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Abstract

We prove that the operator norm on weighted Lebesgue space L2(w) of the com-

mutators of the Hilbert, Riesz and Beurling transforms with a BMO function b

depends quadratically on the A2-characteristic of the weight, as opposed to the lin-

ear dependence known to hold for the operators themselves. It is known that the

operator norms of these commutators can be controlled by the norm of the com-

mutator with appropriate Haar shift operators, and we prove the estimate for these

commutators. For the shift operator corresponding to the Hilbert transform we use

Bellman function methods, however there is now a general theorem for a class of

Haar shift operators that can be used instead to deduce similar results. We invoke

this general theorem to obtain the corresponding result for the Riesz transforms and

the Beurling-Ahlfors operator. We can then extrapolate to Lp(w), and the results

are sharp for 1 < p <∞. We extend the linear bounds for the dyadic paraproduct on

L2(w), [Be], into several variable setting using Bellman function arguments, that is,

vii



we prove that the norm of the dyadic paraproduct on the weighted Lebesgue space

L2
Rn(w) is bounded with a bound that depends on [w]Ad2 and ‖b‖BMOd at most lin-

early. With this result, we can extrapolate to LpRn(w) for 1 < p <∞ . Furthermore,

Bellman function arguments allow us to present the dimensionless linear bound in

terms of the anisotropic weight characteristic.
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Chapter 1

Introduction

In this dissertation we are primary interested in obtaining sharp weight inequali-

ties for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors

operators with multiplication by locally integrable function b ∈ BMO , and we are

also concerned with the extension of the weighted norm estimates for the dyadic

paraproduct into the several variable setting.

The study of singular integrals is one of the most important topics in harmonic

analysis. The Hilbert transform is the prototypical example of a singular integral. A

careful study of the Hilbert transform provided the understanding and the inspiration

for the development of the general class of singular integrals. Almost simultaneously

with the birth of singular integrals, a variety of questions related to weighted in-

equalities appeared. In 1960, Helson and Szegö first presented the boundedness of

the Hilbert transform on Lp(w) in [HS]. A better understanding of this subject was

later obtained by Hunt, Muckenhoupt and Wheeden in 1973. They showed a new

necessary and sufficient condition for the boundedness of the Hilbert transform on

Lp(w), the celebrated Muckenhoupt Ap condition in [HuMWh]. Precisely, we say the

positive almost everywhere and locally integrable function w, a weight, satisfies the
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Chapter 1. Introduction

Muckenhoupt Ap condition if:

[w]Ap := sup
Q
〈w〉Q〈w−1/(p−1)〉p−1

Q <∞ , (1.1)

where we denote the average over the cube Q by 〈·〉Q and the supremum is taken over

all cubes. A year later, Coifman and Fefferman extended this result to a larger class

of convolution type singular integrals with standard kernels (see [CoF]). Study of

this subject has already reached a great level of perfection and has found applications

in several branches of analysis, from complex function theory to partial differential

equations.

There are still some unsolved problems in the area concerning the best constant

in terms of the Ap-characteristic [w]Ap . Precisely, one looks for a function φ(x) , sharp

in terms of its growth, such that:

‖Tf‖Lp(w) ≤ Cφ([w]Ap)‖f‖Lp(w) . (1.2)

These kinds of estimates for different singular integral operators are used often in

the theory of partial differential equations. For instant, in [AsIS], the authors asked

the question: Does the norm of the Beurling-Ahlfors operator on the weighted spaces

Lp(w) depend linearly on the Ap-characteristic of the weight [w]Ap? Furthermore,

they proved that the linear dependence of the weighted norm of the Beurling-Ahlfors

operator on the Ap- characteristic provides the quasi-regularity of certain weak quasi-

regular mapping. Although these type of problem (1.2) has attracted a lot of interest

after [AsIS], we need to refer to the first result of this sort that was obtained by S.

Buckley [Bu]. For the Hardy-Littlewood maximal function, he proved that φ(x) =

x1/(p−1) is the sharp rate of growth for all 1 < p < ∞ . He also showed in [Bu]

that φ(x) = x2 works for the Hilbert transform in L2(w). S. Petermichl and S. Pott

improved the result to φ(x) = x3/2 , for the Hilbert transform in L2(w) in [PetPo].

More recently, S. Petermichl proved in [Pet2] the linear dependence, φ(x) = x, for

2



Chapter 1. Introduction

the Hilbert transform in L2(w)

‖Hf‖L2(w) ≤ C[w]A2‖f‖L2(w) ,

by estimating the operator norm of the dyadic shift. In fact, knowing a bound

on L2(w) is crucial due to the extrapolation theorem. Rubio De Francia presented

his famous, and mathematically convenient, extrapolation theorem in [Ru]. On the

unweighted Lp-theory, one needs to find either the weak type or strong type estimate

for an operator at two end points, then one can conclude the strong type estimate

between endpoints by interpolation. However, on the weighted Lp-theory, it is enough

to have a single strong type estimate for all weights w ∈ Ap0 for an operator in

Lp0(w) , to obtain strong estimates in Lp(w) for all w ∈ Ap, due to Rubio de Francia’

extrapolation. Furthermore, a particular choice of the weight, w ≡ 1 , yields the

unweighted result. Recently, the sharp version of Rubio de Francia’s extrapolation

theorem was presented in [DGPerPet]. For example, when an operator T obeys linear

bounds in L2(w), that is φ(x) = x in the inequality (1.2), the sharp extrapolation

theorem will return the following bounds in Lp(w), for w ∈ Ap:

‖Tf‖Lp(w) ≤ C(p)[w]
max
{

1, 1
p−1

}
Ap

‖f‖Lp(w) . (1.3)

It has been conjectured that the linear estimate holds for any Calderón-Zygmund

operator T in L2(w) . So far, it is known for only a small class of operators that the

initial linear bound in L2(w) holds and is optimal, for instance the Beurling-Ahlfors

operator [DV, PetV], the Hilbert transform [Pet2], Riesz transforms [Pet3], the mar-

tingale transform [Wi1], the square function [HukTV, Wi2], dyadic paraproduct [Be],

well localized dyadic operators [L, LPetRe, CrMP, HyLReVa], and one-dimemsinal

Calderón-Zygmund convolutions operators that are smooth averages of well localized

operators [Va]. For some of them, not for all, the extrapolation bounds are optimal

as well. For others (1.3) is optimal for 1 < p ≤ 2, but not for p > 2. For instance,

the dyadic square function Sd obeys a linear bound when p = 2 (see [Wi2]) and this

3



Chapter 1. Introduction

was extended to 1 < p < 2 by extrapolation, and examples showed that the power

1/(p − 1) is the best possible in [DGPerPet]. In [Le1], the author showed that for

p > 2 the optimal power is at most p/2(p− 1). Recently, authors in [CrMP] showed

for p = 3 the power is 1/2 and by extrapolation they got

‖Sdf‖Lp(w) ≤ C[w]
max
{

1
2
, 1
p−1

}
Ap

‖f‖Lp(w) ,

and this bound is known to be optimal. Lerner [Le2] has very recently showed that

this holds for Wilson’s intrinsic square function, see [Wil2]. A modern introduc-

tion to weighted theory presenting related problems and much more can be found

in the Lecture Notes by Carlos Perez [P4]. Most recently, in [PTV], the authors

prove that the sharp bound of an arbitrary Calderón-Zygmund operator in L2(w) is

[w]A2 log(1+[w]A2). Also, it is known that the initial linear bound in L2(w) holds for

Calderón-Zygmund operators with sufficently smooth kernels [HyLReSaUrVa]. How-

ever, there is still an open conjecture between [PTV] and [HyLReSaUrVa] involving

with smoothness levels of the kernel and dimensional constant (see [HyLReSaUrVa]).

In 2008, using Bellman function arguments, O. Beznosova proved that the dyadic

paraproduct is bounded on L2(w) with the bound that depends on [w]Ad2 and ‖b‖BMO

at most linearly. The name Paraproduct was coined by Bony, in 1981 (see [Bo]), who

used paraproducts to linearize the problem in the study of singularities of solutions

of semilinear partial differential equations. After his work, the paraproducts have

played an important role in harmonic analysis because they are examples of singular

integral operators which are not translation-invariant. But they are not only ex-

amples; every singular integral operator which is bounded on L2 decomposes into

a paraproduct, an adjoint of a paraproduct, and an operator which behaves much

like convolution operators. Moreover they arise as building blocks for more general

operators such as multipliers.

In fact, the linear bound of the dyadic paraproducts in Rn are recovered in

[HyLReVa, CrMP] using different methods in L2
Rn(w) . However, in this disserta-

4



Chapter 1. Introduction

tion, to prove the linear bound of the dyadic paraproduct in L2
Rn(w) we use the

Bellman function arguments as well as [Be]. Furthermore, it turns out that the Bell-

man function proofs allow us to obtain dimensionless linear estimates in terms of

anisotropic weight characteristic [w]AR2 .

Commutator operators are widely encountered and studied in many problems in

PDEs, and Harmonic Analysis. One classical result of Coifman, Rochberg, and Weiss

states in [CoRW] that, for the Calderón-Zygmund singular integral operator with a

smooth kernel, [b, T ]f := bT (f)− T (bf) is a bounded operator on LpRn , 1 < p <∞ ,

when b is a BMO function. Weighted estimates for the commutator have been studied

in [ABKP], [P1], [P2], and [PPra]. Note that the commutator [b, T ] is more singular

than the associated singular integral operator T , in particular, it does not satisfy the

corresponding weak (1, 1) estimate. However one can find a weaker estimate in [P2].

In 1997, C. Pérez obtained the following result concerning commutators of singular

integrals in [P2], for 1 < p <∞ ,

‖[b, T ]f‖Lp(w) ≤ C‖b‖BMO[w]2A∞‖M
2f‖Lp(w) ,

where M2 = M ◦M denotes the Hardy-Littlewood maximal function iterated twice.

With this result and Buckley’s sharp estimate for the maximal function [Bu] one can

immediately conclude that

‖[b, T ]‖Lp(w)→Lp(w) ≤ C[w]2A∞ [w]
2
p−1

Ap
‖b‖BMO .

In this dissertation we show that for T the Hilbert, Riesz, Beurling transform, for

1 < p ≤ 2 one can drop the [w]A∞ term, in the above estimate, and this is sharp

(Theorem 1.0.3). However for p > 2 , the Lp(w)-norm of [b, T ] is bounded above by

‖b‖BMOd [w]2Ap . For T = H the Hilbert transform we prove, using Bellman function

techniques similar to those used in [Be], [Pet2], the following Theorem.

Theorem 1.0.1. There exists a constant C > 0, such that

‖[b,H]‖Lp(w)→Lp(w) ≤ C‖b‖BMO[w]
2 max{1, 1

p−1
}

Ap
‖f‖Lp(w) ,

5



Chapter 1. Introduction

and this is sharp for 1 < p <∞.

Most of the work goes into showing the quadratic estimate for p = 2, sharp

extrapolation [DGPerPet] then provides the right rate of growth for p 6= 2. Our

method involves the use of the dyadic paraproduct πb and its adjoint π∗b , both of

which obey linear estimates in L2(w), see [Be], like the Hilbert transform. It also

uses Petermichl description of the Hilbert transform as an average of dyadic shift

operators S, [Pet1], and reduces the estimate to obtaining corresponding estimates

for the commutator [b, S]. After we decompose this commutator in three parts:

[b, S]f = [πb, S]f + [π∗b , S]f + [λb, S]f ,

we estimate each commutator separately. This decomposition has been used before

to analyze the commutator, [Pet1], [L], [LPetPiWic]. For precise definitions and

detail derivations, see Section 2.2.1. The first two commutators immediately give the

desired quadratic estimates in L2(w) from the known linear bounds of the operators

commuted. For the third commutator we can prove a better than quadratic bound,

in fact a linear bound. The following Theorem will be the crucial part of the proof.

Theorem 1.0.2. There exists a constant C > 0, such that

‖[λb, S]‖L2(w)→L2(w) ≤ C[w]Ad2‖b‖BMO d , (1.4)

for all b ∈ BMO d and w ∈ Ad2.

This theorem is an immediate consequence of results in [HyLReVa], [LPetRe]

and [CrMP], since the operator [λb, S] belongs to the class of Haar shift operators

for which they can prove linear bounds. We present a different proof of this re-

sult and others, using Bellman function techniques and bilinear Carleson embedding

theorems, very much in the spirit of [Pet1] and [Be]. These arguments were found

independently by the author, and we think they can be of interest.

6
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We then observe that for any Haar shift operator T as defined in [LPetRe] the

commutator [λb, T ] is again a Haar shift operator, and therefore it obeys linear

bounds in the A2-characteristic of the weight as in Theorem 1.0.2. As a conse-

quence, we obtain quadratic bounds for all commutators of Haar shift operators and

BMO function b . In particular, this holds true for Haar shift operators in Rn whose

averages recover the Riesz transforms [Pet3] and for martingale transforms in R2

whose averages recover the Beurling-Ahlfors operator [PetV], [DV]. Extrapolation

will provide Lp(w) bounds which turn out to be sharp for the Riesz transforms and

Beurling-Ahlfors operators as well. The following Theorem holds

Theorem 1.0.3. Let Tτ be the first class of Haar shift operators of index τ . Its

convex hull include the Hilbert transform, Riesz transforms, the Beurling-Ahlfors

operator and so on. Then, there exists a constant C(τ, n, p) which only depend on τ ,

n and p such that

‖[b, Tτ ]‖Lp(w)→Lp(w) ≤ C(τ, n, p)[w]
2 max{1, 1

p−1
}

Ap
‖b‖BMO

We are now ready to explain the organization of this dissertation. In Chapter

2 we will introduce notations and discuss some useful results about weighted Haar

systems. We also present our main results for the commutator and the dyadic para-

product in Chapter 2. In Chapter 3 we will introduce a number of Lemmas and

Theorems that will be used. In Chapter 4 we will prove our results about the com-

mutator of the Hilbert transform. In Chapter 5 we present the Lp(w) estimate of the

commutator with a Haar shift operator, Theorem 1.0.3. In Chapter 5 we also provide

the sharpness for the commutators of Hilbert, Riesz transforms and Beurling-Ahlfors

operators. Finally, In Chapter 6 we will prove our results about the multivariable

dyadic paraproduct.

7



Chapter 2

Preliminaries

Let us now introduce the notation which will be used frequently through this dis-

sertation. Even though the Ap conditions have already been introduced in (1.1), we

will state the special case of this condition when p = 2 , namely Ad2 since we will

refer repeatedly to this. A weight w, which is positive almost everywhere and locally

integrable function defined on R , belongs to Ad2 class if

[w]Ad2 := sup
I∈D
〈w〉I〈w−1〉I <∞ . (2.1)

Here we take the supremum over all dyadic interval in R . Note that if w ∈ A2 then

w ∈ Ad2 and [w]Ad2 ≤ [w]A2 . Intervals of the form [k2−j, (k + 1)2−j) for integers j, k

are called dyadic intervals. Let us denote D the collection of all dyadic intervals, and

let us denote D(J) the collection of all dyadic subintervals of J . We use the symbol

〈·, ·〉 for the standard inner product, that is

〈f, g〉 =

∫
fg .

Given a weight w in R a measurable function f belongs to LpR(w), 1 < p <∞ , if

‖f‖Lp(w) :=

(∫
|f(x)|pw(x) dx

)1/p

<∞ .

8



Chapter 2. Preliminaries

Through out this dissertation, we denote a constant by c or C which may change

line by line and we keep indicating its dependence on various parameters using a

parenthesis, e.g. C(n, p) will mean a constant depending on the dimension n and on

the parameter p .

2.1 Haar systems in R

For any interval I, there is a Haar function defined by

hI(x) =
1

|I|1/2
(χI+(x)− χI−(x)) ,

where χI denotes the characteristic function of the interval I , χI(x) = 1 if x ∈ I ,

χI(x) = 0 otherwise, and I± are the right and left halves of I . It is a well known

fact that the Haar system {hI}I∈D is an orthonormal system in L2
R . In fact, the

Haar system was introduced by Alfréd Haar, in 1909, to see the existence of an

orthonormal system for L2[0, 1], so that convergence will be uniform for continuous

functions. It is also now known as the first wavelet.

We also consider the different grids of dyadic intervals parametrized by α, r,

defined by

D α,r = {α + rI : I ∈ D} ,

for α ∈ R and positive r . For each grid D α,r of dyadic intervals, there are corre-

sponding Haar functions hI , I ∈ D α,r that are an orthonormal system in L2
R . Let

us introduce a proper orthonormal system for L2
R(w) . The weighted or disbalanced

Haar function associated to an interval I and a weight w is

hwI :=
1

w(I)1/2

[
w(I−)1/2

w(I+)1/2
χI+ −

w(I+)1/2

w(I−)1/2
χI−

]
,

where w(I) =
∫
I
w . We define the weighted inner product by 〈f, g〉w =

∫
fgw . Then,

9



Chapter 2. Preliminaries

every function f ∈ L2(w) can be written as

f =
∑
I∈D

〈f, hwI 〉whwI ,

where the sum converges a.e. in L2(w) . Moreover,

‖f‖2
L2(w) =

∑
I∈D

|〈f, hwI 〉w|2 . (2.2)

Again D can be replaced by D α,r and the corresponding weighted Haar functions are

an orthonormal system in L2(w) . For convenience we will observe basic properties of

the disbalanced Haar system. First observe that 〈hK , hwI 〉w could be non-zero only if

I ⊇ K, moreover, for any I ⊇ K,

|〈hK , hwI 〉w| ≤ 〈w〉
1/2
K . (2.3)

Here is the the calculation that provides (2.3),

|〈hK , hwI 〉w| =
∣∣∣∣ ∫ χK+(x)− χK−(x)

|K|1/2w(I)1/2

[
w(I−)1/2

w(I+)1/2
χI+(x)− w(I+)1/2

w(I−)1/2
χI−(x)

]
w(x)dx

∣∣∣∣
≤ 1

|K|1/2w(I)1/2

∫
K

∣∣∣∣w(I−)1/2

w(I+)1/2
χI+(x) +

w(I+)1/2

w(I−)1/2
χI−(x)

∣∣∣∣w(x)dx︸ ︷︷ ︸
A

.

If K ⊂ I+, then A ≤ w(I−)1/2w(I+)−1/2w(K). Thus

|〈hK , hwI 〉w| ≤ 〈w〉
1/2
K

√
w(K)w(I−)

w(I+)w(I)
≤ 〈w〉1/2K .

Similarly, if K ⊂ I− . If K = I, then A ≤ 2w(K−)1/2w(K+)1/2 . Thus

|〈hK , hwI 〉w| = |〈hK , hwK〉w| ≤ 〈w〉
1/2
K

2
√
w(K−)w(K+)

w(K)
≤ 〈w〉1/2K .

Estimate (2.3) implies that |〈hĴ , hw
−1

Ĵ
〉w−1〈hJ , hwJ 〉w| ≤

√
2[w]

1/2

Ad2
, where Ĵ is the

parent of J ,

|〈hĴ , h
w−1

Ĵ
〉w−1〈hJ , hwJ 〉w| ≤ 〈w−1〉1/2

Ĵ
〈w〉1/2J = 〈w−1〉1/2

Ĵ

(
1

|J |

∫
J

w

)1/2

= 〈w−1〉1/2
Ĵ

(
2

|Ĵ |

∫
J

w

)1/2

≤
√

2〈w−1〉1/2
Ĵ
〈w〉1/2

Ĵ

≤
√

2 [w]
1/2

Ad2
. (2.4)

10



Chapter 2. Preliminaries

Also, one can deduce similarly the following estimate

|〈hJ , hw
−1

J 〉w−1〈hJ− , hwJ 〉w| ≤
√

2[w]
1/2

Ad2
. (2.5)

For I ) J , hwI is constant on J . We will denote this constant by hwI (J) . Then hw
Ĵ

(J)

is the constant value of hw
Ĵ

on J and |hw
Ĵ

(J)| ≤ w(J)−1/2 , as can be seen by the

following estimate,

|hw
Ĵ

(J)| =

 w(Ĵ−)1/2w(Ĵ)−1/2w(Ĵ+)−1/2 ≤ w(J)−1/2 if J = Ĵ+

w(Ĵ+)1/2w(Ĵ)−1/2w(Ĵ−)−1/2 ≤ w(J)−1/2 if J = Ĵ− .
(2.6)

Let us define the weighted averages, 〈g〉J,w := w(J)−1
∫
J
g(x)w(x)dx . As with the

standard Haar system, we can write the weighted averages

〈g〉J,w =
∑

I∈D:I)J

〈g, hwI 〉whwI (J) . (2.7)

In fact, here is the derivation of (2.7).

〈g〉J,w =
1

w(J)

∫
J

∑
I∈D

〈g, hwI 〉whwI (x)w(x)dx =
1

w(J)

∫
J

∑
I∈D:I)J

〈g, hwI 〉whwI (J)w(x)dx

=
1

w(J)

∫
J

w(x)dx
∑

I∈D:I)J

〈g, hwI 〉whwI (J) =
∑

I∈D:I)J

〈g, hwI 〉whwI (J) .

Also, we will be using system of functions {Hw
I }I∈D defined by

Hw
I = hI

√
|I| − AwI χI where AwI =

〈w〉I+ − 〈w〉I−
2〈w〉I

. (2.8)

Then, {w1/2Hw
I } is orthogonal in L2 with norms satisfying the inequality

‖w1/2Hw
I ‖L2 ≤

√
|I|〈w〉I ,

refer to [Be] or Section 2.2, where the calulation is performed for corresponding

system in Rn defined in (2.14). Moreover, by Bessel’s inequality we have, for all

g ∈ L2 , ∑
I∈D

1

| I|〈w〉I
〈g, w1/2Hw

I 〉2 ≤ ‖g‖2
L2 . (2.9)

11
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Since unconditional bases provide an efficient way to represent an arbitrary func-

tion in terms of known functions, it is very useful concept in functional analysis. It

is a well known fact that the Haar system generates an unconditional basis in Lp

for 1 < p < ∞ . We refer to [Wo] for more detailed statements. The authors in

[CoJS] showed that the weighted Haar system forms an unconditional basis on L2 ,

and it was shown in [TV] that if the weight w satisfies the A2-condition then the

unweighted Haar system generates an unconditional basis on L2(w) . Through out

the dissertation, there are many manipulations with infinite sums associated with

Haar functions. However, those manipulations are legitimate because Haar systems

used in this dissertation are unconditional bases on corresponding function spaces.

2.2 Haar systems in Rn

In this dissertation, the result of [Be] will generalize to the setting of Rn (Theorem

2.4.4 and Theorem 2.4.5). Thus, we need to introduce the appropriate n-dimensional

Haar systems. We will denote the family of dyadic cubes in Rn by Dn . For any

Q ∈ Dn , we set Dn1 (Q) ≡ {Q′ ∈ Dn : Q′ ⊂ Q, `(Q′) = `(Q)/2} , the class of 2n

dyadic sub-cubes of Q , where we denote the side length of cubes by `(Q) . We will

also denote the class of all dyadic sub-cubes of Q by Dn(Q). Then we can write

Dn(Q) =
⋃∞
j=0Dnj (Q) . We refer to [Wil1] for the following lemma.

Lemma 2.2.1. Let Q ∈ Dn. Then, there are 2n−1 pairs of sets {(E1
j,Q, E

2
j,Q)}j=1,...,2n−1

such that:

(1) for each j ,
∣∣E1

j,Q

∣∣ =
∣∣E2

j,Q

∣∣ .
(2) for each j , E1

j,Q and E2
j,Q are non-empty unions of cubes from Dn1 (Q);

(3) for each j , E1
j,Q ∩ E2

j,Q = ∅;

12
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(4) for every j 6= k, one of the following must hold:

(a) E1
j,Q ∪ E2

j,Q is entirely contained in either E1
k,Q or E2

k,Q;

(b) E1
k,Q ∪ E2

k,Q is entirely contained in either E1
j,Q or E2

j,Q;

(c)
(
E1
j,Q ∪ E2

j,Q

)
∩
(
E1
k,Q ∪ E2

k,Q

)
= ∅ .

We can construct such a set by induction on n . It is clear when n = 1 . We assume

that Lemma 2.2.1 is true for n − 1 and let Q̃ be the (n − 1)-dimensional cube and{
(E1

j, eQ, E2
j, eQ)
}
j=1,...,2n−1−1

be the corresponding pairs of sets for Q̃ . We can get the

first pair of sets by (E1
1,Q, E

2
1,Q) := (Q̃ × I−, Q̃ × I+) where I is a dyadic interval so

that |I| = `(Q̃) , and Q̃× I = Q . We also have the last 2n−2 pairs of sets as follows.

{(E1
2j,Q,E

2
2j,Q), (E1

2j+1,Q, E
2
2j+1,Q)}j=1,...,2n−1−1

:=
{

(E1
j, eQ × I−, E2

j, eQ × I−), (E1
j, eQ × I+, E

2
j, eQ × I+)

}
j=1,...,2n−1−1

.

To save space, we denote E1
j,Q ∪ E2

j,Q by Ej,Q and, by (1) in Lemma 2.2.1, we have

|Ej,Q| = 2|Ei
j,Q| for i = 1, 2 . Note that the sets Ej,Q are rectangles. Also note that

we assign E1,Q = Q , E2,Q = E1
1,Q and E3,Q = E2

1,Q and so on. With such a choice,

we have

Q = E1,Q = E1
1,Q ∪ E2

1,Q

= E2,Q ∪ E3,Q

= (E4,Q ∪ E6,Q) ∪ (E5,Q ∪ E7,Q)

...

= E2n−1,Q ∪ E2n−1+1,Q ∪ · · · ∪ E2n−1,Q

= E1
2n−1,Q ∪ E2

2n−1,Q ∪ E1
2n−1+1,Q ∪ E2

2n−1+1,Q ∪ · · · ∪ E1
2n−1,Q ∪ E2

2n−1,Q ,

in fact,

Q =
2k−1⋃
j=2k

Ej,Q =
2k−1⋃
j=2k

(E1
j,Q ∪ E2

j,Q) ,

13
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the sets Ej,Q in that range of j’s are disjoint, and

Dn1 (Q) = {E1
2n−1,Q , E

2
2n−1,Q , E

1
2n−1+1,Q , E

2
2n−1+1,Q , ... , E

1
2n−1,Q , E

2
2n−1,Q} .

As a consequence of Lemma 2.2.1, we can introduce the proper weighted Haar

system for L2
Rn(w) , {hwj,Q}1≤j≤2n−1,Q∈Dn , where

hwj,Q :=
1√

w
(
Ej,Q

)
[√

w
(
E1
j,Q

)
w
(
E2
j,Q

)χE2
j,Q
−

√
w
(
E2
j,Q

)
w
(
E1
j,Q

)χE1
j,Q

]
.

Note that when n = 1, this reduces to the one dimensional disbalanced Haar system.

Due to its construction, hwj,Q’s satisfy that∫
hwj,Q(x)w(x)dx = 0 , for all j , (2.10)

and ∫
hwj,Q(x)hwi,Q(x)w(x)dx = δij , for all i and j . (2.11)

Then, every function f ∈ L2
Rn(w) can be written as

f =
∑
Q∈Dn

2n−1∑
j=1

〈f, hwj,Q〉whwj,Q .

Moreover,

‖f‖2
L2

Rn (w) =
∑
Q∈Dn

2n−1∑
j=1

|〈f, hwj,Q〉w|2 .

For better understanding, we now observe the example of 2-dimensional case. Let

us consider the dyadic box Q = I × J ∈ D2 as the figure below, in this case Q̃ = J ,

the 2− 1 = 1 dimensional cube in the construction.

Q1Q2

Q3 Q4︸ ︷︷ ︸
I

J

14
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Then, there are three pairs of sets

{
(Q3 ∪Q4, Q1 ∪Q2), (Q3, Q4), (Q2, Q1)

}
,

and three weighted Haar functions associated with Q

hw1,Q =
1√
w(Q)

[√
w(Q3 ∪Q4)

w(Q1 ∪Q2)
χQ1∪Q2 −

√
w(Q1 ∪Q2)

w(Q3 ∪Q4)
χQ3∪Q4

]

hw2,Q =
1√

w(Q3 ∪Q4)

[√
w(Q3)

w(Q4)
χQ4 −

√
w(Q4)

w(Q3)
χQ3

]

hw3,Q =
1√

w(Q1 ∪Q2)

[√
w(Q2)

w(Q1)
χQ1 −

√
w(Q2)

w(Q1)
χQ2

]
.

One can easily see that the functions hwj,Q, j = 1, 2, 3 , satisfy (2.10).∫
hw1,Q h

w
2,Qwdx

=
1√

w(Q)
√
w(Q3 ∪Q4)

√
w(Q1 ∪Q2)

w(Q3 ∪Q4)

(∫
Q3

√
w(Q4)

w(Q3)
wdx−

∫
Q4

√
w(Q3)

w(Q4)
wdx

)

=
1√

w(Q)
√
w(Q3 ∪Q4)

√
w(Q1 ∪Q2)

w(R3 ∪Q4)

(√
w(Q4)w(Q3)−

√
w(Q3)w(Q4)

)
= 0 .

Similarly, one can check the other cases of (2.11).

With the particular choice of w ≡ 1 , set hj,Q = h1
j,Q , the family {hj,Q : Q ∈

Dn, 1 ≤ j ≤ 2n − 1} is an orthonormal system for L2
Rn and complete. Again, for all

f ∈ L2
Rn , we have

‖f‖2
L2

Rn
=
∑
Q∈Dn

2n−1∑
j=1

|〈f, hj,Q〉|2 .

For all Q′ ∈ Dn1 (Q) , the hj,Q’s and hwj,Q’s are constant on Q′ , we will also denote this

constant by hj,Q(Q′) and hwj,Q(Q′) respectively. As in the one dimensional weighted

15
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Haar system (2.7), we can obtain the weighted average of f over Ej,Q for some

1 ≤ j ≤ 2n − 1,

〈f〉Ej,Q,w =
1

w(Ej,Q)

∫
Ej,Q

∑
Q′∈Dn

2n−1∑
i=1

〈f, hwi,Q′〉hwi,Q′(x)w(x)dx

=
1

w(Ej,Q)

(∫
Ej,Q

∑
Q′∈Dn:Q′)Q

∑
i:Ei,Q)Ei,Q

〈g, hwi,Q′〉hwi,Q′(Ej,Q)w(x)dx

+

∫
Ej,Q

∑
i:Ei,Q)Ej,Q

〈g, hwi,Q′〉hwi,Q′(Ej,Q)w(x)dx

)

=
∑

Q′∈Dn:Q′)Q

2n−1∑
i=1

〈g, hwi,Q′〉hwi,Q′(Ej,Q) +
∑

i:Ei,Q)Ej,Q

〈g, hwi,Q′〉hwi,Q′(Ej,Q)

=
∑

Q′∈Dn:Q′⊇Q

∑
i:Ei,Q′)Ej,Q

〈g, hi,Q′〉hi,Q′(Ej,Q) . (2.12)

Furthermore, for j = 1, E1,Q = Q, we have

〈f〉E1,Q,w = 〈f〉Q,w =
∑

Q′∈Dn:Q′)Q

2n−1∑
j=1

〈f, hwj,Q′〉whwj,Q′(Q) . (2.13)

Because it is occasionally more convenient to deal with simpler functions, it might

be good to have an orthogonal system in L2
Rn(w), similar to the one dimensional case

defined in (2.8). Let us define

Hw
j,Q := hj,Q

√∣∣Ej,Q∣∣− Awj,Q χEj,Q , (2.14)

where

Awj,Q :=
〈w〉E2

j,Q
− 〈w〉E1

j,Q

2〈w〉Ej,Q
.

Then, the family of functions {w1/2Hw
j,Q}j,Q is an orthogonal system for L2

Rn with

norms satisfying the inequality ‖w1/2Hw
j,Q‖L2

Rn
≤
√∣∣Ej,Q∣∣〈w〉Ej,Q . In order to see the

orthogonality, it is enough to check that each function has zero mean with respect

16
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to the measure induced by the weight w, i.e. wdx ,

∫
Hw
j,Q(x)w(x)dx =

√∣∣Ej,Q∣∣ ∫ hj,Q(x)w(x)dx−
∫
Ej,Q

Awj,Qw(x)dx

=

∫
E2
j,Q

w(x)dx−
∫
E1
j,Q

w(x)dx−
∣∣Ej,Q∣∣

2

(
〈w〉E2

j,Q
− 〈w〉E1

j,Q

)
=

∫
E2
j,Q

w(x)dx−
∫
E1
j,Q

w(x)dx−
∫
E2
j,Q

w(x)dx+

∫
E1
j,Q

w(x)dx = 0 .

Moreover,

‖w1/2Hw
j,Q‖2

L2
Rn

= ‖Hw
j,Q‖2

L2
Rn (w) =

∫ (
Hw
j,Q(x)

)2
w(x)dx

=
∣∣Ej,Q∣∣ ∫ (hj,Q(x)

)2
w(x)dx+

∫
Ej,Q

(
Awj,Q

)2
w(x)dx

− 2
√∣∣Ej,Q∣∣ ∫

Ej,Q

hj,Q(x)Awj,Qw(x)dx

=

∫
Ej,Q

w(x)dx+
∣∣Ej,Q∣∣

(
〈w〉E2

j,Q
− 〈w〉E1

j,Q

)2

4〈w〉Ej,Q
−
∣∣Ej,Q∣∣

(
〈w〉E2

j,Q
− 〈w〉E1

j,Q

)2

2〈w〉Ej,Q

=
∣∣Ej,Q∣∣(〈w〉Ej,Q −

(
〈w〉E2

j,Q
− 〈w〉E1

j,Q

)2

4〈w〉Ej,Q

)
≤
∣∣Ej,Q∣∣〈w〉Ej,Q .

By Bessel’s inequality in L2
Rn one gets, for all g ∈ L2

Rn ,

∑
Q∈Dn

2n−1∑
j=1

〈gw1/2, Hw
j,Q〉2

|Ej,Q| 〈w〉Ej,Q
≤ ‖g‖2

L2
Rn
. (2.15)

Then by setting g = fw1/2 in (2.15) one gets, for all f ∈ L2
Rn(w) ,

∑
Q∈Dn

2n−1∑
j=1

〈f,Hw
j,Q〉2w

|Ej,Q|〈w〉Ej,Q
≤ ‖f‖2

L2
Rn

(w) . (2.16)
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2.3 The commutator: Hilbert transform case

A basic example which lies at the source of the theory of singular integrals is given

by the Hilbert transform. The Hilbert transform of a function f(y) is given formally

by the principal value integral

H(f) := p.v.
1

π

∫
f(y)

x− y
dy = lim

ε→0

∫
|x−y|>ε

f(y)

x− y
dy .

The bilinear operator

fH(g) +H(f)g

maps L2 × L2 into H1, here H is the Hilbert transform and H1 is the real Hardy

space defined by

H1(R) := {f ∈ L1(R) : Hf ∈ L1(R)}

with norm

‖f‖H1 = ‖f‖L1 + ‖Hf‖L1 .

The dual of H1 is BMO. This is the celebrated Fefferman-Stein duality Theorem

[FS], we define BMO after Definition 2.3.1. Thus we will pair with a BMO function

b . Using that H∗ = −H, we obtain that

〈 fH(g) +H(f)g, b 〉 = 〈 f, H(g)b−H(gb) 〉 .

Hence the operator g 7→ H(g)b −H(gb) should be L2 bounded. For more detail we

refer [G]. This expression H(g)b − H(gb) is called the commutator of H with the

BMO function b . More generally, we define as follows.

Definition 2.3.1. The commutator of the Hilbert transform H with a function b is

defined as

[b,H](f) = bH(f)−H(bf) .

18
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Our main concern in this dissertation is to prove that the commutator [b,H] , for

b ∈ BMO , as an operator from L2
R(w) into L2

R(w) is bounded by the square of the

A2-characteristic, [w]A2 , of the weight times the BMO norm, ‖b‖BMO , of b where

‖b‖BMO := sup
I

1

| I|

∫
I

| b(x)− 〈b〉I |dx .

The supremum is taken over all intervals in R . Note that when we restrict the

supremum to dyadic intervals this will define BMO d and we denote this dyadic

BMO norm by ‖ · ‖BMO d . We now state our main results.

Theorem 2.3.2. There exists C such that for all w ∈ A2 ,

‖[b,H]‖L2(w)→L2(w) ≤ C[w]2A2
‖b‖BMO ,

for all b ∈ BMO .

Once we have boundedness and sharpness for the crucial case p = 2, we can carry

out the power of the Ap-characteristic, for any 1 < p <∞ , using the sharp extrapo-

lation theorem [DGPerPet] to obtain Theorem 1.0.1. Furthermore, an example of C.

Pérez [P3] shows this quadratic power is sharp. In [Pet1], S. Petermichl showed that

the norm of the commutator of the Hilbert transform is bounded by the supremum

of the norms of the commutator of certain shift operators. This result follows after

writing the kernel of the Hilbert transform as a well chosen average of certain dyadic

shift operators discovered by Petermichl. More precisely, S. Petermichl showed there

is a non zero constant C such that

‖[b,H]‖ ≤ C sup
α,r
‖[b, Sα,r]‖ , (2.17)

where the dyadic shift operator Sα,r is defined by

Sα,rf =
∑
I∈Dα,r

〈f, hI〉(hI− − hI+) .
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Petermichl [Pet2] showed that shift operator obeys a linear bound in L2(w)

‖Sf‖L2(w) ≤ C[w]Ad2‖f‖L2(w) , (2.18)

similar result holds for Sα,r , where C is independent of the dyadic intervals used.

Let us consider a compactly supported b ∈ BMO d and f ∈ L2 . Expanding b and

f in the Haar system associated to the dyadic intervals D ,

b(x) =
∑
I∈D

〈b, hI〉hI(x), f(x) =
∑
J∈D

〈f, hJ〉hJ(x) ;

formally, we get the multiplication of b and f to be broken into three terms,

bf = π∗b (f) + πb(f) + λb(f) , (2.19)

where πb is the dyadic paraproduct, π∗b is its adjoint and λb(·) = π(·)b , defined as

follows

π∗b (f)(x) :=
∑
I∈D

〈b, hI〉〈f, hI〉h2
I(x) ,

πb(f)(x) :=
∑
I∈D

〈b, hI〉〈f〉IhI(x) ,

λb(f)(x) :=
∑
I∈D

〈b〉I〈f, hI〉hI(x) .

It is an exercise to verify that the sum of these three terms returns formally the

product bf . You can see the detailed proof of the n-dimensional analogue of this

decomposition in p. 25. Thus, we have

[b, S] = [π∗b , S] + [πb, S] + [λb, S] , (2.20)

where

S(f) =
∑
I∈D

〈f, hI〉(hI− − hI+)

and we can estimate each term separately. Notice that both πb and π∗b are bounded

operators in Lp(w) for b ∈ BMO [Be], despite the fact that multiplication by b is
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a bounded operator in Lp(w) only when b is bounded (L∞) . Therefore, λb can not

be a bounded operator in Lp(w) . However [λb, S] will be bounded on Lp(w) and

will be better behaved than [b, S] . Decomposition (2.20) was used to analyze the

commutator with the shift operator first by Petermichl in [Pet1], but also Lacey

in [L] and authors in [LPetPiWic] to analyze the iterated commutators. Since all

estimates are independent on the dyadic grid, through out this dissertation we only

deal with the dyadic shift operator S associated to the standard dyadic grid D .

For a single shift operator the hypothesis required on b and w are that they belong

to dyadic BMO d and Ad2 with respect to the underlying dyadic grid defining the

operator. However since ultimately we want to average over all grids, we will need b

and w belonging to BMO d and Ad2 for all shifted and scaled dyadic grids, that we

will have if b ∈ BMO and w ∈ A2 , non-dyadic BMO and A2 . Beznosova has proved

linear bounds for πb and π∗b , [Be],

‖πbf‖L2(w) ≤ C[w]Ad2‖b‖BMOd‖f‖L2(w)

together with Petermichl’s (2.18) linear bounds for S , [Pet2], this immediately pro-

vides the quadratic bounds for [πb, S] and [π∗b , S]. Theorem 2.3.2 will be proved once

we show the quadratic estimate holds for [λb, S]. We can actually obtain a better

linear estimate as in Theorem 1.0.2. Some terms in (2.20) do also obey linear bounds.

Theorem 2.3.3. There exists C such that

‖π∗bS‖L2(w) + ‖Sπb‖L2(w) ≤ C[w]Ad2‖b‖BMOd .

for all b ∈ BMOd .

Note the three operators [λb, S] , π∗bS and Sπb are generalized Haar shift operators

for which there are now two different proofs of linear bounds on L2(w) with respect

to [w]Ad2 , [LPetRe] and [CrMP], and in this dissertation we present a third proof.
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2.4 The dyadic paraproduct

For the locally integrable functions b and f , the dyadic paraproduct is defined by

π(b, f) :=
∑
I∈D

〈b, hI〉〈f〉IhI ,

on the real line. Thus the dyadic paraproduct is a bilinear operation. It is now

well known fact that the dyadic paraproduct is bounded on Lp if b ∈ BMOd (see

[Per1]). Thus, after we fix b in BMOd, we consider π(b, f) as a linear operator acting

on f and we write πb(f) for this linear operator. The question (1.2) for the dyadic

paraproduct was solved in [Be] by Beznosova and it is now known that the linear

estimate holds for the dyadic paraproduct in L2(w) .

Theorem 2.4.1 (O. Beznosova). The norm of dyadic paraproduct on the weighted

Lebesgue space L2
R(w) is bounded from above by a constant multiple of the product of

the Ad2-characteristic of the weight w and the BMO d norm of b.

One of main contribution of this dissertation is to extend Theorem 2.4.1 to the

multivariable setting in the spirit of [Be], that is using Bellman function arguments.

This allows to establish the dimension free estimates in terms of anisotropic weight

characteristic. Thus we need to consider the class of anisotropic A2-weights and the

class of anisotropic BMO functions which are defined as follows.

Definition 2.4.2. A locally integrable and positive almost everywhere function w

on the space Rn belongs to class of ARp weights, 1 < p <∞ if

[w]ARp := sup
R
〈w〉R〈w−1/(p−1)〉p−1

R <∞ ,

where the supremum is taken over all rectangles R ⊂ Rn with sides parallel to the

coordinate axes.

Definition 2.4.3. A locally integrable function on Rn belongs to BMOR if

‖b‖BMOR := sup
R

1

|R|

∫
R

| b(x)− 〈b〉R| dx <∞ ,
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where the supremum runs over all rectangles R ⊂ Rn with sides parallel to the

coordinate axes.

Since a cube is a particular case of a rectangle, it is easy to observe that ‖b‖BMO ≤

‖b‖BMOR . Thus, BMO ⊃ BMOR when n ≥ 2 . In [K], the example

b(x) =
∞∑
k=1

χ[0,2−k+1]×[0,1/k](x), x = (x1, x2) ∈ R2

was presented which is in BMO(R2) but not in BMOR(R2) . For more details, see

[K] which include the John-Nirenberg inequality, the Muckenhoupt embedding for

the anisotropic weights and more.

As well as in the one dimensional case, one can define

‖b‖BMOdRn
:= sup

Q∈Dn

1

|Q|

∫
Q

|b(x)− 〈b〉Q|dx , (2.21)

for a locally integrable function on Rn . The function b is said to have dyadic bounded

mean oscillation if ‖b‖BMOdRn
<∞ , and we denote the class of all locally integrable

functions b on Rn with dyadic bounded mean oscillation by BMOd
Rn . Notably one

can replace (2.21) by

‖b‖2
BMOdRn

= sup
Q∈Dn

1

|Q|
∑

Q∈Dn(Q)

2n−1∑
j=1

|〈b, hj,Q〉|2 . (2.22)

In the anisotropic case, it is known that the John-Nirenberg inequality holds for all

b ∈ BMOR and any rectangle R ⊂ Rn ,

|{x ∈ R | | b(x)− 〈b〉R| > λ}| ≤ e1+2/e|R| exp

(
− 2/e

‖b‖BMOR
λ

)
, λ > 0 . (2.23)

Note that the John-Nirenberg inequality is dimensionless in the anisotropic case. As

an easy consequence of (2.23), we have a self improving property for the anisotropic
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BMO class. For any rectangle R ∈ Rn , there exists a constant C(p) independent of

the dimension n such that(
1

|R|

∫
R

| b(x)− 〈b〉R|pdx
)1/p

≤ C(p) ‖b‖BMOR . (2.24)

One can easily check that∫
Ei,Q′

| b(x)− 〈b〉Ei,Q′ |
2dx =

∫
Ei,Q′

b2(x)dx− |Ei,Q′ |〈b〉2Ei,Q′ .

Then∫
Ei,Q′

| b(x)− 〈b〉Ei,Q′ |
2dx− |〈b, hi,Q′〉|2

=

∫
Ei,Q′

b2(x)dx− |Ei,Q′ |〈b〉2Ei,Q′ −
|Ei,Q′|

4

(
〈b〉E2

i,Q′
− 〈b〉E1

i,Q′

)2

=

∫
Ei,Q′

b2(x)dx− |Ei,Q
′|

4

(
〈b〉E1

i,Q′
+ 〈b〉E2

i,Q′

)2

− |Ei,Q
′ |

4

(
〈b〉E2

i,Q′
− 〈b〉E1

i,Q′

)2

=

∫
Ei,Q′

b2(x)dx− |Ei,Q
′|

2

(
〈b〉2E1

i,Q′
+ 〈b〉2E2

i,Q′

)
=

∫
E1
i,Q′

b2(x)dx− |E1
i,Q′ |〈b〉2E1

i,Q′
+

∫
E2
i,Q′

b2(x)dx− |E2
i,Q′ |〈b〉2E2

i,Q′

=

∫
E1
i,Q′

| b(x)− 〈b〉E1
i,Q′
|2dx+

∫
E2
i,Q′

| b(x)− 〈b〉E2
i,Q′
|2dx .

By iterating this process, one gets∫
Ei,Q′

| b(x)− 〈b〉Ei,Q′ |
2dx =

∑
Q∈Dn(Q′)

∑
j:Ej,Q(Ej,Q′

|〈b, hj,Q〉|2 .

Note that the sets Ei,Q′ are rectangles. Using the self improving property (2.24), we

have, for i = 1, ..., 2n − 1, Q′ ∈ Dn

1

|Ei,Q′|
∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈b, hj,Q〉2 ≤ C‖b‖2
BMOR . (2.25)

We now define the multivariable dyadic paraproduct. As we have seen in (2.19)

the product of two square integrable functions can be written as the sum of two
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dyadic paraproducts and a diagonal term in a single variable case. Moreover, the

diagonal term is the adjoint of one dyadic paraproduct i.e. for all f, g ∈ L2
R ,

fg = π∗g(f) + πg(f) + λg(f) . (2.26)

Thus, we expect to have analogous decomposition. Let us assume that f, g ∈ L2
Rn .

Expanding f and g in the Haar system,

f =
∑
Q∈Dn

2n−1∑
j=1

〈f, hj,Q〉hj,Q , g =
∑
Q′∈Dn

2n−1∑
i=1

〈g, hi,Q′〉hi,Q′

and multiplying these sums formally we can get

f(x)g(x) =
∑
Q∈Dn

2n−1∑
j=1

∑
Q′∈Dn

2n−1∑
i=1

〈f, hj,Q〉〈g, hi,Q′〉hj,Q(x)hi,Q′(x) = (I) + (II) + (III) .

Here, (I) is the diagonal term Q′ = Q, j = i;

(I) =
∑
Q∈Dn

2n−1∑
j=1

〈f, hj,Q〉〈g, hj,Q〉h2
j,Q(x) =

∑
Q∈Dn

2n−1∑
j=1

〈f, hj,Q〉〈g, hj,Q〉
χEj,Q(x)∣∣Ej,Q∣∣ . (2.27)

The second term (II) is the upper triangle term corresponding to those Q′ ) Q, all

i, j and Q′ = Q so that Ei,Q′ ) Ej,Q.

(II) =
∑
Q∈Dn

2n−1∑
j=1

( ∑
Q′∈Dn:Q′)Q

2n−1∑
i=1

〈f, hj,Q〉〈g, hi,Q′〉hi,Q′(x)hj,Q(x)

+
∑
Q′=Q

∑
i:Ei,Q′)Ej,Q

〈f, hj,Q〉〈g, hi,Q′〉hi,Q′(x)hj,Q(x)

)

=
∑
Q∈Dn

2n−1∑
j=1

∑
Q′∈Dn:Q′⊇Q

∑
i:Ei,Q′)Ej,Q

〈f, hj,Q〉〈g, hi,Q′〉hi,Q′(Ej,Q)hj,Q(x)

=
∑
Q∈Dn

2n−1∑
j=1

〈f, hj,Q〉〈g〉Ej,Qhj,Q(x) , (2.28)

where hi,Q′(Ej,Q) = hi,Q′(x) for x ∈ Ej,Q . In the second equality we used formula

(2.12) for the average of g on Ej,Q . Similarly, the third term is the lower triangle
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corresponding to those Q′ ( Q, all i, j and Q′ = Q so that Ei,Q ( Ej,Q .

(III) =
∑
Q∈Dn

2n−1∑
j=1

( ∑
Q′∈Dn:Q′(Q

2n−1∑
i=1

〈f, hj,Q〉〈g, hi,Q′〉hi,Q′(x)hj,Q(x)

+
∑
Q′=Q

∑
i:Ei,Q′(Ej,Q

〈f, hj,Q〉〈g, hi,Q′〉hi,Q′(x)hj,Q(x)

)

=
∑
Q∈Dn

2n−1∑
j=1

〈g, hj,Q〉〈f〉Ej,Qhj,Q(x) . (2.29)

If we consider the sum (2.27) as an operator acting on f, then we can easily check

that (III) is its adjoint operator, in fact, here is the derivation.〈 ∑
Q∈Dn

2n−1∑
j=1

〈g, hj,Q〉〈f, hj,Q〉
χEj,Q∣∣Ej,Q∣∣ , ∑R∈Dn

2n−1∑
i=1

〈q, hi,R〉hi,R
〉

=
∑
Q∈Dn

2n−1∑
j=1

∑
R∈Dn

2n−1∑
i=1

〈f, hj,Q〉〈g, hj,Q〉〈q, hi,R〉
〈χEj,Q , hi,R〉∣∣Ej,Q∣∣

=
∑
Q∈Dn

2n−1∑
j=1

〈f, hj,Q〉〈g, hj,Q〉
∑

R∈Dn:R⊇Q

∑
i:Ei,R)Ej,Q

〈q, hi,R〉hi,R(Ej,Q)

=

〈
f,
∑
Q∈Dn

2n−1∑
j=1

〈g, hj,Q〉〈q〉Ej,Qhj,Q
〉
.

We now can define the multivariable dyadic paraproduct by pairing the dyadic BMO

function. In Rn, the dyadic paraproduct is an operator πb , given by

πbf(x) =
∑
Q∈Dn

2n−1∑
j=1

〈f〉Ej,Q〈b, hj,Q〉hj,Q(x) . (2.30)

Note that the construction of the Haar systems are not unique. One can actually

construct different Haar systems [DPetV]. Furthermore, the dyadic paraproduct

depends on the choice of the Haar functions. Thus, one can establish the different

dyadic paraproducts associated with different Haar functions. But the decomposition

(2.26) holds for all of them. To close this chapter, we state our main results for the

dyadic paraproduct.
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Theorem 2.4.4. For 1 < p < ∞ there exists a constant C(n, p) only depending on

p and dimension n such that for all weights w ∈ Adp and b ∈ BMOd
Rn

‖πb‖LpRn (w)→LpRn (w) ≤ C(n, p)[w]
max{1, 1

p−1
}

Adp
‖b‖BMOdRn

.

Theorem 2.4.5. There exists a constant C which doesn’t depend on the dimensional

constant such that for all weight w ∈ AR2 and b ∈ BMOR
Rn

‖πb‖L2
Rn (w)→L2

Rn (w) ≤ C [w]AR2 ‖b‖BMORRn
.

The proofs for both Theorems are presented in Chapter 7, and they only depend

on the results presented in Charter 3.

We will finish this Chapter by including a comparison to the standard tensor

product Haar basis in Rn, {hsσ,Q}, with the Haar basis introduced in Section 2.2 and

associated paraproducts. Let us denote the Haar function associated with a dyadic

interval I ∈ D by h0
I = | I|−1/2(χI+ − χI−) and normalized characteristic functions

h1
I = | I|−1/2χI . Here 0 stands for mean value zero and 1 for the indicator. Also

we consider a set of signatures Σ = {0, 1}{1,...,n} \ {(1, ..., 1)} which contains 2n − 1

signatures. These are all n-tuples with entries 0 and 1, but excluding n-tuple whose

entries are all 1. Then, for each dyadic cube Q = I1 × · · · × In, one can get the

standard tensor product Haar basis in Rn by

hsσ,Q(x1, ..., xn) = hσ1
I1

(x1)× · · · × hσnIn (xn) ,

where σ = (σ1, ..., σn) ∈ Σ . Notice that all hsσ,Q are supported on Q. In this case, we

have the paraproduct associated to the standard tensor product Haar basis:

πsbf(x) =
∑
Q∈Dn

〈f〉Q
∑
σ∈Σ

〈b, hsσ,Q〉hsσ,Q(x) . (2.31)

Observe that, for each dyadic cube Q ∈ Dn,

span{hsσ,Q}σ∈Σ = span{hj,Q}j=1,...,2n−1 = span{χ eQ} eQ∈Dn1 (Q) . (2.32)
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Changing the basis, we can see that two multivariable paraproducts, (2.30) and

(2.31), are different, that is

πsbf(x) =
∑
Q∈Dn

〈f〉Q
∑
σ∈Σ

〈b, hsσ,Q〉hsσ,Q 6=
∑
Q∈Dn

2n−1∑
j=1

〈f〉Ej,Q〈b, hj,Q〉hj,Q = πbf(x) .
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Main tools

In this chapter, we are going to introduce several theorems and lemmas which will

be used to prove our main results. In Section 3.1 we recall some embedding theorems

and weighted inequalities in one dimensional case. Some of them will be stated in

multivariable setting and be proven via Bellman function arguments in Section 3.2.

3.1 Embedding theorems and weighted inequali-

ties in R

To prove Theorem 2.3.2 we need several theorems and lemmas. Some of them will

be given in this dissertation with detailed arguments. If not, you can find the proof

in the indicated references. First we recall that the dyadic square function is defined

by f 7→ Sdf where

Sdf(x) :=

(∑
I∈D

|〈f, hI〉|2
χI(x)

|I|

)1/2

.

It is well known in [HukTV] that if w ∈ A2 , the norm of the dyadic square function

is bounded in L2(w), with a bound that depends linearly on the A2-characteristic of
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the weight.

Theorem 3.1.1. There is a constant c so that for all w ∈ A2 the square function

Sd : L2(w)→ L2(w) has operator norm ‖Sd‖L2(w)→L2(w) ≤ c[w]A2 .

Another main result in [Pet2] is a two-weighted bilinear embedding theorem. The

author in [Pet2] proved this Theorem by a Bellman function argument.

Theorem 3.1.2 (Petermichl’s Bilinear Embedding Theorem). Let w and v be weights

so that 〈w〉I〈v〉I ≤ Q for all intervals I and let {αI} be a non-negative sequence so

that the three estimates below hold for all J

∑
I∈D(J)

αI
〈w〉I

≤ Qv(J) (3.1)

∑
I∈D(J)

αI
〈v〉I

≤ Qw(J) (3.2)

∑
I∈D(J)

αI ≤ Q |J | . (3.3)

Then there is c such that for all f ∈ L2(w) and g ∈ L2(v)

∑
I∈D

αI〈f〉I,w〈g〉I,v ≤ cQ‖f‖L2(w)‖g‖L2(v) .

Replacing αI , f , and g by αI〈w〉I〈v〉I | I|, fw−1/2 and gv−1/2 respectively yields

the following Corollary.

Corollary 3.1.3 (Bilinear Embedding Theorem). Let w and v be weights so that

〈w〉I〈v〉I ≤ Q for all intervals I . Let {αI} be a sequence of nonnegative numbers such

that for all dyadic intervals J ∈ D the following three inequalities hold with some

constant Q > 0 , ∑
I∈D(J)

αI〈v〉I | I| ≤ Qv(J) (3.4)
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∑
I∈D(J)

αI〈w〉I | I| ≤ Qw(J) (3.5)

∑
I∈D(J)

αI〈w〉I〈v〉I | I| ≤ Q |J | . (3.6)

Then for any two nonnegative function f, g ∈ L2

∑
I∈D

αI〈fw1/2〉I〈gv1/2〉I | I| ≤ CQ‖f‖L2‖g‖L2

holds with some constant C > 0 .

Both Bilinear Embedding Theorems are key tools in our estimate. One version

of such a theorem appeared in [NTV]. The original version of the next lemma also

appeared in [Pet2].

We use the notation ∆If := 1
2

(
〈f〉I+ − 〈f〉I−

)
. Let us introduce the operator

defined by

Sb(f) :=
∑
I∈D

∆Ib 〈f, hI〉IhI− ,

which will be used for the estimate of the commutator [λb, S] in Section 4.1. The

operator SIb,w−1 in the following Lemma is the truncated operator of the composition

of Sb with multiplication by w−1, that is

SIb,w−1(f) :=
∑

L∈D(I)

∆Lb 〈w−1f, hL〉hL .

Lemma 3.1.4. There is a constant c such that

‖SIb,w−1χI‖L2(w) ≤ c‖b‖BMO d [w]Ad2w
−1(I)1/2

for all intervals I and weights w ∈ Ad2 .

Proof. We will prove this Lemma by duality. It is sufficient to prove the inequality

|〈SIb,w−1χI , f〉w| ≤ c‖b‖BMO d [w]Ad2w
−1(I)1/2‖f‖L2(w) , (3.7)
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for positive test functions f .

|〈SIb,w−1χI , f〉w| =
∣∣∣∣〈 ∑

L∈D(I)

∆Lb 〈w−1, hL〉hL− ,
∑
J∈D

〈f, hwJ 〉whwJ
〉
w

∣∣∣∣
=

∣∣∣∣ ∑
L∈D(I)

∆Lb 〈w−1, hL〉
∑
J∈D

〈f, hwJ 〉w〈hL− , hwJ 〉w
∣∣∣∣

≤
∣∣∣∣ ∑
L∈D(I)

∆Lb 〈w−1, hL〉
∑

J∈D:J)L

〈f, hwJ 〉w〈hL− , hwJ 〉w
∣∣∣∣ (3.8)

+
∑

L∈D(I)

|∆Lb 〈w−1, hL〉〈f, hwL−〉w〈hL− , h
w
L−〉w| (3.9)

+
∑

L∈D(I)

|∆Lb 〈w−1, hL〉〈f, hwL〉w〈hL− , hwL〉w| . (3.10)

Using (2.2), (2.3), Hölder’s inequality, the fact 〈w〉L− ≤ 2〈w〉L , and

|∆Ib| =
1

2
| 〈b〉I+ − 〈b〉I− | =

1

2
| 〈b〉I+ − 〈b〉I + 〈b〉I − 〈b〉I−|

≤ 1

2

(
1

|I+|

∫
I+

|b− 〈b〉I |+
1

|I−|

∫
I−

| b− 〈b〉I |
)

≤ 1

2

(
2

|I|

∫
I

| b− 〈b〉I |+
2

|I|

∫
I

| b− 〈b〉I |
)

≤ 2‖b‖BMO d , (3.11)

we can estimate (3.9) and (3.10),∑
L∈D(I)

|∆Lb 〈w−1, hL〉〈f, hwL−〉w〈hL− , h
w
L−〉w|+

∑
L∈D(I)

|∆Lb 〈w−1, hL〉〈f, hwL〉w〈hL− , hwL〉w|

≤ 2‖b‖BMO d‖f‖L2(w)

[( ∑
L∈D(I)

〈w−1, hL〉2〈hL− , hwL−〉
2
w

)1/2

+

( ∑
L∈D(I)

〈w−1, hL〉2〈hL− , hwL〉2w
)1/2

]

≤ 2‖b‖BMO d‖f‖L2(w)

[( ∑
L∈D(I)

〈w−1, hL〉2〈w〉L−
)1/2

+

( ∑
L∈D(I)

〈w−1, hL〉2〈w〉L−
)1/2

]

≤ 4
√

2‖b‖BMO d‖f‖L2(w)

( ∑
L∈D(I)

〈w−1, hL〉2〈w〉L
)1/2

. (3.12)
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Applying Theorem 3.1.1. with f = w−1χI ,∑
L∈D(I)

〈w−1, hL〉2〈w〉L ≤
∑
L∈D

〈w−1χI , hL〉2〈w〉L

=
∑
L∈D

〈w−1χI , hL〉2
1

|L|

∫
w(x)χL(x)dx

=

∫ ∑
L∈D

〈w−1χI , hL〉2
χL(x)

|L|
w(x)dx

= ‖S (w−1χI)‖2
L2(w) ≤ c[w]2Ad2

‖w−1χI‖2
L2(w) = c[w]2Ad2

w−1(I) .

(3.13)

Combining (3.12) and (3.13) gives us

(3.9) + (3.10) ≤ c‖b‖BMO d [w]Ad2w
−1(I)1/2‖f‖L2(w) . (3.14)

We can estimate (3.8) using (2.7) and (3.11) as follows.∣∣∣∣ ∑
L∈D(I)

∆Lb 〈w−1, hL〉
∑

J∈D:J)L

〈f, hwJ 〉w〈hL− , hwJ 〉w
∣∣∣∣ (3.15)

≤
∑

L∈D(I)

|∆Lb| |〈w−1, hL〉|
∣∣∣∣( ∑

J∈D:J)L

〈f, hwJ 〉whwJ (L)

)
〈hL− , w〉

∣∣∣∣
≤ 2‖b‖BMO d

∑
L∈D(I)

|〈w−1, hL〉〈w, hL−〉|〈f〉L,w

≤ 2‖b‖BMO d

∑
L∈D

|〈w−1, hL〉〈w, hL−〉|〈f〉L,w〈χI〉L,w−1 . (3.16)

In the last inequality, we can check

〈χI〉L,w−1 =
1

w−1(L)

∫
L∩I

w−1 =


1, if L ⊆ I

w−1(I)/w−1(L) < 1, if I ⊆ L

0, otherwise.

If we show∑
L∈D

|〈w−1, hL〉〈w, hL−〉|〈f〉L,w〈χI〉L,w−1 ≤ [w]Ad2w
−1(I)1/2‖f‖L2(w) , (3.17)
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then we can finish proving the lemma. To see (3.17), let us assume that for w, v =

w−1, αI = |〈w−1, hL〉〈w, hL−〉| and Q = c [w]Ad2 satisfy the embedding condition

(3.1), (3.2), and (3.3). Then, by Theorem 3.1.2. and ‖χI‖L2(w−1) = w−1(I)1/2 , we

can see (3.17). The only remaining thing to do is to check the embedding conditions.

We refer to [Pet2] for the proof of the embedding conditions.

We will also need the Weighted Carleson Embedding Theorem from [NTV], and

some other inequalities for weights.

Theorem 3.1.5 (Weighted Carleson Embedding Theorem). Let {αJ} be a non-

negative sequence such that for all dyadic intervals I∑
J∈D(I)

αJ ≤ Qw−1(I) .

Then for all f ∈ L2(w−1) ∑
J∈D

αJ〈f〉2J,w−1 ≤ 4Q‖f‖2
L2(w−1) .

Theorem 3.1.6 (Wittwer’s sharp version of Buckley’s inequality). There exist a

positive constant C such that for any weight w ∈ Ad2 and dyadic interval I ∈ D ,

1

|J |
∑

I∈D(J)

(
〈w〉I+ − 〈w〉I−

)2

〈w〉I
| I| ≤ C[w]Ad2〈w〉J .

We refer to [Wi1] for the proof. You can find extensions of Theorem 3.1.5 and

3.1.6 to the doubling positive measure σ in [Per2]. One can find the Bellman function

proof of the following three Lemmas in [Be].

Lemma 3.1.7. For all dyadic interval J and all weights w .

1

|J |
∑

I∈D(J)

|I||∆Iw|2
1

〈w〉3I
≤ 〈w−1〉J .
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Lemma 3.1.8. Let w be a weight and {αI} be a Carleson sequence of nonnegative

numbers. If there exist a constant Q > 0 such that

∀ J ∈ D , 1

|J |
∑

I∈D(J)

αI ≤ Q ,

then

∀ J ∈ D , 1

|J |
∑

I∈D(J)

αI
〈w−1〉I

≤ 4Q〈w〉J

and therefore if w ∈ Ad2 the for any J ∈ D we have

1

|J |
∑

I∈D(J)

〈w〉IαI ≤ 4Q[w]Ad2〈w〉J .

Lemma 3.1.9. If w ∈ Ad2 then there exists a constant C > 0 such that

∀J ∈ D , 1

|J |
∑

I∈D(J)

(
〈w〉I+ − 〈w〉I−

〈w〉I

)2

| I| 〈w〉I〈w−1〉I ≤ C[w]Ad2 .

3.2 Embedding theorems and weighted inequali-

ties in Rn

We now state several multi-variable versions of Embedding Theorems and weighted

inequalities which appeared in previous section. In general, once we have a Bellman

function proof for a certain property in R then we can extend a property into Rn with

the same Bellman function. This process is essentially trivial when we use the Haar

system in Rn introduced in Section 2.2, and it allows to do the “induction in scales

argument” at once, instead of once per each j = 1, ..., 2n − 1, which then introduces

a dimensional constant of order 2n in the estimates. We will present several lemmas

and associated Embedding theorems and weight properties. One can find the proof of

these lemmas and one dimensional analogues of the propositions in [Be] or indicated

references.
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Lemma 3.2.1. The following function

B(F, f, u,M) = 4A

(
F − f 2

u+M

)
is defined on domain D which is given by

D =
{

(F, f, u,M) ∈ R4
∣∣F, f, u,M > 0 and f 2 ≤ Fu, M ≤ u

}
,

and B satisfies the following size and convexity property in D:

0 ≤ B(F, f, u,M) ≤ 4AF , (3.18)

and for all (F, f, u,M), (F1, f1, u1,M1) and (F2, f2, u2,M2) ∈ D ,

B(F, f, u,M)− B(F1, f1, u1,M1) +B(F2, f2, u2,M2)

2
≥ f 2

u2
m, (3.19)

where

(F, f, u,M) =

(
F1 + F2

2
,
f1 + f2

2
,
u1 + u2

2
,m+

M1 +M2

2

)
and m ≥ 0 .

One can find the proof of Lemma 3.2.1 in [NTV].

Theorem 3.2.2 (Multivariable Version of Weighted Carleson Embedding Theorem).

Let w be a weight and
{
αj,Q

}
Q,j
, Q ∈ Dn, j = 1, ..., 2n − 1 , be a sequence of non-

negative numbers such that for all dyadic cubes Q′ ∈ Dn and a positive constant

A > 0,
1∣∣Ei,Q′∣∣ ∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q〈w〉2Ej,Q ≤ A〈w〉Ei,Q′ . (3.20)

Then for all positive f ∈ L2
Rn

∑
Q∈Dn

2n−1∑
j=1

αj,Q〈fw1/2〉Ej,Q ≤ CA‖f‖2
L2

Rn
(3.21)

holds with some constant C > 0 .
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Proof. For any subset of dyadic cube Q′ ∈ Dn and fixed i = 1, ..., 2n − 1 , let

Fi,Q′ = 〈f 2〉Ei,Q′ , fi,Q′ = 〈fw1/2〉Ei,Q′ , ui,Q′ = 〈w〉Ei,Q′ ,

F k
i,Q′ = 〈f 2〉Ek

i,Q′
, fki,Q′ = 〈fw1/2〉Ek

i,Q′
, uki,Q′ = 〈w〉Ek

i,Q′
, for k = 1, 2,

and

Mi,Q′ =
1∣∣Ei,Q′∣∣ ∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q u
2
j,Q =

M1
i,Q′ +M2

i,Q′

2
+

1∣∣Ei,Q′∣∣αi,Q′ u2
i,Q′ ,

where M1
i,Q′ = 1∣∣E1

i,Q′

∣∣ ∑Q∈Dn(Q′)

∑
j:Ej,Q⊆E1

i,Q′
αj,Q u

2
j,Q and similarly for M2

i,Q′ . Note

that F = Fi,Q′ , f = fi,Q′ , u = ui,Q′ , M = Mi,Q, Fk = F k
i,Q′ , fk = fki,Q′ , uk = uki,Q′ ,

and Mk = Mk
i,Q , for k = 1, 2, belong to the domain D of the function B defined in

Lemma 3.2.1. Furthermore,

(F, f, u,M) =

(
F1 + F2

2
,
f1 + f2

2
,
u1 + u2

2
,m+

M1 +M2

2

)
,

so we can use the both size condition (3.18) of B and convexity property (3.19).

For fixed dyadic cube Q′ , using E1,Q′ = Q′ , |E1
i,Q′| = |E2

i,Q′| = |Ei,Q|/2 as well as

{Ej,Q′}2m+1−1
j=2m = {E1

j,Q′ , E
2
j,Q′}2m+1−1

j=2m and the property (3.19) , we have

4A|Q′|〈f 2〉Q′ = 4A
∣∣E1,Q′

∣∣〈f 2〉E1,Q′
= 4A

∣∣E1,Q′
∣∣F1,Q′

≥
∣∣E1,Q′

∣∣B(F1,Q′ , f1,Q′ , u1,Q′ , M1,Q′)

≥
2∑

k=1

∣∣Ek
1,Q′

∣∣B(F k
1,Q′ , f

k
1,Q′ , u

k
1,Q′ , M

k
1,Q′) + α1,Q′ f

2
1,Q′ (3.22)

=
3∑
j=2

∣∣Ej,Q′∣∣B(Fj,Q′ , fj,Q′ , uj,Q′ , Mj,Q′) + α1,Q′ f
2
1,Q′ (3.23)

≥
3∑
j=2

2∑
k=1

∣∣Ek
j,Q′

∣∣B(F k
j,Q′ , f

k
j,Q′ , u

k
j,Q′ , M

k
j,Q′) +

3∑
j=1

αj,Q′ f
2
j,Q′ (3.24)

=
7∑
j=4

∣∣Ej,Q′∣∣B(Fj,Q′ , fj,Q′ , uj,Q′ , Mj,Q′) +
3∑
j=1

αj,Q′ f
2
j,Q′ . (3.25)
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If we iterate this process n− 2 times more, we get:

4A|Q′|〈f 2〉Q′ ≥
2n−1∑
j=2n−1

2∑
k=1

∣∣Ek
j,Q′

∣∣B(F k
j,Q′ , f

k
j,Q′ , u

k
j,Q′ , M

k
j,Q′) +

2n−1∑
j=1

αj,Q′ f
2
j,Q′ .

Due to our construction of Haar system, for all j = 2n−1, 2n−1 +1, ..., 2n−1 , and k =

1, 2, Ek
j,Q′ ’s are mutually disjointed and

∣∣Ek
j,Q′

∣∣ = |Q′|/2n i.e. {E1
j,Q′ , E

2
j,Q′}j=2n−1,...,2n−1

is the set Dn1 (Q′) of dyadic sub-cubes of Q′ . Thus,

4A|Q′|〈f 2〉Q′ ≥ |Q′|B(FQ′ , fQ′ , uQ′ ,MQ′)

≥
2n∑
k=1

|Q′k|B(FQ′k , fQ′k , uQ′k ,MQ′k
) +

2n−1∑
j=1

αj,Q′ f
2
j,Q′ . (3.26)

In the inequality (3.26), Q′k’s are enumerations of 2n dyadic sub-cubes of Q′ . Iterating

this procedure and using the fact B ≥ 0 yields that∑
Q∈Dn(Q′)

2n−1∑
j=1

αj,Q〈fw1/2〉j,Q ≤ CA|Q′|〈f 2〉Q′ ,

which completes the proof.

The proof of the following Lemma appeared in [Pet2].

Lemma 3.2.3. The following function

B(F, f, w,G, g, v,M,N,K) = B1(F, f, w,M)+B2(G, g, v,N)+B3(F, f, w,G, g, v,K) ,

where

B1(F, f, w,M) = F − f 2

w + M
A2

, B2(G, g, v,N) = G− g2

v + N
A2

,

B3(F, f, w,G, g, v,K) = inf
a>0

(
F +G− f 2

w + aM
A2

− g2

v + N
aA2

)
.

is defined on domain D which is given by

D = {(F, f,w,G, g, v,M,N,K) ∈ R9
+ |

0 < wv < A, f 2 ≤ Fw, g2 ≤ Gv,M ≤ A2w, N ≤ A2v, K ≤ A} ,

38



Chapter 3. Main tools

and B satisfies the following size and convexity property in D :

0 ≤ B(F, f, w,G, g, v,M,N,K) ≤ 2(F +G) , (3.27)

and for all (F, f, w,G, g, v,M,N,K), (Fi, fi, wi, Gi, gi, vi,Mi, Ni, Ki) ∈ D, where i =

1, 2, and for some constant C,

B(F, f, w,G, g, v,M,N,K)

≥ B(F1, f1, w1, G1, g1, v1,M1, N1, K1) +B(F2, f2, w2, G2, g2, v2,M2, N2, K2)

2
+
Cfgκ

Awv
,

(3.28)

where

(F , f, w,G, g, v,M,N,K)

=

(
F1 + F2

2
,
f1 + f2

2
,
w1 + w2

2
,
G1 +G2

2
,
g1 + g2

2
,
v1 + v2

2
,

K

v
κ+

M1 +M2

2
,
K

w
κ+

N1 +N2

2
, κ+

K1 +K2

2

)
.

(3.29)

Theorem 3.2.4 (Multivariable Version of Petermichl’s the Bilinear Embedding The-

orem). Let w and v be weights so that 〈w〉Q′〈w〉Q′ < A and
{
αj,Q

}
Q,j

be a sequence

of nonnegative numbers such that, for all dyadic cubes Q′ ∈ Dn and i = 1, ..., 2n− 1 ,

the three inequalities below holds with some constant A > 0 ,

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q
〈w〉Ej,Q

≤ A〈v〉Ei,Q′

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q
〈v〉Ej,Q

≤ A〈w〉Ei,Q′

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q ≤ A .

Then for all f ∈ L2
Rn(w) and g ∈ L2

Rn(v)∑
Q∈Dn(Q′)

2n−1∑
j=1

αj,Q〈f〉Ej,Q,w〈g〉Ej,Q,v ≤ CA‖f‖L2
Rn (w)‖g‖L2

Rn (v)

holds with some constant C > 0 .
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Proof. For any dyadic cube Q′ ∈ Dn, and fixed i = 1, ..., 2n − 1 , let

Fi,Q′ = 〈f 2w〉Ei,Q′ , fi,Q′ = 〈fw〉Ei,Q′ , wi,Q′ = 〈w〉Ei,Q′ ,

Gi,Q′ = 〈g2v〉Ei,Q′ , gi,Q′ = 〈gv〉Ei,Q′ , vi,Q′ = 〈v〉Ei,Q′ ,

F k
i,Q′ = 〈f 2w〉Ek

i,Q′
, fki,Q′ = 〈fw〉Ek

i,Q′
, wki,Q′ = 〈w〉Ek

i,Q′
,

Gk
i,Q′ = 〈g2v〉Ek

i,Q′
, gki,Q′ = 〈gv〉Ek

i,Q′
, vki,Q′ = 〈v〉Ek

i,Q′
,

for k = 1, 2. Also we define, for all dyadic cube Q′ ∈ Dn and fixed i = 1, ..., 2n − 1 ,

Mi,Q′ =
1

|Ei,Q′|
∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q
〈v〉Ej,Q

KEj,Q ,

Ni,Q′ =
1

|Ei,Q′|
∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q
〈w〉Ej,Q

KEj,Q ,

Ki,Q′ =
1

|Ei,Q′ |
∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q ,

κj,Q′ =
2αj,Q′

|Ej,Q′ |
, and similarly for Mk

i,Q′ , N
k
i,Q′ and Kk

i,Q′ . Then all variables

(F, f, w,G, g, v,M,N,K) = (Fi,Q′ , fi,Q′ , wi,Q′ , Gi,Q′ , gi,Q′ , vi,Q′ ,Mi,Q′ , Ni,Q′ , Ki,Q′),

(Fk, fk, wk, Gk, gk, vk,Mk, Nk, Kk) = (F k
i,Q′ , f

k
i,Q′ , w

k
i,Q′ , G

k
i,Q′ , g

k
i,Q′ , v

k
i,Q′ ,M

k
i,Q′ , N

k
i,Q′ , K

k
i,Q′) ,

for k = 1, 2, belong to the domain D of the function B defined in Lemma 3.2.3 and

satisfy (3.29) with κ = κEj,Q′ . Then, by the properties (3.27) and (3.28), we have

2|Q′|(〈f 2w〉Q′ + 〈g2v〉Q′) = 2|E1,Q′|(〈f 2w〉E1,Q′
+ 〈g2v〉E1,Q′

)

≥ |E1,Q′ |B(F1,Q′ , f1,Q′ , w1,Q′ , G1,Q′ , g1,Q′ , v1,Q′ ,M1,Q′ , N1,Q′ , K1,Q′)

≥
2∑

k=1

|Ek
1,Q′ |B(F k

1,Q′ , f
k
1,Q′ , w

k
1,Q′ , G

k
1,Q′ , g

k
1,Q′ , v

k
1,Q′ ,M

k
1,Q′ , N

k
1,Q′ , K

k
1,Q′)

+
C

A

αE1,Q′

〈w〉E1,Q′
〈v〉E1,Q′

〈fw〉E1,Q′
〈gv〉E1,Q′

.

Iterating this procedure similar with the proof of Theorem 3.2.2 yields that

C

A

∑
Q∈Dn(Q′)

2n−1∑
j=1

αEi,Q′

〈w〉Ei,Q′ 〈v〉Ei,Q′
〈fw〉Ei,Q′ 〈gv〉Ei,Q′ ≤ 2|Q′|(〈f 2w〉Q′ + 〈g2v〉Q′) .
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Then, we can conclude that

∑
Q∈Dn(Q′)

2n−1∑
j=1

αEi,Q′

〈w〉Ei,Q′ 〈v〉Ei,Q′
〈fw〉Ei,Q′ 〈gv〉Ei,Q′ ≤ cA(‖f‖2

L2
Rn (w) + ‖g‖2

L2
Rn (v)) (3.30)

Finally, letting

f =

√
‖g‖L2

Rn (v)

‖f‖L2
Rn (w)

f and g =

√
‖f‖L2

Rn (w)

‖g‖L2
Rn (v)

g

yields the desired result.

Changing αj,Q, f and g by αj,Q〈v〉Ej,Q〈w〉Ej,Q |Ej,Q|, fw−1/2 and gv−1/2 respec-

tively in Theorem 3.2.4, we can get the following Corollary.

Corollary 3.2.5 (Multivariable Version of the Bilinear Embedding Theorem). Let w

and v be weights so that 〈w〉Q′〈w〉Q′ < A and
{
αj,Q

}
Q,j

be a sequence of nonnegative

numbers such that, for all dyadic cubes Q′ ∈ Dn and i = 1, ..., 2n − 1 , the three

inequalities below holds with some constant A > 0 ,

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q〈v〉Ej,Q |Ej,Q| ≤ A〈v〉Ei,Q′

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q〈w〉Ej,Q |Ej,Q| ≤ A〈w〉Ei,Q′

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q〈w〉Ej,Q〈v〉Ej,Q |Ej,Q| ≤ A .

Then for all f, g ∈ L2
Rn∑

Q∈Dn(Q′)

2n−1∑
j=1

αj,Q〈fw1/2〉Ej,Q〈gv1/2〉Ej,Q |Ej,Q| ≤ CA‖f‖L2
Rn
‖g‖L2

Rn

holds with some constant C > 0 .

Lemma 3.2.6. Let D be given by those (u, v, l) ∈ R3 such that u, v > 0 , uv ≥ 1 and

0 ≤ l ≤ 1 . Then the function

B(u, v, l) := u− 1

v(1 + l)
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is defined on D , 0 ≤ B(x) ≤ u for all x = (u, v, l) ∈ D and satisfies the following

differential inequalities on D:

∂B

∂l
(u, v, l) ≥ 1

4v
(3.31)

and

− (du, dv, dl)d2B(u, v, l)(du, dv, dl)t ≥ 0 , (3.32)

where d2B(u, v, l) denotes the Hessian matrix of the function B evaluated at (u, v, l) .

Moreover, condition (3.31) and (3.32) imply the following convexity condition. For

all x, xj’s ∈ D, j = 1, 2, such that x− 1
2
(x1 + x2) = (0, 0, β) ,

B(x)− 1

2

2∑
j=1

B(xj) ≥
1

4v
β . (3.33)

One can find the proof of Lemma 3.2.6 in [Be].

Proposition 3.2.7. Let w be a weight, so that w−1 is also a weight. Let αj,Q be a

Carleson sequence of nonnegative numbers i.e., there is a constant A > 0 such that,

for all Q′ ∈ Dn and i = 1, ..., 2n − 1 ,

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q ≤ A . (3.34)

Then, for all Q′ ∈ Dn and i = 1, ..., 2n − 1 ,

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q
〈w−1〉Ej,Q

≤ 4A〈w〉Ei,Q′ , (3.35)

and if w ∈ Ad2 then for any Q′ ∈ Dn and i = 1, ..., 2n − 1 , we have

1

|Ei,Q′ |
∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈w〉Ej,Qαj,Q ≤ 4 · 22(n−1)A[w]Ad2〈w〉Ei,Q′ . (3.36)

Furthermore, if w ∈ AR2 then for any Q′ ∈ Dn and i = 1, ..., 2n−1 , we have

1

|Ei,Q′ |
∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈w〉Ej,Qαj,Q ≤ 4A[w]AR2 〈w〉Ei,Q′ . (3.37)
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Proof. Fix a dyadic cube Q′ and i, Set ui,Q′ = 〈w〉Ei,Q′ , vi,Q′ = 〈w−1〉Ei,Q′ and

li,Q′ =
1

A
∣∣Ei,Q′∣∣ ∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q .

For each dyadic cube Q′, k and k = 1, 2, let uki,Q′ = 〈w〉Ek
i,Q′
, vki,Q′ = 〈w−1〉Ek

i,Q′
and

lki,Q′ =
1

A
∣∣Ek

i,Q′

∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Eki,Q′

αj,Q .

Then, it is easy to see
(
ui,Q′ , vi,Q′ , li,Q′

)
,
(
uki,Q′ , v

k
i,Q′ , l

k
i,Q′

)
∈ D by Hölder’s inequality

and (3.34). Moreover,

li,Q′ =
l1i,Q′ + l2i,Q′

2
+
αi,Q′

A
.

Then, by using the size condition of B(x) in Lemma 3.2.6, we have∣∣Ej0,Q′∣∣〈w〉Ej0,Q′ ≥ ∣∣Ej0,Q′∣∣B(uj0,Q′ , vj0,Q′ , lj0,Q′)

≥
2∑

k=1

∣∣Ek
j0,Q′

∣∣B(ukj0,Q′ , v
k
j0,Q′ , l

k
j0,Q′) +

αj0,Q′

4〈w−1〉Ej0,Q′A
(3.38)

≥
2n∑
k=1

|Q′k|B(uQ′k , vQ′k , lQ′k) +
1

4A

2n−1∑
j=j0

αj0,Q′

〈w−1〉Ej0,Q′
. (3.39)

We use the convexity condition (3.32) for the inequality (3.38). We can get the

inequality (3.39) by repeating the process (3.38) several times. Iterating this process

and using the fact that B ≥ 0 we have

〈w〉Ei,Q′ ≥
1

4A
∣∣Ei,Q′∣∣ ∑

Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

αj,Q
〈w−1〉Ej,Q

,

which completes the proof of (3.35).Observe that in the case w ∈ AR2 then

1

〈w−1〉Ej,Q
≥
〈w〉Ej,Q
[w]AR2

.

Now (3.37) follows from (3.35). Observe if w ∈ Ad2 then

[w]A2 ≥ 〈w〉Q〈w−1〉Q ≥
(
|Ej,Q|
|Q|

)2

〈w〉Ej,Q〈w−1〉Ej,Q = 2−2(n−1)〈w〉Ej,Q〈w−1〉Ej,Q .

Thus, we can have (3.36) from (3.37).
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We refer to [Be] for the following lemma.

Lemma 3.2.8. The following function

B(u, v) = v − 1

u

is defined on domain D which is given by

D = { (u, v) ∈ R2| u, v > 0 and uv ≥ 1} ,

and B satisfies the following size and differential condition in D :

0 ≤ B(u, v) ≤ v , (3.40)

and

− (du, dv)d2B(u, v)(du, dv)t =
2

u3
|du|2 . (3.41)

Furthermore, (3.41) implies the following convexity property. For all (u, v), (u1, v1)

and (u2, v2) ∈ D , where (u, v) =
(
(u1, u2)/2, (v1, v2)/2

)
:

B(u, v)− B(u1, v1) +B(u2, v2)

2
≥ C

1

u3
(u1 − u2)2 . (3.42)

The following proposition includes the multidimensional analogues to correspond-

ing one-dimensional results in [Pet2] for both regular and anisotropic cases.

Proposition 3.2.9. There exist a positive constant C so that for all weight w and

w−1 and for all dyadic cubes Q′ ∈ Dn and i = 1, ..., 2n − 1:

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

)2

〈w〉3Ej,Q

∣∣Ej,Q∣∣ ≤ C〈w−1〉Ei,Q′ (3.43)

and, if w ∈ Ad2 , the following inequality holds for all dyadic cubes Q′ ∈ Dn and

i = 1, ..., 2n − 1 :

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

〈w〉Ej,Q

)2∣∣Ej,Q∣∣〈w−1〉Ej,Q

≤ C22(n−1)[w]Ad2〈w
−1〉Ei,Q′ . (3.44)
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Moreover, if w ∈ AR2 , the following inequality holds for all dyadic cubes Q′ ∈ Dn

and i = 1, ..., 2n − 1 :

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

〈w〉Ej,Q

)2∣∣Ej,Q∣∣〈w−1〉Ej,Q ≤ C[w]AR2 〈w
−1〉Ei,Q′ .

(3.45)

Proof. Due to the construction of Ei,Q′ , it is enough to show when i = 1 . For any

subset of dyadic cube Q′ ∈ Dn and fixed j, Ej,Q′ , set

uj,Q′ = 〈w〉Ej,Q′ , vj,Q′ = 〈w−1〉Ej,Q′ , u
i
j,Q′ = 〈w〉Ei

j,Q′
and vij,Q′ = 〈w−1〉Ei

j,Q′
(3.46)

for i = 1, 2 . By Hölder’s inequality (vj,Q′ , uj,Q′) and (vij,Q′ , u
i
j,Q′) belong to D which is

defined in Lemma (3.2.8), for all i, j and Q′ . Then, by the construction of our Haar

functions,∣∣E1,Q′
∣∣〈w−1〉E1,Q′

≥
∣∣E1,Q′

∣∣B(u1,Q′ , v1,Q′) (3.47)

≥
2∑
i=1

∣∣Ei
1,Q′

∣∣B(ui1,Q′ , v
i
1,Q′) + C

∣∣E1,Q′
∣∣(〈w〉E1

1,Q′
− 〈w〉E2

1,Q′

)2

〈w〉3E1,Q′

(3.48)

=
3∑
j=2

∣∣Ej,Q′∣∣B(uj,Q′ , vj,Q′) + C

∣∣E1,Q′
∣∣(〈w〉E1

1,Q′
− 〈w〉E2

1,Q′

)2

〈w〉3E1,Q′

.

Using the size condition (3.40) and the convexity property (3.42) allow the inequal-

ities (3.47) and (3.48) respectively. Iterating this process n− 1 times more, we get

∣∣E1,Q′
∣∣〈w−1〉E1,Q′

≥
2n+1−1∑
j=2n

∣∣Ej,Q′∣∣B(uj,Q′ , vj,Q′) + C

2n−1∑
j=1

∣∣Ej,Q′∣∣(〈w〉E1
j,Q′
− 〈w〉E2

j,Q′

)2

〈w〉3Ej,Q′
.

Due to our construction of Haar system, for all j = 2n, 2n + 1, ..., 2n+1 − 1,
∣∣Ej,Q′∣∣’s

are mutually disjoint and
∣∣Ej,Q′∣∣ = |Q′|/2n i.e.

{
Ej,Q′

}
j=2n,...,2n+1−1

is a set of dyadic

sub-cubes of Q′, Dn1 (Q′) . Thus,

∣∣E1,Q′
∣∣〈w−1〉E1,Q′

≥
2n∑
k=1

|Q′k|B(uQ′k , vQ′k) + C

2n−1∑
j=1

∣∣Ej,Q′∣∣(〈w〉E1
j,Q′
− 〈w〉E2

j,Q′

)2

〈w〉3Ej,Q′
,
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where Q′k’s are enumerations of 2n dyadic sub-cubes of Q′. Iterating this procedure

and using fact B ≥ 0 yield that

∣∣E1,Q′
∣∣〈w−1〉E1,Q′

≥ C
∑

Q∈Dn(Q′)

2n−1∑
j=1

(
〈w〉E1

j,Q′
− 〈w〉E2

j,Q′

)2

〈w〉3Ej,Q′

∣∣Ej,Q′∣∣ ,
which completes the proof of (3.43). The similar observations in the end of the proof

of Proposition 3.2.9 yields (3.44) and (3.45).

The next lemma appeared in [Be].

Lemma 3.2.10. The following function

B(u, v) = 4
√
uv

is defined on domain D which is given by

D =
{

(u, v) ∈ R2
∣∣u, v > 0 and uv ≥ 1

}
,

and B satisfies the following size and differential condition in D:

0 ≤ B(u, v) ≤ 4
√
uv , (3.49)

and

− (du, dv) d2B(u, v)(du, dv)t ≥ 1

8
v1/4u−7/4|du|2 . (3.50)

Furthermore, (3.50) implies the following convexity property. For all (u, v), (u1, v1)

and (u2, v2) ∈ D , where (u, v) =
(
(u1, v1)/2, (v1, v2)/2

)
:

B(u, v)− B(u1, v1) +B(u2, v2)

2
≥ Cv1/4u−7/4(u1 − u2)2 . (3.51)

The following generalizes the result that appeared in [Be] to the multidimensional

regular and anisotropic cases.
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Proposition 3.2.11. There exist a positive constant C so that for all weight w and

w−1 and for all dyadic cubes Q′ ∈ Dn and i = 1, ..., 2n − 1 :

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

〈w〉Ej,Q

)2∣∣Ej,Q∣∣〈w〉1/4Ej,Q
〈w−1〉1/4Ej,Q

≤ C〈w〉1/4Ei,Q′
〈w−1〉1/4Ei,Q′

(3.52)

and, if w ∈ Ad2 , the following inequality holds for all dyadic cubes Q′ ∈ Dn :

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

〈w〉Ej,Q

)2∣∣Ej,Q∣∣〈w〉Ej,Q〈w−1〉Ej,Q

≤ C22(n−1)[w]Ad2 . (3.53)

Moreover, if w ∈ AR2 , the following inequality holds for all dyadic cubes Q′ ∈ Dn :

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

〈w〉Ej,Q

)2∣∣Ej,Q∣∣〈w〉Ej,Q〈w−1〉Ej,Q ≤ C[w]AR2 .

(3.54)

Proof. Similarly with Proposition 3.2.9, we only prove for i = 1 . For fixed dyadic

cube Q′, using the size condition (3.49), convexity property (3.51) and notation

(3.46),

∣∣E1,Q′
∣∣ 4
√
u1,Q′v1,Q′ ≥

∣∣E1,Q′
∣∣B(u1,Q′ , v1,Q′)

≥
2∑

k=1

∣∣Ek
1,Q′

∣∣B(uk1,Q′ , v
k
1,Q′) + C

〈w−1〉E1,Q′

〈w〉7/4E1,Q′

(
〈w〉E1

1,Q′
− 〈w〉E2

1,Q′

)2

=
3∑
j=2

∣∣Ej,Q′∣∣B(uj,Q′ , vj,Q′) + C
〈w−1〉E1,Q′

〈w〉7/4E1,Q′

(
〈w〉E1

1,Q′
− 〈w〉E2

1,Q′

)2

≥
2n∑
k=1

∣∣Rk

∣∣B(uQ′k , vQ′k) + C

2n−1∑
j=1

〈w−1〉Ej,Q′
〈w〉7/4Ej,Q′

(
〈w〉E1

j,Q′
− 〈w〉E2

j,Q′

)2
.

(3.55)
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Similarly with Proposition 3.2.9, for the inequality (3.55), we iterate the process n−1

times and use the notation Q′k’s for numbering of 2n sub-cubes of Q′ . We can finish

the proof by iterating this progression and using the fact B ≥ 0 . In other words, we

get:

∣∣E1,Q′
∣∣ 4

√
〈w〉E1,Q′

〈w−1〉E1,Q′
≥ C

∑
Q∈Dn(Q′)

2n−1∑
j=1

∣∣Ej,Q′∣∣〈w−1〉1/4Ej,Q′

〈w〉7/4Ej,Q′

(
〈w〉E1

j,Q′
− 〈w〉E2

j,Q′

)2
.

This proves (3.52). If w ∈ AR2 , then 〈w〉Ej,Q〈w−1〉Ej,Q ≤ [w]AR2 for all Q ∈ Dn and

j = 1, ..., 2n − 1. Thus, (3.52) yields immediately (3.54). Since for all w ∈ Ad2 ,

〈w〉Ej,Q〈w−1〉Ej,Q ≤ 22(n−1)[w]Ad2 , we can easily get (3.53) from (3.52).

The similar version of Bellman function with the following lemma was appeared

in [Be].

Lemma 3.2.12. The following function

B(u, v) = u

(
2Q− 2Q

uv
− 4

3
ln(uv)

)
is defined on domain D which is given by

D =
{

(u, v) ∈ R2
∣∣u, v > 0 and 1 ≤ uv ≤ Q

}
,

and B satisfies the following size and differential condition in D:

0 ≤ B(u, v) ≤ 2Qu , (3.56)

and

− (du, dv) d2B(u, v)(du, dv)t ≥ 2(du)2

3u
. (3.57)

Furthermore, (3.57) implies the following convexity property. For all (u, v), (u1 +u2)

and (u2 + v2) ∈ D, where (u, v) =
(
(u1, v1)/2, (u2, v2)/2

)
, there is a constant C such

that

B(u, v)− B(u1, v1) +B(u2, v2)

2
≥ C

u
(u1 − u2)2 . (3.58)
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Proof. Since uv > 0 on D , the size condition (3.56) holds clearly. We also check

easily the differential condition (3.57) as follows.

−(du, dv) d2B(u, v)(du, dv)t = −∂
2B

∂u2
(du)2 − 2

∂2B

∂u∂v
dudv − ∂2B

∂v2
(dv)2

=
4

3u
(du)2 +

8

3v
dudv +

(
4Q

v3
− 4u

3v2

)
(dv)2

=
2

3u
(du)2 +

(√
2

3u
du+

√
8u

3v2
dv

)2

+

(
4Q

v3
− 4u

v2

)
(dv)2

Using the domain of B, we can easily see that

4Q

v3
− 4u

v2
≥ 4uv

v3
− 4u

v2
= 0 ,

thus discarding non-negative terms provide the differential condition (3.57). Set

∆u = (u1−u2)/2 and (∆v = (v1−v2)/2 , then u1 = u+∆u, u2 = u−∆u, v1 = v+∆v

and v2 = v−∆v . Note that |u±s∆u| ≤ |u|+|∆u| ≤ 2u , for any number s ∈ [0, 1] .We

now using Taylor’s theorem and the differential condition (3.57) to see the convexity

condition (3.58) :

B(u, v)− B(u+ ∆u, v + ∆v)−B(u−∆u, v −∆u)

2

= B(u, v)− 1

2

(
B(u, v) +∇B(u, v)(∆u,∆v)t

+

∫ 1

0

(1− s) (∆u,∆v) d2B(u+ s∆u, v + s∆v)(∆u,∆v)tds

+B(u, v) +∇B(u, v)(−∆u,−∆v)t

+

∫ 1

0

(1− s) (−∆u,−∆v) d2B(u− s∆u, v − s∆v)(−∆u,−∆v)tds
)

≥
∫ 1

0

(1− s)(∆u)2

3(u+ s∆u)
ds+

∫ 1

0

(1− s)(∆u)2

3(u+ s∆u)
ds

≥ (∆u)2

6u

∫ 1

0

(1− s) ds =
(∆u)2

12u
=

(u1 − u2)2

48u
.

We are now ready to prove the sharp version of Buckley’s inequality in a multivari-

able setting. The single variable version of the following proposition first appeared
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in [Wi1]. In [Per2], one can also find a Bellman function proof of a similar result

which can be extended to the doubling measure case.

Proposition 3.2.13 (Wittwer’s sharp version of Buckley’s inequality). There exist

a positive constant C so that for all weight w ∈ Ad2 and all dyadic cubes Q′ ∈ Dn and

i = 1, ..., 2n − 1 :

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

〈w〉Ej,Q

)2∣∣Ej,Q∣∣〈w〉Ej,Q ≤ C22(n−1)[w]Ad2〈w〉Ei,Q′ ,

(3.59)

and for all weight w ∈ AR2 and all dyadic cubes Q′ ∈ Dn and i = 1, ..., 2n − 1 :

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

〈w〉Ej,Q

)2∣∣Ej,Q∣∣〈w〉Ej,Q ≤ C[w]AR2 〈w〉Ei,Q′ .

(3.60)

Proof. we only prove only for i = 1 . For any Ej,Q′ which is non-empty unions from

Dn(Q) and l = 1, 2, set

uj,Q′ = 〈w〉Ej,Q′ , vj,Q′ = 〈w−1〉Ej,Q′ , u
l
j,Q′ = 〈w〉El

j,Q′
and vlj,Q′ = 〈w−1〉El

j,Q′
.

By Hölder’s inequality and Ad2 condition, (uj,Q′ , vj,Q′) and (ulj,Q′ , v
l
j,Q′) belong to the

domain D =
{

(u, v) ∈ R2 |u, v > 0 and 1 ≤ uv ≤ 22(n−1)[w]Ad2

}
of the function B

defined in Lemma 3.2.12. Thus, by using the size condition (3.56) and convexity

property (3.58), we have

2 · 22(n−1)[w]Ad2

∣∣E1,Q′
∣∣〈w〉E1,Q′

≥
∣∣E1,Q′

∣∣B(u1,Q′ , v1,Q′)

≥
2∑
l=1

∣∣El
1,Q′

∣∣B(ul1,Q′ , v
l
1,Q′) + C

(
〈w〉E1

1,Q′
− 〈w〉E2

1,Q′

)2

〈w〉E1,Q′

.

Applying convexity property (3.58) n− 1 times more, we get

2 · 22(n−1)[w]Ad2

∣∣E1,Q′
∣∣〈w〉E1,Q′

≥
2n∑
k=1

|Rk|B(uQ′k , vQ′k) + C

2n−1∑
j=1

(
〈w〉E1

j,Q′
− 〈w〉E2

j,Q′

)2

〈w〉Ej,Q′
.
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Since B is positive iterating the above process will yield that

2 · 22(n−1)[w]Ad2

∣∣E1,Q′
∣∣〈w〉E1,Q′

≥ C
∑

Q∈Dn(Q′)

2n−1∑
j=1

(
〈w〉E1

j,Q
− 〈w〉E2

j,Q

)2

〈w〉Ej,Q
.

This proves (3.59). The inequality (3.60) can be seen by using the domain D ={
(u, v) ∈ R2 |u, v > 0 and 1 ≤ uv ≤ [w]AR2

}
.
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Commutator of the Hilbert

transform

In this chapter, we will show our result about the commutator of the Hilbert trans-

form:

‖[b,H]f‖L2(w) ≤ C‖b‖BMO[w]2A2
‖f‖L2(w) . (4.1)

Due to (2.17), we will prove (4.1) with the dyadic shift operator S instead of the

Hilbert transform H . In the decomposition

[b, S] = [πb, S] + [π∗b , S] + [λb, S] ,

both πb and S obey linear bounds. Therefore, we have

‖[πb, S]‖L2(w)→L2(w) + ‖[π∗b , S]‖L2(w)→L2(w) ≤ C‖b‖BMOd [w]2Ad2
.

To finish the proof of (4.1), it suffices to show that

‖[λb, S]‖L2(w) ≤ C‖b‖BMOd [w]2Ad2
.

In fact, we will get a better result on this term. In Section 4.1 we will start our

discussion on how to find the linear bound for the term [λb, S] , most of which will
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be very similar to calculations performed in [Pet2]. In Section 4.2 we will finish the

linear estimate for the term [λb, S] , and prove Theorem 2.3.2. In Section 4.3 we prove

the linear bound for π∗bS . In Section 4.4 we reduce the proof of the linear bound for

Sπb to verifying three embedding conditions, two are proved in this section, the third

is proved in Section 4.5 using a Bellman function argument.

4.1 Linear bound for [λb, S] part I

In general, when we analyse commutator operators, a subtle cancelation delivers the

result one wants to find. In the analysis of the commutator [b, S], the part [λb, S]

will allow for certain cancelation. First, let us rewrite [λb, S] .

[λb, S](f) = λb(Sf)− S(λbf)

=
∑
I∈D

〈b〉I〈Sf, hI〉hI −
∑
J∈D

〈λbf, hJ〉(hJ− − hJ+)

=
∑
I∈D

∑
J∈D

〈b〉I〈f, hJ〉〈hJ− − hJ+ , hI〉hI

−
∑
J∈D

∑
I∈D

〈b〉I〈f, hI〉〈hI , hJ〉(hJ− − hJ+) .

From the orthogonality of Haar system, both double sums collapse to just one,

[λb, S](f) =
∑
J∈D

〈b〉J−〈f, hJ〉hJ− −
∑
J∈D

〈b〉J+〈f, hJ〉hJ+

−
∑
J∈D

〈b〉J+ + 〈b〉J−
2

〈f, hJ〉(hJ− − hJ+)

=
∑
J∈D

〈b〉J− − 〈b〉J+

2
〈f, hJ〉hJ− −

∑
J∈D

〈b〉J+ − 〈b〉J−
2

〈f, hJ〉hJ+

= −
∑
J∈D

∆Jb 〈f, hJ〉(hJ+ + hJ−) ,
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recall the notation ∆J b = (〈b〉J+ − 〈b〉J−)/2 . To find the L2(w) operator norm of

[λb, S], it is enough to deal with the linear operator

Sb(f) =
∑
I∈D

∆Ib 〈f, hI〉hI− .

Recall (3.11) that if b ∈ BMOd , |∆Ib| ≤ ‖b‖BMOd . We shall state the weighted

operator norm of Sb as a Theorem and give a detailed proof. Theorem 1.0.2 is a

direct consequence of the following Theorem. We will prove the following Theorem

by the technique used in [Pet2].

Theorem 4.1.1. There exists a constant C > 0, such that

‖Sb‖L2(w)→L2(w) ≤ C[w]Ad2‖b‖BMO d (4.2)

for all b ∈ BMO d and w ∈ Ad2 for all f ∈ L2(w).

Inequality (4.2) is equivalent to the following inequality for any positive functions

f ∈ L2(w−1) and g ∈ L2(w) ,

|〈Sb,w−1f, g〉w| ≤ C[w]Ad2‖b‖BMO d‖f‖L2(w−1)‖g‖L2(w) , (4.3)

where Sb,w−1(f) = Sb(w
−1f) , since f ∈ L2(w−1) if and only if w−1f ∈ L2(w) .

Expanding f and g in the disbalanced Haar systems respectively for L2(w−1) and

L2(w) yields for (4.3),

|〈Sb,w−1f, g〉w| =
∣∣∣∣ ∫ Sb,w−1

(∑
I∈D

〈f, hw−1

I 〉w−1hw
−1

I

)(∑
J∈D

〈g, hwJ 〉whwJ
)
wdx

∣∣∣∣
=

∣∣∣∣∑
I∈D

∑
J∈D

〈f, hw−1

I 〉w−1〈g, hwJ 〉w
∫
hwJ Sb,w−1(hw

−1

I )wdx

∣∣∣∣
=

∣∣∣∣∑
I∈D

∑
J∈D

〈f, hw−1

I 〉w−1〈g, hwJ 〉w〈Sb,w−1hw
−1

I , hwJ 〉w
∣∣∣∣ . (4.4)

In (4.4),

〈Sb,w−1hw
−1

I , hwJ 〉w =
〈∑
L∈D

∆Lb 〈hL, w−1hw
−1

I 〉hL− , hwJ
〉
w

=
∑
L∈D

∆Lb 〈hL, hw
−1

I 〉w−1〈hL− , hwJ 〉w .
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Since 〈hL, hw
−1

I 〉w−1 6= 0, only when L ⊆ I and 〈hL− , hwJ 〉w 6= 0 only when L− ⊆ J ,

then we have non-zero terms if I ⊆ J or Ĵ ⊆ I in the sum of (4.4). Thus we can split

the sum into four parts,
∑

I=J ,
∑

I=Ĵ ,
∑

Ĵ(I , and
∑

I(J . Let us now introduce

the truncated shift operator

SIb(f) :=
∑

L∈D(I)

∆Lb 〈f, hL〉hL− ,

and its composition with multiplication by w−1,

SIb,w−1(f) :=
∑

L∈D(I)

∆Lb 〈w−1f, hL〉hL− .

We will see that the weighted norm ‖SIb,w−1χI‖L2(w), proved in Chapter 3, plays

a main role in our estimate for 〈S b,w−1hw
−1

I , hwJ 〉w . More specifically, we proved in

Lemma 3.1.4 that

‖SIb,w−1χI‖L2(w) ≤ c‖b‖BMO d [w]Ad2w
−1(I)1/2 (4.5)

for all intervals I and weights w ∈ Ad2 .

4.2 Linear bound for [λb, S] part II

We will continue to estimate the sum (4.4) in four parts.

4.2.1
∑

I=Ĵ

For this case, it is sufficient to show that

|〈Sb,w−1hw
−1

Ĵ
, hwJ 〉w| ≤ c‖b‖BMO d [w]Ad2 ,

because then one can use Cauchy-Schwarz inequality and Plancherel in the part of

(4.4) corresponding
∑

I=Ĵ to get estimate (4.3). Since 〈hk, hwI 〉w could be non-zero
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only if K ⊆ I,

|〈Sb,w−1hw
−1

Ĵ
, hwJ 〉w| =

∣∣∣〈∑
L∈D

∆Lb 〈w−1hw
−1

L , hL〉hL− , hwJ
〉
w

∣∣∣
=
∣∣∣∑
L∈D

∆Lb 〈hw
−1

Ĵ
, hL〉w−1〈hL− , hwJ 〉w

∣∣∣
has non-zero term only when L ⊆ Ĵ . Thus

|〈Sb,w−1hw
−1

L , hwJ 〉w| =
∣∣∣ ∑
L∈D(Ĵ )

∆Lb 〈hw
−1

Ĵ
, hL〉w−1〈hL− , hwJ 〉w

∣∣∣
=
∣∣∣ ∑
L∈D(J)

∆Lb 〈hw
−1

Ĵ
, hL〉w−1〈hL− , hwJ 〉w

∣∣∣+
∣∣∣ ∑
L∈D(Js)

∆Lb 〈hw
−1

Ĵ
, hL〉w−1〈hL− , hwJ 〉w

∣∣∣
+ |∆Ĵ b 〈h

w−1

Ĵ
, hĴ〉w−1〈hĴ− , h

w
J 〉w|

≤ |〈SJb,w−1hw
−1

Ĵ
, hwJ 〉w|+ |∆Ĵ b 〈h

w−1

Ĵ
, hĴ〉w−1〈hĴ− , h

w
J 〉w| ,

in the second equality, Js denotes the sibling of J , so for all L ⊆ Js, 〈hL− , hwJ 〉w = 0 .

Then, by (2.4),

|∆Ĵ b 〈h
w−1

Ĵ
, hĴ〉w−1〈hĴ− , h

w
J 〉w| ≤

√
2‖b‖BMO d [w]

1/2

Ad2
. (4.6)

So for the remaining part:

|〈SJb,w−1hw
−1

Ĵ
, hwJ 〉w| = |hw

−1

Ĵ
(J)〈SJb,w−1χJ , h

w
J 〉w| ≤ c‖b‖BMO d [w]Ad2 , (4.7)

here the last inequality uses Cauchy-Schwarz inequality, (2.6), and Lemma 3.1.4,

that is estimate (4.5).

4.2.2
∑

I=J

In this case, the argument is similar to the argument in Section 4.2.1. We have

|〈Sb,w−1hw
−1

J , hwJ 〉w| = |
∑
L∈D

∆Lb 〈hw
−1

J , hL〉w−1〈hL− , hwJ 〉w|
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here we have zero summands, unless L ⊆ J . Thus,

|〈Sb,w−1hw
−1

J , hwJ 〉w| = |〈SJb,w−1hw
−1

J , hwJ 〉w|

≤ |〈SJ+

b,w−1h
w−1

J , hwJ 〉w|+ |〈S
J−
b,w−1h

w−1

J , hwJ 〉w|+ |∆J b 〈hw
−1

J , hJ〉w−1〈hJ− , hwJ 〉w|

≤ c ‖b‖BMO d [w]Ad2 .

In the last inequality, we use same arguments as in (4.7) for the first two terms, and

(2.5) for the last term.

4.2.3
∑

Ĵ(I and
∑

I(J

To obtain our desired results, we need to understand the supports of Sb(w
−1hw

−1

I )

and S∗b (wh
w
J ) . Since

Sb(w
−1hw

−1

I ) =
∑
L∈D

∆Lb 〈w−1hw
−1

I , hL〉hL− =
∑
L∈D

∆Lb 〈hw
−1

I , hL〉w−1hL− ,

and 〈hw−1

I , hL〉w−1 can be non-zero only when L ⊆ I , therefore Sb(w
−1hw

−1

I ) is sup-

ported by I . Also,

〈Sb(w−1hw
−1

I ), hwJ 〉w = 〈hw−1

I , S∗b (wh
w
J )〉w−1 , (4.8)
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yield that S∗b (wh
w
J ) =

∑
L∈D∆Lb〈whwJ , hL−〉hL is supported by Ĵ . Let us now con-

sider the sum Ĵ ( I . Then∣∣∣∣ ∑
I,J :Ĵ(I

〈f, hw−1

I 〉w−1〈g, hwJ 〉w〈Sb,w−1hw
−1

I , hwJ 〉w
∣∣∣∣

=

∣∣∣∣ ∑
I,J :Ĵ(I

〈f, hw−1

I 〉w−1〈g, hwJ 〉w〈hw
−1

I , S∗b (wh
w
J )〉w−1

∣∣∣∣
=

∣∣∣∣∑
J∈D

∑
I:I)Ĵ

〈f, hw−1

I 〉w−1〈g, hwJ 〉whw
−1

I (Ĵ)〈Sb,w−1χĴ , h
w
J 〉w
∣∣∣∣ (4.9)

=

∣∣∣∣∑
J∈D

〈f〉Ĵ ,w−1〈g, hwJ 〉w〈Sb,w−1χĴ , h
w
J 〉w
∣∣∣∣ (4.10)

≤ ‖g‖L2(w)

(∑
J∈D

〈f〉2
Ĵ ,w−1〈Sb,w−1χĴ , h

w
J 〉2w
)1/2

, (4.11)

here (4.8) and the fact that S∗b (wh
w
J ) is supported by Ĵ are used for equality (4.9),

and (4.10) uses (2.7) and (4.8). If we show that∑
J∈D

〈f〉2
Ĵ ,w−1〈Sb,w−1χĴ , h

w
J 〉2w ≤ c‖b‖2

BMO d [w]2Ad2
‖f‖2

L2(w−1) , (4.12)

then we have∣∣∣∣∣ ∑
I,J :Ĵ(I

〈f, hw−1

I 〉w−1〈g, hwJ 〉w〈Sb,w−1hw
−1

I , hwJ 〉w

∣∣∣∣∣ ≤ C‖b‖BMO d [w]Ad2‖f‖
2
L(w−1)‖g‖L2(w) .

To prove the inequality (4.12), we apply Theorem 3.1.5. The embedding condition

becomes ∑
J∈D:J(I

〈Sb,w−1χĴ , h
w
J 〉2w ≤ c‖b‖2

BMO d [w]2Ad2
w−1(I)

after shifting the indices. Since 〈hL− , hwJ 〉w = 0 unless L ⊆ Ĵ , and we will sum over

J such that I ⊇ Ĵ , we can write

〈Sb,w−1χĴ , h
w
J 〉w =

∑
L∈D

∆Lb 〈w−1χĴ , hL〉〈hL− , h
w
J 〉w =

∑
L∈D(Ĵ )

∆Lb 〈w−1χĴ , hL〉〈hL− , h
w
J 〉w

=
∑

L∈D(I )

∆Lb 〈w−1χI , hL〉〈hL− , hwJ 〉w = 〈SIb,w−1χI , h
w
J 〉w .
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Thus, ∑
J∈D:J(I

〈Sb,w−1χĴ , h
w
J 〉2w =

∑
J∈D:J(I

〈SIb,w−1χI , h
w
J 〉2w ≤ ‖SIb,w−1χI‖2

L2(w) ,

last inequality due to (2.2). By Lemma 3.1.4, the embedding condition holds. Hence

we are done for the sum Ĵ ( I. The part
∑

I(J is similar to
∑

Ĵ(I . One uses that

Sb(w
−1hw

−1

I ) is supported by I and Theorem 3.1.5.

4.2.4 Proof of Theorem 2.3.2

To break [b, S] into three parts, as in (2.20), we assumed that b ∈ BMO d is compactly

supported. However, we need to replace such a b with a general BMO d function.

In order to pass from a compactly supported b to general b ∈ BMO d , we need the

following lemma which is suggested in [Ga] .

Lemma 4.2.1. Suppose φ ∈ BMO . Let Ĩ be the interval concentric with I having

length |Ĩ| = 3|I| . Then there is ψ ∈ BMO such that ψ = φ on I, ψ = 0 on R \ Ĩ

and ‖ψ‖BMO ≤ c‖φ‖BMO .

Proof. Without loss of generality, we assume 〈φ〉I = 0 . Write I =
⋃∞

n=0 Jn where

dist(Jn, ∂I) = |Jn|, as in following figure.

J0J1 J2J3 J4︸ ︷︷ ︸
I

K1 K2

Then J0 is the middle third of I . For n > 0, let Kn be the reflection of Jn across the

nearest endpoint of I and set

ψ(x) =


φ(x) , if x ∈ I

〈φ〉Jn , if x ∈ Kn

0 , otherwise .
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This construction of ψ satisfies Lemma 4.2.1.

By Theorem 4.1.1, Corollary 1.0.2, Theorem 2.4.1, Lemma 4.2.1 and using the

fact ‖πb‖ = ‖π∗b‖, we can prove Theorem 2.3.2.

Proof of Theorem 2.3.2. For any compactly supported b ∈ BMO ,

‖[b,H]‖L2(w)→L2(w) ≤C sup
α,r
‖[b, S α,r]‖L2(w)→L2(w)

≤C sup
α,r

(
‖[πb, S α,r]‖L2(w)→L2(w) + ‖[π∗b , S α,r]‖L2(w)→L2(w)

+ ‖[λb, S α,r]‖L2(w)→L2(w)

)
≤C

(
4‖πb‖L2(w)→L2(w) sup

α,r
‖S α,r‖L2(w)→L2(w) + C[w]A2‖b‖BMO

)
≤C[w]2A2

‖b‖BMO .

For fixed b, we consider the sequence of intervals Ik = [−k, k] and the sequence of

BMO functions bk which are constructed as in Lemma 4.2.1. Then, there is a con-

stant c, which does not depend on k , such that ‖bk‖BMO ≤ c‖b‖BMO . Furthermore,

there is a uniform constant C such that

‖[bk, H]‖L2(w)→L2(w) ≤ C[w]2A2
‖b‖BMO . (4.13)

Therefore, for some subsequence of integers kj and f ∈ L2(w) , [bkj , H](f) converges

to [b,H](f) almost everywhere. Letting j →∞ and using Fatou’s lemma, we deduce

that (4.13) holds for all b ∈ BMO .

4.3 Linear bound for π∗bS

It might be useful to know what is the adjoint operator of S. Let us define

sgn(I) := ±1 , if I = Î∓ .
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Then, for any function f, g ∈ L2 ,

〈Sf, g〉 =
∑
I∈D

∑
J∈D

〈f, hI〉〈g, hJ〉〈hI− − hI+ , hJ〉

=
∑
I∈D

〈f, hI〉〈g, hI−〉 −
∑
I∈D

〈f, hI〉〈g, hI+〉

=
∑
I∈D

〈f, hI〉
(
sgn(I−)〈g, hI−〉+ sgn(I+)〈g, hI+〉

)
=
∑
I∈D

〈f, hÎ〉sgn(I)〈g, hI〉

=
〈
f,
∑
I∈D

sgn(I)〈g, hI〉hÎ
〉

= 〈f, S∗g〉 .

Now, we see the adjoint operator of dyadic shift operator S is

S∗f(x) =
∑
I∈D

sgn(I)〈f, hI〉hÎ(x) .

In particular we see that S∗hJ = sgn(J)hĴ . The following lemma provides the bound

we are looking for the term π∗bS .

Lemma 4.3.1. Let w ∈ Ad2 and b ∈ BMO d. Then, there exists C so that

‖π∗bS‖L2(w)→L2(w) ≤ C[w]Ad2‖b‖BMO d .

Proof. In order to prove Lemma 4.3.1 it is enough to show that for any positive

square integrable function f, g

〈π∗bS(fw−1/2), gw1/2〉 ≤ C[w]Ad2‖b‖BMO d‖f‖L2‖g‖L2 . (4.14)

Using the system of functions {Hw
I }I∈D defined in (2.8), we can rewrite the left hand
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side of (4.14)

〈π∗bS(fw−1/2), gw1/2〉 = 〈S(fw−1/2), πb(gw
1/2)〉

=
∑
I∈D

〈gw1/2〉I〈b, hI〉〈S(fw−1/2), hI〉

=
∑
I∈D

〈gw1/2〉I〈b, hI〉 sgn(I)〈fw−1/2, hÎ〉

=
∑
I∈D

sgn(I)〈gw1/2〉I〈b, hI〉〈fw−1/2, Hw−1

Î
〉 1√
|Î|

+
∑
I∈D

sgn(I)〈gw1/2〉I〈b, hI〉〈fw−1/2, Aw
−1

Î
χÎ〉

1√
|Î|

. (4.15)

Our claim is that both sums in (4.15) are bounded by [w]Ad2‖b‖BMO d‖f‖L2‖g‖L2 , i.e.∣∣∣∣∣∑
I∈D

sgn(I)〈gw1/2〉I〈b, hI〉〈fw−1/2, Hw−1

Î
〉 1√
|Î|

∣∣∣∣∣ ≤ C[w]Ad2‖b‖BMO d‖f‖L2‖g‖L2

(4.16)

and∣∣∣∣∣∑
I∈D

sgn(I)〈gw1/2〉I〈b, hI〉〈fw−1/2, Aw
−1

Î
χÎ〉

1√
|Î|

∣∣∣∣∣ ≤ C[w]Ad2‖b‖BMO d‖f‖L2‖g‖L2 .

(4.17)

First let us verify the bound for (4.16). Using Cauchy-Schwarz inequality,∣∣∣∣∣∑
I∈D

sgn(I)〈gw1/2〉I〈b, hI〉〈fw−1/2, Hw−1

Î
〉 1√
|Î|

∣∣∣∣∣
≤
(∑
I∈D

〈gw1/2〉2I〈b, hI〉2〈w−1〉Î
)1/2(∑

I∈D

1

|Î|〈w−1〉Î
〈f, w−1/2Hw−1

Î
〉2
)1/2

≤ ‖f‖L2

(∑
I∈D

〈gw1/2〉2I〈b, hI〉2〈w−1〉Î
)1/2

. (4.18)

Thus, for (4.16), it is enough to show that∑
I∈D

〈gw1/2〉2I〈b, hI〉2〈w−1〉Î ≤ C[w]2Ad2
‖b‖2

BMO d‖g‖2
L2 . (4.19)
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It is clear that 2〈w〉Î ≥ 〈w〉I , thus

∑
I∈D

〈gw1/2〉2I〈b, hI〉2〈w−1〉Î =
∑
I∈D

〈gw1/2〉2I〈b, hI〉2〈w−1〉Î〈w〉I〈w〉
−1
I

≤ 2[w]Ad2

∑
I∈D

〈gw1/2〉2I〈b, hI〉2〈w〉−1
I .

If we show for all J ∈ D ,

1

|J |
∑

I∈D(J)

〈b, hI〉2〈w〉−1
I 〈w〉

2
I =

1

|J |
∑

I∈D(J)

〈b, hI〉2〈w〉I ≤ [w]Ad2‖b‖
2
BMO d〈w〉J , (4.20)

then by Weighted Carleson Embedding Theorem 3.1.5 with w instead of w−1 , we will

have (4.19) . Since b ∈ BMO d , {〈b, hI〉2}I∈D is a Carleson sequence with constant

‖b‖2
BMO d that is

1

|J |
∑

I∈D(J)

〈b, hI〉2 ≤ ‖b‖2
BMO d .

Applying Lemma 3.1.8 with αI = 〈b, hI〉 we have inequality (4.20). We now concen-

trate on the estimate (4.17), we can estimate the left hand side of (4.17) as follows.

∣∣∣∣∣∑
I∈D

sgn(I)〈gw1/2〉I〈b, hI〉〈fw−1/2, Aw
−1

Î
χÎ〉

1√
|Î|

∣∣∣∣∣
=

∣∣∣∣∑
I∈D

sgn(I)〈gw1/2〉I〈b, hI〉〈fw−1/2〉ÎA
w−1

Î

√
|Î|
∣∣∣∣

≤
∑
I∈D

〈gw1/2〉I |〈b, hI〉| 〈fw−1/2〉Î |A
w−1

Î
|
√
|Î|

≤ 2
∑
I∈D

〈gw1/2〉Î |〈b, hI〉| 〈fw
−1/2〉Î |A

w−1

Î
|
√
|Î|

= 2
∑
I∈D

〈gw1/2〉I
(
|〈b, hI−〉|+ |〈b, hI+〉|

)
〈fw−1/2〉I |Aw

−1

I |
√
|I| .

By Bilinear Embedding Theorem (Corollary 3.1.3 with v = w−1), inequality (4.17)
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holds provided the following three inequalities hold,

∀ J ∈ D, 1

|J |
∑

I∈D(J)

(
|〈b, hI−〉|+ |〈b, hI+〉|

)
|Aw−1

I |
√
|I|〈w−1〉I〈w〉I

≤ C‖b‖BMO d [w−1]Ad2 , (4.21)

∀ J ∈ D, 1

|J |
∑

I∈D(J)

(
|〈b, hI−〉|+ |〈b, hI+〉|

)
|Aw−1

I |
√
|I|〈w−1〉I

≤ C‖b‖BMO d [w−1]Ad2〈w
−1〉J , (4.22)

∀ J ∈ D, 1

|J |
∑

I∈D(J)

(
|〈b, hI−〉|+ |〈b, hI+〉|

)
|Aw−1

I |
√
|I|〈w〉I

≤ C‖b‖BMO d [w−1]Ad2〈w〉J . (4.23)

For (4.21), by Cauchy-Schwarz inequality

1

|J |
∑

I∈D(J)

(
|〈b, hI−〉|+ |〈b, hI+〉|

)
|Aw−1

I |
√
|I|〈w−1〉I〈w〉I

≤
(

1

|J |
∑

I∈D(J)

(
|〈b, hI−〉|+ |〈b, hI+〉|

)2〈w−1〉I〈w〉I
)1/2

×
(

1

|J |
∑

I∈D(J)

(Aw
−1

I )2|I|〈w−1〉I〈w〉I
)1/2

.

Since ∑
I∈D

(|〈b, hI−〉|+ |〈b, hI+〉|)2 ≤ 3
∑
I∈D

〈b, hI〉2 , (4.24)

1

|J |
∑

I∈D(J)

(|〈b, hI−〉|+ |〈b, hI+〉|)2〈w−1〉I〈w〉I ≤ C[w−1]Ad2
1

|J |
∑

I∈D(J)

〈b, hI〉2

≤ C[w−1]Ad2‖b‖
2
BMO d ,

and by Lemma 3.1.9,

1

|J |
∑

I∈D(J)

(Aw
−1

I )2|I|〈w−1〉I〈w〉I ≤ C [w−1]Ad2 .
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Thus embedding condition (4.21) holds. For (4.22), by Cauchy-Schwarz inequality

and (4.24) we have

1

|J |
∑

I∈D(J)

(|〈b, hI−〉|+ |〈b, hI+〉|) |Aw
−1

I |
√
|I|〈w−1〉I

≤ C

(
1

|J |
∑

I∈D(J)

〈b, hI〉2〈w−1〉I
)1/2(

1

|J |
∑

I∈D(J)

(Aw
−1

I )2|I|〈w−1〉I
)1/2

.

By Theorem 3.1.6,

1

|J |
∑

I∈D(J)

(Aw
−1

I )2|I|〈w−1〉I =
1

|J |
∑

I∈D(J)

(
〈w−1〉I+ − 〈w−1〉I−

2〈w−1〉I

)2

|I|〈w−1〉I

≤ C[w−1]Ad2〈w
−1〉J .

Similarly with (4.20), we have

1

|J |
∑

I∈D(J)

〈b, hI〉2〈w−1〉I ≤ [w−1]A2‖b‖2
BMO d〈w−1〉J .

To finish, we must estimate (4.23). In a similar way with (4.22), we need to estimate(
1

|J |
∑

I∈D(J)

〈b, hI〉2〈w〉I
)1/2(

1

|J |
∑

I∈D(J)

(Aw
−1

I )2|I|〈w〉I
)1/2

.

By Lemma 3.1.7, applied to w−1 instead of w, we have

1

|J |
∑

I∈D(J)

(Aw
−1

I )2|I|〈w〉I ≤ [w−1]Ad2
1

|J |
∑

I∈D(J)

(Aw
−1

I )2|I|〈w−1〉−1
I

= [w−1]Ad2
1

|J |
∑

I∈D(J)

(
〈w−1〉I+ − 〈w−1〉I−

〈w−1〉3I

)2

|I|

≤ C[w−1]Ad2〈w〉J .

This completes the proof of Lemma 4.3.1.

Due to the almost self adjoint property of the Hilbert transform, a certain bound

for π∗bH immediately returns the same bound for Hπb. However we have to prove

the boundedness of Sπb independently because S is not self adjoint.
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4.4 Linear bound for Sπb

Lemma 4.4.1. Let w ∈ Ad2 and b ∈ BMO d. Then, there exists C so that

‖Sπb‖L2(w)→L2(w) ≤ C[w]Ad2‖b‖BMO d .

Proof. We are going to prove Lemma 4.4.1 by showing

〈Sπb(w−1f), g〉w ≤ C[w]Ad2‖b‖BMO d‖f‖L2(w−1)‖g‖L2(w) , (4.25)

for any positive function f, g ∈ L2 . Since

〈Sπb(f), hI〉 = sgn(I)〈πb(f), hÎ〉 = sgn(I)〈f〉Î〈b, hÎ〉 ,

we have

Sπb(f) =
∑
I∈D

sgn(I)〈f〉Î〈b, hÎ〉hI .

By expanding g in the disbalanced Haar system for L2(w) ,

〈Sπb(w−1f), g〉w =
∑
I∈D

〈w−1f〉Î〈b, hÎ〉sgn(I)〈hI , g〉w

=
∑
I∈D

∑
J∈D

sgn(I)〈w−1〉Î〈f〉Î,w−1〈b, hÎ〉〈g, h
w
J 〉w〈hI , hwJ 〉w .

Since 〈hI , hwJ 〉w could be non zero only if J ⊇ I , we can split above sum into three

parts, ∑
I∈D

sgn(I)〈w−1〉Î〈f〉Î,w−1〈b, hÎ〉〈g, h
w
I 〉w〈hI , hwI 〉w, (4.26)

∑
I∈D

sgn(I)〈w−1〉Î〈f〉Î,w−1〈b, hÎ〉〈g, h
w
Î
〉w〈hI , hwÎ 〉w, (4.27)

and ∑
I∈D

∑
J :J)Î

sgn(I)〈w−1〉Î〈f〉Î,w−1〈b, hÎ〉〈g, h
w
J 〉w〈hI , hwJ 〉w . (4.28)
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We claim that all sums, (4.26), (4.27), and (4.28), can be bounded with a bound

that depends on [w]Ad2‖b‖BMO d at most linearly. Since |〈hI , hwI 〉w| ≤ 〈w〉
1/2
I , we can

estimate (4.26)

∣∣∣∣∑
I∈D

sgn(I)〈w−1〉Î〈f〉Î,w−1〈b, hÎ〉〈g, h
w
I 〉w〈hI , hwI 〉w

∣∣∣∣
≤
(∑
I∈D

〈w−1〉2
Î
〈f〉2

Î,w−1〈b, hÎ〉
2〈w〉I

)1/2(∑
I∈D

〈g, hwI 〉2
)1/2

≤ C‖g‖L2(w)[w]
1/2

Ad2

(∑
I∈D

〈f〉2I,w−1〈b, hI〉2〈w−1〉I
)1/2

.

By Weighted Carleson Embedding Theorem 3.1.5,

∑
I∈D

〈f〉2I,w−1〈b, hI〉2〈w−1〉I ≤ C[w]Ad2‖b‖
2
BMO d‖f‖2

L2(w−1)

holds provided that the following Carleson condition hold,

1

|J |
∑

I∈D(J)

〈b, hI〉2〈w−1〉I ≤ [w]Ad2‖b‖
2
BMO d〈w−1〉J

which we already have in (4.20) . Thus, we have

∣∣∣∣∑
I∈D

sgn(I)〈w−1〉Î〈f〉Î,w−1〈b, hÎ〉〈g, h
w
I 〉w〈hI , hwI 〉w

∣∣∣∣ ≤ C[w]Ad2‖b‖BMO d‖f‖L2(w−1)‖g‖L2(w) .

(4.29)
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Similarly to (4.26), we can estimate (4.27) using |〈hI , hwÎ 〉w| ≤ 〈w〉
1/2
I ≤

√
2〈w〉1/2

Î

∣∣∣∣∑
I∈D

sgn(I)〈w−1〉Î〈f〉Î,w−1〈b, hÎ〉〈g, h
w
Î
〉w〈hI , hwÎ 〉w

∣∣∣∣
≤
√

2
∑
I∈D

〈w−1〉Î〈f〉Î,w−1 |〈b, hÎ〉| 〈g, h
w
Î
〉w〈w〉1/2Î

= 2
√

2
∑
I∈D

〈w−1〉I〈f〉I,w−1 |〈b, hI〉| 〈g, hwI 〉w〈w〉
1/2
I

≤ 2
√

2

(∑
I∈D

〈w−1〉2I〈f〉2I,w−1〈b, hI〉2〈w〉I
)1/2(∑

I∈D

〈g, hwI 〉2
)1/2

≤ C‖g‖L2(w)[w]
1/2

Ad2

(∑
I∈D

〈f〉2I,w−1〈b, hI〉2〈w−1〉I
)1/2

≤ C[w]Ad2‖b‖BMO d‖f‖L2(w−1)‖g‖L2(w) .

Since hwJ is constant on Î, for J ) Î and we denote this constant by hwJ (Î) . Then we

know by (2.7),

∑
J :J)Î

〈g, hwJ 〉w〈hI , hwJ 〉w =
∑
J :J)Î

〈g, hwJ 〉whwJ (Î)〈hI , w〉 = 〈g〉Î,w〈hI , w〉 .

Thus, we can rewrite (4.28)

∣∣∣∣∑
I∈D

sgn(I)〈w−1〉Î〈f〉Î,w−1〈b, hÎ〉〈g〉Î,w〈hI , w〉
∣∣∣∣

≤
∑
I∈D

〈w−1〉Î〈f〉Î,w−1 |〈b, hÎ〉| 〈g〉Î,w|〈hI , w〉| (4.30)

=
∑
I∈D

〈w−1〉I |〈b, hI〉| (|〈hI− , w〉|+ |〈hI+ , w〉|)〈f〉I,w−1〈g〉I,w . (4.31)

We claim the sum (4.31) is bounded by [w]Ad2‖b‖BMO d‖f‖L2(w−1)‖g‖L2(w) . We are

going to prove it using Petermichl’s Bilinear Embedding Theorem 3.1.2. Thus, we
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need to show that the following three embedding conditions hold,

∀ J ∈ D, 1

|J |
∑

I∈D(J)

|〈b, hI〉| 〈w−1〉I(|〈hI− , w〉|+ |〈hI+ , w〉|)
1

〈w〉I

≤ C[w]Ad2‖b‖BMO d 〈w−1〉J , (4.32)

∀ J ∈ D, 1

|J |
∑

I∈D(J)

|〈b, hI〉| 〈w−1〉I(|〈hI− , w〉|+ |〈hI+ , w〉|)
1

〈w−1〉I

≤ C[w]Ad2‖b‖BMO d 〈w〉J , (4.33)

∀ J ∈ D, 1

|J |
∑

I∈D(J)

|〈b, hI〉| 〈w−1〉I(|〈hI− , w〉|+ |〈hI+ , w〉|) ≤ C[w]Ad2‖b‖BMO d .

(4.34)

After we split the sum in (4.32):

1

|J |
∑

I∈D(J)

|〈b, hI〉| 〈w−1〉I |〈hI− , w〉|
1

〈w〉I
+

1

|J |
∑

I∈D(J)

|〈b, hI〉| 〈w−1〉I |〈hI+ , w〉|
1

〈w〉I
,

we start with Cauchy-Schwarz inequality to estimate the first sum of embedding

condition (4.32),

1

|J |
∑

I∈D(J)

|〈b, hI〉| 〈w−1〉I |〈hI− , w〉|
1

〈w〉I
=

1

|J |
∑

I∈D(J)

|〈b, hI〉| 〈w−1〉I
√
|I−||∆I−w|
〈w〉I

≤
(

1

|J |
∑

I∈D(J)

〈b, hI〉2〈w−1〉2I〈w〉I
)1/2(

1

|J |
∑

I∈D(J)

|I−||∆I−w|2
1

〈w〉3I

)1/2

≤ C[w]
1/2
A2

(
1

|J |
∑

I∈D(J)

〈b, hI〉2〈w−1〉
)1/2(

1

|J |
∑

I∈D(J)

|I−||∆I−w|2
1

〈w〉3I−

)1/2

≤ C[w]Ad2‖b‖BMO d〈w−1〉J . (4.35)

Inequality (4.35) due to Lemma 3.1.7 and (4.20) . Also, the other sum can be esti-

mated by exactly the same method. Thus we have the embedding condition (4.32).

To see the embedding condition (4.33), it is enough to show

1

|J |
∑

I∈D(J)

|〈b, hI〉 〈hI− , w〉| ≤ C[w]Ad2‖b‖BMO d〈w〉J ,
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as we did above. We use Cauchy-Schwarz inequality for embedding condition (4.33),

then

1

|J |
∑

I∈D(J)

|〈b, hI〉〈hI− , w〉| =
1

|J |
∑

I∈D(J)

|〈b, hI〉|
√
|I−||∆I−w|

≤
(

1

|J |
∑

I∈D(J)

〈b, hI〉2
1

〈w−1〉I

)1/2(
1

|J |
∑

I∈D(J)

|I−||∆I−w|2〈w−1〉I
)1/2

≤ C‖b‖BMO d〈w〉1/2J

(
[w]A2

|J |
∑

I∈D(J)

|I−||∆I−w|2
1

〈w〉I−

)1/2

(4.36)

≤ C[w]Ad2‖b‖BMO d〈w〉J . (4.37)

Here inequality (4.36) uses Lemma 3.1.8, and inequality (4.37) uses the fact that

〈w〉−1
I ≤ 2〈w〉−1

I−
and Theorem 3.1.6 after shifting the indices.

If we show the embedding condition (4.34), then we can immediately finish the

estimate for (4.31) with bound C[w]Ad2‖b‖BMO d‖f‖L2(w−1)‖g‖L2(w) . Combining this

and (4.29) will give us our desired result.

4.5 Proof for embedding condition (4.34)

The following lemma lies at the heart of the matter for the proof of the embedding

condition (4.34) .

Lemma 4.5.1. There is a positive constant C so that for all dyadic interval J ∈ D

1

|J |
∑

I∈D(J)

|I|〈w〉1/4I 〈w
−1〉1/4I

(
|∆I+w|+ |∆I−w|

〈w〉I

)2

≤ C〈w〉1/4J 〈w
−1〉1/4J , (4.38)

whenever w is a weight. Moreover, if w ∈ Ad2 then for all J ∈ D

1

|J |
∑

I∈D(J)

|I|〈w〉I〈w−1〉I
(
|∆I+w|+ |∆I−w|

〈w〉I

)2

≤ C [w]Ad2 .
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Proof of condition (4.34). By using Cauchy-Schwarz inequality and Lemma 4.5.1,

we have:

1

|J |
∑

I∈D(J)

〈b, hI〉〈w−1〉I(|〈hI− , w〉|+ |〈hI+ , w〉|)

=
1

|J |
∑

I∈D(J)

〈b, hI〉〈w−1〉I

√
|I|
2

(
|∆I+w|+ |∆I−w|

)
≤ 1√

2

(
1

|J |
∑

I∈D(J)

〈b, hI〉2〈w−1〉I〈w〉I
)1/2

×
(

1

|J |
∑

I∈D(J)

|I|〈w−1〉I〈w〉−1
I (|∆I+w|+ |∆I−w|)2

)1/2

≤ C[w]Ad2‖b‖BMO d .

We turn to the proof of Lemma 4.5.1. In the first place, we need to revisit some

properties of the function B(u, v) := 4
√
uv on the domain D0 which is given by

{(u, v) ∈ R2
+ : uv ≥ 1/2 } .

It is known, we refer to [Be], that B(u, v) satisfies the following differential inequality

in D0

− (du, dv)d2B(u, v)(du, dv)t ≥ 1

8

v1/4

u7/4
|du|2 . (4.39)

Furthermore, this implies the following convexity condition. For all (u, v), (u±, v±) ∈

D0 ,

B(u, v)− B(u+, v+) +B(u−, v−)

2
≥ C1

v1/4

u7/4
(u+ − u−)2 , (4.40)

where u = (u+ + u−)/2 and v = (v+ + v−)/2 .

Lemma 4.5.2. Let us define

A(u, v,∆u) := aB(u, v) +B(u+ ∆u, v) +B(u−∆u, v) ,
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on the domain D1 with some positive constant a > 0 . Here (u, v,∆u) ∈ D1 means

all pairs (u, v), (u+ ∆u, v), (u−∆u, v) ∈ D0 . Then A has the size property,

if (u, v,∆u) ∈ D1, then 0 ≤ A(u, v,∆u) ≤ (a+ 2) 4
√
uv , (4.41)

and the convexity property,

A(u, v,∆u)− 1

2

[
A(u+, v+,∆u1) + A(u−, v−,∆u2)

]
≥ C2

v1/4

u7/4
(∆u2

1 + ∆u2
2) , (4.42)

where u = (u+ + u−)/2 , v = (v+ + v−)/2, and ∆u = (u+ − u+)/2 .

Proof. The property (4.42) is directly from the definition of function B(u, v) . At the

end, ∆u will play the role of ∆Iw, ∆u1 is ∆I+w, and ∆u2 is ∆I−w . We can rewrite

the left hand side of the inequality (4.42) as follows

A(u,v,∆u)− 1

2

[
A(u+, v+,∆u1) + A(u−, v−,∆u2)

]
= aB(u, v) +B(u+ ∆u, v) +B(u−∆u, v)

− 1

2

[
aB(u+, v+) +B(u+ + ∆u1, v+) +B(u+ −∆u1, v+)

+ aB(u−, v−) +B(u− + ∆u1,∆u−) +B(u− −∆u1, v−)
]

= aB(u, v)− a

2
(B(u+, v+) +B(u−, v−)) +B(u+, v) +B(u−, v)

− 1

2

[
B(u+ ∆u+ ∆u1, v + ∆v) +B(u+ ∆u−∆u1, v + ∆v)

+B(u−∆u+ ∆u2, v −∆v) +B(u−∆u−∆u2, v −∆v)
]
. (4.43)

Using Taylor’s theorem:

B(u+ u0, v + v0) =B(u, v) +∇B(u, v)(u0, v0)t

+

∫ 1

0

(1− s)(u0, v0)d2B(u+ su0, v + sv0)(u0, v0)tds ,

and the differential convexity condition (4.38) of B(u, v), we are going to estimate
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the lower bounds for (4.42).

− 1

2
B(u+ ∆u+ ∆u1, v + ∆v)

= −1

2

(
B(u, v) +∇B(u, v)(∆u+ ∆u1,∆v)t

)
− 1

2

∫ 1

0

(1− s)(∆u+ ∆u1,∆v)d2B(u+ s(∆u+ ∆u1), v + s∆v)(∆u+ ∆u1,∆v)tds

≥ −1

2

(
B(u, v) +∇B(u, v)(∆u+ ∆u1,∆v)t

)
+

1

16

∫ 1

0

(1− s) (v + s∆v)1/4

(u+ s(∆u+ ∆u1))7/4
(∆u+ ∆u1)2ds

≥ −1

2

(
B(u, v) +∇B(u, v)(∆u+ ∆u1,∆v)t

)
+

(∆u+ ∆u1)2

16(4u)7/4

∫ 1

0

(1− s)(v + s∆v)1/4ds (4.44)

≥ −1

2

(
B(u, v) +∇B(u, v)(∆u+ ∆u1,∆v)t

)
+

(∆u+ ∆u1)2v1/4

16(4u)7/4

∫ 1

0

(1− s)(1 + s
∆v

v
)1/4ds

≥ −1

2

(
B(u, v) +∇B(u, v)(∆u+ ∆u1,∆v)t

)
+

1

144 · 43/4

v1/4

u7/4
(∆u+ ∆u1)2 . (4.45)

Inequality (4.44) is due to the following inequalities

|∆u| = |u+ − u−|
2

≤ |u+ + u−|
2

= u and |∆u1| =
|u++ − u+−|

2
≤ u+ ≤ 2u .

Since (1− s)1/4 ≤ (1− |β|s)1/4 ≤ (1 + βs)1/4 for any | β| < 1, it is clear that

∫ 1

0

(1− s)(1 + βs)1/4ds ≥
∫ 1

0

(1− s)5/4ds =
4

9
,

and this allows the inequality (4.45). With the same arguments, we also estimate
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the following lower bounds:

− 1

2

[
B(u+ ∆u−∆u1, v + ∆v) +B(u−∆u+ ∆u2, v −∆v)

+B(u−∆u−∆u2, v −∆v)
]

≥ −1

2

(
B(u, v) +∇B(u, v)(∆u−∆u1,∆v)t

)
+

1

144 · 43/4

v1/4

u7/4
(∆u−∆u1)2

− 1

2

(
B(u, v) +∇B(u, v)(−∆u+ ∆u2,−∆v)t

)
+

1

144 · 43/4

v1/4

u7/4
(−∆u+ ∆u2)2

− 1

2

(
B(u, v) +∇B(u, v)(−∆u−∆u2,−∆v)t

)
+

1

144 · 43/4

v1/4

u7/4
(∆u+ ∆u2)2 .

(4.46)

We can have the following inequality by combining (4.45), (4.46) and (4.43),

A(u, v,∆u)− 1

2

[
A(u+, v+,∆u1) + A(u−, v−,∆u2)

]
≥ (a− 2)B(u, v)− a

2
(B(u+, v+) +B(u−, v−)) +B(u+, v) +B(u−, v)

+
1

72 · 43/4

v1/4

u7/4
(2∆u2 + ∆u2

1 + ∆u2
2)

≥ 1

72 · 43/4

v1/4

u7/4
(∆u2

1 + ∆u2
2) . (4.47)

To see the inequality (4.47), using convexity condition (4.39) of B(u, v) = 4
√
uv and

inequality: (1− s)u ≤ u− s∆u ≤ u+ s∆u ,

(a− 2)B(u, v)− a

2

(
B(u+, v+) +B(u−, v−)

)
+B(u+, v) +B(u−, v)

= a

(
B(u, v)− 1

2
(B(u+, v+) +B(u−, v−)

)
−
(

3

16
∆u2

∫ 1

0

(1− s)v1/4(u+ s∆u)−7/4ds

+
3

16
∆u2

∫ 1

0

(1− s)v1/4(u− s∆u)−7/4ds

)
≥ aC1

v1/4

u7/4
∆u2 − 6

16
∆u2 v

1/4

u7/4

∫ 1

0

(1− s)−3/4ds

= aC1
v1/4

u7/4
∆u2 − 3

2
∆u2 v

1/4

u7/4
=

(
aC1 −

3

2

)
v1/4

u7/4
∆u2 . (4.48)
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Choosing a constant a sufficiently large so that aC1 > 3/2, quantity in (4.48) remains

positive. This observation and discarding nonnegative terms yield inequality (4.47).

Choosing the constant C2 = 1/(36·43/4) in (4.42) completes the proof of the concavity

property of A(u, v,∆u) .

We now turn to the proof of Lemma 4.5.1.

Proof of Lemma 4.5.1. Let uI := 〈w〉I , vI := 〈w−1〉I , u± = uI± , v± = vI± , ∆uI =

∆Iw, ∆u1 = ∆uI+ , and ∆u2 = ∆uI− . Then by Hölder’s inequality (u, v,∆u),

(u+, v+,∆u1), and (u−, v−,∆u2) belong to D1 . Fix J ∈ D , by properties (4.41)

and (4.42)

(a+ 2)|J | 4
√
〈w〉J〈w−1〉J ≥ |J |A(uJ , vJ ,∆uJ)

≥ 1

2

(
|J+|A(u+, v+,∆u1) + |J−|A(u−, v−,∆u2)

)
+ |J |C 〈w

−1〉J
〈w〉7/4J

(|∆J+u|2 + |∆J−u|2) .

Since A(u, v,∆u) ≥ 0, iterating the above process will yield

|J | 4
√
〈w〉J〈w−1〉J ≥ C

∑
I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I (|∆I+w|2 + |∆I−w|2) . (4.49)

Also, one can easily have

|J | 4
√
〈w〉J〈w−1〉J ≥ C

∑
I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I ∆I+w

2 , (4.50)

and

|J | 4
√
〈w〉J〈w−1〉J ≥ C

∑
I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I ∆I−w

2 . (4.51)
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Then,

1

|J |
∑

I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I (|∆I+w|+ |∆I−w|)2

=
1

|J |

( ∑
I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I (|∆I+w|2

+ |∆I−w|2) + 2
∑

I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I (|∆I+w| |∆I−w|)

)

≤ 1

|J |

( ∑
I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I (|∆I+w|2 + |∆I−w|2)

+ 2

( ∑
I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I ∆I+w

2

)1/2( ∑
I∈D(J)

|I|〈w−1〉1/4I 〈w〉
−7/4
I ∆I−w

2

)1/2
)

≤ 3

C
4
√
〈w〉I〈w−1〉I .

Remark 4.5.3. The linear bounds in L2(w) for [λb, S], π∗bS and Sπb can be deduced

form the results in [HyLReVa] once it is observed that all three operators are Haar

shift operators of the second class, see Section 5.1.

76



Chapter 5

Commutators of Riesz transforms

and the Beurling-Ahlfors operator

and sharp bounds

In this chapter, we are going to introduce two more general classes of dyadic shift

operators, the convex hull of which now includes one dimensional Calderón-Zygmund

convolution operators with sufficiently smooth kernel (See [Va]). By showing that

the commutator of the first class of dyadic shift operators with λb also belongs to

the same class, we will extend our result to more general class of commutators.

Among the convolution operators that fit this theory are the Riesz transforms and

the Beurling-Ahlfors operator. We also prove in this chapter that the bounds in Lp(w)

obtained for the commutator of the Hilbert and Riesz transforms and the Beurling-

Ahlfors operator are sharp in terms of their dependence on the Ap-characteristic of

the weight.

77



Chapter 5. Commutators and sharp bounds

5.1 Dyadic shift operators

The dyadic shift operator was first introduced in [Pet1] to study the weighted norm

estimate for the Hilbert transform. It was also encountered in [PetTV], so Riesz

transforms can be obtained as the result of averaging some dyadic shift operator.

Recently, in [LPetRe] and [CrMP], a more general class of dyadic shift operators,

so called the Haar shift operators were introduced. The Hilbert transform, Riesz

transforms, and Beurling-Ahlfors operator are in the convex hull of this class, as

they can be written as appropriate averages of Haar shift operators. Let Dn denote

the collection of dyadic cubes in Rn , Dn(Q) denotes dyadic subcubes of Q , and |Q|

denotes the volume of the dyadic cube Q . We start with some definitions.

Definition 5.1.1. A Haar function on a cube Q ⊂ Rn is a function HQ such that

(1) HQ is supported on Q, and is constant on Dn(Q) .

(2) ‖HQ‖∞ ≤ |Q|−1/2 .

(3) HQ has a mean zero.

Examples of such a Haar function are the standard Haar functions {hsj,Q}, and

the Haar functions {hj,Q} introduced in Section 2.2, for each j = 1, ..., 2n − 1 .

Definition 5.1.2. Given an integer τ > 0 , we say an operator of the following form

is in the first class of Haar shift operators of index τ

Tτf(x) =
∑
Q∈Dn

∑
Q′,Q′′∈Dn(Q)

2−τn|Q|≤|Q′|,|Q′′|

aQ′,Q′′〈f,HQ′〉HQ′′(x) ,

where the constant aQ′,Q′′ satisfy the following size condition:

| aQ′,Q′′ | ≤ C

(
|Q′|
|Q|
· |Q

′′|
|Q|

)1/2

. (5.1)
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Note that once a choice of Haar functions has been made {HQ}Q∈Dn , then this

is an orthogonal family, such that ‖HQ‖L2 ≤ 1 , so one could normalize in L2 . Note

that one can easily see that the dyadic shift operator S belongs to the first class of

a Haar shift operator of index τ = 1 with

aI′,I′′ =

 ±1 for I ′ = I, I ′′ = I∓

0 otherwise .

One of the main result in [LPetRe] and [CrMP] is the following

Theorem 5.1.3 ([LPetRe], [CrMP]). Let T be in the first class of Haar shift oper-

ators of index τ . Then for all w ∈ Ad2 , there exists C(τ, n) which only depends on τ

and n such that

‖T‖L2(w)→L2(w) ≤ C(τ, n)[w]Ad2 .

As a consequence of this Theorem, linear bounds for the Hilbert transform, Riesz

transforms, and the Beurling-Ahlfors operator are recovered. There are now two

different proofs of Theorem (5.1.3) in [LPetRe] and [CrMP]. The commutator [λb, S]

is also in the first class of Haar shift operators of index τ = 1 . Recall the observation

in Section 4.1

[λb, S](f) = −
∑
I∈D

∆Ib〈f, hI〉(hI+ + hI−) .

Then we can see

aI′,I′′ =

 −∆Ib for I ′ = I, I ′′ = I±

0 otherwise ,

moreover | aI′,I′′ | = |∆Ib| ≤ 2‖b‖BMO d , this means the constant aI′,I′′ satisfy the

size condition (5.1) with C = 2
√

2‖b‖BMO d . These observations, Theorem 2.4.1, and

Theorem 5.1.3 immediately recover the quadratic bound for the commutator of the

Hilbert transform which was proved in Chapter 4. We now define the second class

of Haar shift operators of index τ .
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Definition 5.1.4. Given an integer τ > 0 , we say an operator T of the form in

Definition 5.1.2 is in the second class of Haar shift operators of index τ , if T is

bounded on L2 and the function HQ satisfy the condition (1) and (2) in Definition

5.1.1.

The second class of Haar shift operators is more general than the first class. One

can easily observe that the operators πb, Sπb and π∗bS do not satisfy the condition

(c) on Definition 5.1.1, however these operators satisfy the conditions of Definition

5.1.4. Note that the n-variable paraproduct is a sum of 2n−1 operators in the second

class of Haar shift operator of index 1, the restricted n-variable dyadic paraproduct

πbf =
∑
Q∈Dn

〈f〉Q〈b,HQ〉HQ .

Similarly, with Haar functions defined in Section 2.2, the restricted n-variable dyadic

paraproduct will be

πjbf =
∑
Q∈Dn

〈f〉Ej,Q〈b, hj,Q〉hj,Q ,

for j = 1, ..., 2n − 1 . In [HyLReVa], the linear estimate for the maximal truncations

of these operators is presented. This also recovers our linear bound estimates for Sπb

and π∗bS. On the other hand, authors in [CrMP] also reproduce the linear estimate

for the dyadic paraproduct with a different technique.

Lemma 5.1.5. Let Tτ be a Haar shift operator of the first class, then [λb, Tτ ] is an

operator of the same class.

Proof. We are going to use the restricted multi-variable λb operator which is

λbf =
∑
Q∈Dn

〈b〉Q〈f,HQ〉HQ .

One can get the n-variable λb operator by summing over 2n − 1 of restricted λb
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operator. Observe that,

[λb, Tτ ]f = λb(Tτf)− Tτ (λbf)

=
∑
Q∈Dn

∑
Q′,Q′′∈Dn(Q)

2−τn|Q|≤|Q′|,|Q′′|

aQ′,Q′′〈b〉Q′′〈f,HQ′〉HQ′′

−
∑
Q∈Dn

∑
Q′,Q′′∈Dn(Q)

2−τn|Q|≤|Q′|,|Q′′|

aQ′,Q′′〈b〉Q′〈f,HQ′〉HQ′′

=
∑
Q∈Dn

∑
Q′,Q′′∈Dn(Q)

2−τn|Q|≤|Q′|,|Q′′|

aQ′,Q′′(〈b〉Q′′ − 〈b〉Q′)〈f,HQ′〉HQ′′ .

Since ∣∣ aQ′,Q′′(〈b〉Q′′ − 〈b〉Q′)∣∣ ≤ C(τ)‖b‖BMO| aQ′,Q′′ | ,

[λb, Tτ ] remains in the same class of Tτ .

Theorem 5.1.3 and Lemma 5.1.5 allow to extend our result to more general class

of commutators including the Riesz transforms and the Beurling-Ahlfors operator as

in Theorem 1.0.3.

Remark 5.1.6. By Theorem 5.1.3, Lemma 5.1.5 and the result of [Va], we now know

that the L2(w)-norm of the commutators of one dimensional Calderón-Zygmund

convolution operators with sufficiently smooth kernel depends quadratically on the

A2-characteristic.

Remark 5.1.7. Most recently, authors in [CPerP] presented a more general result

about this subject with completely different but more classical and elegant methods.

More precisely, they prove that if any linear operator bounded on L2(w) for any

w ∈ A2 with

‖T‖L2(w)→L2(w) ≤ φ([w]A2)

for a some increasing function φ then there are constants c(n) and C(n) independent

of [w]A2 such that

‖[b, T ]‖L2(w)→L2(w) ≤ C(n)φ(c(n)[w]A2)[w]A2‖b‖BMO .
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5.2 Sharpness of the results

In this section, we start proving that the quadratic estimate in Theorem 2.3.2 is sharp,

by showing an example which returns quadratic bound. This example was discovered

by C. Peréz [P3] who is kindly allowing us to reproduce it in this dissertation. The

same calculations show that the bounds in Theorem 1.0.1 are also sharp for p 6= 2

and 1 < p < ∞ . Variations over this example will then show that the bounds in

Theorem 1.0.3 are sharp for the Riesz transforms and the Beurling-Ahlfors operator

as well.

5.2.1 The Hilbert transform

Consider the weight, for 0 < δ < 1 :

w(x) = |x|1−δ .

It is well known that w is an A2 weight and

[w]A2 ∼ 1

δ
.

We now consider the function f(x) = x−1+δχ(0,1)(x) and BMO function b(x) =

log |x| . We claim that

‖[b,H]f(x)| ≥ 1

δ2
f(x) .

For 0 < x < 1 , we have

[b,H]f(x) =

∫ 1

0

log x− log y

x− y
y−1+δdy =

∫ 1

0

log(x/y)

x− y
y−1+δdy

= x−1+δ

∫ 1/x

0

log(1/t)

1− t
t−1+δdt .

Now, ∫ 1/x

0

log(1/t)

1− t
t−1+δdt =

∫ 1

0

log(1/t)

1− t
t−1+δdt+

∫ 1/x

1

log(1/t)

1− t
t−1+δdt ,
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and since log(1/t)
1−t is positive for (0, 1) ∪ (1,∞) we have for 0 < x < 1

|[b,H]f(x)| > x−1+δ

∫ 1

0

log(1/t)

1− t
t−1+δdt . (5.2)

But since ∫ 1

0

log(1/t)

1− t
t−1+δdt >

∫ 1

0

log(1/t)t−1+δdt =

∫ ∞
0

se−sδds =
1

δ2
, (5.3)

our claim follows and

‖[b,H]f‖L2(w) ≥
1

δ2
‖f‖L2(w) ∼ [w]2A2

‖f‖L2(w) .

A first approximation of what the bounds in Lp(w) is given by an application of the

sharp extrapolation theorem for the upper bound, paired with the knowledge of the

sharp bound on L2(w) to obtain a lower bound.

Proposition 5.2.1. For 1 < p < ∞ there exist constants c and C only depending

on p such that

c[w]
2 min{1, 1

p−1
}

Ap
‖b‖BMO ≤ ‖[b,H]‖Lp(w)→Lp(w) ≤ C[w]

2 max{1, 1
p−1
}

Ap
‖b‖BMO , (5.4)

for all b ∈ BMO .

Proof. Because the upper bound in (5.4) is the direct consequence of the quadratic

bound in the Theorem 2.3.2 and sharp extrapolation theorem, we will only prove the

lower bound. Let us assume that, for 1 < r < 2 and α < 1 ,

‖[b,H]‖Lr(w)→Lr(w) ≤ C[w]2αAr‖b‖BMO .

This and the sharp extrapolation theorem return

‖[b,H]‖L2(w)→L2(w) ≤ C[w]2αA2
‖b‖BMO .

This contradicts to the sharpness (p = 2) . Similarly, one can conclude for p > 2 .
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We now consider the weight w(x) = |x|(1−δ)(p−1) then w is an Ap weight with

[w]Ap ∼ δ1−p . By (5.2) and (5.3) we have

‖[b,H]f‖Lp(w) ≥
1

δ2
‖f‖Lp(w) = (δ1−p)

2
p−1‖f‖Lp(w) ∼ [w]

2
p−1

Ap
‖f‖Lp(w) .

This shows the upper bound in (5.4) is sharp for 1 < p ≤ 2 . We use the duality

argument to see the sharpness of the quadratic estimate for p > 2 . Note that the

commutator is a self-adjoint operator:

〈bH(f)−H(bf), g〉 = 〈f,H∗(bg)〉 − 〈f, bH∗(g)〉 = 〈f, bH(g)−H(bg)〉 .

Consider 1 < p ≤ 2 and set u = w1−p′ , then

‖[b,H]‖Lp′ (u)→Lp′ (u) = ‖[b,H]‖Lp′ (w1−p′ )→Lp′ (w1−p′ ) = ‖[b,H]∗‖Lp′ (w1−p′ )→Lp′ (w1−p′ )

= ‖[b,H]‖Lp(w)→Lp(w) ≤ C‖b‖BMOd [w]
2

1−p
Ap

(5.5)

= C‖b‖BMO[w1−p′ ]2Ap′ = C‖b‖BMO[u]2Ap′ .

Since the inequality in (5.5) is sharp, we can conclude that the result of Theorem

1.0.1 is also sharp for p > 2 .

5.2.2 Beurling-Ahlfors operator

Recall the Beurling-Ahlfors operator B is given by convolution with the distributional

kernel p.v.1/z2:

Bf(x, y) = p.v.
1

π

∫
R2

f(x− u, y − v)

(u+ iv)2
dudv .

Then the commutator of the Beurling-Ahlfors operator can be written:

[b,B]f(x, y) = p.v.
1

π

∫
R2

b(x, y)− b(s, t)
((x− s) + i(y − t))2

f(s, t) dsdt .

It was observed, in [DV], that the linear bound for the Beurling-Ahlfors operator

is sharp in L2(w) , with weights w(z) = |z|α and functions f(z) = |z|−α where
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|α| < 2 . Similarly, we consider weights w(z) = |z|2−δ where 0 < δ < 1. Note that

w(z) = |z|2−δ : C → [0,∞) is a A2-weight with [w]A2 ∼ δ−1 . We also consider

a BMO function b(x) = log |z| . Let E = {(r, θ) | 0 < r < 1, 0 < θ < π/2} and

Ω = {(r, θ) | 1 < r < ∞, π < θ < 3π/2} We are going to estimate |[b,B]f(z)| for

z ∈ Ω with a function f(z) = |z|δ−2χE(z) . Let z = x+ iy and ζ = s+ ti . Then, for

z ∈ Ω ,

|[b,B]f(z)| = 1

π

∣∣∣∣ ∫
E

(b(z)− b(ζ))f(ζ)

(z − ζ)2
dζ

∣∣∣∣
=

1

π

∣∣∣∣ ∫
E

b(x, y)− b(s, t)
((x− s) + i(y − t))2

f(s, t)dsdt

∣∣∣∣
=

1

π

∣∣∣∣ ∫
E

(log |z| − log |ζ|)|ζ|δ−2((x− s)2 − (y − t)2)

((x− s)2 + (y − t)2)2
dsdt

+ i

∫
E

(log |z| − log |ζ|)|ζ|δ−2(2(x− s)(y − t))
((x− s)2 + (y − t)2)2

dsdt

∣∣∣∣ .

For z ∈ Ω and ζ ∈ E , we have (x − s)(y − t) ≥ xy and by triangle inequality

((x− s)2 + (y− t)2)2 = |z− ζ|4 ≤ (|z|+ |ζ|)4 . After neglecting the positive term (real

part), we get

|[b,B]f(z)|2 ≥ 4

π2

(
xy

∫
E

log(|z|/| ζ|)|ζ|δ−2

(|z|+ |ζ|)4
dsdt

)2

=
4

π2

(
xy

∫ π/2

0

∫ 1

0

log(|z|/r)rδ−2r

(|z|+ r)4
drdθ

)2

= x2y2

(
1

|z|4

∫ 1

0

log(|z|/r)rδ−1

(1 + r/|z|)4
dr

)2

= x2y2

(
1

|z|4

∫ 1/|z|

0

log(1/t)(|z|t)δ−1

(1 + t)4
|z|dt

)2

= x2y2

(
1

|z|4−δ

∫ 1/|z|

0

log(1/t)tδ−1

(1 + t)4
dt

)2

.
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Since |z|/(|z|+ 1) ≤ 1/(1 + t) , for t < 1/|z| , we have

|[b,B]f(z)|2 ≥ x2y2

(
1

|z|−δ(|z|+ 1)4

∫ 1/|z|

0

log(1/t)tδ−1 dt

)2

=
x2y2

|z|−2δ(|z|+ 1)8

(
|z|−δ(1 + δ log |z|)

δ2

)2

=
x2y2

(|z|+ 1)8

(1 + δ log |z|)2

δ4
.

Then, we can estimate the L2(w)-norm as follows.

‖[b,B]f‖2
L2(w) ≥

1

δ4

∫
Ω

x2y2(1 + δ log |z|)2

(|z|+ 1)8
|z|2−δ dxdy

=
1

δ4

∫ ∞
1

∫ 3π/2

π

r4 cos2 θ sin2 θ(1 + δ log r)2

(r + 1)8
r3−δdrdθ

=
π

δ416

∫ ∞
1

r7−δ(1 + δ log r)2

(r + 1)8
dr ≥ π

δ416

∫ ∞
1

r7−δ(1 + δ log r)2

(2r)8
dr

=
π

δ4212

∫ ∞
1

(1 + δ log r)2r−1−δ dr

=
π

δ4212

(
1

δ
+

2δ

δ2
+

2δ2

δ3

)
=

5π

212
· 1

δ5
.

Combining with ‖f‖2
L2(w) = π/2δ , we have that ‖[b,B]f‖L2(w)/‖f‖L2(w) ∼ δ−2 ,

which allows to conclude that the quadratic bound for the commutator with the

Beurling-Ahlfors operators is sharp in L2(w) . Same calculations with weights w(z) =

|z|(2−δ)(p−1) and functions f(z) = |z|(δ−2)(p−1) will provide the sharpness for 1 < p ≤

2 , and it is sufficient to conclude for all 1 < p < ∞ because the Beurling-Ahlfors

operator is essentially self adjoint operator (B∗ = eiφB) , so the commutator of the

Beurling-Ahlfors operator is also self adjoint.

5.2.3 Riesz transforms

Consider weights w(x) = |x|n−δ and functions f(x) = xδ−nχE(x) where E = {x |x ∈

(0, 1)n ∩ B(0, 1)} , and a BMO function b(x) = log |x| . It was observed that |x|n−δ

is an A2-weight in Rn with [w]A2 ∼ δ−1 . We are going to estimate [b, Rj]f over the
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set Ω = {y ∈ B(0, 1)c | yi < 0 for all i = 1, 2, ..., n} , where Rj stands for the j-th

direction Riesz transform on Rn and is defined as follows:

Rjf(x) = cnp.v.

∫
Rn

yj
| y|n+1

f(x− y) dy , 1 ≤ j ≤ n ,

where cn = Γ((n + 1)/2)/π(n+1)/2 . One can observe that, for all x ∈ E and fixed

y ∈ Ω ,

| yj − xj| ≥ | yj| and | y − x| ≤ | y|+ |x| .

Then,

|[b, Rj]f(y)| =
∣∣∣∣ ∫

E

(yj − xj)(log | y| − log |x|)|x|δ−n

| y − x|n+1
dx

∣∣∣∣
≥ | yj|

∫
E

log(| y|/|x|)|x|δ−n

(| y|+ |x|)n+1
dx

≥ | yj|
∫
E∩Sn−1

∫ 1

0

log(| y|/r)rδ−nrn−1

(| y|+ r)n+1
drdσ

= C(n)| yj|
∫ 1/|y|

0

log(1/t)(t| y|)δ−1| y|
(| y|+ | y|t)n+1

dt

=
C(n)| yj|
| y|n+1−δ

∫ 1/|y|

0

log(1/t)tδ−1

(1 + t)n+1
dt

≥ C(n)| yj|
|y|n+1−δ

(
| y|
| y|+ 1

)n+1 ∫ 1/|y|

0

log(1/t)tδ−1 dt

=
C(n)| yj|

| y|−δ(| y|+ 1)n+1

(
| y|−δ(1 + δ log | y|)

δ2

)
=

C(n)| yj|
(| y|+ 1)n+1

1 + δ log | y|
δ2

.

We now can bound from below the L2(w)-norm as follows.

‖[b, Rj]f(x)‖2
L2(w) >

C(n)

δ4

∫
Ω

y2
j (1 + δ log | y|)2

(| y|+ 1)2n+2
| y|n−δdy

≥ C(n)

δ4

∫
Ω∩Sn−1

∫ ∞
1

γ2
j r

2(1 + δ log r)2rn−δrn−1

(r + 1)2n+2
drdσ(γ)

≥ C(n)

δ4

∫ ∞
1

(1 + δ log r)2r2n−δ+1

r2n+2
dr

=
C(n)

δ4

∫ ∞
1

(1 + δ log r)2r−δ−1 dr =
C(n)

δ5
,
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which establishes sharpness for the commutator of the Riesz transform when p = 2 .

Since R∗j = −Rj, one can easily check that the commutator of Riesz transforms are

also self-adjoint operators. Furthermore, choosing weight w(x) = |x|(n−δ)(p−1), we

will obtain the sharpness for 1 < p <∞ by the same argument we used in the case

of the Hilbert transform.

As a consequence of [CPerP], bounds for the k-th order commutator with H and

Rj’s, defined recursively by

T kb = [b, T k−1
b ] ,

are bounded in Lp(w) , for 1 < p < ∞ , with a bound [w]
(1+k) max{1, 1

p−1
}

Ap
‖b‖kBMO .

Similar examples can be constructed to obtain lower bounds for the k-th order com-

mutator with H and Rj’s, furthermore that is the sharp bound for those operators.

Those results are recorded in [CPerP].
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Multivariable dyadic paraproduct

In Section 7.1 we will prove Theorem 2.4.4 and Theorem 2.4.5 which provide the

linear bounds for the dyadic paraproduct in L2
Rn(w) , and dimension free estimates.

In Section 7.2 we compare anisotropic weights and classical A2 weights.

6.1 Proof of Theorem 2.4.4 and Theorem 2.4.5

We are going to prove Theorem 2.4.4 only when p = 2 , and following the one-

dimenstional proof discovered by Beznosova [Be]. The sharp extrapolation theorem

[DGPerPet] returns immediately the other cases (1 < p < ∞). For the case p = 2

we use the duality arguments. Precisely, it is sufficient to prove the inequality

〈πb(fw−1/2), gw1/2〉 ≤ C(n)[w]Ad2‖b‖BMOdRn
‖f‖L2

Rn
‖g‖L2

Rn
. (6.1)

Proof. Using the orthogonal Haar system (2.14), we can split the left hand side of
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(6.1) as follows.

〈πb(fw−1/2), gw1/2〉 =
∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉〈fw−1/2〉Ej,Q〈gw1/2, hj,Q〉

=
∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉〈fw−1/2〉Ej,Q〈gw1/2, Hw
j,Q〉

1√
|Ej,Q|

(6.2)

+
∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉〈fw−1/2〉Ej,Q〈gw1/2, Awj,QχEj,Q〉
1√
|Ej,Q|

.

(6.3)

We are going to prove that both sum (6.2) and (6.3) are bounded with a bound that

depends linearly on both [w]Ad2 and ‖b‖BMOdRn
which means

∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉〈fw−1/2〉Ej,Q〈gw1/2, Hw
j,Q〉

1√
|Ej,Q|

≤ C(n)[w]Ad2‖b‖BMOdRn
‖f‖L2

Rn
‖g‖L2

Rn
(6.4)

and ∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉〈fw−1/2〉Ej,Q〈gw1/2, Awj,QχEj,Q〉
1√
|Ej,Q|

≤ C(n)[w]Ad2‖b‖BMOdRn
‖f‖L2

Rn
‖g‖L2

Rn
. (6.5)

We will estimate term (6.4) first using Cauchy-Schwarz inequality,

∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉〈fw−1/2〉Ej,Q〈gw1/2, Hw
j,Q〉

1√
|Ej,Q|

≤

( ∑
Q∈Dn

2n−1∑
j=1

〈gw1/2, Hw
j,Q〉2

|Ej,Q|〈w〉Ej,Q

)1/2( ∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉2〈fw−1/2〉2Ej,Q〈w〉Ej,Q

)1/2

≤ ‖g‖L2
Rn

( ∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉2〈fw−1/2〉2Ej,Q〈w〉Ej,Q

)1/2

, (6.6)

Here the inequality (6.6) follows from (2.15). We now claim that the sum in (6.6)

is bounded by C[w]2
Ad2
‖b‖2

BMOdRn
‖f‖2

L2
Rn
, which will be provided by the Multivariable
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Version of the Weighted Carleson Embedding Theorem 3.2.2. with the embedding

condition:

∀Q′ ∈ Dn, 1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Ei,Q′ )

∑
j:Ej,Q⊆Ei,Q

〈w−1〉2Ej,Q〈w〉Ej,Q〈b, hj,Q〉
2

≤ C[w]2Ad2
‖b‖2

BMOdRn
〈w−1〉Ei,Q′ . (6.7)

Since for all Q ∈ Dn

22(n−1)[w]Ad2 ≥ 〈w〉Ej,Q〈w
−1〉Ej,Q ,

The Embedding condition (6.7) can be seen as follows.

∑
Q∈Dn(Ei,Q′ )

∑
j:Ej,Q⊆Ei,Q

〈w−1〉2Ej,Q〈w〉Ej,Q〈b, hj,Q〉
2 (6.8)

≤ 22(n−1)[w]Ad2

∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈w−1〉Ej,Q〈b, hj,Q〉2

≤ 4 · 27(n−1)[w]2Ad2
‖b‖2

BMOdRn
w−1(Ei,Q′) . (6.9)

Here the inequality (6.9) follows from (2.22) and Proposition 3.2.7 applied to αj,Q =

〈b, hj,Q〉2, A = 3n−1‖b‖2
BMOdRn

and v = w−1 . This estimates finishes the proof of the

inequality (6.4) with C ≈ 27(n−1)/2 .

We now turn to the proof of the inequality (6.5). In order to prove the inequality

(6.5), we need to show that

∑
Q∈Dn

2n−1∑
j=1

〈b, hj,Q〉〈fw−1/2〉Ej,Q〈gw1/2〉Ej,Q Awj,Q
√
|Ej,Q|

≤ C[w]Ad2‖b‖BMOdRn
‖f‖L2

Rn
‖g‖L2

Rn
, (6.10)

and this is provided by the following three embedding conditions due to the Mul-

tivariable Version of the Bilinear Embedding Theorem 3.2.5: For all Q′ ∈ Dn and

91



Chapter 6. Multivariable dyadic paraproduct

i = 1, ..., 2n − 1 ,

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

∣∣〈b, hj,Q〉Awj,Q∣∣√|Ej,Q|〈w〉Ej,Q〈w−1〉Ej,Q

≤ C(n)[w]Ad2‖b‖BMOdRn
, (6.11)

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

∣∣〈b, hj,Q〉Awj,Q∣∣√|Ej,Q|〈w〉Ej,Q
≤ C(n)[w]Ad2‖b‖BMOdRn

〈w〉Ei,Q′ , (6.12)

1∣∣Ei,Q′∣∣ ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

∣∣〈b, hj,Q〉Awj,Q∣∣√|Ej,Q|〈w−1〉Ej,Q

≤ C(n)[w]Ad2‖b‖BMOdRn
〈w−1〉Ei,Q′ . (6.13)

Proposition 3.2.11 makes it easy to prove the embedding condition (6.11). Using

Cauchy-Schwarz inequality,∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

∣∣〈b, hj,Q〉Awj,Q∣∣√|Ej,Q|〈w〉Ej,Q〈w−1〉Ej,Q (6.14)

≤

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈b, hj,Q〉2〈w〉Ej,Q〈w−1〉Ej,Q

)1/2

(6.15)

×

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
Awj,Q

)2|Ej,Q|〈w〉Ej,Q〈w−1〉Ej,Q

)1/2

≤ 2n−1[w]
1/2

Ad2

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈b, hj,Q〉2
)1/2

(6.16)

×

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
Awj,Q

)2|Ej,Q|〈w〉Ej,Q〈w−1〉Ej,Q

)1/2

≤ C 22(n−1)[w]Ad2

∣∣Ei,Q′∣∣1/2( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈b, hj,Q〉2
)1/2

(6.17)

≤ C 25(n−1)/2[w]Ad2‖b‖BMOdRn

∣∣Ei,Q′∣∣ . (6.18)

Here we use (3.53) for the inequality (6.17) and the fact that b ∈ BMOd
Rn for the
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inequality (6.18). We also use Cauchy-Schwarz inequality for the inequality (6.12),

then∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

∣∣〈b, hj,Q〉Awj,Q∣∣√|Ej,Q|〈w〉Ej,Q
≤

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈b, hj,Q〉2〈w〉Ej,Q

)1/2

×

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
Awj,Q

)2|Ej,Q|〈w〉Ej,Q

)1/2

≤ C25(n−1)/2‖b‖BMOdRn
[w]

1/2

Ad2
〈w〉1/2Ei,Q′

×

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
Awj,Q

)2|Ej,Q|〈w〉Ej,Q

)1/2

(6.19)

≤ C 27(n−1)/2‖b‖BMOdRn
[w]Ad2〈w〉Ei,Q′ . (6.20)

Inequality (6.19) and (6.20) follow by (3.36) and Proposition 3.2.13 respectively. We

can establish inequality (6.13) with Proposition 3.2.9 as follows,∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

∣∣〈b, hj,Q〉Awj,Q∣∣√|Ej,Q|〈w−1〉Ej,Q

≤

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

〈b, hj,Q〉2〈w−1〉Ej,Q

)1/2

×

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
Awj,Q

)2|Ej,Q|〈w−1〉Ej,Q

)1/2

≤ C25(n−1)/2‖b‖BMOdRn
[w]

1/2

Ad2
〈w〉1/2Ei,Q′

×

( ∑
Q∈Dn(Q′)

∑
j:Ej,Q⊆Ei,Q′

(
Awj,Q

)2|Ej,Q|〈w−1〉Ej,Q

)1/2

≤ C27(n−1)/2‖b‖BMOdRn
[w]Ad2〈w

−1〉Ei,Q′ .

To sum up, we can establish the inequality (6.1) with a constant C(n) ≈ 27(n−1)/2 .
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Furthermore, if we replace [w]Ad2 by [w]AR2 and ‖b‖BMOd by ‖b‖BMOR then we can

establish proof of the dimension free estimate in Theorem 2.4.5.

6.2 Comparison of the AR
2 weight and the A2 weight

Let us consider the weight wα = |x|α . Is is a well known fact that [w]A2 ∼ 1
n2−α2 .

This means wα ∈ A2 if and only if |α| < n . Let us now observe the [wα]AR2 when

n = 2 and α = 1 . Since the main singularity of wα occurs at the origin, it is enough

to observe the case of Rt = [0, t]× [0, 1] with sufficiently large t .∫
Rt

w1(x, y) dxdy =

∫ 1

0

∫ t

0

(x2 + y2)1/2 dxdy

=

(∫ arctan(1/t)

0

∫ t/ cos θ

0

r2 drdθ +

∫ π/2

arctan(1/t)

∫ 1/ sin θ

0

r2 drdθ

)
=

1

3

(∫ arctan(1/t)

0

t3 sec3 θ dθ +

∫ π/2

arctan(1/t)

csc3 θ dθ

)
.

Since the series expansion of sec3 θ = 1 + 3θ2/2 +O(θ4) ,

t

∫ arctan(1/t)

0

sec3 θ dθ ∼ t
(

arctan(1/t) + (arctan3(1/t))/3
)
→ 1 as t→∞ .

For the second integral, we use the series expansion of csc3 θ = 1/θ3+1/2θ+17θ/120+

O(θ3) ,

1

t2

∫ π/2

arctan(1/t)

csc3 θ dθ ∼ 1

t2

(
1

2 arctan2(1/t)
+

1

2
ln(arctan(1/t))+

17 arctan(1/t)

120

)
→ 1

2

as t→∞ . For sufficiently large t, we see∫
Rt

w1(x, y)dxdy ∼ t2 .
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And ∫
Rt

w−1
1 (x, y) dxdy =

∫ 1

0

∫ t

0

(x2 + y2)−1/2 dxdy

=

∫ arctan(1/t)

0

∫ t/ cos θ

0

drdθ +

∫ π/2

arctan(1/t)

∫ 1/ sin θ

0

drdθ .

For the first integral, we have∫ arctan(1/t)

0

∫ t/ cos θ

0

drdθ = t

∫ arctan(1/t)

0

sec θ dθ

= t log | sec(arctan(1/t)) + tan(arctan(1/t))|

= t log

∣∣∣∣
√

1

t2
+ 1 +

1

t

∣∣∣∣ = t log

(√
1 + t2 + 1

t

)
→ 1

as t→∞ . Using series expansion of csc θ = 1/θ + θ/6 +O(θ3) the second integral

can be estimated as follows∫ π/2

arctan(1/t)

∫ 1/ sin θ

0

drdθ =

∫ π/2

arctan(1/t)

csc θ dθ

∼ − log(arctan(1/t))− arctan2(1/t)

12
∼ log t .

Thus, for sufficiently large t,∫
Rt

w−1
1 (x, y) dxdy ∼ log t .

To sum up, we have

〈w1〉Rt〈w−1
1 〉Rt ∼ log t .

These observations allow us to conclude that there is a weight which belongs to A2 but

not to AR2 , when n ≥ 2 . Some dimension free bound on the weighted Lebesgue spaces

via Poisson A2-characteristics of weights are established for the Riesz transforms

[Pet3] in Rn , and the square function [PetWic] in the unit ball in Cn . Here we say

a weight belongs to the class of Poisson A2 . if

[w]P2 := sup
t∈R+,y∈Rn

w̃(t, y)w̃−1(t, y) <∞ ,
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where w̃(t, y) stands for the Poisson extension to the upper half plane Rn+1
+ :

w̃(t, y) := w ∗ Pt(y) =

∫
Rn
w(x)Pt(y − x) dx =

∫
Rn

t

(t2 + | y − x|2)
n+1

2

w(x) dx .

It was also observed in [Pet3] that w̃α(t, 0) diverges if and only if α ≥ 1 . For the case

n = 1 , the three weight classes are the same. However, for the case n ≥ 2 , we know

there is a weight that belongs to AR2 or P2 but not to A2, for instance w(x) = |x| .

For the one dimensional case, since [w]A2 = [w]AR2 , we have that there is constants

such that [Huk]

c[w]AR2 ≤ [w]P2 ≤ C[w]2AR2
.

For n ≥ 2 , we don’t know yet how these two weight classes AR2 and P2 are related.

We may conjecture that the same relation as well as in the one dimensional case

holds for n ≥ 2 .
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commutators of linear operators Studia Math. 104(2) (1993) 195-209.

[AsIS] K. Astala, T. Ivanec, E. Saksman, Betrami operators in the plane Duke Math
J., 107 (2001), 27-56.

[Be] O. Beznosova, Linear bound for dyadic paraproduct on weighted Lebesgue space
L2(w) J. of Fun. Anal. 255 4 (2008), 994-1007.

[Bo] J. Bony, Calcul symbolique et propagation des singularités pour les équations
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