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Abstract

We prove that the operator norm on weighted Lebesgue space L?(w) of the com-
mutators of the Hilbert, Riesz and Beurling transforms with a BMO function b
depends quadratically on the As-characteristic of the weight, as opposed to the lin-
ear dependence known to hold for the operators themselves. It is known that the
operator norms of these commutators can be controlled by the norm of the com-
mutator with appropriate Haar shift operators, and we prove the estimate for these
commutators. For the shift operator corresponding to the Hilbert transform we use
Bellman function methods, however there is now a general theorem for a class of
Haar shift operators that can be used instead to deduce similar results. We invoke
this general theorem to obtain the corresponding result for the Riesz transforms and
the Beurling-Ahlfors operator. We can then extrapolate to LP(w), and the results
are sharp for 1 < p < co. We extend the linear bounds for the dyadic paraproduct on

L?(w), [Be], into several variable setting using Bellman function arguments, that is,

Vil



we prove that the norm of the dyadic paraproduct on the weighted Lebesgue space
L2, (w) is bounded with a bound that depends on [w] ag and [|b][ gpro¢ at most lin-
early. With this result, we can extrapolate to L, (w) for 1 < p < co. Furthermore,
Bellman function arguments allow us to present the dimensionless linear bound in

terms of the anisotropic weight characteristic.
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Chapter 1

Introduction

In this dissertation we are primary interested in obtaining sharp weight inequali-
ties for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors
operators with multiplication by locally integrable function b € BMO , and we are
also concerned with the extension of the weighted norm estimates for the dyadic

paraproduct into the several variable setting.

The study of singular integrals is one of the most important topics in harmonic
analysis. The Hilbert transform is the prototypical example of a singular integral. A
careful study of the Hilbert transform provided the understanding and the inspiration
for the development of the general class of singular integrals. Almost simultaneously
with the birth of singular integrals, a variety of questions related to weighted in-
equalities appeared. In 1960, Helson and Szego first presented the boundedness of
the Hilbert transform on LP(w) in [HS]. A better understanding of this subject was
later obtained by Hunt, Muckenhoupt and Wheeden in 1973. They showed a new
necessary and sufficient condition for the boundedness of the Hilbert transform on
LP(w), the celebrated Muckenhoupt A, condition in [HuMWHh]. Precisely, we say the

positive almost everywhere and locally integrable function w, a weight, satisfies the
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Muckenhoupt A, condition if:
[w]a, = sup(w)Q(u;‘l/(p_l))’g1 < 00, (1.1)

where we denote the average over the cube @ by (-)¢ and the supremum is taken over
all cubes. A year later, Coifman and Fefferman extended this result to a larger class
of convolution type singular integrals with standard kernels (see [CoF]). Study of
this subject has already reached a great level of perfection and has found applications
in several branches of analysis, from complex function theory to partial differential

equations.

There are still some unsolved problems in the area concerning the best constant
in terms of the A,-characteristic [w]4, . Precisely, one looks for a function ¢(x) , sharp

in terms of its growth, such that:

|7 flleewy < Co[w]a )Nl f Nl zew) - (1.2)

These kinds of estimates for different singular integral operators are used often in
the theory of partial differential equations. For instant, in [AsIS], the authors asked
the question: Does the norm of the Beurling- Ahlfors operator on the weighted spaces
LP(w) depend linearly on the A,-characteristic of the weight [w]4,? Furthermore,
they proved that the linear dependence of the weighted norm of the Beurling-Ahlfors
operator on the A,- characteristic provides the quasi-regularity of certain weak quasi-
regular mapping. Although these type of problem (1.2) has attracted a lot of interest
after [AsIS], we need to refer to the first result of this sort that was obtained by S.
Buckley [Bu]. For the Hardy-Littlewood maximal function, he proved that ¢(x) =
2'/®=1) is the sharp rate of growth for all 1 < p < oo. He also showed in [Bu]
that ¢(x) = 2% works for the Hilbert transform in L?*(w). S. Petermichl and S. Pott
improved the result to ¢(z) = %2, for the Hilbert transform in L?(w) in [PetPo].

More recently, S. Petermichl proved in [Pet2] the linear dependence, ¢(z) = z, for
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the Hilbert transform in L*(w)

1 fll2(w) < Clwlas [ fll 22wy

by estimating the operator norm of the dyadic shift. In fact, knowing a bound
on L*(w) is crucial due to the extrapolation theorem. Rubio De Francia presented
his famous, and mathematically convenient, extrapolation theorem in [Ru]. On the
unweighted LP-theory, one needs to find either the weak type or strong type estimate
for an operator at two end points, then one can conclude the strong type estimate
between endpoints by interpolation. However, on the weighted LP-theory, it is enough
to have a single strong type estimate for all weights w € A,, for an operator in
LPo(w) , to obtain strong estimates in LP(w) for all w € A, due to Rubio de Francia’
extrapolation. Furthermore, a particular choice of the weight, w = 1, yields the
unweighted result. Recently, the sharp version of Rubio de Francia’s extrapolation
theorem was presented in [DGPerPet]. For example, when an operator T obeys linear
bounds in L?*(w), that is ¢(x) = x in the inequality (1.2), the sharp extrapolation

theorem will return the following bounds in L*(w), for w € A,

Tl < Cols 7 13
It has been conjectured that the linear estimate holds for any Calderén-Zygmund
operator T'in L?(w). So far, it is known for only a small class of operators that the
initial linear bound in L?(w) holds and is optimal, for instance the Beurling-Ahlfors
operator [DV, PetV], the Hilbert transform [Pet2], Riesz transforms [Pet3], the mar-
tingale transform [Wil], the square function [HukTV, Wi2], dyadic paraproduct [Be],
well localized dyadic operators [L, LPetRe, CrMP, HyLReVal, and one-dimemsinal
Calderén-Zygmund convolutions operators that are smooth averages of well localized
operators [Va]. For some of them, not for all, the extrapolation bounds are optimal
as well. For others (1.3) is optimal for 1 < p < 2, but not for p > 2. For instance,

the dyadic square function ., obeys a linear bound when p = 2 (see [Wi2]) and this
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was extended to 1 < p < 2 by extrapolation, and examples showed that the power
1/(p — 1) is the best possible in [DGPerPet|. In [Lel], the author showed that for
p > 2 the optimal power is at most p/2(p — 1). Recently, authors in [CrMP] showed
for p = 3 the power is 1/2 and by extrapolation they got

max l,p%
[ lrr < Gl P

and this bound is known to be optimal. Lerner [Le2] has very recently showed that
this holds for Wilson’s intrinsic square function, see [Wil2]. A modern introduc-
tion to weighted theory presenting related problems and much more can be found
in the Lecture Notes by Carlos Perez [P4]. Most recently, in [PTV], the authors
prove that the sharp bound of an arbitrary Calderén-Zygmund operator in L?(w) is
[w] 4, log(1+ [w] 4,). Also, it is known that the initial linear bound in L?(w) holds for
Calderén-Zygmund operators with sufficently smooth kernels [HyLReSaUrVa]. How-
ever, there is still an open conjecture between [PTV] and [HyLReSaUrVa] involving

with smoothness levels of the kernel and dimensional constant (see [HyLReSaUrVal).

In 2008, using Bellman function arguments, O. Beznosova proved that the dyadic
paraproduct is bounded on L?(w) with the bound that depends on [w] a¢ and ||b]| saro
at most linearly. The name Paraproduct was coined by Bony, in 1981 (see [Bo]), who
used paraproducts to linearize the problem in the study of singularities of solutions
of semilinear partial differential equations. After his work, the paraproducts have
played an important role in harmonic analysis because they are examples of singular
integral operators which are not translation-invariant. But they are not only ex-
amples; every singular integral operator which is bounded on L? decomposes into
a paraproduct, an adjoint of a paraproduct, and an operator which behaves much
like convolution operators. Moreover they arise as building blocks for more general

operators such as multipliers.

In fact, the linear bound of the dyadic paraproducts in R"™ are recovered in

[HyLReVa, CrMP] using different methods in L2, (w). However, in this disserta-
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tion, to prove the linear bound of the dyadic paraproduct in LZ.(w) we use the
Bellman function arguments as well as [Be]. Furthermore, it turns out that the Bell-
man function proofs allow us to obtain dimensionless linear estimates in terms of

anisotropic weight characteristic [w]z .

Commutator operators are widely encountered and studied in many problems in
PDEs, and Harmonic Analysis. One classical result of Coifman, Rochberg, and Weiss
states in [CoRW] that, for the Calderén-Zygmund singular integral operator with a
smooth kernel, [b,T|f := bT(f) — T(bf) is a bounded operator on L., 1 < p < oo,
when b is a BMO function. Weighted estimates for the commutator have been studied
in [ABKP], [P1], [P2], and [PPral]. Note that the commutator [b, T is more singular
than the associated singular integral operator T', in particular, it does not satisfy the
corresponding weak (1, 1) estimate. However one can find a weaker estimate in [P2].
In 1997, C. Pérez obtained the following result concerning commutators of singular

integrals in [P2], for 1 < p < o0,

116, T] fll oy < Clibllzaolwls 1M fll o)

where M? = M o M denotes the Hardy-Littlewood maximal function iterated twice.
With this result and Buckley’s sharp estimate for the maximal function [Bu] one can

immediately conclude that

_2
116; T 2o (wy— Lo () < Clwlh [wls M0l Baro -
In this dissertation we show that for 7" the Hilbert, Riesz, Beurling transform, for
1 < p < 2 one can drop the [w]s_ term, in the above estimate, and this is sharp
(Theorem 1.0.3). However for p > 2, the LP(w)-norm of [b, T| is bounded above by
16l Baroa[w]%, - For T = H the Hilbert transform we prove, using Bellman function

techniques similar to those used in [Be], [Pet2], the following Theorem.

Theorem 1.0.1. There exists a constant C' > 0, such that

1
2max{l,pj}

16, H][| e (w)— Lo (w) < ClI0l Brolw] 4, 1 f 1l () »
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and this is sharp for 1 < p < oco.

Most of the work goes into showing the quadratic estimate for p = 2, sharp
extrapolation [DGPerPet] then provides the right rate of growth for p # 2. Our
method involves the use of the dyadic paraproduct m, and its adjoint m;, both of
which obey linear estimates in L?*(w), see [Be], like the Hilbert transform. It also
uses Petermichl description of the Hilbert transform as an average of dyadic shift
operators S, [Petl], and reduces the estimate to obtaining corresponding estimates

for the commutator [b, S]. After we decompose this commutator in three parts:
[b’ S]f = [th]f + [ng S]f + [)‘ba S]f,

we estimate each commutator separately. This decomposition has been used before
to analyze the commutator, [Petl], [L], [LPetPiWic|. For precise definitions and
detail derivations, see Section 2.2.1. The first two commutators immediately give the
desired quadratic estimates in L?(w) from the known linear bounds of the operators
commuted. For the third commutator we can prove a better than quadratic bound,

in fact a linear bound. The following Theorem will be the crucial part of the proof.

Theorem 1.0.2. There exists a constant C' > 0, such that

120 ST 22wy 22wy < ClwlagllbllBaro (1.4)

for allb € BMO® and w € AS.

This theorem is an immediate consequence of results in [HyLReVal, [LPetRe]
and [CrMP], since the operator [\, S] belongs to the class of Haar shift operators
for which they can prove linear bounds. We present a different proof of this re-
sult and others, using Bellman function techniques and bilinear Carleson embedding
theorems, very much in the spirit of [Petl] and [Be]. These arguments were found

independently by the author, and we think they can be of interest.
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We then observe that for any Haar shift operator 7" as defined in [LPetRe] the
commutator [\, 7] is again a Haar shift operator, and therefore it obeys linear
bounds in the Aj-characteristic of the weight as in Theorem 1.0.2. As a conse-
quence, we obtain quadratic bounds for all commutators of Haar shift operators and
BMO function b. In particular, this holds true for Haar shift operators in R™ whose
averages recover the Riesz transforms [Pet3] and for martingale transforms in R?
whose averages recover the Beurling-Ahlfors operator [PetV], [DV]. Extrapolation
will provide LP(w) bounds which turn out to be sharp for the Riesz transforms and

Beurling-Ahlfors operators as well. The following Theorem holds

Theorem 1.0.3. Let T, be the first class of Haar shift operators of index 7. Its
convexr hull include the Hilbert transform, Riesz transforms, the Beurling-Ahlfors
operator and so on. Then, there exists a constant C(7,n,p) which only depend on T,

n and p such that

1
2max{1,ﬁ}

110; Tl oy 2oy < C (751, p)[w] g, 16l aro

We are now ready to explain the organization of this dissertation. In Chapter
2 we will introduce notations and discuss some useful results about weighted Haar
systems. We also present our main results for the commutator and the dyadic para-
product in Chapter 2. In Chapter 3 we will introduce a number of Lemmas and
Theorems that will be used. In Chapter 4 we will prove our results about the com-
mutator of the Hilbert transform. In Chapter 5 we present the LP(w) estimate of the
commutator with a Haar shift operator, Theorem 1.0.3. In Chapter 5 we also provide
the sharpness for the commutators of Hilbert, Riesz transforms and Beurling-Ahlfors
operators. Finally, In Chapter 6 we will prove our results about the multivariable

dyadic paraproduct.



Chapter 2

Preliminaries

Let us now introduce the notation which will be used frequently through this dis-
sertation. Even though the A, conditions have already been introduced in (1.1), we
will state the special case of this condition when p = 2, namely A¢ since we will
refer repeatedly to this. A weight w, which is positive almost everywhere and locally
integrable function defined on R, belongs to A¢ class if

(W] 4e == sup(w) (w1t < 0. (2.1)

1€D

Here we take the supremum over all dyadic interval in R. Note that if w € A, then
w € Af and [w]yg < [w]a, . Intervals of the form [k277, (k + 1)27) for integers j, k
are called dyadic intervals. Let us denote D the collection of all dyadic intervals, and
let us denote D(J) the collection of all dyadic subintervals of J. We use the symbol
(-, ) for the standard inner product, that is

() = [ fo.

Given a weight w in R a measurable function f belongs to Ly (w), 1 <p < oo, if

Il = ([ @Puto)dz) R
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Through out this dissertation, we denote a constant by ¢ or C' which may change
line by line and we keep indicating its dependence on various parameters using a
parenthesis, e.g. C'(n,p) will mean a constant depending on the dimension n and on

the parameter p.

2.1 Haar systems in R

For any interval I, there is a Haar function defined by

hi(e) = (@) = (@),
where x; denotes the characteristic function of the interval I, x,;(x) =1ifz € I,
x1(z) = 0 otherwise, and Iy are the right and left halves of I. It is a well known
fact that the Haar system {h;};cp is an orthonormal system in L% . In fact, the
Haar system was introduced by Alfréd Haar, in 1909, to see the existence of an
orthonormal system for L?[0,1], so that convergence will be uniform for continuous

functions. It is also now known as the first wavelet.

We also consider the different grids of dyadic intervals parametrized by «, r,

defined by
DY ={a+rl:1¢eD},

for o € R and positive r. For each grid D*" of dyadic intervals, there are corre-
sponding Haar functions hy, I € D" that are an orthonormal system in L% . Let
us introduce a proper orthonormal system for L2(w). The weighted or disbalanced
Haar function associated to an interval I and a weight w is

1 w(l_)Y? w(l,)'?

hY = -
F (D)7 [w(L) T ()N

where w(I) = [, w. We define the weighted inner product by (f, ¢)» = [ fgw. Then,
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every function f € L?(w) can be written as

F=Y (L huhy

1eD

where the sum converges a.e. in L?(w) . Moreover,

1172y = D IRl (2.2)

IeD
Again D can be replaced by D®" and the corresponding weighted Haar functions are

an orthonormal system in L?(w) . For convenience we will observe basic properties of
the disbalanced Haar system. First observe that (hg, hY), could be non-zero only if

I O K, moreover, for any I O K,
(i, )| < (w) . (2.3)

Here is the the calculation that provides (2.3),

Xr, () — xr_(x) [w(I )1/2 w(I+)1/2
/ |K|1/2w( )1/2 [ ([+)1/2 I+<x)_m){[($):|w(l'>dl’

w(1_)'/? w(l )2
|K|1/2w 1/2/ ‘ I+ 1/2XI+ )+WXI_(SU)
A
If K C I, then A < w(I_)"?w(I,)""?w(K). Thus

(R, )| =

w(z)dr .

J/

U)(K)U]([,) 1/2

— 5 S W)k
w(I)w(l) K
Similarly, if K C I_. If K = I, then A < 2w(K_)"?w(K,)"?. Thus

i, o] = (e, Y] < ()2 PVOEIOUE) e

[(he, )] < (w)

w(K) o
Estimate (2.3) implies that ‘<hj,h1})_1>w—1<hj,h’lj)>w‘ < \/§[w]114/d2, where .J is the
parent of J,
-1 1/2, \1/2 12 1 12
5 s )l < 720 = (S [ )
9 1/2
= (5 o) < an P
[ J] g
< 2[w]1/2. (2.4)

10
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Also, one can deduce similarly the following estimate
[P 05y (o )l < V2Ll (2.5)

For I 2 J, hy is constant on J. We will denote this constant by hy(J). Then h'(J)
is the constant value of 2} on J and |hY(J)[ < w(J)~Y? | as can be seen by the

following estimate,

K5 ()| = . - — (2.6)

Let us define the weighted averages, (¢) s = w(J)™" [, g(x)w(x)dx . As with the
standard Haar system, we can write the weighted averages
@Daw =Y {9 hD)uhi(J]). (2.7)
1€D:IDJ
In fact, here is the derivation of (2.7).

o= o0 [ St @@ = — [ S (g amr (s

J 1ep 1€D:IDJ

1
:w—J)/Jw(x)dx Z (9, BT )l (J) = Z (g, hf )ywhi (J).

1€D:12J 1€D:12J

Also, we will be using system of functions { H}' } ;ep defined by

HY = h/|I| — AYxr where A} = %% (2.8)
I

Then, {w'/?H{"} is orthogonal in L? with norms satisfying the inequality
[w!2HE |12 < /[ (w)r

refer to [Be|] or Section 2.2, where the calulation is performed for corresponding
system in R™ defined in (2.14). Moreover, by Bessel’s inequality we have, for all
g€L?,

Z 7 (g, w2 HP)? < |lgl7- (2.9)

1€D

11
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Since unconditional bases provide an efficient way to represent an arbitrary func-
tion in terms of known functions, it is very useful concept in functional analysis. It
is a well known fact that the Haar system generates an unconditional basis in L?
for 1 < p < oco. We refer to [Wo| for more detailed statements. The authors in
[CoJS] showed that the weighted Haar system forms an unconditional basis on L?,
and it was shown in [TV] that if the weight w satisfies the As-condition then the
unweighted Haar system generates an unconditional basis on L?(w). Through out
the dissertation, there are many manipulations with infinite sums associated with
Haar functions. However, those manipulations are legitimate because Haar systems

used in this dissertation are unconditional bases on corresponding function spaces.

2.2 Haar systems in R”

In this dissertation, the result of [Be| will generalize to the setting of R™ (Theorem
2.4.4 and Theorem 2.4.5). Thus, we need to introduce the appropriate n-dimensional
Haar systems. We will denote the family of dyadic cubes in R™ by D". For any
Q € D", weset D}Q) ={Q € D": Q C Q, Q) = £Q)/2}, the class of 2"
dyadic sub-cubes of @), where we denote the side length of cubes by ¢(Q). We will
also denote the class of all dyadic sub-cubes of @ by D"(Q). Then we can write
D'(Q) = U2 D} (Q) . We refer to [Will] for the following lemma.

Lemma 2.2.1. Let Q € D". Then, there are 2" —1 pairs of sets {(E]{Q7 Eva)}jzlrngn_l
such that:

(1) for each j,

1| _ |2
Ejql = |Eql-
(2) for each j, EJ{Q and EJ%Q are non-empty unions of cubes from DT (Q);

(3) for each j, Ej,NE;,=0;

12
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(4) for every j # k, one of the following must hold:

(a) EjoUE3, is entirely contained in either Ej o or Ef o;
(b) EyoU EL is entirely contained in either Ej o or E} o;

(c) (BloUE )N (EioUEE,) =0.

We can construct such a set by induction on n. It is clear when n = 1. We assume
that Lemma 2.2.1 is true for n — 1 and let Q be the (n — 1)-dimensional cube and
{(E;,@ E;Q)}jzlmznﬂ_1 be the corriespondirig pairs of sets for @ We can get the
first pair of sets by (Ef g, E7 ) = (Q x I_,Q x 1) where I is a dyadic interval so
that || = £(Q), and Q x I = Q. We also have the last 2" — 2 pairs of sets as follows.

{(E%j,Q7E22j,Q)a (E21j+1,Q7 E22j+1,Q>}j:1,...,2”—1—1

R 1 2 1 2
={(Blgx I E s x 1), (Blg x [, B2 x I} | by

To save space, we denote Ej, U E?, by Ejq and, by (1) in Lemma 2.2.1, we have
|Ej ol = 2|E! | for i = 1,2. Note that the sets Ejq are rectangles. Also note that
we assign Ey g = Q, Eyg = Ej and Esq = E} ; and so on. With such a choice,

we have

= EyqU B3

= (FiqUFEsq) U (EsqU Erq)

= By QU Epn-11 QU U By 19

1 2 1 2 1 2
— E2n_1,Q U Ezn—l’Q U EQn—1+1’Q U EQn—1+17Q U A U EQ"—I,Q U EQ”—I,Q 9

in fact,
2k_1 2k_1

Q= Eio= U EqUE,

j=2k j=2F

13
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the sets E; ¢ in that range of j’s are disjoint, and
Dn( ) - {EQ" LQ» E22"—1,Q ’ E21n—1+1,Q ) E22”—1+1,Q ) E2” 1,Q> 2" 1 Q}

As a consequence of Lemma 2.2.1, we can introduce the proper weighted Haar

system for LG(w) s {h’;{)Q}ISjSQ”—I,QED" , where

w E2
XE2 El XE1 .

Note that when n = 1, this reduces to the one dimensional disbalanced Haar system.

w .
J,Q

JQ

Due to its construction, h¥y’s satisfy that

/ To@)w(r)dr =0, forall j, (2.10)

and
/h}f’Q(w) hi'o(r)w(x)dr = 055, for alliand j. (2.11)
Then, every function f € L3, (w) can be written as

2" —1

f: Z Z<f7h;l,)@>w

QeDn j=1

Moreover,
2n—1

1122y = S0 D 1R

QeD" j=1

For better understanding, we now observe the example of 2-dimensional case. Let
us consider the dyadic box Q = I x J € D? as the figure below, in this case @ =J,

the 2 — 1 = 1 dimensional cube in the construction.

Q2| @1
Qs | Q4

14
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Then, there are three pairs of sets

{(Q?, UQ4,Q1UQ2), (Q3,Q4), (Q2, Ql)} ;

and three weighted Haar functions associated with @)

R 1 Q3 U Q4
e Vw(Q) Q11U
oo L[ @) o fw@) ]
M V@U@ [V w@) | w(@)

)

)
v 1 0@ - [w(@) ]
3 w(QrUQ2) | w(Q1) o w(Q1) Gz

One can easily see that the functions hg, j =1,2,3, satisty (2.10).

/h’l’fQ hy qwdz

B 1 w(@Q1U Qo) w(@a) oo jwl@)

T V(@) V(@50 Q) | w(Q3UQ4)</3 | w(@s) ! / w(Qu) d)
)

1 (Q1U Q2
:\ﬂthﬂw@gu@@VC;;;:g;<¢W“%ﬁw@ﬁ—xﬂw@@wmhn

= 0.

g

Similarly, one can check the other cases of (2.11).

With the particular choice of w = 1, set hjo = hj, the family {h;o : Q €
D", 1 < j <2"—1} is an orthonormal system for L2, and complete. Again, for all

f € L&, we have
2n—1

17122, = S S kol

QeDn j=1
For all Q" € DY(Q) , the hjq’s and hj’s are constant on ), we will also denote this
constant by h;o(Q') and hi,(Q') respectively. As in the one dimensional weighted

15
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Haar system (2.7), we can obtain the weighted average of f over E;, for some

1<j<on—1,

2" —1

1 w w
N = gy . 2 A hiodhig@u()ds

Ejq Q'eDn i=1

N w(éjQ) </E > > (o hig)hiq(E;q)uw(x)de

7Q Q'eD™:Q'DQ i:E; g 2Ei g

P X e Eeutir)

EiQ i, 0280

2m—1
= > D g oo (B + Y (9. ko) ke (Eiq)
Q' eED™Q'2Q i=1 iE; B0

= D Y. (g ha)ha(Ei). (2.12)

Q' ED™:Q'DOQ ’L‘:Ein/;_Ej’Q
Furthermore, for j =1, E) g = (), we have

n—1
Neow={Naw= D D ([ho)uhie(@). (2.13)

Q'eD™:Q'2Q j=1
Because it is occasionally more convenient to deal with simpler functions, it might
be good to have an orthogonal system in L%, (w), similar to the one dimensional case

defined in (2.8). Let us define

Hy = hio\/|Eiel — AYo xB,0 (2.14)
where
w o <w>E32',Q B <w>E11',Q
J,Q 2<w>EJ7Q

Then, the family of functions {w'/?HY,};¢ is an orthogonal system for L. with
norms satisfying the inequality [[w'/?H}5|Ir2, < 1/|Ej@|(w)s,, - In order to see the

orthogonality, it is enough to check that each function has zero mean with respect

16
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to the measure induced by the weight w, i.e. wdx,

/H}’fQ(x)w(x)dx = \/@/hj@(x)w(w)dx - /EjQA”“.” w(x)dx

[
).

J

iz 1B ‘( (w)p2 , — (W) g2

7,Q

wade = [ wo )
( )da;—/E1 (:c)dx—/E2 w(:c)d:c+/E1 w(z)dz = 0.

7,Q 7,Q

Moreover,
||w1/2HQ||LDzw I 0 = / (H2o @) w(a)de
Q\/ e )dx+/ (A%) w(x)dz
— 24/ JQ/ hjq(x)Afqw(z)dz

whp | — (w) wp — (W)p )
Z/E‘Qw(x)dxﬂEj,Q\( Cz T - B, |( 2<w>E.Q 1o
(

(e, - w>E;,Q)2
= [Ejal | ( u)s.

< |EJ7Q‘<w>E Q

By Bessel’s inequality in L2, one gets, for all g € L2, ,

< lgllzz, - (2.15)

Then by setting g = fw'/? in (2.15) one gets, for all f € L, (w),
on_1

2 Z|E’ o - < Iz, (). 216)

QeD™ j=1

17
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2.3 The commutator: Hilbert transform case

A basic example which lies at the source of the theory of singular integrals is given
by the Hilbert transform. The Hilbert transform of a function f(y) is given formally
by the principal value integral

f()

lz—y|>e T — Y

dy .

e—0

H(f) ::p.v%/%dy = lim

The bilinear operator

fH(g)+ H(f)g

maps L? x L? into H', here H is the Hilbert transform and H!' is the real Hardy

space defined by
HY(R):={f c L*R): Hf € L'(R)}
with norm
[ fll# = [ fllzr + 1 H £l 2o -

The dual of H' is BMO. This is the celebrated Fefferman-Stein duality Theorem
[F'S], we define BMO after Definition 2.3.1. Thus we will pair with a BM O function
b. Using that H* = —H, we obtain that

(fH(g)+ H(f)g, b) = ([, H(g)b— H(gb)).

Hence the operator g — H(g)b — H(gb) should be L? bounded. For more detail we
refer [G]. This expression H(g)b — H(gb) is called the commutator of H with the

BMO function b. More generally, we define as follows.

Definition 2.3.1. The commutator of the Hilbert transform H with a function b is

defined as
b, H](f) = bH(f) — H(bf).

18
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Our main concern in this dissertation is to prove that the commutator [b, H], for
b € BMO, as an operator from L%(w) into L%(w) is bounded by the square of the

Ay-characteristic, [w] g, , of the weight times the BM O norm, ||b||mo , of b where

1
6]l Brro = sup—/]b(x) — (b)s|dx .
I |I’ I

The supremum is taken over all intervals in R. Note that when we restrict the
supremum to dyadic intervals this will define BMO¢? and we denote this dyadic

BMO norm by || - || ppod - We now state our main results.

Theorem 2.3.2. There exists C' such that for all w € As,
116, H | 22wy 220y < Clw], [bllaro

for allb e BMO.

Once we have boundedness and sharpness for the crucial case p = 2, we can carry
out the power of the A,-characteristic, for any 1 < p < oo, using the sharp extrapo-
lation theorem [DGPerPet] to obtain Theorem 1.0.1. Furthermore, an example of C.
Pérez [P3] shows this quadratic power is sharp. In [Petl], S. Petermichl showed that
the norm of the commutator of the Hilbert transform is bounded by the supremum
of the norms of the commutator of certain shift operators. This result follows after
writing the kernel of the Hilbert transform as a well chosen average of certain dyadic
shift operators discovered by Petermichl. More precisely, S. Petermichl showed there
is a non zero constant C' such that

116, H]|I < Csup |[b, S*"]||, (2.17)

a,T

where the dyadic shift operator S*" is defined by

S f = 3" (foha) (b~ ha,).

1eD>r
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Petermichl [Pet2] showed that shift operator obeys a linear bound in L?(w)

1S l2 ) < Clwlaglfllzzw) (2.18)

similar result holds for S*", where C' is independent of the dyadic intervals used.

Let us consider a compactly supported b € BMO? and f € L?. Expanding b and

f in the Haar system associated to the dyadic intervals D,

b(x) =Y (b, h)hi(w), fl) =D (f hs)hs(@);

1€D JeD

formally, we get the multiplication of b and f to be broken into three terms,

bf = m () + mlf) + M) (2.19)

where , is the dyadic paraproduct, 7; is its adjoint and Ay(-) = m.yb, defined as
follows

m () (@) =D (b, hp)(f hr)hi (=),

m(f)(@) =D (b, hr){f)ihi(x),
M()(@) =D Oy (f, ha)ha(z).

It is an exercise to verify that the sum of these three terms returns formally the
product bf. You can see the detailed proof of the n-dimensional analogue of this

decomposition in p. 25. Thus, we have
[b, S] = [7}, S| + [m, S] + [Ms, 5], (2.20)

where

S(f) = {f hr)(hi_ = hr,)

IeD
and we can estimate each term separately. Notice that both m, and 7} are bounded

operators in LP(w) for b € BMO [Be], despite the fact that multiplication by b is
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a bounded operator in LP(w) only when b is bounded (L) . Therefore, A, can not
be a bounded operator in LP(w). However [\, S| will be bounded on LP(w) and
will be better behaved than [b, S]. Decomposition (2.20) was used to analyze the
commutator with the shift operator first by Petermichl in [Pet1], but also Lacey
in [L] and authors in [LPetPiWic] to analyze the iterated commutators. Since all
estimates are independent on the dyadic grid, through out this dissertation we only
deal with the dyadic shift operator S associated to the standard dyadic grid D.
For a single shift operator the hypothesis required on b and w are that they belong
to dyadic BMO? and A¢ with respect to the underlying dyadic grid defining the
operator. However since ultimately we want to average over all grids, we will need b
and w belonging to BMO? and A¢ for all shifted and scaled dyadic grids, that we
will have if b € BMO and w € Ay, non-dyadic BMO and A, . Beznosova has proved

linear bounds for m, and 7}, [Be],

176 f | 22wy < Clwlagllbll Brroal fllzw)

together with Petermichl’s (2.18) linear bounds for S, [Pet2], this immediately pro-
vides the quadratic bounds for [m,, S| and [, S]. Theorem 2.3.2 will be proved once
we show the quadratic estimate holds for [\, S]. We can actually obtain a better

linear estimate as in Theorem 1.0.2. Some terms in (2.20) do also obey linear bounds.

Theorem 2.3.3. There exists C such that
1755 2wy + (1S 22(w) < Clw]agllbllBaros -

for allb € BMO?.

Note the three operators [y, S|, 7S and S, are generalized Haar shift operators
for which there are now two different proofs of linear bounds on L?*(w) with respect

to [w]4¢, [LPetRe] and [CrMP], and in this dissertation we present a third proof.
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2.4 The dyadic paraproduct

For the locally integrable functions b and f, the dyadic paraproduct is defined by

(b, f) = (b, hr){f)ihr,

1€D

on the real line. Thus the dyadic paraproduct is a bilinear operation. It is now
well known fact that the dyadic paraproduct is bounded on L? if b € BMO? (see
[Per1]). Thus, after we fix b in BMOY, we consider (b, f) as a linear operator acting
on f and we write ,(f) for this linear operator. The question (1.2) for the dyadic
paraproduct was solved in [Be| by Beznosova and it is now known that the linear

estimate holds for the dyadic paraproduct in L*(w) .

Theorem 2.4.1 (O. Beznosova). The norm of dyadic paraproduct on the weighted
Lebesgue space L% (w) is bounded from above by a constant multiple of the product of

the A$-characteristic of the weight w and the BMOY norm of b.

One of main contribution of this dissertation is to extend Theorem 2.4.1 to the
multivariable setting in the spirit of [Be], that is using Bellman function arguments.
This allows to establish the dimension free estimates in terms of anisotropic weight
characteristic. Thus we need to consider the class of anisotropic As-weights and the

class of anisotropic BMO functions which are defined as follows.

Definition 2.4.2. A locally integrable and positive almost everywhere function w
on the space R™ belongs to class of Af weights, 1 < p < oo if

w4z = sup(w) glw VP < g
[w]as p(w) RS R
R

where the supremum is taken over all rectangles R C R"™ with sides parallel to the

coordinate axes.

Definition 2.4.3. A locally integrable function on R" belongs to BMO¥ if

1
1bllsaron = sup — / [ b() — (Bl da < 0,
r |R| Jgr
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where the supremum runs over all rectangles R C R™ with sides parallel to the

coordinate axes.

Since a cube is a particular case of a rectangle, it is easy to observe that ||b||gpo <

16l Baror. Thus, BMO > BMO® when n > 2. In [K], the example
T) = ZX[O,Z—k+1]X[O,1/k}(x)7 r = (11,72) € R?

was presented which is in BMO(R?) but not in BMOR(R?). For more details, see
[K] which include the John-Nirenberg inequality, the Muckenhoupt embedding for

the anisotropic weights and more.

As well as in the one dimensional case, one can define

Wlovios, = sup o / b(z) — (B)oldz (2.21)

for a locally integrable function on R™. The function b is said to have dyadic bounded
mean oscillation if [|b]| gp08, < 00, and we denote the class of all locally integrable
functions b on R"™ with dyadic bounded mean oscillation by BMOZ, . Notably one
can replace (2.21) by

2m—1

165002, = s o Z Z| (b, h o). (2.22)

QGD"
In the anisotropic case, it is known that the John-Nirenberg inequality holds for all

b € BMO?® and any rectangle R C R",

2/e

[{z € R||b(z) — (b)r| > A} < | R] exp (_
16l Brron

)\), A>0. (2.23)

Note that the John-Nirenberg inequality is dimensionless in the anisotropic case. As

an easy consequence of (2.23), we have a self improving property for the anisotropic
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BMO class. For any rectangle R € R" | there exists a constant C'(p) independent of

the dimension n such that

(|R| / |5(z) R|pd$) " < C(p) bl asor - (2.24)

One can easily check that

[ 100 = g Pdo= [ B - B0,

0Q B q

Then

t@ [0(2) — (B, . P — [{b, higr)

4,Q

. 2
B (a)dr — | Biar|(0)}, , — — 2 ()e2,, — B, )

Ei / 2 Ei, ! 2
Bl v we,) - e () o)

J
J
:/E b (z)dz — |EZQ/‘<<6>E1 +<b>%zQ,>
J

2 4Q’

i,Q’

v (z)dx — |E;Q,|<b>2EI_1Q/ +[EQ bV} (z)dx — | E} o |(b) o

1
,Q’ i,Q’

= [ 1) = B Pa [ 1) = Bl e

1 i,Q'

i,Q7 ,Q’
By iterating this process, one gets

JRCORICEMETEND S SR

Biar QED™(Q) 3:E;,QCE; o

Note that the sets E; o/ are rectangles. Using the self improving property (2.24), we
have, fori=1,...,2" -1, Q' € D"
D2 (ko) < ClilByon- (2.25)

QED"(Q’) I EjQCE; o

We now define the multivariable dyadic paraproduct. As we have seen in (2.19)

the product of two square integrable functions can be written as the sum of two
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dyadic paraproducts and a diagonal term in a single variable case. Moreover, the

diagonal term is the adjoint of one dyadic paraproduct i.e. for all f,g € L%,

fa=m,(f) +mg(f) + X (f). (2.26)

Thus, we expect to have analogous decomposition. Let us assume that f,g € L2, .

Expanding f and g in the Haar system,

m_1 m_1
F=Y > {fhiohio. 9= Y, > (g hig)hig
QeDn j=1 Q'eDn i=1

and multiplying these sums formally we can get

2" —1 2"—1

=)D > (kg hiedhe(@)hig () = (1) + (IT) + (I11).

QeDn j:1 QIEDn Z:1
Here, (I) is the diagonal term Q' = Q, j = 1;

2"—1 2"—1

XE;
E E:fa 7@ (9, hiq) jQ E: E:fv i)9 hiQ) = EQ( ) (2.27)
QeD" j=1 QeDn j=1 ’ 3,Q |

The second term (1) is the upper triangle term corresponding to those @' 2 @, all
i,7 and Q' = @ so that E; o 2 Ej ¢.

= i ( > i<f, )9, hig)hig (2)hjq(x)

QeD" j=1 \ QeD™:Q'2Q i=1

+> ) <fahj,cz><g,hi,Q/>h¢,Qf($)hj,cz(x)>
Q=Qi:E; o250
2" —1

=> > > > (i) g hig ) hig (Eig)hjo(x)

QeD" j=1 Q'€eD™:Q'2Qi:E; o1 2Ejq
1

- Z Z {f, hj,Q><g>Ej,th,Q(l’) , (2.28)

QeD" j=1
where h; o/ (E;q) = hig(x) for x € Ejq. In the second equality we used formula
(2.12) for the average of g on E; ¢ . Similarly, the third term is the lower triangle
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corresponding to those Q' C @, all i,j and Q' = Q) so that E; o C E, ¢ .

(=% Z( S S hae b @il

QeD" j=1 \ QeD™:Q'CQ i=1

+> ) <f,hgp@)(Q,ha@f%n@/@)%@(@)
Q'=Qi:E, o CEj 0
2" —1

=Y D 9haN)Ehie). (2.29)

QeDn j=1
If we consider the sum (2.27) as an operator acting on f, then we can easily check

that (I11) is its adjoint operator, in fact, here is the derivation.

on 1 on 1
<ZZQ7 ]Q chQ XEJQ ZZQ) zR 2R>
QeDn j=1 ReD™ i=1
on 1 on 1 (X5 0s T )
- Z Z Z Z fih JQ g’ JQ><Qath> =
QeD™ j=1 ReD™ i=1 } ‘
on 1
= > D (fhioahio) Y > (g hirhir(Eiq)
Qepr j=1 RED™RDQ i:E; n DE; o
on 1
:<f, > ) hj,Q>(Q>Ej,th,Q>-
QeDn j=1

We now can define the multivariable dyadic paraproduct by pairing the dyadic BMO
function. In R", the dyadic paraproduct is an operator m,, given by

2"—1

mf@) =Y (g0 hio)hiolr). (2.30)

QeDn j=1
Note that the construction of the Haar systems are not unique. One can actually
construct different Haar systems [DPetV]. Furthermore, the dyadic paraproduct
depends on the choice of the Haar functions. Thus, one can establish the different
dyadic paraproducts associated with different Haar functions. But the decomposition
(2.26) holds for all of them. To close this chapter, we state our main results for the

dyadic paraproduct.
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Theorem 2.4.4. For 1 < p < oo there exists a constant C(n,p) only depending on
p and dimension n such that for all weights w € AZ and b € BMOg,

max{1,-1-}
Hﬂ'bHLﬂ’én(w)aLﬁn(w) < C(”,P)[W]Ag v HbHBMOD%n'
Theorem 2.4.5. There exists a constant C which doesn’t depend on the dimensional

constant such that for all weight w € A% and b € BMOE,

||7TbHLD2§n(w)HLD2w(w) <C [w]A§|’b||BMOD§n .

The proofs for both Theorems are presented in Chapter 7, and they only depend

on the results presented in Charter 3.

We will finish this Chapter by including a comparison to the standard tensor
product Haar basis in R", {h; 5}, with the Haar basis introduced in Section 2.2 and
associated paraproducts. Let us denote the Haar function associated with a dyadic
interval I € D by hY = | I|7Y2(x;, — xz_) and normalized characteristic functions
hl = | I|7"/?x;. Here 0 stands for mean value zero and 1 for the indicator. Also
we consider a set of signatures ¥ = {0, 1}#--m}\ {(1,...,1)} which contains 2" — 1
signatures. These are all n-tuples with entries 0 and 1, but excluding n-tuple whose
entries are all 1. Then, for each dyadic cube () = I; x --- x I,,, one can get the

standard tensor product Haar basis in R"™ by
hf’,,Q(xl, ey X)) = h}'ll(afl) X oo X i (2,),

where 0 = (074, ...,0,) € ¥. Notice that all h; o are supported on (). In this case, we

have the paraproduct associated to the standard tensor product Haar basis:

mf(x) =Y (N Y bk ohhio(@). (2.31)
QeDn ceX

Observe that, for each dyadic cube ) € D",

span{h; o}oes = span{h;q}j=1,. 21 = span{xé}éem(@ : (2.32)
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Changing the basis, we can see that two multivariable paraproducts, (2.30) and

(2.31), are different, that is

2m—1

mf@) =Y (o> bhidhio# > > (e elbhiohio=mf(z).

QeDn oET QeDn j=1
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Main tools

In this chapter, we are going to introduce several theorems and lemmas which will
be used to prove our main results. In Section 3.1 we recall some embedding theorems
and weighted inequalities in one dimensional case. Some of them will be stated in

multivariable setting and be proven via Bellman function arguments in Section 3.2.

3.1 Embedding theorems and weighted inequali-

ties in R

To prove Theorem 2.3.2 we need several theorems and lemmas. Some of them will
be given in this dissertation with detailed arguments. If not, you can find the proof
in the indicated references. First we recall that the dyadic square function is defined

by f+— Luf where

)\ 12
Fafe)i= (L)

1€D

It is well known in [HukTV] that if w € Ay, the norm of the dyadic square function

is bounded in L?(w), with a bound that depends linearly on the A,-characteristic of
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the weight.

Theorem 3.1.1. There is a constant ¢ so that for all w € Ay the square function

Sy L*(w) — L*(w) has operator norm ||| r2(w)—r2(w) < clw]a, .

Another main result in [Pet2] is a two-weighted bilinear embedding theorem. The

author in [Pet2] proved this Theorem by a Bellman function argument.

Theorem 3.1.2 (Petermichl’s Bilinear Embedding Theorem). Let w and v be weights
so that (w){(v); < Q for all intervals I and let {a;} be a non-negative sequence so

that the three estimates below hold for all J

> S <Qu) (3.1)

1eD(J) {wr

Y L <Qul) (3.2)

1eD(J) ()1
Z ar <QlJ|. (3.3)
IeD(J

Then there is ¢ such that for all f € LQ(w) and g € L*(v)

> a9 e < QI f 2w llgllz2e)

1eD

1/2

Replacing ay, f, and g by ar(w)(v);|I|, fw™'/? and gv='/? respectively yields

the following Corollary.

Corollary 3.1.3 (Bilinear Embedding Theorem). Let w and v be weights so that
(w)(vy; < Q for all intervals I . Let {ay} be a sequence of nonnegative numbers such
that for all dyadic intervals J € D the following three inequalities hold with some

constant QQ > 0,

S arw) 111 < Qu(d) (3.4)

IeD(J)
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> ar(w) 1] < Qu(J) (3.5)
IeD(J)

> arw)y I <Q1J|. (3.6)
1eD(J)

Then for any two nonnegative function f, g € L?
> ar(fw'?) (g ?) 1] < CQIIf|lr2 9]l 2
IeD

holds with some constant C > 0.

Both Bilinear Embedding Theorems are key tools in our estimate. One version
of such a theorem appeared in [NTV]. The original version of the next lemma also

appeared in [Pet2].

We use the notation Ajf = %((f}br — (f>1_> . Let us introduce the operator
defined by

) == ZAlb<f» hr)rhi_,

IeD
which will be used for the estimate of the commutator [\, S] in Section 4.1. The

operator Slf -1 in the following Lemma is the truncated operator of the composition

of S, with multiplication by w™!, that is

Syt (F) =D Apb(w™ f,h)hy,

LeD(I)

Lemma 3.1.4. There is a constant ¢ such that
HSz{,wleIHLQ(w) < C”bHBMOd[w]Agw_l<[)l/2

for all intervals I and weights w € A3 .

Proof. We will prove this Lemma by duality. It is sufficient to prove the inequality

Syt Fhul < ellbllaoalw] agw™ (DY fll2w) (3.7)
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for positive test functions f .

(SE i X1 Fhw '< Z Arb (w ,hL>hL,Z<f,hlj>whlj>w‘

LeD(I JeD

Z ALb -1 hL> Z<f= hqj')>w<hL7’ hflv>w

LeD(I JeD

Z Apb(w™t hy) Z (f,h)wlhr_ WY )w

LeD(I JED:JDL

- Z AL (W™ B ) (f B (b B )l (3.9)

LeD(I)

+ 3 AL T R ) Rl Bl (3.10)

LeD(I)

Using (2.2), (2.3), Holder’s inequality, the fact (w), < 2(w)r, and

|A1b|:1|<b>z — ()1 |:—|<> = (b)r + (b)r — (b)1_|

Sl(uq AOIES Y ALRCE)
SéGﬂﬂw‘< i f1o= o)

< 2[bllparoe (3.11)

we can estimate (3.9) and (3.10),

D 1AL b ) (fohy Y b hE Yol + Y 1AL (W R (f B (e, Bl

LeD(I) LeD(I)

1/2
§2||b||BMod||f||L2<w>[( > <w_1,hL>2<hL,h2”>i)

LeD(I)
1/2
+( > (wl,hL>2<hL,hf>fv) ]

LeD(I)
1/2 1/2
smmeowﬂu%@U:§:<w*Juvqu) +(ﬁ§j<w*JmV@wL) ]
LeD(I) LeD(I)
1/2
s4¢ﬂmmmewmm{:§j<w%mm%wn> | (3.12)

LeD(I)
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Applying Theorem 3.1.1. with f = w™ly;,

> (w T h) (wyp < (w T xg, hr) (w)

LeD(I) LeD
=St bk [w)
Pt IZ]
/Zw xf,hLQXf£|> (x)da
LeD

=[S (w™ XI)HZLZ’(w) < C[w]igﬂw_lXIH%z’(w) = C[w]igw_l(f)-

(3.13)
Combining (3.12) and (3.13) gives us
(3.9) + (3.10) < cl|bll paroalw] agw™ (1) || f 1| 2w) - (3.14)
We can estimate (3.8) using (2.7) and (3.11) as follows.
Z Apb(w™ he) > (f R wlhe b (3.15)
LeD(I JED:JDL
< 3 il ]| Guas)) o)
LeD(I) JeD:JDL
<2lbllmos Y 1w hi)(w, he ) (f) L
LeD(I)
< 20bllmos Y ™ he)(w, he Y(F) aw (X)Lt - (3.16)
LeD
In the last inequality, we can check
1, if LCI
(X1) w1 = #/ w =< W) w (L) <1, if ICL
’ w (L) Jiar 7 N
0, otherwise.
If we show
S i) by V) o) s < [0lagu™ (D20 Ly, (317)
LeD
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then we can finish proving the lemma. To see (3.17), let us assume that for w, v =
w, ap = [(w k) (w, by )| and @ = clw]yg satisfy the embedding condition
(3.1), (3.2), and (3.3). Then, by Theorem 3.1.2. and |\x/|/r2(-1) = w™ (1)/?, we
can see (3.17). The only remaining thing to do is to check the embedding conditions.
We refer to [Pet2] for the proof of the embedding conditions. n

We will also need the Weighted Carleson Embedding Theorem from [NTV], and

some other inequalities for weights.

Theorem 3.1.5 (Weighted Carleson Embedding Theorem). Let {a;} be a non-

negative sequence such that for all dyadic intervals I
> a,<Qui().
JeD(I)
Then for all f € L*(w™")
> SAQUF e
JeD

Theorem 3.1.6 (Wittwer’s sharp version of Buckley’s inequality). There exist a

positive constant C such that for any weight w € AS and dyadic interval I € D,

1 (), = () ) ol
| | Z <w> |]|§C[ ]Ag< >J'

1eD(J) I

We refer to [Wil] for the proof. You can find extensions of Theorem 3.1.5 and
3.1.6 to the doubling positive measure o in [Per2]. One can find the Bellman function

proof of the following three Lemmas in [Be].

Lemma 3.1.7. For all dyadic interval J and all weights w .

1 1 _
07 2 Ml s < ),
1

1€D(J)
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Lemma 3.1.8. Let w be a weight and {az} be a Carleson sequence of nonnegative

numbers. If there exist a constant () > 0 such that

1
VJeD, ¥ § ar <@,
| |IeD(J)

then

VJeD,
1&g, (w

and therefore if w € A9 the for any J € D we have

L Z (w)rar < 4Qw]paw) .

|J| IeD(J)

Lemma 3.1.9. If w € AY then there exists a constant C > 0 such that

wen, o 5 (MY et < Clulag.

‘J’ 1eD(J) <

3.2 Embedding theorems and weighted inequali-

ties in R"

We now state several multi-variable versions of Embedding Theorems and weighted
inequalities which appeared in previous section. In general, once we have a Bellman
function proof for a certain property in R then we can extend a property into R™ with
the same Bellman function. This process is essentially trivial when we use the Haar
system in R™ introduced in Section 2.2, and it allows to do the “induction in scales
argument” at once, instead of once per each j = 1,...,2" — 1, which then introduces
a dimensional constant of order 2" in the estimates. We will present several lemmas
and associated Embedding theorems and weight properties. One can find the proof of
these lemmas and one dimensional analogues of the propositions in [Be| or indicated

references.
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Lemma 3.2.1. The following function

_ f?
B(F, f,u, M) _4A<F— U+M>

is defined on domain ® which is given by
D= {(F,f,u,M) € RﬂF,f,u,M >0 and f2 < Fu, M < u},
and B satisfies the following size and convexity property in 2:
0< B(F, fuyM) <4AF, (3.18)
and for all (F, f,u, M), (F1, f1,u1, My) and (Fy, fo,us, My) € D,

B(FhthhMl)+B(F2,f2,U2,M2) f2

B(F, f,u, M) — 5 > LR (3.19)

where

Fi+F fi+ fo ui 4 us m+M1+M2
2 ’ 2 7 2 ’ 2

(F,f,u,M):( )andmZO.

One can find the proof of Lemma 3.2.1 in [NTV].

Theorem 3.2.2 (Multivariable Version of Weighted Carleson Embedding Theorem).
Let w be a weight and {aj,Q}ij, QeD" j=1,...,2" =1, be a sequence of non-
negative numbers such that for all dyadic cubes Q' € D™ and a positive constant

A>0,
Tl 2 3 aolulh, <A, (320

QED™(Q') J:E;,QCE; g
Then for all positive f € L,

2n—1

Yo > aelfw ) e, < CAlf3, (3:21)

Qepn j=1

holds with some constant C > 0.
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Proof. For any subset of dyadic cube @ € D™ and fixed i = 1,...,2" — 1, let
E)Q/ = <f2>Ei,Q’7 fin' = <fw1/2>Ei,Q” Ui, = <w>Ei,Ql ’
EITQ’ = (f*) g 5 fo' = <fw1/2>E§Q,’ “ﬁQ’ = <w>EfQ, , for k=1,2,

4,Q

and

Mo+ MPp, 1
Z Z ;0 uiQ = i€ 5 L9 + ‘Ez Ql|ai’Q/ uin,

QED™(Q') J:E;j,QCE; o

Mo =

7Q/

S | 2 o 2

where M; 5 = B > Qepn () Zj:Ej’QgEilQ/ aj Ui g and similarly for M7, . Note
i,Q’ ’

that F' = F‘@Ql, f = fi,Q’a uU = U@, M = Mi’Q, Fk = FZCQ/, fk - fiIfQ/, U = UﬁQ/,

and M, = Mi’fQ , for £ = 1,2, belong to the domain ® of the function B defined in

Lemma 3.2.1. Furthermore,

Fi+F fi+fy ui+u m+M1+M2
2 ’ 2 2 ’ 2 ’

(7 g0 = (

so we can use the both size condition (3.18) of B and convexity property (3.19).

For fixed dyadic cube Q', using Ey o = Q', |Elo/| = |E} | = |Eigql/2 as well as
m—+1__ m _

{ELQ,}]Q.:;” Y={El,, B} o} " and the property (3.19), we have

AAIQ(f*) @ = 4A|Erg

<f2>E1,Q’ - 4A‘E1’Q/

Fio

> \El o |B(Fiq figs uig, Mig)

> E¥ o |B(FF k k. MF 2 3.22
Z‘ ro | B(Fig fign wign Mig) +avg fig (3.22)

= Z |E (Fig g wia, Miq) + arg [ (3.23)

SHILS

7=2 k=1

7
= |Ejq | B(
j=4

3
Ffon ffon whon Mig) + > ajo flo (3.24)
=1

3
F}:Q” fj7Q/7 uj7Q/7 MJ’Q/) + Z Oéj’Ql fj27Q/ : (3'25>
=1
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If we iterate this process n — 2 times more, we get:

2m—1 2" —1

2 k k k 2
AP = D Z| Yo | BUFS g fran whon M)+ Y ajar flor
j=1

jgnlkl

Due to our construction of Haar system, for all j = 2771, 2714+ 1 ... 2" —1, and k =

77777

is the set D{L(Q ) of dyadic sub-cubes of Q’ . Thus,

4AIQ'( P > |Q'|B(Fyr, for, uqr, My)

2" —1

> |QUB(Fy. for uq, Mg) + > i fior (3.26)
k=1 j=1
In the inequality (3.26), Q}’s are enumerations of 2" dyadic sub-cubes of Q). Iterating
this procedure and using the fact B > 0 yields that
on—1
> Z ao(fw'’?)jo < CAIQN(f)e
QED™(Q) J=

which completes the proof. O]

The proof of the following Lemma appeared in [Pet2].

Lemma 3.2.3. The following function

B(F7f7w7G7.ng7M7N7K) :Bl(Faf)va)+B2(GagvvaN)+B3(F7f7w7GvgvvaK)a

where
f? g9
By(F, fw,M)=F — ————  By(G,g,v,N) =G — ,
: 5 > o3
f? g9
B3y(F, f,w,G,g,v,K)=inf | F + G — — )
3( f g ) ont) w+c% U+a]X2

is defined on domain ® which is given by

D ={(F, fw,G,g,v,M,N,K) € R} |
0<wv <A, f?<Fuw, ¢°<Go,M < A*w, N < A%, K <A},
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and B satisfies the following size and convexity property in 2 :
0< B(F, f,w,G,g,v,M,N,K) <2(F +G), (3.27)

andfor all (Fa f,w,G,g,v,M, Na K)a (Fi7fi;wiaGiagi7viaMi7NiaKi) € 97 where 1 =

1,2, and for some constant C,

B(F7 f7w7G7g7U7 M7N7 K)

> B(FlaflawlaGlaglaUhMlaNhKl)+B(F27f2aw27G27g27U27M27N2aK2> 4 Cfgr
- 2 Awv '’
(3.28)

where

<F7f7w7G7g7U?M7N7K)
_ Fi+F, fi+fo wi+ws Gi+Gy g1+ g2 v1+ 19
2 ’ 2 2 ’ 2 ’ 2 2
K M+ M, K Ni + N- K+ K
K, . M : K M 2 2>'

" 2 w2 " 2
(3.29)
Theorem 3.2.4 (Multivariable Version of Petermichl’s the Bilinear Embedding The-
orem). Let w and v be weights so that (w)g (w)g < A and {&ij}Q,j be a sequence
of nonnegative numbers such that, for all dyadic cubes Q' € D™ andi=1,...,2" —1,
the three mequalities below holds with some constant A > 0,

Z Z _%Q < A<U>Ei7Q/

w .
QGD”(Q’) 7:EjqCFE; o VB

\EzQ| XY <A,

QeD™(Q') j:E;qCFE; o ()55
\E | > >, <A
LRl QeDn (@) §:E;,qCE,; o

Then for all f € L.(w) and g € L. (v)

2n—1
D> el e ew@) e 00 < CAIFllz, w9l 0
QeD(Q’) j=1

holds with some constant C > 0.
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Proof. For any dyadic cube Q' € D", and fixed i = 1,...,2" — 1, let

lQ’ - <f w) ,LQM fi,Q’ - <fw>Ein/7 wi,Q’ - <w>Ein/7
Gig = <g2v>E' Q0 9@ = <gv>Ei,Q’7 Vi, = <U>Ei,Q/7

zQ’ = <f w) o’ fi]?Q’ = <fw>Ei’jQ,v wf,@/ = <w>EfQ,
Gz Q= <9 U>E§Q,a gf,Q' = <9”>E§Q,, UEQ’ = <U>E§Q,a

for k =1,2. Also we deﬁne, for all dyadic cube ' € D™ and fixed i =1,...,2" — 1,

0
Mig = ’ Z Z <v>jQ Kgjq,
Eia'| gcomiar) jir, 08, o V1 Fia
a.
Vo XY ik,
Eial ocomiar) sm, 0T, o (W10
Kig = > > e

|E Q|
“Qepn(Q) :E;,oCE; o
Kig = ‘25;%;{" , and similarly for MF ok NFE ‘o and K . Then all variables

(F, f,w,G,g,v,M,N,K) = (Fiq, fiqr, Wi, Gio» 95,7, Vi s iy, Niyrs K1),

k k k k k k k k
(Fk,fk,wk,Gk,gk,Uk,Mk,Nk,Kk) = (F;,Q/’ i,Q’?wi,QHGi,Qng’,Q’vvi,Q’:M Q/7Ni,QI’KZ',Q/)7

for £ = 1,2, belong to the domain ®© of the function B defined in Lemma 3.2.3 and
satisfy (3.29) with £ = kg, , . Then, by the properties (3.27) and (3.28), we have

2| Q({fw)e + (g"v)e) = 2| Erg [({(ffw) s, o + (970)r, o)

> | By |B(Fres fres wies Gres gren vies Mg Mg, Kigr)
2
k k
Z 1Q/|B FlQ’ le/ le/ GlQ/ ng/ UlQ' MlQ’ NlQ/ KIQ/)

k=1
C AB, o

A <w>ElyQ/ <U>E1,Q/
Iterating this procedure similar with the proof of Theorem 3.2.2 yields that

+ (fw)p, o {9v)E, 4 -

2n—1
Z Z 1<Q/> (fw)p, o (90)E, o < 21 Q|((fPw)e + (g*0)q) -
QED"(Q ) j=1 B o \Y/E; o
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Then, we can conclude that

2" —1

> Z Z’QI (fw)E, 4 (90)E, o < CAUIf T2, ) + 191172, ) (3.30)

QeD"(Q) j=1 B (0)E, o

allzz, Sz, (w
f— | ||LR()fandg: | HLR()g
£ 1122, (w) 9l 2, )

yields the desired result. O

Finally, letting

2 —-1/2

Changing o, f and g by a;q(v)E, o (W)E, | Ejql, fw=Y? and gv

tively in Theorem 3.2.4, we can get the following Corollary.

respec-

Corollary 3.2.5 (Multivariable Version of the Bilinear Embedding Theorem). Let w
and v be weights so that (w)qg (w)gr < A and {aj,Q}QJ be a sequence of nonnegative
numbers such that, for all dyadic cubes Q' € D™ and i = 1,...,2" — 1, the three

Y

inequalities below holds with some constant A > 0,

> Y. o)mlEiel < A(v)g,,,

QeD(Q') j:E;,QCE; o

Z Z aj7Q<w>Ej,Q|Ej7Q‘ < A<w>Ei,Q/

QeD(Q') j:E;,QCE; o

Z Z aj7Q<w>Ej,Q <U>E.7,Q’Ej7Q’ <A.

QeD™(Q') j:Ej,QCE; o

zQ’

zQ’

zQ’

Then for all f,g € L3,

2" -1

S > alfw e, o (99 B, 0| Biol < CAllf Iz, 9z,
QeDn(Q') j=1

holds with some constant C > 0.

Lemma 3.2.6. Let ® be given by those (u,v,1) € R? such that u,v > 0,uv > 1 and
0 <I1<1. Then the function

1

B(u,v,1) == 05D
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is defined on ®, 0 < B(z) < u for all x = (u,v,l) € © and satisfies the following

differential inequalities on ®:

OB 1
TR (3.31)
and
— (du, dv,dl)d* B(u,v,1)(du, dv,dl)" >0, (3.32)

where d>B(u,v,1) denotes the Hessian matriz of the function B evaluated at (u,v,1) .
Moreover, condition (3.31) and (3.32) imply the following convexity condition. For
alx,xj’s€®, j=1,2, such that x — %(xl +x9) = (0,0,0),

B(z) — % > Blay) > ivﬁ. (3.33)

One can find the proof of Lemma 3.2.6 in [Be].

1

Proposition 3.2.7. Let w be a weight, so that w™" is also a weight. Let a;q be a

Carleson sequence of nonnegative numbers i.e., there is a constant A > 0 such that,

forall@Q € D" andi=1,...,2" — 1,

‘E 1, > > <A (3.34)
R QeDn(Q') J:EjoCE,; o

Then, for all@Q' € D* andi=1,...,2" — 1,

>y S <aAw)s, (3.35)

1
w E.
QeD™(Q') j:E; qCE; g < > 7,Q

zQ’

and if w € A then for any Q' € D™ and i =1,...,2" — 1, we have

> > <w>Ej,Qaj,Q§4‘22("*1)A[ Jag(w)s, o (3.36)

QED™(Q') J:E;j,QCE; g

\Ez od
Furthermore, if w € AL then for any Q' € D" and i =1,...,2" ' we have

> Y (e < 4Alwlap(w)p, - (3.37)

2] QED(Q") j:E;,qCE; o
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Proof. Fix a dyadic cube Q" and i, Set u; o = (w)g, ,,, vigr = (w )5, and
liq = A|E I Z Z Q5.Q-
1,0’ QeD(Q') j:E QCE,Q/
For each dyadic cube @', k and k = 1,2, let uf, = <w>Ef,Q/’ vfg = (w ) g and

.Q
> X e

QED™(Q') j:E; QCEkQ

k
llQ/ -

| fo

Then, it is easy to see (u;qr, vigr,lio), (U, vF,,1F,) € D by Holder’s inequality
Q7 Yi,Q7 Yi,Q 1,Q" Yi,Q" "i,Q

and (3.34). Moreover,
1 2
l. L li7Ql + li,Q/ n ai,Q’
/L’Q 2 A °

Then, by using the size condition of B(z) in Lemma 3.2.6, we have

| 0Q/| Ej,.q! > ‘Eij’ B(ujo,Q’?'Ujo,Q”ljo,Q’)
2
k k k k Qo,Q’
Z Z |E]~O,Q1|B(uj0’@,, UJO,Q” le’Q/) + m (338)
k=1 70,Q
2m 2n—1 a.
/ JO Q'
> ) 1@l Blugy, vay:lay) + 14 Z - (3.39)
k=1 j=jo Ejo.@

We use the convexity condition (3.32) for the inequality (3.38). We can get the
inequality (3.39) by repeating the process (3.38) several times. Iterating this process
and using the fact that B > 0 we have

@5,Q
W 2 4A‘EZQ | Z Z w g,

QeD(Q') j:E;,oCE; Q! 3,Q

which completes the proof of (3.35).Observe that in the case w € A% then
1 <U}>Eij
(W~ [wlag

Now (3.37) follows from (3.35). Observe if w € A2 then

wlay > (wolw ) > ('%f) ()£, (05, o = 220D () g, (0,

Thus, we can have (3.36) from (3.37). O
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We refer to [Be] for the following lemma.

Lemma 3.2.8. The following function

1
B —v——
(w,0) =v -

1s defined on domain ® which is given by
D = {(u,v) € R*| u,v >0 and uv > 1},
and B satisfies the following size and differential condition in © :
0 < B(u,v) <w, (3.40)
and
~ (du, dv)d® B(u, v)(du, dv)" = %|du|2. (3.41)

Furthermore, (3.41) implies the following convexity property. For all (u,v), (uy,v1)
and (ug,v2) € D, where (u,v) = ((u1,u2)/2, (v1,v2)/2):

B(U17U1)+B(u2,v2) 1

B(u,v) — 5 > C’E(ul — uy)?. (3.42)

The following proposition includes the multidimensional analogues to correspond-

ing one-dimensional results in [Pet2] for both regular and anisotropic cases.

Proposition 3.2.9. There exist a positive constant C' so that for all weight w and

Y and for all dyadic cubes Q' € D" andi=1,...,2" — 1:

<w>E1
oy oy !

— (W) g )
]18~U>3 22 |Ejq| < Clw™)g,
QED" Q') 5:B;,qCE; o Eiq

(3.43)

i,Q'

and, if w € A%, the following inequality holds for all dyadic cubes Q' € D" and
1=1,...,2" —1:

(W)t — (w) g2 ?
) Z ( J{fu)E.Q m) |Bial(w™)g,q

QED™(Q') J:E;,QCE; o

< O Vw]yg(w ™) e

ZQ’

(3.44)

i,Q'
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Moreover, if w € AR, the following inequality holds for all dyadic cubes Q) € D"
andi=1,..,2" —1:

DD <<w>E?<’fu>_E,<w>EiQ> Eiql(w )50 < Clulapiw )5, -

Eiq/| QeD™M(Q') j:E;,qCE; o

Proof. Due to the construction of E; ¢, it is enough to show when ¢ = 1. For any

subset of dyadic cube )" € D™ and fixed j, Ej o, set

Ui = (W) e, o Vg = (W g, o U g = <w>E;.7Q, and v} o = <w_1>E]i.7Q, (3.46)

for i = 1,2. By Hélder’s inequality (vj ¢, uj ) and (v§7Q,, u;'-,Q,) belong to ® which is
defined in Lemma (3.2.8), for all ¢, j and @’ . Then, by the construction of our Haar

functions,
‘ELQI <?,U_1>E1’Q, Z |E17QI|B(U,17Q/,’U17Q/) (347)
. |Ere | ((w)g |, — (w) g2 )
= Z|E1 o|Bluy g, vig) +C < >§ =
ELQ/
(3.48)
Erg|((w)g = (w)g2 )"
_Z‘ Q/|B o UJQ/)+C| 1Q{( Bl o ElQ)
, W),

Using the size condition (3.40) and the convexity property (3.42) allow the inequal-
ities (3.47) and (3.48) respectively. Iterating this process n — 1 times more, we get

on+1-1 on_q ‘E /|(<w> . <w> ) )2
_ 7,Q El E?2_,
|E1,Q/ |< E1 o = Z | U,]’Ql, ,U]',Q’) +C Z <U}J>§ 7,Q ]
j=2" j=1 E; o
Due to our construction of Haar system, for all j = 27, 2" 4+ 1, ..., 2! Lor|’s

are mutually disjoint and ‘Eij/

sub-cubes of @', D} (Q’) . Thus,

-----

2n 21 B o | ((w) - () / 2
}El,Q’|<w71>E1 o’ > Z |Q2‘B(UQ;€,UQ;€) +C Z ‘ ’ ( EJ@ Eia ) ’
Y k=1 j=1 <w>Ej’Q,
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where @}.’s are enumerations of 2" dyadic sub-cubes of @)’. Iterating this procedure

and using fact B > 0 yield that

|Evgr

B

)

21 (<w>El , (w) g2 /)2
<w—1>E ) Z C 7,Q 7,Q
- QGDZ”(Q’) le (W)

7,Q’

which completes the proof of (3.43). The similar observations in the end of the proof
of Proposition 3.2.9 yields (3.44) and (3.45). O

The next lemma appeared in [Be].

Lemma 3.2.10. The following function
B(u,v) = v/uv
is defined on domain ® which is given by
D = {(u,v) € Rz‘u,v >0 and wv > 1},

and B satisfies the following size and differential condition in ®:

0 < B(u,v) < vuwv, (3.49)
and
1
— (du, dv) d* B(u,v)(du, dv)" > §v1/4u’7/4|du|2. (3.50)

Furthermore, (3.50) implies the following convexity property. For all (u,v), (u1,v1)
and (up,v2) € D, where (u,v) = ((u1,v1)/2, (vi,v2)/2) :

B(uq,v1) + B(ug, vs)
2

B(u,v) — > Cot*u= " (uy — ug)?. (3.51)

The following generalizes the result that appeared in [Be] to the multidimensional

regular and anisotropic cases.
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Proposition 3.2.11. There exist a positive constant C so that for all weight w and

w™t and for all dyadic cubes Q' € D" andi=1,...,.2" — 1 :

<w>E},Q 1/4 —1\1/4
‘EzQ| Z Z ( <w>E;Q >‘ | REY

QED™(Q') §iF;,oCFE; o1

< Clw)g, (w)g, (3.52)
and, if w € A, the following inequality holds for all dyadic cubes Q' € D™ :
(w) g2
J,Q -1
e T (M i,
QED™Q) JiE;,QCE; o ne
< C22 D [w] 4a . (3.53)

Moreover, if w € AR, the following inequality holds for all dyadic cubes Q' € D" :

Bt D o2 (e ) IBelhnate s <l

QeD™(Q') j:F5.CFy o
(3.54)

Proof. Similarly with Proposition 3.2.9, we only prove for + = 1. For fixed dyadic
cube ', using the size condition (3.49), convexity property (3.51) and notation
(3.46),

(u1,q,v1,91)

}El,Q’|«4/U1,Q'U1,Q' Z |E1,Q/ B

2 (w e
k k k AR et o1 — ?
> kz | Bl Buignvig) +C (w) ! (<w>EiQ/ <w>Ein)
— Ey o
3 (W™ )k, o 2
=D _|Bie|Bluvie) + C— 7 ((w)s , — (we2 )
. (w),
= E; o
on 2 — 1 —1
w >E-,Q/ 2
> | Ri| Blugy,vg,) +C ) W(<W>E;,Ql —(whge,,)"
k=1 j=1 Ej,Q’

(3.55)
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Similarly with Proposition 3.2.9, for the inequality (3.55), we iterate the process n—1
times and use the notation @)}’s for numbering of 2" sub-cubes of (). We can finish
the proof by iterating this progression and using the fact B > 0. In other words, we

get:

<w*1>”4

</< >E1 Q’<w By o Z Z Z_ JQ/ < >7/4]Q/ (< >E]1',Q’ N <w>EJQQ’)2.

3,Q’

|Evor

This proves (3.52). If w € A%, then (w)E].,Q(w_1>Ej’Q < [w]yr for all @ € D" and
j =1,...,2" — 1. Thus, (3.52) yields immediately (3.54). Since for all w € A%,

(W) g, o (W) g, o < 220 V[w] 4a, we can easily get (3.53) from (3.52). O

The similar version of Bellman function with the following lemma was appeared

in [Be].

Lemma 3.2.12. The following function

Blu,v) = u<2Q _20 %ln(uv))

uv

is defined on domain ® which is given by
D= {(u,v) €R2|u,v>0 and 1 Suvﬁ@},
and B satisfies the following size and differential condition in ®:
0 < B(u,v) < 2Qu, (3.56)
and
2(du)?

3u
Furthermore, (3.57) implies the following convezity property. For all (u,v), (u1+ usg)

— (du, dv) d* B(u, v)(du, dv)" > (3.57)

and (us 4+ v2) € D, where (u,v) = ((u1,v1)/2, (u2,v2)/2), there is a constant C such

that
B(uy,v1) + B(ug, vs)

B(u,v) — )

> = (uy — ). (3.58)

=1Q
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Proof. Since uv > 0 on ®, the size condition (3.56) holds clearly. We also check
easily the differential condition (3.57) as follows.

—(du, dv) d*B(u,v)(du, dv)" = —i(du) —2 0°B dudv — —82 (dv)?
’ ' ’ ou? Oudv ov?
4 8 4Q  du
=3 —(du)? + —dudv + <—3 - —31}2> (dv)?

(\/;dujt\/g) (——i—?)(dvf

Using the domain of B, we can easily see that

1Q _dudw

vd o v? v3 v
thus discarding non-negative terms provide the differential condition (3.57). Set
Au = (u; —uz)/2 and (Av = (v1—v2)/2, then u; = u+Au, ug = u—Au, v, = v+Av
and vy = v—Awv . Note that |[u£sAu| < |u|+|Au| < 2u, for any number s € [0, 1] . We
now using Taylor’s theorem and the differential condition (3.57) to see the convexity
condition (3.58):

B(u + Au,v + Av) — B(u — Au,v — Au)
2

= B(u,v) — %(B(u,v) + VB(u,v)(Au, Av)*

B(u,v) —

+ / (1= 5) (A, Av) d2B(u + 52w, 0+ sA0)(Au, Av)ds

+ Bo(u, v) + VB (u, v)(—Au, —Av)!

+ /0 1(1 — 8) (—Au, —Av) @B u — sAu, v — sAv)(—Au, —Av)tds)
N / (-2, / (- s)(dwp?

3(u + sAu) 3(u+ sAu)
(Au)? [ (Au)® (w1 — up)?
= 6u /0(1_8)d32 120 48u

]

We are now ready to prove the sharp version of Buckley’s inequality in a multivari-

able setting. The single variable version of the following proposition first appeared
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n [Wil]. In [Per2], one can also find a Bellman function proof of a similar result

which can be extended to the doubling measure case.

Proposition 3.2.13 (Wittwer’s sharp version of Buckley’s inequality). There exist
a positive constant C' so that for all weight w € A4 and all dyadic cubes Q' € D™ and
i=1,..,2"—1:

(Wyg  — (whge \?
Z Z ( 7.Q LQ) ‘Ej,Q|<w>Ej,Q < CQQ(N—l)[w]Ag <w>Ez‘,Q’ 5

QeD”(Q’) JE;,QCE; (W), q

(3.59)
and for all weight w € AZ and all dyadic cubes Q' € D™ andi=1,....,2" —1:

22 <<w>EiQ_.<w>E?’Q) [Bial(ws,q < Clwlag(w)e,q

QED"(Q’) 7:E;,QCE;

(3.60)

Proof. we only prove only for ¢ = 1. For any FE; ¢ which is non-empty unions from

D"(Q) and [ = 1,2, set

UjQ = <w>Ej’Q/7U]}Q' = <w71>Ej7Q/7u§',Q’ = <w>E;’Q, and U;’,Q’ = <w71>E;.7Q, :

By Hélder’s inequality and A§ condition, (u,q/,vjq) and (u} o, %) belong to the
domain D = {(u,v) € R*[u,v > 0and 1 < uv < 22" D]w]yy} of the function B
defined in Lemma 3.2.12. Thus, by using the size condition (3.56) and convexity
property (3.58), we have

2 . 22(n—1) [

UJ>E1’Q, Z }EI,Q’|B(u1,Q’;U1,Q’)
2
Z | B} o

Applying convexity property (3.58) n — 1 times more, we get

w]Ag‘ELQ’ (

(w)p, — <w>E§Q,)2

<w>E1’QI

B(u Q,,vll o) +C

on 2n—1 (<w>E1

VB, o = Z|Rk\B ug,vg) +C Y ]?7/1)>

7j=1

2 . 22(77/*1) [w]Ag‘ELQ/
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Since B is positive iterating the above process will yield that

— ( Ve2,)’

EIQ’ZC Z Z -

QeDn(Q') j= Ejq

2. 22("71)[W]A3‘E1,Q’

This proves (3.59). The inequality (3.60) can be seen by using the domain ® =
{(w,v) e R?|u,v >0 and 1 <wuv < [wyr}- O
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Commutator of the Hilbert

transform

In this chapter, we will show our result about the commutator of the Hilbert trans-

form:
16, H] || 12wy < ClIbllBrrolw] i, 1 F 1l 2w) - (4.1)

Due to (2.17), we will prove (4.1) with the dyadic shift operator S instead of the

Hilbert transform H . In the decomposition
b, S] = [my, ST+ [y, S] + [As, 5],
both 7, and S obey linear bounds. Therefore, we have
176, S] 22 (wy—L2(w) + 75 S 22 (w)—L2(w) < CHbHBMOd[w]ig :
To finish the proof of (4.1), it suffices to show that
[ A, STl 2wy < CHbHBMOd[wExg'

In fact, we will get a better result on this term. In Section 4.1 we will start our

discussion on how to find the linear bound for the term [A;, S|, most of which will
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be very similar to calculations performed in [Pet2]. In Section 4.2 we will finish the
linear estimate for the term [\;, S|, and prove Theorem 2.3.2. In Section 4.3 we prove
the linear bound for 7;.S'. In Section 4.4 we reduce the proof of the linear bound for
Sty to verifying three embedding conditions, two are proved in this section, the third

is proved in Section 4.5 using a Bellman function argument.

4.1 Linear bound for [)\;, S] part 1

In general, when we analyse commutator operators, a subtle cancelation delivers the
result one wants to find. In the analysis of the commutator [b, S], the part [y, S]

will allow for certain cancelation. First, let us rewrite [, S].

(Ao, S](f) = (S f) — S(Auf)
= ST (S b =Y of k) (. — hy,)

1eD JeD

_ZZ fh‘] J_ _he]+7h[>h]
IeD JeD
= SOl by (o = h).

JeD IeD

From the orthogonality of Haar system, both double sums collapse to just one,

Do, SIF) =Y ) (foha)hy — Z<b>J+<f, ha)hy,

JeD JED
- Z =(f ha)(hy_ = hy,)
JeD
=S O Oy =3 OO,
JjeD JeD
= S A, + B,
JeD

93



Chapter 4. Commutator of the Hilbert transform

recall the notation Ay;b = ((b);, — (b); )/2. To find the L?(w) operator norm of

[Ap, S], it is enough to deal with the linear operator

=Y A (f b

IeD
Recall (3.11) that if b € BMO?, |Azb| < ||bllsaros - We shall state the weighted

operator norm of S, as a Theorem and give a detailed proof. Theorem 1.0.2 is a
direct consequence of the following Theorem. We will prove the following Theorem

by the technique used in [Pet2].

Theorem 4.1.1. There exists a constant C' > 0, such that

196/l 22 (w)— 22wy < Clw] agl[bll Brroa (4.2)

for allb € BMO® and w € AS for all f € L*(w).

Inequality (4.2) is equivalent to the following inequality for any positive functions
fel*)(w™?) and g € L*(w),
(St £ 9wl < Clwlaglbll saroa [ fll 2w lgll 22wy (4.3)
where Sy ,-1(f) = Sp(w™'f), since f € L*(w™') if and only if w™'f € L*(w).
Expanding f and g in the disbalanced Haar systems respectively for L?*(w™!) and
L*(w) yields for (4.3),

|<Sb7w71f, g>w| = /Sb,wl ( Z(f’ hffﬂ)w,lh}"*l) ( Z<g’ hij’>wh1j})wd$
IeD JeD
=D (R e (g B / WSyt (Y Vwdz
IeD JeD
= 1D b Y (9 B (Shw DY B (4.4)
IeD JeD

In (4.4),

(Spamt B 1Y), <ZALb hp,w 'hy" >hL*7h§}>

LeD

w

= AL (b, by Y (- B )

LeD
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Since (hg,h%¥ " )y-1 # 0, only when L C I and (hy-, h%), # 0 only when L_ C .J,
then we have non-zero terms if I C .J or J C I in the sum of (4.4). Thus we can split
the sum into four parts, > ,_;, >.,_;, > jc;, and > ,-; . Let us now introduce

the truncated shift operator

Sy(f) = Z Arb(f, he)he_,

LeD(I)

and its composition with multiplication by w1,

St (f) = Z Apb(w™ f,hp)hr_ .

LeD(I)

We will see that the weighted norm |[|S} 1 Xr|/r2(w), proved in Chapter 3, plays
a main role in our estimate for (S} ,-1 h}”_l, hY). . More specifically, we proved in

Lemma 3.1.4 that
155 -1 X1l 22wy < cllbll paro aw] ggw™ (1)'/? (4.5)

for all intervals I and weights w € Ag.

4.2 Linear bound for [\, S| part II

We will continue to estimate the sum (4.4) in four parts.

421 Y,

For this case, it is sufficient to show that
-1
|<Sb,w*1h1ff) 7h1JU>w| < CHbHBMOd[w]Aga
because then one can use Cauchy-Schwarz inequality and Plancherel in the part of

(4.4) corresponding Y ,_; to get estimate (4.3). Since (hy, h}), could be non-zero
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only if K C I,
(Spath? " )y (<ZALb (w B ) ,hJ> |
LeD
= | 3 A e (e B
LeD

has non-zero term only when L C J. Thus

(St B L 1| :‘ S ALb<h}9’l,hL>w71(hL7,hf,”)w‘
LeD(J)

S Abh ,hL>w71(hL7,h}”>w‘+‘ S A By (b B

LeD(J) LeD(J#)
1A (RS b (B Bl
w™ ! w w1 w
< ‘(Sl;],wflhj vhJ>w|+|Ajb<hj 7hj>w‘1<hj,>hJ>w’>

in the second equality, J® denotes the sibling of J, so for all L C J*, (hy_,hY), =0.
Then, by (2.4),

DGOSRy )l < V2Ibparoalulyy (4.6)
So for the remaining part:
(St Y 1l = IR (D)(SHum1 X0 B Yl < elBllpasoafw] ag (4.7)

here the last inequality uses Cauchy-Schwarz inequality, (2.6), and Lemma 3.1.4,
that is estimate (4.5).

422 Y,

In this case, the argument is similar to the argument in Section 4.2.1. We have

[(Spaw B Rl = 1> ALY b )uer (b DY)l

LeD
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here we have zero summands, unless L. C J. Thus,

[(Spaw1hY hY),| = |<S"w71h1;‘1,h3“>wr
(St b RSyl 4 (S b B Yl 4+ (A b (RS By (R, B )l

IN

< C||b||BM0d[w]Ag-

In the last inequality, we use same arguments as in (4.7) for the first two terms, and

(2.5) for the last term.

4.2.3 ng and }_;;

To obtain our desired results, we need to understand the supports of Sy(w='h? ™)

and S;(whY) . Since

Sp(why) =Y A (w Y hp)hp = Apb (Y hy)e-rhy_

LeD LeD

and <h}”_1, hr)w-1 can be non-zero only when L C I, therefore Sb(w’lh}”_l) is sup-

ported by I. Also,

(Sp(w™ hY ), %) = (WY, S (whY) )1 (4.8)
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yield that Sy (why) = >, .p Arb{why, hy_)hy is supported by J . Let us now con-
sider the sum J C 1. Then

>R w1 (g B oS b B )

I1J:JCI

= | > (R e (g B )by Sy (wh))
IJ:JCI

= DO Y (g Bk (D) (b1 X gy B Y (4.9)
JED .1oJ

= 1> ) g (9 DY) (S 1 X gy B Vs (4.10)
JeD

1/2
< ol ( U (Sns 2) (111)

JeD

here (4.8) and the fact that S (wh?) is supported by .J are used for equality (4.9),
and (4.10) uses (2.7) and (4.8). If we show that
D% (o1 X W% < ellblBaroalwlgll FllZ2go-1y (4.12)
JED

then we have

>R (g B (S B B w| < Clbllaroalw] agll £ 113 ) 91l 2w -
LJ:JCI

To prove the inequality (4.12), we apply Theorem 3.1.5. The embedding condition

becomes

Y (Sowrrxg b < elbllBaoalwlisw™ (1)

JeDJCI
after shifting the indices. Since (hy_,hY), = 0 unless L C J , and we will sum over

J such that I 2 J , We can write

(b1 X Py = > Arb(w ™ x g hi) (b h)w =Y Arb(w X hi)(ho_ hY)w

LeD LeD(J)
= > Aub{w  xe he) (e S = (Shxn B
LeD()
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Thus,

> (S X hNE =Y (Sh Xt ) < NSh X 2w -

JeD:JCI JeD:JCI

last inequality due to (2.2). By Lemma 3.1.4, the embedding condition holds. Hence
we are done for the sum J C I. The part > ;cy is similar to ) -, . One uses that

Sy(w™'h¥"") is supported by I and Theorem 3.1.5.

4.2.4 Proof of Theorem 2.3.2

To break [b, S] into three parts, as in (2.20), we assumed that b € BMO? is compactly
supported. However, we need to replace such a b with a general BMO¢ function.
In order to pass from a compactly supported b to general b € BMO?, we need the

following lemma which is suggested in [Ga].

Lemma 4.2.1. Suppose ¢ € BMO . Let I be the interval concentric with I having
length |I| = 3|I|. Then there is ¢ € BMO such that ¥ = ¢ on I, ¥ =0 on R\ T

and ||| o < |9l Bmo -

Proof. Without loss of generality, we assume (¢); = 0. Write I = J,—, J, where
dist(J,,0I) = |J,|, as in following figure.

|
I

~ 9

Then Jy is the middle third of I. For n > 0, let K,, be the reflection of J,, across the
nearest endpoint of I and set
o(x), if zel
V(@) =13 (@), if €K,

0, otherwise.
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This construction of v satisfies Lemma 4.2.1.

]

By Theorem 4.1.1, Corollary 1.0.2, Theorem 2.4.1, Lemma 4.2.1 and using the

fact ||mp|| = ||7;]|, we can prove Theorem 2.3.2.
Proof of Theorem 2.3.2. For any compactly supported b € BMO ,
1B, Hl 22)— 2y < C'sUp (116, S| 20— 22(0)
< Csp (Il1m S g2(wy- 22000 + 175 5 Yot 120
+ 1, S M r2w)—22)
< C(4lmoll r2wy—12(w) Sup 1S [l 22w~ L2(w) + Clw]a, [1Bll aro )

<Clwl4, bl paro -

For fixed b, we consider the sequence of intervals I, = [—k, k] and the sequence of
BMO functions b, which are constructed as in Lemma 4.2.1. Then, there is a con-
stant ¢, which does not depend on k, such that ||bx||sro < ¢||b||Baro - Furthermore,

there is a uniform constant C' such that
11w, H|l L2 w)—£2(w) < Clw]%, 6]l saro - (4.13)

Therefore, for some subsequence of integers k; and f € L*(w), [by,, H](f) converges
to [b, H](f) almost everywhere. Letting j — oo and using Fatou’s lemma, we deduce

that (4.13) holds for all b € BMO. O

4.3 Linear bound for 7;5

It might be useful to know what is the adjoint operator of S. Let us define

sgn(l) .= +1, if [ = I
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Then, for any function f,g € L?,

(Sf.g) = > (f.h){g hs)(ha = b, D)

= IEZDU, hi){g,hi ) — ;U, hi)lg, hr, )
= IEZDU: ha) (sen(1-){g, hi_) + sen(L4){g, hr,)
=3 sen(D) g, )

= (F s lo. )ty ) = (7.5°9).

Now, we see the adjoint operator of dyadic shift operator S is

= S sgn(1)(f, hidhy ()

1D

In particular we see that S*h; = sgn(J)h ;. The following lemma provides the bound

we are looking for the term ;5.
Lemma 4.3.1. Let w € AY and b € BMO?. Then, there exists C' so that

175 S| 22 (w)— 22wy < Clw]aglbll Baroe -

Proof. In order to prove Lemma 4.3.1 it is enough to show that for any positive

square integrable function f, g

(my S(fw™V?), guw'?) < Clw] aglbll srsoall fllz2llglz= (4.14)

Using the system of functions { H{ };ep defined in (2.8), we can rewrite the left hand
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side of (4.14)

(S (fw™?), guw' %) = (S(fw™"2), m(gu'’?))
= " (gw' ) (b, h)(S(fw V), )

I€D
= Z(gwl/2>1_<b7 hr) Sgn([)(fw_lﬂ, hy)
I€D
o1
= sgn 1/2 (b,h ><fw71/2,H7:” >
; ! I \/m
3 s gw! ) (b ) Fu 2 AT ) = (415)

1
1eD au

Our claim is that both sums in (4.15) are bounded by [w] ¢[|b[| prroall ]l z2lgllz2 , 1-e.

1

S sen(1)(gw'?) (b, hy) (fw™V2 HY ) —=
IeD ][‘

< Clwlagllbllzrroall fllz2llgll >

(4.16)

and

> sgu(D) (g ) (b, hr) (fo 2, AV )

1
I N
IeD \/|]|

< Clwlagllbllzyoall fllz2llgl L2

(4.17)
First let us verify the bound for (4.16). Using Cauchy-Schwarz inequality,
- 1
S sen(1)(gw'?) (b, hy)(fw ™2 HY ™) —=
= 1]
1/2 1 L2
< (Z<gw1/2> b)) (X e )
1€D e HI(w™);
1/2
<l (Sl 0w ) (@18
1€D
Thus, for (4.16), it is enough to show that
> {gw b, b (w ™) < CluliglbllEroall9llz: (4.19)

1€D
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It is clear that 2(w); > (w);, thus

> (gw' )30, k) (w ™y =Y (gw' )7, k) w ™) w) r{w)7 !

IeD IeD
< 2wl Y (gw'?) b, hr)*(w); "
I€D
If we show for all J € D,
1 _ 1
7l > b)) (w)f = 7l D (b ) (w)r < [wlagllbllEaoa(w)s s (4.20)
IeD(J) 1eD(J)

then by Weighted Carleson Embedding Theorem 3.1.5 with w instead of w™! , we will
have (4.19). Since b € BMO®, {{(b, h;)?}1ep is a Carleson sequence with constant
16]1% 704 that is
1
i > b.h)* < bllaoa-
IeD(J)
Applying Lemma 3.1.8 with oy = (b, h;) we have inequality (4.20). We now concen-

trate on the estimate (4.17), we can estimate the left hand side of (4.17) as follows.

1 1
S sgu(I)(guw2) (b, hr)( fu 2, AY )

IeD ! \/ﬁ
5™ s ) ) V1

1eD

< Z gw1/2 |(b, hp)| <fw_1/2>f ‘A}U_I| |j|

1eD

<23 (gw'); [(b, hr)| (fuw /) ;| A /|

1eD

=25 (g2 (100 b )|+ (b b)) (fu /) A V.

1eD

By Bilinear Embedding Theorem (Corollary 3.1.3 with v = w™1!), inequality (4.17)
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holds provided the following three inequalities hold,

vJeD, 7l | Z (1€, )+ 1B e DAY W™ r(w).

< C[|bll prroa [w™ ] ag s (4.21)
V.JeD, |J| D () [+ [0, e M) AT VT (w ™)y
IeD(J)
< ClIbll paroe [w™ ]Ad< N, (4.22)
VJeD, |J| > (b )+ 10, b)) AT VI w) s
IeD(J)
< C[|bll paroa [w™ ] ag(w).s - (4.23)

For (4.21), by Cauchy-Schwarz inequality

‘ , Z (10 )| + 16y hr ) 1AY [/ (w0 ™)

IeD(J

. . 1/2
< (g1 2 (0hi+ o)) >,<w>,)

IeD(J)
1 . 1/2
< (m 3 (ay )2m<w_1>1<w>1) |
IeD(J)
Since
> (b by )| + (b, ))? < 3> (b h)?, (4.24)
IeD IeD
1
Z (b, hp ) 4 [(b, b, Y) 2 (w™ ) p(w) < C[w’l]Agm (b, hr)?
eD(J IeD(J)

< Clw™ L aglbl 04

and by Lemma 3.1.9,

ﬁ S (AP () < C Yy

1eD(J)
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Thus embedding condition (4.21) holds. For (4.22), by Cauchy-Schwarz inequality
and (4.24) we have

2 e e ) 145 | TG,
1€D(J)
2/,,—1 2 1 w—12 -1 is
<c(5 PIZEE ) (|J|I§)< PP )

By Theorem 3.1.6,

Similarly with (4.20), we have

LS 2w < o)y

1150

To finish, we must estimate (4.23). In a similar way with (4.22), we need to estimate

}, > (b ) w)y " ; Z( PRI (w)y 1/2.
171 ]

IeD(J) IeD(J

1

By Lemma 3.1.7, applied to w™" instead of w, we have

1 o119 T w12 Sy -1
m Z (A7 )| [{w)r < [w ]AgI_J! Z (A7 ) [{w™ )7

1€D(J) 1€D(J)

= =

IeD(J

< Clw™ ag(w).s -

This completes the proof of Lemma 4.3.1. O]

Due to the almost self adjoint property of the Hilbert transform, a certain bound
for my H immediately returns the same bound for Hm,. However we have to prove

the boundedness of S, independently because S is not self adjoint.
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4.4 Linear bound for Sm,

Lemma 4.4.1. Let w € AY and b € BMO®. Then, there exists C' so that

157l L2 (w)—L2(w) < Clw] 4a|[bll Baroa -

Proof. We are going to prove Lemma 4.4.1 by showing

(Sm(w™'f), 9w < Clw]agllbll paroall fllzz2w—n)llgll 2wy

for any positive function f, g € L?. Since

we have

(Smy(f), hr) = sen(I)(my(f), hy) = sen()(f);{b; hy) ,

Smo(f) =Y sen(D){f) (b, hi)hr .

1eD

By expanding g in the disbalanced Haar system for L*(w),

(Smo(w ™ f), ghw = D (™ f) (b hp)sgn(1) (hr, g

I1eD

=3 Tsen(D)(w ) i) s (0.2 (g B DY)

IeD JeD

(4.25)

Since (hy, h'¥),, could be non zero only if J D I, we can split above sum into three

parts,

and

> sen(D) (W) ()10 hi) g, b s, B o,

> sen(D) (W) (f) 10 hi) g, kY s, B,

>, ZAsgn(Iﬂw_l)f(f)f,wﬂ(b7 hi) (9, By )w (B, B -
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We claim that all sums, (4.26), (4.27), and (4.28), can be bounded with a bound

1/2
I

that depends on [w]44[|b]|pao« at most linearly. Since |(hr, hf')w| < (w);", we can

estimate (4.26)

> sen(D)w ™) {(f) -1 (0 hi)(gs B Yo (hr, 1Y Y

< (S B ) 1/2(2@, )

1eD IeD

1/2

1/2 2
< Cllglzonlulfe ( S0 st

I1eD

By Weighted Carleson Embedding Theorem 3.1.5,

D (N (b h)* (w1 < Clwlaglblfaroall flI72gw1

1eD

holds provided that the following Carleson condition hold,

7l Y o) w ) < [wlagllblaoa(w™)s
IeD(J)

which we already have in (4.20) . Thus, we have

> sen(D(w ™) (f) 10 hp) g, b Y lbs B b | < Clwlaglbllzao sl 1|z 191l 2w -

(4.29)
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1/2

Similarly to (4.26), we can estimate (4.27) using |(hr, h%)u| < (w);* < V2(w);

Y sen(D)(w ™) (f) 1 (0 hi) g, hEYulhs, B

1€D

< V2 (W) () e [, B (g, B Y (w)

1eD

= 2V2 Y w0 ) i) ra 10 )] (g, 1 )

= 2\/5( ;(wlﬁ(ﬁ?wl (b, h1)2<w>1) v ( IGZD@’ h%z) 2

1/2 1/2
< Cllllrofulsf (U sk )

1€D

< C[w]Ag HbHBMod||fHL2(w—1) H9HL2(w) -

Since hY is constant on I, for J D I and we denote this constant by h’j’(f ). Then we

know by (2.7),

Y A9 Wb By = Y (g, Wb (D) R, w) = (9),, (hr,w) -

J:J2I J:J2I

Thus, we can rewrite (4.28)

S sen(D)w ) 1) s (b hf><g>f,w<m,w>]

< S (@ H ) g 10,82 ()1 (B, )] (4.30)

1€D

= > ()l h) (e w) [+ e @) D) r1 () 1w - (431)

1eD

We claim the sum (4.31) is bounded by [w]4|[bllprroall fllr2w-1)llgllz2w) - We are
going to prove it using Petermichl’s Bilinear Embedding Theorem 3.1.2. Thus, we

68



Chapter 4. Commutator of the Hilbert transform

need to show that the following three embedding conditions hold,

1
D, (b, hp) h h
VJe |J| I§)| 1 < >I(‘< 1—7w>|+|< I+7w>|><w>l
< Clw]aglbll paroa (w™h), (4.32)
1
vV JeD, Z (0, h)| (w™ ) ([P >|+|<h1+=w>|)m
IeD(J I
< Clw] aglbllBrroa (W), (4.33)
vJeD, Z |6, ho) | (w1 ([Ch, w) | + [Chay, w)]) < Clwl agllbll paroe-
IeD(J
(4.34)
After we split the sum in (4.32):
1
(b, hp) h (b, hp) h —
|J| Z ‘ I ’< I, |J| Z | I |< Iy >|<w>17

IeD(J IeD(J)

we start with Cauchy-Schwarz inequality to estimate the first sum of embedding

condition (4.32),

Z b, )| (w™ )| (o w Z (b, b)) —1>IM

IeD(J IeD ) (w)r
1 2 —1\2 1/2
< (mgufb’h” (w >I<w>1) ( ; AR >)
s 1 ) . 1/2
< Cloli (|J|I§J<b’hf> @) <|J|I§ ol )
< Cluug bl masoa (™), (4.35)

Inequality (4.35) due to Lemma 3.1.7 and (4.20) . Also, the other sum can be esti-
mated by exactly the same method. Thus we have the embedding condition (4.32).
To see the embedding condition (4.33), it is enough to show

Z (b, hur) (ha_ s w)| < Clw]agl[bll paroa(w) s

IeD (J)
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as we did above. We use Cauchy-Schwarz inequality for embedding condition (4.33),
then

Z (b, hy) (b, w)| = Z b, b)) NI |Ar_w)

IeD IeD(J)
1 , 1 1/2 1 1/2
< boh)? 1A, w]?(w™ )
<|J|,§< ) (mgw' 1A
s 1/2
< Cllortu) (52 X MNALuf ) (4.36)
1eD(J)
< Clul g bl pavos(w), (437)

Here inequality (4.36) uses Lemma 3.1.8, and inequality (4.37) uses the fact that
(w);' < 2(w); ' and Theorem 3.1.6 after shifting the indices.

If we show the embedding condition (4.34), then we can immediately finish the
estimate for (4.31) with bound Clw]aa[|bl|rroal|f || z2(w-1) 19|l z2(w) - Combining this
and (4.29) will give us our desired result. O

4.5 Proof for embedding condition (4.34)

The following lemma lies at the heart of the matter for the proof of the embedding
condition (4.34).

Lemma 4.5.1. There is a positive constant C' so that for all dyadic interval J € D

A A
o7 2 oy (B L) oyt )

IeD (W)

whenever w is a weight. Moreover, if w € A then for all J € D

o e

IeD (J)
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Proof of condition (4.34). By using Cauchy-Schwarz inequality and Lemma 4.5.1,

we have:
ﬁ Z (b, hp) (™) ([ (R w)| + [ (B, w)])
IeD(J)
:ﬁ S (b (A wl 18, w))
IeD(J)

1 1 s

<—(== (b, he)*(w™") r{w);
\/§<|J| IE;(J) )

1/2
< (7 X Ml (Anul + |1 ol
IeD(J)

< C[w]Ag“bHBMOd‘

[]

We turn to the proof of Lemma 4.5.1. In the first place, we need to revisit some

properties of the function B(u,v) := /uv on the domain ®, which is given by
{(u,v) €RY : wv>1/2}.

It is known, we refer to [Be], that B(u,v) satisfies the following differential inequality

in @0
2 R

Furthermore, this implies the following convexity condition. For all (u,v), (ut,vy) €

907
B(ug,vy) + Bu_,v_) vl/4
o) e TR )

where u = (uy +u_)/2 and v = (vy +v_)/2.

B(u,v) —

Lemma 4.5.2. Let us define

A(u, v, Au) := aB(u,v) + B(u + Au,v) + B(u — Au,v) ,
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on the domain 1 with some positive constant a > 0. Here (u,v,Au) € 1 means

all pairs (u,v), (u+ Au,v), (u— Au,v) € Dg. Then A has the size property,
if (u,v,Au) € ©q, then 0< A(u,v,Au) < (a+ 2)vuv, (4.41)

and the convexity property,

1 1/4
A(u,v, Au) — 3 [A(u+, vy, Aug) + Au_,v_, AUQ)} > Cg%(Au% + Auj), (4.42)

where v = (uy +u_)/2,v=(vy +v_)/2, and Au = (uy —uy)/2.

Proof. The property (4.42) is directly from the definition of function B(u,v). At the
end, Au will play the role of Ajw, Au; is A7, w, and Auy is A;_w. We can rewrite
the left hand side of the inequality (4.42) as follows
1
A(u,v, Au) — 3 [A(us, vy, Aug) + A(u_, v, Auy)]
= aB(u,v) + B(u + Au,v) + B(u — Au,v)
1

~ 5 [aB(us,vs) + B(us + Aug,vy) + Bluy — Aug,vy)

+aB(u_,v_) 4+ Bu_ 4+ Auy, Au_) + B(u_ — Auy,v_)]
= aB(u,0) = S(Blus,vy) + Blu,v)) + Bluy,v) + Blu_,v)
- %[B(u+Au+Au1,v+Av)+B(u+Au—Aul,v+Av)

+ B(u — Au+ Aug, v — Av) + B(u — Au — Aug, v — Av)] . (4.43)
Using Taylor’s theorem:

B(u + ug, v + vo) =B(u,v) + VB(u, v)(ug, vo)"

1
+ / (1 — 5)(uo, vo)d* B(u + sug, v + svg)(ug, vo)'ds,
0

and the differential convexity condition (4.38) of B(u,v), we are going to estimate
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the lower bounds for (4.42).

- 1B(IH— Au + Aug, v + Av)

2
= —% (B(u, v) + VB(u,v)(Au + Auy, Av)t>
1
~ 3 / (1 —5)(Au+ Auy, Av)d*B(u + s(Au + Auy), v + sAv)(Au + Ay, Av)'ds
0

v

_% <B(u, v) + VB(u,v)(Au + Auy, Av)t)
1 /! (v 4 sAv)/4
16, (1-s) (u+ s(Au+ Auy))7/4
—% (B(u, v) + VB(u,v)(Au + Auy, AU)t)
% /0 (1—s)(v+ sAv)l/4ds (4.44)
_% (B(u, v) + VB(u,v)(Au + Auy, A”)t)

(Au + Auy )20t/ /1 Av.yy
oy ), B9 rs=m)ids

1 1 ol )
-5 (B(u, V) + VB(u,v)(Au + Au, Av)t) T (Au+ Aup)”. (4.45)

(Au + Auy)?ds

v

v

v

Inequality (4.44) is due to the following inequalities

—u_| < Uy + u_|

5 < 5 :uand|Au1|:M§u+§2u.

|uy
Aul =
A 5

Since (1 — s)¥/* < (1 —|B]s)Y* < (14 Bs)Y* for any | 3| < 1, it is clear that

1 1

4
_ 1/4 o\ g. — =
/0(1 s)(1+ Bs) dsz/o(l s) ds-g,

and this allows the inequality (4.45). With the same arguments, we also estimate
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the following lower bounds:

—%[B(u+Au—Au1,v+Av)—|—B(u—Au—|—Au2,v—Av)

+ B(u — Au — Aug,v — Afv)]

1 : 1 ot )
> ——(B(u,v u, v)(Au — Auy, Av —————(Au — Auy
> 5 B(u,v) + VB(u,v)(Au — Auy, Av) +144-43/4u7/4(A Auy)
1 1 ot
t 2
— §<B(u, v) + VB(u,v)(—Au + Aug, —Av) ) + mm(—Au + Auy)
1 : I
_ §<B(u, v) + VB(u,v)(—Au — Auy, —Av) ) il PR (Au + Aug)?.
(4.46)

We can have the following inequality by combining (4.45), (4.46) and (4.43),

Alu,v,Au) — %[A(UJF, v, Aug) + Au_, v_, Auy)]

> (a—2)B(u,v) — g(B(u+, vy) + B(u—,v_)) + B(us,v) + B(u_,v)
1 /A

+72 43/4 7/4(
1 U1/4

- 72~43/4W(

2Au? + Au? 4+ Aud)
Au? + Auj) . (4.47)

To see the inequality (4.47), using convexity condition (4.39) of B(u,v) = /uv and
inequality: (1 — s)u < u — sAu < u+ sAu,

(a—2)B(u,v) — g(Bm, vs) + Blu_, v,)) + Bluy,v) + Blu_,v)
= a<B(u,v) — %(B(m,m) + B(u,v))
- (%A“Q / (1= )0+ s Tds

1
+ 16Au / (1-— 5)01/4(u — 5Au)7/4d5>

L1/
2V —-3/4
> aClmAu — —A W / ds
1/4 3 U1/4 3 U1/4
— 2 _ 2
aClmAu — §Au u7/4 = (CLCl — §> WA (448)
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Choosing a constant a sufficiently large so that aCy > 3/2, quantity in (4.48) remains
positive. This observation and discarding nonnegative terms yield inequality (4.47).
Choosing the constant Cy = 1/(36-4%/4) in (4.42) completes the proof of the concavity

property of A(u,v, Au). O
We now turn to the proof of Lemma 4.5.1.

Proof of Lemma 4.5.1. Let uy := (w)r, vr == (w™, ux = ur,, va = vy, Auy =
Ajw, Auy = Auy,, and Auy = Au;_ . Then by Hélder’s inequality (u,v, Au),
(uy, vy, Auy), and (u_,v_, Auy) belong to ©;. Fix J € D, by properties (4.41)
and (4.42)

(a+ 2)|J|v/ (w) ;(w=1Y; > |J|A(ug, vy, Auy)

1 1
2 g (1A v B 1A, 80) )+ Ol + 1)

Since A(u,v,Au) > 0, iterating the above process will yield

I/ Gw) (w2 ¢ D0 ™ o) (Arwl + A wf). (449)

IeD(J)

Also, one can easily have

1/ W) (w=ty, >0 Y 1wy w), 7 A w?, (4.50)

IeD(J)

and

T/ () lw 1)y = € T ) AL (4.51)

1eD(J)
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Then,
1 _ _
T 71wy w) (| A w] + [Ar_w])?
IeD(J)
1 _
= (3 i o
1€D(J)
AINEIURED SV [T R R [ENRT)
IeD(J)
(Z 1) 4w (A wf? + A7 w]?)
IeD(J
1/2
) ]
1€D(J 1eD(J)
< 2/w) <w*1>
-~ C I I-

]

Remark 4.5.3. The linear bounds in L?*(w) for [\, S], 7}S and S, can be deduced
form the results in [HyLReVa] once it is observed that all three operators are Haar

shift operators of the second class, see Section 5.1.
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Commutators of Riesz transforms
and the Beurling-Ahlfors operator

and sharp bounds

In this chapter, we are going to introduce two more general classes of dyadic shift
operators, the convex hull of which now includes one dimensional Calderén-Zygmund
convolution operators with sufficiently smooth kernel (See [Va]). By showing that
the commutator of the first class of dyadic shift operators with A, also belongs to
the same class, we will extend our result to more general class of commutators.
Among the convolution operators that fit this theory are the Riesz transforms and
the Beurling-Ahlfors operator. We also prove in this chapter that the bounds in L”(w)
obtained for the commutator of the Hilbert and Riesz transforms and the Beurling-
Ahlfors operator are sharp in terms of their dependence on the A,-characteristic of

the weight.
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5.1 Dyadic shift operators

The dyadic shift operator was first introduced in [Pet1] to study the weighted norm
estimate for the Hilbert transform. It was also encountered in [PetTV], so Riesz
transforms can be obtained as the result of averaging some dyadic shift operator.
Recently, in [LPetRe] and [CrMP], a more general class of dyadic shift operators,
so called the Haar shift operators were introduced. The Hilbert transform, Riesz
transforms, and Beurling-Ahlfors operator are in the convex hull of this class, as
they can be written as appropriate averages of Haar shift operators. Let D™ denote
the collection of dyadic cubes in R™ | D*(Q) denotes dyadic subcubes of @, and |Q)|

denotes the volume of the dyadic cube ). We start with some definitions.

Definition 5.1.1. A Haar function on a cube () C R" is a function Hg such that

(1) Hg is supported on (), and is constant on D™(Q) .

(2) Hollo < 1QI7Y2.

(3) Hg has a mean zero.

Examples of such a Haar function are the standard Haar functions {A},}, and

the Haar functions {h; g} introduced in Section 2.2, for each j =1,...,2" — 1.

Definition 5.1.2. Given an integer 7 > 0, we say an operator of the following form
is in the first class of Haar shift operators of index T
= > > age(f Ho)Hgr(x),
QEDn Ql QIIEDn Q)
27QISIQ Q]
where the constant ag ¢~ satisfy the following size condition:

|Q,| |Q//‘)1/2
1 O < C . . 51
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Note that once a choice of Haar functions has been made {Hg}gepn , then this
is an orthogonal family, such that ||Hg|r2 < 1, so one could normalize in L?. Note
that one can easily see that the dyadic shift operator S belongs to the first class of
a Haar shift operator of index 7 =1 with

+1 for I'=1, I"=1;

aI’,I” =
0 otherwise .

One of the main result in [LPetRe] and [CrMP] is the following

Theorem 5.1.3 ([LPetRe], [CtMP)). Let T be in the first class of Haar shift oper-
ators of index 7. Then for all w € A, there exists C(1,n) which only depends on T

and n such that

1T 22 w)— 22wy < C(T,0)[w] 44 -

As a consequence of this Theorem, linear bounds for the Hilbert transform, Riesz
transforms, and the Beurling-Ahlfors operator are recovered. There are now two
different proofs of Theorem (5.1.3) in [LPetRe] and [CrMP]. The commutator [, S|
is also in the first class of Haar shift operators of index 7 = 1. Recall the observation

in Section 4.1

oy SICF) = = A(f, h) (b, + D)

IeD

Then we can see

—A[b for I’ = [, 1" = [i
CLIIJH =
0 otherwise ,

moreover |ap | = |Arb] < 2||b||gyod . this means the constant ap » satisfy the
size condition (5.1) with C' = 2v/2||b|| gaso« - These observations, Theorem 2.4.1, and
Theorem 5.1.3 immediately recover the quadratic bound for the commutator of the
Hilbert transform which was proved in Chapter 4. We now define the second class

of Haar shift operators of index 7.
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Definition 5.1.4. Given an integer 7 > 0, we say an operator 7" of the form in
Definition 5.1.2 is in the second class of Haar shift operators of index 7, if T is
bounded on L? and the function Hg satisfy the condition (1) and (2) in Definition
5.1.1.

The second class of Haar shift operators is more general than the first class. One
can easily observe that the operators m,, Sm, and 7;S do not satisfy the condition
(c) on Definition 5.1.1, however these operators satisfy the conditions of Definition
5.1.4. Note that the n-variable paraproduct is a sum of 2" —1 operators in the second

class of Haar shift operator of index 1, the restricted n-variable dyadic paraproduct

mf =Y (Nalb Ho)Hq.

QeDn

Similarly, with Haar functions defined in Section 2.2, the restricted n-variable dyadic

paraproduct will be

T f = Z ()0, hiQ)hjq

QeDn
for j=1,...,2" — 1. In [HyLReVa], the linear estimate for the maximal truncations
of these operators is presented. This also recovers our linear bound estimates for S,
and 7;S. On the other hand, authors in [CrMP] also reproduce the linear estimate

for the dyadic paraproduct with a different technique.
Lemma 5.1.5. Let T, be a Haar shift operator of the first class, then [Ny, T;] is an

operator of the same class.

Proof. We are going to use the restricted multi-variable A\, operator which is

Mf =Y (bo(f Ho)Hg .

QeD"

One can get the n-variable A\, operator by summing over 2" — 1 of restricted \,
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operator. Observe that,

o, To1f = M(Trf) — To(Nof)
=YY agorelf Ho)Her

QEDn Q/ Q//EDn Q)
27 QI<IQ Q]

- > aq @by (f, Hg ) Hgr
Qe'Dn Q/ Q//EDn
2 i<l

=YY agoerbor — Be)f Ho)Her

QGD" Q/ Q//EDn Q)

277 QI<IQ IR
Since
| agrqr () — (D)e)| < C(Dbllsrol agrorl,
[Ap, T;] remains in the same class of T, . O

Theorem 5.1.3 and Lemma 5.1.5 allow to extend our result to more general class
of commutators including the Riesz transforms and the Beurling- Ahlfors operator as
in Theorem 1.0.3.

Remark 5.1.6. By Theorem 5.1.3, Lemma 5.1.5 and the result of [Va], we now know
that the L?(w)-norm of the commutators of one dimensional Calderén-Zygmund
convolution operators with sufficiently smooth kernel depends quadratically on the
As-characteristic.

Remark 5.1.7. Most recently, authors in [CPerP] presented a more general result
about this subject with completely different but more classical and elegant methods.
More precisely, they prove that if any linear operator bounded on L?(w) for any
w € Ay with

1T L2 )~ L2 () < P([w]a,)

for a some increasing function ¢ then there are constants ¢(n) and C'(n) independent

of [w]a, such that

116: Tl 22wy~ L2y < C () () [w]a,)[w]a, [[bll Baro -
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5.2 Sharpness of the results

In this section, we start proving that the quadratic estimate in Theorem 2.3.2 is sharp,
by showing an example which returns quadratic bound. This example was discovered
by C. Peréz [P3] who is kindly allowing us to reproduce it in this dissertation. The
same calculations show that the bounds in Theorem 1.0.1 are also sharp for p # 2
and 1 < p < oo. Variations over this example will then show that the bounds in
Theorem 1.0.3 are sharp for the Riesz transforms and the Beurling-Ahlfors operator

as well.

5.2.1 The Hilbert transform

Consider the weight, for 0 < § < 1:

w(z) = |z|'7°.

It is well known that w is an Ay weight and

1
[w]A2N5.

We now consider the function f(z) = 2 ™y (z) and BMO function b(z) =

log || . We claim that
116, H]f(z)] = = f ().

For 0 < x < 1, we have

Yogz —logy _ Yog(z/y) _
b)) = [ B gy [ %/y)y gy
0 0

Now,

[ g [V g [
. 1t o 1-t 1=t ’
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and since logl(_lt/t) is positive for (0,1) U (1,00) we have for 0 < z < 1

\[b, H]f(z)] > 2~ 1+ /0 %t—wdt. (5.2)

But since

" log(1/t ! °° L
/ log(1/t) )t_1+5dt > / log(1/t)t 1 dt :/ se”¥ds = — | (5.3)
0 1—1¢ 0 0 (52

our claim follows and

1
116, LAl 2 5 ey ~ ol |2

A first approximation of what the bounds in LP(w) is given by an application of the
sharp extrapolation theorem for the upper bound, paired with the knowledge of the

sharp bound on L?(w) to obtain a lower bound.

Proposition 5.2.1. For 1 < p < oo there exist constants ¢ and C' only depending

on p such that
2min{1,ﬁ} 2max{1,p—i1}

clwly, 16l Baro < [I[b, H]|| 1o (w)— Loy < Clwly, 0l Bro . (5.4)

for allb e BMO.

Proof. Because the upper bound in (5.4) is the direct consequence of the quadratic
bound in the Theorem 2.3.2 and sharp extrapolation theorem, we will only prove the

lower bound. Let us assume that, for 1 <r <2 and a < 1,

116, H1l 2wy -2y < Clw] 3 (1Bl 5av0

This and the sharp extrapolation theorem return
116, H]ll 22wy 22wy < Clwl 1Bl Baro -

This contradicts to the sharpness (p = 2). Similarly, one can conclude for p > 2. O
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Chapter 5. Commutators and sharp bounds

We now consider the weight w(z) = |2|1=9®=1 then w is an A, weight with

[w]a, ~6'P. By (5.2) and (5.3) we have

1 o2 1
1o, H] oy 2 S5l v = O )N Fll ooy ~ (w1l -

This shows the upper bound in (5.4) is sharp for 1 < p < 2. We use the duality
argument to see the sharpness of the quadratic estimate for p > 2. Note that the

commutator is a self-adjoint operator:

(bH(f) = H(bf),9) = ([, H"(bg)) — (f,0H"(9)) = (f,bH(g) — H(bg)) -

Consider 1 < p <2 and set u = w'™ | then

165 H 2y uy = 1165 H 27 197y~ 07 =2y = W05 H] ot =y o 1t
2

= [|[b, Bl o) —2o ) < Cllbll maroa[wl )’ (5.5)

= Clblsaolw 1, = Clibl saolul, -

Since the inequality in (5.5) is sharp, we can conclude that the result of Theorem

1.0.1 is also sharp for p > 2.

5.2.2 Beurling-Ahlfors operator

Recall the Beurling-Ahlfors operator B is given by convolution with the distributional

kernel p.v.1/2%

Bf(x,y) Zp.v,l flx—uy—

, v) dudv .
T Jre  (u+iv)?

Then the commutator of the Beurling-Ahlfors operator can be written:

1 b(l‘7 y) - b(S, t)
b,B|f(x,y :p.v.—/ : f(s,t)dsdt.
S ) (C e ) e
It was observed, in [DV], that the linear bound for the Beurling-Ahlfors operator

—Q

is sharp in L?(w), with weights w(z) = |2|* and functions f(z) = [z|7® where
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Chapter 5. Commutators and sharp bounds

|a| < 2. Similarly, we consider weights w(z) = |z|*>% where 0 < § < 1. Note that
w(z) = [2]>7% : C — [0,00) is a As-weight with [w]s, ~ d~!. We also consider
a BMO function b(z) = log|z|. Let £ = {(r,0)|0 < r < 1,0 < § < 7/2} and
Q={(r0)]1l <r <oo,m <0 < 3n/2} We are going to estimate |[b, B]f(z)| for
z € Q with a function f(z) = |2]°"2xg(2). Let 2 = z + iy and ¢ = s+ ti. Then, for
z €€,

|[b, BIf(2)]

[

st)
/E (@ —») t))zf(s,t)dsdt‘
(log || - 1og|¢|>|<|6 (w5 = (y— 1Y)
. (2 - 52+ (y — D) ot
[ (log ]2l ~log CIC 2@ ~ )y~ 1)
R (v

T I e I

For z € Q and ( € E, we have (z — s)(y —t) > zy and by triangle inequality
(x—=s)*+(y—1)%)? = |z —¢|* < (J]z|+|¢])* . After neglecting the positive term (real
part), we get

) 1og rz|/r> oY
_xy<|z|4/ (1 +7/|z |) r) |
:x2y2< ﬁ /1/z| log(l({ti(]:)ﬁ) " |dt>

VIl 1 i1 N2
= 2 Y <|z|4‘5/0 %dt) )
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Chapter 5. Commutators and sharp bounds

Since |z|/(|z] +1) < 1/(1+1t), for t < 1/|z|, we have

2

1/lz]
0BG 2 o (it [ st/ )

(|z] +1
_ Y 2| (1 + 6 log2]) |
e B(E] + 18 62
_ z?y* (14 dlog|z])?
(Jz] +1)8 94 '
Then, we can estimate the Lz(w)—norm as follows.
1 y*(1 +5log\z|) s
b, B f|I72( dxd
/ /3”/2 r4cos? Osin® 0(1 + & logr)? R
L (r+1)8
00 .76 00 ).T—6 2
/ (1+dlogr)? i T / (14 dlogr) g
~ 5416 (r + 1) 5416 (2r)8
T > 1
= 54212/1 (1+ 8logr)?r—0dr

T (1 20 262 bm 1
:W(S+§+?) R

Combining with Hf”%?(w) = /26, we have that ||[b, B]f| 2w/ fll 2@ ~ 672,
which allows to conclude that the quadratic bound for the commutator with the
Beurling-Ahlfors operators is sharp in L?(w) . Same calculations with weights w(z) =
|2|2=9®=1) and functions f(z) = |2|®~2®=1 will provide the sharpness for 1 < p <
2, and it is sufficient to conclude for all 1 < p < oo because the Beurling-Ahlfors
operator is essentially self adjoint operator (B* = €¥*B), so the commutator of the

Beurling-Ahlfors operator is also self adjoint.

5.2.3 Riesz transforms

Consider weights w(z) = | 2|"~% and functions f(z) = 2°"yg(z) where E = {z |z €
(0,1)"N B(0,1)}, and a BMO function b(z) = log | z|. It was observed that |z|"~?

is an Ay-weight in R™ with [w]42 ~ d~!. We are going to estimate [b, R;|f over the
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set Q@ ={y € B(0,1)°|y; < Oforalli =1,2,...,n}, where R; stands for the j-th

direction Riesz transform on R” and is defined as follows:

Rifta)=epr. [ Hofw-ydy, 1220,
g |Y|"

where ¢, = I['((n + 1)/2)/7"*D/2_ One can observe that, for all z € E and fixed

yen,
Then,
R = og |y —log )|
|y_x|n+1
log (| yl/| «)| =" |
—| J’ n+1 v
(lyl + | )

1 o—n = 1
> |ZUJ’/ / og(lyl/r)r . drdo
ENSn—1 (|yl +r)mt

)y ‘/”y' log(1/t)(ty)*" |yl ,
v (Jy| + | ylt)~+!

~C)lyl [V log(1/t)10!
- ‘y|n+176 0 (1+t>n+1

C’(n)|yj|( |y >n+1 /1/|y| 51
> log(1/t)t° 1 dt
g \Tyl+1) ), s/

__ Clyl (|y|5(1+5log|y|)>
[y~ (ly[ + 1)+ 62
__C)ly| 1+6log|y|
(lyl+1)mt 2
We now can bound from below the L?(w)-norm as follows.

) C(n) [ y;(1+dloglyl)®
||[b,Rj1f<x>||L2<w)> 54 / e

r?(1 + 6 logr)?r™ opn—1
e

(1+ 0 logr)2r2n—ott
> 54/1 dr

r2n+2

|y|"°dy

_Cn) [~ 51 C(n)
= 54 /1 (1+(510g7’) d?" ?,
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Chapter 5. Commutators and sharp bounds

which establishes sharpness for the commutator of the Riesz transform when p = 2.
Since R} = —R;, one can easily check that the commutator of Riesz transforms are
also self-adjoint operators. Furthermore, choosing weight w(x) = |z|™=9®=1  we
will obtain the sharpness for 1 < p < oo by the same argument we used in the case

of the Hilbert transform.

As a consequence of [CPerP], bounds for the k-th order commutator with H and
R;’s, defined recursively by
Tbk = [b, Tlf:_l] )

k) max{1,——
are bounded in LP(w), for 1 < p < oo, with a bound [w]S: Jmax{l )

1Bl a0 -
Similar examples can be constructed to obtain lower bounds for the k-th order com-
mutator with 4 and R;’s, furthermore that is the sharp bound for those operators.

Those results are recorded in [CPerP].
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Multivariable dyadic paraproduct

In Section 7.1 we will prove Theorem 2.4.4 and Theorem 2.4.5 which provide the
linear bounds for the dyadic paraproduct in L%, (w), and dimension free estimates.

In Section 7.2 we compare anisotropic weights and classical Ay weights.

6.1 Proof of Theorem 2.4.4 and Theorem 2.4.5

We are going to prove Theorem 2.4.4 only when p = 2, and following the one-
dimenstional proof discovered by Beznosova [Be]. The sharp extrapolation theorem
[DGPerPet] returns immediately the other cases (1 < p < o0). For the case p = 2

we use the duality arguments. Precisely, it is sufficient to prove the inequality

(my(fw™!/?), gw'?) < C(n)[w] agllbll sasog, | £l 2

RN

9llr2 (6.1)

RN :

Proof. Using the orthogonal Haar system (2.14), we can split the left hand side of
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Chapter 6. Multivariable dyadic paraproduct

(6.1) as follows.

(m(fw™%), g %) =37 (b, hi) (fw ™) g, o (gw'? hyq)

We are going to prove that both sum (6.2) and (6.3) are bounded with a bound that
depends linearly on both [w] g and [0 gys04, which means

2m—1

b, h; -1/2 » 1/2 HY, 1
2 DO gl Hi) e

< C(n)w]agllbllzrros, 1 fllz2, 19l 2, (6.4)
and
an—1 1
(b, hy@)(fw™2) g, o (gw'/?, Af o xm, o) ——=
Q;n ; ¢ ¢ V |EJ}Q|
< C(n)w]agllbllsaros, 1 fllzz, 19z, - (6.5)
We will estimate term (6.4) first using Cauchy-Schwarz inequality,
n—1 1
(b, By @) (102 g, o (g2, HZ) — e
pop> ol )
on_ 1 w2 CH > on_q 1/2
(3 SO (5 S bt o)
QeDr j=1 QeDn j=1
2n—1 1/2
< ||g||ng( >0 b hi) (fw ) (w) m) , (6.6)
QeD" j=1

Here the inequality (6.6) follows from (2.15). We now claim that the sum in (6.6)
is bounded by C[w]?,][b[? BMOG, 1 f1? 12, which will be provided by the Multivariable
2
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Version of the Weighted Carleson Embedding Theorem 3.2.2. with the embedding

condition:

Vg eD, —— S S (s (b )

QED™(E; 1) 1:Ej,@CEiQ

< ClwlylblBp0n, (W e o - (6.7)

Since for all Q € D™
22(n71)[w]Ag > <w>Ej,Q <w71>Ej,Q )

The Embedding condition (6.7) can be seen as follows.

> Y (i (W) e (b hya) (6.8)

QED™(B, 1) 1:F;CFig

< 22(71 1) Z Z <w_1>Ej,Q <b, h],Q>2

ED"(Q’) 7t E QCE Q!

<4 270wy bl g0, ™ (Eir) - (6.9)

Here the inequality (6.9) follows from (2.22) and Proposition 3.2.7 applied to a; g =
(byhjg)?, A= 3"‘1HbH2BMOD%n and v = w™!. This estimates finishes the proof of the
inequality (6.4) with C' ~ 27(=1)/2

We now turn to the proof of the inequality (6.5). In order to prove the inequality
(6.5), we need to show that

2" —1

YD b (fum e o lgw' P e o Ao/ 1Bl

QeDn j=1

< Clwlagllbll parog, 11122, 11912, » (6.10)

and this is provided by the following three embedding conditions due to the Mul-
tivariable Version of the Bilinear Embedding Theorem 3.2.5: For all " € D™ and
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1=1,..,2" -1,
/ > > \(b, hiq) Afol\/1Eia Ejq
Eiq QeD™(Q') J:E;,QCE;
< C(n)[w]agllbllzrrog, - (6.11)
T2 2 k) Afoly/IEiq
lQ QED™(Q') j:Ej,qCE; o
< C(n)[wlagllbllzrog, (w)e, o, (6.12)
, > Yo ko) R VAT e [ o
Bial ocbrion i8aeh, o
< C(n)[w] agllbll pasog, (W™ ) p, o - (6.13)
Proposition 3.2.11 makes it easy to prove the embedding condition (6.11). Using
Cauchy-Schwarz inequality,
> > b hig) A%\ IEiolw) s, o (w ™k, , (6.14)
QED™(Q') J:E;,QCE; o
1/2
(X T enat ) 615
QED™(Q') J:E;,QCE, ¢/

<Q€D" (@) J:E

D

2. 2

5QCE; Q!

>

1/2
w \2 _
( j,Q) |Ej7Q|<w>Ej,Q <w 1>Ej,Q>

(6.16)

1/2
< o= 1 1/2< <b, hj,Q>2>
QeD™(Q') J:E;QCE; o

<

(x ¥

QED™(Q') J:E;,QCE; o

2. 2

QED™(Q') J:E;,QCE; g

C 22(n71) [w]Ag ‘ Ei,Q’ 1/2 <

C 20 2] ol |bll o, | Bur |-

1/2
w \2 _
(AY0)"|Ejol(w)g, o (w 1>Ej,Q)

1/2
<b, hj,Q>2> (6.17)

(6.18)

Here we use (3.53) for the inequality (6.17) and the fact that b € BMOgZ, for the
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inequality (6.18). We also use Cauchy-Schwarz inequality for the inequality (6.12),
then

> Y. [bhie) Algly/ I Esql(w

QED™(Q') J:E;j,QCE; o

1/2
< ( Z Z (b, hJ,Q>2<w>Ej,Q>

QeD"(Q) j:Ej7Q§Ei7Q/
1/2
2
(XS e
QGD"(Q’) jZEijgEin/

e 1/2 1/2
< C2 V20| g0, [w ]A/d <UJ>E/Z-,Q/

1/2
X( > > (AfQ)2|Ej,Q|<w>Ej,Q> (6.19)
QED™ (@) §:E;.qCE; o

< 027(n_1)/2‘|b”BMoﬂfgn [w]Ag <w>Ei,Q/ :

(6.20)

Inequality (6.19) and (6.20) follow by (3.36) and Proposition 3.2.13 respectively. We
can establish inequality (6.13) with Proposition 3.2.9 as follows,

> > b hig) AYol\/IErallw™) g, ,

QED™(Q’) j:E;QCE; o

1/2
< ( Z Z (b, hj7Q>2<w_1>Ej,Q>

QED™(Q') J:E;,QCE;
1/2
2 _
( > > (Afcz) |Ejql{w 1>Ej,Q)
QeD"(Q') J:E;,QCE; o

n— 1/2
< OO [bl| gy, [e] g (w3

1/2
X( > > f@)2|EJ,Q\<w1>Ej,Q>

QED™(Q') J:E;,QCE; o

To sum up, we can establish the inequality (6.1) with a constant C(n) ~ 27("=1/2
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Furthermore, if we replace [w] ¢ by [w]az and [|b][grroe by [|bllpaor then we can

establish proof of the dimension free estimate in Theorem 2.4.5. n

6.2 Comparison of the AY weight and the A, weight

Let us consider the weight w, = |z|*. Is is a well known fact that [w]a, ~ ———.

This means w, € Ay if and only if || < n. Let us now observe the [w,] ar when

n =2 and a = 1. Since the main singularity of w, occurs at the origin, it is enough

to observe the case of R; = [0, ] x [0, 1] with sufficiently large ¢ .

1 t
[ witeddy = [ / (22 + )2 dady
Ry 0
arctan(1/t) pt/cosf 1/sinf
= (/ / r drd@—l—/ / r drd&)
0 0 arctan(l/t

1 arctan(1/t) T/
:—(/ t3secgﬁd0—|—/ csc Gdé)
3 0 arctan(1/t)

Since the series expansion of sec®§ = 1 + 36%/2 + O(0%),
arctan(1/t)
t/ sec® 0 df ~ t(arctan(1/t) + (arctan®(1/t))/3) — 1 as t — oco.
0

For the second integral, we use the series expansion of csc® 6 = 1/63+1/20+176/120+
O(6°) ,

/2
l csc® 0dh ~ 1 (

t2 arctan(1/t)

1 1 17 arctan(1/t) 1
St Infarctan(1/1)) + = ) —
Yarctan?(17) 2 Mlarctan(l/t)+——5 ) 9

as t — oo. For sufficiently large ¢, we see

/ wy (z,y)dody ~ >
Ry
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And
1 pt
/ wi Nz, y) dedy :/ / (z? +y2)71/2 dxdy
R o Jo

arctan(1/t) pt/cos6 w/2 1/sin6
= / / drdf + / / drd? .
0 0 arctan(1/t) J0

For the first integral, we have

arctan(1/t) pt/cosf arctan(1/t)
/ / drdf = t/ sec 6 df
0 0 0

= tlog | sec(arctan(1/t)) + tan(arctan(1/t))]

/1 1 Vv1i+t24+1
t_2+1+¥’:t10g(%)—)1

as t — oo . Using series expansion of csc = 1/ 4+ 60/6 + O(#?) the second integral

= tlog

can be estimated as follows

/2 1/sin6 w/2
/ / drdf = / csc6df
arctan(1/t) J0 arctan(1/t)

~ —log(arctan(1/t)) — M

~logt.
12 6

Thus, for sufficiently large ¢,

/ wy Nz, y) dedy ~ logt .
Ry

To sum up, we have

(w1) g, (w; g, ~ logt.
These observations allow us to conclude that there is a weight which belongs to A, but
not to A%, when n > 2. Some dimension free bound on the weighted Lebesgue spaces
via Poisson As-characteristics of weights are established for the Riesz transforms
[Pet3] in R™, and the square function [PetWic] in the unit ball in C". Here we say

a weight belongs to the class of Poisson A, . if

[w]p, == sup w(t,y)w(t,y) < oo,
teR+ yeR™
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where w(t, y) stands for the Poisson extension to the upper half plane R’ :

w(t,y) == wx* P(y) = /n w(z)P(y — ) de = /Rn @ ily t_ PR w(z)dx.

It was also observed in [Pet3] that w,(t,0) diverges if and only if a > 1. For the case
n = 1, the three weight classes are the same. However, for the case n > 2, we know
there is a weight that belongs to A% or P, but not to Ay, for instance w(z) = | z|.
For the one dimensional case, since [w]a, = [w] 4z, we have that there is constants
such that [Huk]

clulag < [uln, < Cluliy

TS
For n > 2, we don’t know yet how these two weight classes AL and P, are related.
We may conjecture that the same relation as well as in the one dimensional case

holds for n > 2.
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