2nlm1.txt") 
write.mtable(tab3nlm1, file = "./sim-text-files/tab3nlm1.txt") 
write.mtable(tab1nlm5, file = "./sim-text-files/tab1nlm5.txt") 
write.mtable(tab2nlm5, file = "./sim-text-files/tab2nlm5.txt") 
write.mtable(tab3nlm5, file = "./sim-text-files/tab3nlm5.txt") 
 
doc.file.fun <- function(txt, path){ 
  tab <- read.table(paste0(path, txt, ".txt"), header = T, sep = "\t") 
  doc <- RTF(paste0(path, txt, ".doc")) 
  addTable(doc, tab) 
  done(doc) 
} 
 
# Create Tables 3.1 – 3.6 
doc.file.fun(txt = "tab1nlm1", path = "./sim-text-files/") 
doc.file.fun(txt = "tab1nlm5", path = "./sim-text-files/") 
doc.file.fun(txt = "tab2nlm1", path = "./sim-text-files/") 
doc.file.fun(txt = "tab2nlm5", path = "./sim-text-files/") 
doc.file.fun(txt = "tab3nlm1", path = "./sim-text-files/") 
doc.file.fun(txt = "tab3nlm5", path = "./sim-text-files/") 
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######################## 
######################## 
R Codes used in Chapter 4 
######################## 
######################## 
 
# Load required packages 
library(sp, quietly = TRUE) 
library(rgeos) 
library(maptools); gpclibPermit() 
library(spgwr, quietly = TRUE) 
library(memisc) 
library(rtf) 
library(car) 
library(doBy) 
library(sphet) 
library(rgdal) 
library(spdep) 
library(RANN) 
library(lmtest) 
library(sandwich) 
library(MSBVAR) 
library(ggplot2) 
library(gridExtra) 
 
 
# Set working directory 
setwd("D:/naresh/…") 
getwd() # check working directory 
 
# Source created R functions 
 
############################## 
# ------------------Functions----------------- 
############################## 
 
# calc moran stat for lm model 
moran.lm.stat <- function(model) { 
   beta <- model[["coefficients"]] 
   N <- length(model$model[[1]]) 
   eps <- resid(model) 
   sigma.sq <- (t(eps) %*% eps) / N 
   
   yhat <- X.mat %*% beta 
   Ystar.mat <- model[["y"]] 
   J <- (1/(N * sigma.sq)) *  
   (t(W.mat %*% yhat) %*% M.mat %*% (W.mat %*% yhat) +  
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    Tr * sigma.sq) 
   eWe <- t(eps) %*% W.mat %*% eps 
   
   moran.I <- (eWe)/(t(eps) %*% eps) 
  LM.error <- (eWe/sigma.sq)^2 / Tr 
  LM.lag <- (1/(N*J)) *  
    ((t(eps) %*% W.mat %*% (Ystar.mat)) / sigma.sq)^2 
   
  LM.error.star <- ((eWe / sigma.sq) -  
   (Tr / (N * J)) *  
        (t(eps) %*% W.mat %*% Ystar.mat) / sigma.sq)^2 / 
   (Tr * (1 - Tr / (N * J))) 
  LM.lag.star <-  
        (((t(eps) %*% W.mat %*% Ystar.mat) / sigma.sq) -  
   (eWe / sigma.sq))^2 / 
  (N * J - Tr) 
  return(list(moran.I = moran.I[1,1], LM.error = LM.error[1,1],  
    LM.lag = LM.lag[1,1],  
   LM.error.star = LM.error.star[1,1],  
        LM.lag.star = LM.lag.star[1,1])) 
} 
 
# re-sample error and apply wild bootstrap for lm model 
b.moran.lm <- function(estar, r) { 
  e.hat.star <- lapply(1:r,  
    function(i) sample(estar, N, replace = T)) 
  r.moran <- sapply(e.hat.star, b.moran.lm.stat) 
  list(moran.I = as.numeric(r.moran[1,]),  
    LM.error = as.numeric(r.moran[2,]),  
    LM.lag = as.numeric(r.moran[3,]),  
    LM.error.star = as.numeric(r.moran[4,]), 
    LM.lag.star = as.numeric(r.moran[5, ])) 
} 
 
# wild bootstrap for lm model 
b.moran.lm.stat <- function(eps) { 
  upsilon <- sample(c(-1, 1), N, replace = TRUE) 
  e.tilde <- eps * upsilon 
  z.star <- X.mat %*% beta.lm + e.tilde 
  y.tilde <- z.star 
  lm.model <- lm(y.tilde[, 1] ~ X.mat[, -1], y=TRUE) 
  moran.lm.stat(lm.model) 
} 
 
# Load data (data.sp2 is the SpatialPointsDataFrame with  
# features representing each house location, created in  
# ESRI’s ArcGIS) 
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load("DataSP.RData") 
 
# Formulas for different models 
fm1 <- (lnsalesPrice ~ parcelSize + storyHeight +  
  lnTotalFlArea + houseAge + elevationkm) 
fm2 <- update(fm1, ~ . + urban + lnPop10SqMi +  
  whiteP + meanTestScoreIndex) 
fm3 <- update(fm2, ~ . + waterEucMile + trailEucMile +  
  parkEucMile)   
fm4 <- update(fm3, ~ . + roadEucMile + forestEucMile +  
  wilderEucMile) 
fm6 <- update(fm3, ~ . + majorRoadNetworkMile +  
  forestNetworkMile + wilderNetworkMile) 
 
 
# Create neighbor object from SpatialPointDataFrame 
# nearest 6 neighbors 
yava.nb5 <- knn2nb(knearneigh(data.sp2, k = 6)) 
 
# Coordinates of data, IDs 
coords <- coordinates(data.sp2) 
 
#------------------------------------------------- 
# Weight lists (row standardised and binary) 
# weight for nearest 5 neighbors 
yava.lw.w <- nb2listw(yava.nb5, style="W") 
 
# OLS Regressions 
ols1 <- lm(fm4, data=data.sp2) 
ols2 <- lm(fm6, data=data.sp2) 
 
# Spatial 2SLS Models 
sp2sls.m1 <- stsls(fm4,  
  data = data.sp2, listw = yava.lw.w, robust = T) 
sp2sls.m2 <- stsls(fm6,  
  data = data.sp2, listw = yava.lw.w, robust = T) 
 
 
#======================================================
==== 
# GM method (sphet) to estimate spatial models  
# with heteroskedastic innovation 
#--- 
 
# Create distance 
id <- seq(1: nrow(coords)) 
tmp <- distance(coords, region.id=id, output = TRUE,  
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    type = "NN", nn = 6, shape.name = "shapefile",  
    region.id.name = "id", 
    firstline = TRUE, file.name = "yava_nn_5.GWT") 
coldist <- read.gwt2dist(file = "yava_nn_5.GWT",  
    region.id = id, skip = 1) 
 
# STLS estimation with HAC 
sphet.m1 <- stslshac(fm4,  
         data = data.sp2, listw = yava.lw.w,  
         distance = coldist, HAC = TRUE, 
            type = "Triangular") 
sphet.m2 <- stslshac(fm6,  
         data = data.sp2, listw = yava.lw.w,  
         distance = coldist, HAC = TRUE, 
            type = "Triangular") 
 
# General Spatial 2SLS (spdep) 
gstls.m1 <- gstsls(fm4,  
         data = data.sp2, listw = yava.lw.w) 
gstls.m2 <- gstsls(fm6,  
         data = data.sp2, listw = yava.lw.w) 
 
# General Spatial 2SLS-HET (sphet) 
gstlshet.m1 <- gstslshet(fm4,  
         data = data.sp2, listw = yava.lw.w, initial.value = 0.2) 
gstlshet.m2 <- gstslshet(fm6,  
         data = data.sp2, listw = yava.lw.w, initial.value = 0.2) 
 
# Write the regression results into a file: 
options(signif.symbols = c("***" = 0.01, "**" = 0.05, "*" = 0.1)) 
M1Table <- mtable("OLS" = ols1, "S2SLS" = sp2sls.m1, 
  "S2SLS-HAC" = sphet.m1, "GSTSLS" = gstls.m1,  
  "GSTSLS-HET" = gstlshet.m1, summary.stats=FALSE) 
 
label.var <- c("(Intercept)" = "Constant","parcelSize" = "ParcelSize", 
"storyHeight" = "Height", 
"lnTotalFlArea" = "FlArea", 
"houseAge" = "HAge", 
"urban" = "Urban", 
"elevationkm" = "Elevation", 
"lnPop10SqMi" = "PopDensity", 
"whiteP" = "White", 
"meanTestScoreIndex" = "TestScoreIndex", 
"waterEucMile" = "WaterDist", 
"trailEucMile" = "TrailDist", 
"parkEucMile" = "ParkDist", 
"roadEucMile" = "RoadDist", 
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"forestEucMile" = "ForestDist", 
"wilderEucMile" = "WilderDist", 
"wilderNetworkMile" = "WilderDDist", 
"forestNetworkMile" = "ForestDDist", 
"majorRoadNetworkMile" = "RoadDDist") 
M1Table <- relabel(M1Table,label.var) 
 
M2Table <- mtable("OLS" = ols2, "S2SLS" = sp2sls.m2, 
  "S2SLS-HAC" = sphet.m2, "GSTSLS" = gstls.m2,  
  "GSTSLS-HET" = gstlshet.m2, summary.stats=FALSE) 
M2Table <- relabel(M2Table, label.var) 
 
#------ 
#============================================= 
 
# Mean Sales Price 
Pbar <- mean(data.sp2$salesPrice) 
 
# Direct and indirect effects m1 (EucMile) 
Im.stslsm1 <- impacts(sp2sls.m1, listw = yava.lw.w) 
Im.stslsm2 <- impacts(sp2sls.m2, listw = yava.lw.w) 
Im.sphetm1 <- impacts(sphet.m1, listw = yava.lw.w) 
Im.sphetm2 <- impacts(sphet.m2, listw = yava.lw.w) 
Im.gstlsm1 <- impacts(gstls.m1, listw = yava.lw.w) 
Im.gstlsm2 <- impacts(gstls.m2, listw = yava.lw.w) 
Im.gstlshetm1 <- impacts(gstlshet.m1, listw = yava.lw.w) 
Im.gstlshetm2 <- impacts(gstlshet.m2, listw = yava.lw.w) 
 
# Data Frame 
Imdf.stslsm1 <- data.frame(attr(Im.stslsm1,"bnames"),Im.stslsm1[1:3]) 
Imdf.stslsm2 <- data.frame(attr(Im.stslsm2,"bnames"),Im.stslsm2[1:3]) 
Imdf.sphetm1 <- data.frame(attr(Im.sphetm1,"bnames"),Im.sphetm1[1:3]) 
Imdf.sphetm2 <- data.frame(attr(Im.sphetm2,"bnames"),Im.sphetm2[1:3]) 
Imdf.gstlsm1 <- data.frame(attr(Im.gstlsm1,"bnames"),Im.gstlsm1[1:3]) 
Imdf.gstlsm2 <- data.frame(attr(Im.gstlsm2,"bnames"),Im.gstlsm2[1:3]) 
Imdf.gstlshetm1 <- data.frame(attr(Im.gstlshetm1,"bnames"),Im.gstlshetm1[1:3]) 
Imdf.gstlshetm2 <- 
data.frame(attr(Im.gstlshetm2,"bnames"),Im.gstlshetm2[1:3]) 
 
# Direct Effects data frame 
DirectEffects <- data.frame(row.names = Imdf.stslsm1[, 1]) 
DirectEffects$S2SLS <- round(Imdf.stslsm1[, 2] * Pbar, 0) 
DirectEffects$S2SLSHAC <- round(Imdf.sphetm1[, 2] * Pbar, 0) 
DirectEffects$GSTSLS <- round(Imdf.gstlsm1[, 2] * Pbar, 0) 
DirectEffects$GSTSLSHET <- round(Imdf.gstlshetm1[, 2] * Pbar, 0) 
 
# InDirect Effects data frame 
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InDirectEffects <- data.frame(row.names = Imdf.stslsm1[, 1]) 
InDirectEffects$S2SLS <- round(Imdf.stslsm1[, 3] * Pbar, 0) 
InDirectEffects$S2SLSHAC <- round(Imdf.sphetm1[, 3] * Pbar, 0) 
InDirectEffects$GSTSLS <- round(Imdf.gstlsm1[, 3] * Pbar, 0) 
InDirectEffects$GSTSLSHET <- round(Imdf.gstlshetm1[, 3] * Pbar, 0) 
 
# Total Effects data frame 
TotalEffects <- data.frame(row.names = Imdf.stslsm1[, 1]) 
TotalEffects$OLS <- round(ols1$coef[-1]*Pbar) 
TotalEffects$S2SLS <- round(Imdf.stslsm1[, 4] * Pbar, 0) 
TotalEffects$S2SLSHAC <- round(Imdf.sphetm1[, 4] * Pbar, 0) 
TotalEffects$GSTSLS <- round(Imdf.gstlsm1[, 4] * Pbar, 0) 
TotalEffects$GSTSLSHET <- round(Imdf.gstlshetm1[, 4] * Pbar, 0) 
 
rownames(TotalEffects) <- label.var[which(names(label.var) %in% 
rownames(TotalEffects))] 
rownames(DirectEffects) <- label.var[which(names(label.var) %in% 
rownames(DirectEffects))] 
rownames(InDirectEffects) <- label.var[which(names(label.var) %in% 
rownames(InDirectEffects))] 
 
 
########################################## 
 
# Krinsky and Robb method for se of Direct Marginal Effects  
# OLS model 
ols1.beta <- ols1$coefficients 
ols1.vcov <- vcov(ols1) 
ols1beta.sim <- rmultnorm(10000, mu = ols1.beta, vmat = ols1.vcov) 
ols1.mwtp <- ols1beta.sim * Pbar 
ols1.ci <- apply(ols1.mwtp, 2, quantile, c(0.025, 0.975)) 
ols1.cif <- round(ols1.ci[,-1],0) 
 
# S2SLS 
sp2slsm1.beta <- coef(sp2sls.m1) 
sp2slsm1.vcov <- summary(sp2sls.m1)$var 
sp2slsm1beta.sim <- rmultnorm(10000, mu = sp2slsm1.beta, vmat = 
sp2slsm1.vcov) 
sp2slsm1.mwtp <- sp2slsm1beta.sim * Pbar 
sp2slsm1.ci <- apply(sp2slsm1.mwtp, 2, quantile, c(0.025, 0.975)) 
sp2slsm1.cif <- round(sp2slsm1.ci[,c(-1,-2)]) 
 
# S2SLSHAC 
sp2slsm1hac.beta <- coef(sphet.m1) 
sp2slsm1hac.vcov <- summary(sphet.m1)$var 
sp2slsm1hacbeta.sim <- rmultnorm(10000, mu = sp2slsm1hac.beta, vmat = 
sp2slsm1hac.vcov) 
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sp2slsm1hac.mwtp <- sp2slsm1hacbeta.sim * Pbar 
sp2slsm1hac.ci <- apply(sp2slsm1hac.mwtp, 2, quantile, c(0.025, 0.975)) 
sp2slsm1hac.cif <- round(sp2slsm1hac.ci[,c(-1,-2)],0) 
 
# GSTSLS 
gstlsm1.beta <- coef(gstls.m1)[-length(coef(gstls.m1))] 
gstlsm1.vcov <- gstls.m1$secstep_var 
gstlsm1beta.sim <- rmultnorm(10000, mu = gstlsm1.beta, vmat = gstlsm1.vcov) 
gstlsm1.mwtp <- gstlsm1beta.sim * Pbar 
gstlsm1.ci <- apply(gstlsm1.mwtp, 2, quantile, c(0.025, 0.975)) 
gstlsm1.cif <- round(gstlsm1.ci[,c(-1,-2)],0) 
 
# GSTSLSHET 
gstlsm1het.beta <- coef(gstlshet.m1) 
gstlsm1het.vcov <- summary(gstlshet.m1)$var 
gstlsm1het.sim <- rmultnorm(10000, mu = gstlsm1het.beta, vmat = 
gstlsm1het.vcov) 
gstlsm1het.mwtp <- gstlsm1het.sim * Pbar 
gstlsm1het.ci <- apply(gstlsm1het.mwtp, 2, quantile, c(0.025, 0.975)) 
gstlsm1het.cif <- round(gstlsm1het.ci[,c(-1,-17,-18)],0) 
 
# Print single model 
cat("\n", 
  paste(DirectEffects$GSTSLSHET,"\n","[",round(gstlsm1het.cif[1,],0),", ",  
    round(gstlsm1het.cif[2,],0),"]","\n", sep = ""), "\n") 
 
# Print Direct Margina Effects and confidence interval for all models 
cat( 
  paste("Variables", "\t", "OLS", "\t", "S2SLS", "\t", "S2SLSHAC", 
     "\t", "GSTSLS", "\t", "GSTSLSHET", sep = ""), "\n", 
  paste(rownames(TotalEffects), "\t", TotalEffects$OLS, "\t", 
    DirectEffects$S2SLS, "\t", DirectEffects$S2SLSHAC, "\t", 
     DirectEffects$GSTSLS, "\t", DirectEffects$GSTSLSHET, "\n", "\t", 
    "[", ols1.cif[1,], ", ", ols1.cif[2,], "]", "\t", 
    "[", sp2slsm1.cif[1,],", ", sp2slsm1.cif[2,],"]", "\t", 
    "[", sp2slsm1hac.cif[1,],", ", sp2slsm1hac.cif[2,],"]", "\t", 
    "[", gstlsm1.cif[1,], ", ", gstlsm1.cif[2,], "]", "\t", 
    "[", gstlsm1het.cif[1,], ", ", gstlsm1het.cif[2,], "]", 
    "\n", sep = ""),  
  file="DirectEffects.txt") 
 
DirectDF <- read.table("DirectEffects.txt", header = TRUE, sep="\t") 
 
### ------------------------------------------------------------ 
### 
###  
# Krinsky and Robb method for se of Indirect Marginal Effects  
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# OLS model nothing difference 
ols1.beta <- ols1$coefficients 
ols1.vcov <- vcov(ols1) 
ols1beta.sim <- rmultnorm(10000, mu = ols1.beta, vmat = ols1.vcov) 
ols1.mwtp <- ols1beta.sim * Pbar 
ols1.ci <- apply(ols1.mwtp, 2, quantile, c(0.025, 0.975)) 
ols1.cif <- round(ols1.ci[,-1],0) 
 
# S2SLS 
sp2slsm1.beta <- coef(sp2sls.m1) 
sp2slsm1.vcov <- summary(sp2sls.m1)$var 
sp2slsm1beta.sim <- rmultnorm(10000, mu = sp2slsm1.beta, vmat = 
sp2slsm1.vcov) 
sp2slsm1.mwtpin <- sp2slsm1beta.sim * Pbar * (1/(1-sp2slsm1.beta[1])-1) 
sp2slsm1.ciin <- apply(sp2slsm1.mwtpin, 2, quantile, c(0.025, 0.975)) 
sp2slsm1.cifin <- round(sp2slsm1.ciin[,c(-1,-2)]) 
 
# S2SLSHAC 
sp2slsm1hac.beta <- coef(sphet.m1) 
sp2slsm1hac.vcov <- summary(sphet.m1)$var 
sp2slsm1hacbeta.sim <- rmultnorm(10000, mu = sp2slsm1hac.beta, vmat = 
sp2slsm1hac.vcov) 
sp2slsm1hac.mwtpin <- sp2slsm1hacbeta.sim * Pbar * (1/(1-
sp2slsm1hac.beta[1])-1) 
sp2slsm1hac.ciin <- apply(sp2slsm1hac.mwtpin, 2, quantile, c(0.025, 0.975)) 
sp2slsm1hac.cifin <- round(sp2slsm1hac.ciin[,c(-1,-2)],0) 
 
# GSTSLS 
gstlsm1.beta <- coef(gstls.m1)[-length(coef(gstls.m1))] 
gstlsm1.vcov <- gstls.m1$secstep_var 
gstlsm1beta.sim <- rmultnorm(10000, mu = gstlsm1.beta, vmat = gstlsm1.vcov) 
gstlsm1.mwtpin <- gstlsm1beta.sim * Pbar * (1/(1-gstlsm1.beta[1])-1) 
gstlsm1.ciin <- apply(gstlsm1.mwtpin, 2, quantile, c(0.025, 0.975)) 
gstlsm1.cifin <- round(gstlsm1.ciin[,c(-1,-2)],0) 
 
# GSTSLSHET 
gstlsm1het.beta <- coef(gstlshet.m1) 
gstlsm1het.vcov <- summary(gstlshet.m1)$var 
gstlsm1het.sim <- rmultnorm(10000, mu = gstlsm1het.beta, vmat = 
gstlsm1het.vcov) 
gstlsm1het.mwtpin <- gstlsm1het.sim * Pbar * (1/(1-
gstlsm1het.beta[length(gstlsm1het.beta)-1])-1) 
gstlsm1het.ciin <- apply(gstlsm1het.mwtpin, 2, quantile, c(0.025, 0.975)) 
gstlsm1het.cifin <- round(gstlsm1het.ciin[,c(-1,-17, -18)],0) 
 
# Print single model 
cat("\n", 
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  paste(InDirectEffects$GSTSLSHET,"\n","[",round(gstlsm1het.cifin[1,],0),", ",  
    round(gstlsm1het.cifin[2,],0),"]","\n", sep = ""), "\n") 
 
# Print Direct Margina Effects and confidence interval for all models 
cat( 
  paste("Variables", "\t", "OLS", "\t", "S2SLS", "\t", "S2SLSHAC", 
     "\t", "GSTSLS", "\t", "GSTSLSHET", sep = ""), "\n", 
  paste(rownames(TotalEffects), "\t", TotalEffects$OLS, "\t", 
    InDirectEffects$S2SLS, "\t", InDirectEffects$S2SLSHAC, "\t", 
     InDirectEffects$GSTSLS, "\t", InDirectEffects$GSTSLSHET, "\n", "\t", 
    "[", ols1.cif[1,], ", ", ols1.cif[2,], "]", "\t", 
    "[", sp2slsm1.cifin[1,],", ", sp2slsm1.cifin[2,],"]", "\t", 
    "[", sp2slsm1hac.cifin[1,],", ", sp2slsm1hac.cifin[2,],"]", "\t", 
    "[", gstlsm1.cifin[1,], ", ", gstlsm1.cifin[2,], "]", "\t", 
    "[", gstlsm1het.cifin[1,], ", ", gstlsm1het.cifin[2,], "]", 
    "\n", sep = ""),  
  file="InDirectEffects.txt") 
 
InDirectDF <- read.table("InDirectEffects.txt", header = TRUE, sep="\t") 
InDirectDF 
 
 
rtf <- RTF("MWTP.doc", width = 8.5, height = 11, font.size = 12, omi = c(1,1,1,1)) 
addHeader(rtf, "Table : Marginal Effects for different estimators (Direct Effects)", 
  font.size = 12) 
addTable(rtf, DirectDF, font.size=12) 
addPageBreak(rtf) 
      
addHeader(rtf, "Table : Marginal Effects for different estimators (Indirect 
Effects)",  
  font.size = 12) 
addTable(rtf, InDirectDF, font.size = 12) 
done(rtf) 
 
# =============================== 
# =============================== 
 
# Marginal Effects with Driving Distance 
 
# Direct Effects data frame 
DirectEffects2 <- data.frame(row.names = Imdf.stslsm2[, 1]) 
DirectEffects2$S2SLS <- round(Imdf.stslsm2[, 2] * Pbar, 0) 
DirectEffects2$S2SLSHAC <- round(Imdf.sphetm2[, 2] * Pbar, 0) 
DirectEffects2$GSTSLS <- round(Imdf.gstlsm2[, 2] * Pbar, 0) 
DirectEffects2$GSTSLSHET <- round(Imdf.gstlshetm2[, 2] * Pbar, 0) 
 
# InDirect Effects data frame 
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InDirectEffects2 <- data.frame(row.names = Imdf.stslsm2[, 1]) 
InDirectEffects2$S2SLS <- round(Imdf.stslsm2[, 3] * Pbar, 0) 
InDirectEffects2$S2SLSHAC <- round(Imdf.sphetm2[, 3] * Pbar, 0) 
InDirectEffects2$GSTSLS <- round(Imdf.gstlsm2[, 3] * Pbar, 0) 
InDirectEffects2$GSTSLSHET <- round(Imdf.gstlshetm2[, 3] * Pbar, 0) 
 
# Total Effects data frame 
TotalEffects2 <- data.frame(row.names = Imdf.stslsm2[, 1]) 
TotalEffects2$OLS <- round(ols2$coef[-1]*Pbar) 
TotalEffects2$S2SLS <- round(Imdf.stslsm2[, 4] * Pbar, 0) 
TotalEffects2$S2SLSHAC <- round(Imdf.sphetm2[, 4] * Pbar, 0) 
TotalEffects2$GSTSLS <- round(Imdf.gstlsm2[, 4] * Pbar, 0) 
TotalEffects2$GSTSLSHET <- round(Imdf.gstlshetm2[, 4] * Pbar, 0) 
 
rownames(TotalEffects2) <- label.var[which(names(label.var) %in% 
rownames(TotalEffects2))] 
rownames(DirectEffects2) <- label.var[which(names(label.var) %in% 
rownames(DirectEffects2))] 
rownames(InDirectEffects2) <- label.var[which(names(label.var) %in% 
rownames(InDirectEffects2))] 
 
 
######################################### 
# Krinsky and Robb method for se of Direct Marginal Effects  
# OLS model 
ols2.beta <- ols2$coefficients 
ols2.vcov <- vcov(ols2) 
ols2beta.sim <- rmultnorm(10000, mu = ols2.beta, vmat = ols2.vcov) 
ols2.mwtp <- ols2beta.sim * Pbar 
ols2.ci <- apply(ols2.mwtp, 2, quantile, c(0.025, 0.975)) 
ols2.cif <- round(ols2.ci[,-1],0) 
 
# S2SLS 
sp2slsm2.beta <- coef(sp2sls.m2) 
sp2slsm2.vcov <- summary(sp2sls.m2)$var 
sp2slsm2beta.sim <- rmultnorm(10000, mu = sp2slsm2.beta, vmat = 
sp2slsm2.vcov) 
sp2slsm2.mwtp <- sp2slsm2beta.sim * Pbar 
sp2slsm2.ci <- apply(sp2slsm2.mwtp, 2, quantile, c(0.025, 0.975)) 
sp2slsm2.cif <- round(sp2slsm2.ci[,c(-1,-2)]) 
 
# S2SLSHAC 
sp2slsm2hac.beta <- coef(sphet.m2) 
sp2slsm2hac.vcov <- summary(sphet.m2)$var 
sp2slsm2hacbeta.sim <- rmultnorm(10000, mu = sp2slsm2hac.beta, vmat = 
sp2slsm2hac.vcov) 
sp2slsm2hac.mwtp <- sp2slsm2hacbeta.sim * Pbar 
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sp2slsm2hac.ci <- apply(sp2slsm2hac.mwtp, 2, quantile, c(0.025, 0.975)) 
sp2slsm2hac.cif <- round(sp2slsm2hac.ci[,c(-1,-2)],0) 
 
# GSTSLS 
gstlsm2.beta <- coef(gstls.m2)[-length(coef(gstls.m2))] 
gstlsm2.vcov <- gstls.m2$secstep_var 
gstlsm2beta.sim <- rmultnorm(10000, mu = gstlsm2.beta, vmat = gstlsm2.vcov) 
gstlsm2.mwtp <- gstlsm2beta.sim * Pbar 
gstlsm2.ci <- apply(gstlsm2.mwtp, 2, quantile, c(0.025, 0.975)) 
gstlsm2.cif <- round(gstlsm2.ci[,c(-1,-2)],0) 
 
# GSTSLSHET 
gstlsm2het.beta <- coef(gstlshet.m2) 
gstlsm2het.vcov <- summary(gstlshet.m2)$var 
gstlsm2het.sim <- rmultnorm(10000, mu = gstlsm2het.beta, vmat = 
gstlsm2het.vcov) 
gstlsm2het.mwtp <- gstlsm2het.sim * Pbar 
gstlsm2het.ci <- apply(gstlsm2het.mwtp, 2, quantile, c(0.025, 0.975)) 
gstlsm2het.cif <- round(gstlsm2het.ci[,c(-1,-17,-18)],0) 
 
# Print single model 
cat("\n", 
  paste(DirectEffects2$GSTSLSHET,"\n","[",round(gstlsm2het.cif[1,],0),", ",  
    round(gstlsm2het.cif[2,],0),"]","\n", sep = ""), "\n") 
 
# Print Direct Margina Effects and confidence interval for all models 
cat( 
  paste("Variables", "\t", "OLS", "\t", "S2SLS", "\t", "S2SLSHAC", 
     "\t", "GSTSLS", "\t", "GSTSLSHET", sep = ""), "\n", 
  paste(rownames(TotalEffects2), "\t", TotalEffects2$OLS, "\t", 
    DirectEffects2$S2SLS, "\t", DirectEffects2$S2SLSHAC, "\t", 
     DirectEffects2$GSTSLS, "\t", DirectEffects2$GSTSLSHET, "\n", "\t", 
    "[", ols2.cif[1,], ", ", ols2.cif[2,], "]", "\t", 
    "[", sp2slsm2.cif[1,],", ", sp2slsm2.cif[2,],"]", "\t", 
    "[", sp2slsm2hac.cif[1,],", ", sp2slsm2hac.cif[2,],"]", "\t", 
    "[", gstlsm2.cif[1,], ", ", gstlsm2.cif[2,], "]", "\t", 
    "[", gstlsm2het.cif[1,], ", ", gstlsm2het.cif[2,], "]", 
    "\n", sep = ""),  
  file="DirectEffects2.txt") 
 
DirectDF2 <- read.table("DirectEffects2.txt", header = TRUE, sep="\t") 
 
### ------------------------------------------------------------ 
### 
###  
# Krinsky and Robb method for se of Indirect Marginal Effects  
# OLS model nothing difference 
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ols2.beta <- ols2$coefficients 
ols2.vcov <- vcov(ols2) 
ols2beta.sim <- rmultnorm(10000, mu = ols2.beta, vmat = ols2.vcov) 
ols2.mwtp <- ols2beta.sim * Pbar 
ols2.ci <- apply(ols2.mwtp, 2, quantile, c(0.025, 0.975)) 
ols2.cif <- round(ols2.ci[,-1],0) 
 
# S2SLS 
sp2slsm2.beta <- coef(sp2sls.m2) 
sp2slsm2.vcov <- summary(sp2sls.m2)$var 
sp2slsm2beta.sim <- rmultnorm(10000, mu = sp2slsm2.beta, vmat = 
sp2slsm2.vcov) 
sp2slsm2.mwtpin <- sp2slsm2beta.sim * Pbar * (1/(1-sp2slsm2.beta[1])-1) 
sp2slsm2.ciin <- apply(sp2slsm2.mwtpin, 2, quantile, c(0.025, 0.975)) 
sp2slsm2.cifin <- round(sp2slsm2.ciin[,c(-1,-2)]) 
 
# S2SLSHAC 
sp2slsm2hac.beta <- coef(sphet.m2) 
sp2slsm2hac.vcov <- summary(sphet.m2)$var 
sp2slsm2hacbeta.sim <- rmultnorm(10000, mu = sp2slsm2hac.beta, vmat = 
sp2slsm2hac.vcov) 
sp2slsm2hac.mwtpin <- sp2slsm2hacbeta.sim * Pbar * (1/(1-
sp2slsm2hac.beta[1])-1) 
sp2slsm2hac.ciin <- apply(sp2slsm2hac.mwtpin, 2, quantile, c(0.025, 0.975)) 
sp2slsm2hac.cifin <- round(sp2slsm2hac.ciin[,c(-1,-2)],0) 
 
# GSTSLS 
gstlsm2.beta <- coef(gstls.m2)[-length(coef(gstls.m2))] 
gstlsm2.vcov <- gstls.m2$secstep_var 
gstlsm2beta.sim <- rmultnorm(10000, mu = gstlsm2.beta, vmat = gstlsm2.vcov) 
gstlsm2.mwtpin <- gstlsm2beta.sim * Pbar * (1/(1-gstlsm2.beta[1])-1) 
gstlsm2.ciin <- apply(gstlsm2.mwtpin, 2, quantile, c(0.025, 0.975)) 
gstlsm2.cifin <- round(gstlsm2.ciin[,c(-1,-2)],0) 
 
# GSTSLSHET 
gstlsm2het.beta <- coef(gstlshet.m2) 
gstlsm2het.vcov <- summary(gstlshet.m2)$var 
gstlsm2het.sim <- rmultnorm(10000, mu = gstlsm2het.beta, vmat = 
gstlsm2het.vcov) 
gstlsm2het.mwtpin <- gstlsm2het.sim * Pbar * (1/(1-
gstlsm2het.beta[length(gstlsm2het.beta)-1])-1) 
gstlsm2het.ciin <- apply(gstlsm2het.mwtpin, 2, quantile, c(0.025, 0.975)) 
gstlsm2het.cifin <- round(gstlsm2het.ciin[,c(-1,-17, -18)],0) 
 
# Print single model 
cat("\n", 
  paste(InDirectEffects2$GSTSLSHET,"\n","[",round(gstlsm2het.cifin[1,],0),", ",  
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    round(gstlsm2het.cifin[2,],0),"]","\n", sep = ""), "\n") 
 
# Print Direct Margina Effects and confidence interval for all models 
cat( 
  paste("Variables", "\t", "OLS", "\t", "S2SLS", "\t", "S2SLSHAC", 
     "\t", "GSTSLS", "\t", "GSTSLSHET", sep = ""), "\n", 
  paste(rownames(TotalEffects2), "\t", TotalEffects2$OLS, "\t", 
    InDirectEffects2$S2SLS, "\t", InDirectEffects2$S2SLSHAC, "\t", 
     InDirectEffects2$GSTSLS, "\t", InDirectEffects2$GSTSLSHET, "\n", "\t", 
    "[", ols2.cif[1,], ", ", ols2.cif[2,], "]", "\t", 
    "[", sp2slsm2.cifin[1,],", ", sp2slsm2.cifin[2,],"]", "\t", 
    "[", sp2slsm2hac.cifin[1,],", ", sp2slsm2hac.cifin[2,],"]", "\t", 
    "[", gstlsm2.cifin[1,], ", ", gstlsm2.cifin[2,], "]", "\t", 
    "[", gstlsm2het.cifin[1,], ", ", gstlsm2het.cifin[2,], "]", 
    "\n", sep = ""),  
  file="InDirectEffects2.txt") 
 
InDirectDF2 <- read.table("InDirectEffects2.txt", header = TRUE, sep="\t") 
 
# End 
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