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Abstract 

 

 Commercial facility demand response refers to voluntary actions by customers 

that change their consumption of electric power in response to price signals, incentives, 

or directions from grid operators at times of high wholesale market prices or when 

electric system reliability is jeopardized.  Energy management in a commercial facility 

can be segregated into two areas: energy efficiency and demand response.  This 

dissertation assesses both in two commercial facilities: one designed and constructed 

prior to the development of demand response principles and the second designed and 

constructed with modern energy controls and energy efficient materials.  The energy 

evaluation identified opportunities for energy conservation and strategies for demand 

response.  Next this paper presents a fuzzy method for predicting a facility’s baseline 

load profile.  The baseline load profile is the predicted energy use of a facility during a 

demand response event in the absence of any energy reduction.  During a demand 
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response event, building operators or their automated control systems make adjustments 

to building operations with the goal of reducing the building’s electric load during times 

of the electric system’s peak electric usage.  The baseline load profile is key to assessing 

the actual peak load electric energy reduction from a demand response event.  Some grid 

operators are considering compensating commercial facilities for the energy reduction 

they achieve during demand response events.  In fact the Public Service Company of 

New Mexico, the electricity supplier to UNM, has a demand response program that 

would compensate in this manner.  The method described here is based on fuzzy set 

theory and allows the inclusion of building occupancy in the calculation.  Our method 

achieves greater accuracy than other methods currently in use.  Third, this study 

developed strategies for minimizing occupant dissatisfaction during demand response 

events using fuzzy cognitive mapping.  If occupant discomfort causes significant 

complaints to the facility operator or owner, they may direct the demand response event 

be discontinued and thus eliminate the electric power savings.  Assessing and predicting 

this potential interruption of the demand response event is not readily evaluated with 

crisp analytical techniques.  Thus we elected to assess this problem using fuzzy set theory 

as applied to cognitive maps.  Our model focuses on the University of New Mexico 

(UNM) campus.  Fourth, we developed the conceptual design and operation of a facility 

control system to manage demand response events for the campus of the University of 

New Mexico.  This section presents the design principles, the demand response control 

system logic and operation, and the economic value based on the PNM Peak Saver 

Demand Response Program financial incentives. 

 

 vii 

 



 

Contents 

List of Figures .................................................................................................................... xi 

List of Tables .....................................................................................................................xv 

Chapter 1 Introduction .........................................................................................................1 

Chapter 2 Demand Response in Existing Buildings ............................................................7 

2.1 Introduction ..............................................................................................................7 

2.2 Facility Energy Models ............................................................................................8 

2.3 Energy Evaluation ....................................................................................................9 

2.4 Demand Response ..................................................................................................21 

2.5 ATC Photovoltaic Generation Potential ................................................................26 

2.6 Conclusions ............................................................................................................27 

Chapter 3 Baseline Load Profile ........................................................................................29 

3.1 Introduction ............................................................................................................29 

3.2 Methods..................................................................................................................31 

3.3 Discussion and Results ..........................................................................................41 

 viii 

 



 

3.4 Conclusions ............................................................................................................44 

Chapter 4 Evaluation of Commercial Facility Demand Response Using a Genetically 

Evolved Fuzzy Cognitive Map ..........................................................................................45 

4.1 Introduction ............................................................................................................45 

4.2 Methods..................................................................................................................47 

4.3 Results and Discussion ..........................................................................................62 

4.4 Conclusions ............................................................................................................91 

Chapter 5 The Demand Response Control System ............................................................94 

5.1 Background ............................................................................................................94 

5.2 Comparison of Unit Commitment Issues to Demand Response ............................97 

5.3 DR Event Control Philosophy .............................................................................101 

5.4 Control System Design ........................................................................................103 

5.5 Economic Analysis ..............................................................................................116 

5.6 Conclusions ..........................................................................................................118 

Chapter 6 Summary Recommendations for Automated Demand Response and 

Opportunities for Additional Exploratory Work ..............................................................120 

References ........................................................................................................................125 

 ix 

 



 

Acronyms .........................................................................................................................133 

Appendices .......................................................................................................................135 

Appendix 2-1: Plaza Del Sol Schedule ......................................................................136 

Appendix 2-2: Alvarado Transportation Center Schedule .........................................142 

Appendix 4-1: MATLAB™ Code Listing for the CNFCM Calculation ...................147 

Appendix 4-2: GEFCM MATLAB™ Code Listing ..................................................151 

Appendix 4-3: Clustering MATLAB™ Code Listing ...............................................157 

Appendix 5-1: Facilities in the DR Control System ..................................................163 

Appendix 5-2:  Facility Population for Each Potential DR Hour ............................164 

Appendix 5-3:  Facility Lighting and Temperature Power Reduction .....................165 

Appendix 5-4:  DR Control System MATLAB™ Code Listing .............................166 

Appendix 5-5:  Participation Table for the DR Facilities ..........................................178 

 

  

 x 

 



 

List of Figures 

Figure 1.1: Annual hourly energy use sorted highest to lowest ...........................................1 

Figure 2.1: TRNSYS model for PDS and ATC .................................................................10 

Figure 2.2: TRNSYS PDS annual heating and cooling energy .........................................14 

Figure 2.3: PDS cooling/heating for hottest/coldest week in the year ...............................15 

Figure 2.4: Air conditioning unit on roof of PDS equipment penthouse ...........................16 

Figure 2.5: TRNSYS ATC annual heating and cooling energy .........................................20 

Figure 2.6: ATC cooling/heating hottest/coldest week in the year ....................................21 

Figure 2.7: PDS demand response – option 1 ....................................................................23 

Figure 2.8: PDS demand response - option 2 ....................................................................23 

Figure 2.9: PDS demand response – option 3 ....................................................................24 

Figure 2.10: ATC demand response – option 1 .................................................................25 

Figure 2.11: ATC demand response – option 2 .................................................................26 

Figure 3.l Example of a classical (crisp) set (a) and a fuzzy set (b) ..................................30 

 xi 

 



 

Figure 3.2: Classical (crisp) and fuzzy sets for tall people ................................................30 

Figure 3.3:  The 3 hour averages pl(d,h) memberships .....................................................39 

Figure 3.4:  Occupancy memberships ................................................................................40 

Figure 3.5:  Actual usage at 10:00 am membership...........................................................40 

Figure 3.6:  Actual usage at 11:00 am membership...........................................................41 

Figure 3.7:  Test data comparisons for 3:00 pm ................................................................42 

Figure 3.8:  Test data comparisons for 4:00 pm ................................................................43 

Figure 3.9:  Test data comparisons for 5:00 pm ................................................................43 

Figure 4.1: Commercial facility FCM representing the University of New Mexico 

strategy as applied to the campus while it undergoes a demand response event ...............48 

Figure 4.1a: Sub-map for facility curtailment shown in the middle of Figure 4.1 ............48 

Figure 4.2: Simplified example FCM used to demonstrate the analysis methodologies ...49 

Figure 4.3: Simplified example FCM with crisp weights ..................................................53 

Figure 4.4: Crisp causal connection matrix .......................................................................53 

Figure 4.5: Fuzzy causal connection matrix ......................................................................55 

 xii 

 



 

Figure 4.6: Example of CNFCM result that is stable after 50 iterations ...........................58 

Figure 4.7: Bounded limit cycle CNFCM result ................................................................59 

Figure 4.8: Unbounded limit cycle CNFCM result ...........................................................60 

Figure 4.9: CNFCM result from Table 4.1 weights ...........................................................68 

Figure 4.10: CNFCM result from Table 4.1 – 2nd outcome .............................................69 

Figure 4.11: Plot of 120 runs of GEFCM ..........................................................................70 

Figure 4.12: Plot of 120 random concept values ...............................................................71 

Figure 4.13: K-means clustering on GEFCM data for k from 2 to 20 ...............................72 

Figure 4.14: Concept activation levels for C1, C3, and C7 = 1 .........................................73 

Figure 4.15: Concept activation levels for C1 & C3 =1 and C7 = 0 .................................75 

Figure 4.16: Concept activation levels for C1 & C7 =0 and C3 = 1 .................................76 

Figure 4.17: Concept activation levels for C1 and C3 = 0.9 .............................................77 

Figure 4.18:  Causal connection matrix .............................................................................83 

Figure 4.19: CNFCM result with weights of Table 4.8 .....................................................84 

 xiii 

 



 

Figure 4.20:  Unbounded limit cycle CNFCM result ........................................................86 

Figure 4.21:  Concept activation levels for high UNM demand (or high energy use), DR 

requested bu PNM, and high occupancy in all facilities ....................................................87 

Figure 4.22:  Concept activation levels for high UNM demand (or high electric energy 

usage), DR requested by PNM, and varied facility occupancy .........................................90 

Figure 5.1: UNM campus map showing the DR facilities .................................................96 

Figure 5.2: Diagram of the UNM Energy Management and Control System (EMCS) ...104 

Figure 5.3: Flow chart for the DR Control System ..........................................................106 

Figure 5.4: Targeted demand response reduction of 2000 kilowatts at 1:00 PM ............110 

Figure 5.5: Maximum demand response reduction at 1:00 PM .......................................111 

Figure 5.6: Targeted demand response reduction of 8000 kilowatts at 4:00 PM ............112 

 

  

 xiv 

 



 

List of Tables 

Table 2.1: Plaza Del Sol (PDS) actual energy use FY 2006-8 ............................................9 

Table 2.2: PDS energy costs FY 2008 ...............................................................................10 

Table 2.3: PDS Baseline 1 energy use actual to model comparison ..................................13 

Table 2.4: PDS Baseline 1 average actual energy use .......................................................13 

Table 2.5: Value for each energy scenario at PDS ............................................................18 

Table 2.6: Alvarado Transportation Center (ATC) actual energy use ...............................18 

Table 2.7: ATC energy costs .............................................................................................19 

Table 2.8: ATC energy use actual to model comparison ...................................................19 

Table 2.9: ATC actual average energy use ........................................................................20 

Table 2.10: PDS summary of energy improvements .........................................................27 

Table 3.1:  Data sets for the 4:00 pm hour .........................................................................33 

Table 3.2: LBNL Best predicted load for 4:00 pm ............................................................34 

Table 3.3:  MLFE inputs (xi) and output (y) ......................................................................35 

 xv 

 



 

Table 3.4:  Accuracy comparisons .....................................................................................42 

Table 4.1: Weight assignments ..........................................................................................54 

Table 4.2: CNFCM activation levels .................................................................................68 

Table 4.3: CNFCM activation levels – 2nd outcome ........................................................69 

Table 4.4: Concept activation levels for C1, C3, and C7 = 1 ............................................74 

Table 4.5: Concept activation levels for C1 & C3 =1 and C7 = 0 .....................................74 

Table 4.6: Concept activation levels for C1 & C7 =0 and C3 = 1 .....................................76 

Table 4.7: Concept activation levels for C1 and C3 = 0.9 .................................................77 

Table 4.8: Weights used for CNFCM ................................................................................84 

Table 4.9: Activation levels for CNFCM ..........................................................................85 

Table 4.10: Concept activation levels for high UNM demand (or high energy use), DR 

requested bu PNM, and high occupancy in all facilities ....................................................88 

Table 4.11:  Concept activation levels for high UNM demand (or high electric energy 

usage), DR requested by PNM, and varied facility occupancy .........................................89 

Table 5.1: Unit commitment principles contrasted to DR .................................................99 

 xvi 

 



 

 xvii 

 

Table 5.2: Results of the lighting reduction at 1:00 PM ..................................................113 

Table 5.3: Results of the maximum demand response reduction at 1:00 PM ..................114 

Table 5.4: Results of the targeted demand response of 8000 kilowatts at 4:00 PM ........115 

 

 

 

 



Chapter 1 

Introduction 

 Energy management in a commercial facility can be segregated into two areas: 

energy efficiency and demand response.  Energy efficiency focuses on steady state load 

minimization.  Demand response reduces load for event driven dynamic peak load 

reduction (Kiliccote et al. 2006).  Commercial facility demand response (DR) refers to 

voluntary actions by customers that change their consumption of electric power in 

response to price signals, incentives, or directions from grid operators at times of high 

wholesale market prices or when electric system reliability is jeopardized (Albadi and El-

Saadany 2007).  Demand response driven changes in electricity use are designed to be 

short-term in nature, centered on critical hours during the day when demand is high or 

when the electricity supplier’s reserve margins are low (FERC 2007, Menniti et al. 2009).   
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Figure 1.1: Annual hourly energy use sorted highest to lowest 
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Figure 1.1 shows the annual energy use by the state of California, from the California 

Independent System Operator for September 2005 through August 2006, for each hour 

sorted from highest to lowest.  This curve is typical of electric supply through the world.  

It shows that the highest 25% of the electric load is experienced for less than one percent 

of the hours in the year. 

 The Federal Energy Regulatory Commission (FERC) adopted the following 

definition of demand response in 2006 (FERC 2007): 

“Changes in electric usage by end-use customers from their normal consumption 

patterns in response to changes in the price of electricity over time, or to incentive 

payments designed to induce lower electricity use at times of high wholesale 

market prices or when system reliability is jeopardized.” 

Demand response under this definition can be categorized into two types of programs: 

price based programs and incentive based programs.  Price based demand response 

programs give customers time varying rates (Aalami et al. 2008) that reflect the value and 

cost of electricity in different time periods (Barbose et al. 2004).  These time varying 

rates include time-of-use (TOU) rates, critical peak pricing (CPP), and real-time pricing 

(RTP).  Various studies have shown the selection of time varying rate policies have direct 

impact on customer behavior (Vapero 2007, Su and Kirschen 2009).  With this 

knowledge of the electricity price in a given time period, customers tend to use less 

electricity when prices are high (Zhang and Wang 2009, Zhang et al. 2009).  Incentive 

based demand response programs pay participating customers to reduce their electricity 
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use at times requested by grid operators, triggered by either grid reliability or high 

electricity prices (Burke and Henderson 2005).   

 FERC estimates the 2009 nation-wide reduction in peak demand from 

demand response programs to be 37 gigawatts and by 2019 to possible be as much as 188 

gigawatts or 20% of the nation-wide peak demand (FERC 2009).  The benefits from this 

on-peak reduction in energy use include: 

• Reduction in wholesale power prices 

• More efficient operation of power markets 

• Enhanced reliability of the power system 

• Environmental benefits from reduced generation 

• Operational and capital cost savings from avoided new generation and 

deferred transmission and distribution costs  

These benefits also flow to society as a whole, not just to the participants.  Without a 

demand response mechanism, the electric supplier is forced to assume that all customers 

have an inelastic demand for energy and will pay any price for it.  There is ample 

evidence this is not true.  Customers, given a demand response tool, can and will manage 

their demand for electricity.  It is expected that demand response programs in European 

markets will derive similar benefits (Abrate and Benintendi 2009). 

 This paper addresses four aspects of demand response as presented in Chapters 2 

through 5.  Chapter 5 utilizes the results of Chapters 2, 3, and 4 in the conceptual design 

of an automated demand response control system as applied to the University of New 

Mexico campus facilities. 
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 First, as presented in Chapter 2, we (throughout this dissertation “we” refers to the 

author) assessed energy efficiency and demand response in two facilities: one designed 

and constructed prior to the development of demand response principles, Plaza Del Sol in 

1973, and the second, Alvarado Transportation Center in 1999, designed and constructed 

with modern, granular energy controls.  We performed an energy evaluation of these two 

Albuquerque, NM, USA buildings owned by the City of Albuquerque.  The energy 

evaluation identified opportunities for energy conservation and strategies for demand 

response.  We used these strategies in designing the Demand Response Control System as 

described in Chapter 5. 

 Second, as presented in Chapter 3, we developed a method for predicting what the 

energy usage of a facility during a DR event would be in the absence of the DR event.  

This predicted energy usage is termed the baseline load profile.  During a DR event, 

building operators or their automated control systems make adjustments to building 

operations with the goal of reducing the building’s electric load during times of the 

electric system’s peak electric usage.  The baseline load profile is key to assessing the 

actual peak load electric energy reduction from a DR event.  Some grid operators are 

considering compensating commercial facilities for the energy reduction they achieve 

during DR events.  In fact, the Public Service Company of New Mexico (PNM), the 

electricity supplier to UNM, has a demand response program that would compensate in 

this manner.  UNM could potentially receive compensation for demand response through 

the PNM Peak Saver Demand Response Program.  This compensation is composed of a 

designated and delivered capacity payment and an energy saved payment.  The Program 
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requires UNM designate a capacity reduction quantity and UNM would receive 

compensation based on the portion of that designated capacity reduction actually 

achieved, limited to 100 percent, during demand response events.  The method used to 

determine the baseline load profile presented in Chapter 3 is based on fuzzy set theory 

and allows the inclusion of building occupancy in the calculation.  Our method achieves 

greater accuracy than other methods currently in use.  We utilized this method for 

estimating the baseline load profile in designing the Demand Response Control System as 

described in Chapter 5. 

 Third, as presented in Chapter 4, we developed strategies for minimizing 

occupant dissatisfaction during demand response events using fuzzy cognitive mapping.  

Obviously reducing electric power consumption on a hot summer afternoon, the normal 

time for a demand response event, can cause some discomfort to facility occupants.  If 

this occupant discomfort causes significant complaints to the facility operator or owner, 

they may direct the DR event be discontinued and thus eliminate the electric power 

savings.  Assessing and predicting this potential interruption of the DR event is not 

readily evaluated with analytical techniques.  Thus we elected to assess this problem 

using fuzzy set theory as applied to cognitive maps.  We modeled this problem using the 

University of New Mexico (UNM) campus.  The campus consists of over 200 facilities 

including classrooms, offices, laboratories, libraries, and residence halls, drawing over 30 

megawatts of electricity at peak.  We utilized the results of fuzzy cognitive mapping in 

the design of the Demand Response Control System as described in Chapter 5. 
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 Fourth, as presented in Chapter 5, we developed the conceptual design and 

operation of a facility control system to manage demand response events for the campus 

of the University of New Mexico.  This Chapter presents the design principles, the 

demand response control system logic and operation, and the economic value based on 

the PNM Peak Saver Demand Response Program financial incentives. 
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Chapter 2 

Demand Response in Existing Buildings 

2.1 Introduction 

We performed an energy evaluation of two City of Albuquerque buildings: Plaza 

Del Sol (PDS) and the Alvarado Transportation Centrer (ATC).  This energy evaluation 

identified opportunities for energy conservation and strategies for demand response.  We 

utilized these demand response strategies in designing the Demand Response Control 

System as described in Chapter 5.   

Plaza Del Sol is an eight story office facility with 106,000 square feet of floor 

space that houses approximately 300 people on the day shift, 6 people on the second 

shift, and 1 to 2 people on the third shift.  The City organizations housed in the building 

include: the planning department, building permits and inspection, zoning inforcement, 

hydrology, land development, fire marshall, metropolitan redevelopment, neighborhood 

coordination, and the City 311 call center.  The ATC is a two story transportation and 

office  facility with 31,500 square feet of of floor space that houses approximately 110 

people.  The City functions performed in the building include: a ticketing and waiting 

area for transportation users, transportation customer support, the City transportation 

dispatch center, transportation marketing, planning and human resources.  The only 

energy use information available for these analyses were the monthly summaries of each 

building’s electric and natural gas consumption (City of Albuquerque 2008).  We 
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developed an energy model for each facility which projected the heating and cooling 

loads for the year as well as other electric consumption each hour of the month.  The 

energy use each hour was needed to assess demand response in the facilities.  These 

models were then calibrated against the actual energy use.  The following sections 

present the models’ projection of currrent operation aginst the actual usage, opportunities 

for energy conservation, and operating strategies for demand response. 

2.2 Facility Energy Models 

The facility energy models utilized a TRNSYS computer model for the 

determination of the heating and cooling loads as frequently as every 15 minutes for an 

entire year.  TRNSYS is a computer modeling tool with a graphical user interface (GUI) 

designed to simulate the transient performance of thermal energy systems. TRNSYS is a 

joint project between the University of Wisconsin-Madison Solar Energy Lab, The 

Centre Scientifique et Technique du Batiment (CSTB) in Sophia Antipolis, France, 

Transsolar Energietechnik GmBH in Stuttgart, Germany and Thermal Energy Systems 

Specialists (TESS) in Madison, Wisconsin.  TRNSYS contains a graphical interface 

library of 380 components.  The TRNSYS user base includes universities, national 

laboratories, governments, electric utilities, automobile manufacturers, and architect-

engineering firms (TESS 2005). 

TRNSYS uses building geometry, building wall and window materials, weather 

induced thermal loads, and internal thermal loads that impact the heating and cooling 

loads such as occupancy, building space lighting, computer equipment, etc. as input to 

the model.  The facility energy model also includes the other building loads that are not 
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completely captured in the heating and cooling load calculation such as fan motors, 

elevators, outdoor lighting, etc.  

2.3 Energy Evaluation 

This section presents the energy models’ simulation of the as-found condition of 

the PDS facility and the ATC facility.  Subsequently, for Plaza Del Sol, we simulated 

several potential options, titled PDS Baseline 1 through PDS Baseline 5, for energy 

conservation and present the anticipated annual energy and cost savings.  We did not 

present any energy conservation options for Alvarado Transportation Center as this 

facility is relatively new and includes current energy efficient materials and construction. 

Table 2.1 shows the PDS actual energy use for fiscal years 2006-2008 with the 

electricity use in kilowatt hours (kWh) and the natural gas use in decatherms (Dth).  A 

decatherm is ten therms or one million BTUs. 

Table 2.1: Plaza Del Sol (PDS) actual energy use FY 2006-8 

 

Month E le, kWh  Gas  Dth  E le, kWh  Gas  Dth  E le, kWh Gas  Dth 
J ul 229,916        12 283,184      19 264,776        13
Aug 219,341        26 281,618      14 256,159        11
S ep 186,831        57 214,641      81 209,157        14
Oct 162,155        444 186,048      622 184,873        586
Nov 137,479        687 166,856      1148 145,705        771
Dec 131,996        963 164,898      1630 138,654        1127
J an 136,696        665 162,156      1568 145,705        1227
Feb 142,572        842 151,972      1229 142,180        1069
Mar 142,179        755 196,623      903 177,431        854
Apr 145,705        177 181,739      591 174,689        611
May 179,781        20 206,024      295 208,373        416
J un 214,641        20 245,584      13 240,492        179

2,029,292     4,668           2,441,343   8,113           2,288,194     6,878          

FY  2006 F Y  2007 FY  2008

PDS  Ac tual Us age
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Table 2.2 shows PDS total FY 2008 electricity cost and natural gas cost along with that 

year’s average annual unit costs of $0.104 per kWh for electricity and $8.49 per Dth for 

natural gas. These average unit costs are used to project the cost savings for each 

subsequent potential energy conservation option. 

Table 2.2: PDS energy costs FY 2008 

 

Electric 237,023$ 
Nat. Gas 58,406$    
$/kWh $     0.104
$/Dth 8.49$        
$/sq ft 2.79$        

PDS Energy Costs
FY 2008

Figure 2.1 shows the TRNSYS model used for each building.  While the form of 

the model is the same for both, the building construction data is customized for each. 

 

Type 69b

Type 33e

Type 56b

Type 65c

Type 24

eq 2

eq 1

Type 65c‐3

Type 65c‐2
Type 109‐
TMY2

Figure 2.1: TRNSYS model for PDS and ATC 
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TRNSYS models are composed of components and data communication paths.  

The Type109-TMY2 component provides average weather data at regular time intervals 

thruoughout the year for many US locations including Albuquerque, NM.  This 

component provides: the ambient dry bulb temperature and relative humidity to the 

thermodynamic property component Type33e; the ambient dry bulb temperature, beam 

radiation on horizontal, and sky diffuse radiation on horizontal to the sky temperature 

component Type69b; ambient temperature relative humidity, total radiation, beam 

radiation, and angle of incidence for all building surfaces to the multi-zone building 

component Type56b; and the ambient temperature to the online plotter component.  The 

Type33e component provides the dew point temperature to the sky temperature 

component, Type69b.  The Type69b component determines the effective sky 

temperature, which is used to calculate the long-wave radiation exchange between the 

atmosphere and the building surfaces in the multi-zone building component, Type56b.  

The Type56b multi-zone building component contains all of the building specific 

information for each building zone including wall materials, floor materials, ceiling 

materials, schedule of occupancy and equipment operation, number of occupants, number 

and type of heat generating equipment, etc.  The multi-zone building component provides 

the zone heating and cooling loads to the calculator component, eq1, and the zone 

temperatures to the online plotter component, Type65c-2.  The first equation component, 

eq1, calculates the heating and cooling values for each zone for each hour and outputs 

this data to the integrator component, Type24, and to the second equation component, 

eq2.  The second equation component, eq2, sums the zone heating and cooling data to 
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form the total heating and cooling loads for each hour and outputs this data to the 

integrator component, Type24.  The integrator component, Type24, accumulates the 

heating and cooling loads for each month and outputs the heating data to the online 

printer component, Type65c, and the cooling to the online printer component, Type65c-3.  

This is shown in Figure 2.2 and Figure 2.4. 

We calibrated the electric energy with the PDS average building usage.  We 

calibrated natural gas with the PDS average building usage similarly.  During those years 

two conditions were present that adversely impacted facility energy usage: 

• The outside air dampers were inoperable with 3 dampers stuck open and 1 damper 

stuck closed.  Outside air is mixed with the building return air ventilation to 

improve the quality of the building air by diluting various gaseous irritants 

produced inside the building.  Excess outside air will unnecessarily add to the 

heating and cooling load. 

• The main door on the ground level, primarily used by customers and employees 

of the building, did not close properly and remained partially open when not in 

use.  This caused significant air leakage from the conditioned space adversely 

impacting the heating and cooling load. 

We included these two conditions to the Baseline 1 energy model with the results as 

shown in Tables 2.3. 
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Table 2.3: PDS Baseline 1 energy use actual to model comparison 

 

PDS
Month Model  Actual Ave. Model  Actual Ave.
Jul 243,732         273,980     1                         15                
Aug 230,397         268,889     6                         17                
Sep 200,060         211,899     37                       51                
Oct 187,017         185,461     349                     551            
Nov 177,743         156,281     956                     869            
Dec 188,324         151,776     1,493                  1,240         
Jan 187,559         153,931     1,406                  1,153         
Feb 166,783         147,076     1,065                  1,047         
Mar 183,207         187,027     842                     837            
Apr 178,121         178,214     360                     460            
May 202,295         207,199     94                       244            
Jun 217,490         243,038     14                       71                
Total 2,362,728      2,364,769  6,622                  6,553         

Natural Gas, DthElectricity, kWh

Table 2.4 shows the actual average annual electric and natural gas use for the as 

found, PDS Baseline 1, condition of the facility.  This is used to present the total annual 

energy use per unit area in BTUs per square foot.  Since one kilowatt-hour is 3412 BTUs 

and one decatherm is one million BTUs, this yields 137,000 BTUs per square foot or 

$2.79 per square foot per year for PDS.   

Table 2.4: PDS Baseline 1 average actual energy use 

 

Ave. Ele kWh 1,707,742
Ave. Gas, Dth 2918
BTU/sq ft 82,053                 
$/sq ft 2.79$                    

Average Actual Energy Use ‐ PDS

Figure 2.2 shows the cumulative per month heating and cooling energy use as 

calculated by the TRNSYS model.   
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Figure 2.2: TRNSYS PDS annual heating and cooling energy 

The heating energy is the energy from natural gas burned in the boiler at 75 percent 

efficiency (1.0 kWh of natural gas yields 0.75 kWh of heat).  The cooling energy is the 

electric energy used by the chiller with a coefficient of performance of 4.15 (1.0 kWh 

used by the chiller yields 4.15 kWh of cooling). 

Figure 2.3 uses these data values to show the hottest week, July 29 through 

August 4.  The hottest hour in this week is 4:00 pm on July 31.  The general shape of this 

cooling curve for this week is as expected, peaking each afternoon between 2:00 and 5:00 

pm and falling to a minimum in the early am.  Similarly the highest heating week is 

January 7 through January 13 with the highest heating load at 7:00 am on January 8.  The 

general shape of this heating curve for this week is also as expected, peaking each 

morning between 5:00 and 8:00 am and falling to a minimum in the early afternoon.   
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 HeatingCooling

Figure 2.3: PDS cooling/heating for hottest/coldest week in the year 

The PDS input schedules and other electric loads are shown in Appendix 1-1 (Garcia & 

Associates 1973). 

The PDS Baseline 2 model resets the outside air to a normal level of 30 percent 

and assumes the air infiltration through the second floor entrance is also normal at 20 

percent.  This reduces the annual heating load by 39 percent, having only a minor impact 

on the cooling load.  This results in an annual energy cost reduction of $16,800 from 

reduced natural gas use and an annual energy use per unit area reduction to 115,000 

BTUs per square foot. 

In 2005 the PDS air conditioning system was modified to add a 75 ton Trane air 

conditioning unit on the roof of the building equipment penthouse, see Figure 2.4.  The 

building ductwork was modified so this 75 ton air conditioning unit services the 7th and 

8th floors.  The building ductwork was further modified so the original 229 ton chiller, 

installed in the equipment penthouse, services the rest of the building.  In the Baseline 2 

scenario during the hottest day of the year in the weather module of the TRNSYS 

program, the total building required 171 tons of cooling.  The chiller originally installed 
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in the PDS building penthouse producing a maximum of 229 tons or 25 percent more 

than this maximum requirement would be adequate to handle this cooling load.  It 

appears the 75 ton additional AC unit installed on the penthouse roof was needed to  

 

Figure 2.4: Air conditioning unit on roof of PDS equipment penthouse 

compensate for maintenance issues but is not needed for cooling loads greater than the 

original 229 ton chiller can provide. 

The PDS Baseline 3 model keeps the conditions as in Baseline 2 but assumes one 

of the two supply and return fans are stopped from 6:00 pm to 6:00 am Monday through 

Saturday and all day Sunday.  This is reasonable as the building occupancy is low during 

these periods, less than 5 percent of the day time level, and one supply and return fan will 

provide adequate conditioning.  This reduces the electricity use by 16 percent below PDS 

Baseline 2 and saves an additional $40,100 annually.  The annual energy use per unit area 

reduces further to 102,000 BTUs per square foot. 
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The PDS Baseline 4 model also keeps the PDS Baseline 2 conditions but replaces 

the existing windows with windows similar to those installed in the Alvarado 

Transportation Center.  The existing PDS windows are single pane one quarter inch plate 

glass (U = 5.7 kilojoules per hour per square meter per degree Kelvin) with no added 

energy conservation characteristics.  The ATC windows have excellent energy loss 

characteristics (U = 0.4 kilojoules per hour per square meter per degree Kelvin).  This 

reduces the electric use by 12 percent and natural gas use by 27 percent annually 

resulting in savings of $39,300.  The annual energy use per unit area reduces to 95,300 

BTUs per square foot. 

The PDS Baseline 5 model keeps the conditions as in PDS Baseline 2 but assumes 

the two supply and return fans have variable frequency drives (VFDs) installed.  The fan 

motors are operated at variable speeds proportional to the heating or cooling loads with a 

minimal power of 40 percent when heating or cooling is not required.  VFDs are devices 

that allow electric motor speed and power reductions while maintaining a reasonable 

motor efficiency.  Without VFDs these motors operate either at full power or, if stopped, 

operate at zero power.  The PDS Baseline 5 model reduces the electricity use by 17 

percent below Baseline 2 and saves $43,100 annually.  The annual energy use per unit 

area reduces to 101,000 BTUs per square foot. 

In summary these conservation savings are shown in Table 2.5.  The total savings 

in Table 2.5 assumes that the reduction of Baseline 3, stopping 1 supply and return fan 

during off hours, is replaced with Baseline 5, installing VFDs to reduce fan power when 

heating or cooling is not needed. 
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Table 2.5: Value for each energy scenario at PDS 

 

PDS Baseline: Description: Value, 
$/Year

BTU/sq ft Est. Cost

2 Repair outside air dampers and 
main 2nd floor door

$16,800 115,000 $5,2

3 Shutdown 1 supply fan 1 exhaust 
fan from 6 pm to 6 am Mon-Sat 
and all day Sunday

$40,100 102,000

4 Replace windows with better 
insulating type (U = 0.4)

$39,300 95,300 $5,000,000 

5 Install VFDs on supply and 
return fans

$43,100 101,000 $69,000 

Total $99,200 $5,074,

00 

$0 

200 

 

Table 2.6: Alvarado Transportation Center (ATC) actual energy use 

 

Month Ele, kWh Gas Dth Ele, kWh Gas Dth Ele, kWh Gas Dth

Jul 69,760      58 69,760       6 77,360         64
Aug 63,360      50 63,360       6 79,680         70
Sep 54,720      73 54,720       67 73,600         107
Oct 46,720      206 46,720       140 62,160         178
Nov 44,960      292 44,960       189 52,720         261
Dec 43,680      340 47,440       325 52,160         316
Jan 49,120      380 47,600       330 55,280         369
Feb 46,080      305 44,800       245 50,000         281
Mar 55,920      273 54,800       194 62,960         254
Apr 57,280      162 53,280       135 64,320         169
May 63,120      73 63,200       68 74,800         124
Jun 66,480      20 76,160       43 81,200         68

661,200   2232 666,800     1748 786,240       2261

FY 2008

Actual Usage
FY 2006 FY 2007

Table 2.6 shows the Alavarado Transportation Center (ATC) actual energy use for 

fiscal years 2006-2008 with again the electricity use in kilowatt hours (kWh) and the 

natural gas use in decatherms (Dth). 
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Table 2.7 shows ATC total FY 2008 electricity cost and natural gas cost along 

with that year’s average annual unit costs of $0.104 per kWh for electricity and $8.45 per 

Dth for natural gas.  The average electricity cost for ATC is based on the PDS cost as 

electricity costs were not provided in the ATC monthly usage data. 

Table 2.7: ATC energy costs 

 

Electric $81,769
Nat. Gas $18,897
$/kWh 0.104
$/Dth 8.45       
$/sq ft 3.20$      

ATC Energy Costs
FY 2008

We calibrated the electric energy and the natural gas projection in the energy 

model with the ATC average building usage in FY 2006, FY 2007, and FY 2008.  The 

result is shown in Table 2.8. 

Table 2.8: ATC energy use actual to model comparison 

 

Month Model   FY Actual Ave. Model Actual Ave.
Jul 77,326         72,293 0 4
Aug 72,360         68,800 0                  42
Sep 61,878         61,013 6                  82
Oct 55,293         51,867 100              175
Nov 49,923         47,547 287              247
Dec 51,402         47,760 463              327
Jan 51,411         50,667 429              360
Feb 46,558         46,960 314              277
Mar 52,325         57,893 227              240

Apr 54,401          58,293 88                  155
May 64,976         67,040 20                88
Jun 70,428         74,613 1                  44
Total 708,281       704,747 1,935          2,080         

Natural Gas, DthElectricity, kWh

3

Table 2.9 shows the actual average annual electric and natural gas use for the 

ATC baseline condition with the total energy usage in BTUs per square foot.   
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Table 2.9: ATC actual average energy use 

 

Ave.Ele kWh 704,747           
Ave. Gas, Dth 2,080                
BTU/sq ft 142,000           

$/ sq ft 3.20$                  

Average Actual Energy Use

Figure 2.5 shows the cumulative per month heating and cooling energy use as 

calculated by the TRNSYS model.  The heating energy is the energy from natural gas 

burned in the boiler at 75 percent efficiency (1.0 kWh of natural gas yields 0.75 kWh of 

heat).  The cooling energy is the electric energy used by the chiller with a coefficient of 

performance of 3.50 (1.0 kWh used by the chiller yields 3.50 kWh of cooling). 

 

Figure 2.5: TRNSYS ATC annual heating and cooling energy 

Just as shown for Plaza Del Sol, Figure 2.6 uses the Alvarado Transportation 

Center data to show the hottest week, July 29 through August 4.  The hottest hour in this 
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week is 4:00 pm on July 31.  Again, the general shape of this cooling curve for this week 

is as expected, peaking each afternoon between 2:00 and 5:00 pm and falling to a 

minimum in the early am.  Similarly the highest heating week is January 7 through 

January 13 with the highest heating load at 7:00 am on January 8.  The general shape of 

this heating curve for this week is also as expected, peaking each morning between 5:00 

and 8:00 am and falling to a minimum in the early afternoon. 

HeatingCooling  

Figure 2.6: ATC cooling/heating hottest/coldest week in the year 

The ATC input schedules and other loads are shown in Appendix 2.2 (Dekker et 

al. 1999). 

2.4 Demand Response 

Electric energy suppliers and electric energy users are working interactively to 

develop methods for demand response (DR) to reduce consumption during periods of 

peak energy use.  Toyko Electric Power Company has stated that demand response can 

increase electric system reserve margins on peak by as much as twenty-five percent 

(Asano 2009).  Figure 1.1 shows the annual energy use by the state of California for each 
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hour sorted from highest to lowest.  This curve is typical of electric supply throughout the 

world.  It shows that the highest 25% of the electric load is experienced for less than one 

percent of the hours in the year. Typically the time period for a demand response event is 

12:00 noon to 6:00 pm (Piette 2009).  During a DR program event, building operators or 

their automated control systems make adjustments to building operations with the goal of 

reducing the building’s electric load during times of the electric system’s peak electric 

usage. 

For Plaza Del Sol, DR cannot be performed automatically as the building HVAC 

equipment does not have the necessary digital based control and communication systems.  

So for this DR evaluation we assumed that either the appropriate automatic controls and 

communications are installed or the building operator performs these control functions 

manually at the specified times.  The PDS demand response was modeled for the 

following three options.  The first and third options raised the building temperature 

control range from 22 °C – 24 °C (72 °F – 76 °F) to 24 °C – 26 °C (76 °F – 79 °F) for the 

demand response period 12:00 noon – 6:00 pm.  The second option stopped the chiller 

and operated the building in an evaporative cooling mode for the demand response period 

12:00 noon – 6:00 pm.  The individual scenarios for the three options are: 

1. Fan energy was reduced to 50 percent by stopping one supply and return fan. 

2. The chiller was stopped and the building temperature was controlled by operating 

the air washers in an evaporative cooling mode. 

3. The fan energy was controlled to 40 percent of normal by reducing the proposed 

VFD controllers from 60 hertz to 24 hertz. 
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The result for the first option is shown in Figure 2.7.  The maximum power reduction was 

115 kilowatts and the total energy reduction during the DR period below the baseline was 

20 percent or 623 kilowatt hours. 
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Figure 2.7: PDS demand response – option 1 

The result for the second option is shown in Figure 2.8.  The building’s return air 

system must exhaust 63,400 cubic feet per minute during the DR event as evaporative 

cooling requires that recirculation be minimized to minimize the air relative humidity.  

Under these assumptions, the building’s air temperatures are controlled in the range of 24 

°C (79 °F) to 28 °C (82 °F) and relative humidity ranges from 40 percent to 65 percent.   
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Figure 2.8: PDS demand response - option 2 
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The maximum power reduction was 88 kilowatts and the total energy reduction during 

the DR period below the baseline was15 percent or 476 kilowatt hours. 

The result for the third option is shown in Figure 2.9.  The maximum power 

reduction was 133 kilowatts and the total energy reduction during the DR period below 

the baseline was 24 percent or 732 kilowatt hours. 

We were curious to see if pre-cooling PDS in the morning (Xu et al. 2007) would 

increase the power savings during a DR event.  Using the TRNSYS energy model with 

the third option conditions for PDS, we brought the building temperature down to 68 °F 

prior to initiating the demand response event but detected no difference in power savings 

without pre-cooling.  This is likely due to the low energy efficiency of the building. 
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Figure 2.9: PDS demand response – option 3 

Demand response for the Alvarado Transportation Center can readily be 

performed automatically as the HVAC equipment does have digital based controls and 

communication.  The ATC demand response was modeled for the following two options.  

Both options raised the building temperature control range from 20 °C – 22 °C (68 °F – 
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72 °F) to 24 °C – 26 °C (76 °F – 79 °F) for the demand response period 12:00 noon – 

6:00 pm on July 31, the hottest of the days in the weather model.  The second option 

stopped the 53.17 ton AC unit and operated the building only with the 71.75 ton AC unit 

for the demand response period 12:00 noon – 6:00 pm.  The individual scenarios for these 

options are: 

1. Raise temperature set point range only.  No other reductions. 

2. Raise the temperature set point range and also shutdown the smaller of the AC 

units (53.17 ton) and only cool the facility with the larger unit (71.75 tons). 

The result for the first option is shown in Figure 2.10.  The maximum power 

reduction was 121 kilowatts and the total energy reduction during the DR period was 18 

percent or 506 kilowatt hours. 
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Figure 2.10: ATC demand response – option 1 

The result for the second option is shown in Figure 2-11.  The maximum power 

reduction was 125 kilowatts and the total energy reduction during the DR period was 26 

percent or 649 kilowatt hours. 
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Figure 2.11: ATC demand response – option 2 

2.5 ATC Photovoltaic Generation Potential 

Due to the high availability of solar energy in the southwest, the Alvarado 

Transportation Center is a site with the potential for a solar photovoltaic (PV) electric 

generating system.  The ATC has an annual average electric energy use in one day of 

1930 kilowatts-hours.  This was used to establish the size of the potential PV system.  

The PV generating potential in the Albuquerque area is 6.25 watts per square meter per 

day (NREL 2006) with efficiency of 0.135 for polycrystalline PV material (Wormser and 

Strong 2007).  This would require approximately 2290 square meters or 24,600 square 

feet of PV panels to supply the ATC daily use.  It should be noted that the flat portion of 

the ATC roof is only 5000 square feet or 465 square meters.  The rest of the roof is 

sloped tile and not architecturally appropriate for mounting PV panels.  Some other 

location would be required for the panels such as the top of covered parking or covered 

walkways.  The cost for covered parking and walkways would be quite high and not 

likely worth the investment. 
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2.6 Conclusions 

Plaza Del Sol has the opportunities for improvement in day-to-day energy use as 

shown in Table 2.10. 

Table 2.10: PDS summary of energy improvements 

 

Description: Value, 
$/Year

BTU/sq ft Est. Cost

Repair outside air dampers and 
main 2nd floor door

$16,800 115,000 $5,200

Shutdown 1 supply fan 1 exhaust 
fan from 6 pm to 6 am Mon-Sat 
and all day Sunday

$40,100 102,000 $0

Replace windows with better 
insulating type (U = 0.4)

$39,300 95,300 $5,000,00

Install VFDs on supply and 
return fans

$43,100 101,000 $69,00

Total $99,200 $5,074,20

 

 

0 

0 

0 

Shutdown of the supply and return fans during nights and Sundays is not warranted if 

VFDs are installed on these fans.  Also the replacement of the windows will have a 

significant capital cost and likely is not justified economically.  Therefore the most 

reasonable improvements and their savings are shown in bold in Table 2.10. 

No energy improvements were recommended for the Alvarado Transportation 

Center as this facility is relatively new and includes current energy efficient materials and 

construction. 

 The Plaza Del Sol demand response Option 3, raising the temperature control 

range to 76 °F to 79 °F and controlling the supply and return fan energy to 40 percent of 
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normal using VFD controllers gives the greatest demand response power reduction.  This 

option will necessitate adding automatic control and communication equipment for the 

demand response to be effective. 

The Alvarado Transportation Center demand response Option 1, raising the 

temperature set points, has the least intrusive result.  Option 2, while 8 percent better in 

energy reduction, will result in higher temperatures than the 76 °F to 79 °F and cause 

discomfort to City employees and the public. 
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Chapter 3 

Baseline Load Profile 

3.1 Introduction 

 This Chapter focuses on predicting what the energy usage of a facility during a 

demand response event would be in the absence of any energy reductions.  This predicted 

energy usage is termed the Baseline Load Profile (BLP) (Couglin, et al. 2008).  This 

chapter shows the development of a fuzzy set theory approach for determining the 

baseline load profile and compares the accuracy of this approach to the current industry 

approach.  We utilized the baseline load profile method presented in this chapter in 

designing the Demand Response Control System as described in Chapter 5.   

 Fuzzy set theory provides a conceptual framework similar to ordinary sets but is 

more general and has a wider scope of applicability.  It provides a natural way of dealing 

with problems in which the imprecision is the absence of sharply defined criteria of class 

membership (Zadeh 1965). This is shown in Figure 3.1 (Ross 2004).  Set A in Figure 3.1 

is a classical or crisp set with element “a” included in set A and element “b” excluded 

from set A.  The fuzzy set A, also shown in Figure 3.1, is different in that element “c” is 

only partially included in the fuzzy set.  Figure 3.2 shows examples of a crisp set for tall 

people and a fuzzy set for tall people.  In the crisp set for tall people, those less than 5’ 

10” are excluded from the set and those 5’ 10” or taller are included in the set.  In the 

fuzzy set for tall people, those individuals who are 5’ 10” tall have a 0.5 membership in 



 

 30 

 

the fuzzy set for tall people, those that are 6’ 0” tall have a 0.8 membership in the fuzzy 

set for tall people, and those 6’ 2” or taller have a 1.0 membership in the fuzzy set for tall 

people.   

 

Figure 3.l Example of a classical (crisp) set (a) and a fuzzy set (b) 

 

Heights5’10’’
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Figure 3.2: Classical (crisp) and fuzzy sets for tall people 

Fuzzy sets form the building blocks for fuzzy IF-THEN rules having the general form “IF 

X is A THEN Y is B,” where A and B are fuzzy sets.  A fuzzy system is a set of fuzzy 

rules that converts inputs to outputs.  Fuzzy systems are rule-based systems that may be 

constructed from a collection of linguistic rules; in general they are non-linear mappings 

of inputs to outputs (Ross 2004). 
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 During a DR program event, building operators or their automated control 

systems make adjustments to building operations with the goal of reducing the building’s 

electric load during times of the electric system’s peak electric usage.  The baseline load 

profile (BLP) is key to assessing the actual peak load electric energy reduction from a DR 

event.  Some grid operators are considering compensating commercial facility operators 

for this energy reduction they achieve during DR events.   

3.2 Methods 

The California Energy Commission (CEC) has funded research (Couglin et al. 

2008) to assess the accuracy of algorithms for determining estimates for building electric 

load usage profiles (BLP) for commercial facilities participating in demand response 

(DR) programs.  This research, performed by Laurence Berkeley National Laboratory 

(LBNL), tested seven BLP algorithms on a sample of 33 buildings located in California 

for actual energy use data from May 2005 through October 2006.  LBNL selected proxy 

DR event days as the hottest 25 percent of the non-holiday or weekend days in this May 

through October period.  After performing statistical analysis of each BLP algorithm on 

the conditions of the proxy event days, LBNL determined the “simple average over the 

highest 3 out of 10 previous days with morning adjustment” (referred to as LBNL Best 

here) to be most accurate (Coughlin et al. 2008). 

We duplicated this calculation using Dane Smith Hall and compared the results to 

a fuzzy approach using the modified learning from example (MLFE) methodology with a 

recursive least square (RLS) improvement (Ross 2004) but with facility occupancy 

included as an additional input. 
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 We selected the proxy event days based on the hottest 25 percent of the non-

holiday or weekend days in August and September 2006.  The hottest days were selected 

from the National Oceanic and Atmospheric Administration (NOAA) weather 

information at the Albuquerque Sunport weather station.  Next we gathered the Dane 

Smith energy use data from the UNM Energy Management and Control System (EMCS) 

information for the hours of 9:00 am through 6:00 pm for each of the proxy event days.  

This resulted in 21 data sets for each of the peak energy hours.  This report presents only 

the 4:00 pm hour to demonstrate the methodology, but the results show all three peak 

hours, 3:00 pm, 4:00 pm, and 5:00 pm.  Table 3.1 presents the energy use and occupancy 

data for the 4:00 pm hour.  The numbers in the “Day” column range from 48 to 91 and 

represent the dates numbered sequentially.  Day 48 represents August 17, 2006 and Day 

91 represents September 29.  The field labels are defined as follows: 

 al(d.h) – actual load (kW) during this day and hour 

 pl(d,h) – the average of the 3 highest hourly loads (kW) of the previous 10 days 

 Occ. – the occupancy at this day and hour 

 al(d,10) – the actual load on this day at 10:00 am 

 al(d,10) – the actual load on this day at 11:00 am 

The LBNL Best algorithm is applied to this data as follows: 

• pl(d,h) = the predicted load.  This is the average of the actual load for this 

hour for the 3 highest actual loads over the previous 10 days. 

• d = the day 

• h = the time at the beginning of the hour 



 

 33 

 

 

 

Table 3.1:  Data sets for the 4:00 pm hour 

 

Day al(d,h) pl(d,h) Occ. al(d,10) al(d,11)
55 182.46 174.78 554 175.67 178.08
52 177.88 119.21 556 176.29 187.46
60 182.54 179.06 759 179.71 181.50
61 181.67 180.96 619 178.79 187.33
48 119.29 112.21 759 103.00 103.42
62 183.58 182.22 554 172.79 175.17
67 183.54 182.86 759 165.50 172.96
68 174.38 183.19 619 181.75 187.75
73 171.67 183.22 556 163.83 180.04
74 176.00 183.22 759 167.00 170.04
76 174.79 181.04 554 173.96 172.00
77 165.58 178.19 128 165.21 175.17
88 179.92 179.89 759 170.08 174.58
89 175.50 180.78 619 174.71 177.71
91 155.42 180.78 128 165.79 175.42
49 91.96 119.21 128 98.08 96.71
59 175.92 179.06 556 172.25 183.00
63 161.62 182.86 128 181.96 187.63
75 171.54 182.93 619 178.71 178.67
81 183.75 178.19 759 172.50 175.67
90 170.42 180.78 554 170.42 168.92

 

The LBNL authors (Couglin et al. 2008) recommend a correction factor for this 

prediction (pl) based on the conditions in the morning of the DR event (hours 10:00 am 

and 11:00 am) as follows: 

  c(d) = )h,d(pl)h,d(pl
)h,d(al)h,d(al

1110
1110
=+=
=+=

,      (3.1) 

where: 

  al(d,h) – the actual load for the day and the hour 

  pl(d,h) – again, the average of the 3 highest actual loads at this hour over 

the 10 previous days. 
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Thus the corrected predicted load (pl’) during the peak energy hours (3:00: pm through 

5:00 pm) is: 

  pl’(d,h) = c(d) x pl(d,h)       (3.2) 

We calculated the predicted load (pl’) for each of the peak hours of 3:00 pm, 4:00 

pm, and 5:00 pm based on the LBNL Best algorithm described herein for each set of test 

data.  Table 3.2 shows the input data and the LBNL Best results for the 4:00 pm hour. 

Table 3.2: LBNL Best predicted load for 4:00 pm 

Day al(d,10) al(d,11) pl(d,10) pl(d,11)
49 98.08 96.71 107.12 110.89
59 172.25 183.00 176.82 186.51
63 181.96 187.63 179.00 187.04
75 178.71 178.67 181.39 187.57
81 172.50 175.67 180.31 182.65
90 170.42 168.92 178.04 182.12

Day cl(d) pl(d,h) pl'(d,h)
49 0.89 119.21 106.51
59 0.98 179.06 175.07
63 1.01 182.86 184.63
75 0.97 182.93 177.19
81 0.96 178.19 170.93
90 0.94 180.78 170.32  

The fuzzy set theory approach utilizes the modified learning from example 

(MLFE) methodology to generate the initial Gaussian membership functions and the 

recursive least square algorithm to improve their accuracy.  MLFE is a multiple input and 

single output system comprised of a collection of if-then rules where the rules are in the 

form of a premise clause and a consequence.  These rules are of the form (Ross 2004): 

IF premise1 and premise2 and premise3 and premise4 THEN consequence, (3.3) 

where:  premise1 = the fuzzy set for x1 of Table 3.3 

   premise2 = the fuzzy set for x2 of Table 3.3 

   premise3 = the fuzzy set for x3 of Table 3.3 
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   premise4 = the fuzzy set for x4 of Table 3.3 

   consequence = the output parameter y of Table 3.3 

This approach allows one to readily add an input variable, in this case facility 

occupancy, to improve the prediction.  In the case of Dane Smith Hall occupancy for any 

given day and hour varies from less than 100 people to over 800 people.  This population 

variation should strongly impact the facility’s energy use.  All data was normalized to the 

range of 0 to 1 by dividing each input and output data set by the largest member of that 

set.  Fifteen data sets were used to train the MLFE/RLS methodologies and six data sets 

were used to test the accuracy of the two approaches, LBNL Best versus the fuzzy set 

theory approach.  The 15 training data sets and the 6 testing data sets are shown in Table 

3.1 prior to normalization.  They are further defined in Table 3.3. 

Table 3.3:  MLFE inputs (xi) and output (y) 

y actual energy use for the day and hour, 

al(d,h) 

x1 the 3 hour averages used in the LBNL 

Best, pl(d,h) 

x2 Dane Smith occupancy for the day and 

hour, Occ. 

x3 actual energy usage at 10:00 am for 

the day, al(d,10) 

x4 actual energy usage at 11:00 am for 

the day, al(d,11) 
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The MLFE algorithm calculates the membership functions for each of the four 

inputs.  The Gaussian membership functions describing the input fuzzy sets are of the 

form (Ross 2004): 

   
2
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jj )
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2
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j e)μ(x
−

−

= ,      (3.4) 

where:  j = 1 to n (the number of inputs – 4) 

   i = 1 to R (the number of membership functions) 

   μ (xj) is a membership function describing input xj  

   ci
j is the jth input’s center for the ith rule 

   σi
j is the jth input’s relative width for the ith rule 

The rule base is initialized using values for the first rule’s center, ci=1
j,  as the first 

input data value.  The relative width, σi=1
j, of the first rule must be set manually as this 

information cannot be determined from the input data.   

 The fuzzy model produced by MLFE uses a product t-norm for the conjunction of 

multiple antecedents in the premise as: 

       (3.5) 
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where:  μi(x) is the membership value of the input x in the ith rule 

  cj
i and σj

i are the center and the spread for the jth input and ith rule 

  n is the number of inputs 

  i = 1 to R (the number of membership functions) 
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This is the mathematical representation of the function of the word “and” in equation 

(3.3). 

 The implication represented by the word “then” in equation (3.3) along with the 

weighted average defuzzification is used for the output as: 
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Θ)|f(x  ,      (3.6) 

f(x|Θ) is the defuzzified output and is a function of: 

  xj is the current input training vector 

  Θ is the vector containing the rule parameters for each input rule (bi, xj, cj
i, 

and σj
i) 

  bi is the value defining the output for the ith rule 

  xj, cj
i, and σj

i are as defined in equation (3.4) 

It is determined that an additional rule is needed if the prediction error for the 

current model is equal to or greater than the user defined test factor (εf) as: 

fε |yΘ)|f(x| ≥− ,        (3.7) 

where:   y is the actual output from the training data set 

  f(x,Θ) is the calculated model output described in equation (3.6) 

  єf is the user specified accuracy. 
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If an additional rule is needed, the centers for the new rule are set to the next training data 

inputs, xj
i, and the relative widths are determined by the MLFE algorithm based on 

achieving an appropriate overlap between membership functions.  This overlap is set by a 

user defined we g ng c ω):i hti  fa tor (  

ߪ
 ൌ ଵ

ఠ
| ܿ

ᇲ െ ܿ
|,       (3.8) 

where:  cj
i’ are the current input training data set, xj

i 

cj
min are the nearest membership function centers to the new membership 

function centers cj
i’ 

ω is the user defined Gaussian membership function width weighting 

factor 

This process of adding additional rules using the next training data set repeats until 

equation (3.7) is satisfied. 

The MLFE methodology generated membership functions for the four inputs as 

shown graphically in Figures 3.3 through 3.6.  The weighting factor (ω) determines the 

amount of overlap between the membership functions.  For the 4:00 pm hour, a weighting 

factor of 0.055 yielded the best accuracy.  The test factor (εf) regulates the number of 

membership functions or rules the MLFE methodology generates.  Again for the 4:00 pm 

hour, a test factor of 0.06 generated 5 rules and yielded the best accuracy.   

 The RLS algorithm uses Gaussian membership functions as input, optimizes these 

membership functions based on the training data, and yields the predicted output for the 

test data sets as a delta function.  This is performed by iteratively estimating the value of 

the output as follows: 



 

ሺ݇ሻߠ ൌ ሺ݇ߠ െ 1ሻ  ܲሺ݇ሻ ൫x୩൯ሾy୩ െ ሺξ ൫x୩൯ሻTθሺk െ 1ሻሿ ,  (3.9) 
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with regression vector: 

   ξ ሺxሻ ൌ
∏ ୣ

షభ
మሺ

౮ౠషౙౠ


ಚౠ
 ሻమ


ౠసభ

∑ ∏ ୣ
షభ

మሺ
౮ౠషౙౠ



ಚౠ
 ሻమ


ౠసభ

R
సభ

 ,    (3.10) 

and the covaria ce ma

ܲሺ݇ሻ ൌ ଵ

n trix: 

λ
ሼܫ െ ܲሺ݇ െ 1ሻ ሺx୩ሻሾ I  ሺξ ൫x୩൯ሻTPሺk െ 1ሻ ൫x୩൯ሿିଵ൫ξ ൫x୩൯ሻTൟPሺk െ 1ሻ,

 The above equation is equation number (3.11) 

ξ λ ξ

where:   P(0) = αI 

   α = 100 here 

   I = the identity matrix (RxR) 

   λ = 1 here to weight all training data equally 

The RLS code was set to cycle through the training data set 100 times. 
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Figure 3.3:  The 3 hour averages pl(d,h) memberships 
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Figure 3.4:  Occupancy memberships 
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Figure 3.5:  Actual usage at 10:00 am membership 
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Figure 3.6:  Actual usage at 11:00 am membership 

3.3 Discussion and Results 

The accuracy of each methodology (ep) is simply the difference between the 

actual electric load (al) for the hour from the testing data output minus the predicted 

electric load (pd) squared and shown in equation (3.12).  These were then summed and 

divided by 6, the number of test data sets (m): 

 

 ep = 
∑ −

m
)]^h,d(pd)h,d(al[ 2

       (3.12) 

 

We calculated this accuracy for both the MLFE/RLS methodology and the LBNL 

Best methodology.  These accuracies of the results for the LBNL Best algorithm, pl’(d,h) 
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from Table 3.2, and the fuzzy approach are shown in Table 3.4 for the three peak hours.  

Figures 3.7, 3.8, and 3.9 compare the two methods point by point for these three hours.  

Table 3.4:  Accuracy comparisons 

 

Peak Hour LBNL Best MLFE/RLS
3:00 pm 109 42
4:00 pm 120 40
5:00 pm 166 98

 

Results for 3:00 pm
MLFE / RLS  - , e = 41.6 

Best Industry Algorithm – x,  e = 108.6 

Results for 3:00 pm
MLFE / RLS  - , e = 41.6 

Best Industry Algorithm – x,  e = 108.6 

 

Figure 3.7:  Test data comparisons for 3:00 pm 
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MLFE / RLS  - , e = 39.7 
Best Industry Algorithm – x,  e = 119.8 

Results for 4:00 pm
MLFE / RLS  - , e = 39.7 
Best Industry Algorithm – x,  e = 119.8 
MLFE / RLS  - , e = 39.7 
Best Industry Algorithm – x,  e = 119.8 

Results for 4:00 pm

 

Figure 3.8:  Test data comparisons for 4:00 pm 

Results for 5:00 pmResults for 5:00 pm
MLFE / RLS  - , e = 98

Best Industry Algorithm – x,  e = 166 

Results for 5:00 pmResults for 5:00 pm
MLFE / RLS  - , e = 98

Best Industry Algorithm – x,  e = 166 

 

Figure 3.9:  Test data comparisons for 5:00 pm 
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3.4 Conclusions 

 The fuzzy approach was significantly more accurate than the LBNL Best 

algorithm.  This was partially because the fuzzy approach takes into account the Dane 

Smith Hall building occupancy.  Occupancy variation in the range of 100 people to 800 

people in a classroom building is a significant driver for energy use.  This is due to the 

heat given off by the occupants and the additional lighting required in high occupancy 

periods.   

The fuzzy approach has an additional advantage due to the relationship between 

the inputs and outputs.  The fuzzy system allows the natural non-linearity of the inputs to 

be reflected in the output.  The LBNL Best algorithm forces a linear relationship between 

the inputs and output.  Forced linearity in modeling a non-linear system cannot match the 

accuracy of an intrinsically non-linear modeling system.  

The largest effort in the BLP modeling is gathering and appropriately processing 

the input information.  Both modeling algorithms use the same input information and 

therefore suffer equally with this difficulty.  While the LBNL Best algorithm is somewhat 

simpler to apply to the input data, current software tools such as MATLAB™, which was 

used in modeling the MLFE/RLS methodology, was fast and straight forward.  The 

significant increase in accuracy clearly justifies this additional effort. 
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Chapter 4 

Evaluation of Commercial Facility Demand 

Response Using a Genetically Evolved 

Fuzzy Cognitive Map 

4.1 Introduction 

Demand response programs reduce electric energy use on or near the electric peak 

usage period typically on summer days (Valero et al. 2007).  Electric suppliers only 

impose demand response events for a limited number of days, typically 10 to 15 days 

each year.  Electric customers’ participation in demand response events are voluntary.  

Obviously reducing electric power consumption on a hot summer afternoon, the normal 

time for a demand response event, can cause some discomfort to facility occupants.  If 

this occupant discomfort causes significant complaints to the facility operator or owner, 

they may direct the DR event be discontinued and thus eliminate the electric power 

savings.  Assessing and predicting this potential interruption of the DR event is not 

readily evaluated with traditional analytical techniques.  Thus we elected to assess this 

problem using fuzzy set theory as applied to cognitive maps.  We modeled this problem 

using the University of New Mexico (UNM) campus.  The campus consists of over 200 

facilities including classrooms, offices, laboratories, libraries, and residence halls, 
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drawing over 30 megawatts of electricity at peak.  We utilized the results of this fuzzy 

cognitive mapping evaluation in the design of the Demand Response Control System as 

described in Chapter 5. 

Fuzzy cognitive maps provide a heuristic approach for analyzing complex 

strategic situations to improve decision making processes.  Fuzzy cognitive maps have 

been applied to a vast array of problems from technical to political. These include 

biological processes, electric circuits, control systems, equipment failure modes and 

effects analysis, social and political situations, organizational strategic planning, etc.  

Fuzzy cognitive maps are a form of neural networks which lend themselves to analysis 

using neural network techniques as well as genetic algorithms.   

Cognitive maps (CM) were introduced by Robert Axelrod in 1976 as a means of 

formalizing and improving the decision process for policy makers.  CMs are directed 

graphs that show the interconnection of the nodes, representing concepts, with 

interconnecting arrows reflecting the causes between concepts.  Concepts typically 

represent processes, actions, events, values, goals, or policies (Kozko 1992).  The use of 

simple binary relationships (i.e., increase and decrease) is done in a conventional (crisp) 

CM. CMs offer a number of advantages that make them attractive as models for 

engineering planning and concept development. CMs have a clear way to visually 

represent causal relationships, they expand the range of complexity that can be managed, 

they allow users to rapidly compare their conceptual models with reality, they make 

evaluations easier, and they promote new ways of thinking about the issue being 

evaluated. 
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A fuzzy cognitive map extends the simple binary relationship of a CM to include 

various degrees of increase or decrease (small decrease, large increase, almost no 

increase, etc.).  An FCM extends the idea of conventional CMs by allowing concepts to 

be represented linguistically with an associated fuzzy set, rather than requiring them to be 

precise.  This extension allows fuzzy numbers or linguistic terms to be used to describe 

the degree of the relationship between concepts in the FCM (Ross 2004). 

This dissertation presents mathematical approaches to model fuzzy cognitive 

maps by three methods:  crisp inputs with crisp interconnecting weights, crisp inputs with 

fuzzy interconnecting weights, and fuzzy inputs with fuzzy interconnecting weights.  The 

paper applies these modeling approaches to a simplified example of the UNM campus 

DR issue, composed of seven concepts, to demonstrate each method.  Finally this paper 

presents a genetically evolved approach to evaluating a fuzzy cognitive map composed of 

twenty concepts based on the author’s work in commercial facility electric demand 

response as applied to the University of New Mexico campus.  The results show potential 

drivers of facility occupant dissatisfaction and potential approaches to reducing this 

dissatisfaction and its impact on the demand response event.  

4.2 Methods 

 Figure 4.1 and Figure 4.1a show the fuzzy cognitive map (FCM) representing the 

University of New Mexico (UNM) strategy as applied to the campus while it undergoes a 

demand response (DR) event.   
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Figure 4.1: Commercial facility FCM representing the University of New Mexico 

strategy as applied to the campus while it undergoes a demand response event 
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Figure 4.1a: Sub-map for facility curtailment shown in the middle of Figure 4.1 
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Figure 4.2 shows the simplified version of this FCM used herein to demonstrate 

the three analysis approaches. 
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Figure 4.2: Simplified example FCM used to demonstrate the analysis methodologies 

 FCMs are made up of nodes that represent concepts and interconnected arrows 

that represent the causal connections among the concepts (Ross 2004).  Concepts’ 

activation levels range from -1 to +1 and their causal connections are also weighted from 

-1 to +1.  The arrow points from the causing concept to the concept being caused either 

positively or negatively.  For example in Figure 4.2, concept C1 causes concept C6 while 

concept C7 causes concept C1.   

The following describes each of the seven concepts that make up the FCM of 

Figure 4.2.  Section 4.3.4 contains the detailed descriptions of the concepts for the FCM 

of Figure 4.1 and Figure 4.1a. 

C1 - Level of UNM electricity demand.  This is a measure of the quantity of 

electricity the UNM campus is consuming in total.  An activation level of +1 indicates a 

high level of electric demand and therefore consumption, an activation level of 0 
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represents a light level of electric consumption, and an activation level of -1 represents a 

very light level of consumption. 

C2 – UNM generates electricity internally.  UNM has a co-generation gas turbine 

in the Ford Utilities Center capable of producing 6,000 kilowatts of electricity, 

approximately a third of the base campus usage, and supplying this to the campus 

electricity distribution system.  An activation level of +1 represents full power output for 

the co-generation turbine, 0 represents a medium power output, and -1 represents little to 

no internal power generation. 

C3 – PNM sends UNM a demand response energy curtailment signal.  A high 

demand response signal from UNM represents a request for a demand response event.  

An activation level of +1 represents the high demand response signal is present, 0 

represents a medium demand response signal, and -1 represents a low or no demand 

response signal. 

C4 – UNM stores energy.  UNM facilities store energy by storing hot or chilled 

water in insulated storage tanks for use at a later time.  This is commonly done by 

commercial facilities at night when electric rates are low for use during the day when 

prices are higher (Furusawa et al. 2009).  An activation level of +1 represents energy 

storage at the maximum rate, 0 represents storage at a moderate rate, and -1 represents no 

storage. 

C5 – UNM external (supplied by PNM) electric energy usage.  This concept 

represents the amount of the campus energy usage that is supplied by PNM as opposed to 

that supplied by the Ford Utilities Center co-generation turbine or stored hot or chilled 
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water.  An activation level of +1 represents a high level of PNM electricity usage, 0 

represents a moderate level of usage, and -1 represents a low level of use. 

C6 – Curtail facility electric energy usage.  This is the level of electric energy 

usage UNM reduces based on the request for curtailment by UNM.  An activation level 

of +1 indicates a high level of electric curtailment, an activation level of 0 represents a 

moderate level of electric curtailment, and an activation level of -1 represents no 

curtailment of electric energy use. 

C7 – Occupant dissatisfaction.  This concept indicates the amount of 

dissatisfaction registered by the campus occupants due to the energy curtailment.  Energy 

curtailment can result in higher internal temperatures, reduced air circulation, and lower 

lighting levels which can lead to occupant dissatisfaction (Inge 2008).  An activation 

level of +1 represents a high level of dissatisfaction, a level of 0 represents minor 

dissatisfaction, and -1 represents no dissatisfaction. 

The following sections present the methods for assessing this fuzzy cognitive map 

under three conditions: 

1. Crisp Analysis 

2. Crisp Inputs with Fuzzy Weights 

3. Fuzzy Inputs with Fuzzy Weights (GEFCM) 

Section 4.3 will apply these methods to the simplified, seven concept FCM of Figure 4.2 

and discuss the results.  In addition Section 4.3 will apply the third method, GEFCM, to 



 

 52 

 

the FCM of Figure 4.1 and Figure 4.1a on which this simplified example is based and 

present the results. 

4.2.1 Crisp Analysis 

Initially we analyzed this FCM using crisp initiating activation levels and 

interconnecting weights.  Figure 4.3 shows the crisp interconnecting weights as supplied 

by our subject matter expert, the author in this case.  The causal connection matrix, also 

termed the adjacency matrix, for these weights is shown in Figure 4.4.  The causal 

connection matrix represents the weight interconnections in the FCM.  The rows in the 

causal connection matrix represent the causing concept and the columns represent the 

caused concept.  The intersection of the causing row and the caused column contain the 

interconnecting weight.  The four input vectors, shown on the following page, were used 

to determine the four stable output concept activation levels using the (-1 0 +1) approach 

(Ross 2004).  This approach takes the input vector and multiplies it times the causal 

connection matrix, Figure 4.4, to generate the output vector.  The output vector is 

normalized by replacing the activation levels for the output vector elements with the 

input concept activation levels; activation levels less than -1 are replaced with the value -

1; and activation levels greater than +1 are replaced with the value +1.  This normalized 

output vector now replaces the input vector and is multiplied times the causal connection 

matrix to form a new output vector.  This process is repeated until the new input vector 

matches the old input vector.  In addition we tested the (0 +1) approach (Kozko 1997, 

Kandasamy and Smarandarche 2003).  This approach is like the (-1 0 +1) approach but 

all outputs less than or equal to 0 are normalized to 0.  The results, as one would expect, 
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are similar to the (-1 0 +1) approach with each concept activation level of -1 replaced 

with 0.  
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Figure 4.3: Simplified example FCM with crisp weights 

 

1 2 3 4 5 6 7

1 0 1 0 -1 0 1 0

2 0 0 0 1 0 0 0

3 0 1 0 -1 0 1 1

4 0 0 0 0 1 0 0

5 0 1 0 0 0 0 0

6 0 0 0 -1 -1 0 1

7 1 0 0 0 0 -1 0

Figure 4.4: Crisp causal connection matrix 

4.2.2 Crisp Inputs with Fuzzy Weights 

 Next we developed linguistic modifiers for the causal weights connecting the 

concepts.  The linguistic modifiers and their weight definitions are as follows: 
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• Definitely causes     1.0 

• Strongly causes     0.8 

• Moderately causes     0.5 

• Weakly causes      0.2 

• Does not cause     0 

• Weakly causes the negative of the concept  -0.2 

• Moderately causes the negative of the concept -0.5 

• Strongly causes the negative of the concept  -0.8 

• Definitely causes the negative of the concept  -1.0 

 

Figure 4.2 shows the FCM with the causal weights labeled, w1 through w15.  

Based on physical insight, the author, as the subject matter expert, assigned the weights 

to each of these connections as shown in Table 4.1: 

 

w1 0.8
w2 0.2
w3 0.8
w4 -0.8
w5 0.8
w6 -1.0
w7 0.8
w8 -0.5

w9 -0.5
w10 0.5
w11 -0.5
w12 0.2
w13 0.2
w14 0.5
w15 0.2

Table 4.1: Weight assignments 

For example, the level of UNM electricity consumption, C1, strongly causes (w1 

= 0.8) UNM to generate electricity internally with the co-generation gas turbine in the 
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Ford Utilities Center, C2.  If UNM is curtailing electricity usage, C6, this definitely 

causes the negative (w6 = -1) of UNM storing energy, C4.   

 

1 2 3 4 5 6 7

1 0 0.8 0 -0.5 0 1 0

2 0 0 0 0.2 0 0 0

3 0 0.8 0 -0.8 0 0.8 0.2

4 0 0 0 0 0.8 0 0

5 0 0.2 0 0 0 0 0

6 0 0 0 -1 -0.5 0 0.2

7 0.5 0 0 0 0 -0.2 0

Figure 4.5: Fuzzy causal connection matrix 

The causal connection matrix for this fuzzy cognitive map is shown in Figure 4.5. 

Again following the basic method of analysis used previously, the input vector is 

multiplied times the causal connection matrix, Figure 4.5, to generate the output vector.  

The output vector is normalized by replacing the activation levels for the output vector 

elements with the input concept activation levels, replacing activation levels less than -1 

with the value -1, and replacing activation levels greater than +1 with the value +1.  This 

normalized output vector now replaces the input vector and is multiplied times the causal 

connection matrix to form a new output vector.  This process is repeated until the new 

input vector agrees to within some error value with the old input vector. 

4.2.3 Fuzzy Inputs and Weights 

Two professors at the University of Cyprus, A. S. Andreou and N. M. Mateou, 

and their various co-authors have pioneered the development of genetically evolved 
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fuzzy cognitive maps using neural network techniques and genetic algorithms in their 

evaluation (Mateou and Andreou 2008, Mateou et al. 2005, Andreou et al. 2004, Andreou 

et al. 2003) which they termed genetically evolved fuzzy cognitive maps GEFCM).  A. 

K. Tsadiras and K. G. Margaritis of the University of Macedonia introduced the certainty 

neuron and its transfer function (1999, 1996) central to the fitness evaluation, see 

equation (4.4), required in the GEFCM. 

Certainty neurons use the strength of the system’s weight matrix and the strength 

of the system’s decay mechanism as a two variable transfer function.  This provides the 

certainty neurons with memory capabilities that decay with subsequent iterations 

(Andreou et al. 2004).  This makes them useful in specific classes of artificial neural 

networks such as fuzzy cognitive maps.  The certainty neuron transfer function 

(CNFCM) appropriate for FCMs is (Tsadiras and Margaritis 1999): 

Ai
t+1 = f(Ai

t, Si
t) - diAi

t ,       (4.1) 

where: 

Si
t = Aj

t Wij  ,       (4.2) ∑=

N

j 1

Ai
t is the activation level of concept i at iteration t 

di is the decay factor for each activation level 

N is the number of concepts in the FCM 

Wij is the causal connection matrix (Mateou and Andreou 2008) 

Terms where i = j should be excluded from this calculation for Si
t.  In fact Wij for i = j is 

always zero because in FCMs no concept causes itself. Thus this term is always zero. 

The function (f) for equation (3.1) is defined as follows: 
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f(Ai
t, Si

t) = Ai
t + Si

t (1 – Ai
t) if Ai

t >0, Si
t >0 

or  = Ai
t + Si

t (1 + Ai
t) if Ai

t <0, Si
t <0 & abs(Ai

t <1, Si
t <1) 

 or  =  ሺ
ାௌ

ሻ
ሾଵି୫୧୬ ሺ

, ௌ
ሻሿ

   otherwise   (4.3) 

All elements of the FCM participate in each iteration of the transfer function.  

Each new concept activation level (Ai
t+1) iteration calculation includes each previous 

concept activation level (Ai
t ) and the entire interconnection weight (Wij) matrix.   

The CNFCM transfer function, with a random initiating value, Ai
t=0, between -1 

and +1 and a pre-established causal connection matrix, Wij, with each element also in the 

range of -1 to +1, will usually approach constant, stable values as t goes to t maximum 

(Ai
t=tmax).  The causal connection matrix (Wij) is an NxN square matrix (N is the number 

of concepts in the FCM) made up of the weights between the concepts (Andreou et al. 

2004).  We utilized 250 as the appropriate number of iterations, tmax, as we found that if 

stability was to be achieved, it was normally achieved prior to this number of iterations.  

Tsadiras et. al. (1999) stated that the decay factor should be in the range of 0 to 0.4 as 

decay factors larger than this cause the system to collapse to zero due to the heavy decay 

mechanism.  We used 0.10 as the decay factor for each activation level, Ai
t, as this gave 

reasonable results and was the value utilized by Mateou et. al. (2008).   

The CNFCM can yield three possible results: stability, bounded limit cycle, or 

unbounded limit cycle (Andreou et al. 2004).  Figure 4.6 shows an example of a CNFCM 

result stable prior to 50 iterations.   
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Figure 4.6: Example of CNFCM result that is stable after 50 iterations 

Bounded limit cycle is defined as (Andreou et al. 2004) an oscillating value with a 

total amplitude less than or equal to 75% of the maximum total amplitude (+1- -1 = 2) or 

a value of 1.5 (Mateou and Andreou 2006).  Figure 4.7 shows an example of a bounded 

limit cycle CNFCM result for a single concept.   
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UNM Campus Demand Response Simplified FCM - Limit Cycle

Figure 4.7: Bounded limit cycle CNFCM result 

An unbounded limit cycle result is defined as an oscillation exceeding 75% of the 

maximum total amplitude (Andreou et al. 2004).  An unbounded limit cycle event is in 

some cases completely chaotic.  The maximum total amplitude is (1 - - 1 = 2) so an 

unbounded limit cycle result has a periodic amplitude exceeding 1.5.  Figure 4.8 shows 

an example of the unbounded limit cycle CNFCM result.  A bounded limit cycle result is 

useful by stabilizing it as the mean of the oscillation.  This is shown in the last 50 

iterations of Figure 4.7.  A unbounded limit cycle result is not useful. 
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Figure 4.8: Unbounded limit cycle CNFCM result 

We utilized a genetic algorithm (GA) to calculate optimum causal connection 

weights in the FCM based on the desired activation levels, Ai, of one or more of the FCM 

concepts.  These concepts’ desired activation levels establish the goal for the genetic 

algorithm.  The Genetically Evolved Fuzzy Cognitive Map (GEFCM) uses the genetic 

algorithm to adjust the weights and recalculates the concept activation levels.  The best 

set of weights is the set which yields the best fit to the desired activation levels (Mateou 

and Andreou 2009).  The defuzzification process, following the activation level ranges in 

the concept descriptions in Section 4.2 for the simplified FCM, yields the meaning of the 

analysis. 

The fitness function that the GA uses to determine if it has achieved the optimum 

causal connection weights is based on the CNFCM method described in the previous 

section.  In particular the fitness function calculates the value of the activation levels 

(Aai) for each population member developed by the GA at each generation.  It uses the 



 

 61 

 

causal connection weights determined by the GA for each concept at the 250th iteration 

from equations (4.1), (4.2), and (4.3).  As shown in equation (4.4), the fitness for each 

member is the difference between this calculated activation level (Aai) and the desired 

activation level (Adi) for the controlling scenario’s concepts.   

Fitness = sqrt[ (Ad1 – Aa1)2 + (Ad2 – Aa2)2 + … +(Adn – Aan)2 ],  (4.4) 

where:  Adi is the desired activation level for concept Ci  

 Aai is the CNFCM calculated activation level for concept Ci 

 n is the number of the desired activation level(s) 

The lower the fitness value the closer the causal connection weights are to the optimum 

value and thus the better the individuals in each population.  In the event the CNFCM 

result is an unbounded limit cycle, this result is rejected.  The GA takes the best 

individuals and saves them for the next generation and performs crossover or mutation 

operations on the rest.  The GA then repeats the fitness tests on the new generation.  This 

process continues until the fitness value is less than a pre-established fitness limit or the 

maximum number of generations is met.  This will yield a set of causal connection 

weights that supply a set of activation levels locked to the desired predetermined 

scenarios.  The activation levels of the concepts not included in the set of desired 

activation levels are of most interest to the analyst.  They give the reaction of the FCM to 

the concepts included in the desired scenario. 

For example, in the simplified FCM of Figure 3.2 shown with the seven concepts, 

let our desired concepts be: 

• A high level of UNM electric demand, C1 = 1.0 
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• PNM sends UNM the demand response signal, C3 = 1.0, and 

• UNM occupant dissatisfaction is high, C7 = 1.0. 

The genetic algorithm establishes values for each of the fifteen interconnecting weights 

for each member of this generation.  The fitness function uses these fifteen weights to 

calculate the seven activation levels for the FCM following equations (4.1), (4.2), and 

(4.3) after 250 iterations with the seven decay factors, di, all equal to 0.1.  The fitness 

function then compares these calculated activation levels for C1, C3, and C7 to our 

desired activation levels (1.0, 1.0, and 1.0) calculating a fitness value according to 

equation (4.4).  The genetic algorithm uses this fitness value in establishing the 

worthiness of each generation member in developing the next generation.  This process 

continues until the minimum fitness is reached or until the maximum number of 

generations is exceeded. 

4.3 Results and Discussion 

4.3.1 Crisp Analysis for Simplified FCM 

Four input vectors were used to establish four stable output activation concepts 

using the (-1 0 +1) approach described in Section 4.2.1. 

The first input vector [1, 0, 1, 0, 0, 0, 1] holds three concepts at a constant value as shown 

in bold.  These three concepts represent the following: 

C1 Level of UNM electricity consumption is high,  

C3 PNM sends UNM the DR curtailment signal, and 

C7 Occupant dissatisfaction is high. 
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A stable output was achieved after three iterations with the result [1, 1, 1, -1, -1, 1, 1].  

This represents, in addition to the input above: 

C2 UNM generates electricity internally at the maximum level, 

C4 UNM stores no energy, 

C5 UNM external (PNM) electric energy usage is low due to the Ford Utilities 

Center co-generation turbine operating at the maximum level, 

C6 Full DR by UNM to curtail electric energy use even though occupant 

dissatisfaction was so high. 

For the (0 +1) approach the result was [1, 1, 1, 0, 0, 1, 1], which only differs at C4 and 

C5 as -1 is not allowed. 

The second input vector [1, 0, 1, 0, 0, 0, 0] holds the same three concepts at a constant 

value but C3 is 0 as shown in bold.  These three concepts represent the following: 

C1 Level of UNM electricity consumption is high,  

C3 PNM sends UNM the DR energy curtailment signal, and 

C7 There is no occupant dissatisfaction. 

The stable output was also achieved after three iterations and resulted in [1, 1, 1, -1, -1, 1, 

0].  This represents: 

C2 UNM generates electricity internally at the maximum level, 

C4 UNM stores no energy, 

C5 UNM external (PNM) electric energy usage is low 

C6 Full DR by UNM to curtail electric energy use as occupant dissatisfaction 

was non-existent. 
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For the (0 +1) approach the result was [1, 1, 1, 0, 0, 1, 0], which only differs at C4 and 

C5 as -1 is not allowed. 

The third input vector [0, 0, 1, 0, 0, 0, 0] holds the three input concepts at the constant 

values shown in bold.  These represent: 

C1 Level of UNM electricity consumption is low,  

C3 PNM sends UNM the DR energy curtailment signal, and 

C7 There is no occupant dissatisfaction. 

The stable output was achieved after four iterations and resulted in [0, 0, 1, -1, -1, 1, 0].  

This represented: 

C2 UNM generates electricity internally at the half power level, 

C4 UNM stores no energy, 

C5 UNM external (PNM) electric energy usage is low as the campus demand 

is low, and 

C6 Full DR by UNM to curtail electric energy use as occupant dissatisfaction 

was non-existent. 

For the (0 +1) approach the result was [0, 1, 1, 0, 0, 1, 0] which only differs at C4 and C5 

as -1 is not allowed. 

The forth input vector [1, 0, 1, 0, 0, 0, 0] holds two concepts at the constant value shown 

in bold.  These represent: 

C1 Level of UNM electricity consumption is high and 

C3 PNM sends UNM the DR energy curtailment signal. 
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The stable output was achieved after three iterations and resulted in [1, 1, 1, -1, -1, 1, 1].  

This represents: 

C2 UNM generates electricity internally at the maximum level, 

C4 UNM stores no energy, 

C5 UNM external (PNM) electric energy usage is reduced to low from the DR 

event.  The campus consumption is high but internal electric generation 

supplies much of the load. 

C6 UNM curtails electric energy use from a full demand response event. 

C7 The campus occupants register dissatisfaction from the electric load 

reduction. 

For the (0 +1) approach the result was [1, 1, 1, 0, 0, 1, 1)] which only differs at C4 and 

C5 as -1 is not allowed. 

4.3.2 Crisp Inputs with Fuzzy Weights for the Simplified FCM 

The same four input vectors were used with the causal connection matrix of 

Figure 4.5 to determine the stable output vectors following the approach of Section 4.2.2.  

The error value used in comparing the new input vector to the old input vector after 

normalization was 0.01. 

The first input vector [1, 0, 1, 0, 0, 0, 1] holds three concepts at a constant value as shown 

in bold.  These three concepts represent the following: 

C1 A high level of UNM electricity consumption.  

C3 PNM sends UNM the DR energy curtailment signal. 

C4 Occupant dissatisfaction is high.  
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The stable output was achieved after four iterations and resulted in [1, 1, 1, -1, -1, 1, 1].  

This represented, in addition to the input above: 

C2 UNM generates electricity internally at the maximum level, 

C4 UNM stores no energy, 

C5 UNM external (PNM) electric energy usage is low due to high internal 

generation and DR. 

C6 Full DR by UNM to curtail electric energy use. 

The second input vector [1, 0, 1, 0, 0, 0, 0] holds the same three concepts at a constant 

value but C3 is 0 also as shown in bold.  These three concepts represent the following: 

C1 Level of UNM electricity consumption is high,  

C3 PNM sends UNM the DR energy curtailment signal, and 

C7 There is no occupant dissatisfaction. 

The stable output was also achieved after three iterations and resulted in [1, 1, 1, -1, -1, 1, 

0].  This represented: 

C2 UNM generates electricity internally at the maximum level, 

C4 UNM stores no energy, 

C5 UNM external (PNM) electric energy usage is low 

C6 Full DR by UNM to curtail electric energy use as occupant dissatisfaction 

was non-existent. 

For the (0 +1) approach the result was [1, 1, 1, 0, 0, 1, 0] which only differs at C4 and C5 

as -1 is not allowed. 
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The third input vector [0, 0, 1, 0, 0, 0, 0] holds the three input concepts at the 

constant values shown in bold.  These represent: 

C1 A light level of UNM electricity demand. 

C3 PNM sends UNM the DR energy curtailment signal only.  

C7 There is no occupant dissatisfaction. 

The stable output was achieved after five iterations and resulted in [0, 0.60, 1.00, -1.00,   

-1.00, 0.80, 0].  This represented: 

C2 UNM generates electricity internally at a medium high level. 

C4 UNM stores no energy. 

C5 UNM external (PNM) electric energy usage is low as the campus demand 

is low and internal generation is medium high. 

C6 Nearly full DR by UNM to curtail electric energy use. 

The forth input vector [1, 0, 1, 0, 0, 0, 0] holds two concepts at the constant value shown 

in bold.  These represent: 

C1 Level of UNM electricity demand high,  

C3 PNM sends UNM curtailment signal, and 

The stable output was also achieved after four iterations and resulted in [1, 1, 1, -1, -1, 1, 

0.4].  This represented: 

C2 UNM generates electricity internally at the maximum level, 

C4 UNM stores no energy, 

C5 UNM external (PNM) electric energy usage is moderately low due to 

internal electric generation and the DR event. 
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C6 Full DR by UNM to curtail electric energy use.  

C7 There is moderate occupant dissatisfaction. 

4.3.3 Genetically Evolved Approach for the Simplified FCM 

The first step in the GEFCM approach of Section 4.2.3 is to calculate the concept 

activation levels of the CNFCM based on the causal connection matrix from our subject 

matter expert, in this case the author, Figure 4.5.  The initial concept values (Ai
t = 0) are 

random numbers between -1 and +1 and the iterations continued for 250 steps.  The 

results of this CNFCM calculation are in Figure 4.9  
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Figure 4.9: CNFCM result from Table 4.1 weights 

with the stable concept activation values shown in Table 4.2. 

Table 4.2: CNFCM activation levels 

 
Concept C1 C2 C3 C4 C5 C6 C7
Activation Level 0.85 0.62 -0.90 0.82 0.55 -0.92 -0.27
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Figure 4.10: CNFCM result from Table 4.1 – 2nd outcome 

Table 4.3: CNFCM activation levels – 2nd outcome 

 
Concept C1 C2 C3 C4 C5 C6 C7
Activation Level -0.85 -0.62 0.90 -0.82 -0.55 0.92 0.27

Figure 4.9 shows a stable CNFCM result which indicates the basic design of the 

fuzzy cognitive map and the author’s estimate of the weights are reasonable.  It should be 

noted that a random initiating set of activation levels results in two possible outcomes; 

one is the negative of the other.  Figure 4.10 shows the second of these two possible 

outcomes for our simplified example.  This does not pose a problem in using the CNFCM 

random initiating set of activation levels in the fitness function for the genetic algorithm 

as the negative result will have poor fitness and be rejected. 

We ran the GEFCM with the desired activation level for each of the four scenarios 

of Sections 4.3.1 and 4.3.2.  The MATLAB™ Genetic Algorithm Toolbox 2.0 (GATool) 
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by The MathWorks, Inc. performed the GA functions with the CNFCM fitness function 

evaluating each individual developed by the GATool to assess its fitness level.  In the 

MATLAB™ GATool, elite count specifies the number of individuals that are guaranteed 

to survive to the next generation.  Crossover fraction specifies the fraction of the next 

generation, other than elite individuals, that are produced by crossover. The remaining 

individuals, other than elite individuals, in the next generation are produced by mutation. 

We set the population size to 20, the elite count to 2, and the crossover fraction to 0.95.   

For the first scenario we ran the GEFCM with the fitness function of equation 

(3.4) for the GATool seeking solutions with C1 at 1.0, C3 at 1.0, and C7 at 1.0.  We 

repeated this GEFCM run 120 times with all input parameters identical for each run to 

assess repeatability.  A plot of the results of these runs is shown in Figure 4.11. 

 
1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Concept Number

Ac
tiv

at
io

n 
Le

ve
l f

or
 E

ac
h 

C
on

ce
pt

Figure 4.11: Plot of 120 runs of GEFCM 
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A plot of 120 purely random values between -1 and +1, with C1, C3, and C7 held 

at 1.0, is shown in Figure 4.12.   
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Figure 4.12: Plot of 120 random concept values 

Clearly the data in Figure 4.11 has some sort of a pattern when compared to the 

random values of Figure 4.12.  To identify the pattern in the data of Figure 4.11, we next 

chose to seek clusters in these 120 data sets using k-means clustering. 

Given a set of data vectors (x1, x2, …, xn), k-means clustering (Duda et al. 2001), 

also termed c-means clustering (Ross 2004), partitions n sets of data into k clusters so as 

to minimize the within cluster sum of the square distances between the cluster center and 

the cluster members.  In our case x is 120 data sets containing the seven concepts, C1 – 

C7, generated by the GEFCM.  The clustering process is: 
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where   k is the number of clusters 

   j is the index for the 1-7 concepts 

   xj are the data sets in each cluster 

   Si contains the cluster members 

   ci is the cluster center of each Si 

To initialize this algorithm, k cluster centers are chosen randomly from the data (x1, x2, 

…, xn).  Then the algorithm assigns each data set to the cluster with the lowest sum of the 

square distance between the data members and the cluster center.  The algorithm next 

recalculates the cluster centers (ci) and repeats the process with these new cluster centers 

as the initiating cluster centers.  This continues until the cluster centers do not change. 

We performed the k-means clustering using the “kmeans” function in the 

MATLAB™ Statistical Toolbox.  To estimate an appropriate number of clusters, we ran  
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Figure 4.13: K-means clustering on GEFCM data for k from 2 to 20 
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our actual data from the 120 GEFCM runs and plotted the lowest error cluster for values 

of k from 2 to 20.  This is shown in Figure 4.13. 

 We chose a value of k equal to 14 as best suited to our data.  Since the k-means 

clustering methodology initiates with a randomly chosen first set from our data as the 

initial estimate of the cluster centers, there is some variation in the final clusters.  We 

chose the best cluster of the 14 as the one with the lowest error sum between the center 

and each cluster member divided by the number of cluster members.  Again to ensure 

repeatability we ran the clustering on the total set of data fifty times.  With repeated runs 

of the MATLAB™ kmeans routine, we found cluster centers with essentially identical 

values (+ or – 0.00005).  We chose the best cluster centers from the fifty results as the 

ones that repeated the most. 

Our initial input vector with C1, C3, and C7 as 1.0 resulted in the cluster centers 

of Figure 4.14 and Table 4.4. 
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Figure 4.14: Concept activation levels for C1, C3, and C7 = 1 
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Table 4.4: Concept activation levels for C1, C3, and C7 = 1 

 
Concept C1 C2 C3 C4 C5 C6 C7
Activation Level 1.00 -0.86 0.98 -0.65 -0.79 0.94 0.99

The three input concepts activation levels represent the following: 

C1 A high level of UNM electricity consumption.  

C3 PNM sends UNM the DR energy curtailment curtailment signal. 

C7 Occupant dissatisfaction is high. 

The GEFCM output repeated 11 times (the second best was 7 repeats) in the 50 repeat 

clustering calculations.  The concept activation levels represented, in addition to the input 

above: 

C2 UNM generates very little electricity internally, 

C4 UNM stores very little energy, 

C5 UNM external (PNM) electric energy use is low due to the release of 

stored energy and the energy reduction from the demand response event. 

C6 UNM curtails electric energy use to support the demand response event. 

 

Our second input vector with C1 and C3 as 1.0 and C7 as 0 resulted in the cluster 

centers of Figure 4.15 and Table 4.5. 

Table 4.5: Concept activation levels for C1 & C3 =1 and C7 = 0 

 
Concept C1 C2 C3 C4 C5 C6 C7
Activation Level 0.95 -0.87 0.96 -0.86 -0.86 0.86 0.00
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Figure 4.15: Concept activation levels for C1 & C3 =1 and C7 = 0 

The three input concepts activation levels represent the following: 

C1 A high level of UNM electricity consumption.  

C3 PNM sends UNM the DR energy curtailment signal. 

C7 Occupant dissatisfaction is minor. 

The GEFCM output repeated 8 times (the second best was 5 repeats) in the 50 repeat 

clustering calculations.  The concept activation levels represent, in addition to the input 

above: 

C2 UNM generates very little electricity internally, 

C4 UNM stores very little energy, 

C5 UNM external (PNM) electric energy use is low due to the release of 

stored energy and the energy reduction from the demand response event. 

C7 UNM curtails electric energy use to support the demand response event. 
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Our third input vector with C1 and C7 as 0 and C3 as 1 resulted in the cluster 

centers of Figure 4.16 and Table 4.6. 
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Figure 4.16: Concept activation levels for C1 & C7 =0 and C3 = 1 

Table 4.6: Concept activation levels for C1 & C7 =0 and C3 = 1 

 
Concept C1 C2 C3 C4 C5 C6 C7
Activation Level 0.00 -0.85 0.96 -0.77 -0.75 0.74 0.00

The three input concepts activation levels represent the following: 

C1 A light level of UNM electricity consumption.  

C3 PNM sends UNM the DR energy curtailment signal. 

C7 Occupant dissatisfaction is minor. 

The GEFCM output repeated 28 times (the second best was 7 repeats) in the 50 repeat 

clustering calculations.  The concept activation levels represent, in addition to the input 

above: 

C2 UNM generates very little electricity internally, 
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C4 UNM stores very little energy, 

C5 UNM external (PNM) electric energy use is fairly low due to the light 

level of UNM electric consumption and the energy reduction from the 

demand response event. 

C6 UNM curtails electric energy use to support the demand response event. 

Our fourth input vector with C1 and C3 as 0.90 resulted in the cluster centers of 

Figure 4.17 and Table 4.7. 
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Figure 4.17: Concept activation levels for C1 and C3 = 0.9 

Table 4.7: Concept activation levels for C1 and C3 = 0.9 

 
Concept C1 C2 C3 C4 C5 C6 C7
Activation Level 0.90 -0.82 0.90 -0.81 -0.77 0.66 -0.83

The two input concepts activation levels represent the following: 

C1 A high level of UNM electricity consumption.  

C3 PNM sends UNM the DR energy curtailment signal. 
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The GEFCM output repeated 32 times (the second best was 5 repeats) in the 50 repeat 

clustering calculations.  The concept activation levels represent, in addition to the input 

above: 

C2 UNM generates very little electricity internally, 

C4 UNM stores very little energy, 

C5 UNM external (PNM) electric energy use is fairly low due to the release 

of stored energy and the energy reduction from the demand response 

event. 

C6 UNM curtails electric energy use to support the demand response event. 

C7 Occupants of the facility have a dearth of dissatisfaction. 

4.3.4 Genetically Evolved Approach for the More Comprehensive FCM 

Figure 4.1 and Figure 4.1a show the more detailed Fuzzy Cognitive Map 

representing the University of New Mexico (UNM) strategy as applied to the campus 

facilities while they undergo a demand response event.   

The twenty concepts that make up this FCM represent: 

C1 – Wholesale price of electricity.  This is the pricing level PNM pays for 

purchased power or receives for power sold in the wholesale electric market.  An 

activation level of +1 represents a very high pricing level, a value of 0 represents a 

moderate pricing level, and a value of -1 represents a low pricing level. 

C2 – Level of UNM facility demand.  This is a measure of the quantity of 

electricity the UNM campus is consuming in total.  An activation level of +1 indicates a 

high level of electric consumption, an activation level of 0 represents a light level of 
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electric consumption, and an activation level of -1 represents a very light level of 

consumption. 

C3 – UNM generates electricity internally.  UNM has a co-generation gas turbine 

in the Ford Utilities Center capable of producing 6,000 kilowatts of electricity, 

approximately a third of the maximum campus usage, and supplying this to the campus 

electricity distribution system.  An activation level of +1 represents full power output for 

the co-generation turbine, 0 represents a medium power output, and -1 represents little to 

no internal power generation. 

C4 – PNM sends UNM the DR curtailment signal.  PNM signals a request for a 

demand response event.  An activation level of +1 represents the high DR signal is 

present, 0 represents a medium DR signal, and -1 represents no DR signal. 

C5 – UNM stores energy.  UNM facilities store energy by storing hot or chilled 

water in insulated storage tanks for use at a later time.  This is commonly done by 

commercial facilities at night when electric rates are low for use during the day when 

prices are higher (Dayanian et al. 1989).  An activation level of +1 represents energy 

storage at the maximum rate, 0 represents storage at a moderate rate, and -1 represents no 

storage. 

C6 – Supply stored energy to UNM facilities.  UNM supplies the energy stored at 

night to UNM facilities during the day when energy prices are higher.  An activation 

level of +1 represents energy supply at the maximum rate, 0 represents supply at a 

moderate rate, and -1 represents no supply. 
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C7 – Curtail facility electric energy usage for classrooms/office facilities.  This is 

the level of electric energy usage UNM classrooms/office facilities reduce based on the 

request for curtailment by UNM.  An activation level of +1 indicates a high level of 

electric curtailment, an activation level of 0 represents a moderate level of electric 

curtailment, and an activation level of -1 represents no curtailment of electric energy use. 

C8 – Classroom/office occupant dissatisfaction.  This concept indicates the 

amount of dissatisfaction registered by the classroom/office occupants due to the energy 

curtailment.  Energy curtailment can result in higher internal temperatures, reduced air 

circulation, and lower lighting levels.  An activation level of +1 represents a high level of 

dissatisfaction, a level of 0 represents minor dissatisfaction, and -1 represents no 

dissatisfaction. 

C9 – Curtail facility electric energy usage for library facilities.  This is the level of 

electric energy usage UNM reduces in library facilities based on the request for 

curtailment by UNM.  An activation level of +1 indicates a high level of electric 

curtailment, an activation level of 0 represents a moderate level of electric curtailment, 

and an activation level of -1 represents no curtailment of electric energy use. 

C10 – Library occupant dissatisfaction.  This concept indicates the amount of 

dissatisfaction registered by the library occupants due to the energy curtailment.  Energy 

curtailment can result in higher internal temperatures, reduced air circulation, and lower 

lighting levels.  An activation level of +1 represents a high level of dissatisfaction, a level 

of 0 represents minor dissatisfaction, and -1 represents no dissatisfaction. 



 

 81 

 

C11 – Curtail facility electric energy usage for residence halls.  This is the level of 

electric energy usage UNM reduces in residence halls based on the request for 

curtailment by UNM.  An activation level of +1 indicates a high level of electric 

curtailment, an activation level of 0 represents a moderate level of electric curtailment, 

and an activation level of -1 represents no curtailment of electric energy use. 

C12 – Residence Hall occupant dissatisfaction.  This concept indicates the amount 

of dissatisfaction registered by the residence hall occupants due to the energy curtailment.  

Energy curtailment can result in higher internal temperatures, reduced air circulation, and 

lower lighting levels.  An activation level of +1 represents a high level of dissatisfaction, 

a level of 0 represents minor dissatisfaction, and -1 represents no dissatisfaction. 

C13 – Override the electric curtailment signal.  UNM at its option may decide to 

reduce or even cease energy curtailment during a demand response event.  An activation 

level of +1 represents a full override of the demand response request or no energy 

reduction during the demand response event, an activation level of 0 represents a 

moderate level of electric usage reduction, and an activation level of -1 represents no 

override of the demand response request. 

C14 – UNM external (supplied by PNM) electric energy usage.  This concept 

represents the amount of the campus energy usage that is supplied by PNM as opposed to 

that supplied by the Ford Utilities Center co-generation turbine or stored hot or chilled 

water.  An activation level of +1 represents a high level of PNM electricity usage, 0 

represents a moderate level of usage, and -1 represents a low level of use. 
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C15 – UNM administration operation.  UNM administration establishes 

occupancy levels for UNM facilities.  In addition, occupant dissatisfaction due to 

discomfort or other issues may cause the UNM administration to take action to curtail the 

demand response event, thus stopping energy reduction activities.  An activation level of 

+1 represents a high level of UNM administration intervention, 0 represents a moderate 

level of UNM administration intervention, and -1 represents no UNM administration 

intervention. 

C16 – UNM operation costs.  This concept represents the level of UNM operating 

costs due to all factors including electric energy use.  An activation level of +1 represents 

a high level for operating costs, 0 represents a moderate level for operating costs, and -1 

represents a low level for operating costs. 

C17 – UNM Board of Regents direct operating cost reductions.  The UNM Board 

of Regents has fiduciary responsibility for the University (UNM Board of Regents 2004) 

and may direct the UNM administration to reduce operating costs, if costs are too high or 

are politically unacceptable.  An activation level of +1 represents UNM Regents direct 

intervention, 0 represents UNM Board of Regents concern and suggestion to UNM 

administration to reduce operating costs, and -1 represents no UNM Board of Regents 

concern intervention. 

C18 – Classroom/office occupancy levels.  An activation level of +1 represents a 

high occupancy level, 0 represents a medium occupancy level, and -1 represents a low 

occupancy level. 
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C19 – Library occupancy levels.  An activation level of +1 represents a high 

occupancy level, 0 represents a medium occupancy level, and -1 represents a low 

occupancy level. 

C20 – Residence hall occupancy levels.  An activation level of +1 represents a 

high occupancy level, 0 represents a medium occupancy level, and -1 represents a low 

occupancy level. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 w5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 w2 0 w1 0 w55 w3 0 0 0 0 0 0 0 w4 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 w8 w9 0 w7 0 0 0 0

4 0 0 w6 0 w10 w12 w15 0 w23 0 w31 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 w11 0 w52 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 w13 0 w54 0 0 0 0

7 w16 w17 0 0 w14 0 0 w20 0 0 0 0 0 w19 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w21 0 0 0 0 0

9 w24 w25 0 0 w22 0 0 0 0 w28 0 0 0 w27 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w29 0 0 0 0 0

11 w32 w33 0 0 w30 0 0 0 0 0 0 w36 0 w35 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w37 0 0 0 0 0

13 0 0 0 0 0 0 w18 0 w26 0 w34 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w48 0 0 0 0

15 0 w49 0 0 0 0 0 0 0 0 0 0 w47 0 0 0 0 w40 w43 w46

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w51 0 w53 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w50 0 0 0 0 0

18 0 w38 0 0 0 0 w56 w39 0 0 0 0 0 0 0 0 0 0 0 0

19 0 w41 0 0 0 0 0 0 w57 w42 0 0 0 0 0 0 0 0 0 0

20 0 w44 0 0 0 0 0 0 0 0 w58 w45 0 0 0 0 0 0 0 0

Figure 4.18:  Causal connection matrix 

The first step in the GEFCM approach described in Section 4.3.3 is to calculate 

the concept activation levels of the FCM using the certainty neuron transfer function 
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(CNFCM) of equations (4.1) to (4.3).  The fuzzy causal connection matrix for this 

calculation, Wij in equation (4.2), is shown in Figure 4.18. 

Table 4.8 shows the weights developed by our subject matter expert, again the 

author, used in the fuzzy causal connection matrix. 

Table 4.8: Weights used for CNFCM 

 

Value Value Value Value
w 1 0.8 w 16 ‐0.2 w 31 0.8 w 46 0.5
w 2 0.2 w 17 ‐0.3 w 32 ‐0.5 w 47 0.8
w 3 0.5 w 18 ‐0.8 w 33 ‐0.3 w 48 0.2
w 4 0.5 w 19 ‐0.5 w 34 ‐0.2 w 49 0.2
w 5 0.5 w 20 0.6 w 35 ‐0.3 w 50 0.5
w 6 0.5 w 21 0.8 w 36 0.4 w 51 0.5
w 7 ‐0.5 w 22 ‐0.8 w 37 0.8 w 52 0.3
w 8 ‐0.2 w 23 0.8 w 38 0.8 w 53 0.8
w 9 ‐0.5 w 24 ‐0.2 w 39 0.5 w 54 ‐0.3
w 10 ‐0.4 w 25 ‐0.3 w 40 0.5 w 55 ‐0.8
w 11 0.5 w 26 ‐0.2 w 41 0.8 w 56 0.5
w 12 0.4 w 27 ‐0.3 w 42 0.5 w 57 0.5
w 13 ‐0.5 w 28 0.3 w 43 0.5 w 58 0.5
w 14 ‐0.8 w 29 0.8 w 44 0.8
w 15 0.8 w 30 ‐0.8 w 45 0.5
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Figure 4.19: CNFCM result with weights of Table 4.8 
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 The twenty initial concept values (Ai
t=0) are random numbers between -1 and +1.  

The iterations continue for 250 steps.  The results of this CNFCM calculation are shown 

in Figure 4.19 with the stable concept activation values shown in Table 4.9.  Appendix 4-

1 contains the listing of the MATLAB™ code used to perform the CNFCM calculation. 

Table 4.9: Activation levels for CNFCM 

 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0.80 0.94 0.90 0.82 ‐0.86 0.86 0.40 ‐0.82 ‐0.41 ‐0.82

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
‐0.85 ‐0.82 ‐0.41 ‐0.64 ‐0.58 ‐0.90 ‐0.75 0.84 0.58 ‐0.45

This result is indicative of a real potential solution for the FCM with the following 

defuzzified meaning for each concept: 

C1 The wholesale price of electricity is at a high level.   

C2 The level of UNM facility demand is high. 

C3 UNM generates electricity internally at the full power output. 

C4 PNM sends UNM a DR energy curtailment signal.   

C5 UNM stores no energy.   

C6 UNM supplies stored energy to the campus facilities. 

C7 UNM curtails energy for the classroom/office facilities at a fairly high 

level.   

C8 The classroom/office occupants are not dissatisfied. 

C9 UNM curtails energy for the libraries at a fairly low level.   

C10 The library occupants are not dissatisfied. 

C11 UNM does not curtail energy for the residence halls.   
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C12 The residence hall occupants are not dissatisfied. 

C13 UNM does not override the electric curtailment signal much.   

C14 UNM external (supplied by PNM) electric energy usage is moderately low 

due to high internal generation, high supply of previously stored energy, 

and the energy curtailment from demand response. 

C15 While the UNM administration does establish the facility occupancy 

levels, it does not intervene in the demand response event.   

C16 UNM operation costs remain low. 

C17 UNM Board of Regents has no concerns. 

C18 The classroom/office occupancy is high.   

C19 The library occupancy is medium high.   

C20 The residence hall occupancy is fairly low. 
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Figure 4.20:  Unbounded limit cycle CNFCM result 
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One indicator that the FCM is constructed reasonably and the weights are 

appropriate is the stability of the CNFCM calculation.  By simply revising weights w2 

from 0.2 to 0.9, w6 from 0.5 to 0.95, and w10 from -0.4 to -0.95 in Table 3.8, we 

generate the CNFCM result of Figure 4.20.  This is clearly an unbounded limit cycle 

result and therefore is not useful in the FCM analysis. 

For the first scenario we ran the GEFCM with the fitness function of equation 

(4.4) for the GATool seeking solutions with C1 at 0.80, C2 at 0.94, and C4 at 0.82 to 

represent the wholesale price of electricity at a high level, UNM using electricity at a 

high level, and the PNM DR signal present.  In addition we set the occupancy values of 

C18, C19, and C20 at 0.8 to represent high occupancy levels for the classroom/office 

facilities, libraries, and residence halls.  We allowed the GEFCM to calculate activation 

levels for the other fourteen concepts.  We repeated this GEFCM run 150 times with all  
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Figure 4.21:  Concept activation levels for high UNM demand (or high energy use), DR 

requested bu PNM, and high occupancy in all facilities 



 

 88 

 

input parameters identical for each run and clustered this data into 18 clusters.  The 

cluster that repeated the most after 50 clustering runs is shown in Figure 4.21 with the  

stable concept activation levels shown in Table 4.10.Appendix 4-2 shows the 

MATLAB™ code listing for the 150 GEFCM calculations.  Appendix 4-3 shows 

MATLAB™ code listing for the clustering calculation. 

Table 4.10: Concept activation levels for high UNM demand (or high energy use), DR 

requested bu PNM, and high occupancy in all facilities 

 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0.86 0.94 ‐0.87 0.76 ‐0.84 0.56 0.63 ‐0.60 ‐0.88 ‐0.30

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
0.84 0.86 0.87 ‐0.48 ‐0.76 ‐0.35 ‐0.81 0.82 0.81 0.83

These resulting activation levels represent the following: 

C3 UNM generates no electricity internally. 

C5 UNM stores no energy. 

C6 UNM supplies stored energy to UNM facilities at a fairly high rate.   

C7 UNM curtails electricity to classrooms/office facilities at a fairly high rate. 

C8 The classroom/office facility occupants register fairly minor 

dissatisfaction.   

C9 UNM does not curtail electricity to libraries.   

C10 Library occupants’ dissatisfaction is indeterminate but likely very low. 

C11 UNM curtails electricity to residence halls. 

C12 The residence hall occupants register strong dissatisfaction.   

C13 UNM overrides the curtailment signal. 
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C14  UNM usage of PNM supplied electricity is moderate to low due to the use 

of stored energy even though the DR event was overridden.   

C15 UNM administration does not intervene in the demand response event. 

C16 UNM operation costs remain low. 

C17 The UNM Board of Regents direct little to no administrative changes.   

Under this scenario, calling for the DR event (C1, C2, and C4 high) with high occupancy 

(C18, C19, and C20 also high), the strong occupant dissatisfaction caused the DR event 

to cease.  We see that high occupancy has a strong impact on occupant dissatisfaction and 

thus brings significant political pressure to reduce or even cease the DR event. 

For the second scenario we ran the GEFCM with the fitness function of equation 

(4.4) for the GATool seeking solutions again with C1 at 0.80, C2 at 0.94, and C4 at 0.72 

to represent the wholesale price of electricity at a high level, UNM using electricity at a 

high level, and the PNM DR signal present.  This time we set the occupancy values of 

C18, C19, and C20 at 0.8, -0.2, and -0.8 to represent classroom/office occupancy high, 

library occupancy medium to low, and residence hall occupancy low.  We repeated this 

GEFCM run 150 times with all input parameters the same for each run and clustered this 

data into 15 clusters.  The cluster that repeated the most after 50 clustering runs is shown 

in Figure 4.22 with the stable concept activation levels shown in Table 4.11. 

Table 4.11:  Concept activation levels for high UNM demand (or high electric energy 

usage), DR requested by PNM, and varied facility occupancy 

 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0.79 0.93 0.69 0.72 ‐0.23 ‐0.78 ‐0.89 0.14 ‐0.89 ‐0.62

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
0.89 0.08 ‐0.19 ‐0.78 0.70 ‐0.42 0.62 0.80 ‐0.20 ‐0.80
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Figure 4.22:  Concept activation levels for high UNM demand (or high electric energy 

usage), DR requested by PNM, and varied facility occupancy 

These resulting activation levels represent the following: 

C3 UNM generates electricity internally at a fairly high level. 

C5 UNM energy storage is indeterminate but likely low.   

C6 No stored energy is supplied to UNM facilities. 

C7 UNM curtails little energy in classroom/office facilities.   

C8 The classroom/office occupants are still dissatisfied.   

C9 UNM does not curtail energy to the libraries. 

C10 The library occupants register slight dissatisfaction. 

C11 UNM curtails electricity to residence halls. 

C12 The residence hall occupants’ dissatisfaction is indeterminate but likely 

low. 
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C13 The DR event override is moderate to low but pressure does exist from the 

Administration and even the Regents to cease the DR event. 

C14 UNM external (supplied by PNM) electric energy usage is moderately low 

due to the internal electric generation and partial continuance of the DR 

event. 

C15 UNM administration intervenes to moderate the DR event but does not 

cause it to cease.   

C16 UNM operation costs remain moderately low due to the internal electric 

generation. 

C17 UNM Board of Regents has moderately strong concern due to the 

classroom/office occupants’ dissatisfaction.   

Under this scenario, calling for the full DR event (C1, C2, and C4 high) with high 

classroom/office occupancy, medium library occupancy, and low residence hall 

occupancy caused the UNM administration to pressure the DR event reduction.  Again 

we see that high occupancy has a strong impact on occupant dissatisfaction and thus 

brings significant political pressure to reduce the impact of the DR event. 

4.4 Conclusions 

Fuzzy cognitive maps provide a heuristic approach for analyzing complex 

situations to improve the decision making process.  The genetically evolved method for 

FCM analysis adds additional dimensions to this analysis.  It allows the analyst to fix the 

activation level of one or more concepts in the FCM and resolve the activation levels of 
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the rest of the concepts in the map.  The solutions to the FCM appear in families or 

groups and are identified using clustering techniques. 

Fuzzy cognitive maps allow us to model the human and political reactions to 

electric power reduction which occur in a demand response event and estimate the impact 

these reactions can have on the event.  We found that facility occupancy levels have a 

strong impact on the level of dissatisfaction and therefore on the imposition of limits by 

the university administration on the amount of power reduction allowed during the 

demand response event.  This analysis suggests that the organizers of the demand 

response event will achieve greater success if occupancy level is understood and 

considered in planning the demand response event.  The analysis implies that once 

dissatisfaction emerges, it tends to drive a strong political intervention that would be 

absent with a low dissatisfaction level.  In other words, if the dissatisfaction level is kept 

low, the demand response event will not be impacted negatively and power reduction 

goals will be met.  The analysis indicates that high occupancy facilities should receive 

less power reduction than those with moderate occupancy levels and low occupancy 

facilities will tolerate the highest power reduction. 

The analysis suggests additional exploratory work.  The impact of lighting 

reduction on occupant dissatisfaction is not well understood.  It appears that reducing 

lighting in a windowed area of a facility on a bright sunny day, the type of day typical for 

a demand response event, would have no impact on occupant dissatisfaction.  In addition 

reducing lighting by twenty to forty percent in hallways and corridors may have no 

impact on occupant dissatisfaction.  Studies of these areas on real facilities with various 
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occupancy levels would provide useful data that could be incorporated into future fuzzy 

cognitive map analysis.  Additionally, studies of occupant dissatisfaction under various 

occupancy levels for small increases in temperatures coupled with increases in air flow 

would be useful.  It may be that increasing air flow slightly with increasing temperatures 

may minimize the occupant dissatisfaction. This would add a new strategic element in 

managing demand response events. 
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Chapter 5 

The Demand Response Control System 

This Chapter presents the conceptual design and operation of a facility control 

system to manage demand response events (DR Control System) for the Albuquerque 

campus of the University of New Mexico.  The development of the conceptual design of 

this DR Control System utilizes the results of the previous three chapters. 

5.1 Background 

The University of New Mexico Albuquerque campus is situated on 650 acres, 

inhabited by 25,000 people, and contains more than 230 facilities that total approximately 

6,360,000 square feet.  The campus draws approximately 30 megawatts of electric power 

at peak.  Typically UNM maintains these facilities at 74 °F in the summer and 70 °F in 

the winter. 

Beginning in 2001, UNM commenced a utility infrastructure investment program 

intended to reduce the use of energy associated with campus electric use, heating, and 

cooling.  The core of the investment was the renovation of the Ford Utilities Center, 

which included the installation of a 6 MW co-generation turbine/generator, waste heat 

recovery boilers, and absorption chillers.  The co-generation unit recovers a substantial 

fraction of the waste heat, using it for steam and chilled water production, resulting in an 

overall energy efficiency of approximately 70%.  The co-generation unit currently meets 

approximately 40% of the campus base load electric energy needs and 65% of the heating 
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needs.  A new Energy Management and Control System (EMCS) was also installed in the 

2001 renovation, having the capability of monitoring and controlling facility energy use 

on campus from a remote location.   

There are two different types of controls in the EMCS.  They are both direct 

digital control systems installed by Energy Control Inc. and are capable of being 

monitored through the Internet.  One of the systems (I/NET Seven) is manufactured by 

TAC.  I/NET Seven is an older system that utilizes a proprietary communication 

protocol.  In order for a user to view the I/NET Seven system over the Internet, the user 

must have the I/NET Seven software running on their computer.  The second system is 

the Delta Control System.  The Delta system utilizes BACnet as its communication 

protocol.  BACnet is an open protocol designed by ASHRAE.  The Delta system at the 

University of New Mexico is capable of serving up web pages without special software 

on the user’s computer (Mammoli et al. 2007). 

The DR Control System includes a subset of these University of New Mexico 

campus facilities (69 in total).  These facilities are all connected to the District Energy 

System and metered through the EMCS.  They constitute 75% of the total campus 

building area and over 90% of the energy use. The complete list of these facilities, termed 

the DR Facilities, and their area is given in Appendix 5-1.   
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Figure 5.1: UNM campus map showing the DR facilities 

Figure 5.1 shows the UNM campus map with a red circle around each of the DR 

Facilities.  The average building area for these DR Facilities is 71,050 square feet.  The 

average year of construction is 1964, with a standard deviation of approximately 20 

years.  However, the HVAC and lighting of several older buildings have been upgraded.  

For example, Scholes Hall, a 50,000 sq. ft. historic office building constructed in 1936, 

underwent major renovation including an entire HVAC retrofit in 2006 (Mammoli et al. 

2007). 
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The DR Control System is based on two design and equipment assumptions.  The 

System first assumes the heating, ventilating, and air conditioning (HVAC) in each 

facility is a variable air volume (VAV) system.  This type of HVAC system delivers a 

variable quantity of conditioned air at a constant temperature (typically 55 °F for cooling) 

to the building space.  The VAV controller varies the air flow to achieve the space 

temperature called for by the EMCS controlled thermostat set point temperature.  In 

periods when little air flow is required, the fan speed is reduced by a variable frequency 

control device (VFD) thus saving considerable electricity.  The majority of HVAC 

systems in these facilities have VAV Systems and the remainder will eventually be 

retrofitted with them.  Next the DR Control System assumes the lighting in these 

facilities can be partially reduced by the EMCS.  These lighting reductions occur in areas 

with sunny windows or other conditions where lighting reduction will not significantly 

impact occupants.  None of the existing facilities have lighting designed to allow these 

reductions.  None-the-less, these lighting reductions have very high value in a DR event.  

Each kilowatt reduction in electric use in lighting adds another kilowatt reduction in the 

air conditioning load. 

5.2 Comparison of Unit Commitment Issues to Demand 

Response 

In the early conceptualization of the DR Control System, we chose to compare 

opportunities for reducing electric power use in a group of commercial facilities during a 

DR event to issues in power generation unit commitment.  Unit commitment refers to the 
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schedule for loading or unloading electric generating units to a power grid while 

minimizing the total operation cost and satisfying the unit and grid constraints (Wood 

1996).  These constraints include the generating units’ ramp rate limits, minimizing the 

fuel costs, meeting emission requirements, and minimum up and down time limits for the 

generating units each hour of the day.  With the unit commitment schedule, generating 

companies must satisfy customer load demands, maintain transmission flows, and keep 

bus voltages and reactive power within their permissible limits (Ma and Shahidehpoor 

1999).  In particular the goal is to minimize production costs during each hour of the day 

according to equation (5.1) (Chen 2002): 

 

 PC = ∑ ∑ ൣI୧ሺtሻF୧൫P୧ሺtሻ൯  S୧ሺtሻ൧H
୲ୀଵ

N
୧ୀଵ      (5.1) 

 

where: 

N = number of units, i 

H = number of hours, t 

Ii = 0 if unit off, 1 if unit is on 

Fi(Pi(t)) is the cost for hour t and unit i 

Si(t) is the startup cost for unit i at hour t if appropriate 

 

We hoped to identify opportunities for similar engineering optimization in controlling 

commercial facility electric loads in the DR event.  These generating unit production 

costs need to be minimized under the constraints listed on the left side of Table 5.1 
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(Huang and Huang 1997).  The right side of the table contrasts the unit commitment 

issues with the related commercial facility power reduction issues during a DR event. 

Table 5.1: Unit commitment principles contrasted to DR 

Power Unit Commitment Commercial Power DR Reduction 

a)  System power balance (Merlin 

and Sandrin 1983): 

 

PD(t) = ∑ I୧ሺtሻP୧ሺtሻN
୧ୀଵ    

where Pi(t) is power of unit i at t 

 

Total Power Reduction, ΔPd(t), in All Facilities 

at hour t,: 

ΔPd (t) = ∑ ሾP୨
୬୭DRH

୨ୀଵ ሺtሻ െ  P୨
DR ] 

Where: 

Pj
noDR(t) is the baseline load profile for 

facility j (if no DR event) at hour t (this is 

calculated as shown in a previous 

section). 

Pj
DR(t) is the facility j power use during 

the DR event at hour t. 

b) Reserve requirement R(t): 

R (t) ≤ ∑ I୧ሺtሻr୧ሺtሻN
୧ୀଵ   where 

ri(t) is the reserve margin from 

unit I (Kurban and Filik 2009) 

 

Reserve margin, also termed spinning reserve, 

refers to the ability of a generating unit to pick 

up additional electric load if the power grid 

requires this.  Demand response will increase 

this margin. 
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Table 5.1: Unit commitment principles contrasted to DR 

Power Unit Commitment Commercial Power DR Reduction 

c) Unit Generation Limits: 

Pi
min ≤ Pi ≤ Pi

max 

 

Unit generating limits are the maximum and 

minimum power output that a generating unit 

can produce.  In a multi-unit power system, DR 

will not significantly impact these limits. 

d) Unit Startup And Shutdown 

Times (Jenkins 2007) 

 

In a multi-unit power system, DR will not 

significantly impact these limits. 

 

e) Unit Ramp Rates (Li 2007) 

 

Reduction in facility power is instantaneous and 

has no ramp rate limits. 

 

f) Emission Limits 

 

Reduction in facility power generally reduces 

emissions, depending on the power source.   

 

g) Transmission Flow Limits 

(Congestion) (Yalcinoz 1999) 

 

Reduction in facility power reduces transmission 

and distribution power flows and therefore 

reduces congestion. 
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Table 5.1: Unit commitment principles contrasted to DR 

Power Unit Commitment Commercial Power DR Reduction 

h) Minimize Reactive Power At 

Each Bus (Seyedrasoul 1996) 

 

Reactive power control can be an issue in a DR 

event (Markushevich and Chan 2009), but the 

UNM campus has very minimal reactive power 

charges from PNM.  Reduction in electric use 

will have no impact on these charges. 

 

 

As evidenced in the above table, the engineering optimization required by the unit 

commitment problem is not generally applicable to demand response for the UNM 

campus.  In other situations, transmission and distribution power flows and reactive 

power control may be issues.  We developed the design philosophy for the demand 

response event as described in the following section. 

5.3 DR Event Control Philosophy 

This section presents the conceptual design principles the DR Control System will 

follow and the basis for these principles. 

Demand response events typically occur during the period of 12:00 noon to 7:00 

pm on normal working days for one or more hours (Coughlin 2008).  Electric suppliers 

only schedule one demand response event in any given day (Kiliccote et al. 2006).  Thus 

the DR Control System will assume a DR event can initiate at the beginning of any hour 

between 12:00 noon and 6:00 pm and end at any hour from 1:00 pm to 7:00 pm following 
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the event initiation.  Thus the DR event could last from one hour to seven hours in hourly 

increments (Roos and Kern 1996). 

As we saw in the previous section, occupant dissatisfaction potentially has a 

powerful impact on the success of the demand response event.  In addition we also saw 

that facility occupancy level is a significant factor in driving dissatisfaction.  Other work 

on controlling multiple facility DR events assumes facilities either participate fully in the 

DR event or abstain (Piette et al. 2006, Piette et al. 2007).  Taking this into account in our 

DR Control System design, we first need to determine the planned occupancy levels in 

each of the DR Facilities.  UNM has established maximum occupancy levels for each 

facility and schedules occupancy for each classroom on the campus each semester.  In 

addition the UNM administration tracks office, laboratory, and residence hall 

assignments.   

Fuzzy set theory has been successfully applied to many types of closed loop, 

feedback type control systems (Ross 2004).  In these control systems, outputs provide 

feedback to the system inputs to achieve a desired system response.  We did not utilize a 

closed loop control system in the DR Control System.  The DR Control System is an 

open loop control system where the desired system output is clearly understood and the 

system inputs can be pre-determined to achieve these outputs directly. 

We utilized the occupancy information to establish hourly linguistic occupancy 

levels for normal working days.  We have assumed each weekdays’ occupancy level is 

the same for simplicity in demonstrating the DR Control System operation.  The hourly 

linguistic occupancy information is defined as: 
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• Low (L)  < 20% of full capacity 

• Medium (M)  20% to 60% of full capacity 

• High (H)  60% to 90% of full capacity 

• Very High (S)  > 90% of full capacity 

A facility population table appears in Appendix 5-2.  This table provides the occupancy 

input to the DR Control System.  The DR Control System uses this linguistic population 

information to control facility temperatures during the DR event as follows: 

• Low (L)  raise facility temperature to 80 °F 

• Medium (M)  raise facility temperature to 78 °F 

• High (H)  raise facility temperature to 76 °F 

• Very High (S)  leave facility temperature at 74 °F 

To further avoid occupant dissatisfaction, any facility may choose to not participate in 

either the lighting reduction or the temperature increase of the DR event.  This will be 

reflected in the input to the DR Control System.  Appendix 5-5 shows this participation 

table. 

5.4 Control System Design 

This section describes the design and operating principles for the DR Control 

System and presents its software code. 

Figure 5.2 shows a diagram of the UNM EMCS with each individual Building 

Controller, the Building Utility Monitoring Panel (BUMP), and the Control Portal.  The 

DR Control System allows a single control signal from the electric supplier (here PNM) 

to initiate and control the demand response event from start to finish (Piette et al. 2007).   
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 Electricity

Control Portal

Figure 5.2: Diagram of the UNM Energy Management and Control System (EMCS) 

The DR Control System is software residing on the Control Portal that manages the 

overall demand response event, outputs the lighting reduction and temperature set points 

to the building controllers, and monitors the progress of the event from the BUMPs 

(Koch and Piette 2007).  This layout is similar to commercial control systems currently in 

use (LeMay et al. 2008, Schisler et al. 2008) 

The DR Control System requires three key pieces of information prior to initiating 

the demand response event: 

1. The electric power reduction goal for the event or  
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2. The goal to reduce electric power use by the maximum amount subject to 

the non-participation constraints and the population level temperature 

constraints. 

3. The start and end times for the event. 

This information can be pre-established and updated as appropriate independently 

of the demand response event.  In addition to the above DR event initiating information, 

we must establish a table that defines the linguistic population for each facility for each 

potential hour of the demand response period, 12:00 noon to 7:00 pm (Piette et al. 2009).  

Appendix 5-2 shows an example of this table.  We must also establish a table with each 

facility’s lighting power reduction potential in kilowatts and each facilities cooling power 

reduction for each potential thermostat set point.  Appendix 5-3 shows an example of this 

table.  The lighting load for each facility is assumed to be 1.1 watts per square foot.  We 

assume we can reduce this by 40 percent during the DR event.  The cooling load decrease 

in power is assumed to be 0.314 watts per square foot per degree Fahrenheit increase.  

This is the average power decrease we found during the simulated DR events using the 

TRNSYS models for Plaza del Sol and the Alvarado Transportation Center in Chapter 2. 

Figure 5.3 shows the DR Control System software flow chart and is  described in 

the following section.  In the event the DR Control System is to achieve a specific power 

reduction goal, it first calculates the maximum power reduction available from lighting 

reduction alone.  Prior to establishing the maximum lighting power reduction, the DR 

Control System queries each participating building controller to determine each 

building’s available lighting reduction.  Lighting reduction is available only if the 
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targeted lighting is energized.  The DR Control System sets the maximum power 

reduction from lighting equal to the sum of the available lighting reduction in each DR 

Facility based on this query.   

 

Max 
Reduction?

no

Yes

Input  data
and tables

Is 
lighting reduction 

enough?
no

yes

Query Building 
Controller for 
lighting status

Is
temp set point 
low, med, high 

enough?

yes

no

Reduce
lighting

randomly

Determine 
buildings to reduce 

randomly

Perform 
maximum 
reduction

Build FDRT and 
output to building 

controllers

Figure 5.3: Flow chart for the DR Control System 

If this maximum lighting power reduction exceeds the power reduction goal, the DR 

Control System, choosing each facility randomly, selects enough facilities to achieve the 

reduction goal.  The facilities are selected randomly as opposed to from a preselected list 

to spread the impact of the DR event among facilities as fairly as possible.  It then 

instructs the selected facility building controllers to reduce lighting.  If the maximum 

available lighting reduction is less than the power reduction goal, then the DR Control 

System calculates the maximum power reduction available from thermostat set point 
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increases from those facilities with a low population during that hour.  If the following 

conditions occur: 

• maximum lighting power reduction, 

•  the low population facility thermostat set point increase, and 

• The maximum power reduction exceeds the power reduction goal. 

Then the DR Control System selects all facilities for lighting reduction and randomly 

selects low population facilities for set point increase until the power reduction goal is 

achieved.  It then instructs all of the participating facility building controllers to reduce 

lighting and the selected facility building controllers to increase thermostat set points.  

This process continues with the medium and high population facilities until the power 

reduction goal is met. 

In the event the DR Control System is to achieve the maximum power reduction, 

it instructs all building controllers to reduce lighting and increase temperature set points 

based on the buildings’ participation and population. 

Appendix 5-4 shows the listing of the MATLAB™ code used for the DR Control 

System.  The code utilizes five function files, similar to subroutines in Fortran, which 

perform the following: 

1. DRCinput – establishes the DR Control System input values for the 

desired reduction in power in kilowatts (-1 indicates the maximum power 

reduction), PDR; the number of DR Facilities (69 here), nmax; the DR 

event start time, nstart; the DR event end time, nend; and the potential 

number of hours in the DR event (here 7), h. 
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2. DRCtables – takes the MS Excel spreadsheet, FacilityData.xls, and builds 

the MATLAB™ data file, FacData.mat, which contains the facility data 

shown in Appendix 5-1, the population data shown in Appendix 5-2, the 

facility lighting and temperature power reduction information shown in 

Appendix 5-3, and the facility participation table shown in Appendix 5-5. 

3. FacRandomizer – builds a random order for the DR Facilities for power 

reduction goals for DR events which do not require reduction in all 

participating DR Facilities.  This ensures the same facilities are not always 

reduced in subsequent DR events. 

4. FacLightRed – checks each building controller to determine the lighting 

power reduction that is achievable based on lights that are not currently 

off. 

5. DRCoutput – outputs the power reduction signals for each hour to the MS 

Excel spreadsheet, FDRTable.xls. 

We tested the DR Control System with the following three sets of example inputs. 

1. The maximum lighting reduction is 2806 kilowatts so we chose a 

reduction goal of 2000 kilowatts to show an example of only lighting 

power reduction.  Figure 5.4 shows the facilities the DR Control System 

randomly selected for reduction for this example with the yellow circles.  

Facilities with white circles are not impacted by the DR event.  Table 5.2 

shows the details of the results of the lighting reduction at 1:00 pm. 
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2. We directed the DR Control System to perform the maximum reduction 

for the period of 1:00 pm to 2:00 pm.  Figure 5.5 shows the facility status 

with red circles for a set point of 80 °F, pink circles for a set point of 78 

°F, blue circles for a set point of 76 °F, yellow circles for lighting 

reduction and a set point of 74 °F, and white circles for no lighting 

reduction and a set point of 74 °F.  In this situation, all facilities that are 

participating in the lighting reduction have their lighting reduced.  Those 

with white circles are not participating in the lighting reduction as 

presented in the table in Appendix 5-5.  Table 5.3 shows the details of the 

results of the lighting reduction at 1:00 pm. 

3. Finally, we requested a reduction of 8000 kilowatts for the period of 2:00 

pm to 5:00 pm.  Figure 5.6 shows the facility status for the period 4:00 pm 

to 5:00 pm with red circles for a set point of 80 °F, pink circles for a set 

point of 78 °F, blue circles for a set point of 76 °F, yellow circles for 

lighting reduction and a set point of 74 °F, and white circles for no 

lighting reduction and a set point of 74 °F.  In this situation, all facilities 

that are participating in the lighting reduction have their lighting reduced.  

Those with white circles are not participating in the lighting reduction as 

presented in the table in Appendix 5-5.  Table 5.4 shows the details of the 

results of the lighting reduction at 4:00 pm. 
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Figure 5.4: Targeted demand response reduction of 2000 kilowatts at 1:00 PM 
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Figure 5.5: Maximum demand response reduction at 1:00 PM 
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Figure 5.6: Targeted demand response reduction of 8000 kilowatts at 4:00 PM 
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Table 5.2: Results of the lighting reduction at 1:00 PM 

# Bldg # Light, 
yes/no

Temp, °F Power, 
kW

# Bldg # Light, 
yes/no

Temp, °F Power, 
kW

1 157 0 74 0.0 36 81 1 74 62.4
2 76 1 74 40.8 37 59 1 74 285.3
3 12 1 74 8.5 38 115 1 74 28.1
4 11 0 74 0.0 39 77 0 74 0.0
5 84 0 74 0.0 40 74 1 74 38.6
6 16 0 74 0.0 41 34 1 74 44.8
7 211 0 74 0.0 42 122 1 74 61.8
8 19 0 74 0.0 43 9 0 74 0.0
9 253 0 74 0.0 44 56 0 74 0.0

10 218 1 74 139.6 45 23 1 74 41.3
11 229 0 74 0.0 46 102 0 74 0.0
12 227 0 74 0.0 47 230 0 74 0.0
13 4 1 74 27.5 48 193 0 74 0.0
14 21 0 74 0.0 49 60 0 74 0.0
15 83 0 74 0.0 50 24 1 74 66.7
16 22 1 74 71.9 51 228 1 74 84.5
17 153 0 74 0.0 52 156 0 74 0.0
18 198 0 74 0.0 53 79 1 74 58.2
19 155 1 74 82.6 54 207 0 74 0.0
20 48 1 74 86.0 55 35 0 74 0.0
21 75 0 74 0.0 56 88 1 74 111.5
22 249 1 74 24.6 57 71 1 74 36.6
23 46 0 74 0.0 58 61 1 74 35.0
24 57 1 74 19.2 59 10 0 74 0.0
25 65 1 74 114.4 60 78 0 74 0.0
26 248 0 74 0.0 61 73 0 74 0.0
27 119 1 74 66.3 62 85 1 74 85.2
28 62 0 74 0.0 63 82 1 74 34.9
29 87 0 74 0.0 64 53 0 74 0.0
30 266 0 74 0.0 65 72 0 74 0.0
31 234 0 74 0.0 66 183 1 74 61.6
32 15 1 74 33.1 67 205 1 74 25.7
33 103 1 74 14.5 68 338 1 74 52.8
34 58 1 74 69.0 69 331 0 74 0.0
35 20 0 74 0.0 Total Kilowatts 2,013       
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Table 5.3: Results of the maximum demand response reduction at 1:00 PM 

# Bldg # Light, 
yes/no

Temp, °F Power, 
kW

# Bldg # Light, 
yes/no

Temp, °F Power, 
kW

1 157 1 80 113.0 36 81 1 80 195.9
2 76 1 78 99.1 37 59 1 80 896.1
3 12 1 80 26.6 38 115 1 78 68.1
4 11 0 80 100.7 39 77 0 74 0.0
5 84 0 78 96.6 40 74 1 80 121.3
6 16 1 76 22.7 41 34 1 78 108.7
7 211 0 76 110.3 42 122 1 78 150.1
8 19 0 80 15.6 43 9 1 80 55.2
9 253 0 80 206.4 44 56 1 78 239.0

10 218 1 78 338.8 45 23 1 80 129.8
11 229 0 80 154.0 46 102 0 80 88.3
12 227 0 80 202.9 47 230 0 80 15.8
13 4 1 80 86.4 48 193 1 80 340.1
14 21 1 78 244.9 49 60 0 74 0.0
15 83 1 78 151.0 50 24 1 80 209.4
16 22 1 78 174.5 51 228 1 80 265.5
17 153 0 74 0.0 52 156 1 78 87.5
18 198 1 80 10.0 53 79 1 80 182.7
19 155 1 80 259.4 54 207 1 78 137.2
20 48 1 78 208.8 55 35 1 80 63.8
21 75 1 80 121.5 56 88 1 80 350.3
22 249 1 76 42.2 57 71 1 80 115.0
23 46 0 80 337.2 58 61 1 80 109.9
24 57 1 78 46.5 59 10 0 74 0.0
25 65 1 80 359.2 60 78 1 80 90.0
26 248 1 80 160.9 61 73 0 74 0.0
27 119 1 74 66.3 62 85 1 80 267.6
28 62 0 80 330.4 63 82 1 80 109.5
29 87 0 80 101.5 64 53 0 80 452.0
30 266 1 80 159.6 65 72 0 74 0.0
31 234 1 80 181.9 66 183 1 80 193.5
32 15 1 80 103.8 67 205 1 78 62.3
33 103 1 78 35.3 68 338 1 78 128.2
34 58 1 80 216.6 69 331 1 80 14.1
35 20 1 78 22.2 Total Kilowatts 10,154    
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Table 5.4: Results of the targeted demand response of 8000 kilowatts at 4:00 PM 

# Bldg # Light, 
yes/no

Temp, °F Power, 
kW

# Bldg # Light, 
yes/no

Temp, °F Power, 
kW

1 157 1 78 87.4 36 81 1 74 62.4
2 76 1 80 128.3 37 59 1 78 692.5
3 12 1 74 8.5 38 115 1 80 88.2
4 11 0 80 100.7 39 77 0 74 0.0
5 84 0 80 144.8 40 74 1 74 38.6
6 16 1 80 41.7 41 34 1 74 0.0
7 211 0 74 0.0 42 122 1 80 194.2
8 19 0 80 15.6 43 9 1 74 17.6
9 253 0 80 206.4 44 56 1 80 309.2

10 218 1 80 438.4 45 23 1 74 41.3
11 229 0 80 154.0 46 102 0 80 88.3
12 227 0 80 202.9 47 230 0 80 15.8
13 4 1 78 66.8 48 193 1 78 262.8
14 21 1 76 172.9 49 60 0 74 0.0
15 83 1 76 106.6 50 24 1 80 209.4
16 22 1 74 0.0 51 228 1 80 265.5
17 153 0 74 0.0 52 156 1 80 113.2
18 198 1 80 10.0 53 79 1 74 58.2
19 155 1 78 200.5 54 207 1 76 96.8
20 48 1 80 270.3 55 35 1 78 49.3
21 75 1 78 93.9 56 88 1 78 270.7
22 249 1 80 77.3 57 71 1 78 88.9
23 46 0 74 0.0 58 61 1 78 84.9
24 57 1 80 60.2 59 10 0 74 0.0
25 65 1 74 114.4 60 78 1 74 28.7
26 248 1 78 124.3 61 73 0 74 0.0
27 119 1 76 113.7 62 85 1 74 85.2
28 62 0 80 330.4 63 82 1 78 84.6
29 87 0 80 101.5 64 53 0 80 452.0
30 266 1 78 123.4 65 72 0 74 0.0
31 234 1 80 181.9 66 183 1 78 149.5
32 15 1 80 103.8 67 205 1 74 0.0
33 103 1 80 45.6 68 338 1 76 90.5
34 58 1 80 216.6 69 331 1 80 14.1
35 20 1 80 28.7 Total Kilowatts 8,024       
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5.5 Economic Analysis 

The main incentive for commercial power users to perform demand response 

power reductions is financial (Roos and Kern 1996, Alvarado 2004).  UNM could 

potentially receive compensation for demand response through the PNM Peak Saver 

Demand Response Program.  This compensation is composed of a designated and 

delivered capacity payment and an energy saved payment.  The Program requires UNM 

designate a capacity reduction quantity and UNM would receive compensation based on 

the portion of that designated capacity reduction actually achieved, limited to 100 

percent, during demand response events.  This compensation is in the range of $32.00 to 

$40.00 per kilowatt.  PJM Interconnection in the northeast USA provided approximately 

$28.00 per kilowatt in 2008 (Langbein 2009).  Under the Program UNM could also be 

compensated for energy reduced during the demand response events in the range of 10 to 

15 cents per kilowatt hour.  In 2001, the New York Independent System Operator and the 

PJM Interconnection paid commercial customers $0.50 per kilowatt hour (Laurence and 

Neenan 2003, Corvino 2003).  The PNM Peak Saver Demand Response Program is 

limited to the four month period from June through September.  Only one DR event may 

be scheduled per day.  No single DR event may exceed six hours in length and the total 

DR hours in a year cannot exceed one hundred. 

 For the purpose of this economic analysis we shall assume the capacity 

compensation is $36.00 per kilowatt, the reduction achieved is 100 percent of the 

designated amount of 8000 kilowatts, a total of 75 hours of DR events occur in the year, 

and the energy compensation is 12.5 cents per kilowatt hour.  This yields an annual 
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capacity payment of $288,000, an annual energy payment of $75,000, yielding a total 

annual payment of $363,000.  UNM uses approximately $10,000,000 worth of electricity 

annually at the North, Main, and South campuses covered by this DR Control System and 

thus the demand response savings would total 3.6 percent of the total electric charges per 

year. 

 In the event the automated lighting reduction is not included in the demand 

response control system, the designated capacity reduction would need to be reduced to 

5000 kilowatts.  The facility modifications required to allow automated lighting reduction 

from the building controllers is significant and not likely justifiable from this level of 

economic payback.  Assuming a $10 million cost to upgrade the lighting to allow 

automatic DR control, the payback would exceed 50 years.  Without lighting reduction, 

the yield is reduced to an annual capacity payment of $180,000, an annual energy 

payment of $47,000, yielding a total annual payment of $227,000 or 2.3 percent savings 

per year. 

The economic payback from PNM’s view point is quite different from that of 

UNM.  Assume demand response reduces PNM’s peak load of approximately 2000 

megawatts by 10 percent for the 100 hours in the year that this peak occures.  PNM could 

avoid the capital cost of adding 200 megawatts of power generating capacity and the 

transmission and distribution capacity to carry this power to customers.  This new 

generating capacity would cost approximately $400 to $500 million to build.  The 

transmission and distribution upgrades would cost approximately $100 to $200 million or 

more depending on right-of-way issues.  The annual interest at five percent on these 
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projected capital costs would be approximately $35 million.  PNM’s annual payments to 

customers under the PNM Peak Saver Demand Response Program to reduce this 200 

megawatts of peak power would be approximate $7.2 million or less than 25% of PNM’s 

avoided interest.  The economics of PNM’s demand response program appear to be 

somewhat one sided. 

5.6 Conclusions 

The DR Control System design will control the demand response event for sixty-

nine UNM facilities comprising approximately seventy-five percent of the total campus 

floor space.  Each demand response event would potentially reduce campus power use up 

to the maximum of 8,000 to 10,000 kilowatts for the seven hour design period.  The DR 

Control System input can be adjusted to control any amount of power reduction up to the 

maximum amount for any time period in one hour increments from 12:00 noon to 7:00 

pm.  The DR Control System first reduces facility lighting and then increases temperature 

set points until the input power reduction goal is met.  If the power reduction input 

request is less than the maximum amount, the DR Control System chooses facilities for 

reduction randomly to spread the power reduction among the campus facilities.   

The conceptual design effort suggests additional exploratory work.  Upon 

initiation of the demand response event, the DR Control System could calculate the 

baseline load profiles for each facility for each demand response event hour based on 

input from the Building Utility Monitoring Panels.  This calculation would follow the 

methodology presented in the previous chapter.  As discussed in that chapter, the baseline 

load is a function of the actual environmental conditions the morning of the event, the 
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previous days’ actual energy use, and the facility’s population during the hour of the 

event.  At the end of each DR event hour, the DR Control System could then determine 

each facility’s actual power reduction as: 

  ΔPj(t) = PnoDR
j(t) - PDR

j(t)      (5.2) 

where: 

ΔPj(t)  the power reduction for facility j at DR hour t 

PnoDR
j(t) the baseline load (BLP) for facility j at DR hour t 

PDR
j(t)  the power use for facility j at DR hour t 

The DR Control System would then adjust the temperature power reduction values in the 

table in Appendix 6-3 to more accurately reflect the current day’s conditions.  This would 

yield more accurate power reduction in future hours during this event and potentially 

more accurate power reduction results in future DR events.  
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Chapter 6 

Summary Recommendations for Automated 

Demand Response and Opportunities for 

Additional Exploratory Work 

The conclusions for each of the four aspects of demand response addressed in this 

dissertation are presented in this chapter.  The design of the Demand Response Control 

System, presented in Chapter 5, utilized the results of Chapter 2, 3, and 4. 

 In Chapter 2 we demonstrated that many opportunities for improved energy 

efficiency exist in the commercial facility, Plaza Del Sol, designed and constructed more 

then thirty-five years ago.  The outside air mixing dampers were broken.  Their repair 

would decrease energy needed to condition the excess quantity of outside air.  We 

recommended shutting down half of the supply and return air fans at night and on 

weekends as the building is only lightly occupied at these times and these fans use 

significant energy.  Or to preclude this manual fan shutdown, we recommended installing 

variable frequency control devices (VFD) for these fans to reduce energy use during 

periods requiring less air flow.  We also recommended replacing the single pane ¼ inch 

plate glass windows with a better insulating type.   
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No energy improvements were recommended for the Alvarado Transportation 

Center as this facility is only ten years old and includes current energy efficient materials 

and construction. 

The ability to control demand response in Plaza Del Sol is only possible manually 

without upgrading the building HVAC controls.  We did show that even this thirty-five 

year old facility could contribute significant power reduction in a demand response event.  

The ten year old Alvarado Transportation Center contains the appropriate digital controls 

for automated demand response. 

 The fuzzy set theory approach, Modified Learning From Experience with a 

Recursive Least Square improvement (MLFE/RLS), predicted what the energy usage of a 

facility during a demand response event would be in the absence of the event (the 

baseline load profile).  This method, as presented in Chapter 3, was significantly more 

accurate than other methods currently in use.  This was partially because the fuzzy set 

theory approach can take into account the building occupancy.  Occupancy variation in 

the range of 100 people to 800 people in a classroom building is a significant driver for 

energy use.  This is due to the heat given off by the occupants and the additional lighting 

required in high occupancy periods.   

The fuzzy set theory approach has an additional advantage due to the relationship 

between the inputs and outputs.  The fuzzy system allows the natural non-linearity of the 

inputs to be reflected in the output.  The other methods currently in use force a linear 

relationship between the inputs and output.  Forced linearity in modeling a non-linear 

system cannot match the accuracy of an intrinsically non-linear modeling system.  
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The largest effort in the baseline load profile modeling is gathering and 

appropriately processing the input information.  Both modeling algorithms use the same 

input information and therefore suffer equally with this difficulty.  While the methods 

currently in use are somewhat simpler to apply to the input data, current software tools 

such as MATLAB™, which was used in modeling the MLFE/RLS methodology, was 

fast and straight forward.  The significant increase in accuracy clearly justifies this 

additional effort. 

Fuzzy cognitive maps provide a heuristic approach for analyzing complex 

situations, as described in Chapter 4, to improve the decision making process.  The 

genetically evolved method for FCM analysis adds additional dimensions to this analysis.  

It allows the analyst to fix the activation level of one or more concepts in the FCM and 

determine the resulting activation levels of the rest of the concepts in the map.  The 

solutions to the FCM appear in families or groups and are identified using clustering 

techniques. 

Fuzzy cognitive maps allow us to model the human and political reactions to 

electric power reduction which occur in a demand response event and estimate the impact 

these reactions can have on the event.  We found that facility occupancy levels have a 

strong impact on the level of dissatisfaction and therefore on the imposition of limits by 

the university administration on the amount of power reduction allowed during the 

demand response event.  This analysis demonstrates that the organizers of the demand 

response event will achieve greater success if occupancy level is understood and 

considered in planning the demand response event.  The analysis implies that once 



 

 123 

 

dissatisfaction emerges, it tends to drive a strong political intervention that would be 

absent with a low dissatisfaction level.  In other words, if the dissatisfaction level is kept 

low, the demand response event will not be impacted negatively and power reduction 

goals will be met.  The analysis indicates that high occupancy facilities should receive 

less power reduction than those with moderate occupancy levels and low occupancy 

facilities will tolerate the highest power reduction. 

The analysis suggests additional exploratory work.  The impact of lighting 

reduction on occupant dissatisfaction is not well understood.  It appears that reducing 

lighting in a windowed area of a facility on a bright sunny day, the type of day typical for 

a demand response event, would have no impact on occupant dissatisfaction.  In addition 

reducing lighting by twenty to forty percent in hallways and corridors during a demand 

response event may have no impact on occupant dissatisfaction.  Studies of these areas on 

real facilities with various occupancy levels would provide useful data that could be 

incorporated into future fuzzy cognitive map analysis.  Additionally, studies of occupant 

dissatisfaction under various occupancy levels for small increases in temperatures 

coupled with increases in air flow would be useful.  It may be that increasing air flow 

slightly with increasing temperatures may minimize the occupant dissatisfaction. This 

would add a new strategic element in managing demand response events. 

The DR Control System, described in Chapter 5, will manage the demand 

response event for sixty-nine UNM facilities comprising approximately seventy-five 

percent of the total campus floor space.  Each demand response event would potentially 

reduce campus power use up to the maximum of 8,000 to 10,000 kilowatts for the seven 



 

 124 

 

hour design period.  The DR Control System input can be adjusted to control any amount 

of power reduction up to the maximum amount for any time period in one hour 

increments from 12:00 noon to 7:00 pm.  The DR Control System first reduces facility 

lighting and then increases temperature set points until the input power reduction goal is 

met.  If the power reduction input request is less than the maximum amount, the DR 

Control System chooses facilities for reduction randomly to spread the power reduction 

among the campus facilities.   

The conceptual design effort suggests additional exploratory work.  Upon 

initiation of the demand response event, the DR Control System could calculate the 

baseline load profiles for each facility for each demand response event hour based on 

input from the Building Utility Monitoring Panel.  This calculation would follow the 

methodology presented in the previous chapter.  As discussed in that chapter, the baseline 

load is a function of the actual environmental conditions the morning of the event, the 

previous days actual energy use, and the facility’s population during the hour of the 

event.  At the end of each demand response event hour, the DR Control System could 

then determine each facility’s actual power reduction.  The DR Control System would 

then adjust the temperature power reduction values in the table in Appendix 5-3 to more 

accurately reflect the current day’s conditions.  This would yield more accurate power 

reduction in future hours during this event and potentially more accurate power reduction 

results in future DR events. 
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Appendix 2-1: Plaza Del Sol Schedule 

Quantity Watts kWh/yr Sched

Staff Day Shift M-S 19 7am-5pm M-F
Hearing Room 20 8am-Noon M W F

Lights
A 154 14784 42282 7am-6pm M-F
A Emerg 6 192 1682 24/7
B 30 1020 2917 7am-6pm M-F
B Emerg 4 136 1191 24/7

16132
Computers

PC 19 140 6916 7am-5pm
Copiers 4 1600 4160 7am-5pm

Printers 4 400 1040 7am-5pm
4 40 146 5pm-7am

FAX 3 225 585 7am-5pm
3 30 109 5pm-7am

Other Equipment
Refrigerator 1 770 6745 24/7
Oven 1 1565 1221 11am - 2pm M-F
Pop Cooler 2 1540 13490 24/7
Ceiling Fans 4 1056 1922 7:30am - 2:30pm M-F

Floor 1
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Appendix 2-1: Plaza Del Sol Schedule 

Quantity Watts kWh/yr Sched Quantity Watts kWh/yr Sched

Staff 40 7am-5pm M-F 26 7am-5pm M-F
Walkin Cust 10 7am-5pm M-F

0.023986
3480 94

14183 45240
Lights 15092 1160.923 15690

A 146 14016 40086 7am-6pm M-F 148 14208 40635 7am-6pm M-F
A Emerg 6 192 1682 24/7 7 224 1962 24/7
B 21 714 2042 7am-6pm M-F 29 986 2820 7am-6pm M-F
B Emerg 5 170 1489 24/7 8 272 2383 24/7

Computers
PC 35 140 12740 7am-5pm 26 140 9464 7am-5pm
Copiers 6 2400 6240 7am-5pm 2 800 2080 7am-5pm

6 1800 6552 5pm-7am 2 600 2184 5pm-7am
Printers 8 800 2080 7am-5pm 4 400 1040 7am-5pm

8 280 1019 5pm-7am 4 140 510 5pm-7am
Dwg Printers* 0 7am-5pm 0 7am-5pm

FAX 3 225 585 7am-5pm 2 150 390 7am-5pm
3 30 328 5pm-7am 2 20 146 5pm-7am

Other Equipment

Floor 2 Floor 3
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Appendix 2-1: Plaza Del Sol Schedule 

Quantity Watts kWh/yr Sched Quantity Watts kWh/yr Sched

Staff 34 7am-5pm M-F 27 7am-5pm M-F

Lights 15094 14456
A 139 13344 38164 7am-6pm M-F 126 12096 34595 7am-6pm M-F
A Emerg 9 288 2523 24/7 10 320 2803 24/7
B 34 1156 3306 7am-6pm M-F 54 1836 5251 7am-6pm M-F
B Emerg 9 306 2681 24/7 6 204 1787 24/7

Computers
PC 34 140 12376 7am-5pm 34 140 12376 7am-5pm
Copiers 3 1200 3120 7am-5pm 2 800 2080 7am-5pm

0 0 5pm-7am 0 0 5pm-7am
Printers 6 600 1560 7am-5pm 10 1000 2600 7am-5pm

0 0 5pm-7am 0 0 5pm-7am
Dwg Printers* 2 550 7am-5pm 0 7am-5pm

FAX 2 150 390 7am-5pm 2 150 390 7am-5pm
2 20 73 5pm-7am 2 20 73 5pm-7am

Other Equipment

Floor 5Floor 4
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Appendix 2-1: Plaza Del Sol Schedule 

 

Quantity Watts kWh/yr Sched

Staff Day Shift M-F 63 7am-5pm M-F

Staff 2nd Shift M-F 6 5pm-12am M-F
Staff 3nd Shift M-F 1 12am-7am
Staff Day Shift S/S 6 7am-5pm S/S
Staff 2nd & 3rd Shift S/S 1

Lights 13760 13754
A 141 13536 118575 24/7
A Emerg 7 224 1962 24/7
B 0 0
B Emerg 0 0

Computers
PC 52 140 18928 24/7
PC 11 140 4404 7am-5pm M-F
Copiers 2 800 2080 7am-5pm

2 600 2184 5pm-7pm
Printers 6 600 1560 7am-5pm

6 210 764 5pm-7pmM-F
FAX 2 150 390 7am-5pm

2 20 73 5pm-7pm
Other Equipment

27 Tons A/C Units
Refrigerator 1 770 6745 24/7
Microwave 2 1200 936 3 hours per day
Toaster Oven 1 2470 1927 3 hours per day
Pop Cooler 1 770 6745 24/7

Floor 6
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Appendix 2-1: Plaza Del Sol Schedule 

Quantity Watts kWh/yr Sched Quantity Watts kWh/yr Sched

Staff Day Shift M-F 22 7am-5pm M-F 27 7am-5pm M-F

Lights
A 138 13248 37889 7am-6pm M-F 134 12864 36791 7am-6pm M-F
A Emerg 6 192 1682 24/7 6 192 1682 24/7
B 22 748 2139 7am-6pm M-F 30 1020 2917 7am-6pm M-F
B Emerg 7 238 2085 24/7 6 204 1787 24/7

Computers
PC 22 140 8008 7am-5pm 27 140 9828 7am-5pm
Copiers 5 2000 5200 7am-5pm 2 800 2080 7am-5pm

5 1500 5460 5pm-7am 2 600 2184 5pm-7am
Printers 7 700 1820 7am-5pm 9 900 2340 7am-5pm

7 245 892 5pm-7am 9 315 1147 5pm-7am
FAX 3 225 585 7am-5pm 2 150 390 7am-5pm

3 30 109 5pm-7am 2 20 73 5pm-7am
Other Equipment

Floor 7 Floor 8
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Appendix 2-1: Plaza Del Sol Other Loads 

M‐11 Description HP Season Eff. OP hrs/year kWh/yr
3 Cooling Tower Fan Motor 7.5 Cooling 0.840 983 6544
3A Cooling Tower Fan Motor 7.5 Cooling 0.840 983 6544
6 Supply Fan Motor 70.0 All 0.902 8760 506,876          
7 Supply Fan Motor 70.0 All 0.902 8760 506,876          
8 Return Fan Motor 20.0 All 0.885 8760 147,604          

9 Return Fan Motor 20.0 All 0.885 8760 147,604            
10 Exhaust Fan Motor 3.0 All 0.700 8760 27,992             
11 Heating Water Pump Motor 7.5 Heating 0.840 3227 21,483             
12 Heating Water Pump Motor 7.5 Heating 0.840 3227 21,483             
13 Cooling Water Pump Motor 15.0 Cooling 0.855 983 12,858             
14 Cooling Water Pump Motor 15.0 Cooling 0.855 983 12,858             
15 Condenser Pump Motor 20.0 Cooling 0.885 983 16,563             
16 Condenser Pump Motor 20.0 Cooling 0.885 983 16,563             
17 Heating Water Pump Motor 5.0 Heating 0.840 3227 14,322             
22 Exhaust Fan Motor 1.5 All 0.788 8760 12,433             
27 Exhaust Fan Motor 0.3 All 0.600 8760 3,625               

Elevator Motors ‐ 3 25.0 35% Oper  7am‐6pm M‐F 0.855 2860 65,469               
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Appendix 2-2: Alvarado Transportation Center Schedule 

Quantity Watts kWh/yr Sched

Staff Day Shift M-F 9 7am-7pm M-F
Customers 20 7am-7pm M-F
Staff Sat 4 7am-6pm Sat
Customers Sat 10 7am-6pm Sat

Lights
H 100w 4 400 1498 7am-7pm M-Sat
A/B 32w 27 2592 9704 7am-7pm M-Sat
C/D 32w 4 256 958 7am-7pm M-Sat
F 32w 17 1088 4073 7am-7pm M-Sat
G 32 3 192 719 7am-7pm M-Sat

Computers
PC 9 140 4717 7am-7pm M-Sat
Copiers 1 400 1498 7am-7pm M-Sat

Printers 1 100 374 7am-7pm M-Sat
40 150 7pm-7am M-Sat

FAX 0 0
0 0

Other Equipment
Refrigerator 3 2310 20236 24/7
Oven 1 1565 1221 11am - 2pm M-F
Small Warmers 3 300 936 6am-6pm
Microwave 1 600 468 11am - 2pm M-F
Ice Maker 1 390 1217 6am-6pm M-F
Freezer 1 150 1314 24/7

Floor 1 Customer Service
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Appendix 2-2: Alvarado Transportation Center Schedule 

Quantity Watts kWh/yr Sched

Staff 6 24/7
Customers 2 24/7

Lights
9 864 7569 24/7

0 0
0 0
0 0

Computers
PC 6 140 7358 24/7
Copiers 1 400 3504 24/7

Printers 1 100 364 7am-5pm

FAX 1 75 273 7am-5pm

Floor 1 Police Station
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Appendix 2-2: Alvarado Transportation Center Schedule 

 

Quantity Watts kWh/yr Sched
Dispatch and Customer Service

Day Shift 8am-5pm 6 8am-5pm M-F
Day Shift 4am-5pm 12 4am-5pm M-Sat
Second Shift 5pm-12 midnight 5 5pm-12am M-Sat

Marketing/Planning 15 8am-5pm M-F
IT and Facilities 8 8am-5pm M-F
HR 6 8am-5pm M-F
Meeting Room 25 10am-12n M W

25 2pm-4pm T Th
Lights

A/B at 32w 192 18432 28754 7am-12am M-Sat
T at 75w 73 5475 8541 7am-12am M-Sat
Meeting Room A/B 10 960 200 10am-12n M W
Meeting Room A/B 10 960 200 2pm-4pm T Th

Computers
PC 12 140 7358 24/7
PC 6 140 1966 8am-5pm M-F
Copiers 3 1200 3120 7am-5pm
Printers 6 600 1560 7am-5pm

0 0 5pm-7pmM-F
FAX 3 225 585 7am-5pm

0 0 5pm-7pm
Other Equipment

Refrigerator 1 770 6745 24/7
Microwave 1 600 468 3 hours per day
Toaster Oven 1 250 195 3 hours per day
Pop Cooler 2 1540 13490 24/7

Floor 2
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Appendix 2-2: Alvarado Transportation Center Schedule 

Quantity Watts kWh/yr Sched

Lights
Assume Off 0 0 24/7

0 0 24/7
0

Computers
Servers Room1 16 2880 25229 24/7
Servers Room 2 6 1080 9461 24/7

Floor 2 Server Rooms

Number watts kWh/yr Schedule
Outside Lights

H 100w 57 5700 20,748      8pm-6am 7 Days
J 150w 2 300 1,092        8pm-6am 7 Days
K 150w 2 300 1,092        8pm-6am 7 Days
L 100w 27 2700 9,828        8pm-6am 7 Days
M 150w 10 1500 5,460        8pm-6am 7 Days
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Sh 139 Description HP Notes Eff. OP hrs/year kWh/yr
AC‐1  861,000 BTUH 71.75 Tons
AC‐2 638,000 BTUH 53.17 Tons
1 Supply Fan 40.0 0.885 2860 96,380             
2 Supply Fan 25.0 0.885 8760 184,504          
1 Return Fan 10.0 0.855 2860 24,941             
2 Return Fan 7.5 0.840 8760 58,317             

45 Exhaust Fans 0.5 0.700 8760 4,665                 
46 Exhaust Fans 0.3 0.700 8760 2,333               
47 Unit Heaters ‐ 40 0.033 0.700 2080 2,954               

Elevator 3.0 0.855 780 2,041               
CP‐1 Circulating Pump 2.0 0.788 2496 4,723               
CP‐2 Circulating Pump 2.0 0.788 2496 4,723               

Appendix 2-2: Alvarado Transportation Other Loads 
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Appendix 4-1: MATLAB™ Code Listing for the CNFCM Calculation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%   CNFCM_UNMBv8d.m 
%   CNFCM for UNM Campus Demand Response Big FCM  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Set up for v8d weights  9/11/2009 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
clear all; 
close all; 
clc; 
  
% 
%   Build W the causal connection  matrix (CCM) 
% 
ICN =  20;     %     the number of rows or columns in the CCM 
%   w=(1:45) 
%     1   2    3    4    5   6     7    8    9   10  11   12    13 
%    14  15   16   17   18   19   20   21   22   23  24   25    26 
%    27  28   29   30   31   32   33   34   35   36  37   38    39 
%    40  41   42   43   44   45   46   47   48   49  50   51    52 
%    53  54   55   56   57   58 
w = [0.8  0.9  0.5  0.5  0.5  0.95 -0.5 -0.2 -0.5 -0.95  0.5  0.4 -
0.5... 
    -0.8  0.8 -0.2 -0.3 -0.8 -0.5  0.6  0.8 -0.5  0.8 -0.2 -0.3 -0.2... 
    -0.3  0.3  0.8 -0.3  0.8 -0.5 -0.3 -0.2 -0.3  0.4  0.8  0.8  0.5... 
     0.5  0.8  0.5  0.5  0.8  0.5  0.5  0.8  0.2  0.2  0.5  0.5  0.3... 
     0.8 -0.3 -0.8  0.5  0.5  0.5]; 
% 
%   1    2   3   4   5    6   7     8   9   10   11    12   13  14   15      
%   16  17  18  19  20  
W =[0   0   0  w(5)  0   0    0     0   0    0    0     0    0   0    0 
...  
    0   0   0   0    0;                                                  
%  Row 1 
  w(2)  0  w(1) 0 w(55) w(3)  0     0   0    0    0     0    0  w(4)  0 
...  
    0   0   0   0    0;                                                  
%  Row 2 
    0   0   0   0    0   0    0     0   0    0    0     0  w(8) w(9)  0 
... 
  w(7)  0   0   0    0;                                                  
%  Row 3 
    0   0 w(6)  0 w(10) w(12) w(15) 0 w(23)  0  w(31)   0   0    0    0 
... 
    0   0   0   0    0;                                                  
%  Row 4 
    0   0   0   0    0   0    0     0   0    0    0     0   0  w(11)  0 
... 
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 w(52)  0   0   0    0;                                                  
%  Row 5 
    0   0   0   0    0   0    0     0   0    0    0     0   0  w(13)  0 
... 
 w(54)  0   0   0    0;                                                  
%  Row 6 
w(16) w(17) 0   0  w(14) 0    0   w(20) 0    0    0     0   0  w(19)  0 
... 
    0   0   0   0    0;                                                  
%  Row 7  
    0   0   0   0    0   0    0     0   0    0    0     0   0   0 w(21) 
... 
    0   0   0   0    0;                                                  
%  Row 8 
w(24) w(25) 0   0  w(22) 0    0     0   0   w(28) 0     0   0  w(27)  0 
... 
    0   0   0   0    0;                                                  
%  Row 9 
    0  0   0    0    0   0    0     0   0     0   0     0   0   0 w(29) 
... 
    0  0   0    0    0;                                                  
%  Row 10 
w(32) w(33) 0   0  w(30) 0    0     0   0     0   0  w(36)  0  w(35)  0 
... 
    0  0   0    0    0;                                                  
%  Row 11 
    0  0   0    0    0   0    0     0   0     0   0     0   0   0 w(37) 
... 
    0  0   0    0  0;                                                    
%  Row 12 
    0  0   0    0    0   0  w(18)   0 w(26)   0  w(34)  0   0   0     0 
... 
    0  0   0    0    0;                                                  
%  Row 13 
    0  0   0    0    0   0   0      0   0     0   0     0   0   0     0 
... 
 w(48) 0   0    0    0;                                                  
%  Row 14 
    0 w(49) 0   0    0   0   0      0   0     0   0     0 w(47) 0    0 
... 
    0  0   0    0    0;                                                  
%  Row 15 
    0  0   0    0    0   0   0      0   0     0   0     0    0  0 w(51) 
... 
    0 w(53) 0   0    0;                                                  
%  Row 16 
    0  0   0    0    0   0   0      0   0     0   0     0    0  0 w(50) 
... 
    0  0   0    0    0;                                                  
%  Row 17 
    0 w(38) 0   0    0   0 w(56) w(39)  0     0   0     0    0  0   0 
... 
    0   0   0   0    0;                                                  
%  Row 18 
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    0 w(41) 0   0    0   0   0      0 w(57) w(42) 0     0    0  0   0 
... 
    0   0   0   0    0;                                                  
%  Row 19 
    0 w(44) 0   0    0   0   0      0   0     0 w(58) w(45)  0  0   0 
... 
    0   0   0   0   0];                                                  
%  Row 20 
% 
% 
%A0 is the initial activation vector generated randomly 
% 
% 
A0 = 2*rand(1,ICN)-1;    %Build random numbers in the range -1 to +1 
% 
%   Initialize Variables 
Imax = 250;   %This is the maximum number of iterations 
A(1:Imax,1:ICN) = 0; 
A(1,1:ICN) = A0; 
index(1:Imax) = 0; 
index(Imax) = Imax; 
% 
S(1:Imax,1:ICN) = 0; 
%   d is a decay factor 
d(1:ICN) = 0.1; 
  
e(1:Imax,1:ICN) = 0;     %Indicator for the f function test 
%   Build the Activation Matrix 
for t=1:Imax-1 
    index(t) = t; 
    for i=1:ICN 
        for j=1:ICN 
            if i==j 
                temp = 0;           % This is the corrected code 
            else 
                temp = A(t,j)*W(i,j); 
            end 
            S(t,i) = S(t,i)+temp;   % To here                             
        end 
            if A(t,i)>=0 & S(t,i)>=0 
                f(t,i) = A(t,i)+S(t,i)*(1-A(t,i)); 
                e(t,i) = 1; 
            elseif abs(A(t,i))>1 & abs(S(t,i))>1 
                f(t,i) = (A(t,i) + S(t,i))/(1-min((A(t,i)), (S(t,i)))); 
%abs removed 
                e(t,i) = 2; 
            else 
                f(t,i) = A(t,i) + S(t,i)*(1+A(t,i)); 
                e(t,i) = 3; 
            end 
        A(t+1,i) = f(t,i) - d(i)*A(t,i); 
    end 
end   
% 
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MaxA = max(A((Imax-50):Imax,:)); 
MinA = min(A((Imax-50):Imax,:)); 
RangeA = MaxA - MinA; 
for m = 1:ICN 
    if RangeA(m) > 1.5      % Chaos 
       Chaos(m) = 1; 
    elseif RangeA(m) < 0.01 % Stable 
        Chaos(m) = -1; 
    else            % Limit Cycle 
        Chaos(m) = 0; 
    end 
en  d
%% 
%   Average the last 50 Iterations 
% 
%B = mean(A((Imax-50):Imax,:)); 
%for k=(Imax-50):Imax 
%    A(k,:) = B; 
%end 
%% 
plot(index,A,'k', 'linewidth', 1); 
xlabel('Iteration Number','fontsize',16); 
ylabel('Activation Level for Each Concept','fontsize',16); 
title('UNM Campus Demand Response Full FCM ','fontsize',18); 
% 
% 
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Appendix 4-2: GEFCM MATLAB™ Code Listing 

% 
%   UNMbRv8a is the main m file (GA Runner) that runs the GA Tool irmax 
times  
%   This is to identify repeatability in the GEFCM calculation among 
the 
%   irmax runs.  Revise storage locations in 15 & 29 
% 
%%%%   Initialize the variables for the GA Runner %%% 
% 
EndNote = 'The GA Runner is now done.'; 
ICN = 20;       %  Input, the number of concepts 
Imax = 120;     %  Input, the number of repeats 
nw = 58;        %  Input, the number of weights 
wbr(1:Imax, 1:nw) = -2; 
AIr(1:Imax, 1:ICN) = -2; 
fitr(1:Imax) = -1; 
save UNMbData8ac4 wbr AIr fitr 
% 
%   Start the GA Runner 
% 
for ir = 1:Imax 
    UNMbI(ICN, nw, Imax) 
    ir 
    GAUNMb8a 
    load fitnessUNMb fitness nSave W w A AImax 
    load fitBchaos nChaos 
    wbr(ir,:) = w; 
    AIr(ir,:) = AImax; 
    fitr(ir) = fitness; 
    Nsave(ir)=nSave; 
    Nchaos(ir)=nChaos; 
    save UNMbData8ac4 wbr AIr fitr Nsave Nchaos 
end 
EndNote 
%   EOF 
 
function [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =  GAUNMb8a 
%%   This is an auto generated M file with modifications for the UNM 
Simplified FCM to do optimization with the Genetic Algorithm and 
%    Direct Search Toolbox. Use GAOPTIMSET for default GA options 
structure. 
%       GAUNMb8a.m 
% Revised 8/20/2009 DFL 
% 
%%Fitness function 
fitnessFunction = @UNMBfitnessv8a; 
%%Number of Variables 
nvars = 58; 
%Linear inequality constraints 
Aineq = []; 
Bineq = []; 
%Linear equality constraints 
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Aeq = []; 
Beq = []; 
%Bounds 
LB(1:nvars) = -1; 
UB(1:nvars) = +1; 
%Nonlinear constraint  s
nonlconFunction = []; 
%Start with default options 
options = gaoptimset; 
%%Modify some parameters 
options = gaoptimset(options,'PopInitRange' ,[-1 ; 1 ]); 
options = gaoptimset(options,'PopulationSize' ,20); 
options = gaoptimset(options,'PlotInterval' ,10); 
options = gaoptimset(options,'EliteCount' ,2 ); 
options = gaoptimset(options,'CrossoverFraction' ,0.95); 
options = gaoptimset(options,'Generations' ,500); 
options = gaoptimset(options,'FitnessLimit' ,5e-10); 
options = gaoptimset(options,'StallGenLimit' ,150); 
options = gaoptimset(options,'StallTimeLimit' ,500); 
options = gaoptimset(options,'TolFun' ,0); 
options = gaoptimset(options,'TolCon' ,1e-007); 
options = gaoptimset(options,'MutationFcn' ,@mutationadaptfeasible); 
%options = gaoptimset(options,'Display' ,'off'); 
options = gaoptimset(options,'PlotFcns' ,{ @gaplotbestf @gaplotrange 
}); 
%%Run GA 
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = 
ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,nonlconFunction,opti
ons); 
 
 
function fitness = UNMBfitnessv8a(w) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%UNM Simplified Fitness Function 
% 
%   Fitness Function for UNM Campus Demand Response Big FCM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%  
% w = w(1) to w(58)     UNMBigData  revision 8/20/2009 DFL Partial 
% nChaos tracking on  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% 
%   Initialize Variables 
Imax = 250;   %This is the maximum number of iterations 
ICN =  20;     %     the number of rows or columns in the CCM 
%     nSave counts the number of fitness improvements 
load fitnessUNMb fitness nSave;    %load the best fitness so far 
load fitBchaos nChaos; 
fitness_old = fitness;       % save it for testing the latest value 
fitness = 0; 
%   Based on CNFCM and original weight assignments 
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Adesired = [0.8 0.94 0.82 0.72 0.65 0.95 -0.17 0 0 0  0 0.7 0  0  0 ... 
            0    0    0.8  0.8  0.8]; 
%           1      2    3    4     5    6    7  8 9 10 11 12 13 14 15 
%           16   17   18    19    20 
% 
% 
%   Build W the causal connection  matrix (CCM) 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
%    
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~ 
% 
%                           Columns 
%   1  2   3    4  5   6   7   8   9    10  11    12   13  14   15 16 
17     
%     
%   1    2   3   4   5    6   7     8   9   10   11    12   13  14   15      
%   16  17  18  19  20  
W =[0   0   0  w(5)  0   0    0     0   0    0    0     0    0   0    0 
...  
    0   0   0   0    0;                                                  
%  Row 1 
  w(2)  0  w(1) 0 w(55) w(3)  0     0   0    0    0     0    0  w(4)  0 
...  
    0   0   0   0    0;                                                  
%  Row 2 
    0   0   0   0    0   0    0     0   0    0    0     0  w(8) w(9)  0 
... 
  w(7)  0   0   0    0;                                                  
%  Row 3 
    0   0 w(6)  0 w(10) w(12) w(15) 0 w(23)  0  w(31)   0   0    0    0 
... 
    0   0   0   0    0;                                                  
%  Row 4 
    0   0   0   0    0   0    0     0   0    0    0     0   0  w(11)  0 
... 
 w(52)  0   0   0    0;                                                  
%  Row 5 
    0   0   0   0    0   0    0     0   0    0    0     0   0  w(13)  0 
... 
 w(54)  0   0   0    0;                                                  
%  Row 6 
w(16) w(17) 0   0  w(14) 0    0   w(20) 0    0    0     0   0  w(19)  0 
... 
    0   0   0   0    0;                                                  
%  Row 7  
    0   0   0   0    0   0    0     0   0    0    0     0   0   0 w(21) 
... 
    0   0   0   0    0;                                                  
%  Row 8 
w(24) w(25) 0   0  w(22) 0    0     0   0   w(28) 0     0   0  w(27)  0 
... 
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    0   0   0   0    0;                                                  
%  Row 9 
    0  0   0    0    0   0    0     0   0     0   0     0   0   0 w(29) 
... 
    0  0   0    0    0;                                                  
%  Row 10 
w(32) w(33) 0   0  w(30) 0    0     0   0     0   0  w(36)  0  w(35)  0 
... 
    0  0   0    0    0;                                                  
%  Row 11 
    0  0   0    0    0   0    0     0   0     0   0     0   0   0 w(37) 
... 
    0  0   0    0  0;                                                    
%  Row 12 
    0  0   0    0    0   0  w(18)   0 w(26)   0  w(34)  0   0   0     0 
... 
    0  0   0    0    0;                                                  
%  Row 13 
    0  0   0    0    0   0   0      0   0     0   0     0   0   0     0 
... 
 w(48) 0   0    0    0;                                                  
%  Row 14 
    0 w(49) 0   0    0   0   0      0   0     0   0     0 w(47) 0    0 
... 
    0  0   0    0    0;                                                  
%  Row 15 
    0  0   0    0    0   0   0      0   0     0   0     0    0  0 w(51) 
... 
    0 w(53) 0   0    0;                                                  
%  Row 16 
    0  0   0    0    0   0   0      0   0     0   0     0    0  0 w(50) 
... 
    0  0   0    0    0;                                                  
%  Row 17 
    0 w(38) 0   0    0   0 w(56) w(39)  0     0   0     0    0  0   0 
... 
    0   0   0   0    0;                                                  
%  Row 18 
    0 w(41) 0   0    0   0   0      0 w(57) w(42) 0     0    0  0   0 
... 
    0   0   0   0    0;                                                  
%  Row 19 
    0 w(44) 0   0    0   0   0      0   0     0 w(58) w(45)  0  0   0 
... 
    0   0   0   0   0];                                                  
%  Row 20 
% 
% 
%A0 is the initial activation vector 
% 
%Build the initial activation vector of random numbers in the range -1 
to 1 
A0 = 2*rand(1,ICN)-1;     
% 
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A(1:Imax,1:ICN) = 0; 
A(1,1:ICN) = A0; 
index(1:Imax) = 0; 
index(Imax) = Imax; 
% 
S(1:Imax,1:ICN) = 0; 
%   d is a decay factor 
d(1:ICN) = 0.1; 
% 
%   Build the Activation Matrix 
for t=1:Imax-1 
    index(t) = t; 
    for i=1:ICN 
        for j=1:ICN 
            if i==j 
                temp = 0;           % This is the corrected code 
            else 
                temp = A(t,j)*W(i,j); 
            end 
            S(t,i) = S(t,i)+temp;   % To here             
        end 
            if A(t,i)>=0 & S(t,i)>=0 
                f(t,i) = A(t,i)+S(t,i)*(1-A(t,i)); 
            elseif abs(A(t,i))>1 & abs(S(t,i))>1 
                f(t,i) = (A(t,i) + S(t,i))/(1-min((A(t,i)), (S(t,i)))); 
%abs removed 
            else 
                f(t,i) = A(t,i) + S(t,i)*(1+A(t,i)); 
            end 
        A(t+1,i) = f(t,i) - d(i)*A(t,i); 
    end 
end   
% 
% 
%   Determine if the A is Chaos (1), Stable (-1), or Limit Cycle (0). 
% 
% 
MaxA = max(A((Imax-50):Imax,:)); 
MinA = min(A((Imax-50):Imax,:)); 
RangeA = MaxA - MinA; 
for m = 1:ICN 
    if RangeA(m) > 1.5      % Chaos 
       Chaos(m) = 1; 
    elseif RangeA(m) < 0.01 % Stable 
        Chaos(m) = -1; 
    else            % Limit Cycle 
        Chaos(m) = 0; 
    end 
end 
% 
%   Average the last 50 Iterations 
% 
B = mean(A((Imax-50):Imax,:)); 
for k=(Imax-50):Imax 
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    A(k,:) = B; 
end 
% 
AImax(1:ICN)=A(Imax,1:ICN); 
% 
%This section records and does not store if any of the ICN values are 
Chaos 
cc=0; 
for n=1:ICN 
    if Chaos(n)>=1; 
        cc = 1; 
    els  e
    end 
end 
if cc >= 1; 
    nChaos = nChaos + 1; 
    save fitBchaos nChaos 
else   
end  
% 
%   Calculate the fitness value for the GA Tool - Square root of the 
sum of 
%   the squares 
% 
fitness = sqrt((A(Imax,4)-Adesired(4))^2 + (A(Imax,1)-Adesired(1))^2 
... 
        + (A(Imax,2)-Adesired(2))^2+(A(Imax,18)-Adesired(18))^2 ... 
        + (A(Imax,19)-Adesired(19))^2+(A(Imax,20)-Adesired(20))^2); 
%   Only save the best fitness if not chaotic 
if cc < 1 
    %   Save the best fitness value 
    if (fitness_old - fitness)>0 
        nSave = nSave + 1; 
        save fitnessUNMb fitness nSave W w A AImax; 
    else 
    end 
else 
end 
save CHAOS nChaos; 
% 
%   EOF 
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Appendix 4-3: Clustering MATLAB™ Code Listing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%   UNMs K Means Clustering - Main Program 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%  
%   Save in MATLAB in My Documents - UNMbKMrepeat.m 
% 
%       DFL 9/9/2009 
% 
%   This routine runs the K Means Clustering maxR times and saves the 
best 
%   cluster center for each(lowest SUMD/CountIDX).  Then the function 
%   (FindKMrepeats) returns the most repeat values (ircnt) in 
CenterBest. 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
clear all; 
close all; 
clc; 
nPlot = 1;   %   1 plot; 0 do not plot Center Best and all members 
nRC = 3;     %The concept to test for repeats 
ICN = 20;    %The number of concepts 
nw = 58;     %The number of weights 
K = 16; % The number of clusters 
irmax = 120;    %   The number of data sets (points) 
w = 0.25;    %Cleaner factor such that fitr>w are eliminated 
maxR = 50;   %Number of identical repeats of the K Means Clustering 
ep = .00005;        %delta for equality of cluster centers 
load UNMbData8ac4 wbr AIr fitr 
% 
%   Cleaning Routine for fitr > w; nirmax is the new number of data 
points 
[UseAIr, fitrn, iPlace, nirmax] = Cleaner(AIr, fitr, ICN, irmax, w); 
% 
X = UseAIr; 
%Calculate Cluster Information 
for k=1:maxR 
    [IDX,C,SUMD] = kmeans(X,K,'emptyaction','singleton');   %no error 
on empty cluster 
%   Keep track of the original UNMsData location in  
%                           iPos(1:maxR,1:2,1:nirmax). 
    iPos(k,1,1:nirmax) = iPlace; 
    iPos(k,2,1:nirmax) = IDX; 
%   Count how many data sets in each cluster (CountIDX) 
    CountIDX(1:K) = 0; 
    for ik = 1:K 
     for jk = 1:nirmax 
        if IDX(jk) == ik 
            CountIDX(ik) = CountIDX(ik)+1; 
        else 
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        end 
     end 
    end 
%   Calc the distance error per data set (point) in each cluster 
     for i = 1:K 
        ErrorD(i) = SUMD(i)/CountIDX(i); 
        %       ErrorD is zero for a cluster with 1 member 
        if CountIDX(i) == 1 
            ErrorD(i)=10; 
        else 
        end 
    end 
% 
%   Test for smallest ErrorD and save it (Cent, CountIDX, number) 
% 
    ErD(k) = min(ErrorD);       % based on ErrorD 
     for i=1:K 
        if CountIDX(i) > 1 
        if abs(ErD(k)-ErrorD(i))<ep 
            N(k) = i; 
            NumM(k)=CountIDX(i); 
        else 
        end 
        else 
        end 
    end 
    Cent(k,1:ICN) = C(N(k),1:ICN); 
    CIDX(k,1:K)=CountIDX(1:K); 
end  
[RCnbest, indx, mcnt, CenterBest, ircnt, indC] =... 
    FindKMrepeats(maxR, ep, Cent, ICN, nRC); 
save UNMsKMdata 
K           % Number of clusters 
CenterBest  %Average of all members of the best cluster 
ircnt       %Number of repeats that repeat the most 
Error=ErD(indC)   %Error in the most repeated set 
indC        %Location in 1:maxR of the last best(most) repeat 
nCluster=NumM(indC)     %Number of members in CenterBest 
RCnbest     %The value of each Cn that repeated 
mcnt        %Number of times RC2best repeated 
%   Plot the Center Best and its members if nPlot = 1 
if nPlot == 1 
     %   Keep track original UNMsData entries that form this best 
cluster 
    index=1; 
    for i=1:nirmax 
        if iPos(indC,2,i) == N(indC) 
            %   array has the kth values for the best cluster members 
            %   in UNMsData 
            array(index) = iPos(indC,1,i); 
            index=index+1; 
        els  e
        end 
    end 
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    icntBC = index-1;     %The number of data sets in UNMsData that 
make 
                        %    up the best center  
    for i=1:icntBC 
        n=array(i); 
        AIrCB(i,1:ICN) = AIr(n,:);   %contains all of the members of CB 
cluster 
        w(i,1:nw) = wbr(n,:); 
    end 
    iICN(1:ICN)=[1:ICN]; 
    iw(1:nw)=[1:nw]; 
    AIrCBT = AIrCB';         % Transpose issue only if matrix is square 
    %   Plot the best cluster data and centers 
    plot(iICN,AIrCBT,iICN,CenterBest,'ko-')    %Black circle and line 
thru centers 
    xlabel('Concept Number','fontsize',16); 
    axis([1 ICN -1 +1]) 
    ylabel('Actual Concept Values for the Cluster 
Member','fontsize',16); 
    title('UNM Campus DR Cluster  K=14 C1=0.80 C2=0.94 C4=0.82 C18=0.80 
C19=-0.2 C20=-0.80','fontsize',16); 
else 
end 
  
%   EOF 
 
 
function [UseAIr, fitrn, iPlace, nirmax]= Cleaner(AIr, fitr, ICN, 
irmax, w) 
%   Cleaning Routine for fitr > w; nirmax is the new number of data 
points 
%   Cleans the spikes (>w) from the data 
%   Used in K Means Clustering of the GEFCM runs 
%   UseAIr(nirmax,ICN); fitrn(nirmax); nirmax is number of cleaned 
elements 
%   AIr(irmax,ICN); fitr(irmax); w is shown above. 
%   ICN number of concepts, irmax number of identical runs of the 
GEFCM. 
%   iPlace(1:nirmax) tracks the original location of the ICN data set. 
%   DFL 3/7/2009 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
ic = 0; 
nirmax=irmax; 
for ir = 1:irmax 
    ip(ir)=ir; 
    if abs(fitr(ir))>w 
        ic=ic+1; 
        bad(ic)=ir; 
    else 
    end 
end 
for iclean=1:ic 
    i=bad(iclean)-(iclean-1); 
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    for n=i:(nirmax-1); 
        AIr(n,1:ICN)=AIr((n+1),1:ICN); 
        fitr(n)=fitr(n+1); 
        ip(n) = ip(n+1); 
    end 
    nirmax = nirmax-1; 
end 
%   The data is cleaned of fitr>w and has only nirmax elements 
% 
%   Build data arrays based on the new number of data points. 
    for n=1:nirmax; 
        fitrn(n)=fitr(n); 
        UseAIr(n,1:ICN) = AIr(n,1:ICN); 
        iPlace(n)=ip(n); 
    end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%   Plot the new fitr(nirmax) to test code 
%for i = 1:nirmax 
%    Irun(i) = i; 
%end 
%    plot(Irun, fitrn) 
%    axis([1 nirmax 0 1]); 
%    xlabel('Run Number'); 
%    ylabel('Fitness for Each Run'); 
%    title(['UNM Campus Demand Response Simplified - Fitness Cleaned 
']); 
%   function EOF 
 
function [RCnbest, indx, mcnt, CenterBest, ircnt, indC] =... 
    FindKMrepeats(maxR,ep,Cent,ICN,nRC) 
  
%   Find and return (UNMbKMrepeat.m) the repeat values where: 
%       RCnbest(indx) - all Cn repeat values 
%       mcnt number of repeats (also indx) 
%           If mcnt(1) = 1 then no repeats. 
%           Check mcnt manually to determine if multiple 
repeats!!!!!!!!! 
%       CenterBest(ICN) - most repeats (only if no duplicate repeats) 
%       ircnt number of CenterBest repeats 
%       indC - location in the 1:maxR runs of the last most repeats 
(maybe) 
%   The inputs are: 
%       maxR - number of K Means runs with identical input 
%       ep - test value for repeats (0.0001) typically 
%       Cent - results of the repeat K Means runs 
%       nRC - the concept to use for repeats 
%        
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%           DFL 7-22-2009 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
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%   Build m(maxR) the vector with the match(<ep) numbers or 0 if no 
match 
mrep=fix(maxR/2);   %max number of repeats 
Cn = Cent(1:maxR,nRC);     
m(1:maxR) = 0; 
for j=1:maxR 
    for i=(j+1):maxR 
        if m(i)==0 
        if abs(Cn(j) - Cn(i)) < ep 
            m(i) = j; 
        else 
        end 
        else 
        end 
        for n=j:maxR 
            if m(n)==j 
                m(j)=j; 
            els  e
            end 
        end 
    end 
end 
%   Build mnew(maxR), ordering m sequencially and C2 also 
mnew=m; 
for j=1:maxR 
    for i=1:(maxR-1) 
        if mnew(i)>mnew(i+1) 
            miold=mnew(i); 
            mipold=mnew(i+1); 
            mnew(i)=mipold; 
            mnew(i+1)=miold; 
            Cniold=Cn(i); 
            Cnipold=Cn(i+1); 
            Cn(i) = Cnipold; 
            Cn(i+1) = Cniold; 
        else 
        end 
    end 
end 
% 
%   This Section builds RCC(indx) the repeating cluster centers from 
most  
%   to least where indx is the number of repeating centers  
%   and mcnt(indx) # repeats. 
indx = 1;       %----- 
mcnt(1)=1;      %----- Initialize these 4 in case no repeats 
indmr=1;        %----- 
indC=1;         %----- 
icntemp=0; 
CC(1:mrep) = 2;    
for j=1:(maxR-1) 
    icnt = 1; 
    iskip = 0; 
    for in=1:indx 
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        if abs(Cn(j)-CC(in))<ep   
            iskip = 1; 
        els  e
        end 
    end 
    if iskip ~= 1 
        if mnew(j)~=0 
            for k=(j+1):maxR 
                if abs(Cn(j)-Cn(k))<ep 
                    icnt=icnt+1; 
                    CC(indx) = Cn(k); 
                els  e
                end 
            end 
            if icnt~=1 
                mcnt(indx) = icnt; 
                indx=indx+1; 
            els  e
            end 
        else 
        end 
    else 
    end 
end 
mr = max(mcnt); 
indx=indx-1; 
RCnbest(1)=2;       %Initialize in case no repeats 
for i=1:indx 
    RCnbest(i) = CC(i); 
    if mr == mcnt(i) 
        indmr = i; 
    else 
    end 
end 
Cnbest = RCnbest(indmr); 
ircnt=0; 
for i=1:maxR 
    if abs(Cent(i,nRC)-Cnbest)<ep 
        ircnt=ircnt+1; 
        indC = i; 
    else 
    end 
end 
CenterBest(1:ICN) = Cent(indC,1:ICN); 
%       The most repeated cluster center is "CenterBest" 
%       The number of repeats for the CenterBest is "ircnt" 
%   There is no code to test for duplicate quantities of repeats. 
%   Should test this and find the one with lowest ErrorD value. 
%   EOF 
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Appendix 5-1: Facilities in the DR Control System 

# Bldg # Building SF # Bldg # Building SF
1 157 Alvarado 40,896 36 81 Humanities 70,859
2 76 Anderson School of M 46,406 37 59 Johnson Gym 324,202
3 12 Anthropology Annex 9,614 38 115 Journalism 31,897
4 11 Anthro Maxwell Musm 53,461 39 77 La Posada 40,354
5 84 Art Building 76,876 40 74 Laguna 43,901
6 16 Bandelier Hall West 15,073 41 34 Logan Hall 50,868
7 211 Basic Med Science 175,613 42 122 M E Building 70,263
8 19 Biology Annex 8,269 43 9 Marron Hall 19,962
9 253 Biomedical Researchx 109,575 44 56 Mesa Vista Hall 111,870
10 218 Bratton Hall 158,622 45 23 Mitchell Hall 46,965
11 229 CR Facility 81,723 46 102 New Bookstore 46,867
12 227 Cancer RT Center 107,696 47 230 New Mexico Law Center 8,398
13 4 Carlisle Gym 31,270 48 193 New Residence 123,040
14 21 Castetter-Potter 114,642 49 60 NM SUB 146,100
15 83 Ceria 70,700 50 24 Northrop Hall 75,746
16 22 Clark-Reibsomer Hall 81,696 51 228 Nursing & Pharmacy 96,050
17 153 Computing Cntr CIRT 46,503 52 156 Onate Hall 40,961
18 198 Cornell Parking 3,600 53 79 Ortega Hall 66,109
19 155 Coronado 93,860 54 207 Physics & Astronomy 64,215
20 48 Dane Smith Hall 97,776 55 35 Regener Hall 23,077
21 75 De Vargas 43,976 56 88 S R C 126,750
22 249 Dental Programs 27,976 57 71 Santa Ana 41,615
23 46 E E C E   CSEL 178,987 58 61 Santa Clara 39,751
24 57 Economics 21,766 59 10 Scholes Hall 49,210
25 65 Education Complex 129,946 60 78 Social Sciences 32,569
26 248 Family Practice 58,213 61 73 Student Health Facility 42,853
27 119 Farris Engineering 75,369 62 85 Student Services 96,834
28 62 Fine Art C & Library 175,362 63 82 Woodward Hall 39,622
29 87 Parish Library 53,856 64 53 Zimmerman Library 239,926
30 266 Health Sci & Serv 57,760 65 72 Popejoy Hall 71,553
31 234 Health Sci Library 65,804 66 183 Lobo Center 70,000
32 15 Hibben 37,565 67 205 RIB 29,164
33 103 Hodgin Hall 16,511 68 338 CHTM 60,000
34 58 Hokona 78,365 69 331 Crystal Growth Facility 5,110
35 20 Human Resources 10,384

Total Area, sq. ft. 4,902,372
Average Area, sq. ft. 71,049        
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Appendix 5-2: Facility Population for Each Potential DR Hour 

# Bldg # 12:00 1:00 2:00 3:00 4:00 5:00 6:00 # Bldg # 12:00 1:00 2:00 3:00 4:00 5:00 6:00
1 157 L L L L M M H 36 81 L L L H S M L
2 76 H M H H L L L 37 59 L L L L M M H
3 12 L L L H S M L 38 115 H M H H L L L
4 11 L L L L L L L 39 77 S H M L L M S
5 84 L M M M L L L 40 74 L L L H S M L
6 16 H M H H L L L 41 34 H M M S H L M
7 211 H M M S H L M 42 122 H M H H L L L
8 19 L L M L L M H 43 9 L L L H S M L
9 253 L L M L L M H 44 56 H M H H L L L
10 218 H M H H L L L 45 23 L L L H S M L
11 229 L L M L L M H 46 102 L L L L L L L
12 227 L L M L L M H 47 230 L L L L L L L
13 4 L L L L M M L 48 193 L L L L M M H
14 21 H M M S H L M 49 60 S H M L L M S
15 83 H M M S H L M 50 24 L L M L L M H
16 22 H M M S H L M 51 228 L L M L L M H
17 153 L L L L L L L 52 156 H M H H L L L
18 198 L L L L L L L 53 79 L L L H S M L
19 155 L L L L M M H 54 207 H M M S H L M
20 48 H M H H L L L 55 35 L L L L M M H
21 75 L L L L M M H 56 88 L L L L M M H
22 249 H M H H L L L 57 71 L L L L M M H
23 46 L L L H S M L 58 61 L L L L M M H
24 57 H M H H L L L 59 10 H M H H L L L
25 65 L L L H S M L 60 78 L L L H S M L
26 248 L L L L M M H 61 73 H M H H L L L
27 119 H M M S H L M 62 85 L L L H S M L
28 62 L L L L L L L 63 82 L L L L M M H
29 87 L L L L L L L 64 53 L L L L L L L
30 266 L L L L M M H 65 72 L L L L M M L
31 234 L L L L L L L 66 183 L L L L M M L
32 15 L L L L L L L 67 205 H M M S H L M
33 103 H M H H L L L 68 338 H M M S H L M
34 58 L L L L L L L 69 331 L L L L L L L
35 20 H M H H L L L
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Appendix 5-3: Facility Lighting and Temperature Power Reduction 

# Bldg # Lighting 
kW Red.

76F kW 
Reduce

78F kW 
Reduce

80F kW 
Reduce

# Bldg # Lighting 
kW Red.

76F kW 
Reduce

78F kW 
Reduce

80F kW 
Reduce

1 157 18.0 25.7 130.9 77.0 36 81 31.2 44.5 89.0 133.5
2 76 20.4 29.1 58.3 87.4 37 59 142.6 203.6 407.2 610.8
3 12 4.2 6.0 12.1 18.1 38 115 14.0 20.0 40.1 60.1
4 11 23.5 33.6 67.1 100.7 39 77 17.8 25.3 50.7 76.0
5 84 33.8 48.3 96.6 144.8 40 74 19.3 27.6 55.1 82.7
6 16 6.6 9.5 18.9 28.4 41 34 22.4 31.9 63.9 95.8
7 211 77.3 110.3 220.6 330.9 42 122 30.9 44.1 88.3 132.4
8 19 3.6 5.2 10.4 15.6 43 9 8.8 12.5 25.1 37.6
9 253 48.2 68.8 137.6 206.4 44 56 49.2 70.3 140.5 210.8
10 218 69.8 99.6 199.2 298.8 45 23 20.7 29.5 59.0 88.5
11 229 36.0 51.3 102.6 154.0 46 102 20.6 29.4 58.9 88.3
12 227 47.4 67.6 135.3 202.9 47 230 3.7 5.3 10.5 15.8
13 4 13.8 19.6 39.3 58.9 48 193 54.1 77.3 154.5 231.8
14 21 50.4 72.0 144.0 216.0 49 60 64.3 91.8 183.5 275.3
15 83 31.1 44.4 88.8 133.2 50 24 33.3 47.6 95.1 142.7
16 22 35.9 51.3 102.6 153.9 51 228 42.3 60.3 120.6 181.0
17 153 20.5 29.2 58.4 87.6 52 156 18.0 25.7 51.4 77.2
18 198 1.6 2.3 4.5 6.8 53 79 29.1 41.5 83.0 124.5
19 155 41.3 58.9 117.9 176.8 54 207 28.3 40.3 80.7 121.0
20 48 43.0 61.4 122.8 184.2 55 35 10.2 14.5 29.0 43.5
21 75 19.3 27.6 55.2 82.9 56 88 55.8 79.6 159.2 238.8
22 249 12.3 17.6 35.1 52.7 57 71 18.3 26.1 52.3 78.4
23 46 78.8 112.4 224.8 337.2 58 61 17.5 25.0 49.9 74.9
24 57 9.6 13.7 27.3 41.0 59 10 21.7 30.9 61.8 92.7
25 65 57.2 81.6 163.2 244.8 60 78 14.3 20.5 40.9 61.4
26 248 25.6 36.6 73.1 109.7 61 73 18.9 26.9 53.8 80.7
27 119 33.2 47.3 94.7 142.0 62 85 42.6 60.8 121.6 182.4
28 62 77.2 110.1 220.3 330.4 63 82 17.4 24.9 49.8 74.6
29 87 23.7 33.8 67.6 101.5 64 53 105.6 150.7 301.3 452.0
30 266 25.4 36.3 72.5 108.8 65 72 31.5 44.9 89.9 134.8
31 234 29.0 41.3 82.6 124.0 66 183 30.8 44.0 87.9 131.9
32 15 16.5 23.6 47.2 70.8 67 205 12.8 18.3 36.6 54.9
33 103 7.3 10.4 20.7 31.1 68 338 26.4 37.7 75.4 113.0
34 58 34.5 49.2 98.4 147.6 69 331 2.2 3.2 6.4 9.6

35 20 4.6 6.5 13.0 19.6
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Appendix 5-4: DR Control System MATLAB™ Code Listing 

% 
%   DR_Controller.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%  
%   This builds the control scheme for each facility for each hour for  
%   the DR event. 
% 
%   DFL 9/7/2009 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
clear all; 
clc; 
%  Call the function, DRCinput, that establishes the DR event input 
values 
%  as follows:      
%       PDR - Desired reduction in power, -1 indicates the maximum 
%             achievable 
%       nmax - maximum number of facilities in FacilityData.xls 
%       hstart - Start time of the first hour of the DR event 
%       hend - Start time of the last hour of the DR event 
%       h - Potential number of hours in the DR event - 7 hours 
[PDR, nmax, hstart, hend, h] = DRCinput; 
% 
%       Call the function, DRCtables, that unloads the table 
information 
%       from the excel spreadsheet, FacilityData.xls, and saves it in 
%       FacData.mat as follows: 
%           Fpop(nmax, h+1) - Facility population table 
%           FT(nmax, 3) - Facility identification table 
%           FacT(nmax, 7) - Facility control table 
%           PLavail(1:nmax) - The maximum lighting reduction available 
from 
%           each facility 
%       This only needs to run if there have been changes to 
%       FacilityData.xls since the last run that built FacData.mat. 
% 
DRCtables; 
% 
%       Get the DR control data tables in mat file FacData.mat  
load FacData 
% 
%           the control logic 
%   Initialize variables 
PrelimSP(1:nmax,1:h) = 74;  %Intermediate storage table 
PrelimSP(1:nmax,(h+1):2*h) = 0;     %ditto 
PmaxLSP(1:h) = 0;           %maximum power reduction available 
PplanFac(1:nmax,1:h)=0;       %Reduction for each facility each hour 
PplanLSP(1:h) = 0;          %planned power reduction for the requested 
PDR 
Lindex(1:nmax,1:h)=0;       %Low pop index for facility and hour 
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Mindex(1:nmax,1:h)=0;       %Medium pop index for facility and hour 
Hindex(1:nmax,1:h)=0;       %High pop index for facility and hour 
PmaxL(1:h)=0;               %Low pop facility max power reduction 
PmaxM(1:h)=0;               %Medium pop facility max power reduction    
50 
PmaxH(1:h)=0;               %High pop facility max power reduction 
FDRT(1:nmax,h+1:2*h)=74;    %Initial temp set points for facilities in 
DR 
FDRT(1:nmax,1:h)=0;         %Initial power reduction for facilities in 
DR 
PLindex(1:nmax)=0;          %Lighting reduction index for each facility 
PLmax(1:h)=0;               %Maximum lighting power reduction 
PLskip(1:nmax,1:h)=0;       %Lighting reduction even if Set Point is 
skip 
PLplan=0;                   %planned lighting power reduction - only 
LrandFac(1:nmax)=0;         %Random fac seq number for lighting redctn 
SPLrandFac(1:nmax)=0;       %Random fac seq number for low pop temp 
redctn 
SPMrandFac(1:nmax)=0;       %Random fac seq number for med pop temp 
redctn 
SPHrandFac(1:nmax)=0;       %Random fac seq number for high pop temp 
redctn 
finished=0;                 %Flag so max reduction not repeated if 
PDR~=-1 
                                                                       
%63 
%   Build the start and end variables based on the start time and last 
%   hour time from the input values from the DRCinput function. 
switch hstart 
    case '12:00' 
        hs=1; 
    case '1:00' 
        hs=2; 
    case '2:00' 
        hs=3; 
    case '3:00' 
        hs=4; 
    case '4:00' 
        hs=5; 
    case '5:00' 
        hs=6; 
    case '6:00' 
        hs=7; 
    otherwise 
end 
switch hend 
    case '12:00' 
        he=1; 
    case '1:00' 
        he=2; 
    case '2:00' 
        he=3; 
    case '3:00' 
        he=4; 
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    case '4:00' 
        he=5; 
    case '5:00' 
        he=6; 
    case '6:00' 
        he=7; 
    otherwise 
end 
%                                                                      
100 
%   Fuction to set up random facility selection table, 
RFacList(1:nmax),  
%   for those situations where all facilities do not need to reduce 
lighting 
%   or thermostat set points.                                           
[RFacList, noRepeats] = FacRandomizer(nmax); 
%                                                                      
Naction(1:h) = -1; 
%   Naction(h) = 1  lighting reduction sufficient 
%                2  lighting and temperature reduction sufficient 
%                3  maximum reduction 
% 
  
    PLightMax=0; 
    PLtemp(1:nmax)=0; 
    %   Calc maximum power available from facilities in DR event 
    %   Store amount available from each facility, 0 if not 
participating 
        for i=1:nmax 
            if FacT(i,2) == 1 
                PLightMax = PLightMax + PLavail(i); 
                PLtemp(i)=PLavail(i); 
            els  e
            end 
        end 
%----------------------------------------------------------------------
--- 
%   Check each facility controllers to determine the level of light 
energy 
%   reduction that is achievable and return in PLachiev(1:nmax). 
[PLachieve] = FacLightRed(PLtemp, nmax); 
PLacvT = sum(PLachieve); 
if PLacvT < PLightMax 
    PLightMax = PLacvT; 
    PLtemp=PLachieve; 
else 
end 
% 
%----------------------------------------------------------------------
--- 
        PLmax(hs:he)=2*PLightMax; 
    % 
% 
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%~~~~~~~~~~~~~~~~~~if PDR = -1 do maximum 
reduction~~~~~~~~~~~~~~~~~~~~~~~ 
% 
if PDR >= 0         %   end 325 
    %   reduce lighting and maybe temperatures 
    % 
    PLightMax2=PLightMax*2; %Both electricity and heat reduce 
    if PLightMax2 < PDR     %   end 281 
    % 
      %------Determine max power reduction from temperature set points-
--- 
        for n = hs:he 
            for i = 1:nmax 
                if FacT(i,3) == 1   %   Eliminate the non-participants 
                 switch Fpop(i,n)                                     
%150 
                        case 'L' 
                            PrelimSP(i,n) = 80; 
                            PrelimSP(i,(n+h)) = FacT(i,7); 
                            PmaxL(n) = PmaxL(n)+FacT(i,7); 
                        case 'M' 
                            PrelimSP(i,n) = 78; 
                            PrelimSP(i,(n+h)) = FacT(i,6);     
                            PmaxM(n) = PmaxM(n)+FacT(i,6); 
                        case 'H' 
                            PrelimSP(i,n) = 76; 
                            PrelimSP(i,(n+h)) = FacT(i,5); 
                            PmaxH(n) = PmaxH(n)+FacT(i,5); 
                        case 'S' 
                            if FacT(i,2) == 1 
                                PLskip(i,n)=2*FacT(i,4); 
                                PplanFac(i,n)=PLskip(i,n); 
                            else 
                            end 
                     otherwise 
                 end 
                 PmaxLSP(n) = PmaxLSP(n)+PrelimSP(i,(n+h)); 
                else 
                end 
            end %   i loop 138  
           %-----Max power reduction available-------------------------
--- 
            PmaxLSP(n) = PmaxLSP(n)+PLmax(n); 
        end     %   n loop line 138     
    % 
    % 
    %~~~~~~~~~Maximum lighting reduction and some set 
points~~~~~~~~~~~~~~ 
        for n=hs:he 
            for i=1:nmax 
                if FacT(i,2) == 1 
                   FDRT(i,n)=1;    %   For lighting reduction 
participants 
                else 



 

 170 

 

                end 
            end 
        end 
% 
        %-------------------L M H set point reduction starts here------
--------- 
        for n=hs:he         %   end 279 
                if PmaxLSP(n) > PDR 
                    Naction(n) = 2; 
                else 
                end 
                if PmaxLSP(n) <= PD  R
                    Naction(n) = 3; 
                else 
                end 
                if Naction(n) == 2 %        end 269                    
200 
                L=0;               
                M=0; 
                H=0; 
                PplanLSP(n) = sum(PLskip(1:nmax,n));    %skips reduce 
light 
                for i=1:nmax 
                    ir=RFacList(i);     %   Randomize 
                    if L==0 
                        if Fpop(ir,n)=='L' 
                            PplanLSP(n) = PplanLSP(n)+PrelimSP(ir,n+h) 
... 
                                          +2*PLtemp(ir); 
                            
PplanFac(ir,n)=PrelimSP(ir,n+h)+2*PLtemp(ir); 
                            Lindex(i,n)=i; 
                            FDRT(ir,n+h)=PrelimSP(ir,n); 
                            SPLrandFac(i)=ir; 
                            if PplanLSP(n)>=PDR 
                                L=1; 
                            else 
                            end 
                        else 
                        d en
                    else 
                    end 
                end 
                if L==0     %   'L' is not enough 
                    for i=1:nmax 
                        ir=RFacList(i);     %   Randomize 
                        if M==0 
                            if Fpop(ir,n)=='M' 
                              PplanLSP(n)=PplanLSP(n)+PrelimSP(ir,n+h) 
... 
                                            +2*PLtemp(ir); 
                              
PplanFac(ir,n)=PrelimSP(ir,n+h)+2*PLtemp(ir); 
                              Mindex(i,n)=i; 
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                              FDRT(ir,n+h)=PrelimSP(ir,n); 
                              SPMrandFac(i)=ir; 
                              if PplanLSP(n)>=PDR 
                                    M=1;            %   M is enough now 
                              else       
                              en  d
                            else 
                            end 
                        els  e
                        end 
                    end 
                els  e
                end 
                if M==0 & L==0    %   'M' is not enough 
                    for i=1:nmax 
                        ir=RFacList(i);     %   Randomize  
                        if H==0 
                            if Fpop(ir,n)=='H'                      %  
250 
                              PplanLSP(n)=PplanLSP(n)+PrelimSP(ir,n+h) 
... 
                                            +2*PLtemp(ir); 
                              
PplanFac(ir,n)=PrelimSP(ir,n+h)+2*PLtemp(ir); 
                              Hindex(i,n)=i; 
                              FDRT(ir,n+h)=PrelimSP(ir,n); 
                              SPHrandFac(i)=ir; 
                              if PplanLSP(n)>=PDR 
                                    H=1;            %   H is enough now 
                              else 
                              end 
                            else 
                            end 
                        else 
                        end 
                    end 
                else 
                end  
            else 
            end      %   if Naction(n) == 2  200          
            if Naction(n) == 3 
                for i=1:nmax 
                    FDRT(i,(n+h))=PrelimSP(i,n); 
                    PplanFac(i,n)=PrelimSP(i,n+h)+2*PLtemp(i); 
                end 
                PplanLSP(n)=PmaxLSP(n); 
                finished = 1; 
            else 
            end 
        end      %  end of n loop 191 
    else                                             
    end          %  if PLightMax < PDR 144 
        % 
    %----------optimize the lighting reduction----------------------   
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    % 
    for n=hs:he 
        if Naction(n) < 0 
           Naction(n) = 1;     %   Lighting reduction only 
        else 
       nd  e
    end 
    if Naction(hs) == 1 
        LightE=0; 
                for i=1:nmax 
                    ir=RFacList(i);     %   Randomize 
                    if FacT(ir,2) == 1 
                        if LightE == 0 
                         PLplan=PLplan+2*PLtemp(ir);    %Both ele and 
heat 
                         PLindex(i) = i; 
                            if PLplan >= PDR 
                                LightE=1;                            
%300 
                            else           
                            end 
                        else 
                        end 
                    else 
                    end 
                end 
                for n=hs:he 
                    for i=1:nmax 
                        ir=RFacList(i);     %   Randomize 
                        if PLindex(i) >= 1 
                            FDRT(ir,n)=1; 
                            PplanFac(ir,n)=2*PLtemp(ir); 
                            LrandFac(i)=ir; 
                        else 
                        end    
                    end 
                end 
                PmaxLSP=PLmax; 
                PplanLSP(hs:he)=PLplan; 
    els  e
    end 
    %       End of lighting optimazation          
    % 
end               % if PDR >= 0  140 
%---------------------Maximum Reduction (PDR=-1)-----------------------
---- 
for n=hs:he 
    if Naction(n) < 0 
        Naction(n) = 3; 
    else 
    end 
end 
     
if Naction(hs) == 3 & finished == 0 %  Maximize the lighting reduction              
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    for n=hs:he 
        for i=1:nmax 
            if FacT(i,2) == 1                 
                FDRT(i,n)=1;        %   Set up lighting participants 
            else 
           nd  e
        end 
    end 
els  e
end 
% 
%-------------Now set up maximum set point reduction----------------- 
% 
for n=hs:he 
    if Naction(n) == 3 & finished == 0 
            PmaxLSP(n)=0;                                             
%350 
            PmaxL(n)=0; 
            PmaxM(n)=0; 
            PmaxH(n)=0; 
            for i = 1:nmax 
              if FacT(i,3) == 1   %   Eliminate the non-participants 
                switch Fpop(i,n) 
                    case 'L' 
                        PrelimSP(i,n) = 80; 
                        PrelimSP(i,(n+h)) = FacT(i,7); 
                        PmaxL(n) = PmaxL(n)+FacT(i,7); 
                    case 'M' 
                        PrelimSP(i,n) = 78; 
                        PrelimSP(i,(n+h)) = FacT(i,6); 
                        PmaxM(n) = PmaxM(n)+FacT(i,6); 
                    case 'H' 
                        PrelimSP(i,n) = 76; 
                        PrelimSP(i,(n+h)) = FacT(i,5); 
                        PmaxH(n) = PmaxH(n)+FacT(i,5); 
                    otherwise                   
                end 
              else 
              end 
            end 
            for i = 1:nmax 
                PmaxLSP(n) = PmaxLSP(n)+PrelimSP(i,n+h); 
                FDRT(i,n+h) = PrelimSP(i,n); 
                PplanFac(i,n)=PrelimSP(i,n+h)+2*PLtemp(i); 
            end 
            PmaxLSP(n) = PmaxLSP(n)+PLmax(n); 
            PplanLSP(n) = PmaxLSP(n); 
    else    %if Naction(n) == 3 & finished == 0 
    end     %if Naction(n) == 3 & finished == 0 
end         %for n=hs:he   348 
%--------------------------------------------------------------------- 
% 
%  Code to output to each facility's control system will reside here. 
%  Include here an hourly calculation to determine each facility's 
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%  estimated load reduction (baseline load minus the actual load at the 
end 
%  of the hour). 
% 
%--------------------------------------------------------------------- 
% 
%   Output to the spreadsheet in the current directory 'FDRTable.xls' 
% 
DRCoutput(FDRT, PplanLSP, PmaxLSP, PLmax, PDR,PLplan,PmaxL,PmaxM, ... 
    PmaxH,PrelimSP,PLtemp,LrandFac,SPLrandFac,SPMrandFac, ... 
    SPHrandFac,Naction,PplanFac) 
% 
%----------------------------------------------------------------------
---- 
% 
%   EOF                                                                
401 
 
 
function [PDR, nmax, hstart, hend, h] = DRCinput 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%  
%   This inputs the DR Controller data. 
% 
%   DFL 8/26/2009 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
clear all; 
clc; 
%   Set the input for the Demand Response (DR) event 
PDR = -1;  %Desired reduction in power, kW,  
%           -1 indicates the maximum achievable 
nmax = 69; %maximum number of facilities in FacilityData.xls 
hstart = '12:00';   %Start time of the first hour of the DR event 
hend = '6:00';      %Start time of the last hour of the DR event 
h = 7;              %Potential number of hours in the DR event (7 
hours) 
% 
%   EOF 
 
function DRCtables 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%  
%   This inputs the DR Controller data from the excel spreadsheet 
%   FacilityData.xls and saves it to a mat file (FacData.mat). 
%   All are assumed located in the current directory. 
% 
%   DFL 8/26/2009 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
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clear all; 
clc; 
nmax = 69; 
h=7; 
% 
%   This builds the Facility Population Table, Fpop. 
% 
[Num, Text, FpopTemp]= xlsread('FacilityData', 'FPop', 'G2:N70'); 
Fpop = cell2mat(FpopTemp(1:69,2:8)); 
% 
%   This builds the Facility Identification Table, FT. 
% 
[Num2, Text2, FT]= xlsread('FacilityData', 'FT', 'A2:C70'); 
% 
%   This builds the Facility Control Table, FacT. 
% 
[Num2, Text2, FacTTemp]= xlsread('FacilityData', 'FacT', 'H2:N70'); 
FacT(1:nmax,1:7) = cell2mat(FacTTemp(:,:)); 
% 
PLavail = FacT(:,4); 
save FacData Fpop FT FacT PLavail 
% 
%   EOF 
 
function [RFacList, noRepeats] = FacRandomizer(nmax) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%   This function establishes a random order for the ordered list [1, 
2, 
%   ...,nmax] and returns the values in vector RFacList(1:nmax).  In 
the 
%   event any value in RfacList repeats, the error indicator, 
noRepeats, is 1 
%   otherwisw it is 0. 
%    
%   DFL 9/1/2009 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
noRepeats = 0; 
iset = randi(nmax,1,nmax);  %  This creats random intergers from 1 to 
nmax. 
for nrepeat = 1:nmax        %  This eliminates the repeate values. 
    for i=1:nmax 
        for j=1:nmax 
            if j ~= i 
                if iset(i) == iset(j)   %  Test for repeats and replace 
                    iset(i) = randi(nmax,1); 
                else 
                end 
            else 
            end 
        end 



 

 176 

 

    end 
end 
for i=1:nmax 
        for j=1:nmax 
            if j ~= i 
                if iset(i) == iset(j)   % Make sure no repeats in iset. 
                    noRepeats=1;        % Bad if this is 1. 
                else 
                d en
            else 
            end 
        end 
end 
RFacList = iset; 
%   EOF 
 
function DRCoutput(FDRT,PplanLSP,PmaxLSP,PLmax,PDR,PLplan,PmaxL,PmaxM, 
... 
    PmaxH,PrelimSP,PLtemp,LrandFac,SPLrandFac,SPMrandFac, ... 
    SPHrandFac,Naction,PplanFac) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%  
%   This inputs the DR Controller data. 
% 
%   DFL 8/26/2009 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%   Set the input for the Demand Response (DR) event 
LrandFac=LrandFac'; 
SPLrandFac=SPLrandFac'; 
SPMrandFac=SPMrandFac'; 
SPHrandFac=SPHrandFac'; 
PLtemp=PLtemp'; 
xlswrite('FDRTable', FDRT, 'FDRT', 'D3:Q71'); 
xlswrite('FDRTable', PplanLSP, 'Power', 'D3:J3'); 
xlswrite('FDRTable', PmaxLSP, 'Power', 'D2:J2'  );
xlswrite('FDRTable', PLmax, 'Power', 'D4:J4'); 
xlswrite('FDRTable', PDR, 'Power', 'C5'); 
xlswrite('FDRTable', PLplan, 'Power', 'C6'); 
xlswrite('FDRTable', PmaxL, 'Power', 'D7:J7'); 
xlswrite('FDRTable', PmaxM, 'Power', 'D8:J8'); 
xlswrite('FDRTable', PmaxH, 'Power', 'D9:J9'); 
xlswrite('FDRTable', PrelimSP, 'Prelim', 'B2:O70'); 
xlswrite('FDRTable', PLtemp, 'Power', 'C12:C80'); 
xlswrite('FDRTable', LrandFac, 'Power', 'E12:E80'); 
xlswrite('FDRTable', SPLrandFac, 'Power', 'G12:G80'); 
xlswrite('FDRTable', SPMrandFac, 'Power', 'I12:I80'); 
xlswrite('FDRTable', SPHrandFac, 'Power', 'K12:K80'); 
xlswrite('FDRTable', Naction, 'Power', 'D6:J6'); 
xlswrite('FDRTable', PplanFac,'SumTotal','D3:J71'); 
% 
% 
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%   EOF 
 

 
function [PLachieve] = FacLightRed(PLtemp, nmax) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%  
%   Check each facility controller to determine the level of energy 
%   reduction that is achievable and return this value in 
PLachiev(1:nmax). 
% 
%   DFL 8/26/2009 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
PLachieve(1:nmax) = PLtemp(1:nmax);         %They are all achievable. 
% 
%   EOF 
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Appendix 5-5:  Participation Table for the DR Facilities 

# Bldg # Building Light Temp # Bldg # Building Light Temp
13 4 Carlisle Gym 1 1 36 81 Humanities 1 1
43 9 Marron Hall 1 1 63 82 Woodward Hall 1 1
59 10 Scholes Hall 0 0 15 83 Ceria 1 1
4 11 Anthro Maxwell Musm 0 1 5 84 Art Building 0 1
3 12 Anthropology Annex 1 1 62 85 Student Services 1 1
32 15 Hibben 1 1 29 87 Parish Library 0 1
6 16 Bandelier Hall West 1 1 56 88 S R C 1 1
8 19 Biology Annex 0 1 46 102 New Bookstore 0 1
35 20 Human Resources 1 1 33 103 Hodgin Hall 1 1
14 21 Castetter-Potter 1 1 38 115 Journalism 1 1
16 22 Clark-Reibsomer Hall 1 1 27 119 Farris Engineering 1 1
45 23 Mitchell Hall 1 1 42 122 M E Building 1 1
50 24 Northrop Hall 1 1 17 153 Computing Cntr CIRT 0 0
41 34 Logan Hall 1 1 19 155 Coronado 1 1
55 35 Regener Hall 1 1 52 156 Onate Hall 1 1
23 46 E E C E   CSEL 0 1 1 157 Alvarado 1 1
20 48 Dane Smith Hall 1 1 66 183 Lobo Center 1 1
64 53 Zimmerman Library 0 1 48 193 New Residence 1 1
44 56 Mesa Vista Hall 1 1 18 198 Cornell Parking 1 1
24 57 Economics 1 1 67 205 RIB 1 1
34 58 Hokona 1 1 54 207 Physics & Astronomy 1 1
37 59 Johnson Gym 1 1 7 211 Basic Med Science 0 1
49 60 NM SUB 0 0 10 218 Bratton Hall 1 1
58 61 Santa Clara 1 1 12 227 Cancer RT Center 0 1
28 62 Fine Art C & Library 0 1 51 228 Nursing & Pharmacy 1 1
25 65 Education Complex 1 1 11 229 CR Facility 0 1
57 71 Santa Ana 1 1 47 230 New Mexico Law Center 0 1
65 72 Popejoy Hall 0 0 31 234 Health Sci Library 1 1
61 73 Student Health Facility 0 0 26 248 Family Practice 1 1
40 74 Laguna 1 1 22 249 Dental Programs 1 1
21 75 De Vargas 1 1 9 253 Biomedical Researchx 0 1
2 76 Anderson School of M 1 1 30 266 Health Sci & Serv 1 1
39 77 La Posada 0 0 69 331 Crystal Growth Facility 1 1
60 78 Social Sciences 1 1 68 338 CHTM 1 1

53 79 Ortega Hall 1 1

0 Do Not Participate in the DR Event
1 Participate in the DR Event
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