12-1-2009

Term rewriting with built-in numbers and collection data structures

Stephan Falke

Follow this and additional works at: http://digitalrepository.unm.edu/cs_etds

Recommended Citation
Stephan Falke
Candidate

Computer Science
Department

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

Deepak Kapur, Chairperson

Jürgen Giesl

William McCune

Robert Veroff
Term Rewriting with Built-In Numbers and Collection Data Structures

by

Stephan Falke

Dipl.-Inform., RWTH Aachen University, Germany, 2004

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2009
Acknowledgments

First and foremost, I would like to thank Deepak Kapur for his support and help in developing the ideas presented in this dissertation. His insistence on intuitive explanations and illustrative examples has greatly improved the presentation of the technical material.

Special thanks go to Jürgen Giesl for detailed and helpful comments on drafts of this dissertation, for our enlightening discussions in Aachen, and for inviting me to present my work at several MOVES seminars.

Thanks are also due to Bob Veroff for valuable comments on this dissertation and to Bill McCune for his support in experimenting with Mace4 for the automatic generation of polynomial interpretations.

Sincere thanks go to Peter Schneider-Kamp for proof-reading much of this document and commenting on my ideas.

The implementation of parts of this work in the termination prover AProVE would not have been possible without the help of the following members of the AProVE-team: Peter Schneider-Kamp, Carsten Fuhs, Carsten Otto, and Lars Noschinski.

Finally, my thanks go to Lynne Jacobsen and Lourdes McKenna for their administrative assistance.

This work has been partially supported by NSF grants CCF-0113611, CCF-0541315, and CNS-0831462.

Stephan Falke
Term Rewriting with Built-In Numbers and Collection Data Structures

by

Stephan Falke

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico
Albuquerque, New Mexico

December, 2009
Term Rewriting with Built-In Numbers and Collection Data Structures

by

Stephan Falke

Dipl.-Inform., RWTH Aachen University, Germany, 2004
Ph.D., Computer Science, University of New Mexico, 2009

Abstract

Term rewrite systems have been extensively used in order to model computer programs for the purpose of formal verification. This is in particular true if the termination behavior of computer programs is investigated, and automatic termination proving for term rewrite systems has received increased interest in recent years. Ordinary term rewrite systems, however, exhibit serious drawbacks. First, they do not provide a tight integration of natural numbers or integers. Since the pre-defined semantics of these primitive data types cannot be utilized, reasoning about termination of ordinary term rewrite systems operating on numbers is often cumbersome or even impossible. Second, ordinary term rewrite system cannot accurately model collection data structures such as sets or multisets which are supported by many high-level programming languages such as Maude or OCaml.

This dissertation introduces a new class of term rewrite systems that addresses both of these drawbacks and thus makes it possible to accurately model computer
programs using a high level of abstraction in a natural formalism. Then, the problem of automatically proving termination for this new class of term rewrite systems is investigated. The resulting dependency pair framework provides a flexible and modular method for proving termination. In addition to unrestricted rewriting, termination of rewriting with the innermost strategy or a context-sensitive rewriting strategy is investigated as well.

The techniques for proving termination that are developed in this dissertation have been implemented in the well-known termination prover \textsc{AProVE}. An empirical evaluation shows that the implementation succeeds in automatically proving termination of a large collection of computer programs that are modeled using the new class of term rewrite systems developed in this work.

Next, the use of this new class of term rewrite systems in the context of inductive theorem proving is investigated. This makes it possible to reason about the semantics of computer programs. The inductive theorem proving method developed in this dissertation provides a tight integration of inductive reasoning with a decision procedure, thus resulting in a high degree of automation.

Finally, conditions under which the inductive theorem proving method is guaranteed to succeed in proving or disproving a conjecture without any user intervention are identified. Thus, the inductive theorem proving method can be applied as a “black box” if these conditions are satisfied.

The inductive theorem proving method and checks for the conditions under which it provides a decision procedure have been implemented in the prototype prover \textsc{Sail2}. An empirical evaluation shows that \textsc{Sail2} is very efficient, and the high degree of automation makes it possible to use \textsc{Sail2} in a push-button mode for formal program verification.
Contents

List of Figures xv

1 Introduction 1

1.1 Using TRSs for Formal Verification 2
1.2 Shortcomings of Ordinary TRSs 3
1.3 Overview of Contributions 7
1.4 Detailed Outline ... 9
 1.4.1 Termination and Operational Termination 11
 1.4.2 Termination under Strategies 13
 1.4.3 Inductive Reasoning 17
1.5 Structure of the Dissertation 18
1.6 Published Contributions and New Contributions 23
1.7 Related Work ... 25

2 Many-Sorted Term Rewriting 27
Contents

6 DP Processors Operating on Dependency Pairs 76
6.1 Unsatisfiable Constraints ... 77
6.2 Reducible Left-Hand Sides ... 78
6.3 Dependency Graphs ... 79
6.4 Reducing Right-Hand Sides .. 83
6.5 Dependency Pair Narrowing ... 84
6.6 Subterm Criterion ... 87
6.7 Summary ... 91

7 Reduction Pairs 93
7.1 Ordinary Reduction Pairs ... 94
7.2 $\mathcal{Th}_\mathbb{N}$-Reduction Pairs 97
7.3 $\mathcal{Th}_\mathbb{Z}$-Reduction Pairs 103
7.4 Summary ... 111

8 Usable Rules and Function Dependencies 113
8.1 Usable Rules .. 114
8.2 Removal of Rules .. 116
8.3 Function Dependencies ... 120
8.4 Removal of Rules Revisited .. 127
8.5 Summary ... 128
Contents

9 Implementation 130

9.1 Implementing EDG 130

9.2 Generation of $\mathcal{T}_\mathcal{Z}$-Polynomial Interpretations 133

9.3 Summary 140

10 Conditional Rewriting 142

10.1 Conditional CERSs 144

10.2 Termination and Operational Termination 147

10.3 Elimination of Conditions 151

10.4 Summary 154

11 Context-Sensitive Rewriting and Dependency Pairs 156

11.1 Context-Sensitive Rewriting 158

11.2 Context-Sensitive Conditional Rewriting 163

11.3 Context-Sensitive Dependency Pairs 164

11.4 Summary 171

12 Context-Sensitive DP Processors 173

12.1 Dependency Graphs 174

12.2 Subterm Criterion 177

12.3 Reduction Pairs 178

12.4 Function Dependencies 180
Contents

15.2 Future Work ... 243

A Proofs ... 245

A.1 Proofs from Chapter 2 ... 245
A.2 Proofs from Chapter 3 ... 248
A.3 Proofs from Chapter 4 ... 251
A.4 Proofs from Chapter 5 ... 251
A.5 Proofs from Chapter 6 ... 254
A.6 Proofs from Chapter 7 ... 261
A.7 Proofs from Chapter 8 ... 266
A.8 Proofs from Chapter 9 ... 273
A.9 Proofs from Chapter 10 ... 274
A.10 Proofs from Chapter 11 .. 281
A.11 Proofs from Chapter 12 .. 291
A.12 Proofs from Chapter 13 .. 309
A.13 Proofs from Chapter 14 .. 316

B Evaluation .. 326

B.1 Termination ... 326
B.2 Context-Sensitive Termination .. 329
B.3 Induction ... 330

xiii
List of Figures

1.1 Maude module for Example 1.3. ... 7
1.2 OCaml program for Example 1.3. 8
1.3 Maude module for Example 1.8. 15
3.1 Numbers as canonizable theories. ... 46
3.2 Commonly used canonizable collection data structures. 48
4.1 Grammar for a simple imperative programming language. 61
9.1 Transformation rules for the generation of polynomial interpretations. 137
9.2 Obtaining conditions on the parameters. 139
10.1 Derivation rules for the generation of proof trees. 150
11.1 Replacement maps allowed for context-sensitive rewriting. 161
13.1 The inference system \(I \). .. 205
14.1 The inference system \(I' \). ... 225
Chapter 1

Introduction

Computer programs, whether in the form of software or hardware, have become ubiquitous. They are embedded in medical equipment, car and aircraft control systems, and electrical power systems, to name just a few examples. For many of these systems, failures would cause severe loss of money, time, or even human life. Therefore, it is mandatory that such systems operate correctly and reliably.

Due to the complexity of modern computer programs, ensuring correctness is a challenging task. It is thus not surprising that computer programs are error-prone and often contain subtle mistakes that are difficult to detect and repair. Several examples of mistakes in computer programs and the losses caused by them are given in [172].

Currently, ensuring reliability of computer programs is usually attempted using extensive simulation and testing. While these approaches have their merits, they are typically inadequate for complex computer programs due to the computational cost of the task. It is prohibitively expensive to perform exhaustive testing on all or even a substantial fraction of possible scenarios due to the large (or even infinite) number of possible configurations of a typical computer program. Due to this limitation,
testing does not provide a proof of correctness.

Formal verification provides an alternative to testing. The aim of formal verification is a (mathematical) proof that the computer program behaves correctly. For this, computer programs are modelled using a mathematical formalism and it is formally proved that this model satisfies its specification. Thus, if formal verification is successful, then it provides a mathematical guarantee of correctness of the computer program, up to the accuracy of the formal model. Notice that, in contrast to testing, formal verification considers all possible scenarios.

One of the most important questions about a computer program is whether it is terminating, i.e., whether it always produces an answer and does not diverge. One of the oldest results in theoretical computer science (which even predates the first general, programmable computer) states that this “halting problem” is undecidable [166]. Termination is also of interest for reactive systems which are typically assumed to run continuously. For such computer systems, termination means that the system reacts to an input within a finite amount of time, i.e., that the functions performing the actions of the reactive system are terminating.

Complementary to termination is partial correctness of a computer program. Partial correctness denotes the property that a computer program behaves correctly (w.r.t. its specification). Termination and partial correctness together constitute total correctness of a computer program.

1.1 Using TRSs for Formal Verification

Term rewrite systems (TRSs) have been extensively used in order to provide a convenient model of computer programs that makes it possible to use formal verification techniques. Using TRSs, the correctness of computer programs can be investigated
Chapter 1. Introduction

by considering questions about TRSs.

If a computer program is modeled by a TRS in a non-termination preserving way, i.e., if termination of the TRS implies termination of the computer program, then methods for proving termination of TRSs can be used for proving termination of computer programs. The problem of proving termination of TRSs has been studied extensively in the past, see [173] for a recent survey. An important advantage of recent methods is that they can be fully automated, thus making it possible to prove termination of computer programs without any user intervention.

In contrast to proving termination, investigating the partial correctness of computer programs is more challenging and typically requires substantial user intervention. First, it needs to be determined which properties the computer program should satisfy. This requires insight and expertise, and it is unlikely that this part can be automated. Once the requirements on the computer program have been determined, it needs to be shown that the computer program does indeed satisfy them. Since the requirements are often stated in (extensions of) first-order predicate logic, a complete automation of this task is not possible, either.

Thus, attention is often restricted to certain classes of properties. For computer programs modeled by TRSs, these are often properties that can be expressed by (implicitly universally quantified) equations that express certain aspects of the functions that are defined by the TRS. Since the functions in a TRS are often defined using recursion, proving these equations typically requires inductive reasoning.

1.2 Shortcomings of Ordinary TRSs

Most computer programs and algorithms make use of natural numbers or integers. Ordinary TRSs, however, only support an inelegant handling of those primitives.
Chapter 1. Introduction

Natural numbers can be modeled using a Peano representation with \mathcal{O} and s (successor), but then ordinary TRSs require a specification of commonly used operators on natural numbers (such as $+$ and $>$) in the form of rewrite rules as well. Using this approach, even basic knowledge about properties of natural numbers is not directly available, thus making reasoning about algorithms more complicated and cumbersome.

Example 1.1. Consider the following simple while-loop from an imperative program operating on natural numbers:

```plaintext
while (x >= y) {
    y++
}
```

Using an ordinary TRS with a Peano representation of natural numbers results in the following rewrite rules:

\[
\begin{align*}
\text{eval}(x, y) & \rightarrow \text{if}(\text{geq}(x, y), x, y) \\
\text{if}(\text{true}, x, y) & \rightarrow \text{eval}(x, s(y)) \\
\text{geq}(x, \mathcal{O}) & \rightarrow \text{true} \\
\text{geq}(\mathcal{O}, s(y)) & \rightarrow \text{false} \\
\text{geq}(s(x), s(y)) & \rightarrow \text{geq}(x, y)
\end{align*}
\]

While the while-loop is clearly terminating since the difference $x - y$ is decreasing and bounded by 0, it is much harder to (automatically) establish termination of the TRS. Indeed, only a single termination tool for TRSs, namely the well-known tool AProVE [84], could establish termination of this example in the *Termination Competition 2007* [161]. To do so, AProVE relies on a complicated and specialized technique that re-discovers the semantics of geq [89].

Automatically establishing termination of TRSs is even harder if integers instead of natural numbers are considered. A representation using \mathcal{O}, s, and p (predecessor)
Chapter 1. Introduction

results in non-free constructors since, e.g., the syntactically distinct term \(O, s(p(O)) \), and \(p(s(O)) \) all denote the integer 0. This non-freeness can be modeled using the equations \(p(s(x)) \approx s(p(x)) \) and \(p(s(x)) \approx x \) which identify distinct terms that represent the same integer. Automated termination analysis of TRSs with non-free constructors is rarely investigated and much less developed than for ordinary TRSs. The case of AC-rewriting (i.e., if certain function symbols are assumed to be associative and commutative) has been studied extensively, see, e.g., [108, 150, 129, 118, 130, 31]. Since the equations for integers are not AC, these methods do not apply. The more general method of [81] cannot be applied to integers, either, since the equation \(p(s(x)) \approx x \) is collapsing.

Example 1.2. If the imperative program from Example 1.1 is considered on integers instead of natural numbers, then the resulting rewrite rules are more complex:

\[
\begin{align*}
\text{eval}(x, y) &\rightarrow \text{if}(\text{geq}(x, y), x, y) \\
\text{if}(\text{true}, x, y) &\rightarrow \text{eval}(x, s(y)) \\
\text{geq}(O, O) &\rightarrow \text{true} \\
\text{geq}(p(O), O) &\rightarrow \text{false} \\
\text{geq}(x, s(y)) &\rightarrow \text{geq}(p(x), y) \\
\text{geq}(x, p(y)) &\rightarrow \text{geq}(s(x), y) \\
\text{geq}(x, O) &\rightarrow^* \text{true} \mid \text{geq}(s(x), O) \rightarrow \text{true} \\
\text{geq}(x, O) &\rightarrow^* \text{false} \mid \text{geq}(p(x), O) \rightarrow \text{false}
\end{align*}
\]

Notice that conditional rewrite rules are needed in order to define \text{geq}. These conditional rules can be transformed into unconditional rules for the purpose of proving termination (see [137] and Chapter 10), but the rewrite relation modulo the set of equations \(\mathcal{E} = \{ p(s(x)) \approx s(p(x)), p(s(x)) \approx x \} \) is non-terminating because \(\text{geq}(O, s(O)) \sim_{\mathcal{E}} \text{geq}(O, p(s(O))), p(s(O)) \rightarrow_{\mathcal{R}} ^{2} \text{geq}(p(s(O)), s(O)) \sim_{\mathcal{E}} \text{geq}(O, s(O)) \).

\[\text{\bigstar}\text{Here, } \sim_{\mathcal{E}} \text{ denotes equivalence up to the equations in } \mathcal{E} \text{ and } \rightarrow_{\mathcal{R}} \text{ denotes application of a rewrite rule from } \mathcal{R}, \text{ replacing an instance of a left-hand side by the corresponding}\]

5
In addition to modelling integers, non-free constructors can also be used to model \textit{collection data structures} such as sets or multisets where, for instance, the set \{a, b\} can be represented by the equivalent, but distinct, terms \texttt{ins(a, ins(b, \emptyset))} and \texttt{ins(b, ins(a, \emptyset))}. Notice that many real-life programming languages such as \texttt{Java} and \texttt{OCaml} support collection data structures. Furthermore, the declarative specification and programming language \texttt{Maude} [43] makes it possible to use collection data structures by specifying suitable equational attributes. Thus, support for collection data structures is mandatory in order to accurately model programs written in these high-level programming languages.

\textbf{Example 1.3.} Figure 1.1 contains a \texttt{Maude} module that defines the functions \texttt{length} and \texttt{reverse} operating on lists. Here, lists are built using the constructors \texttt{nil} (empty list), \texttt{elem} (single-element lists containing an integer), and \texttt{++} (concatenation of two lists). This representation of lists makes it possible to easily parallelize computations, in contrast to the more intuitive representation using \texttt{nil} and \texttt{cons}. Notice that concatenation of lists is associative and has \texttt{nil} as a unit element. Since this unit element gives rise to the collapsing equations \(x \texttt{++} \texttt{nil} \approx x\) and \(\texttt{nil} \texttt{++} y \approx y\), termination cannot be investigated using existing methods. The same example can also be written in \texttt{OCaml} using the pre-processor \texttt{Moca} [29], see Figure 1.2. These examples can be modeled using the following rewrite rules (where \(\langle \cdot \rangle\) is used instead of \texttt{elem} and \texttt{++} is written \(++\)):

\[
\begin{align*}
\text{length}(\text{nil}) & \rightarrow 0 \\
\text{length}(\langle n \rangle) & \rightarrow 1 \\
\text{length}(k ++ l) & \rightarrow \text{length}(k) + \text{length}(l) \\
\text{reverse}(\text{nil}) & \rightarrow \text{nil} \\
\text{reverse}(\langle n \rangle) & \rightarrow \langle n \rangle \\
\text{reverse}(k ++ l) & \rightarrow \text{reverse}(l) ++ \text{reverse}(k)
\end{align*}
\]

\footnotetext{instance of a right-hand side. These concepts are formally defined in Chapter 2.}
Chapter 1. Introduction

In order to model the semantical properties of list concatenation, the set of equations \(E = \{ x ++ (y ++ z) \approx (x ++ y) ++ z, \ x ++ \text{nil} \approx x, \ \text{nil} ++ y \approx y \} \) can be used. \(\triangle \)

1.3 Overview of Contributions

In order to obtain TRSs that can elegantly model natural numbers, integers, and collection data structures, this dissertation introduces a generalized form of TRSs.

\(\triangle \) Notice that rewriting modulo these properties is non-terminating since \(\text{reverse}(\text{nil}) \sim_\varepsilon \text{reverse}(\text{nil} ++ \text{nil}) \rightarrow_\mathcal{R} \text{reverse}(\text{nil}) + \text{reverse}(\text{nil}) \sim_\varepsilon \text{reverse}(\text{nil} ++ \text{nil}) + \text{reverse}(\text{nil}) \rightarrow_\mathcal{R} \ldots \)

The class of rewrite systems considered in this dissertation thus uses a different rewrite relation that uses the same idea that is also used in Maude and Moca. This rewrite relation is formally defined in Chapter 3.
For these TRSs, numbers or integers are built-in, thus making basic knowledge about them directly available. Furthermore, this class of TRSs makes it possible to use collection data structures.

As discussed above, one of the main questions about TRSs is termination, and most of this dissertation is concerned with methods for showing termination of TRSs with built-in numbers and collection data structures. In addition to full rewriting, termination under strategies is investigated as well since this is often needed to accurately model the semantics of programming languages. This includes the innermost strategy and context-sensitive strategies.

Having built-in numbers often makes reasoning about termination conceptually easier than using a Peano representation (or a representation using non-free con-
Chapter 1. Introduction

structors for integers). Indeed, termination of the while-loop from Example 1.1 can easily be established with an intuitive proof using the methods developed in this dissertation, regardless of whether built-in natural numbers or integers are considered. Furthermore, this dissertation presents the first powerful methods for reasoning about termination of TRSs operating on collection data structures.

In addition to termination analysis, this dissertation also contributes to the use of inductive reasoning in the context of showing partial correctness of computer programs that are modeled using TRSs with built-in numbers and collection data structures. Here, an additional interest is to identify a class of equational conjectures where inductive reasoning provides a decision procedure.

The contributions of this dissertation have been fully implemented, thus proving their practicality. The termination techniques have been implemented as part of the award-winning termination tool AProVE [84]. The inductive proof procedure and methods for determining whether a given equational conjecture falls into the class of conjectures whose inductive validity has been identified to be decidable have been implemented in the tool Sail2.

1.4 Detailed Outline

The first contribution of this dissertation is the definition of a class of conditional rewrite systems with built-in natural numbers or integers. Basic knowledge about those numbers is available in the form of quantifier-free formulas from Presburger arithmetic that are attached to the rewrite rules in the form of constraints. Application of a rewrite rule is then only possible if the constraint becomes true in the natural numbers or integers after being instantiated by the matching substitution.

Example 1.4. Consider the while-loop from Example 1.1. It can be translated
Chapter 1. Introduction

into the following rewrite rule:

\[
\text{eval}(x, y) \rightarrow \text{eval}(x, y + 1) \ [x \geq y]
\]

Notice that the condition of the while-loop is directly translated into a constraint from Presburger arithmetic. Termination of this system can easily been shown using the methods developed in this dissertation by observing that \(x - y\) on the left side of the rule is bigger than \(x - (y + 1)\) on the right side, where the constraint \(x \geq y\) additionally implies that \(x - y\) is bounded by 0.

Example 1.5. This example shows a quicksort algorithm that takes a finite set and produces a sorted list of its elements. For this, sets are built from the empty set \(\emptyset\) using the constructor \(\text{ins}\) to add an element to a set.

\[
\begin{align*}
\text{app}(\text{nil}, z) & \rightarrow z \\
\text{app}(\text{cons}(x, y), z) & \rightarrow \text{cons}(x, \text{app}(y, z)) \\
\text{split}(x, \emptyset) & \rightarrow \langle \emptyset, \emptyset \rangle \\
\text{split}(x, z) & \rightarrow^* \langle zl, zh \rangle \mid \text{split}(x, \text{ins}(y, z)) \\
\text{split}(x, z) & \rightarrow^* \langle zl, zh \rangle \mid \text{split}(x, \text{ins}(y, z)) \\
\text{qsort}(\emptyset) & \rightarrow \text{nil} \\
\text{split}(x, y) & \rightarrow^* \langle yl, yh \rangle \mid \text{qsort}(\text{ins}(x, y)) \\
\text{qsort}(\emptyset) & \rightarrow \text{app}(\text{qsort}(yl), \text{cons}(x, \text{qsort}(yh)))
\end{align*}
\]

Here, \(\text{split}(x, y)\) returns a pair of sets \(\langle yl, yh \rangle\) where \(yl\) contains all \(y \in ys\) such that \(x > y\) and \(yh\) contains all \(y \in ys\) such that \(x \not> y\). Intuitively, the condition
split(x, ys) →* ⟨yl, yh⟩ of the second qsort-rule means that split(x, ys) first needs to be rewritten recursively until it matches ⟨yl, yh⟩ (thus giving a binding to these variables) before qsort(ins(x, ys)) may be reduced using that rule.

CCERSs make it possible to model a wide class of programs in an intuitive and natural way. The main part of this dissertation investigates the automated termination analysis of such systems. Furthermore, inductive reasoning with a restricted class of these systems is investigated.

1.4.1 Termination and Operational Termination

Termination and operational termination of term rewriting has been extensively studied (see, e.g., [173] for a recent survey), but none of the formerly developed methods can directly be applied to the class of conditional rewrite systems considered here due to the built-in numbers and the use of collection data structures.

First, only unconditional CCERSs (i.e., CERSs) are considered and automated termination analysis methods for CERSs are developed. For ordinary TRSs, one of the most widely used methods for termination analysis is the dependency pair method [12]. The main idea of the dependency pair method involves showing the absence of infinite chains build from recursive calls. A variety of techniques to this extent have been developed (see, e.g., [88, 95]), and the dependency pair framework [86] provides a way for combining these techniques in a flexible manner.

It is shown in this dissertation that the main idea of the dependency pair method (i.e., termination if there are no infinite chains of recursive calls) can be extended to CERSs, giving rise to a dependency pair framework. Furthermore, it is shown that the most important techniques employed in the dependency pair framework for ordinary TRSs can be generalized to CERSs:
1. The dependency graph technique [12], which decomposes a termination problem into several independent termination problems. The newly obtained termination problems can then be handled independently of each other.

2. The subterm technique [95], which can easily handle many termination problems, in particular termination problems obtained from functions defined using primitive recursion.

3. The reduction pair technique [117, 12], which applies well-founded relations in order to simplify a termination problem. The main novelty of this dissertation in this regard is a simple and intuitive way to use polynomial interpretations [119] with negative coefficients in such a way that the constraints from Presburger arithmetic that are attached to the rewrite rules are fully utilized.

In addition to the techniques based on methods initially developed for ordinary TRSs, this dissertation also introduces several techniques that are specifically tailored towards CERSs.

In order to show termination of CCERSs, it is shown in this dissertation that operational termination [127, 59] of CCERSs can be reduced to termination of unconditional CERSs by a simple syntactic transformation. Operational termination differs from (regular) termination by also ensuring that evaluation of the conditions of a rewrite rule does not diverge. This property has been investigated for ordinary conditional TRSs and is typically handled using a simulation of the evaluation of the conditions using an unconditional rewrite system [136, 79].

Example 1.6. Continuing Example 1.5, this example illustrates the syntactic transformation from CCERSs into CERSs. The conditional rewrite rule

\[
\text{split}(x, ys) \rightarrow^* \langle yl, yh \rangle \mid \text{qsort(ins}(x, ys)) \rightarrow \text{app(qsort}(y)l, \text{cons}(x, \text{qsort}(y)h)))
\]

is transformed into the following two (unconditional) rewrite rules:
Chapter 1. Introduction

\[
\begin{align*}
\text{qsort}(\text{ins}(x, ys)) & \rightarrow U(\text{split}(x, ys), x, ys) \\
U((yl, yh), x, ys) & \rightarrow \text{app}(\text{qsort}(yl), \text{cons}(x, \text{qsort}(yh)))
\end{align*}
\]

Here, \(U \) is a fresh function symbol that enforces that \(\text{split}(x, ys) \) is reduced to \(\langle yl, yh \rangle \) before the reduction of \(\text{qsort}(\text{ins}(x, ys)) \) produces \(\text{app}(\text{qsort}(yl), \text{cons}(x, \text{qsort}(yh))) \).

The other conditional rewrite rules are handled similarly. △

1.4.2 Termination under Strategies

In order to model the semantics of programming languages more closely using the term rewriting framework, termination of CERSs under the following reduction strategies is investigated.

Innermost Strategy. In the innermost strategy, a reduction is only allowed if all proper subterms below the position where the reduction takes place are in normal form, i.e., cannot be reduced any further. This strategy corresponds to the eager evaluation strategy used by many functional programming languages such as OCaml or SML. Also, virtually all imperative programming languages employ a call-by-value semantics, which, at the level of TRSs or CERSs, can be modelled using the innermost strategy.

For standard TRSs, termination under the innermost strategy has been considered in the dependency pair framework [12, 86, 88]. It is well-known that there exist TRSs which are terminating using the innermost strategy, but that are not terminating for full rewriting. But even for TRSs that are terminating for both innermost rewriting and full rewriting, it is often easier to establish this for the innermost case. In particular, this is true for automated methods such as the ones considered in this dissertation.
Example 1.7. The following ordinary TRS is due to Toyama [165]:

\[
\begin{align*}
 f(a, b, z) & \rightarrow f(z, z, z) \\
 g(x, y) & \rightarrow x \\
 g(x, y) & \rightarrow y
\end{align*}
\]

Rewriting with this TRS is not terminating because of the following cyclic reduction:

\[
\begin{align*}
 f(a, b, g(a, b)) & \rightarrow_R f(g(a, b), g(a, b), g(a, b)) \\
 f(a, g(a, b), g(a, b)) & \rightarrow_R f(a, b, g(a, b)).
\end{align*}
\]

Notice that the first step in this reduction is not allowed by the innermost strategy since \(g(a, b)\) is not in normal form. Indeed, this TRS is terminating using the innermost strategy, and termination tools based on the dependency pair framework can determine this automatically.

Given this motivation, it is investigated how the methods discussed in Section 1.4.1 can be adapted to show termination of rewriting with CERSs using the innermost strategy.

Context-Sensitive Strategies. Context-sensitive rewriting [121, 123] has been introduced as a flexible paradigm that provides a bridge between the abstract world of term rewriting and the more applied setting of declarative specification and programming languages such as Maude [43] (see [122] for the close relationship between context-sensitive rewriting and Maude’s strat-annotations). In context-sensitive rewriting, a replacement map specifies which arguments of a function symbol may be reduced and which arguments are “frozen”.

Example 1.8. The Maude module in Figure 1.3 defines a function \texttt{from} that lazily generates the infinite list of integers bigger than its argument. Furthermore, a function \texttt{take} that extracts a finite prefix of a lazy list is defined. The following rewrite rules are easily obtained from the Maude module:
Chapter 1. Introduction

fmod LAZY-LISTS is
 protecting INT .

 sorts List LazyList .

 op nil : -> List [ctor] .
 op lazycons : Int LazyList -> LazyList [ctor strat (1)] .
 op from : Int -> LazyList .
 op take : Int LazyList -> List .

 var M N : Int .
 var LL : LazyList .

 eq from(N) = lazycons(N, from(N + 1)) .
 ceq take(N, LL) = nil if N <= 0 .
 ceq take(N, lazycons(M, LL)) = cons(M, take(N - 1, LL)) if N > 0 .
endfm

Figure 1.3: Maude module for Example 1.8.

\[
\begin{align*}
 \text{from}(n) & \rightarrow \text{lazycons}(n, \text{from}(n + 1)) \\
 \text{take}(n, ll) & \rightarrow \text{nil} [n \leq 0] \\
 \text{take}(n, \text{lazycons}(m, ll)) & \rightarrow \text{cons}(m, \text{take}(n - 1, ll)) [n > 0]
\end{align*}
\]

Notice that regular rewriting with these rules is not terminating since \(\text{from}(0) \rightarrow^\mathcal{R} \text{lazycons}(0, \text{from}(0 + 1)) \rightarrow^\mathcal{R} \text{lazycons}(0, \text{lazycons}(0 + 1, \text{from}(0 + 1 + 1))) \rightarrow^\mathcal{R} \ldots \).

The reason for this is that the lazy behavior employed by Maude is not accurately modeled. The strat-annotation for the constructor \texttt{lazycons} specifies that the second argument of \texttt{lazycons} is frozen, i.e., reductions may not be applied in this argument. This behavior can be modeled using context-sensitive rewriting with a replacement map where \(\mu(\text{lazycons}) = \{1\} \) since this disallows reductions in the second argument of \texttt{lazycons} (see Chapter 11 for details). \(\triangle \)

Context-sensitive rewriting is relevant for (eager) functional and imperative pro-
Chapter 1. Introduction

gramming languages as well. For example, context-sensitive rewriting is useful for modeling the following:

1. The non-strict semantics of if-then-else, where the then- or the else-part is only evaluated after it has been established whether the condition of the if-statement evaluates to true or false. This non-strict behavior can easily be modeled by a ternary function symbol if whose second and third arguments are frozen:

 \[
 \begin{align*}
 \text{if}(\text{true}, x, y) & \rightarrow x \\
 \text{if}(\text{false}, x, y) & \rightarrow y
 \end{align*}
 \]

2. The short-cut semantics of the Boolean connectives “and” and “or”, where conjuncts or disjuncts are evaluated from left to right and only if they are needed. This can easily be modeled using binary function symbols and and or whose second argument is frozen:

 \[
 \begin{align*}
 \text{and}(\text{true}, y) & \rightarrow y \\
 \text{and}(\text{false}, y) & \rightarrow \text{false} \\
 \text{or}(\text{true}, y) & \rightarrow \text{true} \\
 \text{or}(\text{false}, y) & \rightarrow y
 \end{align*}
 \]

Furthermore, context-sensitive rewriting makes it possible to model lazy evaluation as used in functional programming languages such as Haskell (for more on the relationship between lazy evaluation and context-sensitive rewriting, see [124]).

Dependency pair methods for proving context-sensitive termination for ordinary rewriting have recently been developed [2, 1]. In this dissertation, the methods discussed in Section 1.4.1 are adapted in order to show context-sensitive termination of CERSs. Furthermore, it is shown that the transformation from CCERSs to CERSs can be applied in combination with context-sensitive rewriting strategies.
Chapter 1. Introduction

1.4.3 Inductive Reasoning

Inductive reasoning has been widely used in the context of showing partial correctness of programs, with the majority of research in the area being done in the 1980’s and 1990’s (see [170, 39, 46] for surveys on inductive reasoning). One of the main drawbacks of inductive reasoning as identified by that research is the need for user interaction in the proof process, i.e., a complete automation is nearly impossible. Due to this, inductive reasoning cannot be used in a push-button mode and is typically only applicable by trained experts who can assist the inductive reasoning tool.

More recently, research on identifying conditions under which inductive reasoning provides a decision procedure has been initiated [111, 81, 82, 104]. If the conditions identified in this work are satisfied, then an inductive reasoning tool can be used in a push-button mode without any user interaction. This previous work, however, imposes the following strong restrictions:

1. The function definitions in the term rewrite systems have to be of a very simple shape. In particular, a function may only make recursive calls to itself and not to any other auxiliary function. Furthermore, this restriction also disallows mutually recursive function definitions.

2. The equational conjectures whose inductive validity is to be determined need to be linear, i.e., each variable may only occur once in each side of the conjecture.

The contributions of this dissertation for inductive reasoning based on the term rewriting framework are two-fold:

1. An inductive proof method for a restricted class of CERSs is developed. This proof method combines inductive reasoning with a decision procedure, thus

3 The dual problem of determining conditions under which a proof attempt is guaranteed to fail has been investigated in [158, 159, 160]. Furthermore, methods to automatically fix failed proof attempts are presented in [158, 160].
Chapter 1. Introduction

obtaining a powerful proof method that can be used in a push-button mode and does not require any user intervention.

2. The class of conjectures where inductive reasoning provides a decision procedure is increased significantly compared to [111, 81, 82, 104]. In particular, the two shortcomings discussed above are removed.

Example 1.9. For two lists built using nil and cons, \texttt{prefix}(xs, ys) computes the longest prefix \(p\) of \(xs\) such that all elements of \(p\) occur in \(ys\) in the same order as in \(p\) (but not necessarily consecutively).

\[
\begin{align*}
\text{prefix}(\text{nil}, ys) & \rightarrow \text{nil} \\
\text{prefix}(&\text{cons}(x, xs), \text{nil}) \rightarrow \text{nil} \\
\text{prefix}(\text{cons}(x, xs), &\text{cons}(y, ys)) \rightarrow \text{cons}(x, \text{prefix}(xs, ys)) \llbracket x \simeq y \rrbracket \\
\text{prefix}(&\text{cons}(x, xs), \text{cons}(y, ys)) \rightarrow \text{prefix}(\text{cons}(x, xs), ys) \llbracket x \not\simeq y \rrbracket
\end{align*}
\]

Notice the use of (dis-)equality constraints in the definition of \texttt{prefix}, which requires an inductive proof method that can utilize these constraints.

The inductive validity of the (false) conjecture \texttt{prefix}(xs, ys) \equiv xs can be seen to be decidable by (a slight adaptation of) the conditions developed in [111, 81, 82, 104]. Using [111, 81, 82, 104], it is not known whether the inductive validity of the (true) conjecture \texttt{prefix}(xs, xs) \equiv xs is decidable since this conjecture is not linear. Using the new conditions developed in this dissertation, it can be established a priori that the inductive validity of this conjecture is decidable.

1.5 Structure of the Dissertation

Chapter 1. The research topic of this dissertation is introduced and motivated in this chapter. The significance of the topic is illustrated using several example pro-
Chapter 1. Introduction

grams written in OCaml and Maude. Related work is discussed and the contributions of this dissertation are summarized.

Chapter 2. Since (many-sorted) term rewrite systems are used as a convenient model of computer programs in this dissertation, the second chapter recalls the relevant concepts and definitions.

Chapter 3. As shown in Section 1.2, ordinary TRSs have (at least) two severe shortcomings:

1. Knowledge about natural numbers or integers is not available, thus making reasoning about the computer programs modeled by TRSs cumbersome and complicated.

2. Collection data structures such as sets or multisets are not suitably supported by ordinary TRSs since their specification using equational attributes typically results in a non-terminating rewrite relation.

This chapter introduces constrained equational rewrite systems (CERSs), a new class of term rewrite systems that addresses both of these shortcomings.

Chapter 4. In order to show the versatility of the class of term rewrite systems introduced in Chapter 3, this brief chapter presents a translation from a simple class of imperative programs into CERSs. This translation is sound for termination proving, i.e., the methods to prove termination of CERSs that are developed in this dissertation can then be applied in order to show termination of imperative programs.

Chapter 5. This chapter starts the investigation of methods to (automatically) prove termination and innermost termination of CERSs. To this extent, the modular
Chapter 1. Introduction

dependency pair framework [12, 86] is adapted to CERSs and it is shown that the absence of infinite chains of recursive calls is equivalent to termination. This is true for both unrestricted rewriting and rewriting with the innermost strategy.

Chapter 6. Here, first techniques that can be applied within the dependency pair framework for CERS are developed. These techniques include:

- An adaptation of the dependency graph technique [12], which decomposes a termination problem into several independent termination problems. The newly obtained termination problems can then be handled independently of each other.

- An adaptation of the subterm technique [95], which can easily handle many termination problems, in particular termination problems obtained from functions defined using primitive recursion.

- A new technique, called dependency pair narrowing, which combines a recursive call from \(f \) to \(g \) with a recursive call from \(g \) to \(h \), resulting in a recursive call from \(f \) to \(h \).

This chapter also presents several additional techniques.

Chapter 7. Many commonly used techniques for showing termination are based on well-founded relations. In particular, one of the most important techniques used in the dependency pair framework is based on reduction pairs [117, 12]. This chapter first shows that these (ordinary) reduction pairs can be applied to CERSs as well. Then, specialized notions of reduction pairs that take advantage of the built-in natural numbers or integers are developed. These new kinds of reduction pairs are often crucial for a successful termination proof and provide a simple and intuitive way to use polynomial interpretations [119] with negative coefficients.
Chapter 1. Introduction

Chapter 8. When using the techniques based on reduction pairs from Chapter 7, it becomes necessary to satisfy certain conditions that are derived from all rewrite rules of the CERS whose termination is to be shown. These conditions are often hard or impossible to satisfy, and this chapter shows that it suffices to satisfy these conditions only for a syntactically determined subset of all rewrite rules. This makes it easier to satisfy these conditions and may result in a successful termination proof which is not possible without the refinement presented in this chapter.

Chapter 9. After presenting various techniques for proving termination in Chapters 6–8, this chapter discusses methods to implement two of these techniques, namely the dependency graph technique and the automatic generation of the new kind of reduction pairs based on polynomial interpretations with negative coefficients. While an implementation of the remaining techniques is relatively straightforward, these two techniques require the development of dedicated methods.

Chapter 10. This chapter extends CERSs to conditional CERSs (CCERSs). In conditional rewriting, the rewrite rules are equipped with conditions that need to be established by recursively rewriting them before a rewrite rule may be applied. Conditional rewriting needs a more complex notion of termination, operational termination, that also ensures that the evaluation of the conditions is terminating. It is shown that operational termination of a CCERS can be reduced to (regular) termination of an unconditional CERS. Thus, the techniques from Chapters 5–8 become applicable for proving operational termination of CCERSs and it is not necessary to develop new methods in order to reason about operational termination of CCERSs.

Chapter 11. After considering unrestricted and innermost rewriting with CERSs in Chapters 3–8, this chapter considers context-sensitive rewriting strategies for CERSs. In context-sensitive rewriting, a reduction may only take place in certain
Chapter 1. Introduction

argument positions of the function symbols, resulting in a fine-grained control of the evaluation order. This makes it very challenging to reason about termination of context-sensitive rewriting with CERSs. In this chapter, a dependency pair framework for context-sensitive CERSs is developed and it is shown that the main idea of the dependency pair method can be extended to context-sensitive CERSs.

Chapter 12. After developing a dependency pair framework for context-sensitive CERSs in the previous chapter, this chapter adapts the most important techniques from Chapters 6–8 to the context-sensitive case. This includes the dependency graph technique, the subterm technique, and the refined version of the technique based on reduction pairs from Chapter 8.

Chapter 13. This chapter develops an inductive proof method for CERSs which can be used to verify properties of the functions specified by a CERS. The inductive proof method couples inductive reasoning with a decision procedure, thus resulting in a powerful and completely automatic proof method.

Chapter 14. It is well-known that inductive theorem proving often requires substantial user interaction in order to obtain a successful proof. This is undesirable in many cases since this kind of interaction typically requires a trained expert. It is thus important to identify a class of conjectures where the inductive proof method is known to succeed without any user interaction. This chapter develops several sufficient conditions for this, substantially generalizing previous work on identifying conjectures with this property.

Chapter 15. The methods presented in this dissertation have been fully implemented as part of the termination tool AProVE and in the inductive reasoning tool
Chapter 1. Introduction

Sail2, respectively. Here, an empirical evaluation of these implementations is summarized. The detailed empirical evaluation is available online and in Appendix B. Additionally, some ideas for future work are presented.

Appendix A. In order to not disturb the presentation in the body of this dissertation, all proofs are collected in this appendix.

Appendix B. This appendix contains the detailed empirical evaluation of the implementations in AProVE and Sail2.

1.6 Published Contributions and New Contributions

Parts of the research presented in this dissertation have already been published in the proceedings of international conferences and workshops:

1. Term rewrite systems with collection data structures and the dependency pair method for such systems have been presented at the 21st International Conference on Automated Deduction (CADE 2007) [66].

2. At the 19th International Conference on Rewriting Techniques and Applications (RTA 2008), this work was extended to support built-in natural numbers [67].

3. Operational termination of conditional CERSs with built-in numbers and its reduction to termination of unconditional CERSs has been presented at the 8th International Workshop on Reduction Strategies in Rewriting and Programming (WRS 2008) [68].

4. Parts of the results on termination of context-sensitive rewriting with CERSs
Chapter 1. Introduction

have been presented at the 18th International Workshop on Functional and (Constraint) Logic Programming (WFLP 2009) [70].

5. The translation from imperative programs into CERSs as presented in Chapter 4, together with a simplified version of the termination techniques presented in this dissertation, has been presented at the 22nd International Conference on Automated Deduction (CADE 2009) [69].

6. First results on relaxing the conditions imposed by [111, 81, 82, 104] for identifying equational conjectures whose inductive validity is decidable have been presented at the 13th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2006) [65].

Even though some results have been published before, this dissertation nonetheless contains several new results:

1. The results from the publications 1–3 given above have been generalized and now support built-in natural numbers or built-in integers.

2. This dissertation presents termination techniques such as dependency pair narrowing that are not yet discussed in [66, 67, 68] Furthermore, some of the techniques from [66, 67, 68] have been improved by generalizing and/or simplifying them.

3. The previous publications [66, 67, 68] do not contain empirical evaluations since an implementation was not yet available. In contrast to this, the work presented in this dissertation has been fully implemented, and an empirical evaluation shows the efficiency of the methods.

4. The results on identifying equational conjectures whose inductive validity is decidable have been generalized substantially compared to [65]. Furthermore, this work has been reformulated using CERSs instead of ordinary TRSs. In particular, an inductive proof method for CERSs has been developed.
Chapter 1. Introduction

1.7 Related Work

The integration of natural numbers, integers, or other predefined algebras into the term rewriting framework or the algebraic specification framework has been considered before. The work of Vorobyov [168] and Ayala-Rincón [14, 15] integrates integers, but imposes the strong restriction that no user-defined function can have the set of integers as its resulting sort. This restriction has been relaxed in the work of Antimirov & Degtyarev [5, 6] and Avenhaus & Becker [13], which furthermore make it possible to integrate more general predefined algebras in an abstract setting. This dissertation shares the possibility of having user-defined functions with the set of integers as the resulting sort with [5, 6, 13].

While this dissertation shares some of the general ideas with [168, 14, 15, 5, 6, 13], it widely differs in its intention. All of the previous work is mostly concerned with semantical issues of the integration of integers. With the exception of [13], termination of such rewrite system is not considered, and [13] only provides a very weak method for proving termination that is based on lexicographic path orders [103]. It is well-known that lexicographic path orders are not powerful enough to show termination of many natural and simple examples.

More recently, and after most of the work on proving termination presented in this dissertation had been finished, the integration of integers into the term rewriting framework for the purpose of proving termination has been considered in [75]. In general, the work presented in this dissertation and the work presented in [75] are incomparable. On the one hand, [75] provides a more complete integration of integers since multiplication and division are supported, whereas this dissertation is restricted to linear arithmetic. On the other hand, [75] does not support collec-

\[4\] The main contribution of the author of this dissertation to [75] is the automatic generation of polynomial interpretations with negative coefficients. Indeed, the method presented in [75] is partially based on the method developed in Chapter 9 of this dissertation.
Chapter 1. Introduction

tion data structures or context-sensitive rewriting and does not consider inductive theorem proving with built-in integers. An empirical comparison of the termination methods presented in this dissertation and the methods from [75] on examples where both approaches are applicable shows that an implementation of the methods presented in this dissertation is much faster on these examples than an implementation of the methods from [75], with both methods having nearly the same power.

The integration of linear arithmetic into generic first-order theorem proving methods has also received increased interest in recent years [116, 151, 25, 4].

In contrast to integers, the integration of collection data structures into term rewriting has not received much attention. Rewriting modulo a set of equations [120] and extended rewriting with a set of equations [139] make it possible to model collection data structures, but this integration is unsatisfactory since the resulting rewrite relation is typically non-terminating (recall Footnote 2). The recent work of [61] was published after the work presented in this dissertation had been finished. In [61], rewriting with collection data structures (or more general rewriting modulo certain equations) is transformed to AC-rewriting with an enlarged rewrite system that can often be computed automatically. Then, methods for showing termination of AC-rewriting such as [108, 150, 129, 118, 130, 31] can be applied. Since an implementation of [61] is not available, an empirical comparison of the methods developed in this dissertation and the methods presented in [61] is not possible.

Further related work is also discussed throughout Chapters 2–15.
Chapter 2

Many-Sorted Term Rewriting

This chapter discusses basic concepts of term rewriting that are used in the remainder of this dissertation. Since it is impossible to provide a comprehensive treatment of these concepts, this chapter only fixes notation and terminology for future use. The notation and terminology is mostly consistent with [17], which provides an in-depth treatment of term rewriting.

2.1 Terms and Substitutions

On a purely syntactic level, this section introduces terms and substitutions in the many-sorted setting. For more information on this, see [142, 17, 56].

Terms are built from function symbols and variables. The available function symbols and their respective sort declarations are collected in a signature.

Definition 2.1 (Signatures). A signature $\mathcal{F} = (S, F)$ consists of:

1. A finite non-empty set S of sorts.
2. A finite non-empty set F of function symbols, where each $f \in F$ is associated
Chapter 2. Many-Sorted Term Rewriting

with a sort declaration of the form \(s_1 \times \ldots \times s_n \to s \) such that \(n \geq 0 \) and \(s_1, \ldots, s_n, s \in S \). The resulting sort of \(f \) is \(s \), and \(\text{arity}(f) = n \) denotes the arity of \(f \). If \(\text{arity}(f) = n \), then \(f \) is said to be \(n \)-ary.

Since the set \(S \) of sorts can be derived from the sort declarations, a signature \(\mathcal{F} = (S, F) \) is often identified with the set \(F \) of function symbols.

Example 2.2. In order to model finite sets of natural numbers, a signature with the sorts \(\text{nat} \) and \(\text{set} \) and the following function symbols can be used:

\[
\begin{align*}
\mathcal{O} & : \to \text{nat} \\
s & : \text{nat} \to \text{nat} \\
\emptyset & : \to \text{set} \\
\{\cdot\} & : \text{nat} \to \text{set} \\
\cup & : \text{set} \times \text{set} \to \text{set}
\end{align*}
\]

Here, \(\mathcal{O} \) and \(s \) are used to model natural numbers using a Peano representation and \(\emptyset, \{\cdot\}, \) and \(\cup \) are used to model finite sets of natural numbers, where \(\{\cdot\} \) is used to construct a singleton set.

In the following, it is assumed that \(F \) contains at least one constant symbol \(c_s \) with sort declaration \(c_s : \to s \) for each \(s \in S \). Using a signature and a disjoint set of variables, terms can be built. Furthermore, each term \(s \) is associated with a sort.

Definition 2.3 (Terms). Let \(\mathcal{F} = (S, F) \) be a signature and let \(\mathcal{V} \) be a countably infinite set of variables with \(\mathcal{V} \cap F = \emptyset \) where each \(v \in \mathcal{V} \) is associated with a sort \(\text{sort}(v) \in S \). The set \(\mathcal{T}(\mathcal{F}, \mathcal{V}) \) of terms over \(\mathcal{F} \) and \(\mathcal{V} \) and the extension of the mapping sort to \(\mathcal{T}(\mathcal{F}, \mathcal{V}) \) are inductively defined by:

1. \(\mathcal{V} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V}) \)

2. If \(f \in F \) with sort declaration \(s_1 \times \ldots \times s_n \to s \) and \(t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{V}) \) with \(\text{sort}(t_i) = s_i \), then \(f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{V}) \) and \(\text{sort}(f(t_1, \ldots, t_n)) = s \).
Chapter 2. Many-Sorted Term Rewriting

Terms that do not contain variables are called ground. For a signature \mathcal{F}, the set of all ground terms over \mathcal{F} is denoted by $T(\mathcal{F})$.

Example 2.4. For the signature from Example 3.13, $\{x\} \cup \emptyset$ is a term and $\{O\} \cup \emptyset$ is a ground term. \(\triangle\)

A tuple of terms s_1, \ldots, s_n for some $n \geq 0$ is denoted by s^*, and notations for terms are extended to tuples of terms component-wise.

In order to access the subterms of a given term $t \in T(\mathcal{F}, \mathcal{V})$, it is convenient to introduce the concept of positions in a term. This also makes it possible to define replacements.

Definition 2.5 (Positions, Sizes, Subterms, and Replacements).

1. The set of positions $\mathcal{P}os(t)$ of a term t is a set of strings over \mathbb{N}^+ that is inductively defined by:

 (a) If $t \in \mathcal{V}$, then $\mathcal{P}os(t) = \{\Lambda\}$, where Λ denotes the empty string.

 (b) If $t = f(t_1, \ldots, t_n)$, then $\mathcal{P}os(t) = \{\Lambda\} \cup \bigcup_{i=1}^{n} \{i.p \mid p \in \mathcal{P}os(t_i)\}$.

 The position Λ is called the root position. A position p is above a position q if $p \leq q$, where \leq denotes the prefix order on strings. If $p \leq q$, then q is also said to be below p. If neither $p \leq q$ nor $q \leq p$, then p and q are independent, written $p \parallel q$.

2. The size $|t|$ of a term t is defined as the cardinality of $\mathcal{P}os(t)$.

3. For $p \in \mathcal{P}os(t)$, the symbol of t at position p, denoted $t(p)$, is defined by:

 (a) If $t \in \mathcal{V}$, then $t(\Lambda) = t$.

 (b) $f(t_1, \ldots, t_n)(\Lambda) = f$

 (c) $f(t_1, \ldots, t_n)(i.q) = t_i(q)$

 The symbol $t(\Lambda)$ is called the root symbol of t. This is also written as root(t).
Chapter 2. Many-Sorted Term Rewriting

4. For \(p \in \mathcal{P}os(t) \), the subterm of \(t \) at position \(p \), denoted \(t|_p \), is defined by:

\[(a) \ t|_\Lambda = t \]
\[(b) \ f(t_1, \ldots, t_n)|_{i.q} = t_i|_q \]

If \(t|_p = s \) for some position \(p \in \mathcal{P}os(t) \), then \(s \) is a subterm of \(t \), written \(t \triangleright s \).

If additionally \(p \neq \Lambda \), then \(s \) is a strict subterm of \(t \), written \(t \triangleright s \).

5. For \(p \in \mathcal{P}os(t) \) and a term \(s \) with sort(\(s \)) = sort(\(t|_p \)), the term obtained from \(t \) by replacing the subterm at position \(p \) by \(s \) is denoted \(t[s]_p \) and defined by:

\[(a) \ t[s]_\Lambda = s \]
\[(b) \ f(t_1, \ldots, t_i, \ldots, t_n)[s]_{i.q} = f(t_1, \ldots, t_i[s]_q, \ldots, t_n) \]

The set of variables occurring in a term \(t \) is denoted by \(\mathcal{V}(t) \). Similarly, the set of function symbols occurring in \(t \) is denoted by \(\mathcal{F}(t) \). This naturally extends to pairs of terms, sets of terms, etc. A term \(t \) is linear if each \(v \in \mathcal{V}(t) \) occurs only once in \(t \).

Example 2.6. Continuing Example 2.4,

1. \(\mathcal{P}os(\{x\} \cup \emptyset) = \{\Lambda, 1, 1.1, 2\} \)
2. \(|\{x\} \cup \emptyset| = 4 \)
3. \((\{x\} \cup \emptyset)(\Lambda) = \cup, (\{x\} \cup \emptyset)(1) = \cdot, (\{x\} \cup \emptyset)(1.1) = x, (\{x\} \cup \emptyset)(2) = \emptyset \)
4. \((\{x\} \cup \emptyset)|_{\Lambda} = \{x\} \cup \emptyset, (\{x\} \cup \emptyset)|_{1} = \{x\}, (\{x\} \cup \emptyset)|_{1.1} = x, (\{x\} \cup \emptyset)|_{2} = \emptyset \)
5. \((\{x\} \cup \emptyset)[s(\mathcal{O})]|_{1.1} = \{s(\mathcal{O})\} \cup \emptyset \) and \((\{x\} \cup \emptyset)[y \cup z]|_{2} = \{x\} \cup (y \cup z) \)
6. \(\mathcal{V}(\{x\} \cup \emptyset) = \{x\} \)
7. \(\mathcal{F}(\{x\} \cup \emptyset) = \{\cdot, \cup, \emptyset\} \)

The term \(\{x\} \cup \emptyset \) is linear. \(\triangle \)

A context over \(\mathcal{F} \) is a term \(C \in \mathcal{T}(\mathcal{F} \cup \bigcup_{s \in S}\{\Box s\}, \mathcal{V}) \). Here, \(\Box s : \rightarrow s \) is a fresh constant symbol of sort \(s \), called a hole. If the sort of the holes can be derived or
is not important, then □ will be used to stand for any of the □s. If C is a context
with n holes and t1, . . . , tn are terms of the appropriate sorts, then C[t1, . . . , tn] is
the result of replacing the occurrences of holes by t1, . . . , tn “from left to right”.

Example 2.7. The term C = □ ∪ (□ ∪ z) is a context. C[x, y] = x ∪ (y ∪ z). △

Variables in a term may be replaced by substitutions.

Definition 2.8 (Substitutions). A substitution is a function σ : V → T(F, V) such
that sort(x) = sort(σ(x)) for all x ∈ V. If there are only finitely many variables x
with σ(x) ̸= x, then σ is written as {x ↦ σ(x) | σ(x) ̸= x}. The same notation is
used if there are only finitely many variables that are “of interest”. A substitution σ
is ground iff σ(x) ∈ T(F) for all variables x.

Application of a substitution is usually written using postfix notation. Each
substitution σ uniquely extends to a homomorphism σ : T(F, V) → T(F, V) by
letting f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

Example 2.9. The mapping σ = {x ↦ y, y ↦ x} is a substitution. (x ∪ y)σ = y ∪ x.
Notice that the substitution is applied simultaneously to all variables. △

Substitutions are the key ingredient to define rewrite relations in Sections 2.3 and
2.4. For this, the following concept is used.

Definition 2.10 (Matching). A term s matches a term t if there exists a substitution
σ such that sσ = t.

Example 2.11. The term x ∪ y matches the term {O} ∪ ({s(O)} ∪ {s(s(O))}) since
(x ∪ y)σ = {O} ∪ ({s(O)} ∪ {s(s(O))}) using the substitution σ = {x ↦ {O}, y ↦ {s(O)} ∪ {s(s(O))}}. △

Notice that the substitution is only applied to one of the terms in matching. If
the substitution is applied to both terms, unification is obtained.
Chapter 2. Many-Sorted Term Rewriting

Definition 2.12 (Unification). Two terms s and t are unifiable iff there exists a substitution σ such that $s\sigma = t\sigma$. In this case, σ is a unifier of s and t. A unifier σ is a most general unifier of s and t iff for any unifier σ' of s and t there exists a substitution δ such that $\sigma' = \sigma\delta$.\(^1\)

Example 2.13. The terms $x \cup (\{s(O)\} \cup z)$ and $(\{l\} \cup z) \cup (y \cup z)$ are unifiable and $\sigma = \{x \mapsto \{l\} \cup z, y \mapsto \{s(O)\}\}$ is a unifier. \(\triangle\)

As is well-known, a most general unifier of s and t is unique up to variable-renamings, i.e., if σ and σ' are two most general unifiers, then $\sigma' = \sigma\delta$ for a variable-renaming δ, i.e., a bijective substitution $\delta : \mathcal{V} \to \mathcal{V}$. This property justifies the notation $\text{mgu}(s,t)$ for any most general unifier of s and t. A most general unifier $\text{mgu}(s,t)$ (if it exists) is always computable, see, e.g., [17].

2.2 Relations

In this section, some notation for relations is fixed. For arbitrary sets A, B and C and arbitrary binary relations $R \subseteq A \times B$ and $S \subseteq B \times C$, the composition of R and S is defined by:

$$R \circ S := \{(x,z) \in A \times C \mid \exists y \in B. (x,y) \in R \land (y,z) \in S\}$$

It is of course also possible and useful to consider the composition of a relation $\rightarrow \subseteq A \times A$ with itself, and the process of composition may be iterated.

Definition 2.14 (Closures of Relations, Well-Foundedness). Let $\rightarrow \subseteq A \times A$ be a binary relation. Then the following notation is introduced:

\[
\begin{align*}
\rightarrow^0 & := \{(x,x) \mid x \in A\} & \text{identity} \\
\rightarrow^n & := \rightarrow^{n-1} \circ \rightarrow & n\text{-fold composition, } n \geq 1
\end{align*}
\]

\(^1\)Here, the composition of two substitutions is defined by $(\sigma\delta)(x) = \delta(\sigma(x))$.

32
Chapter 2. Many-Sorted Term Rewriting

\[\rightarrow^+ := \bigcup_{i \geq 1} \rightarrow^i \]
transitive closure

\[\rightarrow^* := \rightarrow^+ \cup \rightarrow^0 \]
reflexive-transitive closure

\[\rightarrow^= := \rightarrow^+ \cup \rightarrow^0 \]
reflexive closure

\[\rightarrow^{-1} := \{(y, x) \mid x \rightarrow y\} \]
inverse

\[\leftarrow := \rightarrow^{-1} \]
inverse

\[\leftrightarrow := \rightarrow \cup \leftarrow \]
symmetric closure

\[\leftrightarrow^* := (\rightarrow \cup \leftarrow)^* \]
reflexive-transitive-symmetric closure

\[\rightarrow^! := \{(x, y) \mid x \rightarrow^* y \land \exists z. y \rightarrow z\} \]
normalization

For any \(a \in A \), the expression \(a_\downarrow \) denotes any normal form of \(a \), i.e., any element with \(a \rightarrow^! a_\downarrow \). Furthermore, \(\rightarrow \) is well-founded (terminating) if there is no infinite sequence \(a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow \ldots \).

2.3 Equations and Rewrite Rules

The basic idea of rewriting is to replace a term by another term that is "equal" to it. This idea is made formal by introducing equations.

Definition 2.15 (Equations). An equation is a pair \((u, v) \in T(F, V) \times T(F, V) \) such that \(\text{sort}(u) = \text{sort}(v) \). Equations are usually written as \(u \approx v \).

Example 2.16. Continuing Example 2.2, the following equations specify properties that are expected to hold for sets:

\begin{align*}
(1) \quad x \cup y & \approx y \cup x \\
(2) \quad x \cup (y \cup z) & \approx (x \cup y) \cup z \\
(3) \quad x \cup x & \approx x \\
(4) \quad x \cup \emptyset & \approx x
\end{align*}

Thus, set union is specified to be associative, commutative, and idempotent. Furthermore, the empty set acts as a unit element. \(\triangle \)
A set \mathcal{E} of equations induces a rewrite relation on terms. For this, an equation $u \approx v$ may be applied to a term s if its left-hand side u matches a subterm of s.

Definition 2.17 (Rewrite Relations). Let \mathcal{E} be a set of equations. Then $s \rightarrow_{\mathcal{E}} t$ iff there exist an equation $u \approx v \in \mathcal{E}$, a position $p \in \text{Pos}(s)$, and a substitution σ such that

1. $s|_p = u\sigma$, and
2. $t = s[v\sigma]_p$.

Example 2.18. Using the equations from Example 5.2, $x \cup (\emptyset \cup y) \rightarrow_{\mathcal{E}} (x \cup \emptyset) \cup y \rightarrow_{\mathcal{E}} x \cup y \rightarrow_{\mathcal{E}} y \cup x$. Here, the first step uses equation (2), the second step uses equation (4), and the third step uses equation (1). △

Notice that the condition $\text{sort}(u) = \text{sort}(v)$ that is imposed on the equation $u \approx v$ guarantees that this replacement is well-defined. The main interest is usually not in $\rightarrow_{\mathcal{E}}$, but in its symmetric and reflexive-transitive-symmetric closures, which are denoted by $\vdash\vdash_{\mathcal{E}}$ and $\sim_{\mathcal{E}}$, respectively. Since $\sim_{\mathcal{E}}$ is a congruence relation, it defines a partition of $T(\mathcal{F}, \mathcal{V})$ into equivalence classes. The members of $T(\mathcal{F}, \mathcal{V})/\sim_{\mathcal{E}}$ are called \mathcal{E}-equivalence classes.

For two terms s and t, writing $s \xrightarrow{\Lambda}_{\mathcal{E}} t$ means that $s = f(s^*)$ and $t = f(t^*)$ such that $s^* \rightarrow_{\mathcal{E}} t^*$, i.e., the $\rightarrow_{\mathcal{E}}$-step is applied below the root. This notation extends to $\vdash\vdash_{\mathcal{E}}$ and $\sim_{\mathcal{E}}$ (and other relations introduced later) in the obvious way.

The following syntactic properties of equations are used in the remainder of this dissertation.

Definition 2.19 (Properties of Equations). Let $u \approx v$ be an equation.

1. $u \approx v$ is collapse-free if neither u nor v is a variable.
2. $u \approx v$ is regular if $\mathcal{V}(u) = \mathcal{V}(v)$.
3. $u \approx v$ has identical unique variables (is i.u.v.) if it is regular and both u and v are linear.

4. $u \approx v$ is size-preserving if it is i.u.v. and $|u| = |v|$.

A set \mathcal{E} of equations is said to have one of these properties if all equations $u \approx v \in \mathcal{E}$ satisfy that property.

Example 2.20. In Example 2.16, all equations are regular but only (1) and (2) are collapse-free. (1), (2), and (4) are i.u.v. and (1) and (2) are size-preserving. △

If \mathcal{E} is i.u.v., the following technical results about $\sim_{\mathcal{E}}$ can be obtained. Although these results are simple, they have not appeared in the literature before. The first result intuitively states that subterms with a root symbol that is not in $\mathcal{F}(\mathcal{E})$ are preserved (up to $\triangleright_{\mathcal{E}}^\Lambda$) within terms from the same \mathcal{E}-equivalence class.

Lemma 2.21. Let \mathcal{E} be an i.u.v. set of equations and let $C[f(s^*)] \sim_{\mathcal{E}} t$ for some context C, some term $f(s^*)$ with $f \notin \mathcal{F}(\mathcal{E})$, and some term t. Then $t = C'[f(s'^*)]$ for some context $C' \sim_{\mathcal{E}} C$ and some term $f(s'^*)$ such that $f(s^*) \triangleright_{\mathcal{E}}^\Lambda f(s'^*)$.

The second result states that the order of application of equations from \mathcal{E}_1 and \mathcal{E}_2 can be interchanged in $\sim_{\mathcal{E}_1 \cup \mathcal{E}_2}$. This observation is useful in order to simplify proofs of other results.

Lemma 2.22. Let $\mathcal{E}_1, \mathcal{E}_2$ be i.u.v. sets of equations such that \mathcal{E}_1 and \mathcal{E}_2 are signature-disjoint. Then $\sim_{\mathcal{E}_1 \cup \mathcal{E}_2} = \sim_{\mathcal{E}_1} \circ \sim_{\mathcal{E}_2}$.

Notice that the assumption that \mathcal{E}_1 and \mathcal{E}_2 are i.u.v. is essential for this result. To see this, let $\mathcal{E}_1 = \{f(x, x) \approx x\}$ and $\mathcal{E}_2 = \{b \approx a, c \approx a\}$. Notice that \mathcal{E}_1 is not i.u.v. Then $f(b, c) \sim_{\mathcal{E}_1 \cup \mathcal{E}_2} a$, but the only terms obtainable from $f(b, c)$ using $\sim_{\mathcal{E}_1} \circ \sim_{\mathcal{E}_2}$ are $f(b, c), f(a, c), f(b, a)$, and $f(a, a)$.
Chapter 2. Many-Sorted Term Rewriting

A (rewrite) rule is an equation \(l \approx r \) such that \(l \) is not a variable and \(\mathcal{V}(r) \subseteq \mathcal{V}(l) \). Rewrite rules are usually written as \(l \rightarrow r \). In contrast to the rewrite relation of a set \(\mathcal{E} \) of equations, the main interest for a set \(\mathcal{R} \) of rules is in \(\rightarrow_{\mathcal{R}} \), its transitive closure \(\rightarrow^+_{\mathcal{R}} \), and its reflexive-transitive closure \(\rightarrow^*_{\mathcal{R}} \). A set \(\mathcal{R} \) of rules is usually called a term rewrite system (TRS).

2.4 Equational Rewriting

Equational rewriting uses both a set \(\mathcal{E} \) of equations and a set \(\mathcal{R} \) of rules. Intuitively, \(\mathcal{E} \) is used to model “structural” properties, while \(\mathcal{R} \) is used to model “simplifying” properties. Here, simplifying properties are equations that result in a simpler term if they are applied as rewrite rules. In Example 2.16, (3) and (4) are simplifying if they are used as rewrite rules oriented from left to right. The equations (1) and (2), on the other hand, express structural properties.

There are (at least) two ways to define a rewrite relation using \(\mathcal{E} \) and \(\mathcal{R} \) that are commonly used in the literature. The first rewrite relation is defined in terms of the \(\mathcal{E} \)-equivalence classes.

Definition 2.23 (Rewriting Modulo \(\mathcal{E} \) [120]). Let \(\mathcal{R} \) be a TRS and let \(\mathcal{E} \) be a set of equations. Then \(s \rightarrow_{\mathcal{R}/\mathcal{E}} t \) if there exist terms \(s', t' \), a rule \(l \rightarrow r \in \mathcal{R} \), a position \(p \in \mathcal{P}os(s') \), and a substitution \(\sigma \) such that

1. \(s \sim_{\mathcal{E}} s' \),
2. \(s'|_p = l\sigma \),
3. \(t' = s'[r\sigma]_p \), and
4. \(t' \sim_{\mathcal{E}} t \).

Thus, \(s \rightarrow_{\mathcal{R}/\mathcal{E}} t \) iff there exist a term \(s' \) in the \(\mathcal{E} \)-equivalence class of \(s \) and a
Chapter 2. Many-Sorted Term Rewriting

term t' in the \mathcal{E}-equivalence class of t such that $s' \rightarrow_{\mathcal{R}} t'$, or, more concisely, iff $s \sim_{\mathcal{E}} \circ \rightarrow_{\mathcal{R}} \circ \sim_{\mathcal{E}} t$.

Example 2.24. Recall the following equations from Example 2.16:

\[
\begin{align*}
 x \cup y & \approx y \cup x \quad x \cup x & \approx x \\
x \cup (y \cup z) & \approx (x \cup y) \cup z \quad x \cup \emptyset & \approx x
\end{align*}
\]

It is then possible to obtain a TRS \mathcal{R} and a set of equations \mathcal{E} from them as follows:

\[
\begin{align*}
 \mathcal{R}:
 x \cup x & \rightarrow x \quad \mathcal{E}:
 x \cup y & \approx y \cup x \\
x \cup \emptyset & \rightarrow x \quad x \cup (y \cup z) & \approx (x \cup y) \cup z
\end{align*}
\]

Now consider the term $t = \{s(O)\} \cup (\{O\} \cup \{s(O)\})$. Then $t \sim_{\mathcal{E}} \{O\} \cup (\{s(O)\} \cup \{s(O)\}) \rightarrow_{\mathcal{R}} \{O\} \cup \{s(O)\} \sim_{\mathcal{E}} \{s(O)\} \cup \{O\}$ and thus $t \rightarrow_{\mathcal{R} \setminus \mathcal{E}} \{s(O)\} \cup \{O\}$. \(\triangle\)

Notice that deciding whether $s \rightarrow_{\mathcal{R} \setminus \mathcal{E}} t$ is true might be hard since the whole equivalence classes of s and t need to be considered. This is in particular true if the \mathcal{E}-equivalence classes are infinite.

\mathcal{E}-extended rewriting is a restriction of rewriting modulo \mathcal{E} that provides better decidability results in practice. First, the search space is restricted since the position p where the reduction takes place is fixed before considering the equations in \mathcal{E}. Furthermore, \mathcal{E} is only applied below that position p in s, i.e., the \mathcal{E}-equivalence class of $s|_p$ is considered. Finally, the \mathcal{E}-equivalence class of t is not considered at all.

Definition 2.25 (\mathcal{E}-Extended Rewriting [139]). Let \mathcal{R} be a TRS and let \mathcal{E} be a set of equations. Then $s \rightarrow_{\mathcal{E} \setminus \mathcal{R}} t$ if there exist a rule $l \rightarrow r \in \mathcal{R}$, a position $p \in \text{Pos}(s)$, and a substitution σ such that

1. $s|_p \sim_{\mathcal{E}} l\sigma$, and
2. $t = s[r\sigma]|_p$.

37
Example 2.26. Continuing Example 2.24, consider \(t' = \{ s(O) \} \cup (\emptyset \cup \{ O \}) \). Then \(t' \sim_E \{ O \} \cup \emptyset \) and thus \(t' \rightarrow_{E \setminus R} \{ s(O) \} \cup \{ O \} \) using the second rule from \(R \). \(\triangle \)

In general, rewriting modulo \(E \) and \(E \)-extended rewriting do not coincide. To see this, again consider the term \(t = \{ s(O) \} \cup (\{ O \} \cup \{ s(O) \}) \) from Example 2.24. Recall that \(t \rightarrow_{R/E} \{ s(O) \} \cup \{ O \} \) and notice that \(t \) is irreducible by \(\rightarrow_{E \setminus R} \) since no rewrite rule can be applied at any position.

Another view on the definition of \(\rightarrow_{E \setminus R} \) can be obtained by noticing that \(\rightarrow_{E \setminus R} \) differs from \(\rightarrow_R \) by replacing matching with \(E \)-matching, where a term \(s \) \(E \)-matches a term \(t \) if there exists a substitution \(\sigma \) such that \(s \sigma \sim_E t \). Thus, if it is possible to compute an \(E \)-matching substitution, then \(\rightarrow_{E \setminus R} \) is much easier to compute than \(\rightarrow_{R/E} \). It will be shown in Lemma 3.20 that this is always possible for the sets \(E \) of equations that are considered in this dissertation, and the remainder of this work therefore uses \(E \)-extended rewriting.

Similarly to the concept of matching, the concept of unification can also be extended to obtain \(E \)-unification. Here, a substitution \(\sigma \) is an \(E \)-unifier of \(s \) and \(t \) iff \(s \sigma \sim_E t \sigma \). Whether it is decidable if two terms are \(E \)-unifiable and whether an \(E \)-unifier is computable depends on the set \(E \) of equations. See [100, 19, 20] for surveys on decidability results.

Given \(E \) and \(R \), an investigation of the normal forms of \(\rightarrow_{E \setminus R} \) is of interest. For modeling built-in numbers and collection data structures as proposed in this dissertation, it is highly desirable that all terms of the same \(E \)-equivalence class have normal forms that are again in the same \(E \)-equivalence class, i.e., that \(\rightarrow_{E \setminus R} \) does not make a distinction between terms that are equivalent up to \(\sim_E \). Under suitable assumptions, this goal can indeed be achieved.

Definition 2.27 (\(E \)-Confluence, \(E \)-Convergence, Strong \(E \)-Coherence). Let \(R \) be a TRS and let \(E \) be a set of equations.
Chapter 2. Many-Sorted Term Rewriting

1. \(\rightarrow_{\mathcal{E}\setminus R} \) is \(\mathcal{E} \)-confluent iff \(\leftarrow_{\mathcal{E}\setminus R} \circ \rightarrow_{\mathcal{E}\setminus R} \subseteq \leftarrow_{\mathcal{E}\setminus R} \circ \sim_{\mathcal{E}} \circ \leftarrow_{\mathcal{E}\setminus R} \).

2. \(\rightarrow_{\mathcal{E}\setminus R} \) is \(\mathcal{E} \)-convergent iff it is terminating and \(\mathcal{E} \)-confluent.

3. \(\rightarrow_{\mathcal{E}\setminus R} \) is strongly \(\mathcal{E} \)-coherent iff \(\sim_{\mathcal{E}} \) commutes over \(\rightarrow_{\mathcal{E}\setminus R} \), i.e., iff \(\sim_{\mathcal{E}} \circ \rightarrow_{\mathcal{E}\setminus R} \subseteq \rightarrow_{\mathcal{E}\setminus R} \circ \sim_{\mathcal{E}} \).

Intuitively, \(\mathcal{E} \)-confluence means that whenever a term can be reduced using two reduction sequences, then the resulting terms can be further reduced to terms that are in the same \(\mathcal{E} \)-equivalence class. Strong \(\mathcal{E} \)-coherence means that if two terms are in the same \(\mathcal{E} \)-equivalence class and one of the terms can be reduced, then the other term can also be reduced and the resulting terms are furthermore in the same equivalence class as well. Notice that strong \(\mathcal{E} \)-coherence is a special case of coherence modulo \(\mathcal{E} \) [101]. Using \(\mathcal{E} \)-convergence and strong \(\mathcal{E} \)-coherence, the following characterization of normal forms is obtained. It states that two terms from the same \(\mathcal{E} \)-equivalence class have normal forms that are again in the same \(\mathcal{E} \)-equivalence class.

Lemma 2.28. Let \(\mathcal{R} \) be a TRS and let \(\mathcal{E} \) be a set of equations such that \(\rightarrow_{\mathcal{E}\setminus R} \) is \(\mathcal{E} \)-convergent and strongly \(\mathcal{E} \)-coherent. If \(s \sim_{\mathcal{E}} t, \ s \rightarrow_{\mathcal{E}\setminus R} \hat{s}, \) and \(t \rightarrow_{\mathcal{E}\setminus R} \hat{t} \), then \(\hat{s} \sim_{\mathcal{E}} \hat{t} \).

Example 2.29. The relation \(\rightarrow_{\mathcal{E}\setminus R} \) using \(\mathcal{E} \) and \(\mathcal{R} \) from Example 2.24 is not strongly \(\mathcal{E} \)-coherent (and, in fact, the statement of Lemma 2.28 does not hold). To see this, consider the terms \(t = \{ s(O) \} \cup \{ O \} \cup \{ O \} \) and \(t' = \{ O \} \cup \{ \{ s(O) \} \cup \{ O \} \} \). Then \(t' \sim_{\mathcal{E}} t \rightarrow_{\mathcal{E}\setminus R} \{ s(O) \} \cup \{ O \} \), but \(t' \) cannot be reduced using \(\rightarrow_{\mathcal{E}\setminus R} \). If the rewrite rule \((x \cup x) \cup y \rightarrow x \cup y \) is added to \(\mathcal{R} \), then strong \(\mathcal{E} \)-coherence is achieved and \(t' \rightarrow_{\mathcal{E}\setminus R} \{ O \} \cup \{ s(O) \} \sim_{\mathcal{E}} \{ s(O) \} \cup \{ O \} \).

The observation of Example 2.29 can be generalized, i.e., it may be possible to achieve strong \(\mathcal{E} \)-coherence by adding extended rules [139, 81]. This is not going to be discussed further in this dissertation, but it will be mentioned when extended rules need to be added.
Chapter 2. Many-Sorted Term Rewriting

Apart from Lemma 2.28, strong \mathcal{E}-coherence also provides a close connection between rewriting modulo \mathcal{E} and \mathcal{E}-extended rewriting [81]. This property is not needed in the remainder of this dissertation, but it serves as a further justification for restricting attention to \mathcal{E}-extended rewriting.

Lemma 2.30. Let \mathcal{R} be a TRS and let \mathcal{E} be a set of equations such that $\rightarrow_{\mathcal{E}\setminus\mathcal{R}}$ is strongly \mathcal{E}-coherent. If $s \rightarrow_{\mathcal{R}/\mathcal{E}} t$, then $s \rightarrow_{\mathcal{E}\setminus\mathcal{R}} t'$ for some $t' \sim_{\mathcal{E}} t$.

The built-in numbers and collection data structures considered in this dissertation will be modeled using TRSs \mathcal{R}_i and sets \mathcal{E}_i of equations such that $\rightarrow_{\mathcal{E}_i\setminus\mathcal{R}_i}$ is \mathcal{E}_i-confluent and strongly \mathcal{E}_i-coherent for each data structure on its own. If more than one of these data structures is to be used at the same time, the question whether $\rightarrow_{\mathcal{E}\setminus\mathcal{R}}$ is \mathcal{E}-confluent and strongly \mathcal{E}-coherent arises, where $\mathcal{R} = \bigcup_{i=1}^{n} \mathcal{R}_i$ and $\mathcal{E} = \bigcup_{i=1}^{n} \mathcal{E}_i$. Proving these properties automatically seems to be non-trivial, but it turns out that this is not necessary since it can be shown that \mathcal{E}-confluence and strong \mathcal{E}-coherence are modular properties in the following sense. Building upon results from [101, 99], this lemma is the main technical contribution of this chapter.

Lemma 2.31. Let $\mathcal{R}_1, \mathcal{R}_2$ be TRSs and let $\mathcal{E}_1, \mathcal{E}_2$ be collapse-free i.u.v. sets of equations such that

1. $\mathcal{R}_1 \cup \mathcal{E}_1$ is signature-disjoint from $\mathcal{R}_2 \cup \mathcal{E}_2$,
2. $\rightarrow_{\mathcal{E}_1\setminus\mathcal{R}_1}$ is \mathcal{E}_1-convergent and strongly \mathcal{E}_1-coherent, and
3. $\rightarrow_{\mathcal{E}_2\setminus\mathcal{R}_2}$ is \mathcal{E}_2-convergent and strongly \mathcal{E}_2-coherent.

If $\rightarrow_{\mathcal{E}_1\cup\mathcal{E}_2\setminus\mathcal{R}_1\cup\mathcal{R}_2}$ is terminating, then $\rightarrow_{\mathcal{E}_1\cup\mathcal{E}_2\setminus\mathcal{R}_1\cup\mathcal{R}_2}$ is $\mathcal{E}_1\cup\mathcal{E}_2$-convergent and strongly $\mathcal{E}_1\cup\mathcal{E}_2$-coherent.
Chapter 3

Constrained Equational Rewrite Systems

This chapter introduces the class of term rewrite systems that is used for modeling algorithms in this dissertation. Both built-in numbers and collection data structures are modeled using \mathcal{E}-extended rewriting as in Definition 2.25. It is first discussed how this is done for built-in numbers. The same approach can then be applied to collection data structures as well.

3.1 Built-In Numbers as Canonizable Theories

In order to model the set of integers using terms and equations, recall that \mathbb{Z} is an Abelian group under addition with unit element 0 that is generated using the element 1. A signature for modeling integers thus consists of the following function symbols:

\[
0 : \rightarrow \text{int} \\
1 : \rightarrow \text{int}
\]
Chapter 3. Constrained Equational Rewrite Systems

\[- : \text{int} \to \text{int}\]
\[+ : \text{int} \times \text{int} \to \text{int}\]

The defining properties of Abelian groups can easily be stated as equations:

\[x + y \approx y + x\]
\[x + (y + z) \approx (x + y) + z\]
\[x + 0 \approx x\]
\[x + (-x) \approx 0\]

This set of equations is in general unsuitable for modeling algorithms using extended rewriting since the last equation is not regular. To avoid this problem, the idea is to keep only associativity and commutativity as equations and to turn the remaining properties (idempotency and inverse elements) into rewrite rules. For this, it does not suffice to just orient the last two equations as rules. Instead, the well-known method of equational completion [101, 21] needs to be applied to obtain “equivalent” sets S of rewrite rules and E of equations. Here, the goal is that two terms are in the same equivalence class of the initial set of equations if and only if their normal forms w.r.t. $\rightarrow_{E \setminus S}$ are in the same E-equivalence class. Applying equational completion to the above properties of the integers produces the following rewrite rules and equations:

S:
\[
\begin{align*}
x + 0 & \rightarrow x \\
-x & \rightarrow x \\
-0 & \rightarrow 0 \\
-(x + y) & \rightarrow (-x) + (-y) \\
x + (-x) & \rightarrow 0 \\
(x + (-x)) + y & \rightarrow 0 + y
\end{align*}
\]

E:
\[
\begin{align*}
x + y & \approx y + x \\
x + (y + z) & \approx (x + y) + z
\end{align*}
\]
This idea can be generalized from the integers, and it can furthermore be made
more useful by allowing predefined predicate symbols that can then be used as con-
straints in the rewrite rules used for modeling algorithms. In order to model built-in
numbers and other built-in data structures, the concept of a theory is used.

Definition 3.1 (Theories). A theory \(Th = (\mathcal{F}_{Th}, \mathcal{P}_{Th}, \mathcal{M}_{Th}) \) consists of:

1. A finite signature \(\mathcal{F}_{Th} \) over a single sort base.
2. A finite set \(\mathcal{P}_{Th} \) of predicate symbols, each coming with an arity.
3. A structure \(\mathcal{M}_{Th} = (M, (f^{Th})_{f \in \mathcal{F}_{Th}}, (P^{Th})_{P \in \mathcal{P}_{Th}}) \) over a set \(M \) that interprets
the symbols in \(\mathcal{F}_{Th} \) and \(\mathcal{P}_{Th} \), i.e., each \(n \)-ary \(f \in \mathcal{F}_{Th} \) is mapped to a function
\(f^{Th} : M^n \rightarrow M \) and each \(n \)-ary \(P \in \mathcal{P}_{Th} \) is mapped to a subset \(P^{Th} \subseteq M^n \).

Notice that the interpretations \(f^{Th} \) of the function symbols define an interpreta-
tion of each ground term \(s \in T(\mathcal{F}_{Th}) \). This interpretation is denoted by \(s^{Th} \).

Example 3.2. For integers, \(Th_{\mathbb{Z}} = (\mathcal{F}_{Th_{\mathbb{Z}}}, \mathcal{P}_{Th_{\mathbb{Z}}}, \mathcal{M}_{Th_{\mathbb{Z}}}) \) with

1. \(\mathcal{F}_{Th_{\mathbb{Z}}} = \{0, 1, -, +\} \)
2. \(\mathcal{P}_{Th_{\mathbb{Z}}} = \{=, \geq, >\} \)
3. \(\mathcal{M}_{Th_{\mathbb{Z}}} = (\mathbb{Z}, 0^{Th_{\mathbb{Z}}}, 1^{Th_{\mathbb{Z}}}, -^{Th_{\mathbb{Z}}}, +^{Th_{\mathbb{Z}}}, \approx^{Th_{\mathbb{Z}}}, \geq^{Th_{\mathbb{Z}}}, >^{Th_{\mathbb{Z}}}) \) where
 - \(0^{Th_{\mathbb{Z}}} = 0 \)
 - \(1^{Th_{\mathbb{Z}}} = 1 \)
 - \(-^{Th_{\mathbb{Z}}}(x) = -x \)
 - \(+^{Th_{\mathbb{Z}}}(x, y) = x + y \)
 - \(\approx^{Th_{\mathbb{Z}}} = \{(x, y) \mid x = y\} \)
 - \(\geq^{Th_{\mathbb{Z}}} = \{(x, y) \mid x \geq y\} \)
 - \(>^{Th_{\mathbb{Z}}} = \{(x, y) \mid x > y\} \)
Chapter 3. Constrained Equational Rewrite Systems

is a theory. For this theory, \((1 + (1 + (-0)))^{\text{Th}_Z} = 2\).

As already mentioned above, the rewrite rules that are used for modeling algorithms will have constraints from \(\text{Th}\) that guard when a rewrite step may be performed.

Definition 3.3 (Syntax of \(\text{Th}\)-Constraints). An atomic \(\text{Th}\)-constraint has the form \(P t_1 \ldots t_n\) for a predicate symbol \(P \in P_{\text{Th}}\) and terms \(t_1, \ldots, t_n \in T(F_{\text{Th}}, \mathcal{V})\). The set of \(\text{Th}\)-constraints is inductively defined as follows:

1. \(\top\) is a \(\text{Th}\)-constraint.
2. Every atomic \(\text{Th}\)-constraint is a \(\text{Th}\)-constraint.
3. If \(\varphi\) is a \(\text{Th}\)-constraint, then \(\neg \varphi\) is a \(\text{Th}\)-constraint.
4. If \(\varphi_1, \varphi_2\) are \(\text{Th}\)-constraints, then \(\varphi_1 \land \varphi_2\) is a \(\text{Th}\)-constraint.

Example 3.4. For the theory of integers \(\text{Th}_Z\) from Example 3.2, \(x + 1 \simeq y \land \neg(x > z)\) is a \(\text{Th}_Z\)-constraint.

The Boolean connectives \(\lor, \Rightarrow, \text{ and } \Leftrightarrow\) can be defined as usual. Also, \(\text{Th}\)-constraints have the expected semantics. The main interest is in satisfiability (i.e., the constraint is true for some instantiation of its variables) and validity (i.e., the constraint is true for all instantiations of its variables).

Definition 3.5 (Semantics of \(\text{Th}\)-Constraints). A variable-free \(\text{Th}\)-constraint \(\varphi\) is \(\text{Th}\)-valid iff

1. \(\varphi\) has the form \(\top\), or
2. \(\varphi\) is an atomic \(\text{Th}\)-constraint of the form \(P t_1 \ldots t_n\) and \(P^{\text{Th}} t_1^{\text{Th}} \ldots t_n^{\text{Th}}\) is true, or
3. \(\varphi\) has the form \(\neg \varphi'\) and \(\varphi'\) is not \(\text{Th}\)-valid, or
4. \(\varphi\) has the form \(\varphi_1 \land \varphi_2\) and both \(\varphi_1\) and \(\varphi_2\) are \(\text{Th}\)-valid.
A \mathbf{Th}-constraint φ with variables is \mathbf{Th}-valid iff $\varphi \sigma$ is \mathbf{Th}-valid for all ground substitutions $\sigma : \mathcal{V} \rightarrow \mathcal{T}(\mathcal{F}_\mathbf{Th})$. A \mathbf{Th}-constraint φ is \mathbf{Th}-satisfiable iff there exists a ground substitution $\sigma : \mathcal{V} \rightarrow \mathcal{T}(\mathcal{F}_\mathbf{Th})$ such that $\varphi \sigma$ is \mathbf{Th}-valid. Otherwise, φ is \mathbf{Th}-unsatisfiable.

Example 3.6. The $\mathbf{Th}_\mathbb{Z}$-constraint $\varphi = x + 1 \simeq y \land \lnot(x > z)$ from Example 3.4 is $\mathbf{Th}_\mathbb{Z}$-satisfiable since its ground instantiation using the substitution $\{x \mapsto 0, y \mapsto 1, z \mapsto 1\}$ is $\mathbf{Th}_\mathbb{Z}$-valid. The constraint φ is not $\mathbf{Th}_\mathbb{Z}$-valid since its ground instantiation using the substitution $\{x \mapsto 0, y \mapsto 0, z \mapsto 0\}$ is not $\mathbf{Th}_\mathbb{Z}$-valid. \(\triangle\)

Within this dissertation it is assumed that each theory contains the equality predicate \simeq and that \simeq can be axiomatized using a finite set $\mathcal{E}_\mathbf{Th}$ of equations.

Definition 3.7 (Theories with Equality). A theory with equality is a theory \mathbf{Th} with a predicate symbol $\simeq \in \mathcal{P}_\mathbf{Th}$ which is interpreted as the equality in $\mathcal{M}_\mathbf{Th}$. Furthermore, there exists a finite set $\mathcal{E}_\mathbf{Th}$ that axiomatizes \simeq, i.e., for all terms $s, t \in \mathcal{T}(\mathcal{F}_\mathbf{Th}, \mathcal{V})$, the constraint $s \simeq t$ is \mathbf{Th}-valid iff $s \sim_{\mathcal{E}_\mathbf{Th}} t$.

Example 3.8. The theory $\mathbf{Th}_\mathbb{Z}$ from Example 3.2 is a theory with equality where \simeq is axiomatized by the set of equations $\mathcal{E}_{\mathbf{Th}_\mathbb{Z}} = \{x + y \approx y + x, \ x + (y + z) \approx (x + y) + z, \ x + 0 \approx x, \ x + (-x) \approx 0\}$.

\(\triangle\)

In the following, it is assumed that every theory is a theory with equality. Notice that the definition of a theory with equality does not impose any restrictions on the equations in $\mathcal{E}_\mathbf{Th}$. For reasons of practicality, attention is restricted to the case where $\mathcal{E}_\mathbf{Th}$ is canonizable in the following sense (recall the discussion on the defining properties of Abelian groups from above).

Definition 3.9 (Canonizable Sets of Equations). A finite set \mathcal{E} of equations is canonizable iff there exist finite sets \mathcal{E} of rewrite rules and \mathcal{E} of equations such that

1. $\mathcal{E} \cup \mathcal{E}$ is equivalent to \mathcal{E}, i.e., $\approx_{\mathcal{E}} = \sim_{\mathcal{E} \cup \mathcal{E}}$.

45
Chapter 3. Constrained Equational Rewrite Systems

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{F}_{Th}</th>
<th>\mathcal{P}_{Th}</th>
<th>$\vec{\mathcal{E}}{Th}$ and $\hat{\mathcal{E}}{Th}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural numbers</td>
<td>0, 1, +</td>
<td>$\simeq, \geq, >$</td>
<td>$x + 0 \rightarrow x$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x + y \approx y + x$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x + (y + z) \approx (x + y) + z$</td>
</tr>
<tr>
<td>Integers</td>
<td>0, 1, +, -</td>
<td>$\simeq, \geq, >$</td>
<td>$x + 0 \rightarrow x$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$-x \rightarrow x$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$-0 \rightarrow 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$-(x + y) \rightarrow (-x) + (-y)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x + (-x) \rightarrow 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(x + (-x)) + y \rightarrow 0 + y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x + y \approx y + x$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x + (y + z) \approx (x + y) + z$</td>
</tr>
</tbody>
</table>

Figure 3.1: Numbers as canonizable theories.

2. $\hat{\mathcal{E}}$ is i.u.v.,

3. $\rightarrow_{\mathcal{E}}$ is $\hat{\mathcal{E}}$-convergent, and

4. $\rightarrow_{\mathcal{E}}$ is strongly $\hat{\mathcal{E}}$-coherent.

For a canonizable set \mathcal{E} of equations, $s \sim_{\mathcal{E}} t$ if and only if $s \rightarrow_{\mathcal{E} \cup \mathcal{E}}^{-1} \mathcal{E} \circ \mathcal{E} \circ \rightarrow_{\mathcal{E}}^{-1} t$ [101]. The sets \mathcal{E} and $\hat{\mathcal{E}}$ can be obtained from \mathcal{E} using equational completion [101, 21].

A theory Th is said to be canonizable if \mathcal{E}_{Th} is.

Example 3.10. The theory $Th_{\mathbb{Z}}$ is canonizable since the set $\mathcal{E}_{Th_{\mathbb{Z}}}$ from Example 3.8 can be completed into $\mathcal{E}_{Th_{\mathbb{Z}}} = \{x + 0 \rightarrow x, -x \rightarrow x, -0 \rightarrow 0, -(x + y) \rightarrow (-x) + (-y), x + (-x) \rightarrow 0, (x + (-x)) + y \rightarrow 0 + y\}$ and $\hat{\mathcal{E}}_{Th_{\mathbb{Z}}} = \{x + y \approx y + x, x + (y + z) \approx (x + y) + z\}$ which satisfy the conditions from Definition 3.9. \triangle

Figure 3.1 lists two of the most important canonizable theories: $Th_{\mathbb{N}}$ is the (linear) theory of natural numbers, and $Th_{\mathbb{Z}}$ is the (linear) theory of integers. For these theories, the structures \mathcal{M}_{Th} use \mathbb{N} and \mathbb{Z} as universes, respectively. The function symbols in \mathcal{F}_{Th} and the predicate symbols in \mathcal{P}_{Th} are interpreted in the natural way.

46
For $\mathcal{T}h_{\mathbb{Z}}$, the rewrite rule $(x + (-x)) + y \to 0 + y$ is an extension of $x + (-x) \to 0$ that is needed to make $\rightarrow_{\mathcal{E}\setminus \mathcal{E}}$ strongly \mathcal{E}-coherent. This dissertation takes some liberties in writing terms for $\mathcal{T}h_{\mathbb{N}}$ and $\mathcal{T}h_{\mathbb{Z}}$. For example, $x - 2$ is shorthand for any term that is equivalent to $x + ((-1) + (-1))$. Notice that both $\mathcal{T}h_{\mathbb{N}}$- and $\mathcal{T}h_{\mathbb{Z}}$-validity are decidable [146]. This is no longer true for the full theory of natural numbers or integers which, in addition to $+$ and $-$, also contains multiplication [90].

3.2 Canonizable Collection Data Structures

In order to extend $\mathcal{T}h$ by collection data structures and defined functions, $\mathcal{F}_{\mathcal{T}h}$ is extended by a finite signature \mathcal{F} over the sort base and a set of new sorts.

Collection data structures can be handled similarly to the built-in theories, i.e., properties of collection data structures are modeled using a finite set \mathcal{E}_c of equations. As in Section 3.1, attention is restricted to the case where \mathcal{E}_c is canonizable. Collection data structures that satisfy this property are also called canonizable collection data structures. Some commonly used canonizable collection data structures are given in Figure 3.2. Compact lists are lists where the number of contiguous occurrences of the same element does not matter. These kinds of lists have been used in the constraint logic programming framework [58, 57]. Notice that there are typically two possibilities for modeling the “same” collection data structure:

1. Using a list-like representation with an empty collection and a constructor to add an element to a collection.

2. Using an empty collection, singleton collections ($\langle \cdot \rangle$ and $\{\cdot\}$, respectively), and a constructor to concatenate two collections.

For the second possibility to model sets, the rewrite rule $(x \cup x) \cup y \to x \cup y$ is an extension of $x \cup x \to x$ that is needed to make $\rightarrow_{\mathcal{E}\setminus \mathcal{E}_c}$ strongly \mathcal{E}_c-coherent.
3.3 Constrained Equational Rewrite Systems

In the following, a combination of \(Th \) with none or more (signature-disjoint) canonizable collection data structures \(C_1, \ldots, C_n \) is considered. For this, let \(S = \overrightarrow{E}_{Th} \cup \bigcup_{i=1}^{n} \overrightarrow{E}_{C_i} \) and \(E = \widehat{E}_{Th} \cup \bigcup_{i=1}^{n} \widehat{E}_{C_i} \).

A constrained equational rewrite systems contains constrained rewrite rules. As formalized below in Definition 3.15, the \(Th \)-constraint guards when a rewrite step may be performed. In contrast to conditional rewriting (see, e.g., [137]), this will not be done by recursively rewriting the constraints. Instead, a decision procedure

<table>
<thead>
<tr>
<th>Constructors</th>
<th>(\overrightarrow{E}{C}) and (\widehat{E}{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists</td>
<td>\begin{align*} \text{nil, cons} & \quad \text{n/a} \ \text{nil, } \langle \cdot \rangle, ++ & \quad \begin{align*} x \mathbin{+ +} \text{nil} & \rightarrow x \ \text{nil} \mathbin{+ +} y & \rightarrow y \ x \mathbin{+ +} (y \mathbin{+ +} z) & \approx (x \mathbin{+ +} y) \mathbin{+ +} z \end{align*} \end{align*}</td>
</tr>
<tr>
<td>Compact Lists</td>
<td>\begin{align*} \text{nil, cons} & \quad \text{n/a} \ \text{nil, } \langle \cdot \rangle, ++ & \quad \begin{align*} x \mathbin{+ +} \text{nil} & \rightarrow x \ \text{nil} \mathbin{+ +} y & \rightarrow y \ \langle x \rangle \mathbin{+ +} \langle x \rangle & \rightarrow \langle x \rangle \ x \mathbin{+ +} (y \mathbin{+ +} z) & \approx (x \mathbin{+ +} y) \mathbin{+ +} z \end{align*} \end{align*}</td>
</tr>
<tr>
<td>Multisets</td>
<td>\begin{align*} \emptyset, \text{ins} & \quad \text{ins}(x, \text{ins}(y, zs)) \approx \text{ins}(y, \text{ins}(x, zs)) \ \emptyset, { \cdot }, \cup & \quad \begin{align*} x \mathbin{\cup} \emptyset & \rightarrow x \ x \mathbin{\cup} (y \mathbin{\cup} z) & \approx (x \mathbin{\cup} y) \mathbin{\cup} z \ x \mathbin{\cup} y & \approx y \mathbin{\cup} x \end{align*} \end{align*}</td>
</tr>
<tr>
<td>Sets</td>
<td>\begin{align*} \emptyset, \text{ins} & \quad \text{ins}(x, \text{ins}(x, ys)) \rightarrow \text{ins}(x, ys) \ \text{ins}(x, \text{ins}(y, zs)) & \approx \text{ins}(y, \text{ins}(x, zs)) \end{align*}</td>
</tr>
</tbody>
</table>

Figure 3.2: Commonly used canonizable collection data structures.
Chapter 3. **Constrained Equational Rewrite Systems**

for T_h-validity will be employed. This distinction is further discussed in Chapter 10, where conditional constrained rewrite rules are considered.

Definition 3.11 (Constrained Rewrite Rules). A constrained rewrite rule has the form $l \rightarrow r[\varphi]$ for terms $l, r \in T(\mathcal{F} \cup \mathcal{F}_{T_h}, \mathcal{V})$ and a T_h-constraint φ such that $\text{root}(l) \in \mathcal{F} - \mathcal{F}(\mathcal{E} \cup \mathcal{S})$ and $\mathcal{V}(r) \cup \mathcal{V}(\varphi) \subseteq \mathcal{V}(l)$. In a rule $l \rightarrow r[\top]$, the constraint \top will usually be omitted.

A finite set of constrained rewrite rules and the sets \mathcal{S} and \mathcal{E} for modeling T_h and collection data structures are combined into a constrained equational rewrite system.

Definition 3.12 (Constrained Equational Rewrite Systems (CERSs)). A constrained equational rewrite system (CERS) has the form $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ for a finite set \mathcal{R} of constrained rewrite rules, a finite set \mathcal{E} of equations, and a finite set \mathcal{S} of rewrite rules such that

1. \mathcal{S} is right-linear, i.e., each variable occurs at most once in r for all $l \rightarrow r \in \mathcal{S}$,
2. $\rightarrow_{\mathcal{E} \setminus \mathcal{S}}$ is \mathcal{E}-convergent, and
3. $\rightarrow_{\mathcal{E} \setminus \mathcal{S}}$ is strongly \mathcal{E}-coherent.

Notice that for the combination of a canonizable theory from Figure 3.1 with none or more (signature-disjoint) canonizable collection data structures from Figure 3.2, $\rightarrow_{\mathcal{E} \setminus \mathcal{S}}$ is \mathcal{E}-convergent and strongly \mathcal{E}-coherent by Lemma 2.31 since $\rightarrow_{\mathcal{E} \setminus \mathcal{S}}$ is still terminating. Definition 3.12 states these requirements for reference and in order to make the techniques developed in this dissertation more general. Condition 1 in Definition 3.12, i.e., that \mathcal{S} needs to be right-linear, is of a technical nature. It is currently unclear whether it can be relaxed.

Example 3.13. This example shows a quicksort algorithm that takes a set of integers and returns a sorted list of the elements of that set. For this, integers are modeled as in Figure 3.1 and sets are modeled using \emptyset, $\{\cdot\}$, and \cup as in Figure 3.2.
Chapter 3. Constrained Equational Rewrite Systems

Notice that the assumption that the input to \texttt{qsort} is a set is enforced by the choice of \(S\) and \(E\). By choosing different sets \(S\) and \(E\), the input to \texttt{qsort} can be treated as a multiset. How the choice of \(S\) and \(E\) influences the result of \texttt{qsort} follows from the definition of the rewrite relation for CERSs (Definition 3.15 below).

\[
S : \begin{align*}
x + 0 & \rightarrow x \\
- - x & \rightarrow x \\
-0 & \rightarrow 0 \\
-(x + y) & \rightarrow (-x) + (-y) \\
x + (-x) & \rightarrow 0 \\
(x + (-x)) + y & \rightarrow 0 + y \\
x \cup \emptyset & \rightarrow x \\
x \cup x & \rightarrow x \\
(x \cup x) \cup y & \rightarrow x \cup y
\end{align*}
\]

\[
E : \begin{align*}
x + y & \approx y + x \\
x + (y + z) & \approx (x + y) + z \\
x \cup y & \approx y \cup x \\
x \cup (y \cup z) & \approx (x \cup y) \cup z
\end{align*}
\]

The quicksort algorithm is specified by the following constrained rewrite rules:

\[
\begin{align*}
\text{app}(\text{nil}, zs) & \rightarrow zs \\
\text{app}(\text{cons}(x, ys), zs) & \rightarrow \text{cons}(x, \text{app}(ys, zs)) \\
\text{low}(x, \emptyset) & \rightarrow \emptyset \\
\text{low}(x, \{y\}) & \rightarrow \{y\} \llbracket x > y \rrbracket \\
\text{low}(x, \{y\}) & \rightarrow \emptyset \llbracket x \neq y \rrbracket \\
\text{low}(x, y \cup z) & \rightarrow \text{low}(x, y) \cup \text{low}(x, z) \\
\text{high}(x, \emptyset) & \rightarrow \emptyset \\
\text{high}(x, \{y\}) & \rightarrow \{y\} \llbracket x \neq y \rrbracket
\end{align*}
\]
Chapter 3. Constrained Equational Rewrite Systems

\[
\begin{align*}
\text{high}(x, \{y\}) & \rightarrow \emptyset \ [x > y] \\
\text{high}(x, y \cup z) & \rightarrow \text{high}(x, y) \cup \text{high}(x, z) \\
\text{qsort}(\emptyset) & \rightarrow \text{nil} \\
\text{qsort}(\{x\}) & \rightarrow \text{cons}(x, \text{nil}) \\
\text{qsort}(\{x\} \cup y) & \rightarrow \text{app} (\text{qsort(\text{low}(x, y)), cons}(x, \text{qsort(\text{high}(x, y))))))
\end{align*}
\]

Notice that this specification is quite natural.

The rewrite relation obtained from a CERS is based on the key idea of [128]. Instead of using \(\mathcal{E} \cup \mathcal{S} \)-extended rewriting as in Definition 2.25, it operates on terms that are suitably normalized with \(\rightarrow_{\mathcal{E} \setminus \mathcal{S}} \), thus picking a unique (up to \(\sim_{\mathcal{E}} \)) representative of each \(\mathcal{E} \cup \mathcal{S} \)-equivalence class. This normalization process closely captures the intuition that is typically employed in the development of algorithms. For example, it is typically assumed that sets do not contain duplicate elements. This assumption might even be essential for termination of the algorithm.

The normalization process motivated above is given more formally as follows. First, the subterm where a rule from \(\mathcal{R} \) should be applied is normalized with \(> \Lambda_{\mathcal{E} \setminus \mathcal{S}} \). Then, \(\mathcal{E} \)-matching is performed. In order to take the constraint of the rewrite rule into account, it is additionally required that this constraint becomes \(Th \)-valid after being instantiated by the matcher. If the matcher instantiates all variables of sort \texttt{base} by terms from \(\mathcal{T}(\mathcal{F}_{Th}, \mathcal{V}) \), then this question can be answered by a decision procedure for \(Th \)-validity.

Definition 3.14 (\(Th \)-Based Substitutions). A substitution \(\sigma \) is \(Th \)-based iff \(\sigma(x) \in \mathcal{T}(\mathcal{F}_{Th}, \mathcal{V}) \) for all variables \(x \) of sort \texttt{base}.

The rewrite relation is now restricted to use a \(Th \)-based substitution. This restriction could be slightly relaxed by requiring \(\sigma(x) \in \mathcal{T}(\mathcal{F}_{Th}, \mathcal{V}) \) for only those variables of sort \texttt{base} that occur in the constraint of the rewrite rule.
Chapter 3. Constrained Equational Rewrite Systems

Definition 3.15 (Rewrite Relation of a CERS). Let \((\mathcal{R}, \mathcal{S}, \mathcal{E}) \) be a CERS. Then \(s \stackrel{\mathcal{S}\rightarrow_{\text{Th}||\mathcal{E}\setminus\mathcal{R}}}{\Rightarrow} t \) if there exist a constrained rewrite rule \(l \rightarrow r[\varphi] \in \mathcal{R} \), a position \(p \in \text{Pos}(s) \), and a Th-based substitution \(\sigma \) such that

1. \(s|_p \overset{\lambda_1}{\rightarrow}_{\mathcal{E}\setminus\mathcal{S}} \overset{\lambda_2}{\Rightarrow} l\sigma \),
2. \(\varphi\sigma \) is Th-valid, and
3. \(t = s[r\sigma]_p \).

Example 3.16. Continuing Example 3.13, assume that the term \(t = \text{qsort}((-1) \cup (\{1\} \cup \{-1\})) \) is to be reduced using \(\mathcal{S}\rightarrow_{\text{Th}||\mathcal{E}\setminus\mathcal{R}} \). By considering the substitution \(\sigma = \{x \mapsto 1, y \mapsto \{-1\}\} \), the third \text{qsort}-rule can be applied since \(t \overset{\lambda_1}{\rightarrow}_{\mathcal{E}\setminus\mathcal{S}} \text{qsort}((-1) \cup \{1\}) \overset{\lambda_2}{\Rightarrow} \text{qsort}((-1) \cup \{1\})\sigma \). Therefore,

\[
t \overset{\mathcal{S}\rightarrow_{\text{Th}||\mathcal{E}\setminus\mathcal{R}}}{\Rightarrow} \text{app}(\text{qsort}(\text{low}(1, \{-1\})), \text{cons}(1, \text{qsort}(\text{high}(1, \{-1\}))))
\]

Next, \(\text{low}(1, \{-1\}) \overset{\mathcal{S}\rightarrow_{\text{Th}||\mathcal{E}\setminus\mathcal{R}}}{\Rightarrow} \{-1\} \) by the second \text{low}-rule since the instantiated constraint \(1 > -1 \) is Th\(_Z\)-valid. Similarly, \(\text{high}(1, \{-1\}) \overset{\mathcal{S}\rightarrow_{\text{Th}||\mathcal{E}\setminus\mathcal{R}}}{\Rightarrow} \emptyset \) using the third \text{high}-rule. Continuing the reduction of \(t \) eventually yields \(\text{cons}(-1, \text{cons}(1, \text{nil})) \). \(\triangle \)

Notice an important consequence of Definition 3.15: \(s|_p \overset{\lambda_1}{\rightarrow}_{\mathcal{E}\setminus\mathcal{S}} \overset{\lambda_2}{\Rightarrow} l\sigma \) implies that \(l\sigma \) is irreducible by \(\rightarrow_{\mathcal{E}\setminus\mathcal{S}} \) since \(\rightarrow_{\mathcal{E}\setminus\mathcal{S}} \) is strongly \(\mathcal{E} \)-coherent. It is important to keep this observation in mind when modeling algorithms, but as motivated above, this closely corresponds to the assumptions typically employed in the development of algorithms. As illustrated in the following example, this property makes it possible to use pattern matching in the definition of rewrite rules in an intuitive way, thus simplifying the task of modeling algorithms tremendously.

Example 3.17. Consider the example of a function \(|\cdot| \) that computes the size of a set, where sets are modeled using the constructors \(\emptyset, \{\cdot\}, \) and \(\cup \). Let \(\mathcal{S} \) and \(\mathcal{E} \) be as in Example 3.13. The three constructors for sets naturally give rise to a case analysis with three cases. For \(\emptyset \) and \(\{\cdot\} \), computing the size of a set is simple:
Chapter 3. Constrained Equational Rewrite Systems

\[|\emptyset| \rightarrow 0 \]
\[|\{x\}| \rightarrow 1 \]

For the constructor \(\cup \), it is quite intuitive to assume that \(x \cup y \) is not the empty set or a singleton set, since both of these cases have already been taken care of. Furthermore, it can be assumed that both \(x \) and \(y \) are non-empty sets. Finally, computing the size of \(x \cup y \) is very easy if the sets \(x \) and \(y \) are disjoint and much more complicated otherwise. If it can be assumed that \(x \) and \(y \) are disjoint sets, then

\[|x \cup y| \rightarrow |x| + |y| \]

computes the correct size of a set since the instantiations of the variables \(x \) and \(y \) will be disjoint non-empty sets due to the normalization with \(\rightarrow_{\mathcal{E} \setminus \mathcal{S}} \). \(\triangle \)

The function symbols occurring at the root position of left-hand sides in \(\mathcal{R} \) are of particular interest since they are the only ones that make it possible to apply a rewrite rule. Thus, the following notation is introduced.

Definition 3.18 (Defined Symbols, Constructors). Let \((\mathcal{R}, \mathcal{S}, \mathcal{E}) \) be a CERS. Then the **defined symbols** of \((\mathcal{R}, \mathcal{S}, \mathcal{E}) \) are given by \(\mathcal{D}(\mathcal{R}) = \{ f \mid f = \text{root}(l) \text{ for some } l \rightarrow r[\varphi] \in \mathcal{R} \} \). The **constructors** of \((\mathcal{R}, \mathcal{S}, \mathcal{E}) \) are \(\mathcal{C}(\mathcal{R}) := \mathcal{F} \setminus \mathcal{D}(\mathcal{R}) \).

Notice that the function symbols from \(\mathcal{F}_{Th} \) are not members of \(\mathcal{C}(\mathcal{R}) \).

Example 3.19. In Example 3.13, \(\mathcal{D}(\mathcal{R}) = \{ \text{app}, \text{low}, \text{high}, \text{qsort} \} \) and \(\mathcal{C}(\mathcal{R}) = \{ \text{nil}, \text{cons}, \emptyset, \{\cdot\}, \cup \} \). \(\triangle \)

It is not immediately obvious whether the rewrite relation \(\mathcal{S} \rightarrow_{\mathcal{T}_h|\mathcal{E} \setminus \mathcal{R}} \) is decidable. In the important case where \(\mathcal{E} \) is size-preserving, the following positive answer is obtained. Notice that the canonizable theories from Figure 3.1 and the canonizable collection data structures from Figure 3.2 satisfy this requirement on \(\mathcal{E} \).
Chapter 3. Constrained Equational Rewrite Systems

Lemma 3.20. Let \((R, S, E)\) be a CERS such that \(E\) is size-preserving and validity of \(Th\)-constraints is decidable.

1. If \(s\) and \(t\) are terms, then it is decidable whether \(s \sim_E t\). Furthermore, the \(E\)-equivalence class of \(s\) can be computed effectively.

2. For any term \(s\), it is decidable whether \(s\) is reducible by \(\rightarrow_{E\setminus S}\), and if so, a term \(t\) with \(s \rightarrow_{E\setminus S} t\) is effectively computable.

3. For any term \(s\), it is decidable whether \(s\) is reducible by \(\rightarrow_{Th\parallel E\setminus R}\), and if so, a term \(t\) with \(s \rightarrow_{Th\parallel E\setminus R} t\) is effectively computable.

3.4 Innermost and Restricted Rewriting

As argued in Chapter 1, it is often important to give special attention to the innermost rewriting strategy since this corresponds to the call-by-value semantics of eager functional programming languages. The innermost rewrite relation for CERSs is obtained by the following slight modification of Definition 3.15. The only added condition is 3, which requires that all proper subterms of the instantiated left-hand side of the rewrite rule are irreducible by \(\rightarrow_{Th\parallel E\setminus R}\), i.e., the reduction indeed takes place at an innermost position where a reduction is possible.

Definition 3.21 (Innermost Rewrite Relation of a CERS). Let \((R, S, E)\) be a CERS. Then \(s \rightarrow_{Th\parallel E\setminus R} t\) iff there exist a constrained rewrite rule \(l \rightarrow r[\phi] \in R\), a position \(p \in Pos(s)\), and a \(Th\)-based substitution \(\sigma\) such that

1. \(\sigma|_p \Lambda_{E\setminus S} \circ \Lambda_{E\setminus S} l\sigma\),

2. \(\phi\sigma\) is \(Th\)-valid,

3. all proper subterms of \(l\sigma\) are irreducible by \(\rightarrow_{Th\parallel E\setminus R}\), and

4. \(t = s[r\sigma]_p\).
Chapter 3. Constrained Equational Rewrite Systems

Example 3.22. In Example 3.13, \(\text{app}(\text{nil}, \text{qsort}([1])) \overset{S}{\rightarrow} \text{Th} \parallel E \setminus R \text{qsort}([1]) \), but this is not allowed using Definition 3.21 since the proper subterm \(\text{qsort}([1]) \) is reducible by \(\overset{S}{\rightarrow} \text{Th} \parallel E \setminus R \). Indeed, the only innermost reduction step of \(\text{app}(\text{nil}, \text{qsort}([1])) \) is \(\text{app}(\text{nil}, \text{qsort}([1])) \overset{S}{\rightarrow} \text{Th} \parallel E \setminus R \text{app}(\text{nil}, \text{cons}(1, \text{nil})). \)

For termination purposes, the innermost rewrite relation might be terminating even though the full rewrite relation is non-terminating. This is well-known from ordinary term rewriting.\(^1\) For certain classes of ordinary TRSs, however, innermost termination and full termination coincide [91]. Whether a similar relationship is also true for CERSs is currently open and could be investigated in future work.

Notice that actual implementations of rewriting most likely use a slightly different definition of innermost rewriting that checks whether \(s|_p \) is irreducible by \(\overset{S}{\rightarrow} \text{Th} \parallel E \setminus R \), i.e., condition 3 in Definition 3.21 would be replaced by

\[3'. \text{ All proper subterms of } s|_p \text{ are irreducible by } \overset{S}{\rightarrow} \text{Th} \parallel E \setminus R. \]

Using Lemma 3.26 stated below, this results in a more restricted rewrite relation. However, the techniques presented in the remainder of this dissertation for the innermost case only make use of condition 3 and cannot take any additional advantage of condition 3'. Notice that conditions 3 and 3' coincide if \(E = S = \emptyset \), i.e., for ordinary rewriting.

Example 3.23. This example illustrates the distinction between conditions 3 and 3'. For this, \(S \) and \(E \) only model integers and \(R \) consists of the single rule \(f(x) \rightarrow x \). Consider the term \(t = f(f(0) + (-f(0))) \). Using condition 3, \(t \overset{S}{\rightarrow} \text{Th} \parallel E \setminus R \ 0 \) since \(t \overset{S}{\rightarrow} \text{L} \setminus S f(0) \overset{L}{\rightarrow} e f(x) \sigma \) for \(\sigma = \{x \mapsto 0\} \) and all proper subterms of \(f(x) \sigma = f(0) \) are irreducible by \(\overset{S}{\rightarrow} \text{Th} \parallel E \setminus R \). In contrast, the only one-step reductions of \(t \) using condition 3' yield \(f(0 + (-f(0))) \) and \(f(f(0) + (-0)) \) since the inner occurrences of \(f \) need to be reduced first. \(\triangle \)

\(^1\)Recall Example 1.7.
Chapter 3. Constrained Equational Rewrite Systems

In order to obtain a form of rewriting that subsumes both the unrestricted rewrite relation considered in Definition 3.15 and the innermost rewrite relation of Definition 3.21, a general restricted rewrite relation is introduced, following an idea from [86] for ordinary rewriting.

Definition 3.24 (Q-Restricted Rewrite Relation of a CERS). Let \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) be a CERS and let \(Q\) be a finite set of constrained rewrite rules. Then \(s \xrightarrow{\mathcal{Q}} t\) \(\mathcal{E}\)-\(\mathcal{R}\) iff there exist a constrained rewrite rule \(l \rightarrow r/\varphi \in \mathcal{R}\), a position \(p \in \mathcal{Pos}(s)\), and a \(\mathcal{E}\)-based substitution \(\sigma\) such that

1. \(s|_p \xrightarrow{\Lambda}(\mathcal{E})_{\mathcal{S}} \circ \Lambda(l)\sigma\),
2. \(\varphi\sigma\) is \(\mathcal{E}\)-valid,
3. all proper subterms of \(l\sigma\) are irreducible by \(\xrightarrow{\mathcal{S} \setminus \mathcal{Q} \setminus \mathcal{R}}\), and
4. \(t = s[r\sigma]_p\).

The unrestricted rewrite relation is obtained from this definition by letting \(Q = \emptyset\), and the innermost rewriting is obtained if \(Q = \mathcal{R}\). Notice that there is in general no assumption on the relationship between \(Q\) and \(\mathcal{R}\). By combining a CERS with a set \(Q\) as considered in Definition 3.24, the following generalization of CERSs is obtained.

Definition 3.25 (Restricted Constrained Equational Rewrite Systems (RCERSs)). A restricted constrained equational rewrite system (RCERS) \((Q, \mathcal{R}, \mathcal{S}, \mathcal{E})\) consists of a finite set \(Q\) of constrained rewrite rules and a CERS \((\mathcal{R}, \mathcal{S}, \mathcal{E})\).

The following lemma collects several properties of RCERSs that are needed in the remainder of this dissertation. In particular, notice that these properties imply that, as stated above, condition \(3\) in Definition 3.21 is a slightly looser restriction than condition \(3'\). This can be seen by letting \(Q = \emptyset\) and observing that all proper
subterms of \(l\sigma \) are irreducible by \(S \rightarrow_{Th|E\setminus R} S \rightarrow_{Th|E\setminus R} \) if all proper subterms of \(s|_p \) are irreducible by \(S \rightarrow_{Th|E\setminus R} S \rightarrow_{Th|E\setminus R} \) and \(s|_p \rightarrow \Lambda \rightarrow_{E\setminus S} \rightarrow_{E\setminus S} \).

Lemma 3.26. Let \((Q, R, S, E)\) be an RCERS.

1. \(\sim_E \circ S \rightarrow_{Th|E\setminus R} S \rightarrow_{Th|E\setminus R} \sim_E \), where the \(S \rightarrow_{Th|E\setminus R} \)-steps can be performed using the same constrained rewrite rule and \(Th\)-based substitution.
2. \(\rightarrow_{E\setminus S} \circ S \rightarrow_{Th|E\setminus R} S \rightarrow_{Th|E\setminus R} \rightarrow_{E\setminus S} \)

The following corollary is easily obtained from this lemma.

Corollary 3.27. Let \((Q, R, S, E)\) be an RCERS and let \(s, t \) be terms.

1. If \(s \sim_E t \), then \(s \) starts an infinite \(S \rightarrow_{Th|E\setminus R} \)-reduction iff \(t \) starts an infinite \(S \rightarrow_{Th|E\setminus R} \)-reduction.
2. If \(s \rightarrow_{E\setminus S} t \) and \(t \) starts an infinite \(S \rightarrow_{Th|E\setminus R} \)-reduction, then \(s \) starts an infinite \(S \rightarrow_{Th|E\setminus R} \)-reduction.

Example 3.28. This example shows that right-linearity of \(S \) is crucial for Corollary 3.27.2 and Lemma 3.26.2. Consider the following RCERS with \(Q = E = \emptyset \):

\[
S: \quad f(x) \rightarrow g(x, x) \\
R: \quad h(g(a, b)) \rightarrow h(g(a, b)) \\
c \rightarrow a \\
c \rightarrow b
\]

Consider the term \(t = h(f(c)) \). It is irreducible by \(S \rightarrow_{Th|E\setminus R} \) at the root position since \(t \rightarrow \Lambda \rightarrow_{E\setminus S} h(g(c, c)) \) and \(h(g(c, c)) \) is not matched by the \(h \)-rule. The only one-step reductions of \(t \) below the root yield \(h(f(a)) \) and \(h(f(b)) \), both of which are irreducible by \(S \rightarrow_{Th|E\setminus R} \). But \(t \rightarrow \Lambda \rightarrow_{E\setminus S} h(g(c, c)) \), where \(h(g(c, c)) \) starts the infinite \(S \rightarrow_{Th|E\setminus R} \)-reduction \(h(g(c, c)) \rightarrow h(g(a, c)) \rightarrow h(g(a, b)) \rightarrow \ldots \) \(S \rightarrow_{Th|E\setminus R} \).
Chapter 3. *Constrained Equational Rewrite Systems*

3.5 Summary

This chapter has introduced the class of rewrite systems that is used for modeling algorithms in this dissertation. The key idea for modeling built-in numbers and collection data structures is to use equational completion [101, 21] in order to obtain a characterization of the defining properties of these data structures using both rewrite rules and equations. The rewrite relation of the defined symbols as specified using a set \(\mathcal{R} \) of constrained rewrite rules then utilizes this characterization by using the idea of normalized rewriting [128] before applying a rule from \(\mathcal{R} \).

An innermost rewriting relation for \(\mathcal{R} \) can easily be defined by requiring that all proper subterms of the instantiated left-hand side of the rewrite rule are irreducible. This innermost rewrite relation naturally extends to a more general restricted rewrite relation that checks for irreducibility of the proper subterms of the instantiated left-hand side of the rewrite rule using a separate set \(\mathcal{Q} \) of rewrite rules. This general restricted rewrite relation encompasses both the full and the innermost rewrite relation of \(\mathcal{R} \) and enjoys “good” semantical properties.
Chapter 4

Translating Imperative Programs

Methods for automatically proving termination of imperative programs have received increased attention in recent years. The most commonly used automatic method for this is based on linear ranking functions which linearly combine the values of the program variables in a given state [44, 45, 144, 145, 36]. It was shown in [164, 38] that termination of a simple class of linear programs consisting of a single while-loop that does not contain any if-statements is decidable. More recently, the combination of abstraction refinement and linear ranking functions has been considered [49, 50, 42]. The tool Terminator [51], developed at Microsoft Research and based on this idea, has reportedly been used for showing termination of device drivers.

In order to show that the CERSs as introduced in Chapter 3 are widely applicable for a variety of different tasks, this brief chapter introduces a simple translation of a class of imperative programs into CERSs operating on built-in integers. Then, termination of the CERS implies termination of the imperative program.

Example 4.1. Consider the following imperative program:
Chapter 4. Translating Imperative Programs

\[
\textbf{while (x >= y) \{ \\
 y++ \\
\}}
\]

It is translated into the constrained rewrite rule $\textbf{eval}(x, y) \rightarrow \textbf{eval}(x, y + 1) \ [x \geq y]$ that simulates the state change occurring during a single execution of the loop body. Notice that the constraint of the rule is obtained from the condition of the loop. △

Using this simple translation, the methods for proving termination of CERSs that are developed in this dissertation can be applied for proving termination of imperative programs as well. The proposed translation should only be considered as a proof of concept. In order to be applicable to full-fledged imperative programming languages such as C or Java, further research is needed.

The idea of (automatically) translating programs from one programming language into another programming language for the purpose of program verification is not new. Translations from imperative programs into functional programs in the context of partial correctness proving have been described in [132, 78]. More closely related to the approach presented in this chapter, translations from real-life programming languages into term rewrite systems for the purpose of termination proving have been applied to the declarative programming languages Prolog [153] and Haskell [85], and [155, 138] contains initial results on translating a fragment of Java into term rewrite systems.

4.1 A Simple Imperative Language

Consider a simple imperative programming language where programs are formed according to the grammar in Figure 4.1. The constructs in this programming language have the standard (operational) semantics, i.e., \textbf{skip} denotes a do-nothing statement
Chapter 4. Translating Imperative Programs

\[
\text{prog ::= stmt} \\
\quad | \quad \text{assume; stmt} \\
\text{stmt ::= skip} \\
\quad | \quad \text{assgn} \\
\quad | \quad \text{stmt; stmt} \\
\quad | \quad \text{if (cond) \{stmt\} else \{stmt\}} \\
\quad | \quad \text{while (cond) \{stmt\}} \\
\quad | \quad \text{break} \\
\quad | \quad \text{continue} \\
\quad | \quad \text{either \{stmt\} or \{stmt\}} \\
\text{assume ::= assume cond} \\
\text{cond ::= "\(\mathcal{T}_{HZ}\)-constraints"} \\
\text{assgn ::= (var_1,\ldots,var_k) := (exp_1,\ldots,exp_k) for some } k \geq 1 \\
\text{var ::= "variable names"} \\
\text{exp ::= "linear arithmetic expressions with + and −"}
\]

Figure 4.1: Grammar for a simple imperative programming language.

and the either-statement denotes a non-deterministic choice. The break-statement aborts execution of the innermost while-loop surrounding it, while the continue-statement just aborts the current iteration of that loop and immediately starts the next iteration. The “;” in a concatenation may be omitted if the first statement ends with a “}". The assume-statement is used to state preconditions of the program. The \(\mathcal{T}_{HZ}\)-constraints for cond usually only use conjunction (written \&\& in programs), disjunction (written || in programs), and negation (written ! in programs). It is assumed that every parallel assignment contains each variable of the program exactly once on its left-hand side. This can always be achieved by adding dummy assignments that do not change a variable. Furthermore, it is assumed that each parallel assignment statement contains the variables of the program in the same fixed order on its left-hand side. A parallel assignment statement of the form \((x_1,\ldots,x_k) := (e_1,\ldots,e_k)\) where \(e_i \neq x_i\) for exactly one \(i\) is also written as \(x_i := e_i\). Finally, \(x++\) is an abbreviation for the assignment \(x := x + 1\) and \(x--\) abbreviates \(x := x - 1\).
Chapter 4. Translating Imperative Programs

4.2 Translating Imperative Programs into CERSs

The translation of an imperative program into a CERS proceeds as follows. Notice that this is particularly simple since the conditions used in if-statements and while-loops are identical to the constraints allowed for CERSs.

Assume that the imperative program uses the variables \(x_1, \ldots, x_n\) and contains \(m\) control points (i.e., program entry, while-loops and if-statements\(^1\)). Then the \(i^{th}\) control point in the program is associated with a function symbol \(\text{eval}_i : \text{int} \times \ldots \times \text{int} \rightarrow \text{univ}\) with \(n\) arguments, where \(\text{univ}\) is a sort distinct from \(\text{int}\). For simplicity of presentation and without loss of generality it is assumed that each straight-line code segment between two control points is a parallel assignment, \(\text{skip}\), or empty. A sequence of parallel assignments can be combined into a single parallel assignment in order to satisfy this requirement.

For all \(1 \leq i,j \leq m\) such that the \(j^{th}\) control point can be reached from the \(i^{th}\) control point by a straight-line code segment, each such straight-line code segment gives rise to a constrained rewrite rule of the form

\[
\text{eval}_i(\ldots) \rightarrow \text{eval}_j(\ldots) \llbracket \varphi \rrbracket
\]

where the constraint \(\varphi\) is determined as follows. If the \(i^{th}\) control point is the program entry, then \(\varphi\) is the condition of the assume-statement (if it exists) or \(\top\). If the \(i^{th}\) control point is a while-statement, then \(\varphi\) is the condition of the while-loop or the negated condition of the while-loop, depending on whether the loop body is entered to reach the \(j^{th}\) control point. If the \(i^{th}\) control point is an if-statement, then \(\varphi\) is the condition of the if-statement or the negated condition of the if-statement, depending on whether the then-branch or the else-branch is taken to reach the \(j^{th}\) control point.\(^2\)

\(^1\)For termination purposes it is not necessary to consider the program exit.

\(^2\)It is also possible to merge the control point of an if-statement with control points
Chapter 4. Translating Imperative Programs

The constrained rewrite rule that is created now depends on the straight-line code segment.

Case 1: skip or empty. If the straight-line code segment is skip or empty, then the rewrite rule just becomes

\[\text{eval}_i(x_1, \ldots, x_n) \rightarrow \text{eval}_j(x_1, \ldots, x_n) \llbracket \varphi \rrbracket \]

with \(\varphi \) as described above.

Case 2: Parallel assignment. If the straight-line code segment is a parallel assignment \((x_1, \ldots, x_k) := (e_1, \ldots, e_k)\), then the rewrite rule becomes

\[\text{eval}_i(x_1, \ldots, x_n) \rightarrow \text{eval}_j(e_1, \ldots, e_n) \llbracket \varphi \rrbracket \]

with \(\varphi \) as described above.

Example 4.2. Consider the following imperative program:

```java
while (x > 0 && y > 0) {
    if (x > y) {
        while (x > 0) {
            (x, y) := (x - 1, y + 1);
        }
    } else {
        while (y > 0) {
            (x, y) := (x + 1, y - 1);
        }
    }
}
```

from which the if statement can be reached. In this case \(\varphi \) is the conjunction of constraints obtained along that path.
Chapter 4. Translating Imperative Programs

It is translated into the following CERS:

\[
\begin{align*}
\text{eval}_1(x, y) & \rightarrow \text{eval}_2(x, y) \llbracket x > 0 \land y > 0 \land x > y \rrbracket \\
\text{eval}_1(x, y) & \rightarrow \text{eval}_3(x, y) \llbracket x > 0 \land y > 0 \land x \not> y \rrbracket \\
\text{eval}_2(x, y) & \rightarrow \text{eval}_2(x - 1, y + 1) \llbracket x > 0 \rrbracket \\
\text{eval}_2(x, y) & \rightarrow \text{eval}_1(x, y) \llbracket x \not> 0 \rrbracket \\
\text{eval}_3(x, y) & \rightarrow \text{eval}_3(x + 1, y - 1) \llbracket y > 0 \rrbracket \\
\text{eval}_3(x, y) & \rightarrow \text{eval}_1(x, y) \llbracket y \not> 0 \rrbracket
\end{align*}
\]

The outer \textbf{while}-loop is the first control point and the inner \textbf{while}-loops are the second and third control point, i.e., the technique of Footnote 2 has been used. △

Correctness of the translation is based on the observation that any state transition of the imperative program can be simulated by a rewrite sequence.

Theorem 4.3. Let \(P \) be an imperative program. Then the above translation produces a CERS \((\mathcal{R}_P, \mathcal{S}, \mathcal{E})\) where \(\mathcal{S} \) and \(\mathcal{E} \) are used to model \(\text{Th}_Z \) such that \(P \) is terminating if \(\mathcal{R}_P \) is terminating.

Notice that the converse of this statement is not true in general, i.e., \((\mathcal{R}_P, \mathcal{S}, \mathcal{E})\) might be non-terminating although \(P \) is terminating. This clearly illustrates the limitations of the simple translation introduced in this chapter.

Example 4.4. Consider the following imperative program [145]:

\[
\begin{align*}
\text{while} & \ (x \geq 0) \ \{ \\
\ & \ y := 1; \\
\ & \ \text{while} \ (x > y) \ \{ \\
\ & \ \ \ y := 2 \ast y \\
\ & \ \} \\
\ & \ x-- \\
\ \}
\end{align*}
\]
Chapter 4. Translating Imperative Programs

The imperative program is translated into the following CERS:

\[
\begin{align*}
\text{eval}_1(x, y) &\rightarrow \text{eval}_2(x, 1) \ [x \geq 0] \\
\text{eval}_2(x, y) &\rightarrow \text{eval}_2(x, 2 \cdot y) \ [x > y] \\
\text{eval}_2(x, y) &\rightarrow \text{eval}_1(x - 1, y) \ [x \neq y]
\end{align*}
\]

The imperative program is terminating since the inner while-loop increases \(y\) until it exceeds the upper bound \(x\) and the outer while-loop decreases \(x\). The resulting CERS, however, is not terminating since \(\text{eval}_2(1, 0) \text{ eval}_2(1, 2 \cdot 0) \text{ eval}_2(1, 2 \cdot 2 \cdot 0) \ldots.\)

The problem in Example 4.4 is that the control flow is not suitably taken into account since it is not determined that \(y\) is set to 1 before the inner while-loop is entered. Using static program analysis, this (and further information on the program) can be determined automatically.

4.3 Utilizing Static Program Analysis

In some cases, a successful automatic termination proof requires simple invariants on the program variables (such as “a variable is always non-negative”) or simple reasoning of the kind “if variables do not change between control points, then relations that are true for them at the first control point are still true at the second control point”. This kind of information can be obtained automatically using static program analysis tools such as Interproc\(^3\). The program analysis tool Interproc is based on the abstract interpretation framework [52] in combination with the interval [52], polyhedra [53], or octagon [133] domain and automatically performs the kind of reasoning discussed above.

\(^3\)Freely available from http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
Chapter 4. Translating Imperative Programs

In examples within this dissertation, straight-line code segments are annotated with the information discovered by the static program analysis. These annotations are indicated in the program by writing a corresponding ThZ-constraint of the form $[\psi]$ before that straight-line code segment. The translation of Section 4.2 can utilize this information by replacing the constraint φ obtained from the conditions of while-loops and if-statements as discussed above by $\varphi \land \psi$.

Example 4.5. Using the interval domain [52], the following annotations are obtained for the imperative program from Example 4.4:

```plaintext
while (x >= 0) {
    [ x >= 0 ]
    y := 1;
    while (x > y) {
        [ x >= 0 && y > 0 ]
        y := 2 * y
    }
    [ x >= 0 && y > 0 ]
    x--
}
```

Using these annotations, the imperative program is translated into the following CERS:

\[
\text{eval}_1(x, y) \rightarrow \text{eval}_2(x, 1) \ [x \geq 0] \\
\text{eval}_2(x, y) \rightarrow \text{eval}_2(x, 2 \cdot y) \ [x \geq 0 \land y > 0 \land x > y] \\
\text{eval}_2(x, y) \rightarrow \text{eval}_1(x - 1, y) \ [x \geq 0 \land y > 0 \land x \neq y]
\]

It is shown in Example 7.29 how the annotations are used for a successful termination proof.

\[\triangle\]
Chapter 4. Translating Imperative Programs

4.4 Summary

This chapter has introduced a simple translation of a class of imperative programs into CERSs operating on built-in integers. This translation is sound for termination purposes (i.e., the imperative program is terminating whenever the CERS obtained from it is terminating) but not complete in general. Often, an automatically performed static program analysis is helpful in cases where the translation is incomplete for termination purposes.

The purpose of this translation is to make the methods for proving termination of CERSs developed in this dissertation applicable for proving termination of imperative programs as well. The class of imperative programs considered in this chapter is restricted. Further research is needed in order to broaden this class to come closer to full-fledged imperative languages such as C or Java. Nonetheless, the translation presented in this chapter in combination with the methods for proving termination of CERSs presented in subsequent chapters are already sufficient for showing termination of most examples considered in the literature on termination analysis of imperative programs [44, 45, 145, 36, 37, 49, 50]. Notice that an empirical comparison of the methods presented in this dissertation and the methods of [44, 45, 145, 36, 37, 49, 50] is not possible since implementations of those methods are not publicly available.
Chapter 5

The Dependency Pair Framework

The dependency pair method [12] is commonly considered to be the most successful automated method for proving termination of ordinary rewriting. The crucial idea of the dependency pairs method is to compare the left-hand sides of rules with recursive calls to defined symbols on the right-hand sides of rules. The main theorem of the dependency pair method then states that an ordinary TRS is terminating if and only if it is impossible to build infinite chains using these recursive calls. This general idea has been extended from ordinary rewriting to rewriting modulo associativity and commutativity [129, 118], rewriting modulo i.u.v. collapse-free sets of equations [81], and ordinary context-sensitive rewriting [2, 1].

The most recent formulation of this method is the dependency pair framework [86], a general framework for termination proving that makes it possible to modularly combine different techniques. Apart from a clear theoretical formulation, the dependency pair framework is also suitable for a modular implementation of automated termination provers such as AProVE [84].

While originally developed for ordinary rewriting, the dependency pair framework has recently been extended to rewriting modulo associativity and commutativ-
Chapter 5. The Dependency Pair Framework

ity [156] and to ordinary context-sensitive rewriting [1]. This chapter extends the dependency pair framework to rewriting with RCERSs and thus, in particular, to full or innermost rewriting with CERSs.

For the purpose of termination analysis, it suffices to only consider one further sort in addition to the sort \texttt{base} of the built-in theory. Thus, it is assumed in Chapters 5–12 that the only sorts are \texttt{base} and a new sort \texttt{univ}. Every RCERS can easily be transformed into a new RCERS over these two sorts by identifying all sorts that are different from \texttt{base}. Clearly, the original RCERS is terminating if the RCERS with only two sorts is terminating.

5.1 Dependency Pairs

The definition of a dependency pair is essentially the well-known one [12], with the only difference that a dependency pair inherits the constraint of the rule it is created from. As customary, a signature $\mathcal{F}^/$ is introduced, containing the function symbol $f^/$ for each function symbol $f \in \mathcal{F}$, where $f^/$ has the sort declaration $s_1 \times \ldots \times s_n \to \texttt{top}$ if f has the sort declaration $s_1 \times \ldots \times s_n \to s$ with $s \in \{\texttt{base}, \texttt{univ}\}$. Here, \texttt{top} is a new sort that is distinct from \texttt{base} and \texttt{univ}. For the term $t = f(t_1, \ldots, t_n)$, the term $f^/(t_1, \ldots, t_n)$ is denoted by $t^/$.

Definition 5.1 (Dependency Pairs). Let $(\mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$ be an RCERS. The dependency pairs of \mathcal{R} are $\text{DP}(\mathcal{R}) = \{l^/ \to t^/\varphi \mid t$ is a subterm of r with $\text{root}(t) \in \mathcal{D}(\mathcal{R})$ for some $l \to r\varphi \in \mathcal{R}\}$.

Example 5.2. Example 3.13 gives rise to the following dependency pairs:

\begin{align*}
\text{app}^/(\text{cons}(x, ys), zs) & \to \text{app}^/(ys, zs) \\
\text{low}^/(x, y \cup z) & \to \text{low}^/(x, y) \\
\text{low}^/(x, y \cup z) & \to \text{low}^/(x, z)
\end{align*}

(5.1) (5.2) (5.3)
Chapter 5. The Dependency Pair Framework

\[
\begin{align*}
\text{high}^\sharp(x, y \cup z) & \rightarrow \text{high}^\sharp(x, y) \quad (5.4) \\
\text{high}^\sharp(x, y \cup z) & \rightarrow \text{high}^\sharp(x, z) \quad (5.5) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{app}^\sharp(\text{qsort}(\text{low}(x, y)), \text{cons}(x, \text{qsort}(\text{high}(x, y)))) \quad (5.6) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{qsort}^\sharp(\text{low}(x, y)) \quad (5.7) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{low}^\sharp(x, y) \quad (5.8) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{qsort}^\sharp(\text{high}(x, y)) \quad (5.9) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{high}^\sharp(x, y) \quad (5.10)
\end{align*}
\]

Notice that a single constrained rewrite rule may give rise to more than one dependency pair. △

In order to verify termination of an RCERS, the notion of chains is used. Intuitively, a dependency pair corresponds to a recursive call, and a chain represents a possible sequence of calls in a reduction w.r.t. $S, Q \rightarrow T_h \parallel E \setminus R$. In the following, it is always assumed that different (occurrences of) dependency pairs are variable-disjoint. Notice that application of a substitutions does not introduce occurrences of function symbols from F^\sharp into terms from $T(F \cup F_{T_h}, V)$ since the symbols from F^\sharp have resulting sort top.

Definition 5.3 (Minimal (P, Q, R, S, E)-Chains). Let P be a set of dependency pairs and let (Q, R, S, E) be an RCERS. A (possibly infinite) sequence of dependency pairs $s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots$ from P is an (P, Q, R, S, E)-chain iff there exists a T_h-based substitution σ such that $t_i\sigma \xrightarrow{S, Q}_{T_h, E \setminus R} \circ \xrightarrow{\Lambda}_{E \setminus S} \circ \xrightarrow{\Lambda} s_{i+1}\sigma$, the T_h-constraint $\varphi_i\sigma$ is T_h-valid, and $s_i\sigma$ is irreducible by $S, Q \rightarrow T_h \parallel E \setminus Q$ and $\xrightarrow{\Lambda}_{E \setminus S}$ for all $i \geq 1$. The above (P, Q, R, S, E)-chain is minimal iff $t_i\sigma$ does not start an infinite $S, Q \rightarrow T_h \parallel E \setminus R$-reduction for all $i \geq 1$.

Here, $S, Q \rightarrow T_h \parallel E \setminus R$ corresponds to reductions occurring strictly below the root of $t_i\sigma$ (notice that root($t_i) \in F^\sharp$), and $\xrightarrow{\Lambda}_{E \setminus S} \circ \xrightarrow{\Lambda}$ corresponds to normalization and
matching before applying $s_{i+1} \rightarrow t_{i+1}[\varphi_{i+1}]$ at the root position.

Example 5.4. Using the dependency pair (5.2) from Example 5.2 twice, the following chain is obtained:

$$\text{low}^+(x, y \cup z) \rightarrow \text{low}^+(x, y), \text{low}^+(x', y' \cup z') \rightarrow \text{low}^+(x', y')$$

To see that this is indeed a chain, it suffices to consider the substitution $\sigma = \{x \mapsto 1, y \mapsto \{1\} \cup \{-1\}, z \mapsto \{2\}, x' \mapsto 1, y' \mapsto \{1\}, z' \mapsto \{-1\}\}$. △

Using chains, an exact characterization of termination can be obtained. The intuition for this result is as follows: If $\frac{S \in \mathcal{Q}}{T \notin \mathcal{S} \setminus \mathcal{R}}$ is not terminating, then there exists a *minimal non-terminating term*, i.e., a term that starts an infinite reduction such that none of its strict subterms starts an infinite reduction.

Example 5.5. Consider the following ordinary TRS:

\[
\begin{align*}
 a & \rightarrow b \\
 f(x, b) & \rightarrow g(x) \\
 g(x) & \rightarrow g(d(x))
\end{align*}
\]

Then the term $g(f(a, a))$ starts the infinite reduction $g(f(a, a)) \rightarrow_{\mathcal{R}} g(d(f(a, a))) \rightarrow_{\mathcal{R}} g(d(d(f(a, a)))) \rightarrow_{\mathcal{R}} \ldots$, but $g(f(a, a))$ is not a minimal non-terminating term since its strict subterm $f(a, a)$ starts the infinite reduction $f(a, a) \rightarrow_{\mathcal{R}} f(a, b) \rightarrow_{\mathcal{R}} g(a) \rightarrow_{\mathcal{R}} g(d(a)) \rightarrow_{\mathcal{R}} g(d(d(a)))$. Thus, $f(a, a)$ is a minimal non-terminating term since its only strict subterm a does not start an infinite reduction. △

For any minimal non-terminating term, a rewrite rule has to be applied at the root position eventually. Then the right-hand side of the rewrite rule that is used for the reduction at the root position contains a non-variable subterm which is instantiated to a minimal non-terminating term and $\text{DP}(\mathcal{R})$ contains a corresponding dependency pair. The same reasoning can then be applied to the instantiation of that non-variable subterm of the right-hand side.
Chapter 5. The Dependency Pair Framework

Theorem 5.6. Let \((Q, R, S, \mathcal{E}) \) be an RCERS. Then \(\frac{S \cdot Q}{\tau_{\mathcal{E}} R} \) is terminating if and only if there are no minimal infinite \((\text{DP}(R), Q, R, S, \mathcal{E})\)-chains.

5.2 DP Framework

Given Theorem 5.6, termination of an RCERS can be investigated by considering chains of dependency pairs. For ordinary rewriting, a large number of techniques has been developed to this extent (see, e.g., [86, 88, 95]). These techniques typically cannot show termination by themselves. Instead, they may remove some of the dependency pairs or they may decompose a set of dependency pairs into several independent sets of dependency pairs. Then, a successful termination proof consists of a successive application of such techniques. In order to show soundness of these techniques independently, and in order to freely combine them in a flexible manner in implementations like AProVE [84], the notions of **DP problems** and **DP processors** were introduced for ordinary rewriting in [86], giving rise to the **DP framework**. In this dissertation, these notions are applied to rewriting with RCERSs.

Definition 5.7 (DP Problems). A **DP problem** is a tuple \((P, Q, R, S, \mathcal{E}) \) such that \(P \) is a finite set of dependency pairs and \((Q, R, S, \mathcal{E}) \) is an RCERS.

In order to show that rewriting with \((Q, R, S, \mathcal{E}) \) is terminating, Theorem 5.6 implies that it suffices to show that there are no infinite minimal \((\text{DP}(R), Q, R, S, \mathcal{E})\)-chains, where, \((\text{DP}(R), Q, R, S, \mathcal{E}) \) is the initial DP problem obtained from the RCERS \((Q, R, S, \mathcal{E}) \). In order to show that a DP problem does not give rise to infinite chains, it is transformed into a set of DP problems for which this property has to be shown instead. This transformation is done using **DP processors**.

Definition 5.8 (Sound DP Processors). A **DP processor** is a function \(\text{Proc} \) that takes a DP problem as input and returns a finite set of DP problems as output.
Chapter 5. The Dependency Pair Framework

Ideally, \(\text{DP} \) processors have the property that it is easier to show absence of infinite chains for the DP problems that are obtained as output than it is to show absence of infinite chains for the input DP problem. It is in general impossible to characterize this property of \(\text{DP} \) processors precisely, but the removal of (one or more) dependency pairs from a DP problem results in a DP problem for which it is at least not harder to show absence of infinite chains. Notice that \(\text{Proc}(P, Q, R, S, E) = \{(P, Q, R, S, E)\} \) (or, more generally, \((P, Q, R, S, E) \in \text{Proc}(P, Q, R, S, E)\)) is a legal behavior for a \(\text{DP} \) processor. This can be interpreted as a failure of \(\text{Proc} \) on its input and indicates that a different \(\text{DP} \) processor should be applied.

The main motivation for introducing the DP framework is to formally model the recursive nature of termination proving once it has been reduced to showing the absence of infinite chains. This recursive nature gives rise to the concept of \(\text{DP trees} \).

Definition 5.9 (DP Trees). For an RCERS \((Q, R, S, E)\), a DP tree for \((Q, R, S, E)\) is a tree whose nodes are labelled with DP problems or “yes” such that the root is labelled with the DP problem \((\text{DP}(R), Q, R, S, E)\), all leaves are labelled with “yes”, and for every inner node labelled with the DP problem \((P', Q', R', S', E')\), there exists a sound DP processor \(\text{Proc} \) satisfying one of the following conditions:

\begin{itemize}
 \item \(\text{Proc}(P', Q', R', S', E') = \emptyset \) and the node has just one child, labelled with “yes”.
 \item \(\text{Proc}(P', Q', R', S', E') \neq \emptyset \) and the children of the node are labelled with the DP problems in \(\text{Proc}(P', Q', R', S', E') \).
\end{itemize}

\(^1\) The dual of soundness, i.e., completeness [86], is only needed for proving non-termination. Proving non-termination of RCERSs is not considered in this dissertation, but the DP framework for RCERSs can easily be extended for this purpose.
Chapter 5. The Dependency Pair Framework

The following is immediate by Definition 5.8 and Theorem 5.6. Thus, the construction of a DP tree suffices for proving termination of an RCERS.

Corollary 5.10. If there exists a DP tree for an RCERS \((Q, R, S, E)\), then \(\frac{S}{T_h \parallel E \setminus R}\) is terminating.

Example 5.11. This example illustrates the DP framework by giving the high-level structure of a termination proof for the quicksort RCERS from Example 5.2. For the sake of concreteness, let \(Q = \mathcal{R}\) (i.e., innermost termination is investigated) and consider the following DP processors:

1. Let \(\text{Proc}_1\) be the DP processor introduced in Section 6.3. It is shown in Example 6.6 that \(\text{Proc}_1(DP(R), Q, R, S, E) = \{(P_1, Q, R, S, E), (P_2, Q, R, S, E), (P_3, Q, R, S, E), (P_4, Q, R, S, E)\}\) for some subsets \(P_i \subseteq \mathcal{P}\) of dependency pairs.

2. Let \(\text{Proc}_2\) be the DP processor introduced in Section 6.6. Example 6.26 shows that \(\text{Proc}_2(P_1, Q, R, S, E) = \text{Proc}_2(P_2, Q, R, S, E) = \text{Proc}_2(P_3, Q, R, S, E) = \emptyset\).

3. Let \(\text{Proc}_3\) be the DP processor introduced in Section 8.1. As shown in Example 8.2, \(\text{Proc}_3(P_4, Q, R, S, E) = \emptyset\).

Using these DP processors, the following DP tree can be constructed:

\[
\begin{array}{c}
(DP(R), Q, R, S, E) \\
(P_1, Q, R, S, E) & (P_2, Q, R, S, E) & (P_3, Q, R, S, E) & (P_4, Q, R, S, E) \\
\text{“yes”} & \text{“yes”} & \text{“yes”} & \text{“yes”} \\
\end{array}
\]

Therefore, rewriting with \((Q, R, S, E)\) is terminating. \(\triangle\)
5.3 Summary

The dependency pair method [12] is commonly considered to be the most successful automated method for proving termination of ordinary rewriting, and the contributions of this chapter make it possible to apply the method to the expressive framework of RCERSs as well. For this, a precise characterization of termination of an RCERS using the absence of infinite chains of dependency pairs has been given.

Motivated by a clear theoretical foundation and a practical way to implement the dependency pair method, a general framework for termination proofs that makes it possible to modularly combine different techniques has been introduced, following the spirit of [86]. This framework is used as the basis for the methods presented in the next chapters, where various techniques for the termination analysis of RCERSs are presented in the form of DP processors.
Chapter 6

DP Processors Operating on Dependency Pairs

This chapter introduces various sound DP processors that consider the dependency pairs in \mathcal{P} and the constrained rewrite rules in \mathcal{R} independently of each other when operating on the DP problem $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$. Furthermore, most of these DP processors can disregard the constrained rewrite rules in \mathcal{R} altogether. The DP processors of Section 6.1 and Section 6.2 use basic properties of $\rightarrow_{\mathcal{E}\setminus \mathcal{S}}$ and $\frac{\mathcal{S}, \mathcal{Q}}{\mathcal{T}_h\parallel \mathcal{E}\setminus \mathcal{R}}$ in order to remove dependency pairs from a DP problem. Section 6.3 introduces the dependency graph, which makes it possible to decompose a DP problem into several independent DP problems by determining which dependency pairs may follow each other in chains. Using ideas developed for the dependency graph, Section 6.4 introduces a DP processor that can simplify the right-hand sides of dependency pairs. The DP processor in Section 6.5 can be used to combine dependency pairs that occur after each other in chains. Finally, the DP processor of Section 6.6 uses a specific well-founded relation (the subterm relation modulo \mathcal{E}) in order to remove dependency pairs from a DP problem.

76
6.1 Unsatisfiable Constraints

Dependency pairs and rules may be deleted from a DP problem if they have a constraint that is \(T_h\)-unsatisfiable. This is sound since no instance of an unsatisfiable constraint is \(T_h\)-valid. The removal can also be performed at the level of RCERSs before the dependency pairs are computed.

Theorem 6.1 (DP Processor Based on Unsatisfiable Constraints). Let \(\text{Proc}\) be a DP processor with \(\text{Proc}(P, Q, R, S, E) = \{ (P - P', Q - Q', R - R', S, E) \}\), where

- \(P' = \{ s \rightarrow t[\varphi] \in P \mid \varphi \text{ is } T_h\text{-unsatisfiable} \}\),
- \(Q' = \{ l \rightarrow r[\varphi] \in Q \mid \varphi \text{ is } T_h\text{-unsatisfiable} \}\), and
- \(R' = \{ l \rightarrow r[\varphi] \in R \mid \varphi \text{ is } T_h\text{-unsatisfiable} \}\).

Then \(\text{Proc}\) is sound.

Example 6.2. This example is used to illustrate several simple DP processors. \(E\) and \(S\) are used to only model \(T_h\) and sets built using \(\emptyset\), \{\cdot\}, and \(\cup\). The rewrite rules in \(R\) are as follows:

\[
\begin{align*}
f(x, y) & \rightarrow f(x, y) [x > y \land y > x] \quad (6.1) \\
f(x + (0 + (-x)), y) & \rightarrow f(x + (0 + (-x)), y) \quad (6.2) \\
g(x \cup y) & \rightarrow g(\emptyset \cup \emptyset) \quad (6.3)
\end{align*}
\]
In order to simplify presentation, the technique of Theorem 6.1 is applied to the RCERS \((Q, R, S, \mathcal{E})\) with \(Q = \emptyset\) and not on the level of DP problems. Then the RCERS \((\emptyset, \{(6.1), (6.2), (6.3)\}, S, \mathcal{E})\) is transformed into \((\emptyset, \{(6.2), (6.3)\}, S, \mathcal{E})\) because the constraint \(x > y \land y > x\) is unsatisfiable in the integers. \(\triangle\)

6.2 Reducible Left-Hand Sides

If dependency pairs or rules have a left-hand side that is reducible by \(\rightarrow_{\mathcal{E}\setminus S}\), then these dependency pairs and rules may be deleted. This is sound since the instantiated left-hand side of a dependency pair in a chain or of a rule that is used for rewriting is irreducible by \(\rightarrow_{\mathcal{E}\setminus S}\) according to Definitions 3.24 and 5.3. The removal can also be performed at the level of RCERSs before the dependency pairs are computed.

Theorem 6.3 (DP Processor Based on Reducible Left-Hand Sides). Let \(\text{Proc}\) be a DP processor with \(\text{Proc}(P, Q, R, S, \mathcal{E}) = \{(P - P', Q - Q', R - R', S, \mathcal{E})\}\), where

- \(P' = \{s \rightarrow t[\varphi] \in P \mid s \text{ is reducible by } \stackrel{\Lambda}{\rightarrow}_{\mathcal{E}\setminus S}\}\),
- \(Q' = \{l \rightarrow r[\varphi] \in Q \mid l \text{ is reducible by } \stackrel{\Lambda}{\rightarrow}_{\mathcal{E}\setminus S}\}\), and
- \(R' = \{l \rightarrow r[\varphi] \in R \mid l \text{ is reducible by } \stackrel{\Lambda}{\rightarrow}_{\mathcal{E}\setminus S}\}\).

Then \(\text{Proc}\) is sound.

Example 6.4. Continuing Example 6.2, the RCERS \((\emptyset, \{(6.2), (6.3)\}, S, \mathcal{E})\) is transformed into \((\emptyset, \{(6.3)\}, S, \mathcal{E})\) since the left-hand side \(f(x + (0 + (-x)), y)\) of (6.2) is reducible by \(\stackrel{\Lambda}{\rightarrow}_{\mathcal{E}\setminus S}\) (for instance using the rule \(x + 0 \rightarrow x\)). \(\triangle\)
6.3 Dependency Graphs

The DP processor introduced in this section decomposes a DP problem into several independent DP problems by determining which dependency pairs from \mathcal{P} may follow each other in a $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$-chain. This gives a restricted kind of modularity in termination proofs and may make it possible to disregard certain dependency pairs if they cannot appear in a chain more than once. The processor relies on the notion of dependency graphs, which are also used in the dependency pair method for ordinary rewriting [12].

Definition 6.5 (Dependency Graphs). Let $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$ be a DP problem. The nodes of its dependency graph $DG(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$ are the dependency pairs in \mathcal{P} and there is an arc from $s_1 \rightarrow t_1[\varphi_1]$ to $s_2 \rightarrow t_2[\varphi_2]$ iff $s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2]$ is a $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$-chain.

Example 6.6. Continuing Example 5.2, recall the following dependency pairs:

\[
\begin{align*}
\text{app}^\sharp(\text{cons}(x, ys), zs) & \rightarrow \text{app}^\sharp(ys, zs) \\
\text{low}^\sharp(x, y \cup z) & \rightarrow \text{low}^\sharp(x, y) \\
\text{low}^\sharp(x, y \cup z) & \rightarrow \text{low}^\sharp(x, z) \\
\text{high}^\sharp(x, y \cup z) & \rightarrow \text{high}^\sharp(x, y) \\
\text{high}^\sharp(x, y \cup z) & \rightarrow \text{high}^\sharp(x, z) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{app}^\sharp(\text{qsort}(\text{low}(x, y)), \text{cons}(x, \text{qsort}(\text{high}(x, y)))) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{qsort}^\sharp(\text{low}(x, y)) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{low}^\sharp(x, y) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{qsort}^\sharp(\text{high}(x, y)) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{high}^\sharp(x, y)
\end{align*}
\]

For these dependency pairs,
is the dependency graph. \(\triangle \)

In general, \(\text{DG}(P, Q, R, S, E) \) cannot be computed exactly since it is undecidable whether two dependency pairs form a chain. Thus, an estimation has to be used instead. A possible estimation is given below.

A non-empty subset \(P' \subseteq P \) of dependency pairs is a **strongly connected subgraph** of \(\text{DG}(P, Q, R, S, E) \) iff for all dependency pairs \(s_1 \rightarrow t_1[\varphi_1] \) and \(s_2 \rightarrow t_2[\varphi_2] \) from \(P' \), there exists a path from \(s_1 \rightarrow t_1[\varphi_1] \) to \(s_2 \rightarrow t_2[\varphi_2] \) that only traverses dependency pairs from \(P' \). A strongly connected subgraph is a **strongly connected component (SCC)** if it is not a proper subset of any other strongly connected subgraph. Now every infinite \((P, Q, R, S, E) \)-chain has an infinite tail that stays within one strongly connected subgraph of \(\text{DG}(P, Q, R, S, E) \), and it is thus sufficient to prove the absence of infinite chains for each SCC separately.

Theorem 6.7 (DP Processor Based on Dependency Graphs). Let \(\text{Proc} \) be a DP processor with \(\text{Proc}(P, Q, R, S, E) = \{(P_1, Q, R, S, E), \ldots, (P_n, Q, R, S, E)\} \), where \(P_1, \ldots, P_n \) are the SCCs in \(\text{DG}(P, Q, R, S, E) \). Then \(\text{Proc} \) is sound.

Example 6.8. The dependency graph from Example 6.6 contains four SCCs, and according to Theorem 6.7, the following DP problems are obtained:

\[
\{(5.1)\}, \text{S, E} \tag{6.4}
\]

1Strongly connected subgraphs are often called *cycles* in the dependency pair literature. The name “strongly connected subgraph” stems from graph theory, where “cycle” has a different meaning.

2Notice, in particular, that \(\text{Proc}(\emptyset, Q, R, S, E) = \emptyset \).
Chapter 6. DP Processors Operating on Dependency Pairs

\[(\{(5.2), (5.3)\}, \mathcal{R}, \mathcal{S}, \mathcal{E})\] (6.5)
\[(\{(5.4), (5.5)\}, \mathcal{R}, \mathcal{S}, \mathcal{E})\] (6.6)
\[(\{(5.7), (5.9)\}, \mathcal{R}, \mathcal{S}, \mathcal{E})\] (6.7)

These DP problems can be handled independently of each other. \(\triangle\)

As mentioned above, \(\text{DG}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\) cannot be computed exactly in general since it is undecidable whether two dependency pairs \(s_1 \to t_1[\varphi_1]\) and \(s_2 \to t_2[\varphi_2]\) form a chain. Thus, an estimation has to be used instead. The idea for the estimation is that subterms of \(t_1\) which might be instantiated to become reducible by \(\frac{s \cdot q_{\mathcal{T}\mathcal{H}}}{\mathcal{E} \setminus \mathcal{R}}\) in a chain are abstracted by fresh variables. Then, it is checked whether the term obtained from \(t_1\) in this way can be instantiated to reduce to an instantiation of \(s_2\) using \(\frac{\lambda_1}{\mathcal{E} \setminus \mathcal{S}} \circ \frac{\lambda}{\mathcal{E}}\). The function \(\text{cap}\) is used to abstract subterms that might become reducible by \(\frac{s \cdot q_{\mathcal{T}\mathcal{H}}}{\mathcal{E} \setminus \mathcal{R}}\). Notice that a variable might be instantiated to become reducible by \(\frac{s \cdot q_{\mathcal{T}\mathcal{H}}}{\mathcal{E} \setminus \mathcal{R}}\) in a chain only if it has sort \(\text{univ}\) and \(\mathcal{Q} \not\supset \mathcal{R}\) (recall that the substitutions used for building chains are \(\mathcal{T}\mathcal{H}\)-based and instantiate variables by terms that are irreducible by \(\frac{s \cdot q_{\mathcal{T}\mathcal{H}}}{\mathcal{E} \setminus \mathcal{Q}}\)). For terms whose root symbol is not a variable, \(\text{cap}\) is applied recursively to the arguments and it is checked whether a rewrite rule might be applied at the root positions of the term that is obtained by the recursive application of \(\text{cap}\). For ordinary rewriting, a similar function \(\text{cap}\) was introduced in [87]. In the following, a substitution \(\mu\) is \(\mathcal{T}\mathcal{H}\text{-based for } \mathcal{V}' \subseteq \mathcal{V}\) iff \(\mu(x) \in \mathcal{T}(\mathcal{F}_{\mathcal{T}\mathcal{H}}, \mathcal{V})\) for all \(x \in \mathcal{V}'\) of sort \(\text{base}\).

Definition 6.9 (Estimated Dependency Graphs). Let \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\) be a DP problem. Then its estimated dependency graph \(\text{EDG}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\) has the dependency pairs in \(\mathcal{P}\) as nodes and there is an arc from \(s_1 \to t_1[\varphi_1]\) to \(s_2 \to t_2[\varphi_2]\) iff there exists a substitution \(\mu\) that is \(\mathcal{T}\mathcal{H}\text{-based for } \mathcal{V}(s_1) \cup \mathcal{V}(s_2)\) such that \(\text{cap}(t_1)\mu \xrightarrow{\lambda_1}{\mathcal{E} \setminus \mathcal{S}} \circ \xrightarrow{\lambda}{\mathcal{E}} \ s_2\mu, \varphi_1\mu \text{ and } \varphi_2\mu \text{ are } \mathcal{T}\mathcal{H}\text{-valid, and } s_1\mu \text{ and } s_2\mu \text{ are irreducible by } \frac{s \cdot q_{\mathcal{T}\mathcal{H}}}{\mathcal{E} \setminus \mathcal{Q}} \text{ and } \xrightarrow{\lambda}{\mathcal{E} \setminus \mathcal{S}}.\)

Here, \(\text{cap}\) is defined by...
1. for variables x of sort base, $\text{CAP}(x) = x$.

2. for variables x of sort univ, $\text{CAP}(x) = \begin{cases} x & \text{if } Q \supseteq R \\ y & \text{otherwise} \end{cases}$

3. $\text{CAP}(f(t_1, \ldots, t_n)) = f(\text{CAP}(t_1), \ldots, \text{CAP}(t_n))$ if there does not exist a rule $l \rightarrow r [\varphi] \in R$ such that $f(\text{CAP}(t_1), \ldots, \text{CAP}(t_n))\mu \geq_{\mathcal{E}\setminus\mathcal{S}} \circ \preceq_{\mathcal{E}} l\mu$ for a substitution μ that is $\mathcal{T}h$-based for $\mathcal{V}(f(t_1, \ldots, t_n)) \cup \mathcal{V}(l)$ where $\varphi\mu$ is $\mathcal{T}h$-valid and all proper subterms of $l\mu$ are irreducible by $\overset{S}{\sim}_{\mathcal{T}h|E\setminus Q}$, and

4. $\text{CAP}(f(t_1, \ldots, t_n)) = y$ otherwise.

Here, y is the next variable in an infinite list y_1, y_2, \ldots of fresh variables.

It is also possible to omit the checks for irreducibility by $\geq_{\mathcal{E}\setminus\mathcal{S}}$, irreducibility by $\overset{S,Q}{\sim}_{\mathcal{T}h|E\setminus R}$, and $\mathcal{T}h$-validity, and it is possible to replace case 3 in the definition of CAP by a simple check for $f \not\in \mathcal{D}(R)$. The following results remain correct for these possibilities. Implementing \mathcal{EDG} is still hard in general since it has to be decided whether there exists a substitution μ such that $s\mu \geq_{\mathcal{E}\setminus\mathcal{S}} \circ \preceq_{\mathcal{E}} t\mu$ for two terms s, t. A discussion of possible implementations can be found in Section 9.1.

Example 6.10. In order to check whether the estimated dependency graph contains an arc from (5.6) to (5.1) in Example 6.6, it needs to be checked whether there exists a substitution μ that is $\mathcal{T}h$-based for $\mathcal{V}(\text{qsort}^z(\{x\} \cup y)) \cup \mathcal{V}(\text{app}^z(\text{cons}(x', ys'), zs'))$ such that

$$\text{CAP}(\text{app}^z(\text{qsort}(\text{low}(x, y)), \text{cons}(x, \text{qsort}(\text{high}(x, y)))))\mu$$

$$\overset{\sim}{\overset{\mathcal{T}h|E\setminus Q}{\mathcal{S}}} \circ \sim_{\mathcal{E}} \text{app}^z(\text{cons}(x', ys'), zs')\mu$$

This can easily seen to be the case by considering, e.g., the substitution $\mu = \{y_1 \mapsto \text{cons}(x', ys'), zs' \mapsto \text{cons}(x, y_2)\}$. Therefore, the estimated dependency graph contains an arc from (5.6) to (5.1). Repeating similar reasoning to all possible arcs, an
Chapter 6. DP Processors Operating on Dependency Pairs

estimated dependency graph that is identical to the (exact) dependency graph from Example 6.6 is obtained.

It remains to be shown that the estimated dependency graph is indeed an overapproximation of the dependency graph, i.e., that $\text{EDG}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$ is a supergraph of $\text{DG}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$.

Theorem 6.11 (Correctness of EDG). For any DP problem $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$, the estimated dependency graph $\text{EDG}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$ is a supergraph of the dependency graph $\text{DG}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$.

6.4 Reducing Right-Hand Sides

The function \(\text{cap} \) introduced in the previous section has a further use that is not related to estimated dependency graphs. Using \(\text{cap} \), it is possible to apply $\rightarrow_{\mathcal{E}\setminus\mathcal{S}}$ to the right-hand side of a dependency pair in a certain way. More precisely, \(\text{cap}(t|_p) \) for a non-root position \(p \in \text{Pos}(t) \) can be reduced by $\rightarrow_{\mathcal{E}\setminus\mathcal{S}}$ for a dependency pair \(s \rightarrow t[\varphi] \in \mathcal{P} \).

Theorem 6.12 (DP Processor Based on Reducing Right-Hand Sides of Dependency Pairs). Let \(\text{Proc} \) be a DP processor with $\text{Proc}(\mathcal{P} \cup \{s \rightarrow t[\varphi]\}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) = \$

\[
\begin{align*}
\bullet & \{(\mathcal{P} \cup \{s \rightarrow t'[\varphi]\}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\}, \text{ if there exists a non-root position } p \in \text{Pos}(t) \\
& \text{such that } \text{cap}(t|_p) \rightarrow_{\mathcal{E}\setminus\mathcal{S}} \hat{t} \text{ and } t' = t[\hat{t}\tau]|_p, \text{ where } \tau \text{ is the substitution with } \text{cap}(t|_p)\tau = t|_p, \text{ and} \\
\bullet & \{(\mathcal{P} \cup \{s \rightarrow t[\varphi]\}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\}, \text{ otherwise.}
\end{align*}
\]

Then \(\text{Proc} \) is sound.
Chapter 6. DP Processors Operating on Dependency Pairs

Example 6.13. Continuing Example 6.4, the RCERS \((Q, \{(6.3)\}, S, \mathcal{E})\) with an arbitrary set \(Q\) gives rise to the DP problem \((\{(6.8)\}, Q, \{(6.3)\}, S, \mathcal{E})\) with the following dependency pair:

\[
g^z(x \cup y) \rightarrow g^z(\emptyset \cup \emptyset) \quad (6.8)
\]

Applying the DP processor of Theorem 6.12 to the only dependency pair, the DP problem \((\{g^z(x \cup y) \rightarrow g^z(\emptyset)\}, Q, \{(6.3)\}, S, \mathcal{E})\) is obtained. The dependency graph of this DP problem does not contain any SCC (this is also true for the initial DP problem \((\{(6.8)\}, Q, \{(6.3)\}, S, \mathcal{E})\), but it is harder to determine this automatically, cf. Section 9.1).

\[\triangleright\]

6.5 Dependency Pair Narrowing

Under certain conditions it is possible to replace a dependency pair \(s \rightarrow t[\varphi]\) by a set of new dependency pairs that are formed by combining \(s \rightarrow t[\varphi]\) with all other dependency pairs that may follow it in chains.\(^3\) This way, it might be possible to obtain more information about the possible substitutions used for a chain since, in particular, the constraints of the dependency pairs are suitably combined.

Example 6.14. Consider the following rewrite rules \(\mathcal{R}\), where \(S\) and \(\mathcal{E}\) are used to model \(Th_{\mathbb{Z}}\):

\[
\begin{align*}
f(x) & \rightarrow f(-x + 1) \ [x > 0] \\
f(x) & \rightarrow f(-x - 1) \ [x < 0]
\end{align*}
\]

\(^3\)It is also possible to combine \(s \rightarrow t[\varphi]\) with all dependency pairs that may precede it in chains. Notice that dependency pair narrowing has some similarities to the use of conditional constraints in [89]. Dependency pair narrowing conceptually differs from these conditional constraints, however, since conditional constraints are solely used in combination with one particular technique (reduction pairs). Dependency pair narrowing is independent of other techniques and transforms a DP problem. It is thus also similar to the dependency pair transformations from [12, 88].
Rewriting with these rules is terminating, since the absolute value of the argument of \(f \) is always decreasing. However, the implementation of the methods presented in this dissertation does not succeed in proving termination if the technique presented in this section is not used.

\(R \) gives rise to the following dependency pairs:

\[
\begin{align*}
f^\sharp(x) & \rightarrow f^\sharp(-x+1) \llbracket x > 0 \rrbracket \quad (6.9) \\
f^\sharp(x) & \rightarrow f^\sharp(-x-1) \llbracket x < 0 \rrbracket \quad (6.10)
\end{align*}
\]

By combining (6.9) with all dependency pairs that may follow it in chains (i.e., with (6.9) and (6.10)), the dependency pair (6.9) is replaced by

\[
\begin{align*}
f^\sharp(x) & \rightarrow f^\sharp(-(-x+1)+1) \llbracket x > 0 \land -x+1 > 0 \rrbracket \quad (6.11) \\
f^\sharp(x) & \rightarrow f^\sharp(-(-x+1)-1) \llbracket x > 0 \land -x+1 < 0 \rrbracket \quad (6.12)
\end{align*}
\]

The implementation succeeds on the DP problem \((6.10), (6.11), (6.12), Q, R, S, E)\) since the constraint of (6.11) is unsatisfiable and the DP problem \((6.12), Q, E, S, E)\) obtained from the only SCC in the dependency graph can easily be handled by methods introduced in Chapter 7.

This idea can be stated in the form of a DP Processor. The conditions imposed on the left- and right-hand sides of the dependency pairs ensure that the combined dependency pairs can be easily computed.

Theorem 6.15 (DP Processor Based on Dependency Pair Narrowing). Let \(\text{Proc} \) be a DP processor with \(\text{Proc}(\mathcal{P} \cup \{s \rightarrow t[\varphi]\}, Q, R, S, E) = \)

- \(\{\mathcal{P} \cup \mathcal{P}', Q, R, S, E]\} \), if
 - \(t = f^\sharp(t_1, \ldots, t_n) \) with \(t_i \in \mathcal{T}(\mathcal{F}_{Th}, \mathcal{V}) \) and \(\text{sort}(t_i) = \text{base} \) for all \(1 \leq i \leq n \),
 - \(s' = f^\sharp(x_1, \ldots, x_n) \) for distinct variables \(x_1, \ldots, x_n \) for all \(s' \rightarrow t'[\varphi'] \in \mathcal{P} \cup \{s \rightarrow t[\varphi]\} \) with \(\text{root}(s') = f^\sharp \), and

85
Chapter 6. DP Processors Operating on Dependency Pairs

\[- P' = \{ s \rightarrow t' \varphi \wedge \varphi' \tau \mid f^\sharp(x_1, \ldots, x_n) \rightarrow t' \varphi' \in P \cup \{ s \rightarrow t \varphi \} \text{ and } \]
\[
\tau = \{ x_1 \mapsto t_1, \ldots, x_n \mapsto t_n \}\}.
\]

- \{(P \cup \{ s \rightarrow t \varphi \}), Q, R, S, E\}, otherwise.

Then Proc is sound.

If the right-hand side of the dependency pair \(s \rightarrow t \varphi \) considered in Theorem 6.15 does not have the form \(f(t_1, \ldots, t_n) \) with \(t_i \in T(F_T, V) \) and \(\text{sort}(t_i) = \text{base} \) for all \(1 \leq i \leq n \), then it might be possible to eliminate certain arguments of \(f \) in order to satisfy this condition. The elimination of arguments is done using a simple version of non-collapsing argument filters [117].

Definition 6.16 (Non-Collapsing Argument Filters). A non-collapsing argument filter \(\pi \) maps every \(n \)-ary function symbol \(f^\sharp \in F^\sharp \) to a (possibly empty) list \([i_1, \ldots, i_m]\) with \(1 \leq i_1 < \ldots < i_m \leq n \). The set \(\pi(F^\sharp) \) consists of all function symbols \(f^\sharp \in F^\sharp \), where \(f^\sharp \) now has arity \(m \) if \(\pi(f) = [i_1, \ldots, i_m] \). A non-collapsing argument filter \(\pi \) induces a mapping on terms \(t^\sharp \) defined by

\[\pi(t^\sharp) = f^\sharp(t_{i_1}, \ldots, t_{i_m}) \text{ if } t^\sharp = f^\sharp(t_1, \ldots, t_n) \text{ and } \pi(f^\sharp) = [i_1, \ldots, i_m] \]

Now non-collapsing argument filters can be used to remove certain arguments in a DP problem. As motivated above, this may make it possible to apply the DP processor of Theorem 6.15 afterwards. A further use of the removal of arguments is presented in Section 7.3.

Theorem 6.17 (DP Processor Based on Non-Collapsing Argument Filters). Let \(\pi \) be a non-collapsing argument filter and let \(\text{Proc} \) be a DP processor such that

\[\text{Proc}(P, Q, R, S, E) = \]

- \{((\pi(P), Q, R, S, E)), if \(\forall \varphi(t) \subseteq \forall \varphi(s) \) for all \(s \rightarrow t \varphi \in P \). Here, \(\pi(P) = \{ \pi(s) \rightarrow \pi(t) \varphi \} \mid s \rightarrow t \varphi \in P \}.^4\]

^4Notice that \(\forall \varphi \not\subseteq \forall \varphi(s) \) is possible. This does not cause any complications.
Chapter 6. DP Processors Operating on Dependency Pairs

Then Proc is sound.

Example 6.18. With \(S \) and \(E \) as in Example 6.14, consider the following set \(R \) of rewrite rules:

\[
\begin{align*}
 f(x, y) & \rightarrow f(-x + 1, g(y)) \{x > 0\} \\
 f(x, y) & \rightarrow f(-x - 1, g(y)) \{x < 0\} \\
 g(y) & \rightarrow y \\
 g(y) & \rightarrow y + 17
\end{align*}
\]

The dependency pairs obtained from these rewrite rules are

\[
\begin{align*}
 f^2(x, y) & \rightarrow f^2(-x + 1, g(y)) \{x > 0\} \\
 f^2(x, y) & \rightarrow f^2(-x - 1, g(y)) \{x < 0\}
\end{align*}
\]

Notice that the DP processor of Theorem 6.15 is not applicable since the second arguments of \(f^2 \) on the right-hand sides contain recursive calls to \(g \). By applying the non-collapsing argument filter \(\pi(f^2) = [1] \), these dependency pairs are transformed into the dependency pairs (6.9) and (6.10) from Example 6.14.

\[\square\]

6.6 Subterm Criterion

The subterm criterion [95] is a relatively simple and efficient technique which is nonetheless surprisingly powerful. The technique works particularly well for functions that are defined using primitive recursion. For ordinary rewriting, the subterm criterion applies a simple projection which collapses a term \(f^2(t_1, \ldots, t_n) \) to one of its direct subterms. Given a set \(\mathcal{P} \) of dependency pairs and a subset \(\mathcal{P}' \subseteq \mathcal{P} \), the
Chapter 6. DP Processors Operating on Dependency Pairs

subterm criterion consists of finding a simple projection such that the collapsed right-hand side is a subterm of the collapsed left-hand side for all dependency pairs in \(\mathcal{P} \), where this subterm relation is furthermore strict for all dependency pairs from \(\mathcal{P}' \).

Then, the dependency pairs from \(\mathcal{P}' \) may be removed from the DP problem since they cannot occur infinitely often in a chain.

Definition 6.19 (Simple Projections). A simple projection is a mapping \(\pi \) that assigns an argument position \(i \) with \(1 \leq i \leq n \) to every \(f^x \in \mathcal{F}^x \) with \(\text{arity}(f^x) = n \).

The mapping that assigns the argument \(t_{\pi(f^x)} \) to any term \(f^x(t_1, \ldots, t_n) \) is also denoted by \(\pi \).

In the context of this dissertation, the subterm relation modulo \(\mathcal{E} \) is used. This generalization is quite natural and makes it possible to apply the idea of the subterm criterion to RCERSs.

Definition 6.20 (\(\mathcal{E} \)-Subterms). Let \((Q, R, S, \mathcal{E})\) be an RCERS and let \(s, t \) be terms. Then \(t \) is a strict \(\mathcal{E} \)-subterm of \(s \), written \(s \succcurlyeq \mathcal{E} t \), iff \(s \sim \mathcal{E} \circ \triangleright \sim \mathcal{E} t \). The term \(t \) is an \(\mathcal{E} \)-subterm of \(s \), written \(s \succeq \mathcal{E} t \), iff \(s \succeq \mathcal{E} t \) or \(s \sim \mathcal{E} t \).

Example 6.21. For \(\mathcal{E} = \{ x \cup y \approx y \cup x, x \cup (y \cup z) \approx (x \cup y) \cup z \}, \{0\} \cup (\{1\} \cup \{2\}) \succcurlyeq \mathcal{E} \{2\} \cup \{0\} \) since \(\{0\} \cup (\{1\} \cup \{2\}) \sim \mathcal{E} \{1\} \cup (\{2\} \cup \{0\}) \succ \{2\} \cup \{0\} \).

Notice that \(\succcurlyeq \mathcal{E} \) is not well-founded in general. Attention is thus restricted to the case where \(\mathcal{E} \) is size-preserving. In particular, this requirement is satisfied for the canonizable theories in Figure 3.1 and the canonizable collection data structures in Figure 3.2. The subterm criterion does not inherently depend on size-preservingness, however. Other criteria that ensure well-foundedness of \(\succcurlyeq \mathcal{E} \) may be used as well, with size-preservingness being an easily checkable criterion that is sufficient for most cases.

It will be shown in Lemma 6.23 below that the subterm relation modulo \(\mathcal{E} \) is stable. This property is important since all instantiations of a dependency pair can be considered simultaneously by considering just the dependency pair itself.

88
Chapter 6. DP Processors Operating on Dependency Pairs

Definition 6.22 (Stability). A relation $\bowtie \triangleright$ on terms is stable iff $s \bowtie \triangleright t$ implies $s\sigma \bowtie \triangleright t\sigma$ for all terms s, t and all substitutions σ.

The following lemma collects several properties of \rhd_E and \unrhd_E in the case where E is size-preserving. Here, only 1 and 2 depend on size-preservingness.

Lemma 6.23. Let (Q, R, S, E) be an RCERS such that E is size-preserving.

1. Given terms s, t, it is decidable whether $s \rhd_E t$ or $s \unrhd_E t$.
2. \rhd_E is well-founded.
3. \rhd_E and \unrhd_E are stable.
4. \rhd_E and \unrhd_E are compatible with \sim_E, i.e., $\sim_E \circ \rhd_E \circ \sim_E \subseteq \rhd_E$ and $\sim_E \circ \unrhd_E \circ \sim_E \subseteq \unrhd_E$.

A DP processor based on the subterm criterion is defined as follows. This DP processor has the advantage that it does not need to consider R and S in a DP problem (P, Q, R, S, E). This makes it possible to handle many DP problems very efficiently.

Theorem 6.24 (DP Processor Based on the Subterm Criterion). Let π be a simple projection and let Proc be a DP processor with $\text{Proc}(P, Q, R, S, E) =$

- $\{(P - P', Q, R, S, E)\}$, if E is size-preserving and $P' \subseteq P$ such that
 - $\pi(s) \rhd_E \pi(t)$ for all $s \rightarrow t[\varphi] \in P'$, and
 - $\pi(s) \unrhd_E \pi(t)$ for all $s \rightarrow t[\varphi] \in P - P'$.
- (P, Q, R, S, E), otherwise.

Then Proc is sound.
Recall from Lemma 6.23.1 that \(\sqsupseteq_E \) and \(\sqsubseteq_E \) are decidable if \(E \) is size-preserving. An implementation thus reduces to finding the simple projection \(\pi \).

Example 6.25. This example illustrates a mergesort algorithm that takes a set of integers and returns a sorted list of the elements of that set. For this, integers are modeled as in Figure 3.1 and sets are modeled using \(\emptyset, \{\cdot\}, \text{ and } \cup \) as in Figure 3.2. The mergesort algorithm can be given as follows:

\[
\begin{align*}
\text{merge}(\text{nil}, y) & \rightarrow y \\
\text{merge}(x, \text{nil}) & \rightarrow x \\
\text{merge}(\text{cons}(x, xs), \text{cons}(y, ys)) & \rightarrow \text{cons}(y, \text{merge}(\text{cons}(x, xs), ys)) \quad [x > y] \\
\text{merge}(\text{cons}(x, xs), \text{cons}(y, ys)) & \rightarrow \text{cons}(x, \text{merge}(xs, \text{cons}(y, ys))) \quad [x \neq y] \\
\text{msort}(\emptyset) & \rightarrow \text{nil} \\
\text{msort}(\{x\}) & \rightarrow \text{cons}(x, \text{nil}) \\
\text{msort}(x \cup y) & \rightarrow \text{merge}(\text{msort}(x), \text{msort}(y))
\end{align*}
\]

These rules give rise to the following five dependency pairs:

\[
\begin{align*}
\text{merge}^\sharp(\text{cons}(x, xs), \text{cons}(y, ys)) & \rightarrow \text{merge}^\sharp(\text{cons}(x, xs), ys) \quad [x > y] \quad (6.19) \\
\text{merge}^\sharp(\text{cons}(x, xs), \text{cons}(y, ys)) & \rightarrow \text{merge}^\sharp(xs, \text{cons}(y, ys)) \quad [x \neq y] \quad (6.20) \\
\text{msort}^\sharp(x \cup y) & \rightarrow \text{merge}^\sharp(\text{msort}(x), \text{msort}(y)) \quad (6.21) \\
\text{msort}^\sharp(x \cup y) & \rightarrow \text{msort}^\sharp(x) \quad (6.22) \\
\text{msort}^\sharp(x \cup y) & \rightarrow \text{msort}^\sharp(y) \quad (6.23)
\end{align*}
\]

The (estimated) dependency graph contains two SCCs and it suffices to consider the following DP problems independently:

\[
\begin{align*}
\{(6.19), (6.20)\}, Q, R, S, E) & \quad (6.24) \\
\{(6.22), (6.23)\}, Q, R, S, E) & \quad (6.25)
\end{align*}
\]
Chapter 6. DP Processors Operating on Dependency Pairs

For the DP problem (6.24), first apply the DP processor based on the subterm criterion with the simple projection \(\pi(\text{merge}^\sharp) = 1 \). Then

\[
\pi(\text{merge}^\sharp(\text{cons}(x, xs), \text{cons}(y, ys))) = \text{cons}(x, xs) \\
\triangleright E \text{ cons}(x, xs) = \pi(\text{merge}^\sharp(\text{cons}(x, xs), ys)) \\
\pi(\text{merge}^\sharp(\text{cons}(x, xs), \text{cons}(y, ys))) = \text{cons}(x, xs) \\
\triangleright E \text{ xs} = \pi(\text{merge}^\sharp(xs, \text{cons}(y, ys)))
\]

and the dependency pair (6.20) may be deleted. The newly obtained DP problem \(\{(6.19)\}, Q, R, S, E \) can be handled by the subterm criterion with \(\pi(\text{merge}^\sharp) = 2 \).

The DP problem (6.25) can also be handled by the subterm criterion, using the simple projection \(\pi(\text{msort}^\sharp) = 1 \). △

Example 6.26. The DP problem (6.4) from Example 6.10 can be handled by the simple projection \(\pi(\text{app}^\sharp) = 1 \). Similarly, the simple projection \(\pi(\text{low}^\sharp) = \pi(\text{high}^\sharp) = 2 \) removes all dependency pairs from the DP problems (6.5) and (6.6). △

6.7 Summary

This chapter has introduced various sound DP processors for the termination analysis of RCERSs. First, it was shown that rewrite rules and dependency pairs may be removed from a DP problem if their constraint is \(Th \)-unsatisfiable or if their left-hand side is reducible by \(\rightarrow_{E \setminus S} \). Next, the concept of dependency graphs was introduced. While nearly all other DP processor introduced in this dissertation only remove rewrite rules and/or dependency pairs, this technique makes it possible to decompose a DP problem into several independent DP problems by determining which dependency pairs may follow each other in chains. The dependency graph cannot be implemented in its full generality, but it is possible to give effectively implementable approximations of it. Then, DP processors that reduce right-hand sides
Chapter 6. **DP Processors Operating on Dependency Pairs**

of dependency pairs and combine dependency pairs that follow each other in chains were introduced. Finally, it was shown how the subterm relation modulo \mathcal{E} can be used in order to remove dependency pairs from a DP problem. This is particularly useful for functions that are defined using primitive recursion.

The next chapter introduces several further sound DP processors. Like the DP processor based on the subterm criterion, these DP processors are based on well-founded relations. In contrast to the technique based on the subterm criterion, however, these DP processors are also useful for showing termination of functions that are not defined using primitive recursion.
Chapter 7

Reduction Pairs

The dependency pair framework for ordinary term rewriting makes heavy use of reduction pairs \((\geq, \succ)\) \[117\] in order to remove dependency pairs from a DP problem. The idea is simple: If \(\succ\) is well-founded and all dependency pairs from a DP problem \((P, Q, R, S, E)\) are decreasing w.r.t. \(\geq\) or \(\succ\), then all dependency pairs that are decreasing w.r.t. \(\succ\) cannot occur infinitely often in infinite chains and may thus be deleted. In order to capture the reductions that take place between the instantiated dependency pairs, it is necessary to also require that all rules in \(R\) are decreasing w.r.t. \(\geq\). For RCERSs, similar conditions need to be imposed on \(S\) and \(E\) as well.

The following sections present three variations on the theme of reduction pairs, starting with the ordinary reduction pairs from \[117\]. Then, reduction pairs tailored towards \(Th_N\) and \(Th_Z\) are introduced. In all three cases, the techniques can be applied to any RCERS, regardless of \(Q\).

Apart from the theoretical concepts, this chapter also introduces methods to obtain the aforementioned variations of reduction pairs using polynomial interpretations. A discussion on how to automatically create suitable polynomial interpretations is postponed until Section 9.2.
Chapter 7. Reduction Pairs

7.1 Ordinary Reduction Pairs

These are the well-known reduction pairs from [117]. They make strong requirements on the monotonicity of \succeq.

Definition 7.1 (Monotonicity). A relation \succ on terms is monotonic iff $s \succ t$ implies $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \succ f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all function symbols f, all $1 \leq i \leq \text{arity}(f)$, and all terms $s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n$.

Notice that $s \succ t$ implies $C[s] \succ C[t]$ for all contexts C if \succ is monotonic.

Definition 7.2 (Ordinary Reduction Pairs). Let \succeq be reflexive, transitive, monotonic, and stable. Let \succ be well-founded and stable. Then $\langle \succeq, \succ \rangle$ is an ordinary reduction pair iff \succ is compatible with \succeq, i.e., iff $\succeq \circ \succ \circ \succeq \subseteq \succ$. The relation $\succeq \cap \succeq^{-1}$ is denoted by \sim.

As a simple example of compatibility, consider the usual relations $>$ and \geq on integers. Then $>$ is compatible with \geq since $a \geq b > c \geq d$ implies $a > d$ for all integers a, b, c, d. More abstractly, if \succ is compatible with \succeq, then preceding and succeeding occurrences of \succeq can be “absorbed” into \succ.

There is a variety of methods to generate reduction pairs: path orders [54], Knuth-Bendix orders [114], polynomial interpretations [119], matrix interpretations [63], … Since it is impossible to give a broad survey of these methods, only polynomial interpretations are briefly discussed here because the reduction pairs tailored towards $Th_{\mathbb{N}}$ and $Th_{\mathbb{Z}}$ as introduced in Sections 7.2 and 7.3 are in practice most easily obtained using (more general) polynomial interpretations as well.\(^1\)

\(^1\)Reduction pairs tailored towards $Th_{\mathbb{N}}$ and $Th_{\mathbb{Z}}$ can also be obtained using matrix interpretations by adapting the ideas presented below for polynomial interpretations. This is not discussed further in order to keep the presentation simple. The implementation in AProVE does contain the specialized matrix interpretations, but they are rarely (if ever) needed in practice.
Chapter 7. Reduction Pairs

The idea for polynomial interpretations is to map terms to polynomials. Then, these polynomials are compared. In order to map terms to polynomials, it suffices to assign polynomials to all function symbols \(f \in F \cup T \cup F^\sharp \) such that \(\text{Pol}(f) \in \mathbb{N}[x_1, \ldots, x_n] \) if \(\text{arity}(f) = n \). Now terms are mapped to polynomials by defining

\[
[\mathit{x}]_{\text{Pol}} = x
\]

for variables \(x \in \mathcal{V} \) and

\[
[f(t_1, \ldots, t_n)]_{\text{Pol}} = \text{Pol}(f)([t_1]_{\text{Pol}}, \ldots, [t_n]_{\text{Pol}})
\]

for \(f \in F \cup T \cup F^\sharp \), i.e., the polynomials obtained from the direct subterms \(t_1, \ldots, t_n \) are combined using the polynomial assigned to the root symbol. Notice that the variables in terms are translated into polynomial variables of the same name.

Example 7.3. If \(\text{Pol}(f) = 2x_1 + x_2 \) and \(\text{Pol}(g) = x_1^2 + 1 \) then

\[
[g(f(x, y))]_{\text{Pol}} = [f(x, y)]_{\text{Pol}}^2 + 1 = (2x + y)^2 + 1 = 4x^2 + 4xy + y^2 + 1.
\]

In order to compare terms, the polynomials obtained from them are compared. For this, notice that ground terms are mapped to natural numbers.

Definition 7.4 (\(\succ_{\text{Pol}} \) and \(\succeq_{\text{Pol}} \) for Polynomial Interpretations). Let \(\text{Pol} \) be a polynomial interpretation. Then \(\succ_{\text{Pol}} \) is defined by \(s \succ_{\text{Pol}} t \) if \([s]_{\text{Pol}} > [t]_{\text{Pol}}\) for all ground substitutions \(\sigma : \mathcal{V} \rightarrow \mathcal{T}(F \cup F^T_h) \). Similarly, \(\succeq_{\text{Pol}} \) is defined by \(s \succeq_{\text{Pol}} t \) if \([s]_{\text{Pol}} \geq [t]_{\text{Pol}}\) for all ground substitutions \(\sigma : \mathcal{V} \rightarrow \mathcal{T}(F \cup F^T_h) \). Thus, \(s \sim_{\text{Pol}} t \) if \([s]_{\text{Pol}} = [t]_{\text{Pol}}\) for all ground substitutions \(\sigma : \mathcal{V} \rightarrow \mathcal{T}(F \cup F^T_h) \).

For a given polynomial interpretation, \(s \succ_{\text{Pol}} t \) is checked as follows. Recall that \(s \succ_{\text{Pol}} t \) means \([s]_{\text{Pol}} > [t]_{\text{Pol}}\) for all ground substitutions \(\sigma \). This can be ensured by showing that

\[
\forall x_1 \geq 0, \ldots, x_n \geq 0. \ [s]_{\text{Pol}} > [t]_{\text{Pol}}
\]

is true in the integers. Here \(x_1, \ldots, x_n \) are the variables occurring in \(s \) and \(t \). While it is in general undecidable whether this formula is true in the integers due to the undecidability of Hilbert’s 10th problem, it becomes decidable if \(\text{Pol}(f) \) is linear for all \(f \in F^T_h \cup F \cup F^\sharp \), since, in this case, \([s]_{\text{Pol}} \) and \([t]_{\text{Pol}} \) are linear polynomials as

95
Chapter 7. Reduction Pairs

well, thus implying that the above formula is decidable due to Presburger’s classical result [146].

Example 7.5. If \(\mathcal{P}_{\text{ol}}(f) = 2x_1 + x_2 \) and \(\mathcal{P}_{\text{ol}}(g) = 2x_1 + 1 \), then \(g(f(x+y)) \succ_{\mathcal{P}_{\text{ol}}} f(x+y) \).

To see this, notice that \([g(f(x+y))]_{\mathcal{P}_{\text{ol}}} = 4x + 2y + 1 \), \([f(x+y)]_{\mathcal{P}_{\text{ol}}} = 2x + y \), and that \(\forall x \geq 0, y \geq 0. 4x + 2y + 1 > 2x + y \) is true in the integers.

As is well-known, these relations indeed give rise to reduction pairs.

Theorem 7.6. Let \(\mathcal{P}_{\text{ol}} \) be a polynomial interpretation. Then \((\succ_{\mathcal{P}_{\text{ol}}}, \succ_{\mathcal{P}_{\text{ol}}})\) is an ordinary reduction pair.

Since reduction pairs need to satisfy certain requirements derived from a DP problem, the following notation is introduced. Here, the set \(\mathcal{R}' \) will not be used until Section 8.2.

Definition 7.7. Let \((\succ, \succ)\) be an ordinary reduction pair, let \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\) be a DP problem, let \(\mathcal{P}' \) be a set of dependency pairs, and let \(\mathcal{R}' \) be a set of constrained rewrite rules. Then \((\succ, \succ) \models (\mathcal{P}', \mathcal{P}, \mathcal{R}', \mathcal{R}, \mathcal{S}, \mathcal{E})\) iff

1. \(s \succ t \) for all \(s \rightarrow t[\phi] \in \mathcal{P}' \),
2. \(s \succeq t \) for all \(s \rightarrow t[\phi] \in \mathcal{P} - \mathcal{P}' \),
3. \(l \succ r \) for all \(l \rightarrow r[\phi] \in \mathcal{R}' \),
4. \(l \succeq r \) for all \(l \rightarrow r[\phi] \in \mathcal{R} - \mathcal{R}' \),
5. \(l \succeq r \) for all \(l \rightarrow r \in \mathcal{S} \), and
6. \(u \sim v \) for all \(u \approx v \in \mathcal{E} \).

Using ordinary reduction pairs, dependency pairs \(s \rightarrow t[\phi] \) such that \(s \succ t \) can be removed from a DP problem.

Theorem 7.8 (DP Processor Based on Ordinary Reduction Pairs). Let \((\succ, \succ)\) be an ordinary reduction pair and let \(\text{Proc} \) be a DP processor with \(\text{Proc}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) = \)
Chapter 7. Reduction Pairs

- \{ (\mathcal{P} - \mathcal{P}', Q, R, S, E) \}, if \mathcal{P}' \subseteq \mathcal{P} such that \(\gtrless, \succ \) | = (\mathcal{P}', \emptyset, R, S, E).

Then Proc is sound.

Example 7.9. To illustrate Theorem 7.8 and ordinary reduction pairs based on polynomial interpretations, consider an RCERS over \(\text{Th}_\mathbb{N} \), i.e., \(S \) and \(E \) are as follows:

\[
\begin{align*}
S &: \quad x + 0 \rightarrow x \\
E &: \quad x + y \approx y + x \\
&\quad x + (y + z) \approx (x + y) + z
\end{align*}
\]

Let \(\mathcal{R} \) consist of the rule \(f(x + 1) \rightarrow f(x) \) and let \(Q \) be arbitrary. Then the initial DP problem is \((\{ f^\sharp(x + 1) \rightarrow f^\sharp(x) \}, \mathcal{R}, Q, S, E) \). This DP problem can be handled by the DP processor of Theorem 7.8 using the following polynomial interpretation:

\[
\begin{align*}
\mathcal{P}ol(f^\sharp) &= x_1 \\
\mathcal{P}ol(f) &= 0 \\
\mathcal{P}ol(+) &= x_1 + x_2 \\
\mathcal{P}ol(1) &= 1 \\
\mathcal{P}ol(0) &= 0
\end{align*}
\]

Indeed, \(\gtrless_{\mathcal{P}ol}, \succ_{\mathcal{P}ol} \) | = \((\{ f^\sharp(x + 1) \rightarrow f^\sharp(x) \}, \{ f^\sharp(x + 1) \rightarrow f^\sharp(x) \}, \emptyset, \mathcal{R}, S, E) \). \(\triangle \)

7.2 \(\text{Th}_\mathbb{N} \)-Reduction Pairs

For \(\text{Th}_\mathbb{N} \), the requirement that \(\gtrless \) needs to be monotonic for all possible contexts can be relaxed since, given a set of dependency pairs, reductions with \(\rightarrow_{\text{Th}_\mathbb{N} \parallel E \setminus \mathcal{R}} \) may only take place in certain argument positions of a symbol \(f^\sharp \in \mathcal{F}^\sharp \). This follows
Chapter 7. Reduction Pairs

directly from the requirement that the substitution σ used for building a chain is Th_N-based. In particular, this relaxation of monotonicity makes it possible to use polynomial interpretations with negative coefficients for the function symbols in F^\sharp. This is often needed for a successful termination proof, see Example 7.19 below. Similar reasoning applies for Th_Z as well, see Section 7.3.

For function symbols $f \not\in F^\sharp$ nothing changes, i.e., monotonicity for contexts over $F \cup F_{Th_N}$ is still required for a Th_N-reduction pair.

Definition 7.10 (F-Monotonic Relations). A relation \bowtie is F-monotonic iff $s \bowtie t$ implies $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \bowtie f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all $f \in F \cup F_{Th_N}$, all $1 \leq i \leq \text{arity}(f)$, and all $s, t, s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n \in T(F \cup F_{Th_N}, V)$.

As motivated above, monotonicity w.r.t. a context that has a symbol $f^\sharp \in F^\sharp$ at its root is only required for certain argument positions of f.

Definition 7.11 (f^\sharp-Monotonic Relations). Let $f^\sharp \in F^\sharp$ and $1 \leq i \leq \text{arity}(f^\sharp)$. A relation \bowtie is f^\sharp-monotonic at position i iff $s \bowtie t$ implies $f^\sharp(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \bowtie f^\sharp(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all $s, t, s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n \in T(F \cup F_{Th_N}, V)$.

Notice that \bowtie is monotonic in the sense of Definition 7.1 if and only if \bowtie is F-monotonic and f^\sharp-monotonic at position i for all $f^\sharp \in F^\sharp$ and all $1 \leq i \leq \text{arity}(f^\sharp)$.

When considering the DP problem (P, Q, R, S, E), the relation \succeq needs to be f^\sharp-monotonic at position i only if P contains a dependency pair of the form $s \rightarrow f^\sharp(t_1, \ldots, t_i, \ldots, t_n)[\varphi]$ where $\text{sort}(t_i) = \text{univ}$ or $t_i \not\in T(F_{Th_N}, V)$. The reason for this is that \succeq needs to be monotonic only in those argument position of F^\sharp where a $S.Q \rightarrow_{Th\parallel R\setminus\mathcal{L}}$-reduction may potentially take place. Notice that no instantiation of t_i can be reduced using $S.Q \rightarrow_{Th\parallel R\setminus\mathcal{L}}$ in a (P, Q, R, S, E)-chain if $\text{sort}(t_i) = \text{base}$ and

\[^2\text{Using ideas from [89, 74], it might be possible to relax this requirement. For simplicity, this is not considered in this dissertation and is left for future work.}\]
Chapter 7. Reduction Pairs

t_i \in T(F_{ThN}, V) since the substitution \(\sigma \) used for the chain is \(ThN \)-based. A similar observation has already been made in the case of innermost termination of ordinary rewriting considered in [12]. In this dissertation, however, this refinement becomes applicable in the non-innermost case as well.

Definition 7.12 (Reducible Positions). Let \(\mathcal{P} \) be a set of dependency pairs and let \(f^2 \in F^2 \). Then the set of reducible positions of \(f^2 \) for \(\mathcal{P} \) is given by \(\text{RedPos}(f^2, \mathcal{P}) = \{i \mid \text{there exists } s \rightarrow f^2(t_1, \ldots, t_i, \ldots, t_n) [\varphi] \in \mathcal{P} \text{ such that } \text{sort}(t_i) = \text{univ} \text{ or } t_i \notin T(F_{Th}, V) \} \).

Notice that an instance of a term \(t_i \) with \(\text{sort}(t_i) = \text{base} \) and \(t_i \in T(F_{ThN}, V) \) may still be reduced using the \(ThN \)-rules from \(S \). In order to ensure that these reductions result in terms that are equivalent w.r.t. \(\preceq \cap \succeq^{-1} \), first define \(S_s = \{ l \rightarrow r \in S \mid \text{sort}(l) = s \} \), where \(s \in \{ \text{base}, \text{univ} \} \). It is then required that \(\preceq \cap \succeq^{-1} \) is \(f^2 \)-monotonic at position \(i \) for all \(i \notin \text{RedPos}(f^2, \mathcal{P}) \) and that \(l \succeq \cap \succeq^{-1} r \) for all \(l \rightarrow r \in S_{\text{base}} \), i.e., the rules from \(S_{\text{base}} \) need to be treated like the equations from \(E \). Then, \(s \rightarrow_{E \setminus S} t \) for \(s, t \in T(F_{ThN}, V) \) with \(\text{sort}(s) = \text{sort}(t) = \text{base} \) implies \(s \succeq \cap \succeq^{-1} t \).

The notion of \(ThN \)-reduction pairs generalizes ordinary reduction pairs and depends on the DP problem under consideration. It is similar to the notion of generalized reduction pairs [89, 74] in the sense that full monotonicity is not required.

Definition 7.13 (\(ThN \)-Reduction Pairs). Let \((\mathcal{P}, Q, R, S, E) \) be a DP problem and let \(\succeq \) and \(\succ \) be relations on terms such that

1. \(\succeq \) is reflexive, transitive, and \(F \)-monotonic,

2. for all \(f^2 \in F^2 \),

 - \(\succeq \) is \(f^2 \)-monotonic at position \(i \) for all \(i \in \text{RedPos}(f^2, \mathcal{P}) \),
 - \(\succeq \cap \succeq^{-1} \) is \(f^2 \)-monotonic at position \(i \) for all \(i \notin \text{RedPos}(f^2, \mathcal{P}) \), and

99
Chapter 7. Reduction Pairs

3. \triangleright is well-founded.

Then $(\triangleright, \triangleright)$ is a \mathcal{TN}-reduction pair for P iff \triangleright is compatible with \triangleright, i.e., iff $\triangleright \circ \triangleright \subseteq \triangleright$. The relation $\triangleright \cap \triangleright^{-1}$ is denoted by \sim.

Notice that neither \triangleright nor \triangleright are required to be stable. Indeed, stability for all substitutions is not needed since this property is only required for certain substitutions that can be used in (P, Q, R, S, E)-chains. These substitutions are indirectly given by the constraints of the dependency pairs and rules that are to be oriented.

Definition 7.14 (\mathcal{TN}-Reduction Pairs on Constrained Terms). Let $(\triangleright, \triangleright)$ be a \mathcal{TN}-reduction pair. Let s, t be terms and let φ be a \mathcal{TN}-constraint. Then $s[\varphi] \triangleright t[\varphi]$ iff $s\sigma \triangleright t\sigma$ for all \mathcal{TN}-based substitutions σ such that $\varphi\sigma$ is \mathcal{TN}-valid. Similarly, $s[\varphi] \triangleright t[\varphi]$ iff $s\sigma \triangleright t\sigma$ for all \mathcal{TN}-based substitutions σ such that $\varphi\sigma$ is \mathcal{TN}-valid.

The easiest way to generate \mathcal{TN}-reduction pairs is based on polynomial interpretations. In contrast to Section 7.1, however, some coefficients of the polynomials may now be negative. This increased flexibility is often needed for successful termination proofs. The class of polynomial interpretations considered here is similar to the class considered in [89].

A \mathcal{TN}-polynomial interpretation \mathcal{Pol} fixes a constant $c_{\mathcal{Pol}} \in \mathbb{Z}$ and maps

1. the symbols in $\mathcal{FT}_{\mathcal{TN}}$ to polynomials over \mathbb{N} in the natural way, i.e., $\mathcal{Pol}(0) = 0$, $\mathcal{Pol}(1) = 1$, and $\mathcal{Pol}(+) = x_1 + x_2$,

2. the symbols in \mathcal{F} to polynomials over \mathbb{N} such that $\mathcal{Pol}(f) \in \mathbb{N}[x_1, \ldots, x_n]$ if $\text{arity}(f) = n$, and

3. the symbols in \mathcal{F}^\sharp to polynomials over \mathbb{Z} such that $\mathcal{Pol}(f^\sharp) \in \mathbb{Z}[x_1, \ldots, x_n]$ if $\text{arity}(f^\sharp) = n$.

The reason for fixing the polynomials for the symbols from $\mathcal{FT}_{\mathcal{TN}}$ this way is that a term from $T(\mathcal{FT}_{\mathcal{TN}})$ is then mapped to the natural number it represents. As will
Chapter 7. Reduction Pairs

become apparent later, this makes it possible to directly use the $Th_{\mathbb{N}}$-constraint when comparing two constrained terms.

$Th_{\mathbb{N}}$-polynomial interpretations generate relations on terms as follows. This is similar to Definition 7.4. Here, the condition $[s\sigma]_{pol} \geq c_{pol}$ in the definition of \succ_{pol} in needed for well-foundedness.

Definition 7.15 (\succ_{pol} and \succeq_{pol} for $Th_{\mathbb{N}}$-Polynomial Interpretations). Let Pol be a $Th_{\mathbb{N}}$-polynomial interpretation. Then $s \succ_{pol} t$ iff $[s\sigma]_{pol} \geq [t\sigma]_{pol}$ for all ground substitutions $\sigma : \mathcal{V} \rightarrow T(\mathcal{F} \cup \mathcal{F}_{Th})$. Similarly, $s \succeq_{pol} t$ iff $[s\sigma]_{pol} \geq [t\sigma]_{pol}$ for all ground substitutions $\sigma : \mathcal{V} \rightarrow T(\mathcal{F} \cup \mathcal{F}_{Th})$. Thus, $s \sim_{pol} t$ iff $[s\sigma]_{pol} = [t\sigma]_{pol}$ for all ground substitutions $\sigma : \mathcal{V} \rightarrow T(\mathcal{F} \cup \mathcal{F}_{Th})$.

For a given $Th_{\mathbb{N}}$-polynomial interpretation, $s[\varphi] \succ_{pol} t[\varphi]$ is checked as follows. Recall that $s[\varphi] \succ_{pol} t[\varphi]$ means $s\sigma \succ_{pol} t\sigma$ for all $Th_{\mathbb{N}}$-based substitutions σ that make $\varphi \sigma$ $Th_{\mathbb{N}}$-valid. This, in turn, means $[s\sigma]_{pol} \geq [t\sigma]_{pol}$ and $[s\sigma']_{pol} \geq [t\sigma']_{pol}$ for all ground substitutions σ'.

This can be achieved by showing that the following formulas are true in the integers:

$$\forall x_1 \geq 0, \ldots, x_n \geq 0. \varphi \Rightarrow [s]_{pol} \geq c_{pol}$$

$$\forall x_1 \geq 0, \ldots, x_n \geq 0. \varphi \Rightarrow [s]_{pol} > [t]_{pol}$$

Here x_1, \ldots, x_n are the variables occurring in s and t. Notice that it suffices to consider instantiations of x_1, \ldots, x_n by natural numbers since all function symbols from $\mathcal{F} \cup \mathcal{F}_{Th}$ are mapped to polynomials over \mathbb{N} and substitutions do not introduce function symbols from \mathcal{F}^2. As for ordinary polynomial interpretations, it is decidable whether these formulas are true in the integers if $Pol(f)$ is linear for all $f \in \mathcal{F}_{Th} \cup \mathcal{F} \cup \mathcal{F}^2$. This again follows from the decidability of Presburger arithmetic [146].

Now \succeq_{pol} and \succ_{pol} indeed give rise to $Th_{\mathbb{N}}$-reduction pairs where f^2-monotonicity at position i is achieved by requiring that $Pol(f^2)$ is weakly increasing in x_i.

101
Chapter 7. Reduction Pairs

Theorem 7.16. Let \((P, Q, R, S, E)\) be a DP problem and let \(\text{Pol}\) be a \(\text{Th}_N\)-polynomial interpretation. Then \((\preceq_{\text{Pol}}, \succ_{\text{Pol}})\) is a \(\text{Th}_N\)-reduction pair for \(P\) if \(\text{Pol}(f^x)\) is weakly increasing in all \(x_i\) with \(i \in \text{RedPos}(f^x, P)\).

Again, the following notation is introduced.

Definition 7.17. Let \((P, Q, R, S, E)\) be a DP problem, let \((\preceq, \succ)\) be a \(\text{Th}_N\)-reduction pair for \(P\), let \(P'\) be a set of dependency pairs, and let \(R'\) be a set of constrained rewrite rules. Then \((\preceq, \succ)\mid= (P', \mathcal{P}, \mathcal{R}, R, S, E)\) iff \(\text{Th}_N\) is built-in and

1. \(s[\varphi] \succ t[\varphi]\) for all \(s \rightarrow t[\varphi] \in P'\),
2. \(s[\varphi] \succeq t[\varphi]\) for all \(s \rightarrow t[\varphi] \in P - P'\),
3. \(l[\varphi] \succ r[\varphi]\) for all \(l \rightarrow r[\varphi] \in R'\),
4. \(l[\varphi] \preceq r[\varphi]\) for all \(l \rightarrow r[\varphi] \in R - R'\),
5. \(l \succeq r\) for all \(l \rightarrow r \in S_{\text{univ}}\),
6. \(l \sim r\) for all \(l \rightarrow r \in S_{\text{base}}\), and
7. \(u \sim v\) for all \(u \approx v \in E\).

Using \(\text{Th}_N\)-reduction pairs, dependency pairs \(s \rightarrow t[\varphi]\) such that \(s[\varphi] \succ t[\varphi]\) can again be removed.

Theorem 7.18 (DP Processor Based on \(\text{Th}_N\)-Reduction Pairs). Let \(\text{Proc}\) be a DP processor with \(\text{Proc}(P, Q, R, S, E) =\)

- \(\{(P - P', Q, R, S, E)\}\), if \((\succeq, \succ)\) is a \(\text{Th}_N\)-reduction pair for \(P\) and \(P' \subseteq P\) such that \((\succeq, \succ)\mid= (P', P, \emptyset, R, S, E)\).
- \(\{(P, Q, R, S, E)\}\), otherwise.

Then \(\text{Proc}\) is sound.
Example 7.19. In contrast to ordinary reduction pairs, Th_N-reduction pairs can also be used to show termination that is due to a bounded increase, i.e., if an argument is counted upwards until a fixed bound is reached. To illustrate this, consider an RCERS over Th_N, i.e., S and E are as follows:

\[
S: \quad x + 0 \rightarrow x \\
E: \quad x + y \approx y + x \\
\quad x + (y + z) \approx (x + y) + z
\]

Let R consist of the rule $f(x, y) \rightarrow f(x + 1, y) [[y > x]]$ and let Q be arbitrary. The initial DP problem ($\{f^\sharp(x, y) \rightarrow f^\sharp(x + 1, y) [[y > x]]\}, Q, R, S, E$) can be handled using the following Th_N-polynomial interpretation with $c_{pol} = 0$:

\[
\begin{align*}
Pol(f^\sharp) &= x_2 - x_1 \\
Pol(f) &= 0 \\
Pol(+) &= x_1 + x_2 \\
Pol(1) &= 1 \\
Pol(0) &= 0
\end{align*}
\]

For this interpretation, $(\geq_{pol}, \succ_{pol}) \models (\{f^\sharp(x, y) \rightarrow f^\sharp(x + 1, y) [[y > x]]\}, \{f^\sharp(x, y) \rightarrow f^\sharp(x + 1, y) [[y > x]]\}, \emptyset, R, S, E)$ because

\[
\forall x \geq 0, y \geq 0. \ y > x \Rightarrow y - x \geq 0 \\
\forall x \geq 0, y \geq 0. \ y > x \Rightarrow y - x > y - (x + 1)
\]

are true in the integers. △

7.3 Th_Z-Reduction Pairs

For Th_Z, the requirement that \geq needs to be monotonic for all possible contexts can also be relaxed, albeit in a slightly different way than for Th_N. In order to introduce
Chapter 7. Reduction Pairs

Th_Z-polynomial interpretations in analogy to the Th_N-polynomial interpretations in Section 7.2, it becomes necessary to interpret the function symbol $- \in F_{Th_z}$ by the polynomial $\mathcal{P}ol(-) = -x_1$. But this clearly destroys F-monotonicity. It thus becomes necessary to impose restrictions under which these kinds of polynomial interpretations may be applied.

If all arguments of right-hand sides of \mathcal{P} are terms from $T(F_{Th_z}, V)$, then no reductions w.r.t. $\mathcal{S}, \mathcal{Q} \rightarrow_{Th} Tr|\setminus R$ can take place between instantiated dependency pairs in a chain since chains are built using Th_Z-based substitutions (recall the discussion on this in Section 7.2). Thus, if $\text{RedPos}(f^z, \mathcal{P}) = \emptyset$ for all $f^z \in F^z$, then the reduction pair does not need to be monotonic in the argument of $- \in F_{Th_z}$.

If this requirement is not fulfilled, then it can be ensured that no reduction w.r.t. $\mathcal{S}, \mathcal{Q} \rightarrow_{Th} Tr|\setminus R$ can take place below the function symbol $-$ if F does not contain any function symbol with resulting sort base. In this case, it still needs to be required that function symbols from $F \cup F^z$ are monotonic in all argument positions of sort univ since reductions may take place in these arguments.

Definition 7.20 (univ-Monotonic Relations). A relation \bowtie is univ-monotonic iff $s \bowtie t$ implies $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \bowtie f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all $f \in F \cup F^z$, all $1 \leq i \leq \text{arity}(f)$ such that the i^{th} argument of f has sort univ, and all $s, t, s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n \in T(F \cup F_{Th_z}, V)$.

For argument positions of sort base the following, slightly different notion of monotonicity is required. This is essentially identical to the f^z-monotonicity of $\bowtie \cap \bowtie^{-1}$ required for Th_N-reduction pairs and again ensures that reductions with $\mathcal{S}_{\text{base}}$ result in terms that are equivalent w.r.t. $\bowtie \cap \bowtie^{-1}$.

Definition 7.21 (base-Monotonic Relations). Let \bowtie be a relation and let $\bowtieh = \bowtie \cap \bowtie^{-1}$. Then \bowtieh is base-monotonic iff $s \bowtieh t$ implies $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \bowtieh f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all $f \in F \cup F_{Th_z} \cup F^z$, all $1 \leq i \leq \text{arity}(f)$ such that
Chapter 7. Reduction Pairs

the i^{th} argument of f has sort base, and all $s, t, s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n \in T(\mathcal{F} \cup \mathcal{F}_{Th_2}, \mathcal{V})$.

As for Th_N-reduction pairs, the notion of Th_Z-reduction pairs depends on the DP problem under consideration.

Definition 7.22 (Th_Z-Reduction Pairs). Let (P, Q, R, S, E) be a DP problem and let \succsim and \succ be relations on terms such that \succsim is reflexive, transitive, univ-monotonic, and base-monotonic and \succ is well-founded. Then (\succsim, \succ) is a Th-reduction pair for P iff \succ is compatible with \succsim, i.e., iff $\succsim \circ \succ \circ \succsim \subseteq \succ$. The relation $\succsim \cap \succsim^{-1}$ is denoted by \sim.

Notice that \succsim and \succ are again not required to be stable. Th_Z-reduction pairs can be used for constrained terms just like this is done for Th_N-reduction pairs.

The easiest way to generate Th_Z-reduction pairs is again based on polynomial interpretations. A Th_Z-polynomial interpretation \mathcal{Pol} fixes a constant $c_{\mathcal{Pol}} \in \mathbb{Z}$ and maps

1. the symbols in \mathcal{F}_{Th_2} to polynomials over \mathbb{Z} in the natural way, i.e., $\mathcal{Pol}(0) = 0$, $\mathcal{Pol}(1) = 1$, $\mathcal{Pol}(-) = -x_1$ and $\mathcal{Pol}(+) = x_1 + x_2$,
2. the symbols in \mathcal{F} to polynomials over \mathbb{N} such that $\mathcal{Pol}(f) \in \mathbb{N}[x_1, \ldots, x_n]$ if $\text{arity}(f) = n$, and
3. the symbols in $\mathcal{F}^\#$ to polynomials over \mathbb{Z} such that $\mathcal{Pol}(f^\#) \in \mathbb{Z}[x_1, \ldots, x_n]$ if $\text{arity}(f^\#) = n$.

As for Th_N-polynomial interpretations, the reason for fixing the polynomials for the symbols from \mathcal{F}_{Th_2} this way is that a term from $T(\mathcal{F}_{Th_2})$ is then mapped to the integer it represents. Again, this will make it possible to directly use the Th_Z-constraint when comparing two constrained terms.

The following is identical to Th_N-polynomial interpretations, cf. Definition 7.15.
Chapter 7. Reduction Pairs

Definition 7.23 (\succ_{Pol} and \succeq_{Pol} for Th_Z-Polynomial Interpretations). Let Pol be a Th_Z-polynomial interpretation. Then $s \succ_{\text{Pol}} t$ iff $[s\sigma]_{\text{Pol}} \geq c_{\text{Pol}}$ and $[s\sigma]_{\text{Pol}} > [t\sigma]_{\text{Pol}}$ for all ground substitutions $\sigma : \mathcal{V} \rightarrow T(\mathcal{F} \cup \mathcal{F}_{\text{Th}_Z})$. Similarly, $s \succeq_{\text{Pol}} t$ iff $[s\sigma]_{\text{Pol}} \geq [t\sigma]_{\text{Pol}}$ for all ground substitutions $\sigma : \mathcal{V} \rightarrow T(\mathcal{F} \cup \mathcal{F}_{\text{Th}_Z})$. Thus, $s \sim_{\text{Pol}} t$ iff $[s\sigma]_{\text{Pol}} = [t\sigma]_{\text{Pol}}$ for all ground substitutions $\sigma : \mathcal{V} \rightarrow T(\mathcal{F} \cup \mathcal{F}_{\text{Th}_Z})$.

Checking $s[\varphi] \succ_{\text{Pol}} t[\varphi]$ is done similarly to Th_N-polynomial interpretations. Recall that it suffices to show that $[s\sigma\sigma']_{\text{Pol}} \geq c_{\text{Pol}}$ and $[s\sigma\sigma']_{\text{Pol}} > [t\sigma\sigma']_{\text{Pol}}$ for all Th_Z-based substitutions σ such that $\varphi\sigma$ is Th_Z-valid and for all ground substitutions σ'. This can be achieved by showing that the following formulas are true in the integers:

\[
\forall x_1, \ldots, x_n. \varphi \Rightarrow [s]_{\text{Pol}} \geq c_{\text{Pol}} \\
\forall x_1, \ldots, x_n. \varphi \Rightarrow [s]_{\text{Pol}} > [t]_{\text{Pol}}
\]

Here, x_1, \ldots, x_n are the variables occurring in s and t. In contrast to Th_N-polynomial interpretations, the variables have to be instantiated by negative numbers as well since $\text{Pol}(-) = -x_1$. As for ordinary polynomial interpretations and Th_N-polynomial interpretations, it is decidable whether these formulas are true in the integers if $\text{Pol}(f)$ is linear for all $f \in \mathcal{F}_{\text{Th}} \cup \mathcal{F} \cup \mathcal{F}^2$ since this again follows from the decidability of Presburger arithmetic [146].

The above requirements might be impossible to show if one of the x_i has sort univ since then the possible values it can take are not restricted by the Th_Z-constraint φ. By restricting the Th_Z-polynomial interpretation Pol such that for each $f \in \mathcal{F}$ with resulting sort univ, the polynomial $\text{Pol}(f)$ may only depend on a variable x_i if the i^{th} argument of f has sort univ, a requirement that can often be shown easier is obtained. Now showing $s[\varphi] \succ_{\text{Pol}} t[\varphi]$ can be achieved by showing that the following
formulas are true in the integers:

\[\forall x_1, \ldots, x_k. \forall y_1 \geq 0, \ldots, y_l \geq 0. \varphi \Rightarrow [s]_{\mathcal{P}\text{ol}} \geq c_{\mathcal{P}\text{ol}} \]

\[\forall x_1, \ldots, x_k. \forall y_1 \geq 0, \ldots, y_l \geq 0. \varphi \Rightarrow [s]_{\mathcal{P}\text{ol}} > [t]_{\mathcal{P}\text{ol}} \]

Here, \(x_1, \ldots, x_k \) are the variables of sort base in \(s \) and \(t \) and \(y_1, \ldots, y_l \) are the variables of sort univ in \(s \) and \(t \). As before, it is still decidable whether these formulas are true in the integers if \(\mathcal{P}\text{ol}(f) \) is linear for all \(f \in \mathcal{F}_{\mathcal{T}_h} \cup \mathcal{F} \cup \mathcal{F}^2 \).

Example 7.24. Assume that \(\mathcal{F} \) contains \(g: \text{base} \times \text{univ} \rightarrow \text{univ} \) and \(f: \text{univ} \rightarrow \text{univ} \). Then, consider the \(\mathcal{T}\mathcal{H}_Z \)-polynomial interpretation with \(c_{\mathcal{P}\text{ol}} = 0 \), \(\mathcal{P}\text{ol}(f) = x_1 \), and \(\mathcal{P}\text{ol}(g) = x_2 + 1 \). Thus, \([f(g(x, y))]_{\mathcal{P}\text{ol}} = y + 1 \) and \([f(y)] = y \). Notice that for each function symbol \(f \in \mathcal{F} \) with resulting sort univ, the polynomial \(\mathcal{P}\text{ol}(f) \) only depends on variables corresponding to arguments of sort univ. Using the refinement discussed above, \(f(g(x, y)) \succ_{\mathcal{P}\text{ol}} f(y) \) since the following formulas are true in the integers:

\[\forall y \geq 0. y + 1 \geq 0 \]

\[\forall y \geq 0. y + 1 > y \]

In particular, the first formula requires the assumption that \(y \) is non-negative. Without the refinement, \(f(g(x, y)) \succ_{\mathcal{P}\text{ol}} f(y) \) cannot be established since

\[\forall y. y + 1 \geq 0 \]

is not true in the integers. \(\triangle \)

The following lemma justifies that it suffices to instantiate the variables of sort univ only by non-negative numbers if this refinement is used.

Lemma 7.25. Let \(\mathcal{P}\text{ol} \) be a \(\mathcal{T}\mathcal{H}_Z \)-polynomial interpretation such that for each \(f \in \mathcal{F} \) with resulting sort univ, the polynomial \(\mathcal{P}\text{ol}(f) \) only depends on a variable \(x_i \) if the \(i^{th} \) argument of \(f \) has sort univ. If \(s \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{\mathcal{T}_h}) \) such that \(s \) has sort univ, then \([s]_{\mathcal{P}\text{ol}} \geq 0 \).
Chapter 7. Reduction Pairs

As for $\text{Th}_{\mathbb{N}}$-polynomial interpretations, the relations \geq_{pol} and \succ_{pol} indeed give rise to $\text{Th}_{\mathbb{Z}}$-reduction pairs. The monotonicity requirements are again achieved by requiring $\text{Pol}(f^z)$ to be weakly increasing in all x_i that correspond to an argument of sort univ.

Theorem 7.26. Let $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$ be a DP problem and let Pol be a $\text{Th}_{\mathbb{Z}}$-polynomial interpretation. Then $(\geq_{\text{pol}}, \succ_{\text{pol}})$ is a $\text{Th}_{\mathbb{Z}}$-reduction pair for \mathcal{P} if $\text{Pol}(f^z)$ is weakly increasing in all x_i where the i^{th} argument of f^z has sort univ.

Finally, the following notation is also introduced for $\text{Th}_{\mathbb{Z}}$-reduction pairs.

Definition 7.27. Let $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$ be a DP problem, let (\geq, \succ) be a $\text{Th}_{\mathbb{Z}}$-reduction pair for \mathcal{P}, let \mathcal{P}' be a set of dependency pairs, and let \mathcal{R}' be a set of constrained rewrite rules. Then $(\geq, \succ) \models (\mathcal{P}', \mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E})$ is defined to hold iff $\text{Th}_{\mathbb{Z}}$ is built-in, either $\text{RedPos}(f^z, \mathcal{P}) = \emptyset$ for all $f^z \in \mathcal{F}^z$ or \mathcal{F} does not contain any function symbol with resulting sort base, and

1. $s[\varphi] \succ t[\varphi]$ for all $s \rightarrow t[\varphi] \in \mathcal{P}'$,
2. $s[\varphi] \geq t[\varphi]$ for all $s \rightarrow t[\varphi] \in \mathcal{P} - \mathcal{P}'$,
3. $l[\varphi] \succ r[\varphi]$ for all $l \rightarrow r[\varphi] \in \mathcal{R}'$,
4. $l[\varphi] \geq r[\varphi]$ for all $l \rightarrow r[\varphi] \in \mathcal{R} - \mathcal{R}'$,
5. $l \geq r$ for all $l \rightarrow r \in \mathcal{S}_{\text{univ}}$,
6. $l \sim r$ for all $l \rightarrow r \in \mathcal{S}_{\text{base}}$, and
7. $u \sim v$ for all $u \approx v \in \mathcal{E}$.

As before, dependency pairs $s \rightarrow t[\varphi]$ such that $s[\varphi] \succ t[\varphi]$ can be removed from a DP problem.

Theorem 7.28 (DP Processor Based on $\text{Th}_{\mathbb{Z}}$-Reduction Pairs). Let Proc be a DP processor with $\text{Proc}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) =$
Chapter 7. Reduction Pairs

• \{(P - P', Q, R, S, E)\}, if \((\succsim, \succ)\) is a ThZ-reduction pair for \(P\) and \(P' \subseteq P\) such that \((\succsim, \succ) \models (P', P, \emptyset, R, S, E)\).

• \{(P, Q, R, S, E)\}, otherwise.

Then \(\text{Proc}\) is sound.

Example 7.29. Using \(ThZ\)-polynomial interpretations, termination of the CERS (and thus the imperative program) from Example 4.5 can be established. Recall the following rules and equations:

\[
S:\begin{align*}
x + 0 & \rightarrow x \\
-x & \rightarrow x \\
0 & \rightarrow 0 \\
-(x + y) & \rightarrow (-x) + (-y) \\
x + (-x) & \rightarrow 0 \\
(x + (-x)) + y & \rightarrow 0 + y
\end{align*}
\]

\[
E:\begin{align*}x + y & \approx y + x \\
x + (y + z) & \approx (x + y) + z
\end{align*}
\]

\[
R:\begin{align*}
\text{eval}_1(x, y) & \rightarrow \text{eval}_2(x, 1) \ [x \geq 0] \\
\text{eval}_2(x, y) & \rightarrow \text{eval}_2(x, 2 \cdot y) \ [x \geq 0 \land y > 0 \land x > y] \\
\text{eval}_2(x, y) & \rightarrow \text{eval}_1(x - 1, y) \ [x \geq 0 \land y > 0 \land x \neq y]
\end{align*}
\]

There are three dependency pairs:

\[
\begin{align*}
\text{eval}^1_1(x, y) & \rightarrow \text{eval}^2_1(x, 1) \ [x \geq 0] & (7.1) \\
\text{eval}^2_2(x, y) & \rightarrow \text{eval}^2_2(x, 2 \cdot y) \ [x \geq 0 \land y > 0 \land x > y] & (7.2) \\
\text{eval}^2_2(x, y) & \rightarrow \text{eval}^1_2(x - 1, y) \ [x \geq 0 \land y > 0 \land x \neq y] & (7.3)
\end{align*}
\]

For an arbitrary \(Q\), the DP problem \(\{(7.1), (7.2), (7.3)\}, Q, R, S, E\) is transformed into the DP problem \(\{(7.1), (7.2)\}, Q, R, S, E\) using a \(ThZ\)-polynomial interpretation with \(\text{Pol}(\text{eval}^1_1) = \text{Pol}(\text{eval}^2_1) = x_1, \text{Pol}(\text{eval}^1_1) = \text{Pol}(\text{eval}^2_2) = 0\), and \(c_{\text{Pol}} = 0\)
Chapter 7. Reduction Pairs

because

\[
\forall x, y. x \geq 0 \Rightarrow x \geq x
\]

\[
\forall x, y. x \geq 0 \land y > 0 \land x > y \Rightarrow x \geq x
\]

\[
\forall x, y. x \geq 0 \land y > 0 \land x \not> y \Rightarrow x \geq 0
\]

\[
\forall x, y. x \geq 0 \land y > 0 \land x \not> y \Rightarrow x > x - 1
\]

are true in the integers. The newly obtained DP problem is transformed into the DP problem (\{(7.2)\}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) since (7.1) is not in the SCC of the problem’s dependency graph. Finally, the DP problem (\{(7.2)\}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) can be handled using a \text{Th}_\mathbb{Z}\text{-polynomial interpretation} with \text{Pol}(\text{eval}_2) = x_1 - x_2, \text{Pol}(\text{eval}_1) = \text{Pol}(\text{eval}_2) = 0, and \(c_{\text{pol}} = 0\) since

\[
\forall x, y. x \geq 0 \land y > 0 \land x > y \Rightarrow x - y \geq 0
\]

\[
\forall x, y. x \geq 0 \land y > 0 \land x > y \Rightarrow x - y > x - 2 \cdot y
\]

are true in the integers. △

Notice that the applicability conditions for \text{Th}_\mathbb{Z}\text{-reduction pairs} might not always be satisfied, i.e., \(\mathcal{F}\) may contain function symbols with resulting sort \text{base} and \text{RedPos}(f^\sharp, \mathcal{P}) \neq \emptyset \) for some \(f^\sharp \in \mathcal{F}^\sharp\). In this case it might be possible to eliminate certain argument positions of \(f^\sharp\) using the DP processor from Theorem 6.17 such that \text{RedPos}(f^\sharp, \mathcal{P}) becomes empty.

Example 7.30. The RCERS in this example uses non-determinism in order compute a random number. More precisely, \text{random}(x) computes a random number in the interval \([0..x]\) for \(x \geq 0\). The sets \(\mathcal{E}\) and \(\mathcal{S}\) are used to model \text{Th}_\mathbb{Z}, \mathcal{Q} = \emptyset, and \(\mathcal{R}\) consists of the following rules:

\[
\text{random}(x) \rightarrow \text{rand}(x, 0) [x \geq 0]
\]

\[
\text{rand}(x, y) \rightarrow y [x \simeq 0]
\]
Chapter 7. Reduction Pairs

\[
\text{rand}(x,y) \rightarrow \text{rand}(x-1, \text{id}_{\text{inc}}(y)) [x > 0]
\]
\[
\text{id}_{\text{inc}}(x) \rightarrow x
\]
\[
\text{id}_{\text{inc}}(x) \rightarrow x + 1
\]

Application of the dependency graph results in the DP problem \((\{\text{rand}^d(x,y) \rightarrow \text{rand}^d(x-1,\text{id}_{\text{inc}}(y))[x > 0]\}, Q, R, S, E)\). Then \(Th_Z\)-reduction pairs cannot be applied since \(RedPos(\text{rand}^d, P) = \{2\}\) and \(\text{id}_{\text{inc}}\) has resulting sort \(\text{base}\).

Using the non-collapsing argument filtering \(\pi(\text{rand}^d) = [1]\), the DP problem \((\{\text{rand}^d(x) \rightarrow \text{rand}^d(x-1)[x > 0]\}, Q, R, S, E)\) is obtained by the DP processor from Theorem 6.17. By reasoning formalized below in Theorem 8.18, the rules in \(R\) do not need to be considered when applying Theorem 7.28 and the \(Th_Z\)-polynomial interpretation with \(c_{\text{pol}} = 0\) and \(\text{Pol}(\text{rand}^d) = x_1\) can be used to show termination of the RCERS. \(\triangle\)

7.4 Summary

This chapter has presented three variations on the theme of reduction pairs which are based on well-founded relations. After recalling the ordinary reduction pairs from [117], reduction pairs tailored towards \(Th_N\) and \(Th_Z\) were introduced and it has been shown how these new variations of reduction pairs can be obtained using polynomial interpretations with integer coefficients. The use of negative coefficients makes it possible to successfully prove termination in many cases where this is not possible using ordinary polynomial interpretations with coefficients from \(\mathbb{N}\). This is in particular true for examples where termination is due to a bounded increase of an argument until it reaches a fixed upper bound. The automatic generation of such polynomial interpretations will be discussed in Section 9.2.

While the use of reduction pairs as presented in this chapter is already sufficient
for showing termination of many examples, it has the drawback that all of \mathcal{R}, \mathcal{S}, and \mathcal{E} need to be considered when operating on the DP problem $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$. This is problematic since it makes the automatic generation of reduction pairs harder or impossible. Furthermore, it may harm performance of an implementation. Improved methods that make use of reduction pairs are presented in Chapter 8. These methods have the advantage that it becomes possible to consider only (syntactically determined) subsets of \mathcal{R}, \mathcal{S}, and \mathcal{E}, thus circumventing the drawbacks of the methods presented in this chapter.
Chapter 8

Usable Rules and Function Dependencies

Chapters 6 and 7 have already presented several sound DP processors. However, these DP processors are not yet sufficient for automatically proving termination of many natural examples, including the running quicksort example. This chapter introduces further, more powerful DP processors by improving the removal of dependency pairs from a DP problem using reduction pairs as introduced in Chapter 7. As already mentioned in Section 7.4, the DP processors introduced in Chapter 7 have the drawback that all of \mathcal{R}, \mathcal{S}, and \mathcal{E} need to be considered when operating on the DP problem $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$. This requirement makes it often hard or impossible to automatically find suitable reduction pairs. The techniques presented in this chapter make it possible to only consider (syntactically determined) subsets of \mathcal{R}, \mathcal{S}, and \mathcal{E}. This increases both efficiency and power of an implementation.

If $\mathcal{Q} \supseteq \mathcal{R}$ (i.e., in the innermost case), then it is possible to make use of the concept of usable rules, which is well-known from the dependency pair method for ordinary innermost rewriting [12]. This makes it possible to disregard certain rewrite rules
from \mathcal{R} that cannot be used for building chains. Extending the DP processor based on reduction pairs and usable rules to the case where $\mathcal{Q} \not\supseteq \mathcal{R}$ is quite challenging since the soundness proof of the former DP processor inherently depends on the assumption that $\mathcal{Q} \supseteq \mathcal{R}$. Nonetheless, Section 8.3 presents an extension to the case where it is not assumed that $\mathcal{Q} \supseteq \mathcal{R}$. Somewhat surprisingly, this extension results in a DP processor that is, in practice, slightly more powerful than the DP processor based on usable rules.

8.1 Usable Rules

If a reduction pair (\triangleright, \succ) is used in the case where $\mathcal{Q} \supseteq \mathcal{R}$, then it is not necessary to require that all rules from \mathcal{R} are decreasing w.r.t. \triangleright in Theorems 7.8, 7.18, and 7.28. Instead, it suffices to require this for the usable rules. These rules are a superset of the rules that may be used in a chain. This is similar to the situation for ordinary innermost rewriting [12]. Recall that variables are instantiated by terms that are irreducible by $\frac{\mathcal{S}}{t_h \parallel \mathcal{E} \setminus \mathcal{Q}}$ in chains. Thus, the set of usable rules that may be applied to an instantiation of a variable is empty. For a term $t = f(t_1, \ldots, t_n)$, all rules defining the function symbol f may be applicable, and furthermore any rule that may be applied to one of the t_i is usable. Then, this reasoning needs to be iterated for the right-hand sides of the usable rules determined so far.

Definition 8.1 (Usable Rules). Let \mathcal{R} be a set of constrained rewrite rules. For any $f \in \mathcal{F}$ let $\mathcal{R}(f) = \{ l \rightarrow r[\varphi] \in \mathcal{R} \mid \text{root}(l) = f \}$. For any term define

- $\mathcal{U}_\mathcal{R}(x) = \emptyset$ for $x \in \mathcal{V}$, and
- $\mathcal{U}_\mathcal{R}(f(t_1, \ldots, t_n)) = \mathcal{R}(f) \cup \bigcup_{l \rightarrow r[\varphi] \in \mathcal{R}(f)} \mathcal{U}_{\mathcal{R}'}(r) \cup \bigcup_{i=1}^{n} \mathcal{U}_{\mathcal{R}'}(t_i)$, where $\mathcal{R}' = \mathcal{R} - \mathcal{R}(f)$.

For a set \mathcal{P} of dependency pairs let $\mathcal{U}_\mathcal{R}(\mathcal{P}) = \bigcup_{s \rightarrow t[\varphi] \in \mathcal{P}} \mathcal{U}_\mathcal{R}(t)$.
Chapter 8. Usable Rules and Function Dependencies

Example 8.2. Continuing the running quicksort example, Example 6.26, the only DP problem that still needs to be handled is \((\{5.7, 5.9\}, Q, R, S, E) \) with the following dependency pairs:

\[
\begin{align*}
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{qsort}^\sharp(\text{low}(x, y)) \quad (5.7) \\
\text{qsort}^\sharp(\{x\} \cup y) & \rightarrow \text{qsort}^\sharp(\text{high}(x, y)) \quad (5.9)
\end{align*}
\]

The usable rules \(U_R(\{5.7, 5.9\}) \) consist of the rules for low and high. \(\triangle \)

For innermost termination of ordinary rewriting, slightly stronger versions of usable rules have been developed [88, 87]. These definitions could be adapted for RCERSs, but in order to keep the presentation simple this dissertation restricts itself to the most basic version of Definition 8.1.

The next lemma states that \(U_R(P) \) indeed contains all rules that are applicable in a \((P, Q, R, S, E) \)-chain. A \(Th \)-based substitution \(\sigma \) is called normal iff \(\sigma(x) \) is irreducible by \(S \rightarrow_{Th\|E\setminus Q} T_h \) for all \(x \in V \). Notice that a term which is irreducible by \(S \rightarrow_{Th\|E\setminus Q} T_h \) cannot be reduced using a rule from \(R \) either if \(Q \supseteq R \).

Lemma 8.3. Let \((Q, R, S, E) \) be an RCERS with \(Q \supseteq R \) and let \(\sigma \) a normal substitution. Then for all \(s, t \):

1. If \(s \sigma \rightarrow_{S\setminus T_h\|E\setminus R} t \) then \(s \sigma \rightarrow_{S\setminus T_h\|E\setminus U_R(s)} t \). Moreover, there exist a term \(u \) and a normal substitution \(\mu \) such that \(t = u \mu \) and \(U_R(u) \subseteq U_R(s) \).

2. If \(s \sigma \rightarrow_{S\setminus T_h\|E\setminus R} t \) then \(s \sigma \rightarrow_{S\setminus T_h\|E\setminus U_R(s)} t \).

Using reduction pairs, dependency pairs that are strictly decreasing can be removed from a DP problem as in Chapter 7. In contrast to the earlier DP processors, it now suffices to consider only the usable rules.

Theorem 8.4 (DP Processor Based on usable Rules). Let \(Proc \) be a DP processor with \(Proc(P, Q, R, S, E) = \)
Chapter 8. Usable Rules and Function Dependencies

• \{(P - P', Q, R, S, \mathcal{E})\}, if \(Q \supseteq R\), \(P' \subseteq P\), and either

 - there exists an ordinary reduction pair \(\prec, \succ\) such that \(\prec, \succ\) \(\models (P', P, \emptyset, U_R(P), S, \mathcal{E})\), or

 - there exists a \(\mathcal{T}_{\text{N}}\)-reduction pair \(\prec, \succ\) for \(P\) such that \(\prec, \succ\) \(\models (P', P, \emptyset, U_R(P), S, \mathcal{E})\), or

 - there exists a \(\mathcal{T}_{\text{Z}}\)-reduction pair \(\prec, \succ\) for \(P\) such that \(\prec, \succ\) \(\models (P', P, \emptyset, U_R(P), S, \mathcal{E})\).

• \{(P, Q, R, S, \mathcal{E})\}, otherwise.

Then \(\text{Proc}\) is sound.

Example 8.5. Continuing Example 8.2, the requirement \(\prec_{\text{Pol}}, \succ_{\text{Pol}}\) \(\models (\{5.7, 5.9\}, \{5.7, 5.9\}, \emptyset, U_R(\{5.7, 5.9\}), S, \mathcal{E})\) is satisfied for the following (ordinary) polynomial interpretation:

\[
\begin{align*}
\text{Pol}(\text{qsort}^2) & = x_1 \\
\text{Pol}(\cup) & = x_1 + x_2 + 1 \\
\text{Pol}(\emptyset) & = 0 \\
\text{Pol}({\cdot}) & = 0 \\
\text{Pol}(\text{low}) & = x_2 \\
\text{Pol}(\text{high}) & = x_2
\end{align*}
\]

This concludes the termination proof of quicksort in the case where \(Q = R\). \(\triangle\)

8.2 Removal of Rules

The DP processors introduced in Chapter 7 and Theorem 8.4 can only be used to remove dependency pairs from a termination problem, while the set \(R\) of rewrite rules
stays unchanged. But it might be desirable to remove rules from \(\mathcal{R} \) as well since this can simplify a termination proof substantially because rules that have been removed once do not need to be considered again later on. Additionally, the set of defined symbols might decrease if rules from \(\mathcal{R} \) are removed, which in turn might cause the removal of arcs in the (estimated) dependency graph. In this section, a DP processor for the removal of rules from \(\mathcal{R} \) is introduced. Like the DP processors in Chapter 7 and Theorem 8.4, it makes use of reduction pairs, but for soundness it needs to be required that the reduction pair is \textit{monotonic}. Then, application of a rule \(l \rightarrow r[\varphi] \) with \(l[\varphi] \succ r[\varphi] \) in a reduction \(s \xrightarrow{S, Q, T} t \) implies \(s \succ t \).

Definition 8.6 (Monotonic Reduction Pairs). Let \((\mathcal{P}, Q, \mathcal{R}, S, \mathcal{E})\) be a DP problem.

1. An ordinary reduction pair \((\succeq, \succ)\) is \textit{monotonic} iff \(\succ \) is monotonic.

2. A Th\(_{\mathbb{N}}\)-reduction \((\succeq, \succ)\) for \(\mathcal{P} \) is \textit{monotonic} iff \(\succ \) is \(\mathcal{F} \)-monotonic and \(f^i \)-monotonic at position \(i \) for all \(f^i \in \mathcal{F}^i \) and all \(i \in \text{RedPos}(f^i, \mathcal{P}) \).

3. A Th\(_{\mathbb{Z}}\)-reduction \((\succeq, \succ)\) for \(\mathcal{P} \) is \textit{monotonic} iff \(\succ \) is \textit{univ}-monotonic.

In order to obtain monotonic reduction pairs from polynomial interpretations, the polynomials need to satisfy the following requirements.

Theorem 8.7. Let \((\mathcal{P}, Q, \mathcal{R}, S, \mathcal{E})\) be a DP problem.

1. An ordinary reduction pair \((\succeq_{\text{Pol}}, \succ_{\text{Pol}})\) generated using a polynomial interpretation is monotonic if \(\text{Pol}(f) \) is increasing in all \(x_i \) for all \(f \in \mathcal{F} \cup \mathcal{F}_{\text{Th}} \cup \mathcal{F}^i \).

2. A Th\(_{\mathbb{N}}\)-reduction pair for \(\mathcal{P} \) generated using a Th\(_{\mathbb{N}}\)-polynomial interpretation is monotonic if \(\text{Pol}(f) \) is increasing in all \(x_i \) for any \(f \in \mathcal{F} \cup \mathcal{F}_{\text{Th}} \) and \(\text{Pol}(f^i) \) is increasing in all \(x_i \) with \(i \in \text{RedPos}(f^i, \mathcal{P}) \) for any \(f^i \in \mathcal{F}^i \).

3. A Th\(_{\mathbb{Z}}\)-reduction pair for \(\mathcal{P} \) generated using a Th\(_{\mathbb{Z}}\)-polynomial interpretation is monotonic if \(\text{Pol}(f) \) is increasing in all \(x_i \) where the \(i^{\text{th}} \) argument of \(f \) has sort \textit{univ} for any \(f \in \mathcal{F} \cup \mathcal{F}_{\text{Th}} \cup \mathcal{F}^i \).
Chapter 8. Usable Rules and Function Dependencies

The following DP processor is similar to the DP processor of Theorem 8.4 but requires a monotonic reduction pair. In contrast to the earlier DP processor, rules from \mathcal{R} may now be removed as well if they are decreasing w.r.t. \succ.

Theorem 8.8 (DP Processor Based on Removal of Rules). Let Proc be a DP processor with $\text{Proc}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) =$

- $\{(\mathcal{P} - \mathcal{P}', \mathcal{R} - \mathcal{R}', \mathcal{S}, \mathcal{E})\}$, if $\mathcal{Q} \supseteq \mathcal{R}$, $\mathcal{P}' \subseteq \mathcal{P}$, $\mathcal{R}' \subseteq U_\mathcal{R}(\mathcal{P})$, and either
 - there exists a monotonic ordinary reduction pair (\preceq, \succ) such that $(\preceq, \succ) \models (\mathcal{P}', \mathcal{P}, \mathcal{R}', U_\mathcal{R}(\mathcal{P}), \mathcal{S}, \mathcal{E})$, or
 - there exists a monotonic $\text{Th}_\mathbb{N}$-reduction pair (\preceq, \succ) for \mathcal{P} such that $(\preceq, \succ) \models (\mathcal{P}', \mathcal{P}, \mathcal{R}', U_\mathcal{R}(\mathcal{P}), \mathcal{S}, \mathcal{E})$, or
 - there exists a monotonic $\text{Th}_\mathbb{Z}$-reduction pair (\preceq, \succ) for \mathcal{P} such that $(\preceq, \succ) \models (\mathcal{P}', \mathcal{P}, \mathcal{R}', U_\mathcal{R}(\mathcal{P}), \mathcal{S}, \mathcal{E})$.

- $\{ (\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) \}$, otherwise.

Then Proc is sound.

Of course, a similar DP processor that considers all of \mathcal{R} instead of just the usable rule $U_\mathcal{R}(\mathcal{P})$ would also be sound.

Example 8.9. Consider the following CERS which computes the size of a set:

$$
\begin{align*}
\mathcal{S}: & \quad x + 0 \rightarrow x \\
& \quad -x \rightarrow x \\
& \quad 0 \rightarrow 0 \\
& \quad -(x + y) \rightarrow (-x) + (-y) \\
& \quad x + (-x) \rightarrow 0 \\
& \quad (x + (-x)) + y \rightarrow 0 + y \\
& \quad \text{ins}(x, \text{ins}(x, ys)) \rightarrow \text{ins}(x, ys)
\end{align*}
$$
Chapter 8. Usable Rules and Function Dependencies

\[E : \quad x + y \approx y + x \]
\[x + (y + z) \approx (x + y) + z \]
\[\text{ins}(x, \text{ins}(y, zs)) \approx \text{ins}(y, \text{ins}(x, zs)) \]

\[R : \quad \text{remove}(\emptyset) \rightarrow \emptyset \]
\[\text{remove}(\text{ins}(x, ys)) \rightarrow ys \]
\[|\emptyset| \rightarrow 0 \]
\[|\text{ins}(x, ys)| \rightarrow |\text{remove}(\text{ins}(x, ys))| + 1 \]

If \(Q = R \), the estimated dependency graph \(\text{EDG}(P, Q, R, S, E) \) contains one SCC and the DP problem \(\{ |\text{ins}(x, ys)|^\sharp \rightarrow |\text{remove}(\text{ins}(x, ys))|^\sharp \} \), \(Q, R, S, E \) needs to be handled. This cannot be done using an ordinary polynomial interpretation since the rewrite rule \(\text{remove}(\text{ins}(x, ys)) \rightarrow ys \) forces the polynomial \(Pol(\text{remove}) \) to depend on the variable \(x_1 \). But then the dependency pair \(|\text{ins}(x, ys)|^\sharp \rightarrow |\text{remove}(\text{ins}(x, ys))|^\sharp \) cannot be oriented strictly and a termination proof fails. Instead, it is possible to apply a monotonic ordinary reduction pair based on

\[Pol(+) = x_1 + x_2 \]
\[Pol(-) = x_1 \]
\[Pol(0) = 0 \]
\[Pol(|\cdot|^\sharp) = x_1 \]
\[Pol(\emptyset) = 0 \]
\[Pol(\text{ins}) = x_1 + x_2 + 1 \]
\[Pol(\text{remove}) = x_1 \]

Then \(\triangleright_\text{pol} \triangleright_\text{pol} \models (\emptyset, P, R', R, S, E) \) is satisfied, where \(R' = \{ \text{remove}(\text{ins}(x, ys)) \rightarrow ys \} \). After removing \(R' \) from the DP problem, the resulting DP problem can easily be handled by the (non-monotonic) ordinary reduction pair based on the following polynomial interpretation:

\[Pol(+) = x_1 + x_2 \]
Chapter 8. Usable Rules and Function Dependencies

\[
\begin{align*}
\mathcal{P}ol(-) &= x_1 \\
\mathcal{P}ol(0) &= 0 \\
\mathcal{P}ol(|\cdot|^2) &= x_1 \\
\mathcal{P}ol(\emptyset) &= 0 \\
\mathcal{P}ol(\text{ins}) &= x_2 + 1 \\
\mathcal{P}ol(\text{remove}) &= 0
\end{align*}
\]

Using this polynomial interpretation, the (only) dependency pair is removed. \(\triangle\)

8.3 Function Dependencies

Recall that the DP processors from Chapter 7 have to consider all of \(\mathcal{R}, \mathcal{S},\) and \(\mathcal{E}\) and that it suffices to consider the usable rules in the innermost case, i.e., if \(\mathcal{Q} \supseteq \mathcal{R}\). It is well-known from the DP framework for ordinary rewriting that considering all of \(\mathcal{R}\) in the non-innermost case is a severe restriction that causes many termination proofs to fail [88, 95].

This section provides a proof that it also suffices to consider the usable rules in the general case. However, since the proof of Lemma 8.3 (and thus, Theorem 8.4) inherently depends on the innermost case and cannot be extended to the unrestricted case, the proof of this result is quite different. Indeed, the reductions between instantiated dependency pairs may use rewrite rules that are not usable in the innermost case since in general there are no assumptions on the substitution \(\sigma\) used for building chains other than the restriction that \(\sigma\) is \(\mathcal{T}h\)-based.

The idea of the result in this section is to show that each \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\)-chain that uses a substitution \(\sigma\) can be transformed into a sequence that only uses subsets \(\mathcal{R'} \subseteq \mathcal{R}, \mathcal{S'} \subseteq \mathcal{S},\) and \(\mathcal{E'} \subseteq \mathcal{E}\) by considering a different substitution \(I(\sigma)\). This sequence will not necessarily be a \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\)-chain, but this property is not
Chapter 8. Usable Rules and Function Dependencies

needed for soundness. The set R' turns out to coincide with the usable rules as defined in Definition 8.1, i.e., the technique developed in this section is indeed at least as powerful as the technique obtained with usable rules in practice. The only drawback is that the reduction pairs need to orient four additional rewrite rules for two fresh function symbols. This drawback is not severe in practice, however, since these rewrite rules can be easily oriented using polynomial interpretations.

Somewhat surprisingly, the DP processor developed in this section is, in practice, slightly more powerful than the DP processor of Section 8.1 that is based on usable rules. Therefore, the DP processor of this section should also be used in the innermost case since it subsumes the DP processor of Theorem 8.4. Recall that Theorem 8.4 needs to consider only the subset of usable rules from R, but all rules from S and all equations from E. The DP processor of this section, in contrast, has to consider the same subset of R, but additionally only subsets of S and E as well. The only restriction of the DP processor in this section is that it is only applicable if E is size-preserving. Recall that all examples of data structures given in Chapter 3 satisfy this property.

The subsets $R' \subseteq R$, $S' \subseteq S$, and $E' \subseteq E$ that need to be considered are based on the dependencies between function symbols. Intuitively, a function symbol f depends on a function symbol h if h is below f in the recursion hierarchy defined by the rules and equations. Similar definitions to the one below are also used in [167, 88, 95, 64, 156].

Definition 8.10 (Function Dependencies). Let (P, Q, R, S, E) be a DP problem where E is size-preserving. For two symbols $f, h \in F$ let $f \uparrow_{(P, Q, R, S, E)} h$ iff $f = h$ or there exists a symbol g with $g \uparrow_{(P, Q, R, S, E)} h$ and either

1. a rule $l \rightarrow r[\varphi] \in R$ such that root$(l) = f$ and $g \in F(r)$, or

2. a rule $l \rightarrow r \in S$ such that root$(l) = f$ and $g \in F(r)$, or
Chapter 8. Usable Rules and Function Dependencies

3. an equation \(u \approx v \) (or \(v \approx u \)) in \(\mathcal{E} \) such that \(\text{root}(u) = f \) and \(g \in \mathcal{F}(u \approx v) \).

In the following, let

\[
\Delta(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) = \mathcal{F}_{Th} \cup \bigcup_{s \rightarrow t[\varphi] \in \mathcal{P}} \{ g \mid f \triangleright_{(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})} g \text{ for an } f \in \mathcal{F}(t) - \mathcal{F}^2 \}
\]

Notice that this definition only makes sense if \(\mathcal{E} \) is collapse-free.

Example 8.11. Consider the following rules and equations:

\[
\begin{align*}
 f(s(x)) & \rightarrow g(x) \\
 g(s(x)) & \rightarrow h(c(x)) \\
 c(x) & \approx s(x)
\end{align*}
\]

Using a simplified notation and omitting the reflexivity of the relation, \(f \triangleright g \triangleright h, f \triangleright g \triangleright c, c \triangleright s, \) and \(s \triangleright c \).

Subsets \(\Delta \subseteq \mathcal{F} \cup \mathcal{F}_{Th} \) give rise to subsets of \(\mathcal{R}, \mathcal{S}, \) and \(\mathcal{E} \) in the obvious way.

Definition 8.12 \((\mathcal{R}(\Delta), \mathcal{S}(\Delta), \) and \(\mathcal{E}(\Delta))\). Let \(\Delta \subseteq \mathcal{F} \cup \mathcal{F}_{Th} \). Then \(\mathcal{R}(\Delta) = \{ l \rightarrow r[\varphi] \in \mathcal{R} \mid \text{root}(l) \in \Delta \}, \) \(\mathcal{S}(\Delta) = \{ l \rightarrow r \in \mathcal{S} \mid \text{root}(l) \in \Delta \}, \) and \(\mathcal{E}(\Delta) = \{ u \approx v \in \mathcal{E} \mid \text{root}(u) \in \Delta \text{ or } \text{root}(v) \in \Delta \} \).

In the following, a mapping \(\mathcal{I} \) from terminating terms\(^1\) to terms that possibly contain fresh function symbols \(\Pi_{\text{univ}} \) and \(\Pi_{\text{base}} \) is defined. This mapping is similar to mappings defined in \([88, 95, 156]\) but differs in how terms \(t \) with \(\text{root}(t) \not\in \Delta \) are handled. Furthermore, **two** fresh function symbols are needed, one for sort \(\text{univ} \) and one for sort \(\text{base} \). The idea for this mapping is that every reduction of \(t \) that uses \(\mathcal{R}, \mathcal{S}, \) and \(\mathcal{E} \) can be “simulated” by a reduction of \(\mathcal{I}(t) \) that only uses \(\mathcal{R}(\Delta), \mathcal{S}(\Delta), \) and \(\mathcal{E}(\Delta) \). Within this section, it is assumed that \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) \) is a DP problem such that \(\mathcal{E} \) is size-preserving. Furthermore, let \(\Delta = \Delta(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) \).

\(^1\) A term \(t \) is **terminating** iff there are no infinite \(\frac{\mathcal{S}, \mathcal{Q}}{\mathcal{F}_{Th} \setminus \mathcal{R}} \)-reductions starting with \(t \).
Chapter 8. Usable Rules and Function Dependencies

Definition 8.13 (I). For any terminating term $t \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_T, \mathcal{V})$ define $\mathcal{I}(t)$ by

\[
\begin{align*}
\mathcal{I}(x) &= x & \text{if } x \in \mathcal{V} \\
\mathcal{I}(f(t_1, \ldots, t_n)) &= f(\mathcal{I}(t_1), \ldots, \mathcal{I}(t_n)) & \text{if } f \in \Delta \\
\mathcal{I}(t) &= \text{Comp}_{\text{sort}(t)}(\text{Red}_S(t) \cup \text{Red}_R(t) \cup \mathcal{E}_q(t)) & \text{otherwise}
\end{align*}
\]

where the sets $\text{Red}_S(t)$, $\text{Red}_R(t)$, and $\mathcal{E}_q(t)$ are defined as

\[
\begin{align*}
\text{Red}_S(t) &= \{\mathcal{I}(t') \mid t \rightarrow_{\text{E} \setminus \text{S}} \circ \sim_{\text{E}} t'\} \\
\text{Red}_R(t) &= \{\mathcal{I}(t') \mid t \xrightarrow{S, \mathcal{O}} \rightarrow_{\text{Th} \setminus \text{E} \setminus \text{R}} \circ \sim_{\text{E}} t'\} \\
\mathcal{E}_q(t) &= \{g(\mathcal{I}(t_1), \ldots, \mathcal{I}(t_n)) \mid t \sim_{\mathcal{E}} g(t_1, \ldots, t_n)\}
\end{align*}
\]

For $s \in \{\text{univ}, \text{base}\}$, let $\text{Comp}_s(\{t\} \uplus M) = \Pi_s(t, \text{Comp}_s(M))$ and $\text{Comp}_s(\emptyset) = \bot_s$ where Π_s is a fresh function symbols with sort declaration $s \times s \rightarrow s$ and \bot_s is a fresh variable of sort s. In order to make this definition unambiguous, it is assumed that t is the minimal element of $\{t\} \uplus M$ w.r.t. some total well-founded order $>_{\mathcal{T}}$ on terms.

For a terminating substitution2 σ, define the substitution $\mathcal{I}(\sigma)$ by $\mathcal{I}(\sigma)(x) = \mathcal{I}(\sigma(x))$.

It is not immediately obvious that \mathcal{I} is indeed well-defined, i.e., that $\mathcal{I}(t)$ is a finite term whenever t is terminating. This can be shown to be the case, however.

Lemma 8.14. If t is terminating, then $\mathcal{I}(t)$ is a finite term.

In order to simulate reductions using \mathcal{R}, \mathcal{S}, and \mathcal{E} by reductions that only use $\mathcal{R}(\Delta)$, $\mathcal{S}(\Delta)$, and $\mathcal{E}(\Delta)$, the following rewrite rules for the fresh function symbols Π_{univ} and Π_{base} are needed.

Definition 8.15 (\mathcal{R}_{Π}). For the fresh function symbols Π_{univ} and Π_{base} from Definition 8.13, let $\mathcal{R}_{\Pi} = \{\Pi_s(x, y) \rightarrow x, \Pi_s(x, y) \rightarrow y \mid s \in \{\text{univ}, \text{base}\}\}$.

2A substitution σ is *terminating* iff $\sigma(x)$ is terminating for all $x \in \mathcal{V}$.
Chapter 8. Usable Rules and Function Dependencies

The following is a well-known simple property of \mathcal{R}_Π. It states that any element t of M can be extracted from the term $\text{Comp}_{\text{sort}}(t)(M)$.

Lemma 8.16. Let M be a set of terms such that all elements of M have the same sort. If $t \in M$ then $\text{Comp}_{\text{sort}}(t)(M) \rightarrow^+_R t$.

Next, several properties of the mapping I are shown that relate reductions using \mathcal{R}, S, and E to reductions using $\mathcal{R}(\Delta)$, $S(\Delta)$, and $E(\Delta)$.

Lemma 8.17. Let $s, t \in T(\mathcal{F} \cup \mathcal{F}_\text{Th}, \mathcal{V})$ and let σ be a \mathcal{Th}-based substitution such that s, t, and $s\sigma$ are terminating.

1. If $s \in T(\Delta, \mathcal{V})$ then $I(s) = sI(\sigma)$.
2. $I(s\sigma) \rightarrow^+_R sI(\sigma)$.
3. If $s \sim_{\mathcal{E}} t$ then $I(s) \sim_{\mathcal{E}(\Delta)} I(t)$.
4. If $s \rightarrow^+_E t$ then $I(s) \rightarrow^+_E I(t)$, where $\rightarrow^+_E = \sim_{\mathcal{E}(\Delta)} \circ \rightarrow^+_R \circ \sim_{\mathcal{E}(\Delta)} \circ \rightarrow^+_R \circ \rightarrow^+_R$.
5. If $s \overset{\mathcal{S}, \mathcal{Q}}{\rightarrow}^+_{\mathcal{Th}||\mathcal{E}} t$ then $I(s) \rightarrow^+_E I(t)$, where $\rightarrow^+_E = \sim_{\mathcal{E}(\Delta)} \circ \rightarrow^+_R \circ \sim_{\mathcal{E}(\Delta)} \circ \rightarrow^+_R \circ \rightarrow^+_R$ such that the $\rightarrow^+_R(\Delta)$-step uses a \mathcal{Th}-based substitution that makes the instantiated constraint of the used rule \mathcal{Th}-valid.
6. If $s \in T(\Delta, \mathcal{V})$ and $s\sigma \overset{\mathcal{S}, \mathcal{Q}}{\rightarrow}^+_{\mathcal{Th}||\mathcal{E}} t\sigma$, then $sI(\sigma) \rightarrow^+_E sI(\sigma)$.

Using Lemma 8.17.6, soundness of the following DP processor can be shown. Notice that the rules from \mathcal{R}_Π can be easily oriented using reduction pairs based on polynomial interpretations by letting $\mathcal{P}_{\text{pol}}(\Pi_{\text{univ}}) = \mathcal{P}_{\text{pol}}(\Pi_{\text{base}}) = x_1^2 + x_2^2 + 1$.

Theorem 8.18 (DP Processor Based on Function Dependencies). Let Proc be a DP processor with $\text{Proc}(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) =$
Chapter 8. Usable Rules and Function Dependencies

- \{ (P' - P', Q, R, S, \mathcal{E}) \}, if \(\mathcal{E} \) is size-preserving, \(\Delta = \Delta(P, Q, R, S, \mathcal{E}), P' \subseteq P \), and either

 - there exists an ordinary reduction pair \((\succcurlyeq, \succ) \) such that \((\succcurlyeq, \succ) \models (P', P, 0, R(\Delta) \cup R_{\Pi}, S(\Delta), \mathcal{E}(\Delta)) \), or

 - there exists a \(Th_{\mathbb{N}} \)-reduction pair \((\succcurlyeq, \succ) \) for \(P \) such that \((\succcurlyeq, \succ) \models (P', P, 0, R(\Delta) \cup R_{\Pi}, S(\Delta), \mathcal{E}(\Delta)) \), or

 - there exists a \(Th_{\mathbb{Z}} \)-reduction pair \((\succcurlyeq, \succ) \) for \(P \) such that \((\succcurlyeq, \succ) \models (P', P, 0, R(\Delta) \cup R_{\Pi, \text{univ}}, S(\Delta), \mathcal{E}(\Delta)) \).

- \{ (P, Q, R, S, \mathcal{E}) \}, otherwise.

Then \(\text{Proc} \) is sound.

Example 8.19. This example of the sieve of Eratosthenes is used to illustrate the ideas presented in this section:

\[
\begin{align*}
S: & \quad x + 0 \rightarrow x \\
& \quad \quad \quad \quad -x \rightarrow x \\
& \quad \quad \quad \quad -0 \rightarrow 0 \\
& \quad \quad \quad \quad -(x + y) \rightarrow (-x) + (-y) \\
& \quad \quad \quad \quad x + (-x) \rightarrow 0 \\
& \quad \quad \quad \quad (x + (-x)) + y \rightarrow 0 + y \\
\mathcal{E}: & \quad x + y \approx y + x \\
& \quad \quad \quad \quad x + (y + z) \approx (x + y) + z \\
\mathcal{R}: & \quad \text{primes}(x) \rightarrow \text{sieve}(\text{nats}(2, x)) \\
& \quad \quad \quad \quad \text{nats}(x, y) \rightarrow \text{nil} \llbracket x > y \rrbracket \\
& \quad \quad \quad \quad \text{nats}(x, y) \rightarrow \text{cons}(x, \text{nats}(x + 1, y)) \llbracket x \neq y \rrbracket
\end{align*}
\]
Chapter 8. Usable Rules and Function Dependencies

sieve(nil) → nil
sieve(cons(x, ys)) → cons(x, sieve(filter(x, ys)))
filter(x, nil) → nil
filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)
if(true, x, y, zs) → filter(x, zs)
if(false, x, y, zs) → cons(y, filter(x, zs))
isdiv(x, 0) → true \([x > 0]\)
isdiv(x, y) → false \([x > y \land y > 0]\)
isdiv(x, y) → isdiv(x, y - x) \([y \geq x \land x > 0]\)

Then, the following dependency pairs are obtained:

primes\(\sharp\)(x) → sieve\(\sharp\)(nats(2, x))
primes\(\sharp\)(x) → nats\(\sharp\)(2, x)
nats\(\sharp\)(x, y) → nats\(\sharp\)(x + 1, y) \([x \neq y]\)
sieve\(\sharp\)(cons(x, ys)) → sieve\(\sharp\)(filter(x, ys))
sieve\(\sharp\)(cons(x, ys)) → filter\(\sharp\)(x, ys)
filter\(\sharp\)(x, cons(y, zs)) → if\(\sharp\)(isdiv(x, y), x, y, zs)
filter\(\sharp\)(x, cons(y, zs)) → isdiv\(\sharp\)(x, y)
if\(\sharp\)(true, x, y, zs) → filter\(\sharp\)(x, zs)
if\(\sharp\)(false, x, y, zs) → filter\(\sharp\)(x, zs)
isdiv\(\sharp\)(x, y) → isdiv\(\sharp\)(x, y - x) \([y \geq x \land x > 0]\)

The estimated dependency graph contains four SCCs, and according to Theorem 6.7, the following DP problems are obtained:

\((\{(8.3)\}, Q, R, S, E)\) \hspace{1cm} (8.11)
\((\{(8.4)\}, Q, R, S, E)\) \hspace{1cm} (8.12)
\((\{(8.6), (8.8), (8.9)\}, Q, R, S, E)\) \hspace{1cm} (8.13)

126
Chapter 8. Usable Rules and Function Dependencies

\[
\{(8.10), Q, R, S, E\} \quad \text{(8.14)}
\]

The DP problem (8.13) can be handled by the subterm criterion of Theorem 6.24 with the simple projection \(\pi(\text{filter}^\sharp) = 2\) and \(\pi(\text{if}^\sharp) = 4\). Then, the dependency pair (8.6) is removed and the dependency pairs (8.8) and (8.9) do not form an SCC.

Notice that \(\Delta(8.11) = \Delta(8.14) = \mathcal{F}_{Th}\) and thus \(\mathcal{R}(\Delta) = \emptyset\) for these DP problems. They can be handled using a \(Th_Z\)-polynomial interpretation with \(c_{\mathcal{P}ol} = 0\), \(\mathcal{P}ol(\text{isdiv}^\sharp) = x_1 + x_2\), and \(\mathcal{P}ol(\text{nats}^\sharp) = x_2 - x_1\).

For (8.12), \(\Delta = \mathcal{F}_{Th} \cup \{\text{filter}, \text{if}, \text{isdiv}, \text{cons}, \text{nil}, \text{true}, \text{false}\}\), and \(\mathcal{R}(\Delta)\) thus consists of the filter-, if-, and isdiv-rules. Apply Theorem 8.18 and the following \(Th_Z\)-polynomial interpretations with \(c_{\mathcal{P}ol} = 0\):

\[
\begin{align*}
\mathcal{P}ol(\text{sieve}^\sharp) &= x_1 \\
\mathcal{P}ol(\text{filter}) &= x_2 \\
\mathcal{P}ol(\text{if}) &= x_4 + 1 \\
\mathcal{P}ol(\text{isdiv}) &= 0 \\
\mathcal{P}ol(\text{cons}) &= x_2 + 1 \\
\mathcal{P}ol(\text{nil}) &= 0 \\
\mathcal{P}ol(\text{true}) &= 0 \\
\mathcal{P}ol(\text{false}) &= 0
\end{align*}
\]

Then, all dependency pairs are removed from the DP problem (8.12).

\[\triangle\]

8.4 Removal of Rules Revisited

The DP processor from Section 8.2 that is based on monotonic reduction pairs and may remove rules from \(\mathcal{R}\) in addition to dependency pairs extends to the unrestricted
Chapter 8. Usable Rules and Function Dependencies

case as well. If E is size-preserving, the sets $R(\Delta), S(\Delta), \text{and } E(\Delta)$ from the previous section can be used. Notice that R_{Π} now has to be oriented using \succ, i.e., the rules in R_{Π} need to be strictly decreasing. This is always the case if the above-mentioned polynomials $\text{Pol}(\Pi_{\text{univ}}) = \text{Pol}(\Pi_{\text{base}}) = x_1^2 + x_2^2 + 1$ are used.

Theorem 8.20 (DP Processor Based on Removal of Rules and Function Dependencies). Let Proc be a DP processor with $\text{Proc}(P, Q, R, S, E) =$

- $\{(P', Q, R, S, E)\}$, if E is size-preserving, $\Delta = \Delta(P, Q, R, S, E), P' \subseteq P, R' \subseteq R(\Delta)$, and either
 - there exists a monotonic ordinary reduction pair (\preceq, \succ) such that $(\preceq, \succ) \models (P', P, R' \cup R_{\Pi}, R(\Delta), S(\Delta), E(\Delta))$, or
 - there exists a monotonic Th_{Π}-reduction pair (\preceq, \succ) for P such that $(\preceq, \succ) \models (P', P, R' \cup R_{\Pi}, R(\Delta), S(\Delta), E(\Delta))$, or
 - there exists a monotonic Th_{Π}-reduction pair (\preceq, \succ) for P such that $(\preceq, \succ) \models (P', P, R' \cup R_{\Pi, \text{univ}}, R(\Delta), S(\Delta), E(\Delta))$.

Then Proc is sound.

If E is not size-preserving, then a similar DP processor can be obtained that has to consider all of $R, S, \text{and } E, \text{but can disregard } R_{\Pi}$.

8.5 Summary

This chapter has presented techniques that extend the techniques from Chapter 7. Similar to the techniques from Chapter 7, these new techniques are based on reduction pairs.
Chapter 8. Usable Rules and Function Dependencies

First, the concept of usable rules has been introduced for the innermost case. Here, the usable rules are a superset of the rules that may be used in a chain, and it has been shown that it is possible to disregard the non-usable rules from \(R \) since they cannot be used for building chains. Next, it was shown that reduction pairs can also be used to remove usable rules from a DP problem, provided that the reduction pair is monotonic.

Extending the idea of usable rules to the non-innermost case is quite complex since the soundness proof of the usable rule extension inherently depends on the assumption that \(Q \supseteq R \). Nonetheless, this chapter has presented a technique that is, in practice, slightly stronger than the usable rule extension. This technique is not restricted to the innermost case and still makes it possible to consider only syntactically determined subsets of the rules and equations.
Chapter 9

Implementation

The techniques presented so far have been implemented in the automated termination checker AProVE [84] for Th_Z and the general case (i.e., $Q \supseteq R$ is not assumed). While most of the implementation is straightforward, an implementation of the estimated dependency graph EDG is non-trivial. The same is true for the automated generation of Th_Z-reduction pairs based on Th_Z-polynomial interpretations.

9.1 Implementing EDG

It is not clear whether Definition 6.9 can be implemented in general, even if the checks for irreducibility by $\Lambda_{\mathcal{E}\setminus S}$ and Th-validity are omitted, since it needs to be determined whether there exists a substitution μ satisfying $s\mu \xrightarrow{\Lambda_{\mathcal{E}\setminus S}} t\mu$ for two terms s and t. In the following, two approximations for checking this are presented.

First Approximation: Checking whether there exists a substitution μ satisfying $s\mu \xrightarrow{\Lambda_{\mathcal{E}\setminus S}} t\mu$ can be approximated by checking whether s and t are $\mathcal{E} \cup \mathcal{S}$-unifiable. This approximation can be applied if $\mathcal{E} \cup \mathcal{S}$-unifiability is decidable and a
Chapter 9. Implementation

decision procedure has been implemented.

Lemma 9.1. Let \((R, S, E)\) be a CERS and let \(s\) and \(t\) be terms. If there exists a substitution \(\mu\) such that \(s\mu \xrightarrow{\Lambda} E \setminus S \circ \sim \bar{\epsilon} t\mu\), then \(s\) and \(t\) are \(E \cup S\)-unifiable.

Thus, if \(s\) and \(t\) are not \(E \cup S\)-unifiable, then there does not exist a substitution \(\mu\) such that \(s\mu \xrightarrow{\Lambda} E \setminus S \circ \sim \bar{\epsilon} t\mu\). The first approximation is particularly useful if no collection data structures are used and \(E \cup S\)-unifiability reduces to \(\mathcal{T}h_{\mathcal{Z}}\)-unifiability.

If the terms under consideration have the form \(f(s_1, \ldots, s_n)\) with \(\text{sort}(s_i) = \text{base}\) and \(s_i \in \mathcal{T}(\mathcal{F}_{\mathcal{T}h_{\mathcal{Z}}}, \mathcal{V})\) for all \(1 \leq i \leq n\), then \(\mathcal{T}h_{\mathcal{Z}}\)-unifiability is decidable since it reduces to determining whether a system of linear equations is solvable in \(\mathbb{Z}\). This can be decided using SMT-solvers\(^1\) such as Yices [62].

Example 9.2. Let \(s_1 = f(x + y + 3, y)\) and \(t_1 = f(-x - 4y - 7, x)\). In order to determine whether \(s_1\) and \(t_1\) are \(\mathcal{T}h_{\mathcal{Z}}\)-unifiable, it suffices to check whether the system \(x + y + 3 = -x - 4y - 7, y = x\) is solvable in \(\mathbb{Z}\) (which is the case).

Now let \(s_2 = f(x + y, x - y)\) and \(t_2 = f(0, 1)\). Since \(s_2\) and \(t_2\) are not \(\mathcal{T}h_{\mathcal{Z}}\)-unifiable because the system \(x + y = 0, x - y = 1\) is not solvable, there does not exist a substitution \(\mu\) such that \(s_2\mu \xrightarrow{\Lambda} E \setminus S \circ \sim \bar{\epsilon} t_2\mu\). △

Furthermore, unifiability is also decidable for the list-like representation of compact lists, multisets, and sets (i.e., the representation using nil and cons or \(\emptyset\) and ins, see Chapter 3) [58]. These unification algorithms are, however, not currently implemented in AProVE. Notice that it is also necessary to implement a combination framework for unification algorithms [152, 32, 18] if a combination of integers with one or more collection data structures is used in a CERS.

Second Approximation: The approximation from Lemma 9.1 does not take the directionality of \(S\) into account. The second approximation takes the directionality

\(^1\)SMT stands for *satisfiability modulo theories*, see, e.g., [154, 23].
Chapter 9. Implementation

of \(\mathcal{S} \) into account but is only applicable if \(\mathcal{E} \) is collapse-free. The idea for this approximation is to replace subterms of \(s \) that might become reducible by \(\to_{\mathcal{E}|\mathcal{S}} \) by fresh variables and then check for \(\mathcal{E} \)-unifiability. This is of course very similar to the idea that is used in the definition of EDG. This second approximation can be applied if \(\mathcal{E} \)-unifiability is decidable which is, e.g., the case if \(\mathcal{E} \) only specifies that certain function symbols are associative and commutative.

Lemma 9.3. Let \((R, \mathcal{S}, \mathcal{E})\) be a CERS such that \(\mathcal{E} \) is collapse-free and let \(s \) and \(t \) be terms. If there exists a substitution \(\mu \) such that \(s\mu \overset{>\Lambda_{\mathcal{E}|\mathcal{S}}}{\to} \overset{>\Lambda}{\sim} t\mu \), then \(\text{CAP}_\mathcal{S}(s) \) and \(t \) are \(\mathcal{E} \)-unifiable. Here, \(\text{CAP}_\mathcal{S} \) is defined by

1. \(\text{CAP}_\mathcal{S}(x) = y \) for variables \(x \),
2. \(\text{CAP}_\mathcal{S}(f(t_1, \ldots, t_n)) = f(\text{CAP}_\mathcal{S}(t_1), \ldots, \text{CAP}_\mathcal{S}(t_n)) \) if there does not exist a rule \(l \to r \in \mathcal{S} \) such that \(f(\text{CAP}_\mathcal{S}(t_1), \ldots, \text{CAP}_\mathcal{S}(t_n)) \) and \(l \) are \(\mathcal{E} \)-unifiable, and
3. \(\text{CAP}_\mathcal{S}(f(t_1, \ldots, t_n)) = y \) otherwise.

Here, \(y \) is the next variable in an infinite list \(y_1, y_2, \ldots \) of fresh variables.

Thus, if \(\text{CAP}_\mathcal{S}(s) \) and \(t \) are not \(\mathcal{E} \)-unifiable, then there does not exist a substitution \(\mu \) such that \(s\mu \overset{>\Lambda_{\mathcal{E}|\mathcal{S}}}{\to} \overset{>\Lambda}{\sim} t\mu \). As in Definition 6.9, case 2 can be replaced by a check for \(f \not\in \mathcal{D}(\mathcal{S}, \mathcal{E}) \), where \(\mathcal{D}(\mathcal{S}, \mathcal{E}) \) is the smallest set with \(\mathcal{D}(\mathcal{S}, \mathcal{E}) = \{\text{root}(l) \mid l \to r \in \mathcal{S}\} \cup \{\text{root}(v) \mid u \approx v \in \mathcal{E} \text{ or } v \approx u \in \mathcal{E}, \text{root}(u) \in \mathcal{D}(\mathcal{S}, \mathcal{E})\} \) (these are the “defined symbols” of \(\mathcal{S} \)).

Example 9.4. Let \(\mathcal{E} = \{x \cup y \approx y \cup x, x \cup (y \cup z) \approx (x \cup y) \cup z\} \) and \(\mathcal{S} = \{x \cup \emptyset \to x\} \). Let \(s_1 = f(g(x), y \cup z) \) and \(t_1 = f(h(0), w) \). Then \(\text{CAP}_\mathcal{S}(s_1) = f(g(z_1), z_2) \) since \(\text{CAP}_\mathcal{S}(x \cup y) = z_3 \cup z_4 \) is \(\mathcal{E} \)-unifiable with the left-hand side \(x \cup \emptyset \) of the rule from \(\mathcal{S} \). Since \(f(g(z_1), z_2) \) and \(f(h(0), w) \) are not \(\mathcal{E} \)-unifiable, there does not exist a substitution \(\mu \) such that \(s_1\mu \overset{>\Lambda_{\mathcal{E}|\mathcal{S}}}{\to} \overset{>\Lambda}{\sim} t_1\mu \).

Now let \(s_2 = f(x, g(x \cup y)) \) and \(t_2 = f(h(y), x) \). Then \(\text{CAP}_\mathcal{S}(s_2) = f(z_1, g(z_2)) \)
and the terms \(f(z_1, g(z_2)) \) and \(t_2 \) are \(\mathcal{E} \)-unifiable even though there does not exist a substitution \(\mu \) such that \(s_2 \mu \xrightarrow{\Delta} \mathcal{E} \cdot s \circ \xrightarrow{\Delta} \mathcal{E} \cdot t_2 \mu \). This demonstrates the limitations of the approximation from Lemma 9.3.

\[\triangle \]

The second approximation is helpful even if \(\mathcal{E} \)-unifiability is not decidable since \(\mathcal{E} \)-unifiability for collapse-free equations can be approximated by syntactic unifiability using an approach similar to Lemma 9.3 [64].

9.2 Generation of \(\text{Th}_{\mathbb{Z}} \)-Polynomial Interpretations

The following discussion concentrates on the generation of linear \(\text{Th}_{\mathbb{Z}} \)-polynomial interpretations. This is also the only case that is currently supported by the implementation in AProVE. The ideas presented in this section extend to the non-linear case as well, however. The generation of polynomial interpretations in the presence of conditions as considered in the related work [75] faces problems that are very similar to the ones encountered in the generation of \(\text{Th}_{\mathbb{Z}} \)-polynomial interpretations. Indeed, the method developed in [75] is partially based on the method presented in this section. In particular, the inference rule (A) from [75] has been derived from the inference rule \textbf{Express} stated below.

As for regular polynomial interpretations [48], the automated search starts with a parametric linear \(\text{Th}_{\mathbb{Z}} \)-polynomial interpretation, i.e., a linear \(\text{Th}_{\mathbb{Z}} \)-polynomial interpretation where the coefficients in the polynomials are parameters that have to be determined. Thus, \(\text{Pol}(f) = f_1 x_1 + \ldots + f_n x_n + c_f \) for each function symbol \(f \) of arity \(n \), where the \(f_i \) and \(c_f \) are parameters.

Recall that the goal of finding a \(\text{Th}_{\mathbb{Z}} \)-polynomial interpretation is to instantiate the parameters in such a way that \(s[[\varphi]] \bowtie t[[\varphi]] \) for certain terms \(s, t \) and \(\text{Th}_{\mathbb{Z}} \)-constraints \(\varphi \), where \(\bowtie \in \{\bowtie_{\text{Pol}}, \preceq_{\text{Pol}}, \bowtie_{\text{Pol}}\} \).
Chapter 9. Implementation

In order to simplify presentation, it is assumed in this section that the constraints of all constrained rewrite rules are conjunctions of atomic Th_Z-constraints. This can always be achieved by a conversion into disjunctive normal form (DNF) and the introduction of one constraint rewrite rule for each dual clause in this DNF.\footnote{Recall that a formula in DNF is a disjunction of conjunctions. The conjunctions are called dual clauses. Thus, in $(x \wedge y) \lor z$, the dual clauses are $x \wedge y$ and z.} This clearly results in an equivalent set of rewrite rules.

For the sake of concreteness, it is assumed that the Th_Z-polynomial interpretation Pol is restricted such that for each $f \in F$, the polynomial $Pol(f)$ may only depend on a variable x_i if the i^{th} argument of f has sort univ (see the discussion on this in Section 7.3 and recall that this assumption implies that it suffices to instantiate the variables of sort univ only by non-negative numbers when comparing polynomials).\footnote{The case where this assumption is not imposed is slightly simpler. The implementation in AProVE supports both possibilities, and there are CERSs that can be shown terminating with one of the possibilities but not with the other.} This is achieved by fixing the coefficient f_i of x_i to be 0 whenever the i^{th} argument of f has sort base. Furthermore, it is assumed that the value c_{Pol} is fixed to be 0. Alternatively, c_{Pol} can be treated as an additional parameter that needs to be determined.

As shown in Section 7.3, it suffices to instantiate the parameters such that

1. whenever $s[\varphi] \succ_{Pol} t[\varphi]$ needs to be satisfied, then the following formulas are true in the integers:
 \[
 \forall x_1, \ldots, x_k. \forall y_1 \geq 0, \ldots, y_l \geq 0. \varphi \Rightarrow [s]_{Pol} \geq 0
 \]
 \[
 \forall x_1, \ldots, x_k. \forall y_1 \geq 0, \ldots, y_l \geq 0. \varphi \Rightarrow [s]_{Pol} - [t]_{Pol} > 0
 \]

2. whenever $s[\varphi] \succeq_{Pol} t[\varphi]$ needs to be satisfied, then
 \[
 \forall x_1, \ldots, x_k. \forall y_1 \geq 0, \ldots, y_l \geq 0. \varphi \Rightarrow [s]_{Pol} - [t]_{Pol} \geq 0
 \]

is true in the integers, and
Chapter 9. Implementation

3. whenever \(s[\varphi] \sim_{Pol} t[\varphi] \) needs to be satisfied, then
\[
\forall x_1, \ldots, x_k, \forall y_1 \geq 0, \ldots, y_l \geq 0. \varphi \Rightarrow [s]_{Pol} - [t]_{Pol} = 0
\]
is true in the integers.

Here, \(x_1, \ldots, x_k \) are the variables of sort \texttt{base} in \(s \) and \(t \) and \(y_1, \ldots, y_l \) are the variables of sort \texttt{univ} in \(s \) and \(t \).

\([s]_{Pol} \) and \([s]_{Pol} - [t]_{Pol} \) are linear polynomials whose coefficients are polynomials over the parameters. Polynomials of this shape are called \textit{linear parametric polynomials}. Notice that the polynomials over the parameters that are the coefficients of linear parametric polynomials may be non-linear due to nested function symbols in \(s \) and \(t \).

Example 9.5. Consider a parametric linear \(Th_Z \)-polynomial interpretation with \(\text{Pol}(f) = f_1 x_1 + f_2 x_2 + c_f \) and \(\text{Pol}(g) = g_1 x_1 + c_g \). Then \([f(g(x), g(y))]_{Pol} = f_1 (g_1 x + c_g) + f_2 (g_1 y + c_g) + c_f = f_1 g_1 x + f_2 g_1 y + f_1 c_g + f_2 c_g + c_f. \) \(\triangle \)

In the following, case 2 from above is discussed in detail. The cases 1 and 3 can be handled similarly. Thus, the problem that needs to be solved is as follows: Given a \(Th_Z \)-constraint \(\varphi \) and a linear parametric polynomial \(p \), determine values for the parameters such that
\[
\forall x_1, \ldots, x_k, \forall y_1 \geq 0, \ldots, y_l \geq 0. \varphi \Rightarrow p \geq 0
\]
is true in the integers after the parameters have been instantiated. For this, sufficient conditions on the parameters are derived and it is checked whether these conditions are satisfiable. Furthermore, any satisfying assignment to the conditions on the parameters gives rise to a suitable polynomial interpretation.

The conditions on the parameters are obtained as follows:

1. \(\varphi \) is transformed into a conjunction of atomic \(Th_Z \)-constraints of the form
\[
\sum_{i=1}^n a_i x_i + c \geq 0 \text{ where } a_1, \ldots, a_n, c \in \mathbb{Z}.
\]
Chapter 9. Implementation

2. The $Th_{\mathbb{Z}}$-constraints from step 1 are used to derive upper and/or lower bounds on the variables in p.

3. The bounds from step 2 are used to derive conditions on the parameters.

Step 1: Transformation of φ. This is straightforward: $s \simeq t$ is transformed into $s - t \geq 0 \land t - s \geq 0$, $s \geq t$ is transformed into $s - t \geq 0$, and $s > t$ is transformed into $s - t - 1 \geq 0$.

Step 2: Deriving upper and/or lower bounds. The $Th_{\mathbb{Z}}$-constraints obtained after step 1 may already contain upper and/or lower bounds on the variables, where a lower bound has the form $x + c \geq 0$ and an upper bound has the form $-x + c \geq 0$ for some $c \in \mathbb{Z}$. Otherwise, it might be possible to obtain such bounds as follows.

An atomic constraint of the form $ax + c \geq 0$ with $a \neq 0, 1, -1$ that contains only one variable gives a bound on that variable that can be obtained by dividing by $|a|$ and taking the integer floor of the divided constant4. For example, the $Th_{\mathbb{Z}}$-constraint $2x + 3 \geq 0$ is transformed into $x + 1 \geq 0$, and $-3x - 2 \geq 0$ is transformed into $-x - 1 \geq 0$.

An atomic $Th_{\mathbb{Z}}$-constraint with more than one variable can be used to express a variable x occurring with coefficient 1 in terms of the other variables and a fresh slack variable w with $w \geq 0$. This makes it possible to eliminate x from the polynomial p and at the same time gives the lower bound 0 on the slack variable w. For example, $x - 2y \geq 0$ can be used to eliminate the variable x by replacing it with $2y + w$. Similar reasoning applies if the variable x occurs with coefficient -1.

These ideas are formalized in the transformation rules (to be read from top to bottom) from Figure 9.1 that operate on triples $(\varphi_1, \varphi_2, q)$, where φ_1 and φ_2 are sets

4For any real number x, the integer floor is defined by $\lfloor x \rfloor := \max\{n \in \mathbb{Z} \mid n \leq x\}$.

136
Chapter 9. Implementation

| Strengthen | $\langle \varphi_1, \varphi_2 \cup \{ a_i x_i + c \geq 0 \}, q \rangle$ | $\langle \varphi_1 \cup \{ a_i |x_i| + \left\lfloor \frac{c}{|a_i|} \right\rfloor \geq 0 \}, \varphi_2, q \rangle$ if $a_i \neq 0$ |
|------------|---|---|
| Express | $\langle \varphi_1, \varphi_2 \cup \{ \sum_{i=1}^{n} a_i x_i + c \geq 0 \}, q \rangle$ | $\langle \varphi_1 \cup \{ w \geq 0 \}, \varphi_2 \sigma, q \sigma \rangle$ if $|a_j| = 1$, there exists a $j' \neq j$ with $a_{j'} \neq 0$, and σ replaces x_j by $-\sum_{i \neq j} a_j a_i x_i - a_{j} c + a_{j} w$ |

Figure 9.1: Transformation rules for the generation of polynomial interpretations.

of atomic $Th_{\mathbb{Z}}$-constraints and q is a linear parametric polynomial. Here, φ_1 only contains $Th_{\mathbb{Z}}$-constraints of the form $\pm x_i + c \geq 0$ giving upper and/or lower bounds on the variable x_i and φ_2 contains arbitrary atomic $Th_{\mathbb{Z}}$-constraints. The initial triple is $\langle \emptyset, \varphi, p \rangle$.

Step 3: Deriving conditions on the parameters. After finishing step 2, a final triple $\langle \varphi_1, \varphi_2, q \rangle$ is obtained. If φ_1 contains more than one bound on a variable x_i, then it suffices to consider the maximal lower bound and the minimal upper bound. The bounds in φ_1 are used in combination with reasoning similar to the absolute positiveness test\(^5\) in order to obtain conditions on the parameters that make $q = \sum_{i=1}^{k} p_i x_i + \sum_{i=1}^{l} p_i' y_i + p_0$ non-negative for all instantiations of the x_i satisfying φ_1 and all $y_j \geq 0$.

If φ_1 contains a lower bound of the form $x_j + c \geq 0$ for the variable x_j, then notice that $q = \sum_{i=1}^{k} p_i x_i + \sum_{i=1}^{l} p_i' y_i + p_0$ can also be written as $q = \sum_{i \neq j} p_i x_i + p_j (x_j + c) + \sum_{i=1}^{l} p_i' y_i + p_0 - p_j c$. Since $x_j + c \geq 0$ is assumed, the absolute positiveness test requires $p_j \geq 0$ as a condition on p_j.\(^6\) Similarly, if $-x_j + c \geq 0$ occurs in φ_1, then q is non-negative if $p_1, \ldots, p_n, c \geq 0$.

\(^5\)For $p = p_1 x_1 + \ldots + p_n x_n + c$ such that x_1, \ldots, x_n may only be instantiated by natural numbers, the absolute positiveness test concludes that p is non-negative if $p_1, \ldots, p_n, c \geq 0$.

\(^6\)Alternatively, reasoning similar to the rule Express can be used, i.e., if φ_1 contains $x_j + c \geq 0$, then x_j could be replaced by $-c + w$, where $w \geq 0$. Both methods produce the same conditions on the parameters.
Chapter 9. Implementation

can be written as $q = \sum_{i \neq j} p_i x_i - p_j (-x_j + c) + \sum_{i=1}^l p'_i y_i + p_0 + p_j c$ and $-p_j \geq 0$ is obtained as a condition on p_j. If φ_1 does not contain any upper or lower bound on a variable x_j, then $p_j = 0$ is obtained by the absolute positiveness test. For any of the variables y_i it is required that $p'_i \geq 0$ is true since y_i is know to be instantiated by a non-negative integer.

After all variables of q have been processed in this fashion, it additionally needs to be required that the constant term of the final polynomial is non-negative as well. Notice that this constant term is not just p_0 in general since the above transformation modifies the constant term.

Example 9.6. If $\varphi_1 = \{x + 1 \geq 0, -y - 1 \geq 0\}$ and $q = (a + b)x + by + c$ where x and y range over the integers, then q can also be written as $q = (a + b)(x + 1) - b(-y - 1) + c - (a + b) - b$ and the absolute positiveness test requires $a + b \geq 0$, $-b \geq 0$, and $c - a - 2b \geq 0$ as conditions on the parameters. △

Summarizing this method, the algorithm from Figure 9.2 is used in order to obtain conditions D on the parameters. Here, $\text{sign}(\psi) = 1$ if ψ is of the form $x_i + c \geq 0$ and $\text{sign}(\psi) = -1$ if ψ is of the form $-x_i + c \geq 0$.

Once conditions on the parameters have been established, existing methods for solving non-linear Diophantine constraints [48, 73] can be used. Since it is in general undecidable whether non-linear Diophantine constrains have a solution, these methods require a finite range $[0..m]$ for some $m \geq 0$ and determine whether the non-linear Diophantine constraints have a solution within this range. Recall, however, that some parameters may be instantiated by negative numbers. Replacing these parameters f_i in the non-linear Diophantine constraints by $f_i - \lfloor \frac{m}{2} \rfloor$ effectively shifts the search space for f_i to the finite range $[-\lfloor \frac{m}{2} \rfloor, m - \lfloor \frac{m}{2} \rfloor]$.

Example 9.7. This example illustrates the method discussed above on a simple example. Assume that $\varphi = x - y - z \geq 0$ and that the parameters a, b, c, d are to be
Chapter 9. Implementation

\[
D := \text{true}
\]
\[
r := p_0
\]
\[
\text{for } 1 \leq i \leq k \text{ do}
\]
\[
\quad \text{take constraint } \psi \text{ of the form } \pm x_i + c \geq 0 \text{ from } \varphi_1
\]
\[
\quad \text{if none such } \psi \text{ exists then}
\]
\[
\quad \quad D := D \land p_i \simeq 0
\]
\[
\quad \text{else}
\]
\[
\quad \quad D := D \land \text{sign}(\psi) \cdot p_i \geq 0
\]
\[
\quad \quad r := r - \text{sign}(\psi) \cdot c \cdot p_i
\]
\[
\quad \text{end if}
\]
\[
\text{end for}
\]
\[
D := D \land r \geq 0
\]
\[
\text{for } 1 \leq i \leq l \text{ do}
\]
\[
\quad D := D \land p_i' \geq 0
\]
\[
\text{end for}
\]

Figure 9.2: Obtaining conditions on the parameters.

instantiated such that

\[
\forall x, y, z. \varphi \Rightarrow ax + by + cz + d \geq 0
\]
\[
\forall x, y, z. \varphi \Rightarrow -b - c > 0
\]

are true in the integers (these formulas are obtained from attempting to satisfy
\[
f(x, y, z)[[x \geq y + z]] \succ_{pol} f(x, y + 1, z + 1)[[x \geq y + z]].
\]

Starting with the initial triple \(\langle \emptyset, \varphi, ax + by + cz + d \rangle\) for the first formula, a transformation sequence that exhaustively applies the transformation rules from Figure 9.1 is as follows:

\[
\text{Express } \emptyset, \{x - y - z \geq 0\}, ax + by + cz + d \overset{\text{Express}}{\longrightarrow} \emptyset, \{w \geq 0\}, \emptyset, (a + b)y + (a + c)z + aw + d
\]

Here, the Express-step uses \(\sigma = \{x \mapsto y + z + w\}\). The absolute positiveness test now returns \(a + b \simeq 0 \land a + c \simeq 0 \land a \geq 0 \land d \geq 0\) as conditions on the parameters.
Chapter 9. Implementation

For the second formula, $-b - c > 0$ is immediately obtained as a condition on the parameters. The final conditions on the parameters are thus

$$a + b \simeq 0 \land a + c \simeq 0 \land a \geq 0 \land d \geq 0 \land -b - c > 0$$

These conditions are satisfiable and $a = 1, b = -1, c = -1, d = 0$ is a possible solution (the polynomial interpretation obtained from these parameters is $Pol(f) = x_1 - x_2 - x_3$ and indeed satisfies $f(x, y, z)[x \geq y + z] \succ Pol f(x, y + 1, z + 1)[x \geq y + z]$).

Automatically finding strictly decreasing dependency pairs or rules. For the DP processors based on reduction pairs, it also needs to be ensured that the set P' of dependency pairs that are decreasing w.r.t. $\succ Pol$ is non-empty. Furthermore, this set should be efficiently determined automatically. Let $s_i \rightarrow t_i[[\varphi_i]]$ be the dependency pairs of a DP problem for $1 \leq i \leq n$. Then a non-empty set P' (if it exists) can easily be found automatically by requiring the condition

$$\bigwedge_{i=1}^n D_1^i \land \bigvee_{i=1}^n D_2^i$$

on the parameters. Here, D_1^i are the conditions on the parameters obtained for making $s_i[[\varphi_i]] \succeq Pol t_i[[\varphi_i]]$ true, and D_2^i are the conditions on the parameters obtained for making $s_i[[\varphi_i]] \succ Pol t_i[[\varphi_i]]$ true. Thus, the above requirement on the parameters can be read as “all dependency pairs are weakly decreasing and at least one dependency pair is strictly decreasing”. This immediately extends to the DP processors based on the removal of rules where it is also sufficient if the set R' of rewrite rules that are decreasing w.r.t. $\succ Pol$ is non-empty.

9.3 Summary

In order to demonstrate that the techniques presented in this dissertation are not only of theoretical interest but can be applied automatically in an efficient way, the
methods have been implemented in the automated termination checker AProVE [84] for \(Th_Z \) and the general case. Most of the techniques presented in Chapters 6–8 can be implemented straightforwardly, but an implementation of the estimated dependency graph \(EDG \) is non-trivial since it depends on an extension of \(E \)-unification. To this extent, it was shown how this problem can be approximated effectively.

While the automatic generation of ordinary polynomial interpretations is well understood [48, 73], the automatic generation of \(Th_Z \)-polynomial interpretations needs a non-trivial extension of these methods. The extension presented in this chapter has been fully implemented in AProVE and has proved to be very efficient and successful, cf. Chapter 15.
Chapter 10

Conditional Rewriting

The constraints used in CERSs make it possible to restrict the rewrite relation by requiring that the matching substitution makes the constraint of the rule that is to be applied Th-valid. While this makes it possible to naturally model algorithms in many cases, it is restricted to properties expressible in the (decidable) theory Th. More general conditions that may also use user-defined functions are possible in the framework of conditional rewriting. Here, a rewrite step is only allowed if the conditions of the rule that is to be applied can be established by recursively rewriting them.

Example 10.1. This example shows a quicksort algorithm that takes a set and returns a list. It is a modification of an example from [26] that is widely used in the literature on conditional rewriting. S and E are used to model integers and sets as in Chapter 3:

\[
S: \begin{array}{ccl}
x + 0 & \rightarrow & x \\
- - x & \rightarrow & x \\
-0 & \rightarrow & 0
\end{array}
\]
Chapter 10. Conditional Rewriting

\[-(x + y) \rightarrow (-x) + (-y) \]
\[x + (-x) \rightarrow 0 \]
\[(x + (-x)) + y \rightarrow 0 + y \]
\[x \cup \emptyset \rightarrow x \]
\[x \cup x \rightarrow x \]
\[(x \cup x) \cup y \rightarrow x \cup y \]
\[\text{ins}(x, \text{ins}(x, ys)) \rightarrow \text{ins}(x, ys) \]

\[x + y \approx y + x \]
\[x + (y + z) \approx (x + y) + z \]
\[x \cup y \approx y \cup x \]
\[x \cup (y \cup z) \approx (x \cup y) \cup z \]
\[\text{ins}(x, \text{ins}(y, zs)) \approx \text{ins}(y, \text{ins}(x, zs)) \]

Quicksort is specified by the following conditional constrained rewrite rules:

\[\text{app}(\text{nil}, zs) \rightarrow zs \]
\[\text{app}(\text{cons}(x, ys), zs) \rightarrow \text{cons}(x, \text{app}(ys, zs)) \]
\[\text{split}(x, \emptyset) \rightarrow \langle \emptyset, \emptyset \rangle \]
\[\text{split}(x, zs) \rightarrow^* \langle yl, yh \rangle \mid \text{split}(x, \text{ins}(y, zs)) \rightarrow \langle \text{ins}(y, yl), yh \rangle \ [x > y] \]
\[\text{split}(x, zs) \rightarrow^* \langle yl, yh \rangle \mid \text{split}(x, \text{ins}(y, zs)) \rightarrow \langle yl, \text{ins}(y, yh) \rangle \ [x \not> y] \]
\[\text{qsort}(\emptyset) \rightarrow \text{nil} \]
\[\text{split}(x, ys) \rightarrow^* \langle yl, yh \rangle \mid \text{qsort}(\text{ins}(x, ys)) \rightarrow \text{app}(\text{qsort}(yl), \text{cons}(x, \text{qsort}(yh))) \]

Here, \(\text{split}(x, ys) \) returns a pair of sets \(\langle yl, yh \rangle \) where \(yl \) contains all \(y \in ys \) such that \(x > y \) and \(yh \) contains all \(y \in ys \) such that \(x \not> y \). Intuitively, the condition \(\text{split}(x, ys) \rightarrow^* \langle yl, yh \rangle \) of the second \text{qsort}-rule means that \text{split}(x, ys) first needs to be rewritten recursively until it matches \(\langle yl, yh \rangle \) (thus giving a binding to these variables) before \(\text{qsort}(\text{ins}(x, ys)) \) may be reduced using that rule. \(\triangle \)

This chapter introduces conditional CERSs, which generalize the CERSs intro-
Chapter 10. Conditional Rewriting

duced in Chapter 3. Then, termination of conditional CERSs is discussed. For this, well-foundedness of the rewrite relation is not sufficient since it also needs to be ensured that evaluation of the conditions is terminating. These properties are ensured by the notion of operational termination \cite{127,59}. The main result of this chapter shows that operational termination of a conditional CERS can be reduced to (regular) termination of an unconditional CERS by a simple syntactic transformation. This way, the methods developed in this dissertation for showing termination of unconditional CERSs can also be applied for showing operational termination of conditional CERSs. The syntactic transformation is based on a similar transformation used for ordinary conditional rewriting \cite{136,79}.

10.1 Conditional CERSs

Modeling built-in theories and collection data structures is done as in Chapter 3 using a set S of rewrite rules and a set E of equations. In contrast to Chapter 3, defined functions are now specified using conditional constrained rewrite rules. As formalized below, both the conditions and the Th-constraints guard when a rewrite step may be performed. As discussed above, the constraints are still evaluated by a decision procedure for Th-validity and thus use the built-in theory Th. The conditions, on the other hand, are evaluated by recursively rewriting them, thus taking their semantics not from the theory Th, but from the CERS itself. This distinction between constraints and conditions is also made at the syntactic level.

Definition 10.2 (Conditional Constrained Rewrite Rules). Conditional constrained rewrite rules have the form

$$s_1 \rightarrow^* t_1, \ldots, s_n \rightarrow^* t_n \mid l \rightarrow r[\varphi]$$

where
Chapter 10. Conditional Rewriting

1. \(l, r \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{Th}, \mathcal{V}) \) such that \(\text{root}(l) \in \mathcal{F} - \mathcal{F}(\mathcal{E} \cup \mathcal{S}) \),

2. \(s_i, t_i \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{Th}, \mathcal{V}) \),

3. \(\varphi \) is a \(Th \)-constraint with \(\mathcal{V}(\varphi) \subseteq \mathcal{V}(l) \),

4. \(\mathcal{V}(r) \subseteq \mathcal{V}(l) \cup \bigcup_{j=1}^{n} \mathcal{V}(t_j) \), and

5. \(\mathcal{V}(s_i) \subseteq \mathcal{V}(l) \cup \bigcup_{j=1}^{i-1} \mathcal{V}(t_j) \) for all \(1 \leq i \leq n \).

As before, the constraint \(\top \) will be omitted when stating a rule. Notice that the rules from Example 10.1 satisfy these requirements.

As discussed above, the semantical difference between conditions and constraints in a rule is operational. Conditions need to be evaluated by recursively rewriting them, while the evaluation of constraints is done using a decision procedure for \(Th \)-validity and does not involve any rewriting. This distinction is formalized in Definition 10.4 below.

Conditional constrained equational rewrite systems generalize CERSs by using conditional constrained rewrite rules.

Definition 10.3 (Conditional Constrained Equational Rewrite Systems (CCERS)). A conditional constrained equational rewrite system (CCERS) has the form \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) for a finite set \(\mathcal{R} \) of conditional constrained rewrite rules and, a finite set \(\mathcal{E} \) of equations, and a finite set \(\mathcal{S} \) of rewrite rules such that

1. \(\mathcal{S} \) is right-linear, i.e., each variable occurs at most once in \(r \) for all \(l \rightarrow r \in \mathcal{S} \),

2. \(\rightarrow_{\mathcal{E} \setminus \mathcal{S}} \) is \(\mathcal{E} \)-convergent, and

3. \(\rightarrow_{\mathcal{E} \setminus \mathcal{S}} \) is strongly \(\mathcal{E} \)-coherent.

If \(\mathcal{R} \) is unconditional (i.e., \(n = 0 \) for all conditional constrained rewrite rules \(s_1 \rightarrow^* t_1, \ldots, s_n \rightarrow^* t_n \mid l \rightarrow r[\varphi] \) from \(\mathcal{R} \)), the CERSs from Chapter 3 are obtained.

\(^1\)Using the notation of [137], the last two conditions yield deterministic type 3 rules.
Chapter 10. Conditional Rewriting

The rewrite relation induced by a CCERS generalizes Definition 3.15. In addition to the requirements of Definition 3.15, it is now furthermore required that the conditions of the rewrite rule can be established before a reduction may be performed.

Definition 10.4 (Conditional Rewrite Relation). Let \((R, S, E)\) be a CCERS. Then \(S \rightarrow_{Th} E \setminus R\) is the least relation satisfying \(s \rightarrow_{Th} t \ | \ l \rightarrow r[\varphi] \in R, \) a position \(p \in Pos(s),\) and a \(Th\)-based substitution \(\sigma\) such that

1. \(s|_p \xrightarrow{\Lambda} E \setminus S \circ \sim_E l \sigma,\)
2. \(\varphi \sigma\) is \(Th\)-valid,
3. \(s_i \sigma \rightarrow_{Th} E \setminus R \circ \sim_E t_i \sigma\) for all \(1 \leq i \leq n,\) and
4. \(t = s[r \sigma]_p.\)

Example 10.5. Continuing Example 10.1, this example illustrates \(S \rightarrow_{Th} E \setminus R\) for CCERSs. Consider \(t = \text{qsort}(\text{ins}(1, \text{ins}(3, \text{ins}(1, \emptyset))))\) and the \(Th\)-based substitution \(\sigma = \{x \mapsto 3, ys \mapsto \text{ins}(1, \emptyset), yl \mapsto \text{ins}(1, \emptyset), yh \mapsto \emptyset\}\). Then it is easy to see that \(t \xrightarrow{\Lambda} E \setminus S \circ \sim_E \text{qsort}(x, ys)\sigma\) and thus \(t \rightarrow_{Th} E \setminus R \circ \sim_E (\text{ins}(1, \emptyset), \emptyset)\) using the third rule for \(\text{qsort},\) provided that \(\text{split}(3, \text{ins}(1, \emptyset)) \rightarrow_{Th} E \setminus R \circ \sim_E (\text{ins}(1, \emptyset), \emptyset)\) can be established. In order to verify this, the second \(\text{split}\)-rule is used. For this, it needs to be checked that the instantiated constraint \(3 \succ 1\) is \(Th\)-valid and that \(\text{split}(3, \emptyset) \rightarrow_{Th} E \setminus R \circ \sim_E (\emptyset, \emptyset)\) can be established. This can be done using the first \(\text{split}\)-rule. △

Notice that the substitution \(\sigma\) has to instantiate all variables occurring in the conditional rewrite rule and not only the variables occurring in \(l.\) From an operational point of view, the substitution \(\sigma\) is constructed as follows. The variables occurring in \(l\) are instantiated as in the unconditional case by \(E\)-matching, giving rise to a substitution \(\sigma_0.\) Since \(\mathcal{V}(s_1) \subseteq \mathcal{V}(l),\) the term \(s_1 \sigma_0\) is fully instantiated and may be reduced until a term \(s'_1\) is reached such that the variables in \(\mathcal{V}(t_1) - \mathcal{V}(l)\) may...
Chapter 10. Conditional Rewriting

be instantiated using a substitution \(\sigma_1 \) such that \(s'_1 \sim E t_1 \sigma_0 \sigma_1 \). The substitution \(\sigma_1 \) can again be found using \(E \)-matching and determines the instantiations of the fresh variables in in \(\mathcal{V}(t_1) - \mathcal{V}(l) \). Similar reasoning is then applied to the remaining conditions, resulting in the final substitution \(\sigma := \sigma_0 \sigma_1 \cdots \sigma_n \).

An alternative characterization of the rewrite relation of a CCERS can be obtained by an inductive construction, similar to how this is done for ordinary conditional rewriting [137]. For this, a series of unconditional CERSs is defined inductively, and the rewrite relation of the CCERS is then the union of the rewrite relations of these unconditional CERSs:

\[
\begin{align*}
\mathcal{R}_0 &= \emptyset \\
\mathcal{R}_{i+1} &= \{ l \sigma \rightarrow r \sigma[\varphi] \mid s_1 \rightarrow^* t_1, \ldots, s_n \rightarrow^* t_n \mid l \rightarrow r[\varphi] \in \mathcal{R} \text{ and } s_j \sigma \xrightarrow{S_{Th}[E \setminus R_i]} t_j \sigma \text{ for all } 1 \leq j \leq n \}
\end{align*}
\]

Then \(S_{Th}[E \setminus R] = \bigcup_{i=0}^{\infty} S_{Th}[E \setminus R_i] \).

The important property of Lemma 3.26.1 is still true for CCERSs.

Lemma 10.6. Let \((\mathcal{R}, S, E)\) be a CCERS. Then \(\sim_E \circ S_{Th}[E \setminus R] \subseteq S_{Th}[E \setminus R] \circ \sim_E \).

Furthermore, the \(S_{Th}[E \setminus R] \)-steps can be performed using the same conditional constrained rewrite rule and \(Th \)-based substitution.

10.2 Termination and Operational Termination

It is well-known that it is not sufficient for a well-behaved notion of termination of conditional rewriting that the rewrite relation is well-founded. In order to get a decidable rewrite relation (under the assumption that \(E \) is size-preserving, see Lemma 3.20), it additionally has to be ensured that evaluation of the conditions is terminating.
Chapter 10. Conditional Rewriting

Example 10.7. Consider the following ordinary conditional TRS:

\[
f(a) \rightarrow^* b \mid a \rightarrow b
\]

Then the rewrite relation of this conditional TRS is terminating. In fact, the relation \(\rightarrow_R \) is empty since there is no unconditional rewrite rule. But an implementation of rewriting will typically not terminate when trying to reduce the term \(a \) since, in order to reduce the term \(a \), it will try to reduce the term \(f(a) \), which again requires to reduce the subterm \(a \).

As argued in [127, 59], the notion of operational termination is a natural choice for the combination of these properties that better captures the behavior of actual implementations of rewriting than other commonly used notions like effective termination [131]. Furthermore, operational termination turns out to be equivalent to quasi-decreasingness [136] (also called left-right decreasingness [79]) for ordinary conditional TRSs, see [127]. Since it is unclear whether quasi-decreasingness can be easily extended to rewriting with equations\(^2\), this chapter considers the notion of operational termination as a natural definition.

For operational termination, the recursive nature of conditional rewriting is reflected by an inference system which aims at proving \(s \xrightarrow{S} T_h \parallel E \setminus R \) or \(s \xrightarrow{S^*} T_h \parallel E \setminus R \). Then operational termination is characterized by the absence of infinite proof trees for this inference system. Notice that the set of inference rules differs from [127] by combining their inference rules Cong and Repl into one inference rule.

Definition 10.8 (Proof Trees). Let \((\mathcal{R}, S, \mathcal{E})\) be a CCERS. The set of (finite) proof trees for \((\mathcal{R}, S, \mathcal{E})\) and the head of a proof tree are inductively defined as follows:

\(^2\)The definition of quasi-decreasingness assumes that the subterm relation is well-founded. But for rewriting with equations, the subterm relation modulo \(E \) is in general not well-founded.
Chapter 10. Conditional Rewriting

1. An open goal G, where G is either $s \rightarrow t$ or $s \rightarrow^* t$ for some terms s, t, is a proof tree. In this case head(G) = G is the head of the proof tree.

2. A derivation tree

$$ T = \frac{T_1 \cdots T_n}{G} \Delta $$

is a proof tree, where G is as in the first case, Δ is one of the derivation rules in Figure 10.1, and T_1, \ldots, T_n are proof trees such that

$$ head(T_1) \cdots head(T_n) \begin{array}{c} \vdash \end{array} G $$

is an instance of Δ. In this case, head(T) = G.

A proof tree is closed iff it does not contain any open goals.

Example 10.9. Consider the CCERS for quicksort from Examples 10.1 and 10.5 again. Then $qsort(ins(ins(1, ins(3, ins(1, \emptyset)))))) \rightarrow app(qsort(ins(1, \emptyset)), cons(3, qsort(\emptyset)))$ is an open goal and

```
| split(3, \emptyset) \rightarrow \langle \emptyset, \emptyset \rangle | \text{Repl} | \text{Refl} |
| split(\emptyset) \rightarrow^* \langle \emptyset, \emptyset \rangle | \text{Tran} |
| \hline
| split(3, ins(1, \emptyset)) \rightarrow \langle ins(1, \emptyset), \emptyset \rangle |
| \hline
| split(3, ins(1, \emptyset)) \rightarrow^* \langle ins(1, \emptyset), \emptyset \rangle |
| \hline
| qsort(ins(1, ins(3, ins(1, \emptyset)))) \rightarrow app(qsort(ins(1, \emptyset)), cons(3, qsort(\emptyset))) |
```

is a closed proof tree with this goal as its head.

Now an infinite proof tree is defined to be a sequence of proof trees such that each member of this sequence can be obtained from its immediate predecessor by expanding one or more open goals.
Chapter 10. Conditional Rewriting

Figure 10.1: Derivation rules for the generation of proof trees.

Definition 10.10 (Prefixes of Proof Trees, Infinite Proof Trees). A proof tree T is a prefix of a proof tree T', written $T \subset T'$, if there exist one or more open goals G_1, \ldots, G_n in T such that T' is obtained from T by replacing each G_i by a derivation tree T_i with $\text{head}(T_i) = G_i$. An infinite proof tree is an infinite sequence $\{T_i\}_{i \geq 0}$ of finite proof trees such that $T_i \subset T_{i+1}$ for all $i \geq 0$.

Proof trees do not impose any restriction on the order in which leaves are expanded. While Definition 10.4 does not impose an order in which the conditions are to be evaluated, the discussion following Definition 10.4 shows that an implementation of conditional rewriting needs to evaluate the conditions from left to right. This
behavior can be reflected in proof trees as well.

Definition 10.11 (Well-Formed Proof Trees). A proof tree T is well-formed if it is either an open goal, a closed proof tree, or a derivation tree of the form

$$
\begin{array}{c}
T_1 \quad \cdots \quad T_n \\
\hline
\Delta \\
G
\end{array}
$$

where T_j is a well-formed proof tree for all $1 \leq j \leq n$ and there is an $i \leq n$ such that T_i is not closed, T_j is closed for all $j < i$, and T_k is an open goal for all $k > i$. An infinite proof tree is well-formed iff it consists of well-formed proof trees.

As mentioned above, **operational termination** is characterized by the absence of infinite well-formed proof trees.

Definition 10.12 (Operational Termination). A CCERS $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ is operationally terminating iff it does not admit infinite well-formed proof trees.

It is easy to show that the notions of termination and operational termination coincide for CERSs.

Lemma 10.13. Let $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ be a CERS. Then $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ is operationally terminating iff $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ is terminating.

10.3 Elimination of Conditions

In order to show operational termination of a CCERS $(\mathcal{R}, \mathcal{S}, \mathcal{E})$, it is transformed into a CERS $(\mathcal{U}(\mathcal{R}), \mathcal{S}, \mathcal{E})$ such that operational termination of $(\mathcal{U}(\mathcal{R}), \mathcal{S}, \mathcal{E})$ implies operational termination of $(\mathcal{R}, \mathcal{S}, \mathcal{E})$. By Lemma 10.13, $(\mathcal{U}(\mathcal{R}), \mathcal{S}, \mathcal{E})$ is operationally terminating if it is terminating, and thus a termination proof of $(\mathcal{U}(\mathcal{R}), \mathcal{S}, \mathcal{E})$ constitutes a proof of operational termination of $(\mathcal{R}, \mathcal{S}, \mathcal{E})$. The transformation generalizes
the well-known one for ordinary conditional rewriting \cite{136,79} to rewriting with equations, normalization, and constraints. An extension of the classical transformation to context-sensitive rewriting with equations was proposed in \cite{59}. The presentation in this section is influenced by \cite{59}.

Definition 10.14 (Transformation \(\mathcal{U} \)). Let \(\rho : s_1 \rightarrow^* t_2, \ldots, s_n \rightarrow^* t_n \mid l \rightarrow r[\varphi] \) be a conditional constrained rewrite rule. Then \(\mathcal{U}(\rho) \) is defined by:

1. if \(n = 0 \) then \(\mathcal{U}(\rho) = \{ \rho \} \)
2. if \(n > 0 \) then \(\mathcal{U}(\rho) = \{ l \rightarrow U_i^\rho(s_i, x_i^\rho)[\varphi] \} \cup \{ U_{i-1}^\rho(t_{i-1}, x_{i-1}^\rho) \rightarrow U_i^\rho(s_i, x_i^\rho)[\varphi] \mid 2 \leq i \leq n \} \cup \{ U_n^\rho(t_n, x_n^\rho) \rightarrow r[\varphi] \} \)

Here, the \(U_i^\rho \) are fresh function symbols and, for \(1 \leq i \leq n \), the expression \(x_i^\rho \) denotes the sorted list of variables in the set \(\mathcal{V}(l) \cup \mathcal{V}(t_1) \cup \ldots \cup \mathcal{V}(t_{i-1}) \) according to some fixed order on the set \(\mathcal{V} \) of all variables. For a finite set \(\mathcal{R} \) of conditional constrained rewrite rules, let \(\mathcal{U}(\mathcal{R}) = \bigcup_{\rho \in \mathcal{R}} \mathcal{U}(\rho) \).

Example 10.15. Continuing the running example, the transformation produces the following unconditional constrained rewrite rules:

\[
\begin{align*}
\text{app}(\text{nil}, zs) & \rightarrow zs \\
\text{app}(\text{cons}(x, ys), zs) & \rightarrow \text{cons}(x, \text{app}(ys, zs)) \\
\text{split}(x, \emptyset) & \rightarrow \langle \emptyset, \emptyset \rangle \\
\text{split}(x, \text{ins}(y, zs)) & \rightarrow U_1(\text{split}(x, zs), x, y, zs) [x > y] \\
U_1(\langle zl, zh \rangle, x, y, zs) & \rightarrow \langle \text{ins}(y, zl), zh \rangle [x > y] \\
\text{split}(x, \text{ins}(y, zs)) & \rightarrow U_2(\text{split}(x, zs), x, y, zs) [x \neq y] \\
U_2(\langle zl, zh \rangle, x, y, zs) & \rightarrow \langle zl, \text{ins}(y, zh) \rangle [x \neq y] \\
\text{qsort}(\emptyset) & \rightarrow \text{nil} \\
\text{qsort}(\text{ins}(x, ys)) & \rightarrow U_3(\text{split}(x, ys), x, ys) \\
U_3(\langle yl, yh \rangle, x, ys) & \rightarrow \text{app}(\text{qsort}(yl), \text{cons}(x, \text{qsort}(yh)))
\end{align*}
\]
Chapter 10. Conditional Rewriting

In order to ease readability, the function symbols U_i^p from Definition 10.14 are denoted using simplified names. Termination of this unconditional system can easily be shown using the methods developed in this dissertation. △

The main result of this chapter relates operational termination of $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ to operational termination of $(U(\mathcal{R}), \mathcal{S}, \mathcal{E})$.

Lemma 10.16. For any well-formed proof tree T for $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ whose head goal is either $s \rightarrow t$ or $s \rightarrow^* t$, there exists a well-formed proof tree $\beta(T)$ for $(U(\mathcal{R}), \mathcal{S}, \mathcal{E})$ whose head goal is $s \rightarrow^* t$. Furthermore, if $T \subset T'$ for some T', then $\beta(T) \subset \beta(T')$.

Using this lemma, it is now easy to show that operational termination of the transformed system implies operational termination of the original system.

Theorem 10.17. If $(U(\mathcal{R}), \mathcal{S}, \mathcal{E})$ is operationally terminating, then $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ is operationally terminating.

By combining Theorem 10.17 and Lemma 10.13, the desired result that termination of $(U(\mathcal{R}), \mathcal{S}, \mathcal{E})$ implies operational termination of $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ is obtained.

Corollary 10.18. If $(U(\mathcal{R}), \mathcal{S}, \mathcal{E})$ is terminating, then $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ is operationally terminating.

Given that the transformation is sound for proving termination, it is of course a valid question whether it is also complete, i.e., if operational termination of $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ implies that $(U(\mathcal{R}), \mathcal{S}, \mathcal{E})$ is terminating. The following example from [131] show that this is in general not the case.

Example 10.19. Consider the following ordinary conditional TRS \mathcal{R} [131]:

...
Then \mathcal{R} is operationally terminating [137], but $\mathcal{U}(\mathcal{R})$ is non-terminating since the term $h(f(a), f(b))$ starts an infinite reduction w.r.t. $\rightarrow_{\mathcal{U}(\mathcal{R})}$.

For an ordinary conditional TRS \mathcal{R}, quasi-decreasingness (and thus operational termination) of \mathcal{R} implies that $\mathcal{U}(\mathcal{R})$ is innermost terminating [136]. Thus, while the converse of Corollary 10.18 is not true in general, it could be investigated in future work whether $(\mathcal{U}(\mathcal{R}), \mathcal{S}, \mathcal{E})$ is innermost terminating whenever $(\mathcal{R}, \mathcal{S}, \mathcal{E})$ is operationally terminating.

\section{Summary}

The CERSs as introduced in Chapter 3 make it possible to naturally model algorithms in many cases. The framework of CERSs can, however, be made even more expressive and natural by allowing more general conditions for the rewrite rules. The
Chapter 10. Conditional Rewriting

constraints of rewrite rules are restricted to properties expressible in the (decidable) theory Th, while conditional rewriting makes it possible to use conditions that may also utilize user-defined functions.

Since the conditions of a rewrite rule are evaluated by recursively rewriting them, termination analysis of conditional systems is more complex than for unconditional systems. This chapter has introduced the notion of operational termination [127, 59] of such systems. Then, the main result of this chapter has shown that operational termination of a CCERS can be reduced to (regular) termination of a CERS by a simple syntactic transformation. Therefore, the methods developed in this dissertation for showing termination of CERSs can also be applied for showing operational termination of CCERSs. The implementation in AProVE has been successfully applied to several CERSs that have been obtained from CCERSs by the transformation introduced in this chapter, cf. Chapter 15.
Chapter 11

Context-Sensitive Rewriting and Dependency Pairs

Context-sensitive rewriting [121, 123] is an operational restriction of term rewriting that can be used to model lazy (non-strict) evaluation as used in functional programming languages such as Haskell (for more on the relationship between lazy evaluation and context-sensitive rewriting, see [124]). Additionally, declarative specification and programming languages such as Maude [43] directly support context-sensitive rewriting strategies. This chapter introduces context-sensitive rewriting strategies for CERSs as defined in Chapter 3.

In context-sensitive rewriting, the arguments where an evaluation may take place are specified for each function symbol. Then a reduction is only allowed if it takes place at a position that is not forbidden by a function symbol occurring somewhere above it.

Example 11.1. Consider the CERS where S and E are used to model integers and sets using \emptyset and ins as in Chapter 3 and where R consists of the following rules:
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

\begin{align*}
\text{from}(x) & \rightarrow \text{ins}(x, \text{from}(x + 1)) \\
\text{take}(0, xs) & \rightarrow \text{nil} \\
\text{take}(x, \text{ins}(y, ys)) & \rightarrow \text{cons}(y, \text{take}(x - 1, ys)) [x > 0] \\
\text{pick}(\text{ins}(x, xs)) & \rightarrow x \\
\text{drop}(\text{ins}(x, xs)) & \rightarrow xs
\end{align*}

Here, the function symbol from is used to generate the (infinite) subsets of integers that are greater than or equal to the argument of from. Thus, the term \text{take}(2, \text{from}(0)) admits an infinite reduction in which the from-rule is applied over and over again. However, there also is a finite reduction of that term which results in the normal form \text{cons}(0, \text{cons}(1, \text{nil})). This reduction can be enforced using context-sensitive rewriting if evaluation of the second argument of ins is forbidden since the recursive call to from is then blocked. \triangle

Since context-sensitive rewriting may result in a terminating rewrite relation for CERSs where regular rewriting is not terminating, proving the termination of context-sensitive rewriting is challenging.

For ordinary TRSs, there are two approaches to proving termination of context-sensitive rewriting. The first approach is to apply a syntactic transformation in such a way that termination of context-sensitive rewriting with a TRS is implied by (regular) termination of the TRS obtained by the transformation. For details on this approach, see [83, 126]. While the application of these transformations makes it possible to use any method for proving termination of the transformed TRS, it often generates TRSs whose termination cannot be established using existing methods.

The second approach consists of the development of dedicated methods for proving termination of context-sensitive rewriting. Examples for adaptations of classical methods are context-sensitive recursive path orderings [30] and context-sensitive polynomial interpretations [125]. The main drawback of these adaptations of classical
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

methods is the limited power which is inherited from the classical methods. Adapting the more powerful dependency pair method [12] to context-sensitive TRSs has been a challenge. A first adaptation of the dependency pair method to context-sensitive TRSs has been presented in [2]. But this adaptation has severe disadvantages compared to the ordinary dependency pair method since it requires the introduction of collapsing dependency pairs (i.e., dependency pairs of the form $f^*(\mathbf{t}) \to x$ where x is a variable). These collapsing dependency pairs make it necessary to impose strong restrictions on how the method can be applied.

An alternative adaptation of the dependency pair method to context-sensitive TRSs has recently been presented in [1]. This adaptation does not require collapsing dependency pairs and makes it much easier to adapt termination techniques developed within the dependency pair method to the context-sensitive case. Empirical evaluations show the superiority of this most recent formulation, see [1].

After introducing the basic terminology of context-sensitive rewriting with CERSs in Section 11.1 and briefly discussing context-sensitive rewriting with CCERSs in Section 11.2, the main technical result of this chapter is proven in Section 11.3. By a non-trivial extension of [1], termination of context-sensitive rewriting with a CERS is reduced to showing absence of infinite chains of dependency pairs. This makes it possible to develop a dependency pair framework for the termination analysis of context-sensitive rewriting with CERSs, similar to the case of non-context-sensitive rewriting with CERSs as discussed in Chapter 5.

11.1 Context-Sensitive Rewriting

Context-sensitive rewriting strategies are obtained using replacement maps that are used to define the context under which a reduction may take place. This is done by specifying the argument positions of a function symbol f where a reduction is
allowed. Intuitively, if the replacement map restricts reductions in a certain argument position, then the whole subterm below that argument position may not be reduced.

Definition 11.2 (Replacement Maps). A replacement map is a mapping μ with $\mu(f) \subseteq \{1, \ldots, \text{arity}(f)\}$ for every function symbol $f \in \mathcal{F} \cup \mathcal{F}_{Th}$.

Replacement maps are used to denote a subset of all positions in a term as active. A position is active if it can be reached from the root of the term by only descending into argument positions that are not restricted by the replacement map μ.

Definition 11.3 (Active and Inactive Positions). Let μ be a replacement map and let t be a term. Then the set of active positions of t, written $\mathcal{P}os^\mu(t)$, is defined by

1. $\mathcal{P}os^\mu(x) = \{\Lambda\}$ for $x \in \mathcal{V}$, and
2. $\mathcal{P}os^\mu(f(t_1, \ldots, t_n)) = \{\Lambda\} \cup \{i.p \mid i \in \mu(f) \text{ and } p \in \mathcal{P}os^\mu(t_i)\}$.

The set of inactive positions of t is defined as $\mathcal{P}os^{-\mu}(t) = \mathcal{P}os(t) - \mathcal{P}os^\mu(t)$.

Example 11.4. Consider a replacement map with $\mu(f) = \{1\}$, $\mu(g) = \{1, 2\}$, and $\mu(h) = \emptyset$. If $t = f(g(x), h(y)), h(x))$, then $\mathcal{P}os^\mu(t) = \{\Lambda, 1, 1.1, 1.2\}$ and $\mathcal{P}os^{-\mu}(t) = \{1.2.1, 2, 2.1\}$.

The concept of active positions can also be used to define active (and inactive) subterms of a given term. This is similar to Definition 2.5.4.

Definition 11.5 (Active and Inactive Subterms). Let μ be a replacement map and let t be a term. If $t|_p = s$ for an active position $p \in \mathcal{P}os^\mu(t)$, then s is an active subterm of t, written $t \triangleright^\mu s$. If additionally $p \neq \Lambda$, then s is an active strict subterm of t, written $t \triangleright^\mu s$. If $t|_p = s$ for an inactive position $p \in \mathcal{P}os^{-\mu}(t)$, then s is an inactive strict subterm of t, written $t \triangleright^{-\mu} s$.

Notice that there are no inactive (non-strict) subterms since Λ is always active.
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

The classification of active and inactive subterms can easily be extended to other notions as well to obtain the sets $V^\mu(t)$ of variables occurring in active positions in t, $V^{-\mu}(t)$ of variables occurring in inactive positions in t, $F^\mu(t)$ of function symbols occurring in active positions in t, $F^{-\mu}(t)$ of function symbols occurring in inactive positions in t, etc.

Example 11.6. Continuing Example 11.4,

1. $f(g(x, h(y)), h(x)) \triangleright_\mu f(g(x, h(y)), h(x))$

 $f(g(x, h(y)), h(x)) \triangleright_\mu g(x, h(y))$

 $f(g(x, h(y)), h(x)) \triangleright_\mu x$

 $f(g(x, h(y)), h(x)) \triangleright_\mu h(y)$

2. $f(g(x, h(y)), h(x)) \triangleright_{\sim\mu} y$

 $f(g(x, h(y)), h(x)) \triangleright_{\sim\mu} h(x)$

 $f(g(x, h(y)), h(x)) \triangleright_{\sim\mu} x$

3. $V^\mu(f(g(x, h(y)), h(x))) = \{x\}$

 $V^{-\mu}(f(g(x, h(y)), h(x))) = \{x, y\}$

4. $F^\mu(f(g(x, h(y)), h(x))) = \{f, g, h\}$

 $F^{-\mu}(f(g(x, h(y)), h(x))) = \{h\}$

Notice that $V^\mu(t)$ and $V^{-\mu}(t)$ (and $F^\mu(t)$ and $F^{-\mu}(t)$) are not necessarily disjoint. △

Now a context-sensitive constrained equational rewrite system combines a CERS as in Definition 3.12 with a replacement map. Notice that the replacement map μ needs to satisfy several conditions on the occurrences of variables in S and E. As already noticed for the associative-commutative case in [71], this is due to the permutative nature of equations in E that may otherwise bring subterms from inactive positions into active positions, and vice versa. Figure 11.1 lists the replacement maps that are allowed by this definition for the data structures from Chapter 3.
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

<table>
<thead>
<tr>
<th>Constructors</th>
<th>Conditions on (\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural numbers</td>
<td>(0, 1, +) = {1, 2}</td>
</tr>
<tr>
<td>Integers</td>
<td>(0, 1, +, -) = {1, 2}</td>
</tr>
<tr>
<td>Lists</td>
<td>(\text{nil, cons}) = {1, 2}</td>
</tr>
<tr>
<td>Compact Lists</td>
<td>(\text{nil, cons}) = {1, 2}</td>
</tr>
<tr>
<td>Multisets</td>
<td>(\text{∅, ins}) = {1, 2}</td>
</tr>
<tr>
<td>Sets</td>
<td>(\text{∅, ins}) = {1, 2}</td>
</tr>
</tbody>
</table>

Figure 11.1: Replacement maps allowed for context-sensitive rewriting.

Definition 11.7 (Context-Sensitive CERSs). A context-sensitive CERS (CS-CERS) has the form \((R, S, E, \mu)\) for a CERS \((R, S, E)\) and a replacement map \(\mu\) such that the following conditions are satisfied:

1. \(E \) is collapse-free.

2. For all \(u \approx v \in E \),

 (a) \(V^\mu(u) = V^\mu(v) \) and \(V^{\neg \mu}(u) = V^{\neg \mu}(v) \),

 (b) for all inactive non-variable subterms \(u' \) of \(u \), \(u' \triangleright_\mu x \) for a variable \(x \) implies \(v' \triangleright_\mu x \) for an inactive non-variable subterm \(v' \) of \(v \), and

 (c) for all inactive non-variable subterms \(v' \) of \(v \), \(v' \triangleright_\mu x \) for a variable \(x \) implies \(u' \triangleright_\mu x \) for an inactive non-variable subterm \(u' \) of \(u \).

3. For all \(l \rightarrow r \in S \),

 (a) \(V^\mu(r) \cap V^{\neg \mu}(l) = \emptyset \), and

 (b) for all inactive non-variable subterms \(r' \) of \(r \), \(r' \triangleright_\mu x \) for a variable \(x \) implies \(l' \triangleright_\mu x \) for an inactive non-variable subterm \(l' \) of \(l \).
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

The rewrite relation of a CS-CERS is obtained by a small modification of Definition 3.15. The only difference is that for CS-CERSs, the position where the reduction takes place has to be active. Notice that it is also easily possible to consider an innermost rewrite relation or even a general restricted rewrite relation for CS-CERSs, just as this was done in Section 3.4 for standard CERSs. For simplicity of presentation, this is not considered in this dissertation.

Definition 11.8 (Rewrite Relation of a CS-CERS). Let \((R, S, \mathcal{E}, \mu)\) be a CS-CERS. Then \(s \xrightarrow{\mu} S \rightarrow T_h \parallel \mathcal{E} \setminus R, \mu t\) iff there exist a constrained rewrite rule \(l \rightarrow r[\varphi] \in R\), an active position \(p \in \text{Pos}^a(s)\), and a Th-based substitution \(\sigma\) such that

1. \(s|_p \xrightarrow{\Lambda} \mathcal{E} \setminus S \circ \xrightarrow{\Lambda} l \sigma\),
2. \(\varphi \sigma\) is Th-valid, and
3. \(t = s[r \sigma]_p\).

Example 11.9. The CERS from Example 11.1 becomes a CS-CERS by considering the replacement map \(\mu\) with \(\mu(\text{ins}) = \emptyset\) and \(\mu(f) = \{1, \ldots, \text{arity}(f)\}\) for all \(f \neq \text{ins}\). Then the reduction of the term \(\text{take}(2, \text{from}(0))\) has the following form:

\[
\begin{align*}
\text{take}(2, \text{from}(0)) & \xrightarrow{S} T_h \parallel \mathcal{E} \setminus R, \mu \text{take}(2, \text{ins}(0, \text{from}(1))) \\
& \xrightarrow{S} T_h \parallel \mathcal{E} \setminus R, \mu \text{cons}(0, \text{take}(2 - 1, \text{from}(1))) \\
& \xrightarrow{S} T_h \parallel \mathcal{E} \setminus R, \mu \text{cons}(0, \text{cons}(1, \text{take}(1 - 1, \text{from}(2)))) \\
& \xrightarrow{S} T_h \parallel \mathcal{E} \setminus R, \mu \text{cons}(0, \text{cons}(1, \text{nil}))
\end{align*}
\]

Notice that an infinite reduction of this term is not possible since the recursive call to \(\text{from}\) in the rule \(\text{from}(x) \rightarrow \text{ins}(x, \text{from}(x + 1))\) occurs in an inactive position. \(\triangle\)

The following properties of rewriting with CERSs are needed in the remainder of this dissertation. They are analogous to Lemmas 2.21 and 3.26. Here, a context \(C\) is an active context iff \(\Box\) occurs in an active position in it.

Lemma 11.10. Let \((R, S, \mathcal{E}, \mu)\) be a CS-CERS and let \(s, t\) be terms.
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

1. Let $s = C[f(s^*)]$ for an active context C where $f \notin \mathcal{F}(\mathcal{E})$. If $s \sim_\mathcal{E} t$, then $t = C'[f(t^*)]$ for an active context C' such that $C \sim_\mathcal{E} C'$ and $f(s^*) \triangleright A f(t^*)$.

2. $\sim_\mathcal{E} \circ S_{Th|\mathcal{E}\setminus\mathcal{R},\mu} \subseteq S_{Th|\mathcal{E}\setminus\mathcal{R},\mu} \circ \sim_\mathcal{E}$, where the $S_{Th|\mathcal{E}\setminus\mathcal{R},\mu}$ steps can be performed using the same constrained rewrite rule and Th-based substitution.

3. $\rightarrow_{\mathcal{E}\setminus\mathcal{S}} \circ S_{Th|\mathcal{E}\setminus\mathcal{R},\mu} \subseteq S_{Th|\mathcal{E}\setminus\mathcal{R},\mu} \circ \rightarrow_{\mathcal{E}\setminus\mathcal{S}}$

Just as for Corollary 3.27, the following can easily be obtained.

Corollary 11.11. Let $(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ be a CS-CERS and let s, t be terms.

1. If $s \sim_\mathcal{E} t$, then s starts an infinite $S_{Th|\mathcal{E}\setminus\mathcal{R},\mu}$-reduction iff t starts an infinite $S_{Th|\mathcal{E}\setminus\mathcal{R},\mu}$-reduction.

2. If $s \rightarrow_{\mathcal{E}\setminus\mathcal{S}} t$ and t starts an infinite $S_{Th|\mathcal{E}\setminus\mathcal{R},\mu}$-reduction, then s starts an infinite $S_{Th|\mathcal{E}\setminus\mathcal{R},\mu}$-reduction.

11.2 Context-Sensitive Conditional Rewriting

Recall the conditional CERSs from Chapter 10: In addition to Th-constraints, the rewrite rules of CCERSs also contain conditions that need to be established before applying a rule. In contrast to the Th-constraints, whose validity is established by a decision procedure for Th, these conditions need to be established by recursively rewriting them since they may contain user-defined functions.

A combination of conditional rewrite rules with context-sensitive reduction strategies is easily possible in the obvious way, giving rise to **context-sensitive conditional constrained equational rewrite systems (CS-CCERSs)**. As for CCERSs, operational termination is a crucial property of CS-CCERSs, and the question of how to verify operational termination of a CS-CCERS naturally arises.
Recall from Chapter 10 that operational termination of CCERSs can be reduced to termination of (unconditional) CERSs by a simple syntactic transformation. This transformation can be adapted to the context-sensitive case by a simple extension of the replacement map μ: for the fresh function symbols U^ρ_i introduced in Definition 10.14, let $\mu(U^\rho_i) = \{1\}$, i.e., only the subterms corresponding to the conditions of the conditional rewrite rules may be reduced. This is the same approach that is taken in [59] as well. Then, the statement of Corollary 10.18 is still true, i.e., the CS-CCERS $(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ is operationally terminating if the (unconditional) CS-CERS $(\mathcal{U}(\mathcal{R}), \mathcal{S}, \mathcal{E}, \mu)$ is terminating.

11.3 Context-Sensitive Dependency Pairs

Extending the dependency pair method from ordinary rewriting to ordinary context-sensitive rewriting has been a challenge. Recall from Section 5.1 that dependency pairs are built from recursive calls to defined function symbols occurring on the right-hand side of rewrite rules since only these recursive calls may cause non-termination. For context-sensitive rewriting, one might be tempted to restrict the generation of dependency pairs to recursive calls occurring in active positions since these are the only positions where reductions may take place. The following example from [2] shows that this results in an unsound method.

Example 11.12. Consider the following ordinary TRS [2]:

\[
\begin{align*}
 a & \rightarrow c(f(a)) \\
 f(c(x)) & \rightarrow x
\end{align*}
\]

Let $\mu(c) = \emptyset$ and $\mu(f) = \{1\}$. Since the recursive calls in the first rule are in inactive positions, no dependency pair would be generated if only recursive calls occurring in active positions are considered. Then, context-sensitive termination of the TRS
could be concluded, even though it is not terminating: \(f(a) \rightarrow_{R,\mu} f(c(f(a))) \rightarrow_{R,\mu} f(a) \rightarrow_{R,\mu} \ldots \). Here, \(\rightarrow_{R,\mu} \) is the standard context-sensitive rewrite relation which is obtained from Definition 11.8 by disregarding \(S, \mathcal{E}, \) and every mention of \(Th. \)

The problem of the naive approach outlined above is that recursive calls in inactive positions of right-hand sides may become active again after applying other rules. In Example 11.12, the recursive call to \(f(a) \) that occurs in an inactive position is migrated to an active position by an application of the second rule. This is the reason that the method of [2] has to create collapsing dependency pairs whose right-hand side is a \textit{migrating variable}, where, for a rule \(l \rightarrow r, \) a variable \(x \) is migrating if \(r \triangleright_{\mu} x \) but \(l \not\triangleright_{\mu} x. \) In Example 11.12, the collapsing dependency pair \(f^\delta(c(x)) \rightarrow x \) is created.

As noticed in [1], the need for collapsing dependency pairs causes severe disadvantages since it becomes quite hard to extend methods for proving termination from ordinary rewriting to ordinary context-sensitive rewriting because the collapsing dependency pairs require a special treatment. While recent work provides some progress [2, 3, 92], the resulting methods are quite weak in practice. As a simple example of this weakness, collapsing dependency pairs have an outgoing arc to every other dependency pair in the estimated dependency graph, thus making this technique not very effective for decomposing the termination proof.

An alternative to the collapsing dependency pairs needed in [2] has recently been presented in [1]. The main observation in [1] is that only certain instantiations of the migrating variables need to be considered. A first, naive approach for this would be to only consider instantiations by \textit{hidden terms}, which are terms with a defined root symbol occurring inactively in right-hand sides.

Definition 11.13 (Hidden Terms). Let \((\mathcal{R}, S, \mathcal{E}, \mu) \) be a CS-CERS. A term \(t \) is hidden \textit{iff} \(\text{root}(t) \in \mathcal{D}(\mathcal{R}) \) and there exists a rule \(l \rightarrow r[\phi] \) from \(\mathcal{R} \) such that \(r \triangleright_{\mu} t. \)
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

Example 11.14. For the CS-CERS from Example 11.1, the term from$(x + 1)$ is hidden since ins$(x, \text{from}(x + 1)) \triangleright_{-\mu} \text{from}(x + 1)$. △

Instantiating the migrating variable in Example 11.12 by the hidden term $f(a)$ is sufficient, since the dependency pair $f^\sharp(c(f(a))) \rightarrow f^\sharp(a)$ obtained by this instantiation gives rise to an infinite chain. In general, considering only instantiations by hidden terms results in an unsound method, as shown by the following example.

Example 11.15. Consider the following ordinary TRS [1]:

\[
\begin{align*}
a & \rightarrow f(g(b)) \\
f(x) & \rightarrow h(x) \\
h(x) & \rightarrow x \\
b & \rightarrow a
\end{align*}
\]

Let $\mu(g) = \{1\}$ and $\mu(a) = \mu(b) = \mu(f) = \mu(h) = \emptyset$. The only hidden term is b obtained from the first rule. If migrating variables are only instantiated by hidden terms, then the following dependency pairs are obtained:

\[
\begin{align*}
a^\sharp & \rightarrow f^\sharp(g(b)) \\
f^\sharp(x) & \rightarrow h^\sharp(x) \\
h^\sharp(b) & \rightarrow b^\sharp \\
b^\sharp & \rightarrow a^\sharp
\end{align*}
\]

Since these dependency pairs do not give rise to an infinite chain, termination could be concluded, even though $a \rightarrow_{R,\mu} f(g(b)) \rightarrow_{R,\mu} h(g(b)) \rightarrow_{R,\mu} g(b) \rightarrow_{R,\mu} g(a) \rightarrow_{R,\mu} \ldots$ is an infinite reduction. △

As motivated by this example, it becomes necessary to consider certain contexts that may be built above a hidden term using the rewrite rules. In Example 11.15, this context is $g(\square)$. Formally, this observation is captured using the notion of hiding
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

contexts. The definition in this dissertation extends the one given in [1] by also considering S and E.

Definition 11.16 (Hiding Contexts). Let (R, S, E, μ) be a CS-CERS. Then $f \in F \cup F_{Th}$ hides position i iff $i \in \mu(f)$ and either

1. $f \in F(E) \cup F(S)$, or
2. there exist a rule $l \rightarrow r[\varphi]$ from R and a term $s = f(s_1, \ldots, s_i, \ldots, s_n)$ such that $r \triangleright_{\mu} s$ and $s_i \triangleright_{\mu} x$ for a variable x or $s_i \triangleright_{\mu} g(\ldots)$ for an $g \in D(R)$.

A context C with one hole is hiding iff either

1. $C = \Box$, or
2. $C = f(t_1, \ldots, t_{i-1}, C', t_{i+1}, \ldots, t_n)$ such that f hides position i and C' is a hiding context.

Notice that every hiding context is an active context.

Example 11.17. For the CS-CERS from Example 11.1, $+$ hides positions 1 and 2, $-$ hides position 1, and from hides position 1 due to the first rewrite rule. \triangle

Notice that there are, in general, infinitely many hiding contexts. For example, the hiding contexts in Example 11.15 are $\Box, g(\Box), g(g(\Box)), \ldots$. In order to represent these infinitely many hiding contexts using only finitely many dependency pairs, fresh function symbols U_{base} and U_{univ} are introduced that will be used to deconstruct a hiding context in order to obtain the hidden term contained in it. This is achieved by introducing dependency pairs of the form $U_s(g(x_1, \ldots, x_i, \ldots, x_n)) \rightarrow U_s'(x_i)$ whenever the function symbol g hides position i. Here, $s, s' \in \{\text{base, univ}\}$ are the appropriate sorts. Thus, the following definition of context-sensitive dependency pairs is obtained. Here, DP_u is used instead of the collapsing dependency pairs needed in [2]. This is similar to [1].
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

Definition 11.18 (Context-Sensitive Dependency Pairs). Let \((R, S, E, \mu)\) be a CS-CERS. The context-sensitive dependency pairs of \(R\) are defined as
\[
\text{DP}(R, \mu) = \text{DP}_o(R, \mu) \cup \text{DP}_u(R, \mu)
\]
where
\[
\text{DP}_o(R, \mu) = \{ l^t \rightarrow t^\varphi | l \rightarrow r^\varphi \in R, r \geq_\mu t, \text{root}(t) \in D(R) \}
\]
\[
\text{DP}_u(R, \mu) = \{ l^t \rightarrow U_s(x)[\varphi] | l \rightarrow r^\varphi \in R, r \geq_\mu x, l \not\geq_\mu x \}
\]
\[
\cup \{ U_s(g(x_1, \ldots, x_i, \ldots, x_n)) \rightarrow U_{s'}(x_i)[\top] | g \text{ hides position } i \}
\]
\[
\cup \{ U_s(h) \rightarrow h^t[\top] | h \text{ is a hidden term} \}
\]

Here, \(s\) and \(s'\) are the sorts of \(x, g(x_1, \ldots, x_i, \ldots, x_n), x_i, \) and \(h,\) respectively, and \(U_s \in F^\sharp\) is a fresh function symbol of arity 1 with sort declaration \(s \rightarrow \text{top}.\) Furthermore, \(\mu(U_s) = \emptyset\) and \(\mu(f^t) = \mu(f)\) for all \(f^t \in F^\sharp.\)

Example 11.19. For the CS-CERS from Example 11.1, the context-sensitive dependency pairs are as follows:

\[
\begin{align*}
take^t(x, \text{ins}(y, ys)) &\rightarrow take^t(x-1, ys) [x > 0] \quad (11.1) \\
take^t(x, \text{ins}(y, ys)) &\rightarrow U_{\text{base}}(y) [x > 0] \quad (11.2) \\
take^t(x, \text{ins}(y, ys)) &\rightarrow U_{\text{univ}}(ys) [x > 0] \quad (11.3) \\
pick^t(\text{ins}(x, xs)) &\rightarrow U_{\text{base}}(x) \quad (11.4) \\
drop^t(\text{ins}(x, xs)) &\rightarrow U_{\text{univ}}(ys) \quad (11.5) \\
U_{\text{univ}}(\text{from}(x+1)) &\rightarrow \text{from}^t(x+1) \quad (11.6) \\
U_{\text{base}}(x+y) &\rightarrow U_{\text{base}}(x) \quad (11.7) \\
U_{\text{base}}(x+y) &\rightarrow U_{\text{base}}(y) \quad (11.8) \\
U_{\text{base}}(-x) &\rightarrow U_{\text{base}}(x) \quad (11.9) \\
U_{\text{univ}}(\text{from}(x)) &\rightarrow U_{\text{base}}(x) \quad (11.10)
\end{align*}
\]

For this, recall the hidden term \(\text{from}(x+1)\) from Example 11.14 and the hiding contexts from Example 11.17. \(\triangle\)
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

Just as in Definition 5.3, context-sensitive dependency pairs can be used in order to build chains, and the goal is to show the analogous statement to Theorem 5.6, i.e., that $S \rightarrow_{Th|E\setminus R,\mu}$ is terminating if there are no infinite minimal chains.

Definition 11.20 ((Minimal) ($\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu$)-Chains). Let \mathcal{P} be a set of dependency pairs and let $(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ be a CS-CERS. A (possibly infinite) sequence of dependency pairs $s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots$ from \mathcal{P} is a $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain iff there exists a Th-based substitution σ such that $t_i\sigma \rightarrow_{Th|E\setminus R,\mu}^* \Lambda_{E\setminus S} \circ \Lambda_{\mathcal{E}} s_{i+1}\sigma$, the instantiated Th-constraint $\varphi_i\sigma$ is Th-valid, and $s_i\sigma$ is a normal form w.r.t. $\rightarrow_{E\setminus S}$ for all $i \geq 1$. The above $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain is minimal iff $t_i\sigma$ does not start an infinite $S \rightarrow_{Th|E\setminus R,\mu}$-reduction for all $i \geq 1$.

While the definition of chains is virtually identical to the non-context-sensitive case in Definition 5.3, proving the analogous statement to Theorem 5.6 for CS-CERSs is quite complex and requires several technical definitions and lemmas. First, it is convenient to formally introduce *minimal non-terminating terms*, which are terms that start an infinite $S \rightarrow_{Th|E\setminus R,\mu}$-reduction such that none of its proper subterms in an active position starts an infinite reduction. This concept is implicitly used in the proof of Theorem 5.6 as well, recall the discussion in Section 5.1.

Definition 11.21 (Minimal Non-Terminating Terms). For a CS-CERS $(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$, a term t is minimal non-terminating, written $t \in M_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty$, iff t starts an infinite $S \rightarrow_{Th|E\setminus R,\mu}$-reduction but no t' with $t \triangleright \mu t'$ starts an infinite $S \rightarrow_{Th|E\setminus R,\mu}$-reduction.

The following properties of minimal non-terminating terms are easy consequences of Corollary 11.11.

Lemma 11.22. Let $t \in M_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty$.

1. If $t \sim_\mathcal{E} t'$, then $t' \in M_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty$.

2. If $t \rightarrow_{\mathcal{E}\setminus S}^* t'$ and t' starts an infinite $S \rightarrow_{Th|E\setminus R,\mu}$-reduction, then $t' \in M_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty$.

169
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

The next lemma intuitively states that the application of equations from \(\mathcal{E} \) or rules from \(\mathcal{S} \) transforms a hiding context into another hiding context. This lemma is the reason why any \(f \in \mathcal{F}(\mathcal{E}) \cup \mathcal{F}(\mathcal{S}) \) is considered to hide any active argument position in Definition 11.16.

Lemma 11.23. Let \(C \) be a hiding context and let \(t \in \mathcal{M}_\infty^{(R,S,E,\mu)} \).

1. If \(C[t] \vdash E s \) and the \(\vdash E \)-step is applied at a position in \(C \), then \(s = C'[t] \) for a hiding context \(C' \).

2. Let \(C[t] \rightarrow_S s \) at a position in \(C \) using a rule \(l \rightarrow r \in \mathcal{S} \) and a substitution \(\sigma \) such that the variable \(x \in \mathcal{V}(l) \) with \(x\sigma \geq_{\mu} t \) (if it exists) satisfies \(r \geq_{\mu} x \). Then \(s = C'[t] \) for a hiding context \(C' \).

The proof of the main theorem, i.e., that \(\mathcal{S} \rightarrow_{\mathcal{T}\mathcal{h}\parallel \mathcal{E}\setminus R,\mu} \) is terminating if there are no infinite minimal chains, is modularized by introducing the following abstract property. A term has the hiding property if its minimal non-terminating subterms in inactive positions are obtained from hidden terms and surrounded by hiding contexts. The definition in this dissertation differs from the original definition in [1] by making use of \(\mathcal{E} \) and \(\mathcal{S} \) in order to obtain the minimal non-terminating terms from instances of hidden terms.

Definition 11.24 (Hiding Property). A term \(u \in \mathcal{M}_\infty^{(R,S,E,\mu)} \) has the hiding property iff whenever \(u \triangleright_{\mu} s \geq_{\mu} t \) with \(t \in \mathcal{M}_\infty^{(R,S,E,\mu)} \), then \(s = C[t] \) for a hiding context \(C \) and there exists an instance \(t' \) of a hidden term such that \(t' \rightarrow_{\mathcal{E}\setminus S} \circ \rightarrow_{\mathcal{E}} t \).

The following key lemma states that the hiding property is preserved by \(\sim_{\mathcal{E}} \), \(\rightarrow_{\mathcal{E}\setminus S} \), and \(\rightarrow_{\mathcal{T}\mathcal{h}\parallel \mathcal{E}\setminus R,\mu} \). This is a key result needed for the proof of the main theorem.

Lemma 11.25. Let \(u \in \mathcal{M}_\infty^{(R,S,E,\mu)} \) have the hiding property.

1. If \(u \vdash E v \geq_{\mu} w \) with \(w \in \mathcal{M}_\infty^{(R,S,E,\mu)} \), then \(w \) has the hiding property.
Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

2. If $u \rightarrow_{\mathcal{E},S} v \geq_{\mu} w$ with $w \in \mathcal{M}^{\infty}_{(R,S,E,\mu)}$, then w has the hiding property.

3. If $u \xrightarrow{S}_{Th\|E\setminus R,\mu} v \geq_{\mu} w$ with $w \in \mathcal{M}^{\infty}_{(R,S,E,\mu)}$, then w has the hiding property.

Now the main theorem can be proved, stating that rewriting with a CS-CERS is terminating if there are no infinite chains. It could be investigated in future work whether the converse of this statement is true as well, i.e., whether the absence of infinite minimal chains provides an exact characterization of termination for rewriting with CS-CERSs. Recall that this is the case for non-context-sensitive CERSs, cf. Theorem 5.6.

Theorem 11.26. Let $(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ be a CS-CERS. Then $\xrightarrow{S}_{Th\|E\setminus R,\mu}$ is terminating if there are no infinite minimal $(DP(\mathcal{R}, \mu), \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chains.

The DP framework as introduced in Section 5.2 trivially extends to the context-sensitive setting, resulting in the *CS-DP framework*, where CS-DP processors operate on *CS-DP problems* of the form $(P, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$.

11.4 Summary

This chapter has introduced the basic terminology of context-sensitive rewriting with CERSs. For CS-CERSs, the arguments where an evaluation may take place are specified for each function symbol and a reduction is only allowed if it takes place at a position that is not forbidden by a function symbol occurring somewhere above it.

Next, a dependency pair method for showing termination of rewriting with such CS-CERSs has been developed. In order to avoid the need for collapsing dependency pairs as in [2], the recent approach from [1] for ordinary TRSs has been extended to the setting of CS-CERSs. For this approach, the notions of *hidden terms* and *hiding contexts* are crucial, resulting in a definition of dependency pairs that is more
complex than in the non-context-sensitive case. This added complexity will pay off in the next chapter, however, since an adaptation of the DP processors from Chapters 6–8 becomes relatively straightforward.
Chapter 12

Context-Sensitive DP Processors

After introducing the dependency pair framework for context-sensitive rewriting with CERSs in Chapter 11, the goal of this chapter is to introduce several sound CS-DP processors.

Section 12.1 introduces context-sensitive dependency graphs, which adapt the dependency graphs from Section 6.3 to the context-sensitive case. This adaptation includes an estimation similar to the one used in Section 6.3 for the non-context-sensitive case.

Next, Section 12.2 adapts the subterm criterion from Section 6.6 to the context-sensitive case. As for the context-sensitive dependency graphs, this adaptation is relatively straightforward. As shown in Section 12.3, the methods based on reduction pairs as introduced in Chapter 7 also extend easily.

Extending the method from Section 8.3 that is based on function dependencies and makes it possible to restrict attention to certain subsets of \(R, S, \) and \(E \) when considering the CS-DP problem \((P, R, S, E, \mu) \) is more challenging. For ordinary context-sensitive TRSs, the goal was achieved only very recently \([92, 1]\). Section 12.4
presents an extension of this method to CS-CERSs, and Section 12.5 presents an improved method for a restricted class of CS-DP problems.

12.1 Dependency Graphs

Like the DP processor from Section 6.3, the CS-DP processor introduced in this section decomposes a CS-DP problem into several independent CS-DP problems by determining which dependency pairs from \mathcal{P} may follow each other in a $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain. The processor again relies on the notion of dependency graphs.

Definition 12.1 (Context-Sensitive Dependency Graphs). Let $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ be a CS-DP problem. The $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-dependency graph $\text{DG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ has the dependency pairs in \mathcal{P} as nodes and there is an arc from $s_1 \to t_1[\varphi_1]$ to $s_2 \to t_2[\varphi_2]$ iff $s_1 \to t_1[\varphi_1]$, $s_2 \to t_2[\varphi_2]$ is a $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain.

As for the dependency graph from Section 6.3, $\text{DG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ cannot be computed exactly in general and an estimation has to be used instead. The estimation used in this section is similar to the estimation of Section 6.3 but has been adapted to the context-sensitive case. This adaptation is similar to the estimated dependency graphs for ordinary context-sensitive rewriting used in [2, 1].

Definition 12.2 (Estimated Context-Sensitive Dependency Graphs). For a CS-DP problem $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$, the nodes in the estimated $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-dependency graph $\text{EDG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ are the dependency pairs in \mathcal{P} and there is an arc from $s_1 \to t_1[\varphi_1]$ to $s_2 \to t_2[\varphi_2]$ iff there exists a substitution σ that is Th-based for $\mathcal{V}(s_1) \cup \mathcal{V}(s_2)$ such that $\text{CAP}_\mu(t_1) \xrightarrow{\Lambda_{\mathcal{E}, \mathcal{S}}} t_2 \circ \sim_\mathcal{E} s_2$, the terms $s_1\sigma$ and $s_2\sigma$ are normal forms w.r.t. $\xrightarrow{\Lambda_{\mathcal{E}, \mathcal{S}}}$, and $\varphi_1\sigma$ and $\varphi_2\sigma$ are Th-valid. The function CAP_μ is defined by

1. $\text{CAP}_\mu(x) = x$ for variables x of sort base,
Chapter 12. Context-Sensitive DP Processors

2. \(\text{CAP}_\mu(x) = y \) for variables \(x \) of sort \text{univ},

3. \(\text{CAP}_\mu(f(t_1, \ldots, t_n)) = f(t'_1, \ldots, t'_n) \) where

\[
\begin{cases}
 t_i & \text{if } i \notin \mu(f) \\
 \text{CAP}_\mu(t_i) & \text{otherwise}
\end{cases}
\]

if there does not exist a rule \(l \rightarrow r[\varphi] \in \mathcal{R} \) such that \(f(t'_1, \ldots, t'_n)\sigma \stackrel{\Lambda}{\longrightarrow}_{\mathcal{E}, \mathcal{S}} \circ \stackrel{\Lambda}{\sim}_{\mathcal{E}} \)

\(l\sigma \) for a substitution \(\sigma \) that is Th-based for \(\mathcal{V}(f(t_1, \ldots, t_n)) \cup \mathcal{V}(l) \) where \(\varphi\sigma \) is Th-valid, and

4. \(\text{CAP}_\mu(f(t_1, \ldots, t_n)) = y \) otherwise.

Here, \(y \) is the next variable in an infinite list \(y_1, y_2, \ldots \) of fresh variables.

As in Section 6.3, it is also possible to omit the checks for irreducibility by \(\stackrel{\Lambda}{\longrightarrow}_{\mathcal{E}, \mathcal{S}} \) and Th-validity, and it is possible to replace case 3 in the definition of \(\text{CAP}_\mu \) by a simple check for \(f \notin \mathcal{D}(\mathcal{R}) \).

Next, it is shown that the estimated dependency graph is indeed an overapproximation of the dependency graph, i.e., \(\text{EDG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) \) is a supergraph of \(\text{DG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) \).

Theorem 12.3 (Correctness of EDG). For any DP problem \((\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) \), the estimated dependency graph \(\text{EDG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) \) is a supergraph of the dependency graph \(\text{DG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) \).

The following CS-DP processor is completely analogous to the DP processor from Theorem 6.11.

Theorem 12.4 (CS-DP Processor Based on Dependency Graphs). Let \(\text{Proc} \) be a CS-DP processor with \(\text{Proc}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) = \{ (\mathcal{P}_1, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu), \ldots, (\mathcal{P}_n, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) \} \), where \(\mathcal{P}_1, \ldots, \mathcal{P}_n \) are the SCCs of \((E)\text{DG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) \). Then \(\text{Proc} \) is sound.
Example 12.5. Recall the following dependency pairs from Example 11.19:

\[
\begin{align*}
\text{take}^\sharp(x,\text{ins}(y,ys)) & \rightarrow \text{take}^\sharp(x-1,ys) \quad \text{[}x > 0\text{]} \\
\text{take}^\sharp(x,\text{ins}(y,ys)) & \rightarrow U_{\text{base}}(y) \quad \text{[}x > 0\text{]} \\
\text{take}^\sharp(x,\text{ins}(y,ys)) & \rightarrow U_{\text{univ}}(ys) \quad \text{[}x > 0\text{]} \\
\text{pick}^\sharp(\text{ins}(x,xs)) & \rightarrow U_{\text{base}}(x) \\
\text{drop}^\sharp(\text{ins}(x,xs)) & \rightarrow U_{\text{univ}}(ys) \\
U_{\text{univ}}(\text{from}(x + 1)) & \rightarrow \text{from}^\sharp(x + 1) \\
U_{\text{base}}(x+y) & \rightarrow U_{\text{base}}(x) \\
U_{\text{base}}(x+y) & \rightarrow U_{\text{base}}(y) \\
U_{\text{base}}(-x) & \rightarrow U_{\text{base}}(x) \\
U_{\text{univ}}(\text{from}(x)) & \rightarrow U_{\text{base}}(x)
\end{align*}
\]

Then the following estimated dependency graph \(\text{EDG}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) \) is obtained:

Here, the nodes for (11.7), (11.8), and (11.9) have been combined since they have “identical” incoming and outgoing arcs. This estimated dependency graph contains two SCCs, and according to Theorem 12.4, the following CS-DP problems are obtained:

\[
\begin{align*}
\{\text{\text{(11.1)}}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu\} & \quad (12.1) \\
\{\text{\text{(11.7)}, (11.8), (11.9)}}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu\} & \quad (12.2)
\end{align*}
\]

These CS-DP problem can now be handled independently of each other. \(\triangle \)
Chapter 12. Context-Sensitive DP Processors

12.2 Subterm Criterion

The DP processor from Section 6.6 that is based on the subterm criterion can also be extended to the context-sensitive case in a straightforward manner. The only difference is that the subterm relation needs to take the replacement map into account by only considering subterms in active positions. This is analogous to [2].

Definition 12.6 (E-µ-Subterms). Let \((R, S, E, \mu)\) be a CS-CERS and let \(s, t\) be terms. Then \(t\) is a strict E-µ-subterm of \(s\), written \(s \triangleright_{E, \mu} t\), iff \(s \sim_{E} \circ \triangleright_{\mu} \circ \sim_{E} t\). The term \(t\) is an E-µ-subterm of \(s\), written \(s \triangleright_{E, \mu} t\), iff \(s \triangleright_{E, \mu} t\) or \(s \sim_{E} t\).

Example 12.7. If \(\mu(f) = \{1\}, \mu(\cup) = \{1, 2\}\), and \(E = \{x \cup y \approx y \cup x, x \cup (y \cup z) \approx (x \cup y) \cup z\}\), then \(f(x \cup y, g(z)) \triangleright_{E, \mu} y \cup x\) but \(f(x \cup y, g(z)) \not\triangleright_{E, \mu} g(z)\).

If \(E\) is size-preserving, the properties of Lemma 6.23 still hold for the subterm relation defined above.

Lemma 12.8. Let \((R, S, E, \mu)\) be a CS-CERS such that \(E\) is size-preserving.

1. Given terms \(s, t\), it is decidable whether \(s \triangleright_{E, \mu} t\) or \(s \triangleright_{E, \mu} t\).
2. \(\triangleright_{E, \mu}\) is well-founded.
3. \(\triangleright_{E, \mu}\) and \(\triangleright_{E, \mu}\) are stable.
4. \(\triangleright_{E, \mu}\) and \(\triangleright_{E, \mu}\) are compatible with \(\sim_{E}\).

Now the DP processor from Theorem 6.24 extends to the context-sensitive case in the obvious way.

Theorem 12.9 (CS-DP Processor Based on the Subterm Criterion). Let \(\pi\) be a simple projection and let \(Proc\) be a CS-DP processor with \(Proc(P, R, S, E, \mu) =\)

- \(\{(P - P', R, S, E)\}\), if \(E\) is size-preserving and \(P' \subseteq P\) such that
Chapter 12. Context-Sensitive DP Processors

\[- \pi(s) \triangleright_{\mathcal{E}, \mu} \pi(t) \text{ for all } s \rightarrow t[\varphi] \in \mathcal{P}', \text{ and} \]
\[- \pi(s) \triangleright_{\mathcal{E}, \mu} \pi(t) \text{ for all } s \rightarrow t[\varphi] \in \mathcal{P} - \mathcal{P}'. \]

- \((\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)\), otherwise.

Then Proc is sound.

Example 12.10. Recall the CS-DP problem (12.2) from Example 12.5, consisting of the following dependency pairs:

\[U_{\text{base}}(x + y) \rightarrow U_{\text{base}}(x) \quad (11.7) \]
\[U_{\text{base}}(x + y) \rightarrow U_{\text{base}}(y) \quad (11.8) \]
\[U_{\text{base}}(-x) \rightarrow U_{\text{base}}(x) \quad (11.9) \]

Using the simple projection with \(\pi(U_{\text{base}}) = 1\), this CS-DP problem can easily be handled. \(\triangle\)

In general, if all dependency pairs in a CS-DP problem are of type (2) in Definition 11.18 (i.e., are of the form \(U_s(g(x_1, \ldots, x_i, \ldots, x_n)) \rightarrow U_{s'}(x_i)\) where \(g\) hides position \(i\)), then that CS-DP problem can always be handled using the subterm criterion with the simple projection \(\pi(U_{\text{base}}) = \pi(U_{\text{univ}}) = 1\). To see this, notice that \(i \in \mu(g)\) if \(g\) hides position \(i\) and thus \(g(x_1, \ldots, x_i, \ldots, x_n) \triangleright_{\mathcal{E}, \mu} x_i\).

12.3 Reduction Pairs

As in Chapter 7, three different kinds of reduction pairs can be used in the context-sensitive case. Using these, dependency pairs that are strictly decreasing can be removed from a CS-DP problem, just like this was done in Chapter 7 in the non-context-sensitive case.
Theorem 12.11 (CS-DP Processor Based on Reduction Pairs). Let Proc be a CS-DP processor with Proc(\(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu\)) =

- \{((\mathcal{P} - \mathcal{P}', \mathcal{R}, \mathcal{S}, \mathcal{E}))\}, if \(\mathcal{P}' \subseteq \mathcal{P}\) and either
 - there exists an ordinary reduction pair \((\succsim, \succ)\) such that \((\succsim, \succ) \models (\mathcal{P}', \mathcal{P}, \emptyset, \mathcal{R}, \mathcal{S}, \mathcal{E})\), or
 - there exists a Th\(_\mathbb{N}\)-reduction pair \((\succsim, \succ)\) for \(\mathcal{P}\) such that \((\succsim, \succ) \models (\mathcal{P}', \mathcal{P}, \emptyset, \mathcal{R}, \mathcal{S}, \mathcal{E})\), or
 - there exists a Th\(_\mathbb{Z}\)-reduction pair \((\succsim, \succ)\) for \(\mathcal{P}\) such that \((\succsim, \succ) \models (\mathcal{P}', \mathcal{P}, \emptyset, \mathcal{R}, \mathcal{S}, \mathcal{E})\).

- \{((\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu))\}, otherwise.

Then Proc is sound.

Also, the elimination of arguments as done in Theorem 6.17 can be applied to CS-DP problems without any modification.

Example 12.12. Recall the CS-DP problem (12.1) from Example 12.5, containing the following dependency pair:

\[
\text{take}^\sharp(x, \text{ins}(y, ys)) \rightarrow \text{take}^\sharp(x - 1, y) \llbracket x > 0 \rrbracket \quad (11.1)
\]

Using the non-collapsing argument filtering with \(\pi(\text{take}^\sharp) = [1]\), this dependency pair is transformed into the following dependency pair:

\[
\text{take}^\sharp(x) \rightarrow \text{take}^\sharp(x - 1) \llbracket x > 0 \rrbracket \quad (12.3)
\]

For this dependency pair, \(\text{RedPos}(\text{take}^\sharp, \{(12.3)\}) = \emptyset\), i.e., Th\(_\mathbb{Z}\)-reduction pairs become applicable. \(\triangle\)
Chapter 12. Context-Sensitive DP Processors

12.4 Function Dependencies

The DP processor from Theorem 12.11 has to consider all of \mathcal{R}. Recall from Section 8.3 that this requirement can be relaxed substantially in the non-context-sensitive case. This section shows that this requirement can also be weakened for CS-CERSs. In contrast to the simple adaptations of the dependency graph and the subterm criterion, this adaptation is non-trivial. For ordinary context-sensitive rewriting, corresponding results were obtained only very recently [92, 1].

As the following example from [92] shows, the method is unsound if the definition of function dependencies from Section 8.3 is used.

Example 12.13. Consider the following ordinary TRS [92]:

\begin{align*}
 b &\rightarrow c(b) \\
 f(c(x), x) &\rightarrow f(x, x)
\end{align*}

Let $\mu(f) = \{1, 2\}$ and $\mu(c) = \emptyset$. Then the following dependency pairs are obtained:

\begin{align*}
 f^*(c(x), x) &\rightarrow f^*(x, x) & (12.4) \\
 f^*(c(x), x) &\rightarrow U_{\text{univ}}(x) & (12.5) \\
 U_{\text{univ}}(b) &\rightarrow b^* & (12.6) \\
 U_{\text{base}}(x + y) &\rightarrow U_{\text{base}}(x) & (12.7) \\
 U_{\text{base}}(x + y) &\rightarrow U_{\text{base}}(y) & (12.8) \\
 U_{\text{base}}(-x) &\rightarrow U_{\text{base}}(x) & (12.9)
\end{align*}

The CS-DP problem consisting of (12.7)–(12.9) can easily be handled using the subterm criterion of Section 12.2. Using the definition of function dependencies from Section 8.3, \mathcal{R} would not need to be considered for the CS-DP problem consisting of (12.4). But then termination could falsely be concluded using a reduction pair based
on a polynomial interpretation with $Pol(f^*) = x_1$ and $Pol(c) = x_1 + 1$, although
$f(c(b), b) \rightarrow_{\mathcal{R}, \mu} f(b, b) \rightarrow_{\mathcal{R}, \mu} f(c(b), b) \rightarrow_{\mathcal{R}, \mu} \ldots$ is an infinite reduction.

The function dependencies as defined in Definition 8.10 thus need to be adapted as follows, similarly to [92, 1]. Notice that function symbols occurring in inactive positions in left-hand sides of dependency pairs and rules need to be considered.

Definition 12.14 (Context-Sensitive Function Dependencies). Let $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ be a CS-DP problem where \mathcal{E} is size-preserving. For two symbols $f, h \in \mathcal{F}$ let $f \downarrow_{(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)} h$ iff $f = h$ or there exists a symbol g with $g \downarrow_{(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)} h$ and a rule $l \rightarrow_r [\varphi] \in \mathcal{R}$ such that root$(l) = f$ and $g \in \mathcal{F}^\mu(l) \cup \mathcal{F}(r)$. Let

$$\Delta^1(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) = \mathcal{F}_{Th} \cup \mathcal{F}(\mathcal{S}) \cup \mathcal{F}(\mathcal{E})$$

$$\cup \bigcup_{s \rightarrow t[x] \in \mathcal{P}} \{g \mid f \downarrow_{(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)} g \text{ for an } f \in \mathcal{F}_\mu(s) \cup \mathcal{F}(t)\}$$

$$\cup \bigcup_{l \rightarrow_r [\varphi] \in \mathcal{R}} \{g \mid f \downarrow_{(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)} g \text{ for an } f \in \mathcal{F}_\mu(r)\}$$

Within this section it is assumed that $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ is a CS-DP problem such that \mathcal{E} is size-preserving. Furthermore, let $\Delta^1 = \Delta^1(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$. The mapping \mathcal{I} used in Section 8.3 needs to be modified as well. In particular, it needs to be possible to apply the mapping to non-terminating terms since terminating terms may contain non-terminating subterms in inactive positions.

Definition 12.15 (\mathcal{I}^1). For any term $t \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{Th}, \mathcal{V})$ define $\mathcal{I}^1(t)$ by

- $\mathcal{I}^1(x) = x$ if $x \in \mathcal{V}$
- $\mathcal{I}^1(f(t_1, \ldots, t_n)) = f(\mathcal{I}^1(t_1), \ldots, \mathcal{I}^1(t_n))$ if $f \in \Delta^1$ or $f(t_1, \ldots, t_n)$ starts an infinite $\rightarrow_{\mathcal{R}, \mu}$-reduction
- $\mathcal{I}^1(t) = Comp_{\text{sort}}(t)(\text{Red}^1_{\mathcal{S}}(t) \cup \text{Red}^1_{\mathcal{R}}(t) \cup \mathcal{E}q^1_{\mathcal{E}}(t))$ if t is terminating and $t = f(t_1, \ldots, t_n)$ with $f \not\in \Delta^1$.

181
Chapter 12. Context-Sensitive DP Processors

Here, the sets $\text{Red}_S^1(t)$, $\text{Red}_R^1(t)$, and $\mathcal{E}_q^1(t)$ are defined as

$$\text{Red}_S^1(t) = \{ I^1(t') \mid t \rightarrow_{E \setminus S} \circ \sim_{E} t' \}$$
$$\text{Red}_R^1(t) = \{ I^1(t') \mid t \xrightarrow{S_{\Theta_{E \setminus R, \mu}} \circ \sim_{E}} t' \}$$
$$\mathcal{E}_q^1(t) = \{ g(I^1(t_1), \ldots, I^1(t_m)) \mid t \sim_{E} g(t_1, \ldots, t_m) \}$$

The function Comp_s is defined as in Definition 8.13. For any substitution σ, define the substitution $I^1(\sigma)$ by $I^1(\sigma)(x) = I^1(\sigma(x))$.

Again, it is not obvious that I^1 is indeed well-defined, i.e., that $I^1(t)$ is a finite term for any term t.

Lemma 12.16. For any term t, the term $I^1(t)$ is finite.

The idea for the result in this section is now the same as in Section 8.3: reductions using \mathcal{R} are “simulated” by reductions that only use $\mathcal{R}(\Delta)$ and rules from \mathcal{R}_{Π} as defined in Definition 8.15. For this, several properties of the mapping I^1 are needed, in complete analogy to Lemma 8.17.

Lemma 12.17. Let $s, t \in T(\mathcal{F} \cup \mathcal{F}_{\Theta}, \mathcal{V})$ and let σ be a Θ-based substitution.

1. If $s \in T(\Delta, \mathcal{V})$ then $I^1(s\sigma) = s I^1(\sigma)$.
2. If $s \not \equiv_{\mu} s'$ implies $s' \in T(\Delta^1, \mathcal{V})$, then $I^1(s\sigma) \rightarrow^*_{\mathcal{R}_{\Pi}} s I^1(\sigma)$.
3. If $s \sim_{E} t$ then $I^1(s) \sim_{E} I^1(t)$.
4. If $s \rightarrow^*_{E \setminus S} t$ then $I^1(s) \rightarrow^*_{I^1} I^1(t)$,
 where $\rightarrow^*_{I^1} = \rightarrow_{E \setminus S} \cup \rightarrow^+_{\mathcal{R}_{\Pi}}$.
5. If s is terminating and $s \xrightarrow{S_{\Theta_{E \setminus R, \mu}} \circ \sim_{E}} t$ then $I^1(s) \rightarrow^*_{I^1} I^1(t)$,
 where $\rightarrow^*_{I^1} = \rightarrow^*_{I^1} \circ \sim_{E} \circ \rightarrow^*_{\mathcal{R}_{\Pi}} \circ \rightarrow_{\mathcal{R}(\Delta^1), \mu} \cup \rightarrow^+_{\mathcal{R}_{\Pi}}$ such that the $\rightarrow_{\mathcal{R}(\Delta^1), \mu}$ step uses a Θ-based substitution that makes the instantiated constraint of the used rule Θ-valid.
Chapter 12. Context-Sensitive DP Processors

6. Let \(s \in T(\Delta^1, \mathcal{V}) \) be terminating and let \(t \rhd^\mu \mathcal{U} t' \) imply \(t' \in T(\Delta^1, \mathcal{V}) \). If
\[
s \sigma \mapsto_{T_{\mathcal{U}}|_{\mathcal{E} \setminus \mathcal{R} \setminus \mathcal{U}}}^! t \mathcal{U} \circ \sim_{\mathcal{E}} \sigma \sim_{\mathcal{E}} t \sigma,
\]
then \(s \mathcal{I}^1(\sigma) \sim_{\mathcal{E}} \mathcal{II} \circ \sim_{\mathcal{E}} \sigma \sim_{\mathcal{E}} \mathcal{I}^1(\sigma) \).

Using Lemma 12.17.6, soundness of the following CS-DP processor can be shown. This processor adapts Theorem 8.18 to the context-sensitive case.

Theorem 12.18 (CS-DP Processor Based on Function Dependencies). Let \(\text{Proc} \) be the DP processor with \(\text{Proc}(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu) = \)

- \{\((\mathcal{P} \setminus \mathcal{P}', \mathcal{R}, \mathcal{S}, \mathcal{E})\}\}, if \(\mathcal{E} \) is size-preserving, \(\Delta^1 = \Delta^1(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu), \mathcal{P}' \subseteq \mathcal{P}, \) and either
 - there exists an ordinary reduction pair \((\succ, \prec)\) such that \((\succ, \prec) \models (\mathcal{P}', \mathcal{P}, \emptyset, \mathcal{R}(\Delta^1) \cup \mathcal{R}_{\mathcal{U}}, \mathcal{S}, \mathcal{E})\), or
 - there exists a \(\text{Th}_{\mathcal{U}} \)-reduction pair \((\succ, \prec)\) for \(\mathcal{P} \) such that \((\succ, \prec) \models (\mathcal{P}', \mathcal{P}, \emptyset, \mathcal{R}(\Delta^1) \cup \mathcal{R}_{\mathcal{U}}, \mathcal{S}, \mathcal{E})\), or
 - there exists a \(\text{Th}_{\mathcal{Z}} \)-reduction pair \((\succ, \prec)\) for \(\mathcal{P} \) such that \((\succ, \prec) \models (\mathcal{P}', \mathcal{P}, \emptyset, \mathcal{R}(\Delta^1) \cup \mathcal{R}_{\mathcal{U}, \text{univ}}, \mathcal{S}, \mathcal{E})\).
- \{\((\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)\}\}, otherwise.

Then \(\text{Proc} \) is sound.

Example 12.19. Using Theorem 12.18, it is no longer possible to falsely prove termination of the TRS from Example 12.13. Recall the following rewrite rules and dependency pairs:

\[
\begin{align*}
b \to c(b) \\
f(c(x), x) & \to f(x, x) \\
f^2(c(x), x) & \to f^2(x, x)
\end{align*}
\]
Chapter 12. Context-Sensitive DP Processors

Then \(b \in \Delta^1(\{(12.4), \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu\}) \), i.e., the rule \(b \rightarrow c(b) \) needs to be considered when handling the CS-DP consisting of (12.4). But then no reduction pair satisfies the requirements from Theorem 12.18.

\[\triangle \]

12.5 Function Dependencies for Strongly Conservative Systems

The CS-DP processor based on function dependencies introduced in the previous section differs from the corresponding DP processor for non-context-sensitive rewriting introduced in Section 8.3 by needing to consider the left-hand sides of the dependency pairs and rules. Additionally, all rules from \(\mathcal{S} \) and all equations from \(\mathcal{E} \) need to be considered.

In this section, it is shown that the left-hand sides of \(\mathcal{P} \) and \(\mathcal{R} \) do not need to be considered if \(\mathcal{P}, \mathcal{R} \) and \(\mathcal{S} \) are strongly conservative [92].

Definition 12.20 (Strongly Conservative). Let \((\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)\) be a DP problem and let \(s, t \) be terms. Then the pair \(\langle s, t \rangle \) is strongly conservative iff \(\mathcal{V}^\mu(t) \subseteq \mathcal{V}^\mu(s) \) and \(\mathcal{V}^\mu(s) \cap \mathcal{V}^{-\mu}(s) = \mathcal{V}^\mu(t) \cap \mathcal{V}^{-\mu}(t) = \emptyset \).

Example 12.21. Consider a replacement map with \(\mu(f) = \{1\}, \mu(g) = \{1, 2\}, \) and \(\mu(h) = \emptyset \). Then the pair \(\langle f(g(x), h(z)), f(x, y) \rangle \) is strongly conservative since \(\mathcal{V}^\mu(f(x, y)) = \{x\} \subseteq \{x, y\} = \mathcal{V}^\mu(f(g(x, y), h(z))) \) and \(\{x, y\} \cap \{z\} = \{x\} \cap \{y\} = \emptyset \). The pair \(\langle f(x, h(x)), g(x, x) \rangle \) is not strongly conservative since \(\mathcal{V}^\mu(f(x, h(x))) \cap \mathcal{V}^{-\mu}(f(x, h(x))) = \{x\} \). The pair \(\langle f(h(x), h(y)), g(x, x) \rangle \) is not strongly conservative since \(x \in \mathcal{V}^\mu(g(x, x)) \) but \(x \notin \mathcal{V}^\mu(f(h(x), h(y))) \). \(\triangle \)

A set of pairs of terms (i.e., rewrite rules or equations) is strongly conservative if all of its members are. Notice that \(\mathcal{E} \) is always strongly conservative by Definition

184
11.7. For strongly conservative systems, the following definition of function dependencies can be used. The reason why two different relations \triangleright^2 and \triangleright^2 are used is that reductions with S and E may also take place in inactive positions. Introducing two different relations then makes it possible to only consider subsets of S and E as well, whereas the CS-DP processor introduced in the previous section needs to consider all of S and E.

Definition 12.22 (Context-Sensitive Function Dependencies for Strongly Conservative Systems). Let (P,R,S,E,μ) be a DP problem where E is size-preserving. For any term t, let $\mathcal{F}_{S,E}(t) = (\mathcal{F}(S) \cup \mathcal{F}(E)) \cap \mathcal{F}(t)$ and $\mathcal{F}_S(t)$ and $\mathcal{F}_E(t)$.

1. For two symbols $f,h \in \mathcal{F}$ let $f \triangleright^2 (P,R,S,E,\mu) h$ iff $f = h$ or there exists a symbol g with $g \triangleright^2 (P,R,S,E,\mu) h$ and either

 (a) a rule $l \rightarrow r[\varphi] \in R$ with root(l) = f and $g \in \mathcal{F}(r)$, or

 (b) a rule $l \rightarrow r \in S$ with root(l) = f and $g \in \mathcal{F}(r)$, or

 (c) an equation $u \approx v$ (or $v \approx u$) in E with root(u) = f and $g \in \mathcal{F}(u \approx v)$.

 In the following, let

 $$\Delta^2(P,R,S,E,\mu) = \mathcal{F}_{Th} \cup \bigcup_{s \rightarrow t[\varphi] \in P} \{g \mid f \triangleright^2 (P,R,S,E,\mu) g \text{ for an } f \in \mathcal{F}(t)\}$$

2. For two symbols $f,h \in \mathcal{F}$ let $f \triangleright^2 (P,R,S,E,\mu) h$ iff $f = h$ or there exists a symbol g with $g \triangleright^2 (P,R,S,E,\mu) h$ and either

 (a) a rule $l \rightarrow r[\varphi] \in R$ with root(l) = f and $g \in \mathcal{F}_S(r)$, or

 (b) a rule $l \rightarrow r \in S$ with root(l) = f and $g \in \mathcal{F}(r)$, or

 (c) an equation $u \approx v$ (or $v \approx u$) in E with root(u) = f and $g \in \mathcal{F}(u \approx v)$.

 In the following, let

 $$\Delta^2(P,R,S,E,\mu) = \mathcal{F}_{Th} \cup \bigcup_{s \rightarrow t[\varphi] \in P} \{g \mid f \triangleright^2 (P,R,S,E,\mu) g \text{ for an } f \in \mathcal{F}_S(t)\}$$
Within this section it is assumed that \((\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)\) is a DP problem such that \(\mathcal{E}\) is size-preserving. Also, let \(\Delta^2 = \Delta^2(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)\) and \(\overline{\Delta}^2 = \overline{\Delta}^2(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)\). Notice that \(\Delta^2 \subseteq \overline{\Delta}^2\), which implies \(\mathcal{S}(\Delta^2) \subseteq \mathcal{S}(\overline{\Delta}^2)\) and \(\mathcal{E}(\overline{\Delta}^2) \subseteq \mathcal{E}(\overline{\Delta}^2)\). Finally, it is assumed that \(\mathcal{R}(\Delta^2)\) and \(\mathcal{S}(\Delta^2)\) are strongly conservative.

The mappings \(\mathcal{I}\) and \(\mathcal{I}^1\) from Definitions 8.13 and 12.15, respectively, need to be modified for the strongly conservative case. Since two relations \(\mathcal{I}^2\) and \(\mathcal{I}_2\) are considered, two mappings \(\mathcal{I}^2\) and \(\mathcal{I}^2\) are needed as well. Notice that \(\mathcal{I}^2\) is only used in order to simulate reductions with \(\mathcal{S}\) and \(\mathcal{E}\), but not reductions with \(\mathcal{R}\).

Definition 12.23 \((\mathcal{I}^2\) and \(\mathcal{I}^2\)).

1. For any term \(t \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{Th}, \mathcal{V})\) define \(\mathcal{I}^2(t)\) by

 - \(\mathcal{I}^2(x) = x\) if \(x \in \mathcal{V}\)
 - \(\mathcal{I}^2(f(t_1, \ldots, t_n)) = f(\mathcal{I}^2(t_1), \ldots, \mathcal{I}^2(t_n))\) if \(f \in \overline{\Delta}^2\)
 - \(\mathcal{I}^2(t) = \text{Comp}_\text{sort}(t)(\overline{\text{Red}}^2_{\mathcal{S}}(t) \cup \overline{\text{Eq}}^2_{\mathcal{E}}(t))\) if \(t = f(t_1, \ldots, t_n)\) with \(f \notin \overline{\Delta}^2\).

 Here, the sets \(\overline{\text{Red}}^2_{\mathcal{S}}(t)\) and \(\overline{\text{Eq}}^2_{\mathcal{E}}(t)\) are defined as

 \[
 \overline{\text{Red}}^2_{\mathcal{S}}(t) = \{ \mathcal{I}^2(t') \mid t \rightarrow_{\mathcal{E}\setminus\mathcal{S}} \sim_{\mathcal{E}} t' \}
 \]
 \[
 \overline{\text{Eq}}^2_{\mathcal{E}}(t) = \{ g(\mathcal{I}^2(t_1), \ldots, \mathcal{I}^2(t_m)) \mid t \sim_{\mathcal{E}} g(t_1, \ldots, t_m) \}
 \]

 For any substitution \(\sigma\), define the substitution \(\mathcal{I}^2(\sigma)\) by letting \(\mathcal{I}^2(\sigma)(x) = \mathcal{I}^2(\sigma(x))\).

2. For any terminating term \(t \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{Th}, \mathcal{V})\) define \(\mathcal{I}^2(t)\) by

 - \(\mathcal{I}^2(x) = x\) if \(x \in \mathcal{V}\)
 - \(\mathcal{I}^2(f(t_1, \ldots, t_n)) = f(t_1, \ldots, t_n)\) if \(f \in \Delta^2\)
 - \(\mathcal{I}^2(t) = \text{Comp}_\text{sort}(t)(\overline{\text{Red}}^2_{\mathcal{S}}(t) \cup \overline{\text{Red}}^2_{\mathcal{R}}(t) \cup \overline{\text{Eq}}^2_{\mathcal{E}}(t))\) if \(t = f(t_1, \ldots, t_n)\) with \(f \notin \Delta^2\).
Chapter 12. Context-Sensitive DP Processors

Here, \(\overline{t_i} = \mathcal{I}^2(t_i) \) if \(i \in \mu(f) \) and \(\overline{t_i} = \overline{\mathcal{I}^2(t_i)} \) otherwise. Moreover, the sets \(\text{Red}_S^2(t) \), \(\text{Red}_R^2(t) \), \(\mathcal{E}q_\mathcal{E}^2(t) \), and \(\overline{\mathcal{E}q_\mathcal{E}^2(t)} \) are defined as

\[
\text{Red}_S^2(t) = \{ \mathcal{I}^2(t') \mid t \to_{\mathcal{E}\setminus S} \sim_{\mathcal{E}} t' \}
\]
\[
\text{Red}_R^2(t) = \{ \mathcal{I}^2(t') \mid t \to_{\mathcal{T}h\setminus \mathcal{E}\setminus R, \mu} \sim_{\mathcal{E}} t' \}
\]
\[
\mathcal{E}q_\mathcal{E}^2(t) = \{ g(\overline{t_1}, \ldots, \overline{t_m}) \mid t \sim_{\mathcal{E}} g(t_1, \ldots, t_m) \}
\]
\[
\overline{\mathcal{E}q_\mathcal{E}^2(t)} = \{ \mathcal{I}^2(s) \mid t \sim_{\mathcal{E}} s \}
\]

Again, \(\overline{t_i} = \mathcal{I}^2(t_i) \) if \(i \in \mu(g) \) and \(\overline{t_i} = \overline{\mathcal{I}^2(t_i)} \) otherwise. For a terminating substitution \(\sigma \), let \([t, \sigma]\) be the term that results from \(t \) by replacing all occurrences of \(x \in \mathcal{V}(t) \) in active positions of \(t \) by \(\mathcal{I}^2(\sigma(x)) \) and all occurrences of \(x \in \mathcal{V}(t) \) in inactive positions of \(t \) by \(\overline{\mathcal{I}^2(\sigma(x))} \).

As usual, it first needs to be shown that these mappings are well-defined.

Lemma 12.24. For any term \(t \), the term \(\mathcal{I}^2(t) \) is finite. If \(t \) is terminating, then \(\mathcal{I}^2(t) \) is finite.

Next, several properties of the mappings \(\overline{\mathcal{I}^2} \) and \(\mathcal{I}^2 \) are shown. This is in analogy to Lemmas 8.17 and 12.17.

Lemma 12.25. Let \(s, t \in T(\mathcal{F} \cup \mathcal{F}_{Th}, \mathcal{V}) \) and let \(\sigma \) be a \(\mathcal{T}h \)-based substitution such that \(s, t, \sigma \) are terminating.

1. If \(s \in T(\Delta^2, \mathcal{V}) \) then \(\overline{\mathcal{I}^2(s\sigma)} = s\overline{\mathcal{I}^2(\sigma)} \).
2. If \(s \in T(\Delta^2, \mathcal{V}) \) such that \(\mathcal{F}_\mu(s) \subseteq \Delta^2 \), then \(\mathcal{I}^2(s\sigma) = [s, \sigma] \).
3. \(\mathcal{I}^2(s\sigma) \to_{\mathcal{R}_\mu}^{*} s\overline{\mathcal{I}^2(\sigma)} \).
4. \(\mathcal{I}^2(s\sigma) \to_{\mathcal{R}_\mu}^{*} [s, \sigma] \).
5. \(\mathcal{I}^2(s) \to_{\mathcal{R}_\mu}^{*} \overline{\mathcal{I}^2(s)} \).
6. If \(s \sim_{\mathcal{E}} t \) then \(\overline{\mathcal{I}^2(s)} \sim_{\mathcal{E}(\overline{\Delta^2})} \overline{\mathcal{I}^2(t)} \).
7. If \(s \sim E t \) then \(I^2(s) \sim E(\overline{\Delta^2}) I^2(t) \).

8. If \(s \rightarrow^*_{E \setminus S} t \) then \(I^2(s) \sim^+_1 I^2(t) \),
 where \(\sim^+_1 = \sim_E(\overline{\Delta^2}) \circ \rightarrow^*_{R \Pi} \circ \rightarrow_1 \circ (S(\overline{\Delta^2}) \cup \rightarrow_1^+) \).

9. If \(s \rightarrow^*_{E \setminus S} t \) then \(I^2(s) \sim^*_1 I^2(t) \).

10. If \(s \rightarrow^*_{\text{Th} \parallel E \setminus R, \mu} t \) then \(I^2(s) \sim^*_2 I^2(t) \),
 where \(\sim^*_2 = \sim^*_1 \circ \sim_E(\overline{\Delta^2}) \circ \rightarrow^*_{R \Pi} \circ \rightarrow_{R(\Delta^2), \mu} \cup \rightarrow_{R(\Delta^2), \mu} \) such that the \(\rightarrow_{R(\Delta^2), \mu} \) step uses a \(\text{Th} \)-based substitution that makes the instantiated constraint of the used rule \(\text{Th} \)-valid.

11. If \(s \rightarrow^*_{\text{Th} \parallel E \setminus R, \mu} \circ \sim_E t \sigma \), then \(I^2(s) \sim^*_2 \circ \sim^*_1 \circ \sim_E(\overline{\Delta^2}) I^2(t) \).

As before, Lemma 12.25.11 makes it possible to show soundness of the following CS-DP processor. In contrast to the CS-DP processor introduced in the previous section, it is only applicable if \(R(\Delta^2), S(\Delta^2), \) and \(P \) are strongly conservative.

Theorem 12.26 (CS-DP Processor Based on Function Dependencies for Strongly Conservative Systems). Let \(\text{Proc} \) be the CS-DP processor with \(\text{Proc}(P, R, S, E, \mu) = \)

- \(\{(P - P', R, S, E)\} \), if \(E \) is size-preserving, \(\Delta^2 = \overline{\Delta^2}(P, R, S, E, \mu), \Delta^2 = \overline{\Delta^2}(P, R, S, E, \mu) \), all of \(R(\Delta^2), S(\Delta^2), \) and \(P \) are strongly conservative, \(P' \subseteq P \), and either
 - there exists an ordinary reduction pair \((\preceq, \succeq) \) such that \((\preceq, \succeq) \models (P', P, 0, R(\Delta^2) \cup R_{\Pi}, S(\overline{\Delta^2}), E(\overline{\Delta^2})) \), or
 - there exists a \(\text{Th}_{\Pi} \)-reduction pair \((\preceq, \succeq) \) for \(P \) such that \((\preceq, \succeq) \models (P', P, 0, R(\Delta^2) \cup R_{\Pi}, S(\overline{\Delta^2}), E(\overline{\Delta^2})) \), or
 - there exists a \(\text{Th}_{\Pi} \)-reduction pair \((\preceq, \succeq) \) for \(P \) such that \((\preceq, \succeq) \models (P', P, 0, R(\Delta^2) \cup R_{\Pi, \text{univ}}, S(\overline{\Delta^2}), E(\overline{\Delta^2})) \).

- \(\{(P, R, S, E, \mu)\} \), otherwise.
Then Proc is sound.

Example 12.27. The CS-DP processor of Theorem 12.26 makes it possible to finish the termination proof of the running example. Recall the following dependency pair from Example 12.12:

\[
\text{take}^\sharp(x) \rightarrow \text{take}^\sharp(x - 1) \ [x > 0]
\]

(12.3)

Then this dependency pair is strongly conservative, and the same holds true for \(\mathcal{R}(\Delta^2) = \emptyset\) and \(\mathcal{S}(\Delta^2) = S_{\text{base}}\). It is thus possible to apply the \(Th_Z\)-polynomial interpretation with \(c_{\text{Pol}} = 0\) and \(\text{Pol}(\text{take}^\sharp) = x_1\).

\[\triangle\]

12.6 Implementation

The techniques presented for CS-CERSs in this chapter have been implemented in the automated termination checker AProVE [84] for \(Th_Z\). As for the non-context-sensitive case, most techniques can be implemented straightforwardly. The more challenging implementations of the estimated dependency graph \(EDG\) and the automated generation of \(Th_Z\)-reduction pairs based on \(Th_Z\)-polynomial interpretations is done as described in Chapter 9 for the non-context-sensitive case.

12.7 Summary

This chapter has introduced several sound CS-DP processors, all of which have been implemented in the automated termination checker AProVE. These CS-DP processors adapt DP processors introduced in Chapters 6–8 to the context-sensitive case.

While dependency graphs and the subterm criterion can be adapted to the context-sensitive case quite easily, an adaptation of the method based on function
dependencies is more challenging. Following the recent achievement for ordinary context-sensitive TRSs [92, 1], an adaptation to CS-CERSs has been presented in this chapter. While the definition of function dependencies for CS-CERSs is more complex than the one for regular CERSs in general, the definition from Section 8.3 is essentially re-obtained for strongly conservative systems.

An implementation of the techniques presented in this chapter in the termination prover AProVE has been evaluated on a collection of examples (including several examples obtained from functional Maude modules containing strat-annotations). This evaluation shows that the techniques developed in this dissertation are very successful, cf. Chapter 15.
Chapter 13

Inductive Theorem Proving with CERSs

In the previous chapters, CERSs have been used as a tool for showing termination of algorithms that are modeled in the form of rewrite rules. Recall from Chapter 1 that reasoning about the partial correctness of such algorithms often require reasoning about the functions defined by a CERS.

While this kind of reasoning can be done using generic theorem proving methods, this approach is not very satisfactory since generic theorem proving is concerned with deriving properties that are valid in all models of a CERS (also non-standard ones).\footnote{A model of a CERS is a many-sorted theory in which all rewrite rules and equations of the CERS are valid. Here, a many-sorted theory is the obvious generalization of a theory as given in Definition 3.1, see Definition 13.35 below.} For the purpose of reasoning about the functions defined by a CERS \((\mathcal{R}, \mathcal{S}, \mathcal{E})\), only one particular model is of interest, namely the standard model consisting of the \((\mathcal{R}, \mathcal{S}, \mathcal{E})\)-equivalence classes of ground terms. It is important to distinguish between validity in all models of a CERS and validity in only this specific model of a CERS since these two notions do not coincide in general.
Example 13.1. Consider the following ordinary TRS \mathcal{R} that defines a function to add two natural numbers given in a Peano representation:

\[
\begin{align*}
 x + O & \rightarrow x \\
 x + \mathsf{s}(y) & \rightarrow \mathsf{s}(x + y)
\end{align*}
\]

The first rule specifies O to be a right-neutral element, and it is a valid question whether it follows that O is also left-neutral, i.e., if the conjecture $O + y \equiv y$ follows from the rewrite rules. Using the generic theorem proving approach this is not true since there are models of the rewrite rules (considered as equations) that falsify $O + y \equiv y$. For instance, consider the model $\mathcal{M} = (M, \mathcal{O}^M, \mathbf{s}^M, \mathbf{+}^M)$ with $M = \{a, b\}$ and

- $\mathcal{O}^M = a$
- $\mathbf{s}^M(a) = a$ and $\mathbf{s}^M(b) = b$
- $a +^M a = a$, $a +^M b = a$, $b +^M a = b$, and $b +^M b = b$

Then all rewrite rules of the TRS are valid, but the conjecture $O + y \equiv y$ is not valid since $\mathcal{O}^M +^M b = a +^M b = a \neq b$. Notice that the model \mathcal{M} is non-standard in the sense that b is not the interpretation of any constructor ground term (i.e., ground term built using the constructors O and s). Thus, this model is not relevant in the context of program verification, since all data values in programs are built using the constructors.

For program verification, it needs to be established whether $O + y \equiv y$ is valid in the standard model, i.e., whether $O + t \equiv t$ follows from \mathcal{R} for all ground terms t. Since \mathcal{R} is quasi-reductive (see Definition 13.14 below), each \mathcal{R}-equivalence class of ground terms contains a constructor ground term and it thus suffices to show that $O + t \equiv t$ follows from \mathcal{R} for all constructor ground terms t. Due to the recursive nature of the definition of $+$, this can be shown using inductive reasoning.
Chapter 13. Inductive Theorem Proving with CERSs

- In the base case, the constructor ground term \(O \) is considered. Then, \(O + O \equiv O \) easily follows from \(R \).

- In the step case, the constructor ground term has the form \(s(t') \) for some constructor ground term \(t' \) and the inductive hypothesis states that \(O + t' \equiv t' \) follows from \(R \). But then \(O + s(t') \equiv s(t') \) also follows from \(R \) since \(O + s(t') \equiv s(O + t') \) follows from the second rule in \(R \) and \(s(O + t') \equiv s(t') \) follows from the inductive hypothesis. \(\triangle \)

As demonstrated by this example, showing that the functions defined by a CERS satisfy certain properties usually requires inductive reasoning since the functions are most commonly defined using recursion.

In order to make inductive theorem proving with CERSs possible, this chapter introduces a restricted class of CERSs and shows how this class can effectively be used for proving properties of the functions defined by the CERS using inductive reasoning.

There are two commonly used paradigms for inductive theorem proving: explicit induction and implicit induction. In explicit induction (see, e.g., [35, 174, 112, 39, 40, 98, 113, 171]), a concrete induction scheme is computed for each conjecture, and the subsequent reasoning is based on this induction scheme. Here, an induction scheme explicitly gives the base cases and the step cases, where the step cases consists of an obligation and one or more hypotheses. This is the kind of reasoning employed in Example 13.1.

In implicit induction (see, e.g., [134, 97, 105, 102, 72, 107, 147, 33, 7, 157]), no concrete induction scheme is constructed a priori. Instead, an induction scheme is implicitly constructed during the proof attempt. Implicit induction is largely based on the term rewriting framework and is rooted in the Knuth-Bendix completion method [114]. While explicit induction is commonly considered to be more powerful
Chapter 13. Inductive Theorem Proving with CERSs

than implicit induction, implicit induction is more automatic in the sense that less (or no) user interaction is required.

The proof method presented in this chapter is based on the implicit induction paradigm and couples inductive reasoning with a decision procedure for the theory LIAC, which combines the linear theory of integers with the constructors of a CERS. The integration of a decision procedures for the linear theory of integers into inductive reasoning has been previously considered in [110, 11]. The proof method developed in this chapter is in general incomparable to these methods. On the one hand, the methods presented in [110, 11] are more complex and powerful. On the other hand, the use of Th_z-constraints in this dissertation gives rise to an elegant proof method ([110, 11] are based on ordinary rewriting without constraints). Inductive theorem proving for rewrite systems with certain kinds of constraints has been investigated in [34]. That method, however, does not support Th_z-constraints and is thus incomparable to the method presented below.

13.1 Preliminaries

The restricted class of CERSs that is used for inductive theorem proving is based on Th_z, i.e., the linear theory of integers. Consequently, the sort base of the built-in theory will be denoted by int. Collection data structures are currently not allowed (with the exception of lists built using nil and cons), and it is furthermore assumed that the signature \mathcal{F} does not contain function symbols with resulting sort int. Terms of sort int are thus built using \{0,1,+,-\} and variables. Relaxing these restrictions is left for future work. Nonetheless, this restricted class of CERSs is already sufficient for presenting the new ideas for decidable induction developed in Chapter 14.

The left- and right-hand sides of rules in the restricted class of CERSs need
Chapter 13. Inductive Theorem Proving with CERSs

to satisfy the following requirement. As will become apparent later, this makes it possible to have a simple definition of the rewrite relation since it disallows pattern-matching with + and −.

Definition 13.2 (Z-Free). A term \(t\) is Z-free iff \(\mathcal{F}(t) \cap \{+,-\} = \emptyset\).

Now the class of Z-CERSs is defined as follows. Notice that only free constructors are allowed, i.e., compact lists, sets, and multisets are not supported.

Definition 13.3 (Z-CERS). A CERS \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) is a Z-CERS iff

1. \(\mathcal{S} = \mathcal{S}_{\text{Th}_Z}\)
2. \(\mathcal{E} = \mathcal{E}_{\text{Th}_Z}\)
3. For all \(l \rightarrow r[\varphi] \in \mathcal{R}\), both \(l\) and \(r\) are Z-free.

A Z-CERS \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) is also identified with \(\mathcal{R}\).

Example 13.4. For two lists built using nil and cons, \(\text{prefix}(xs, ys)\) computes the longest prefix \(p\) of \(xs\) such that all elements of \(p\) occur in \(ys\) in the same order as in \(p\) (but not necessarily consecutively).

\[
\begin{align*}
\text{prefix}(\text{nil}, ys) & \rightarrow \text{nil} \\
\text{prefix}(\text{cons}(x, xs), \text{nil}) & \rightarrow \text{nil} \\
\text{prefix}(\text{cons}(x, xs), \text{cons}(y, ys)) & \rightarrow \text{cons}(x, \text{prefix}(xs, ys)) \ [[x \simeq y]] \\
\text{prefix}(\text{cons}(x, xs), \text{cons}(y, ys)) & \rightarrow \text{prefix}(\text{cons}(x, xs), ys) \ [[x \not\simeq y]]
\end{align*}
\]

This CERS is a Z-CERS.

The restriction that left- and right-hand sides of the rewrite rules in a Z-CERS are Z-free makes it possible to have a simple definition of the rewrite relation that does not take the sets \(\mathcal{S}_{\text{Th}_Z}\) and \(\mathcal{E}_{\text{Th}_Z}\) into account, while still representing all of \(\rightarrow_{\text{Th}_Z}^{\mathcal{E}\setminus\mathcal{R}}\). This goal is achieved by restricting attention to particular representatives
of terms that are equivalent up to S_{Thz} and E_{Thz}. These representatives are irreducible by $\rightarrow E_{Thz} \setminus S_{Thz}$ and satisfy certain conditions on nested occurrences of the function symbol $+$.

Definition 13.5 (\mathbb{Z}-Normal Terms and Substitutions). Let \succ_T be a fixed total well-founded order on $\mathcal{V} \cup \{0, 1\}$. A term t is \mathbb{Z}-normal w.r.t. \succ_T iff the following conditions are satisfied:

1. t is irreducible by $\rightarrow E_{Thz} \setminus S_{Thz}$.
2. Whenever t contains a subterm of the form $t_1 + t_2$, then $\text{root}(t_1) \neq +$.
3. Whenever t contains a subterm of the form $t_1 + (t_2 + \ldots + (t_{n-1} + t_n) \ldots)$ with $t_1, \ldots, t_n \in \mathcal{V} \cup \{0, 1\}$, then $t_1 \succ_T t_2 \succ_T \ldots \succ_T t_{n-1} \succ_T t_n$.

A substitution σ is \mathbb{Z}-normal iff $\sigma(x)$ is \mathbb{Z}-normal for all variables x.

Example 13.6. Let $x \succ_T y \succ_T z \succ_T 1 \succ_T 0$. Then $f(x + y, y + (z + 1))$ is \mathbb{Z}-normal. $f(x+0, 0)$ is not \mathbb{Z}-normal since $x+0$ is reducible by $\rightarrow E_{Thz} \setminus S_{Thz}$. $f(0, 1+x)$ is not \mathbb{Z}-normal since $1 \not\succ_T x$.

Notice that for ground terms, the conditions in Definition 13.5 imply that nested occurrences of the function symbol $+$ have the form $1 + (1 + \ldots + (1 + 1) \ldots)$ or $-1 + (-1 + \ldots + (-1 + -1) \ldots)$.

The actual choice of the well-founded order \succ_T used in the definition of \mathbb{Z}-normal terms is not important since it will not be used explicitly. Furthermore, the definition of \mathbb{Z}-normal terms can be replaced by a different definition as long as the statements of Lemma 13.7 and Lemma 13.8 below are satisfied.

The following lemma relates the notions of \mathbb{Z}-free terms and \mathbb{Z}-normal terms. In particular, every \mathbb{Z}-free term is also \mathbb{Z}-normal.

Lemma 13.7. Let t be a \mathbb{Z}-free term.
1. \(t \) is \(\mathbb{Z} \)-normal.

2. For any substitution \(\sigma \), the term \(t\sigma \) is \(\mathbb{Z} \)-normal iff \(\sigma \) is \(\mathbb{Z} \)-normal.

Next, it is possible to show that every term is equivalent up to \(\mathcal{S}_{\mathcal{T}h_2} \) and \(\mathcal{E}_{\mathcal{T}h_2} \) to a term that is \(\mathbb{Z} \)-normal. Therefore, the set of \(\mathbb{Z} \)-normal terms can indeed serve as a set of representatives for all terms.

Lemma and Definition 13.8. For any term \(t \), a \(\mathbb{Z} \)-normal term \(\text{norm}(t) \) can be computed such that \(t \leftrightarrow^* \mathcal{S}_{\mathcal{T}h_2} \cup \mathcal{E}_{\mathcal{T}h_2} \text{norm}(t) \). Furthermore, \(s \leftrightarrow^* \mathcal{S}_{\mathcal{T}h_2} \cup \mathcal{E}_{\mathcal{T}h_2} \) implies \(\text{norm}(s) = \text{norm}(t) \) for all terms \(s, t \). For any substitution \(\sigma \), the substitution \(\text{norm}(\sigma) \) is given by \(\text{norm}(\sigma)(x) = \text{norm}(\sigma(x)) \).

Example 13.9. If \(x >_T y >_T 1 \), then \(\text{norm}(f(c(x), (1 + y) + (x + 0))) = f(c(x), x + (y + 1)) \). \(\triangle \)

The rewrite relation of a \(\mathbb{Z} \)-CERS is now restricted to operate on \(\mathbb{Z} \)-normal terms. Notice that the only difference to Definition 3.15 is in condition 1, where \(s|_p = l\sigma \) is used instead of the more complex \(s|_p \overset{\mathcal{E}}{\rightarrow} \mathcal{S} \circ \overset{\mathcal{E}}{\rightarrow} l\sigma \).

Definition 13.10 (Rewrite Relation of a \(\mathbb{Z} \)-CERS). Let \(\mathcal{R} \) be a \(\mathbb{Z} \)-CERS and let \(s \) be a \(\mathbb{Z} \)-normal term. Then \(s \rightarrow_{\mathcal{R}, \mathbb{Z}} t \) iff there exist a constrained rewrite rule \(l \rightarrow r{[\varphi]} \in \mathcal{R} \), a position \(p \in \mathcal{P}os(s) \), and a substitution \(\sigma \) such that

1. \(s|_p = l\sigma \),
2. \(\varphi\sigma \) is \(\mathcal{T}h_\mathbb{Z} \)-valid, and
3. \(t = s[r\sigma]|_p \).

Notice that all (sort-correct) substitutions are \(\mathcal{T}h_\mathbb{Z} \)-based since \(\mathcal{F} \) does not contain function symbols with resulting sort \(\text{int} \). Also, notice that the substitution \(\sigma \) in Definition 13.10 is \(\mathbb{Z} \)-normal since \(s \) is \(\mathbb{Z} \)-normal.
Chapter 13. Inductive Theorem Proving with CERSs

For the rewrite relation defined this way to be meaningful, it has to be ensured that rewriting a Z-normal term again results in a Z-normal term. This easily follows from the assumption that left- and right-hand sides of the rules in a Z-CERS are Z-free. Furthermore, it becomes possible to relate $\to_{R,Z}$ to $S \rightarrow_{Th\parallel E\setminus R}$. In particular, for any Z-CERS, $\to_{R,Z}$ is terminating if $S \rightarrow_{Th\parallel E\setminus R}$ is terminating. Thus, the methods developed for proving termination of general CERSs in this dissertation can also be used for showing termination of Z-CERSs.

Lemma 13.11. Let (R, S, E) be a Z-CERS, let s be a Z-normal term, and let t be a term such that $s \rightarrow_{R,Z} t$.

1. t is Z-normal.
2. If s is furthermore Z-free, then t is Z-free as well.
3. $s \rightarrow_{Th\parallel E\setminus R} t$. Thus, $\to_{R,Z}$ is terminating on Z-normal terms if $S \rightarrow_{Th\parallel E\setminus R}$ is terminating.

For the converse of Lemma 13.11.3, the following result can be obtained. In particular, termination of $\to_{R,Z}$ on Z-normal terms is thus equivalent to termination of $S \rightarrow_{Th\parallel E\setminus R}$.

Lemma 13.12. Let (R, S, E) be a Z-CERS and let s, t be terms. If $s \rightarrow_{Th\parallel E\setminus R} t$, then norm$(s) \rightarrow_{R,Z}$ norm(t). Thus, $S \rightarrow_{Th\parallel E\setminus R}$ is terminating if $\to_{R,Z}$ is terminating on Z-normal terms.

13.2 Quasi-Reductivity and Confluence

In order to use Z-CERSs in the context of inductive theorem proving, it becomes necessary to impose certain (semantical) restrictions. Similar conditions need to be imposed for inductive theorem proving with ordinary TRSs, and this section extends
these properties to \mathbb{Z}-CERSs. Additionally, it is discussed how these properties can be ensured for a class of \mathbb{Z}-CERSs that is sufficient for most practical purposes. First, the following definitions are needed.

Definition 13.13 (Constructor Ground Terms and Substitutions). A ground term t is a constructor ground term if $t \in \mathcal{T}(\mathcal{C}(\mathcal{R}) \cup \mathcal{F}_{\mathbb{Th}_Z})$. A ground substitution σ is a constructor ground substitution if $\sigma(x) \in \mathcal{T}(\mathcal{C}(\mathcal{R}) \cup \mathcal{F}_{\mathbb{Th}_Z})$ for all variables x.

In the following, it is assumed that each sort of a \mathbb{Z}-CERS has at least two distinct constructor ground terms.\(^2\)

The first property of a \mathbb{Z}-CERS \mathcal{R} needed for inductive theorem proving is that the defined functions in $\mathcal{D}(\mathcal{R})$ are total, i.e., result in a constructor ground term when applied to constructor ground terms. More precisely, it suffices to consider \mathbb{Z}-normal constructor ground terms since $\rightarrow_{\mathcal{R},\mathbb{Z}}$ is only defined on \mathbb{Z}-normal terms.

Definition 13.14 (Quasi-Reductivity). A \mathbb{Z}-CERS \mathcal{R} is quasi-reductive iff every \mathbb{Z}-normal ground term of the form $f(t_1, \ldots, t_n)$ with $f \in \mathcal{D}(\mathcal{R})$ and \mathbb{Z}-normal constructor ground terms t_1, \ldots, t_n is reducible by $\rightarrow_{\mathcal{R},\mathbb{Z}}$.

Example 13.15. The \mathbb{Z}-CERS from Example 13.4 is quasi-reductive. If the last rule is omitted, then the resulting \mathbb{Z}-CERS is not quasi-reductive since the \mathbb{Z}-normal ground term $\text{prefix}((\text{cons}(0, \text{nil}), \text{cons}(1, \text{nil})))$ is not reducible by $\rightarrow_{\mathcal{R},\mathbb{Z}}$. \triangle

For ordinary TRSs, quasi-reductivity is equivalent to *sufficient completeness* \(^{[93]}\) under suitable assumption (see [106], where quasi-reductivity is called *quasi-reducibility w.r.t. constructors*).

The second property imposed on a \mathbb{Z}-CERS is *confluence*, i.e., \mathcal{E}-confluence for $\mathcal{E} = \emptyset$. This property will only be needed in order to disprove false conjectures. For the sake of completeness, the definition of confluence is as follows.

\(^2\)This restriction is not severe in practice and excludes conjectures such as $x \equiv y$ for distinct variables x and y from being true.
Definition 13.16 (Confluence). A Z-CERS \mathcal{R} is confluent iff $\leftarrow^{*}_{\mathcal{R},Z} \circ \rightarrow^{*}_{\mathcal{R},Z} \subseteq \rightarrow^{*}_{\mathcal{R},Z} \circ \leftarrow^{*}_{\mathcal{R},Z}$.

Confluence implies the uniqueness of normal forms, whereas quasi-reductivity implies that each ground term can be reduced to a constructor ground term (if the Z-CERS is terminating). Thus, if both properties are satisfied, then each ground term has a unique constructor ground term as its normal form.

Checking whether a Z-CERS is quasi-reductive and confluent seems to be a hard problem in general. Thus, a restricted class of Z-CERSs is considered in the following. For this class, checking for quasi-reductivity is easily possible. Furthermore, Z-CERSs from this class are always confluent.

First, it is required that the left-hand sides of rules are linear and constructor-based. This is important in order to check for quasi-reductivity. In order to ensure confluence, it is required that the rules are “disjoint” in the sense that at most one rule is applicable to each position in any term. Notice that two rules might have identical left-hand sides as long as the conjunction of the Th_Z-constraints of these rules is not satisfiable.

Notational Convention 13.17. For any Z-CERS \mathcal{R}, $\hat{\mathcal{C}}(\mathcal{R}) := \mathcal{C}(\mathcal{R}) \cup \{0, 1\}$

Definition 13.18 (Normal Z-CERS). A Z-CERS \mathcal{R} is normal iff

1. For all $l \rightarrow r[\varphi] \in \mathcal{R}$, the term l is linear and has the form $f(l_1, \ldots, l_n)$ with $l_1, \ldots, l_n \in T(\hat{\mathcal{C}}(\mathcal{R}), V)$.

2. For any two rules $l_1 \rightarrow r_1[\varphi_1], l_2 \rightarrow r_2[\varphi_2]$, either $l_1 = l_2$ or l_1, l_2 are not unifiable after their variables have been renamed apart.

3. For any two non-identical rules $l_1 \rightarrow r_1[\varphi_1], l_2 \rightarrow r_2[\varphi_2]$ with $l_1 = l_2$, the constraint $\varphi_1 \land \varphi_2$ is Th_Z-unsatisfiable.

\footnote{This condition could be relaxed by identifying terms that are identical up to a variable-renaming.}
4. Whenever \(l_1 \rightarrow r_1[\varphi_1], \ldots, l_n \rightarrow r_n[\varphi_n] \) are all rules with identical left-hand sides, then the constraint \(\varphi_1 \lor \ldots \lor \varphi_n \) is Th\(_Z\)-valid.

Example 13.19. The Z-CERS from Example 13.4 is a normal Z-CERS. \(\triangle \)

Using conditions 1, 2, and 4 in Definition 13.18, the following decidability result can be obtained by reducing quasi-reductivity of normal Z-CERSs to quasi-reductivity of ordinary left-linear constructor-based TRSs. Quasi-reductivity of ordinary TRSs satisfying these conditions is well-known to be decidable (see, e.g., [78, 94]).

Theorem 13.20. It is decidable whether a normal Z-CERS is quasi-reductive.

Next, it can be shown that normal Z-CERSs are always confluent, regardless of whether they are terminating or not. This result follows from conditions 1, 2, and 3 in Definition 13.18 since these conditions imply that normal Z-CERSs are a suitable generalization of orthogonal ordinary TRSs (which are also known to be confluent, regardless of whether they are terminating or not [149]).

Theorem 13.21. Every normal Z-CERS is confluent.

13.3 Inductive Theorem Proving

The atomic conjectures in inductive theorem proving are equalities between terms. In this dissertations, a generalized form of these atomic conjectures is used that also incorporates a Th\(_Z\)-constraint.

Definition 13.22 (Atomic Conjectures). An atomic conjecture has the form \(s \equiv t[\varphi] \) for Z-free terms \(s,t \) and a Th\(_Z\)-constraint \(\varphi \) such that \(\text{sort}(s) = \text{sort}(t) \) and \(\text{sort}(s) \neq \text{int} \). As usual, a constraint of the form \(\top \) will be omitted.
Chapter 13. Inductive Theorem Proving with CERSs

Example 13.23. For the \mathbb{Z}-CERS from Example 13.4, \texttt{prefix}(xs,xs) \equiv xs is an atomic conjecture. △

Notice that atomic conjectures satisfy the same requirements that are imposed on the rewrite rules in a \mathbb{Z}-CERS (except for the variable condition $\mathcal{V}(t) \cup \mathcal{V}(\varphi) \subseteq \mathcal{V}(s)$).

Intuitively, an atomic conjecture $s \equiv t[\varphi]$ is true whenever $s\sigma$ and $t\sigma$ are “equal” up to the rules of a \mathbb{Z}-CERS for all \mathbb{Z}-normal constructor ground substitutions σ that make φ true. This is of course equivalent to showing that the implication $\varphi\sigma \Rightarrow s\sigma \equiv t\sigma$ is true in the context of the \mathbb{Z}-CERS for all \mathbb{Z}-normal constructor ground substitutions σ.

Definition 13.24 (Inductive Theorems). An atomic conjecture $s \equiv t[\varphi]$ is an inductive theorem of a \mathbb{Z}-CERS \mathcal{R} iff $s\sigma \leftrightarrow^*_{\mathcal{R},\mathbb{Z}} t\sigma$ for all \mathbb{Z}-normal constructor ground substitutions σ such that $\varphi\sigma$ is $\text{Th}_\mathbb{Z}$-valid. A set of atomic conjectures in an inductive theorem iff all of its elements are inductive theorems.

Example 13.25. It will be shown below that the atomic conjecture \texttt{prefix}(xs,xs) \equiv xs from Example 13.23 is an inductive theorem. △

There are other possible definitions of when an atomic conjecture is an inductive theorem. The most general (sensible) definition of an inductive theorem would be that $s\sigma \leftrightarrow^*_{\mathcal{R} \cup \mathcal{E}_{\text{Th}_\mathbb{Z}} \cup \mathcal{S}_{\text{Th}_\mathbb{Z},\mathbb{Z}}} t\sigma$ for all ground substitutions σ such that $\varphi\sigma$ is $\text{Th}_\mathbb{Z}$-valid (not only for all \mathbb{Z}-normal constructor ground substitutions σ). Due to the shape of \mathbb{Z}-CERSs and atomic conjectures, however, this is already implied by the condition from Definition 13.24 if the \mathbb{Z}-CERS is quasi-reductive.

Lemma 13.26. If $s \equiv t[\varphi]$ is an inductive theorem of a quasi-reductive \mathbb{Z}-CERS \mathcal{R}, then $s\sigma \leftrightarrow^*_{\mathcal{R} \cup \mathcal{E}_{\text{Th}_\mathbb{Z}} \cup \mathcal{S}_{\text{Th}_\mathbb{Z},\mathbb{Z}}} t\sigma$ for all ground substitutions σ such that $\varphi\sigma$ is $\text{Th}_\mathbb{Z}$-valid.

The inductive theorem proving method for \mathbb{Z}-CERSs developed in this dissertation is based on Reddy’s *term rewriting induction* [147]. The presentation follows
Chapter 13. Inductive Theorem Proving with CERSs

[7, 9]. The main idea of this method is to expand certain subterms of an atomic conjecture using narrowing with the rewrite rules of a Z-CERS.

Definition 13.27 (Basic Terms). A Z-free term \(t \) is basic iff \(t = f(t_1, \ldots, t_n) \) where \(f \in D(R) \) and \(t_1, \ldots, t_n \in T(\mathcal{C}(R), V) \).

Example 13.28. In Example 13.4, the term \(\text{prefix}(xs, xs) \) is basic. \(\triangle \)

Expansion of a basic subterm is now done as follows. Notice that the constraints of the atomic conjecture and the rewrite rule are combined and instantiated and that it is checked whether the resulting constraint is still satisfiable. Furthermore, notice that the substitutions used for narrowing are computed using syntactic unification and not \(Th_Z \)-unification. This is in analogy to the definition of the rewrite relation of a Z-CERS which is based on syntactic matching and not on \(Th_Z \)-matching.

Definition 13.29 (Expd). For an atomic conjecture \(s \equiv t[\varphi] \), a basic term \(u \) such that \(s = C[u] \), and a Z-CERS \(R \), the set \(\text{Expd}_u(s, t, \varphi) \) is defined as

\[
\text{Expd}_u(s, t, \varphi) = \{ C[r] \sigma \equiv t\sigma[\varphi \sigma \land \psi \sigma] \mid l \rightarrow r[\psi] \in R, \sigma = \text{mgu}(u, l), \text{ and } \varphi \sigma \land \psi \sigma \text{ is } Th_Z \text{-satisfiable} \}
\]

Here, it has been assumed that the variables of \(l \rightarrow r[\psi] \) have been renamed to be disjoint from the variables of \(s \equiv t[\varphi] \).

Example 13.30. Consider the Z-CERS from Example 13.4 and the atomic conjecture \(\text{prefix}(xs, xs) \equiv xs \) from Example 13.23.

1. For the first rule, \(\text{mgu}(\text{prefix}(xs, xs), \text{prefix}(\text{nil}, ys')) = \{ xs \mapsto \text{nil}, ys' \mapsto \text{nil} \} \).

2. For the second rule, the terms \(\text{prefix}(xs, xs) \) and \(\text{prefix}(\text{cons}(x', xs'), \text{nil}) \) are not unifiable.

3. For the third rule, \(\text{mgu}(\text{prefix}(xs, xs), \text{prefix}(\text{cons}(x', xs'), \text{cons}(y', ys'))) = \{ xs \mapsto \text{cons}(x', xs'), y' \mapsto x', ys' \mapsto xs' \} \) and the constraint \(x' \simeq x' \) obtained after instantiation with the most general unifier is \(Th_Z \)-satisfiable.
4. For the fourth rule, \(\text{mgu} (\text{prefix}(xs, xs), \text{prefix}(x', xs'), \text{cons}(y', ys')) = \{xs \mapsto \text{cons}(x', xs'), y' \mapsto x', ys' \mapsto xs'\} \) and the constraint \(x' \not\equiv x' \) obtained after instantiation with the most general unifier is not \(\text{Th}_Z \)-satisfiable.

Therefore, \(\text{Expd}_u(s, t, \varphi)_{\text{prefix}(xs, xs)}(\text{prefix}(xs, xs), xs, \top) \) consists of the two atomic conjectures \(\text{nil} \equiv \text{nil} \) and \(\text{cons}(x', \text{prefix}(xs', xs')) \equiv \text{cons}(x', xs') [x' \simeq x'] \). \(\triangle \)

It is easy to see that expanding an atomic conjecture using this definition produces atomic conjectures. This is important since it makes it possible to apply further expansions to these newly obtained atomic conjectures as well.

Lemma 13.31. Let \(s \equiv t[\varphi] \) be an atomic conjecture. Then \(\text{Expd}_u(s, t, \varphi) \) consists of atomic conjectures as well.

From now on it is assumed that \(\mathcal{R} \) is a quasi-reductive and terminating \(Z \)-CERS. In this case, the following technical result relates the atomic conjectures in \(\text{Expd}_u(s, t, \varphi) \) to the atomic conjecture \(s \equiv t[\varphi] \) and the rules in \(\mathcal{R} \). It is needed for the soundness proof of the inductive proof method (cf. Theorem 13.40 below).

Lemma 13.32. Let \(s \equiv t[\varphi] \) be an atomic constraint and let \(u \) be a basic term such that \(s = C[u] \).

1. \(s\sigma \rightarrow_{\mathcal{R}, Z} \circ \leftarrow_{\text{Expd}_u(s, t, \varphi)} t\sigma \) for any \(\mathcal{Z} \)-normal constructor ground substitution \(\sigma \) such that \(\varphi\sigma \) is \(\text{Th}_Z \)-valid.

2. If \(v \leftarrow_{\text{Expd}_u(s, t, \varphi), Z} w \), then \(v \leftarrow_{\mathcal{R} \cup \{s \rightarrow t[\varphi]\}, Z} w \).

The inductive proof method for \(Z \)-CERSs is given in Figure 13.1. Here, the notation \(s \equiv t[\varphi] \) is used to stand for one of \(s \equiv t[\varphi] \) and \(t \equiv s[\varphi] \). The inference rules operate on tuples \(\langle E, H \rangle \), where \(E \) consists of atomic conjectures that are to be proven and \(H \) consists of atomic conjectures that have been oriented as rewrite rules. These rules constitute the hypotheses in a proof by induction. The goal of an
inductive proof attempt is to obtain a tuple of the form \(\langle \emptyset, H \rangle \) starting from the tuple \(\langle E, \emptyset \rangle \). As shown below, this implies that all atomic conjectures in \(E \) are inductive theorems. If none of the inference rules is applicable to \(\langle E, H \rangle \) where \(E \neq \emptyset \), then the inductive proof attempt fails. Finally, an inductive proof attempt may also diverge (i.e., not terminate) or end in \(\perp \). As shown in Theorem 13.42, the later constitutes a disproof of (at least) one of the initial atomic conjectures.

The inference rule \textbf{Expand} uses Definition 13.29 to expand a basic subterm of an atomic conjecture. Then, this atomic conjecture is oriented as a rewrite rule and added to the set \(H \) of hypotheses. Notice that this addition is only allowed if the \(\mathbb{Z}\)-CERS consisting of \(\mathcal{R} \cup H \) and this newly obtained rule is terminating. This restriction is needed in order to obtain a sound inductive proof method.\(^4\)

The rule \textbf{Simplify} uses simplification with \(\mathcal{R} \) and the hypotheses in \(H \). For this,

\(^4\)Using the recent approach for proving non-orientable equations in term rewriting induction presented in \([7, 8]\) it might be possible to relax this requirement.
the constraint of the atomic conjecture that is to be simplified is taken into account by considering the following rewrite relation. It only differs from Definition 13.10 in condition 2, which now requires that the instantiated constraint of the rewrite rule is valid under the assumption of the constraint that is attached to the atomic conjecture that is getting simplified.

Definition 13.33 (Rewrite Relation of a Z-CERS on Constrained Terms). Let \mathcal{R} be a Z-CERS, let s be a Z-normal term, and let ψ be a Th_Z-constraint. Then $s[\psi] \rightarrow_{\mathcal{R},Z} t[\psi]$ iff there exist a constrained rewrite rule $l \rightarrow r[\varphi] \in \mathcal{R}$, a position $p \in \text{Pos}(s)$, and a substitution σ such that

1. $s|_p = l\sigma$,
2. $\psi \Rightarrow \varphi\sigma$ is Th_Z-valid, and
3. $t = s[r\sigma]|_p$.

Example 13.34. Given the rewrite rule $f(x) \rightarrow g(x) [x \geq 0]$ and the constrained term $f(y) [y > 0]$, Definition 13.33 gives $f(y) [y > 0] \rightarrow_{\mathcal{R},Z} g(y) [y > 0]$ since, for $\sigma = \{x \mapsto y\}$, $f(y) = f(x)\sigma$ and the constraint $y > 0 \Rightarrow (x \geq 0)\sigma$, i.e., $y > 0 \Rightarrow y \geq 0$, is Th_Z-valid. Notice that $f(y) \not\rightarrow_{\mathcal{R},Z} g(y)$ since $y \geq 0$ is not Th_Z-valid. \triangle

The rule Delete removes trivial atomic conjectures, and the rules Theory$_1$ and Theory$_2$ can be applied to atomic conjectures that do not contain any defined function symbols. These rules make use of a decision procedure for the theory LIAC that combines the linear theory of integers with the (free) constructor symbols from $\mathcal{C}(\mathcal{R})$. For this, Definition 3.1 is slightly extended to a many-sorted theory.

Definition 13.35 (LIAC). For a Z-CERS \mathcal{R}, the theory LIAC has the form LIAC = $(\mathcal{F}_{\text{LIAC}}, \mathcal{P}_{\text{LIAC}}, \mathcal{M}_{\text{LIAC}})$ where

1. $\mathcal{F}_{\text{LIAC}} = \{0, 1, +, -\} \cup \mathcal{C}(\mathcal{R})$
Chapter 13. Inductive Theorem Proving with CERSs

2. \(P_{\text{LIAC}} = \{\simeq, \geq, >\}^5 \)

3. \(M_{\text{LIAC}} = (M, (f^{\text{LIAC}})_{f \in \mathcal{F}_{\text{LIAC}}}, (p^{\text{LIAC}})_{p \in \mathcal{P}_{\text{LIAC}}}) \) where \(M = T(\mathcal{C}(\mathcal{R}) \cup \mathbb{Z}) \), the function symbols in \(\{0, 1, +, -\} \) and predicate symbols in \(P_{\text{LIAC}} \) are interpreted in the obvious way, and \(f^{\text{LIAC}}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n) \) for \(f \in \mathcal{C}(\mathcal{R}) \).

LIAC-validity and LIAC-satisfiability are decidable and decision procedures have been implemented, for instance in the SMT-solver CVC3 [24].

Example 13.36. Continuing Example 13.4, consider the (true) atomic conjecture \(\text{prefix}(xs, xs) \equiv xs \). The following derivation is a proof of this conjecture using the inference system \(I \):

\[
\langle \{\text{prefix}(xs, xs) \equiv xs\}, \emptyset \rangle \quad \text{Expand}
\]

\[
\langle \{\text{nil} \equiv \text{nil}, \text{cons}(x, \text{prefix}(xs, xs)) \equiv \text{cons}(x, xs)[x \simeq x]\}, \\
\{\text{prefix}(xs, xs) \rightarrow xs\} \rangle \quad \text{Delete}
\]

\[
\langle \{\text{cons}(x, \text{prefix}(xs, xs)) \equiv \text{cons}(x, xs)[x \simeq x]\}, \\
\{\text{prefix}(xs, xs) \rightarrow xs\} \rangle \quad \text{Simplify}
\]

\[
\langle \emptyset, \{\text{prefix}(xs, xs) \rightarrow xs\} \rangle \quad \text{Delete}
\]

As shown below, this implies that \(\text{prefix}(xs, xs) \equiv xs \) is an inductive theorem. \(\triangle \)

The notation \(\langle E, H \rangle \vdash_I \langle E', H' \rangle \) is used to denote that the tuple \(\langle E', H' \rangle \) has been obtained from \(\langle E, H \rangle \) by one of the inference rules in Figure 13.1. As usual, \(\vdash_I^\ast \) denotes the reflexive-transitive closure of \(\vdash_I \).

Next, several properties of the inference system \(I \) are shown. First, application of any inference rule except Theory\(_2\) leaves the convertibility relation of \(\mathcal{R} \cup E \cup H \) on \(\mathbb{Z} \)-normal ground terms unchanged. In particular, if \(\langle E, \emptyset \rangle \vdash_I^\ast \langle \emptyset, H \rangle \), then \(\leftrightarrow_{\mathcal{R} \cup E, \mathbb{Z}}^\ast = \leftrightarrow_{\mathcal{R} \cup E, \mathbb{Z}}^\ast \) on \(\mathbb{Z} \)-normal ground terms.

\(^5\)Strictly speaking, there is one predicate symbol \(\simeq_s \) for each sort \(s \). To simplify notation, these predicate symbols have been identified. Also, the predicate symbols \(\geq \) and \(> \) take two arguments of sort \(\text{int} \).
Lemma 13.37. If $\langle E_n, H_n \rangle \vdash_I \langle E_{n+1}, H_{n+1} \rangle$ using an inference rule other than Theory$_2$, then $\leftrightarrow^*_{\mathcal{R} \cup E_n \cup H_n \cup Z} = \leftrightarrow^*_{\mathcal{R} \cup E_{n+1} \cup H_{n+1} \cup Z}$ on \mathbb{Z}-normal ground terms.

The soundness proof of the inference system I is based on the following principle of Koike and Toyama [115] as reported in [7, 9] (where $\rightarrow_1 = \rightarrow_{\mathcal{R}, \mathbb{Z}}, \rightarrow_2 = \rightarrow_{H, \mathbb{Z}}$, and A is the set of \mathbb{Z}-normal ground terms):

Let $\rightarrow_1, \rightarrow_2$ be binary relations on a set A and let $\rightarrow_{1 \cup 2} = \rightarrow_1 \cup \rightarrow_2$.

Assume that

1. $\rightarrow_{1 \cup 2}$ is well-founded.
2. $\rightarrow_2 \subseteq \rightarrow_1 \circ \rightarrow^*_{1 \cup 2} \circ \rightarrow^*_{1 \cup 2}$

Then $\leftrightarrow^*_1 = \leftrightarrow^*_{1 \cup 2}$.

In order to show condition 2 of this principle, the next lemma first shows that if $\langle E, \emptyset \rangle \vdash^*_I \langle \emptyset, H \rangle$, then each application of an atomic conjecture from E can be simulated by a “valley proof” using \mathcal{R} and H.

Lemma 13.38. If $\langle E_n, H_n \rangle \vdash^*_I \langle \emptyset, H \rangle$ using inference rules other than Theory$_2$, then $\leftrightarrow^*_{E_n \cup Z} \subseteq \rightarrow^*_{\mathcal{R} \cup H \cup Z} \circ \rightarrow^*_{\mathcal{R} \cup H \cup Z}$ on \mathbb{Z}-normal ground terms.

Using this property, the following statement can be shown. It relates the final set of hypotheses H to the rules of the \mathbb{Z}-CERS \mathcal{R} and establishes condition 2 of the principle due to Koike and Toyama.

Lemma 13.39. If $\langle E, \emptyset \rangle \vdash^*_I \langle \emptyset, H \rangle$ using inference rules other than Theory$_2$, then $\rightarrow_{H \cup Z} \subseteq \rightarrow_{\mathcal{R}, \mathbb{Z}} \circ \rightarrow^*_{\mathcal{R} \cup H \cup Z} \circ \rightarrow^*_{\mathcal{R} \cup H \cup Z}$ on \mathbb{Z}-normal ground terms.

With these lemmas at hand, soundness of the inductive proof method based on the inference system I can be shown.
Chapter 13. Inductive Theorem Proving with CERSs

Theorem 13.40. For a quasi-reductive and terminating \mathbb{Z}-CERS \mathcal{R}, if $\langle E, \emptyset \rangle \vdash^*_\mathcal{I} \langle \emptyset, \mathcal{H} \rangle$, then all atomic conjectures in E are inductive theorems of \mathcal{R}.

Example 13.41. The function minmax computes a pair consisting of the minimum and the maximum of two integers.

\[
\begin{align*}
\text{minmax}(x, y) & \rightarrow \text{pair}(y, x) \ [x \geq y] \\
\text{minmax}(x, y) & \rightarrow \text{pair}(x, y) \ [y > x]
\end{align*}
\]

The following derivation is a proof of $\text{minmax}(x, y) \equiv \text{pair}(x, y)[y \geq x]$:

\[
\langle \{\text{minmax}(x, y) \equiv \text{pair}(x, y)[y \geq x]\}, \emptyset \rangle
\]

\[
\langle \{\text{pair}(y, x) \equiv \text{pair}(x, y)[y \geq x \land x \geq y], \text{pair}(x, y) \equiv \text{pair}(x, y)[y \geq x \land y > x]\}, \{\text{minmax}(x, y) \rightarrow \text{pair}(x, y)[y \geq x]\} \rangle
\]

\[
\langle \emptyset \{\text{minmax}(x, y) \rightarrow \text{pair}(x, y)[y \geq x]\} \rangle
\]

For the application of Theory_1, notice that $y \geq x \land x \geq y \Rightarrow \text{pair}(y, x) \simeq \text{pair}(x, y)$ is LIAC-valid. \(\triangle\)

While Theorem 13.40 only relies on the assumption that \mathcal{R} is quasi-reductive and terminating, the soundness of the inference rule Theory_2 that makes it possible to disprove atomic conjectures relies on \mathcal{R} being confluent.

Theorem 13.42. For a quasi-reductive, confluent, and terminating \mathbb{Z}-CERS \mathcal{R}, if $\langle E, \emptyset \rangle \vdash^*_\mathcal{I} \bot$, then at least one conjecture in E is not an inductive theorem of \mathcal{R}.

Example 13.43. The following normal \mathbb{Z}-CERS defines the function app that appends one list to the end of another list.

\[
\begin{align*}
\text{app}(\text{nil}, y) & \rightarrow y \\
\text{app}(\text{cons}(x, xs), y) & \rightarrow \text{cons}(x, \text{app}(xs, y))
\end{align*}
\]
Then, consider the atomic conjecture \(\text{app}(xs, ys) \equiv ys \), for which the following derivation can be obtained:

\[
\begin{align*}
&\langle \{\text{app}(xs, ys) \equiv ys\}, \emptyset \rangle \\
\quad \Rightarrow &\langle \{ys \equiv ys, \text{cons}(x, \text{app}(xs, ys)) \equiv ys\}, \{\text{app}(xs, ys) \rightarrow ys\}\rangle & \text{Expand} \\
\quad \Rightarrow &\langle \{\text{cons}(x, \text{app}(xs, ys)) \equiv ys\}, \{\text{app}(xs, ys) \rightarrow ys\}\rangle & \text{Delete} \\
\quad \Rightarrow &\langle \{\text{cons}(x, ys) \equiv ys\}, \{\text{app}(xs, ys) \rightarrow ys\}\rangle & \text{Simplify} \\
\quad \Rightarrow &\langle \text{Theory} \rangle & \text{Theory}_2
\end{align*}
\]

Thus, the atomic conjecture \(\text{app}(xs, ys) \equiv ys \) is not an inductive theorem. \(\triangle \)

13.4 Summary

This chapter has presented an inductive proof method for \(\mathbb{Z} \)-CERSs. This proof method is based on the implicit induction paradigm and couples inductive reasoning with a decision procedure for the theory \(\text{LIAC} \). Here, the (decidable) theory \(\text{LIAC} \) combines the linear theory of integers with the constructors of the \(\mathbb{Z} \)-CERS. The inductive proof method does not only make it possible to prove inductive conjectures, but also to disprove false conjectures. For this, the \(\mathbb{Z} \)-CERS needs to be confluent. Sufficient condition for ensuring confluence of \(\mathbb{Z} \)-CERSs have been developed in this chapter as well.
Chapter 14

Inductive Theorem Proving as a Decision Procedure

While the inference system \mathcal{I} from Chapter 13 provides a completely mechanical way to prove or disprove inductive conjectures once a strategy for the application of the inference rules has been fixed, it does not provide a decision procedure for inductive validity since derivations of the system may diverge or fail. The reason for a possible divergence is the inference rule Expand which could be applied again and again.

For methods employed in program verification, however, a decision procedure that can be used as a “black box” is preferable since an interactive use of inductive reasoning methods is typically only possible by trained experts. The goal of this chapter is to derive conditions on \mathbb{Z}-CERSs and conjectures under which the inference system \mathcal{I} can be used as a decision procedure, i.e., will always produce a proof or disproof of a conjecture if a suitable strategy on the use of the inference rules is employed. These conditions are mostly based on properties of the rewrite rules in a \mathbb{Z}-CERS that can be pre-computed during parsing. Thus, checking whether a
conjecture satisfies the conditions under which \(\mathcal{I} \) provides a decision procedure is easily possible and requires much less time than attempting a proof or disproof.

Work on identifying conditions under which inductive theorem proving provides a decision procedure with ordinary TRSs was initiated in [111] and later extended in [80, 82], also see [104]. These previous papers impose strong restrictions on both the TRSs and the conjectures. The functions defined by the TRS have to be given in such a way that any function \(f \) may only make recursive calls to the function \(f \) again. Often, it is necessary to allow calls to other auxiliary functions or even mutually recursive definitions. The first contribution of this chapter is to allow for both of these extension. All of [111, 80, 82, 104] impose the restriction that the conjectures contain a subterm of the form \(f(x_1, \ldots, x_n) \) for an \(f \in \mathcal{D}(\mathcal{R}) \) and pairwise distinct variables \(x_1, \ldots, x_n \). This term is then chosen as the basic subterm upon which the proof by induction is based. In this chapter, this restriction is relaxed as well by making it possible to have basic subterms where the arguments are not necessarily pairwise distinct variables.

In this chapter it is assumed that \(\mathcal{R} \) is a quasi-reductive, terminating normal \(\mathbb{Z} \)-CERS. Recall that \(\mathcal{R} \) is thus confluent, which is required for disproving conjectures.

14.1 Simple Decidable Conjectures

For the purpose of decidable induction, a restricted class of function definitions is considered. In its most simple form, functions may only make recursive calls to themselves. Furthermore, nesting of recursive calls is not permitted. This is captured by the following definition, adapted from [111].

Definition 14.1 (LIAC-Based Functions). A function \(g \in \mathcal{D}(\mathcal{R}) \) is LIAC-based iff all right-hand sides of rules in \(\mathcal{R}(g) \) have the form \(C[g(r^*_1), \ldots, g(r^*_m)] \) for some context
Chapter 14. Inductive Theorem Proving as a Decision Procedure

C over $\hat{C}(\mathcal{R})$ such that $r_k^* \in T(\hat{C}(\mathcal{R}), \forall)$ for all $1 \leq k \leq m$.

The strategy for the application of the inference rules in \mathcal{I} that turns \mathcal{I} into a decision procedure on certain conjectures is quite natural: First, a basic subterm of the conjecture is expanded. One condition on the conjecture will ensure that there is only one basic subterm, thus eliminating the non-determinism caused by several such subterms. After expanding this basic subterm, the newly obtained conjectures are simplified using \mathcal{R} and the inductive hypothesis. For this, it needs to be ensured that the hypothesis is always applicable. Finally, further conditions on the conjecture ensure that inductive validity of the conjectures obtained after simplification can be decided using the decision procedure for LIAC, i.e., using the inference rules Theory_1 and Theory_2.

The basic subterm used for expansion is restricted to have the form $g(x_1, \ldots, x_n)$, where x_1, \ldots, x_n are not necessarily pairwise distinct variables. This is a significant extension over [111, 80, 82, 104], where these variables need to be pairwise distinct. The reason for this restriction in [111, 80, 82, 104] is that the inductive hypothesis is then always applicable (under certain further assumptions discussed below).

In order to ensure that a non-linear hypothesis is applicable to all recursive calls of a LIAC-based function after application of the Expand-rule, it needs to be ensured that the corresponding arguments of the recursive calls are “equal”. More precisely, this needs to be required only under the assumption that these arguments are equal in the left-hand side of the rule since Expand does otherwise not create any new atomic conjectures to which the hypothesis needs to be applied. Notice that this property depends only on the rules in $\mathcal{R}(g)$ and is independent of the conjecture.

Definition 14.2 (ImpEq). Let g be LIAC-based. Then $(i, j) \in \text{ImpEq}(g)$ iff $1 \leq i < j \leq \text{arity}(g)$ such that the i^{th} and j^{th} argument of g have the same sort and

$$l_i \simeq l_j \Rightarrow \bigwedge_{k=1}^{m} r_{k,i} \simeq r_{k,j}$$

213
is LIAC-valid for all rules $g(l^*) \rightarrow C[g(r_1^*), \ldots, g(r_m^*)][\varphi] \in \mathcal{R}(f)$ where $l_i \simeq l_j \land \varphi$ is LIAC-satisfiable.

Hence, if a term of the form $g(l^*)\sigma$ is simplified using the rewrite rule $g(l^*) \rightarrow C[g(r_1^*), \ldots, g(r_m^*)][\varphi]$ and $(i, j) \in \text{ImpEq}(g)$, then $r_{k,i}\sigma = r_{k,j}\sigma$ for all $1 \leq k \leq m$ whenever $l_i\sigma = l_j\sigma$. The set $\text{ImpEq}(g)$ can easily be computed from the rules defining g with the help of a decision procedure for LIAC.

Example 14.3. The following normal \mathbb{Z}-CERS determines whether a list is pointwise bigger than another list of the same length.

\[
\begin{align*}
\text{ptwise}(\text{nil}, \text{nil}) & \rightarrow \text{true} \\
\text{ptwise}(\text{nil}, \text{cons}(y, ys)) & \rightarrow \text{false} \\
\text{ptwise}(\text{cons}(x, xs), \text{nil}) & \rightarrow \text{false} \\
\text{ptwise}(\text{cons}(x, xs), \text{cons}(y, ys)) & \rightarrow \text{ptwise}(xs, ys) \left[x \geq y \right] \\
\text{ptwise}(\text{cons}(x, xs), \text{cons}(y, ys)) & \rightarrow \text{false} \left[y > x \right]
\end{align*}
\]

Then $\text{ImpEq}(\text{ptwise}) = \{ \langle 1, 2 \rangle \}$. So see this, notice that the implications from Definition 14.2 are trivially true for the first, second, third, and fifth rules since these rules do not contain any recursive calls. For the fourth rule, the LIAC-validity of

\[
\text{cons}(x, xs) \simeq \text{cons}(y, ys) \Rightarrow xs \simeq ys
\]

is easily shown.

\[\triangle\]

The first version of decidable conjectures is now given as follows. Notice that only a simple form of basic terms is allowed, but that non-linearity is possible.

Definition 14.4 (Simple Conjectures). A simple conjecture is an atomic conjecture of the form $g(x^*) \equiv t[\varphi]$ such that the following conditions are satisfied:

1. $\mathcal{R} \cup \{ g(x^*) \rightarrow t[\varphi] \}$ is terminating.
2. \(\varphi = \top \)

3. The function \(g \) is LIAC-based.

4. \(x^* \) consists of variables and \(t \in T(\hat{C}(\mathcal{R}), \mathcal{V}) \).

5. Whenever \(x_i = x_j \) for \(i < j \), then \((i, j) \in \text{ImpEq}(g) \).

Example 14.5. For the Z-CERS from Example 14.3, the conjecture \(\text{ptwise}(xs, xs) \equiv \text{true} \) is simple. \(\triangle \)

Theorem 14.6. Using the strategy\(^1\) Expand \cdot Simplify\(^1\) \cdot (\text{Theory}_1 + \text{Theory}_2)^1\), where Simplify uses only the hypothesis from \(H \), it is decidable whether a simple conjecture is an inductive theorem.

The concept of LIAC-based functions is quite restrictive since a LIAC-based function may only make recursive calls to itself and not to any other function. The next definition generalizes the concept of a LIAC-based function by considering a set of function symbols that may make recursive calls to each other. Notice that nested recursive calls in right-hand sides are still not allowed.

Definition 14.7 (LIAC-Based Functions–Version 2). A set \(\mathcal{G} = \{g_1, \ldots, g_n\} \subseteq \mathcal{D}(\mathcal{R}) \) is LIAC-based iff all right-hand sides of rules in \(\mathcal{R}(\mathcal{G}) \) are of the form \(C[g_{k_1}(r_{i_1}^*), \ldots, g_{k_m}(r_{i_m}^*)] \) for some context \(C \) over \(\hat{C}(\mathcal{R}) \) such that \(r_{i_i}^* \in T(\hat{C}(\mathcal{R}), \mathcal{V}) \) and \(g_{k_i} \in \mathcal{G} \) for all \(1 \leq i \leq m \).

Example 14.8. This example uses free constructors to model lists and natural numbers using a Peano representation.

\[
\begin{align*}
\text{max}(O, y) & \rightarrow y \\
\text{max}(s(x), O) & \rightarrow s(x) \\
\text{max}(s(x), s(y)) & \rightarrow s(\text{max}(x, y))
\end{align*}
\]

\(^1\)In stating strategies, \(\cdot \) denotes sequential application, \(+ \) denotes alternative application, \(* \) denotes iterated application, and \(^1 \) denotes exhaustive iterative application.
maxlist(xs, nil) → nil
maxlist(nil, cons(y, ys)) → nil
maxlist(cons(x, xs), cons(y, ys)) → cons(max(x, y), maxlist(xs, ys))

Since maxlist makes a recursive call to max, the function maxlist is not LIAC-based. The set \{max, maxlist\}, however, is LIAC-based. △

In order to ensure that non-linear hypotheses are still applicable, the definition of \texttt{ImpEq} needs to be adapted as well. For this, the idea is to collect conditions on all members of a LIAC-based set of functions under which recursive calls to one of these functions g have equal arguments in positions i and j. These conditions are of the form \langle g', i', j' \rangle, meaning that equality of the arguments in positions i' and j' of the function g' ensures that recursive calls to g have equal arguments in positions i and j.

Definition 14.9 (\texttt{ImpEq}–Version 2). Let $\mathcal{G} = \{g_1, \ldots, g_n\}$ be a LIAC-based set of functions. Then \langle g, i, j, Γ $\rangle \in \texttt{ImpEq}(\mathcal{G})$ for $g \in \mathcal{G}$ iff $1 \leq i < j \leq \text{arity}(g)$, the i^{th} and j^{th} argument of g have the same sort, and $\Gamma = \{\langle g_{k_1}, i_1, j_1 \rangle, \ldots, \langle g_{k_m}, i_m, j_m \rangle\}$ such that for all $1 \leq \kappa \leq m$, $1 \leq i_\kappa < j_\kappa \leq \text{arity}(g_{k_\kappa})$ where the i_κ^{th} and j_κ^{th} argument of g_{k_κ} have the same sort and

$$\bigwedge_{\langle g_{k, i'}, j' \rangle \in \Gamma} l_{i'} \simeq l_{j'} \Rightarrow \bigwedge_{g_{k_\kappa} = g} r_{\kappa, i} \simeq r_{\kappa, j}$$

is LIAC-valid for all rules $g_k(l^*) \rightarrow C[g_{k_1}(r_1^*), \ldots, g_{k_m}(r_m^*)][\varphi] \in \mathcal{R}(\mathcal{G})$ for which

$$\bigwedge_{\langle g_{k, i'}, j' \rangle \in \Gamma} l_{i'} \simeq l_{j'} \land \varphi$$

is LIAC-satisfiable.

Notice that the set \texttt{ImpEq}(\mathcal{G}) is still easily computable from the rules defining \mathcal{G} with the help of a decision procedure for LIAC.

Definition 14.9 strictly generalizes Definition 14.2 even for a single LIAC-based function. To see this, consider the rule $f(\texttt{cons}(x, xs), \texttt{cons}(y, ys), \texttt{cons}(z, zs)) \rightarrow$
Chapter 14. Inductive Theorem Proving as a Decision Procedure

\(f(y, z, x) \). Using Definition 14.2, \(\text{Imp} \text{Eq}(f) = \emptyset \) since none of

\[
\begin{align*}
\text{cons}(x, x) \simeq \text{cons}(y, y) & \Rightarrow ys \simeq zs \\
\text{cons}(x, x) \simeq \text{cons}(z, z) & \Rightarrow ys \simeq xs \\
\text{cons}(y, y) \simeq \text{cons}(z, z) & \Rightarrow zs \simeq xs
\end{align*}
\]

is LIAC-valid. Using Definition 14.9, \(\text{Imp} \text{Eq} \{f\} \) is non-empty, containing (amongst others) \(\langle f, 1, 2, \{\langle f, 2, 3\rangle\} \rangle \). Notice, however, that \(\text{Imp} \text{Eq}(g) \) from Definition 14.2 and \(\text{Imp} \text{Eq} \{g\} \) from Definition 14.9 coincide if \(g \) is a LIAC-based function of arity 2.

The definition of a simple conjecture immediately generalizes to LIAC-based sets \(G \) of functions. Now, an atomic conjecture for each member of the \(G \) is needed. Also, notice the use of \(\text{Imp} \text{Eq}(G) \) to ensure applicability of the inductive hypotheses.

Definition 14.10 (Simple Conjectures–Version 2). A simple conjecture is a set of atomic conjectures of the form \(\{g_1(x_1^*) \equiv t_1[\varphi_1], \ldots, g_n(x_n^*) \equiv t_n[\varphi_n]\} \) such that the following conditions are satisfied:

1. \(R \cup \{g_1(x_1^*) \rightarrow t_1[\varphi_1], \ldots, g_n(x_n^*) \rightarrow t_n[\varphi_n]\} \) is terminating.
2. \(\varphi_i = \top \) for all \(1 \leq i \leq n \).
3. The set \(G = \{g_1, \ldots, g_n\} \) is LIAC-based.
4. \(x_i^* \) consists of variables and \(t_i \in T(\suit(R), \nu) \) for all \(1 \leq i \leq n \).
5. Whenever \(x_{k,i} = x_{k,j} \) for \(i < j \), then there exists an \(\langle g_k, i, j, \Gamma \rangle \in \text{Imp} \text{Eq}(G) \)

such that \(x_{k', j'} = x_{k', j'} \) for all \(\langle g_k', i', j' \rangle \in \Gamma \).

Example 14.11. In Example 14.8, the set \(\{\text{max}(x, x) \equiv x, \text{maxlist}(x, x) \equiv x\} \) is a simple conjecture. To see this, notice that \(\langle \text{maxlist}, 1, 2, \{\langle \text{maxlist}, 1, 2\rangle\} \rangle \) and \(\langle \text{max}, 1, 2, \{\langle \text{max}, 1, 2\rangle, \langle \text{maxlist}, 1, 2\rangle\} \rangle \) are in \(\text{Imp} \text{Eq}(\{\text{max}, \text{maxlist}\}) \) since the implications

\[
s(x) \simeq s(y) \Rightarrow x \simeq y
\]
Chapter 14. Inductive Theorem Proving as a Decision Procedure

\[
\text{cons}(x, xs) \simeq \text{cons}(y, ys) \Rightarrow x \simeq y \\
\text{cons}(x, xs) \simeq \text{cons}(y, ys) \Rightarrow xs \simeq ys
\]

are LIAC-valid. △

Theorem 14.12. Using the strategy \(\text{Expand}^* \cdot \text{Simplify}' \cdot (\text{Theory}_1 + \text{Theory}_2)' \), where \(\text{Expand} \) is applied once to each atomic conjecture of the set and \(\text{Simplify} \) uses only the hypotheses from \(H \), it is decidable whether a simple conjecture is an inductive theorem.

Example 14.13. All of the following conjectures are simple (see http://www.cs.unm.edu/~spf/sail2/ for the function definitions):

\[
\begin{align*}
\text{app}(xs, ys) & \equiv ys \\
\text{geq}(x, x) & \equiv \text{true} \\
\{ \text{maxlist}(xs, xs) \equiv xs, \text{max}(x, x) \equiv x \} & \\
\text{min}(x, x) & \equiv x \\
\{ \text{mix}(xs, xs) \equiv xs, \text{mix}'(xs, xs) \equiv xs \} & \\
\text{prefix}(xs, xs) & \equiv xs \\
\text{gtr}(x, x) & \equiv \text{false} \\
\text{maxlist}(xs, xs) & \equiv xs \\
\text{max}(x, x) & \equiv x \\
\text{minus}(x, x) & \equiv O \\
\text{plus}(x, y) & \equiv x \\
\text{ptwise}(xs, xs) & \equiv \text{true}
\end{align*}
\]

According to Theorems 14.6 and 14.12, it can be decided whether these conjectures are inductive theorems. △

14.2 Simple Decidable Conjectures with Nesting

The main restriction of the simple decidable conjectures from Section 14.1 is that nesting of defined function symbols is not permitted. This restriction was imposed in order to ensure that the inductive hypotheses are always applicable (if the \(\text{ImpEq} \)-requirement is satisfied), resulting in an atomic conjecture whose validity can be
decided using the inference rules Theory_1 or Theory_2 that make use of a decision for the theory LIAC.

For atomic conjectures with nested defined function symbols, this is not always the case since Expand might introduce a context from the right-hand side of a rule around the recursive calls. This context needs to be removed before the inductive hypotheses can be applied. This observation leads to the concept of compatibility, meaning that the \mathbb{Z}-CERS can handle the contexts introduced in right-hand sides of rules. This concept was initially defined in [111], but the presentation in this section follows the presentation in [82] which presents similar results for ordinary TRSs.

In order to present the ideas developed in this section uniformly for both LIAC-based functions and LIAC-based set of functions, the following definition generalizes these concepts.

Definition 14.14 (LIAC-Good Rewrite Rules and Functions). A constrained rewrite rule $l \rightarrow r[\varphi]$ is LIAC-good iff $r = C[g_1(r^*_1), \ldots, g_n(r^*_n)]$ where C is a context over $\hat{\mathcal{C}}(\mathcal{R})$ and $r^*_1, \ldots, r^*_n \in \mathcal{T}(\hat{\mathcal{C}}(\mathcal{R}), \mathcal{V})$ for $g_1, \ldots, g_n \in \mathcal{D}(\mathcal{R})$. A function $f \in \mathcal{D}(\mathcal{R})$ is LIAC-good if all rules in $\mathcal{R}(f)$ are LIAC-good.

Notice that, in particular, the rules of a LIAC-based function or a LIAC-based set of functions are LIAC-good.

Definition 14.15 (Compatibility). Let g be LIAC-based, let $1 \leq j \leq \text{arity}(g)$, and let Q be a set of LIAC-good rewrite rules. Then g is compatible with Q on argument j iff for all $f(l^*) \rightarrow C[g_1(r^*_1), \ldots, g_n(r^*_n)][\varphi] \in Q$ such that the j^{th} argument of g has the same sort as f,

\[
g(x_1, \ldots, x_{j-1}, C[z_1, \ldots, z_n], x_{j+1}, \ldots, x_m) \rightarrow_{\mathcal{R}, \mathcal{Z}}^*\]

D$[g(x_1, \ldots, x_{j-1}, z_{i_1}, x_{j+1}, \ldots, x_m), \ldots, g(x_1, \ldots, x_{j-1}, z_{i_k}, x_{j+1}, \ldots, x_m)]$

\[2\text{In [82], compatibility with exceptions has been defined. In order to keep the presentation simple, this is not considered in this dissertation.}\]
Chapter 14. Inductive Theorem Proving as a Decision Procedure

for a context D over $\hat{C}(\mathcal{R})$ and $i_1, \ldots, i_k \in \{1, \ldots, n\}$ such that $z_i \notin \mathcal{V}(D)$ for all $1 \leq i \leq n$.

If $Q = \mathcal{R}(f)$ for a function symbol f, then g is said to be compatible with f on argument j, and similarly for sets of function symbols.

Example 14.16. Consider the following \mathcal{Z}-CERS:

\[
\begin{align*}
\text{zip}(xs, nil) & \rightarrow \text{pnil} \\
\text{zip}(nil, \text{cons}(y, ys)) & \rightarrow \text{pnil} \\
\text{zip}(&\text{cons}(x, xs), \text{cons}(y, ys)) \rightarrow \text{pcons}(\text{pair}(x, y), \text{zip}(xs, ys)) \\
\text{fst}(\text{pnil}) & \rightarrow \text{nil} \\
\text{fst}(\text{pcons}(\text{pair}(x, y), xs)) & \rightarrow \text{cons}(x, \text{fst}(xs))
\end{align*}
\]

Then fst is compatible with zip on argument 1. For the first two zip-rules, C is pnil (a context without holes), and $\text{fst}(\text{pnil})$ rewrites to nil, i.e., $D = \text{nil}$. For the third zip-rule, C is $\text{pcons}(\text{pair}(x, y), \square)$ and $\text{fst}(\text{pcons}(\text{pair}(x, y), z_1))$ rewrites to $\text{cons}(x, \text{fst}(z_1))$, i.e., $D = \text{cons}(x, \square)$.

While Definition 14.15 considers the rules in Q independently for each context C from a right-hand side, the property from the definition can be lifted to nested contexts C that are obtained from several rules’ right-hand sides. These contexts can be obtained if several rules from Q are applied after another.

Definition 14.17 (Repeated Q-Contexts). Let Q be a set of LIAC-good rewrite rules. A context C is a Q-context iff there exists a constrained rewrite rule $f(l^*) \rightarrow C[g_1(r_1^*), \ldots, g_n(r_n^*)][\varphi] \in Q$. A context C is a repeated Q-context iff C is a Q-context or there are repeated Q-contexts D, C_1, \ldots, C_m such that $C = D[C_1, \ldots, C_m]$.

If $Q = \mathcal{R}(f)$, (repeated) Q-contexts are also called (repeated) f-contexts, and similarly for sets of function symbols. Now, it can be shown that the property from Definition 14.15 lifts from the Q-contexts considered there to repeated Q-contexts.
Lemma 14.18. Let \(g \) be compatible with \(Q \) on argument \(j \). Then, for every repeated \(Q \)-context \(C_Q \), there exists a repeated \(g \)-context \(C_g \) such that

\[
g(x_1, \ldots, x_{j-1}, C_Q[z_1, \ldots, z_n], x_{j+1}, \ldots, x_m) \rightarrow^{*}_{R, Z} C_g[g(x_1, \ldots, x_{j-1}, z_1, x_{j+1}, \ldots, x_m), \ldots, g(x_1, \ldots, x_{j-1}, z_i, x_{j+1}, \ldots, x_m)]
\]

where \(i, \ldots, i_k \in \{1, \ldots, n\} \) and \(z_i \not\in \mathcal{V}(C_g) \) for all \(1 \leq i \leq n \).

The concept of compatibility can be extended to arbitrarily deep nestings of functions, resulting in compatibility sequences.

Definition 14.19 (Compatibility Sequences). Let \(f_1, \ldots, f_{d-1} \) be LIAC-based and let \(f_d \) be LIAC-good for some \(d \geq 1 \). The sequence \(\langle f_1, \ldots, f_d \rangle \) is a compatibility sequence on arguments \(\langle j_1, \ldots, j_{d-1} \rangle \) iff \(f_i \) is compatible with \(f_{i+1} \) on argument \(j_i \) for all \(1 \leq i \leq d-1 \).

A term \(s \in T(\mathcal{F}, \mathcal{V}) \) has this compatibility sequence iff

\[
s = f_1(p_1^*, f_2(p_2^*, \ldots f_{d-1}(p_{d-1}^*, f_d(x^*), q_{d-1}^*) \ldots, q_2^*), q_1^*)
\]

such that the variables in \(x^* \) do not occur elsewhere in \(s \), the \(p_i^* \) and \(q_i^* \) are from \(T(\hat{\mathcal{C}}(R), \mathcal{V}) \), and \(f_i(p_i^*, f_{i+1}(\ldots), q_i^*)|_{j_i} = f_{i+1}(\ldots) \) for all \(1 \leq i \leq d-1 \).

If \(s \) is as in this definition, then \(s(\langle t \rangle) \) denotes the term obtained from \(s \) by replacing the term \(f_d(x^*) \) by the term \(t \). Then, it can be shown that any \(f_d \)-context can be handled in a term having a compatibility sequence.

Lemma 14.20. Let \(s \) be a term with the compatibility sequence \(\langle f_1, \ldots, f_d \rangle \) on arguments \(\langle j_1, \ldots, j_{d-1} \rangle \). Then, for every rule \(f_d(l^*) \rightarrow C[g_1(r_1^*), \ldots, g_n(r_n^*)][\varphi] \),

\[
s\langle C[g_1(r_1^*), \ldots, g_n(r_n^*)] \rightarrow^{*}_{R, Z} D[s(g_1(r_1^*)), \ldots, s(g_k(r_k^*))]\rangle
\]

for some context \(D \) over \(\hat{\mathcal{C}}(R) \) and \(i_1, \ldots, i_k \in \{1, \ldots, n\} \).
Chapter 14. Inductive Theorem Proving as a Decision Procedure

Now *simple nested conjectures* generalize the simple conjectures from Section 14.1 by allowing nested defined functions on the left-hand side, provided the left-hand side has a compatibility sequence.

Definition 14.21 (Simple Nested Conjectures). A simple nested conjecture is an atomic conjecture of the form $D[f(x^*)] \equiv t[\varphi]$ such that the following conditions are satisfied:

1. $\mathcal{R} \cup \{D[f(x^*)] \rightarrow t[\varphi]\}$ is terminating.
2. $\varphi = \top$
3. The term $D[f(x^*)]$ has a compatibility sequence and f is LIAC-based.
4. x^* consists of variables and $t \in \mathcal{T}(\hat{\mathcal{C}}(\mathcal{R}), \mathcal{V})$.
5. Whenever $x_i = x_j$ for $i < j$, then $(i, j) \in \text{ImpEq}(f)$.

Example 14.22. Continuing Example 14.16, the term $\text{fst}(\text{zip}(xs, xs))$ has the compatibility sequence $\langle \text{fst}, \text{zip} \rangle$ on arguments $\langle 1 \rangle$. Furthermore, $\langle 1, 2 \rangle \in \text{ImpEq}(\text{zip})$. Thus, $\text{fst}(\text{zip}(xs, xs)) \equiv xs$ is a simple nested conjecture. \triangle

Theorem 14.23. Using the strategy $\text{Expand} \cdot \text{Simplify}^* \cdot (\text{Theory}_1 + \text{Theory}_2)^*$, it is decidable whether a simple nested conjecture is an inductive theorem.

Of course, the concept of simple nested conjectures can be extended from LIAC-based functions to LIAC-based sets of functions, similarly to how this was done for simple conjectures in Section 14.1. First, notice that the definition of compatibility can already be applied to LIAC-based sets of functions.

Example 14.24. Take the function fst defined in Example 14.16 and add the following rules defining stitch.
Then $G = \{\text{stitch}, \text{stitch}'\}$ is LIAC-based and fst is compatible with G on argument 1, since for the third stitch-rule, the term $\text{fst}(\text{pcons}(\text{pair}(x, y), z_1))$ rewrites to $\text{cons}(x, \text{fst}(z_1))$, and similarly for the third stitch'-rule.

Now, the definition of simple nested conjectures can be revised as follows.

Definition 14.25 (Simple Nested Conjectures–Version 2). A simple nested conjecture is a set of atomic conjectures of the form

\[
\{D_f(x_1^*) \equiv t_1[\varphi_1], \ldots, D_f(x_n^*) \equiv t_n[\varphi_n]\}
\]

such that the following conditions are satisfied:

1. $R \cup \{D_f(x_1^*) \rightarrow t_1[\varphi_1], \ldots, D_f(x_n^*) \rightarrow t_n[\varphi_n]\}$ is terminating.

2. $\varphi_i = \top$ for all $1 \leq i \leq n$.

3. All of $D_f(x_1^*), \ldots, D_f(x_n^*)$ have a compatibility sequence and the set $G = \{f_1, \ldots, f_n\}$ is LIAC-based.

4. x_i^* consists of variables and $t_i \in T(\hat{C}(R), V)$ for all $1 \leq i \leq n$.

5. Whenever $x_{k,i} = x_{k,j}$ for $i < j$, then there exists an $\langle f_k, i, j, \Gamma \rangle \in \text{ImpEq}(G)$ such that $x_{k',i'} = x_{k',j'}$ for all $\langle f_{k'}, i', j' \rangle \in \Gamma$.

Example 14.26. In Example 14.24, the term $\text{fst}(\text{stitch}(xs, xs))$ has the compatibility sequence $\langle \text{fst}, \text{stitch} \rangle$ on arguments $\langle 1 \rangle$, and the term $\text{fst}(\text{stitch}'(xs, xs))$ has the compatibility sequence $\langle \text{fst}, \text{stitch}' \rangle$ on arguments $\langle 1 \rangle$. Since $\{\text{stitch}, \text{stitch}'\}$ is LIAC-based, $\{\text{fst}(\text{stitch}(xs, xs)) \equiv xs, \text{fst}(\text{stitch}'(xs, xs)) \equiv xs\}$ is a simple nested
Chapter 14. Inductive Theorem Proving as a Decision Procedure

conjecture because $\text{ImpEq}(\{\text{stitch, stitch}'\})$ contains $(\text{stitch}, 1, 2, \{\langle \text{stitch}', 1, 2 \rangle \})$ and $(\text{stitch}', 1, 2, \{\langle \text{stitch}, 1, 2 \rangle \})$.

Theorem 14.27. Using the strategy $\text{Expand}^* \cdot \text{Simplify}^* \cdot (\text{Theory}_1 + \text{Theory}_2)^\dagger$, where Expand is applied once to each atomic conjecture of the set, it is decidable whether a simple nested conjecture is an inductive theorem.

Example 14.28. All of the following conjectures are simple nested, but not simple:

\begin{align*}
\text{oddlist}(\text{alternate}(xs, xs)) & \equiv xs & \text{evenlist}(\text{alternate}(xs, xs)) & \equiv xs \\
\text{oddlist}(\text{alternate}(xs, ys)) & \equiv xs & \text{evenlist}(\text{alternate}(xs, ys)) & \equiv ys \\
\text{half}(\text{double}(x)) & \equiv x & \text{even}(\text{double}(x)) & \equiv true \\
\text{not}(\text{gtr}(x, x)) & \equiv true & \text{not}(\text{geq}(x, x)) & \equiv false \\
\text{fst}(\text{zip}(xs, xs)) & \equiv xs & \text{fst}(\text{zip}(xs, ys)) & \equiv xs \\
\{\text{fst}(\text{stitch}(xs, xs)) \equiv xs, \: \text{fst}(\text{stitch}'(xs, xs)) \equiv xs\} & & \\
\{\text{fst}(\text{stitch}(xs, ys)) \equiv xs, \: \text{fst}(\text{stitch}'(xs, ys)) \equiv xs\} & \end{align*}

According to Theorems 14.23 and 14.27, it can be decided whether these conjectures are inductive theorems.

14.3 Safe Generalizations

The conditions imposed on simple (nested) conjectures in Sections 14.1 and 14.2 ensure that the inductive hypotheses are always applicable and that an atomic conjecture containing no defined function symbols is obtained after application of the hypotheses. This is due to the restriction that the right-hand side of simple (nested) conjectures do not contain any defined symbols. For conjectures that contain defined symbols in both sides it is no longer the case that an atomic conjecture containing no defined function symbols is obtained after application of the inductive hypotheses. Thus, neither of the inference rules Theory_1 nor Theory_2 is applicable in general.
Chapter 14. Inductive Theorem Proving as a Decision Procedure

Figure 14.1: The inference system I' is obtained from I by replacing $Theory_1$ by $Theory_1'$ and $Theory_2$ by $Theory_2'$.

In order to circumvent this problem, a generalization that replaces subterms with a defined root symbol by fresh variables may be applied to the atomic conjecture. While this approach is clearly sound (i.e., if the generalized conjecture is an inductive theorem, then the original conjecture is an inductive theorem), it is not complete in general (i.e., the generalized conjecture might not be an inductive theorem, even though the original conjecture is an inductive theorem). In order to employ inductive reasoning as a decision procedure, these over-generalizations need to be ruled out, i.e., only safe generalizations should be considered.

Definition 14.29 (Safe Generalizations). Let $s \equiv t[\varphi]$ be an atomic conjecture. A safe generalization of $s \equiv t[\varphi]$ is an atomic conjecture $s' \equiv t'[\varphi']$ such that $s \equiv t[\varphi]$ is an inductive theorem iff $s' \equiv t'[\varphi']$ is an inductive theorem.

Safe generalizations can be added to the inference system I from Section 13.3 by modifying the inference rules $Theory_1$ and $Theory_2$. For this, a safe generalization that eliminates all defined symbols from the conjecture is applied before the decision procedure for LIAC is employed. The inference rules $Theory_1'$ and $Theory_2'$ given in Figure 14.1 are based on this idea, giving rise to the inference system I'.

The statements of Theorems 13.40 and 13.42 extend to the system I', i.e., the system is still correct and makes it possible to disprove conjectures.
Theorem 14.30. For a quasi-reductive, confluent, and terminating \(\mathbb{Z} \)-CERS \(\mathcal{R} \), if \(\langle E, \emptyset \rangle \vdash^+ _ \langle \emptyset, H \rangle \), then all atomic conjectures in \(E \) are inductive theorems of \(\mathcal{R} \).

Theorem 14.31. For a quasi-reductive, confluent, and terminating \(\mathbb{Z} \)-CERS \(\mathcal{R} \), if \(\langle E, \emptyset \rangle \vdash^+ _ \perp \), then at least one atomic conjecture in \(E \) is not an inductive theorem of \(\mathcal{R} \).

In the following, it is assumed that all rules in \(\mathcal{R} \) have the constraint \(\top \). Consequently, \(l \rightarrow r \) is written instead of \(l \rightarrow r[\varphi] \). Extending the ideas presented in the following to \(\mathbb{Z} \)-CERSs with constrained rewrite rules is left for future work.

In order to obtain safe generalizations, [82] has introduced the no-theory condition, meaning that a given term is not equivalent to any term containing no defined function symbols.

Definition 14.32 (No-Theory Condition). A \(\mathbb{Z} \)-free term \(t \) satisfies the no-theory condition (w.r.t. \(\mathcal{R} \)) iff there exists no term \(q \in \mathcal{T}(\widehat{\mathcal{C}}(\mathcal{R}), \mathcal{V}) \) such that \(t \equiv q \) is an inductive theorem of \(\mathcal{R} \). The defined function \(f \in \mathcal{D}(\mathcal{R}) \) satisfies the no-theory condition iff the term \(f(x^*) \) satisfies the no-theory condition for pairwise distinct variables \(x_1, \ldots, x_n \).

As already noticed in [82], the no-theory condition is in practice satisfied for almost all defined functions since defined functions that do not satisfy the no-theory condition could just be replaced by the term \(q \) from Definition 14.32.

Using the no-theory condition, safe generalizations can be obtained by replacing terms that satisfy this condition by fresh variables.

Theorem 14.33. Assume that \(t_1, \ldots, t_n, s_1, \ldots, s_m \) are pairwise equal or variable-disjoint terms satisfying the no-theory condition. For all contexts \(C, D \) over \(\widehat{\mathcal{C}}(\mathcal{R}) \) and fresh variables \(x_{t_i}, x_{s_j} \), the atomic conjecture \(C[t_1, \ldots, t_n] \equiv D[s_1, \ldots, s_m] \) is an inductive theorem if and only if \(C[x_{t_1}, \ldots, x_{t_n}] \simeq D[x_{s_1}, \ldots, x_{s_m}] \) is LIAC-valid.
Chapter 14. Inductive Theorem Proving as a Decision Procedure

It is in general unclear how the check whether a term satisfies the no-theory condition.\(^3\) In the following, this problem is investigated for defined functions, i.e., conditions under which a defined function \(f\) satisfies the no-theory condition are derived. For LIAC-based functions, the method based on candidate sets as defined in [82] can be used. For this, the right-hand side of a non-recursive \(f\)-rule is used in order to obtain a finite set of candidates for the term \(q\) from Definition 14.32.

Definition 14.34 (Candidate Sets). Let \(f\) be a LIAC-based function of arity \(n\). The candidate set \(Q(f)\) is defined as \(Q_{s^*}(r)\) for a non-recursive rule \(f(s_1,\ldots,s_n) \rightarrow r \in R(f)\). For the definition of \(Q_{s^*}(r)\), let \(x^* = x_1,\ldots,x_n\) be pairwise distinct fresh variables and define \(Q_{s^*}(t)\) for any \(t \in T(\hat{C}(R), V)\):

1. \(Q_{s^*}(x) = \{x_i \mid s_i = x\} \text{ if } x \in V\)
2. \(Q_{s^*}(c(t_1,\ldots,t_k)) = \{x_i \mid s_i = c(t_1,\ldots,t_k)\} \cup \{c(q_1,\ldots,q_k) \mid q_i \in Q_{s^*}(t_i) \text{ for all } 1 \leq i \leq k\}\)

As in [82], candidate sets can be used in order to conclude that a LIAC-based function satisfies the no-theory condition.

Theorem 14.35. Let \(f\) be LIAC-based. Then \(f\) satisfies the no-theory condition if for every \(q \in Q(f)\), there exists a rule \(l \rightarrow r \in R(f)\) such that \(l \downarrow_{f(x^*)-q} \neq r \downarrow_{f(x^*)-q}\). Here, \(\downarrow_{f(x^*)-q}\) denotes normalization by the rewrite rule \(f(x^*) \rightarrow q\).

Example 14.36. Consider the following function definition.

\[
\begin{align*}
\text{len}(\text{nil}) & \rightarrow \mathcal{O} \\
\text{len}(\text{cons}(x,xs)) & \rightarrow s(\text{len}(xs))
\end{align*}
\]

Then, it can be shown that \(\text{len}\) satisfies the no-theory condition. To see this, notice that \(Q(\text{len}) = Q_{\text{nil}}(\mathcal{O}) = \{\mathcal{O}\}\) and \(\text{len}(\text{cons}(x,xs)) \downarrow_{\text{len}(x_1) \rightarrow \mathcal{O}} = \mathcal{O} \neq s(\mathcal{O}) = s(\text{len}(xs)) \downarrow_{\text{len}(x_1) \rightarrow \mathcal{O}}\). \(\triangle\)

\(^3\)Some sufficient conditions for this are given in [82].

227
Chapter 14. Inductive Theorem Proving as a Decision Procedure

Deriving conditions under which a member of a LIAC-based set of functions satisfies the no-theory condition is harder. As a first special case, simple mutual recursive functions can be handled by unrolling [109].

Definition 14.37 (Simple Mutual Recursion). Let \(\{f_0, f_1\} \) be a LIAC-based set of functions. Then \(\{f_0, f_1\} \) is simple mutual recursive iff all \(f_i \)-rules for \(i = 0, 1 \) have the form \(f_i(l^*) \rightarrow C[f_{1-i}(x^*_1), \ldots, f_{1-i}(x^*_n)] \) such that \(x^*_j \) consists of pairwise distinct variables for all \(1 \leq j \leq n \) and the \(x^*_1, \ldots, x^*_n \) are pairwise disjoint.

Simple mutual recursive definitions can automatically be transformed into definitions that only use direct recursion. For this, the recursive calls to \(f_{1-i} \) on the right-hand sides are matched to the left-hand sides of the \(f_{1-i} \)-rules.

Definition 14.38 (Unrolling). Let \(\{f_0, f_1\} \) be simple mutual recursive. The unrolling of the \(f_i \)-rule \(f_i(l^*) \rightarrow C[f_{1-i}(x^*_1), \ldots, f_{1-i}(x^*_n)] \) is the set

\[
\{f_i(l^*) \tau \rightarrow C \tau[r_1, \ldots, r_n] \mid f_{1-i}(l_i^*) \rightarrow r_1, \ldots, f_{1-i}(l_n^*) \rightarrow r_n \in R(f_{1-i}), \\
\tau_j = \{x^*_j \mapsto l_j^*\} \text{ for all } 1 \leq j \leq n, \\
\text{and } \tau = \tau_1 \cup \ldots \cup \tau_n\}
\]

The unrolling of \(f_i \) is the union of the unrollings of all \(f_i \)-rules.

Example 14.39. Consider the following simple mutual recursive definitions of \texttt{even} and \texttt{odd}.

\[
\begin{align*}
\texttt{even}(O) & \rightarrow \texttt{true} \\
\texttt{even}(s(x)) & \rightarrow \texttt{odd}(x) \\
\texttt{odd}(O) & \rightarrow \texttt{false} \\
\texttt{odd}(s(x)) & \rightarrow \texttt{even}(x)
\end{align*}
\]

Then the unrollings of \texttt{even} and \texttt{odd} are as follows:

228
Notice that a single even-rule gives rise to two even-rules in the unrolling, and similarly for odd.

\[\text{Theorem 14.40.}\] Let \(\{f_0, f_1\}\) be simple mutual recursive. Then \(f_i\) satisfies the no-theory condition w.r.t. \(R\) if \(f_i\) satisfies the no-theory condition w.r.t. \(f_i\)'s unrolling.

Example 14.41. Using this result, it can be shown that even from Example 14.39 satisfies the no-theory condition by using its unrolled definition and Theorem 14.35. Using the first rule of the unrolling, \(Q(\text{even}) = \{\text{true}\}\), but \(\text{even}(s(O)) \not\rightarrow \text{true} = \text{false} \not\rightarrow \text{true}\). Using similar reasoning, it can also be shown that odd satisfies the no-theory condition.

For functions that are neither LIAC-based nor members of a simple mutual recursive set of functions, Theorem 14.35 can be adapted as follows. Then only difference is that subterms with a defined root symbol are abstracted by fresh variables after normalization with \(f(x^*) \rightarrow q\) and that instead of testing for equality a test for LIAC-satisfiability is performed.

\[\text{Theorem 14.42.}\] Let \(f\) be LIAC-good and let \(\text{CAP}_D\) replaces subterms with defined root symbols by fresh variables. Then \(f\) satisfies the no-theory condition if for every \(q \in Q(f)\), there exists a rule \(l \rightarrow r \in \mathcal{R}(f)\) such that \(l \downarrow f(x^*) \rightarrow q \simeq \text{CAP}_D(r \downarrow f(x^*) \rightarrow q)\) is LIAC-unsatisfiable.

Example 14.43. With this result, it can be shown that maxlist from Example 14.8 satisfies the no-theory condition. Using the first rule, \(Q(\text{maxlist}) = \{x_2, \text{nil}\}\) is
obtained. For the candidate \(x_2 \), a contradiction is obtained with the second \texttt{maxlist}-rule since \(\texttt{maxlist}(\texttt{nil}, \texttt{cons}(y, ys)) \downarrow_{\texttt{maxlist}(x_1, x_2) \rightarrow x_2} = \texttt{cons}(y, ys) \) and \(\texttt{cons}(y, ys) \simeq \texttt{nil} \) is LIAC-unsatisfiable. For \(\texttt{nil} \), the third \texttt{maxlist}-rule gives rise to a contradiction since \(\texttt{cap}_D(\texttt{cons}(\texttt{max}(x, y), \texttt{maxlist}(xs, ys))) \downarrow_{\texttt{maxlist}(x_1, x_2) \rightarrow \texttt{nil}} = \texttt{cons}(z, \texttt{nil}) \) and \(\texttt{nil} \simeq \texttt{cons}(z, \texttt{nil}) \) is LIAC-unsatisfiable.

\[\triangle \]

14.4 Complex Conjectures

In this section, a class of decidable conjectures that contains defined function symbols on both sides is identified. In order to decide the inductive validity of these conjectures, safe generalizations using the no-theory condition as introduced in Section 14.3 need to be utilized. Again, only single LIAC-based functions are considered initially and the case of LIAC-based sets of functions is considered afterwards.

In addition to the concept of compatibility as defined in Section 14.2, it becomes necessary to investigate how the left-hand sides of the rules defining a symbol from \(\mathcal{D}(\mathcal{R}) \) can be applied to the basic subterm of the conjecture using \texttt{Expand}. The \textit{definition schemes} as defined below collect all substitutions \(\sigma \) that are generated using \texttt{Expand}. Recall that \texttt{Expand} computes the most general syntactic unifiers of left-hand sides and a basic subterm of the conjecture.

Definition 14.44 (Definition Schemes). Let \(f \) be LIAC-good, let \(x^* \) consist of variables, and let \(l \rightarrow r \in \mathcal{R}(f) \). Then the definition scheme of \(f(x^*) \) for the rule \(l \rightarrow r \) is given by \(\text{Def}(f(x^*), l \rightarrow r) = \{ \sigma \mid \sigma = \text{mgu}(f(x^*), l) \} \). Furthermore, let \(\text{Def}(f(x^*)) = \bigcup_{l \rightarrow r \in \mathcal{R}(f)} \text{Def}(f(x^*), l \rightarrow r) \) and \(\text{Def}\mathcal{R}(f(x^*)) = \{ \langle l \rightarrow r, \text{Def}(f(x^*), l \rightarrow r) \rangle \mid l \rightarrow r \in \mathcal{R}(f) \text{ and } \text{Def}(f(x^*), l \rightarrow r) \neq \emptyset \} \).

Notice that \(\text{Def}(f(x^*), l \rightarrow r) \) has cardinality one if \(f(x^*) \) and \(l \) are unifiable and cardinality zero otherwise.
Chapter 14. Inductive Theorem Proving as a Decision Procedure

Example 14.45. Take the function \(\text{len} \) from Example 14.36 and add the rules defining \(\text{zip} \) from Example 14.16. Then, the term \(\text{len}(zs) \) has the definition scheme
\[
\text{Def}(\text{len}(zs)) = \{\sigma_1, \sigma_2\} \text{ with } \sigma_1 = \{zs \mapsto \text{nil}\} \text{ and } \sigma_2 = \{zs \mapsto \text{cons}(x, xs)\}.
\]
Furthermore, \(\text{Def}(\text{zip}(zs, zs)) = \{\sigma'_1, \sigma'_2\} \text{ with } \sigma'_1 = \{zs \mapsto \text{nil}\} \text{ and } \sigma'_2 = \{zs \mapsto \text{cons}(x, xs), y \mapsto x, ys \mapsto xs\}\).

Related to definition schemes are call schemes. A call scheme collects the instantiations of \(f(x^*) \) that are generated by \texttt{Expand}. Definition schemes and call scheme together contain roughly the same information as cover sets in the explicit induction framework [174]. Notice, however, that cover sets are only defined for terms \(f(x^*) \) such that \(x^* \) consists of pairwise distinct variables.

Definition 14.46 (Call Schemes). Let \(f \) be LIAC-based, let \(x^* \) consist of variables, and let \(\langle l \rightarrow r, \{\sigma\} \rangle \in \text{Def}\!\!\!\!\!\!R(f(x^*)) \). Then the call scheme of \(f(x^*) \) for the rule \(l \rightarrow r \) and the substitution \(\sigma \) is given by
\[
\text{Call}(f(x^*), l \rightarrow r, \sigma) = \{\tau \mid f(x^*)\tau = f(t^*)\sigma \text{ where } f(t^*) \text{ is a subterm of } r\}.
\]

Example 14.47. Continuing Example 14.45, \(\text{Call}(\text{len}(zs), \text{len}(\text{nil}) \rightarrow O, \{zs \mapsto \text{nil}\}) = \emptyset \) and \(\text{Call}(\text{len}(zs), \text{len}(\text{cons}(x, xs)) \rightarrow s(\text{len}(xs)), \{zs \mapsto \text{cons}(x, xs)\}) = \{\tau\} \) with \(\tau = \{zs \mapsto xs\} \).

Now a conjecture that contains defined symbols on both sides needs to satisfy various conditions. The first five conditions are nearly identical to the simple nested conjectures from Definition 14.21, but it now needs to be required that both sides of the conjecture have compatibility sequences. Conditions 5 and 6 are more complex. First, it is required that the definition schemes of the innermost basic terms on both sides of the conjecture coincide. The reason for this is that only the left-hand side of the conjecture is used for computing instantiations using \texttt{Expand}, and it needs to be ensured that the right-hand side can “handle” these substitutions, i.e., that the right-hand side can be simplified using rewriting. Finally, it needs to be ensured that either \texttt{Theory}_1' \texttt{ or } \texttt{Theory}_2' can be applied after simplifying the instantiated conjecture. For
Chapter 14. Inductive Theorem Proving as a Decision Procedure

this, it has to be ensured that maximal subterms with a defined root symbol satisfy
the no-theory condition since Theorem 14.33 can then be applied.

Definition 14.48 (Complex Conjectures). A complex conjecture is an atomic con-
jecture of the form $D[f(x^*)] \equiv E[g(y^*)][\varphi]$ such that the following conditions are
satisfied:

1. $\mathcal{R} \cup \{D[f(x^*)] \rightarrow E[g(y^*)][\varphi]\}$ is terminating.
2. $\varphi = \top$
3. The terms $D[f(x^*)]$ and $E[g(y^*)]$ have compatibility sequences, f is LIAC-based,
 and g is LIAC-good.
4. x^*, y^* consist of variables.
5. Whenever $x_i = x_j$ for $i < j$, then $(i, j) \in \text{ImpEq}(f)$.
6. $\text{Def}(f(x^*))$ and $\text{Def}(g(y^*))$ are identical up to variable-renamings if the substi-
tutions are restricted to y^*.
7. For any $\{l \rightarrow r, \{\sigma\}\} \in \text{DefR}(f(x^*))$, the terms in $M(l \rightarrow r, \sigma)$ are pairwise
 variable-disjoint and satisfy the no-theory condition. Here, the set $M(l \rightarrow r, \sigma)$
 consists of all maximal subterms with a defined root symbol4 of any term in
 $\{E[g_j(s^*_j)]\sigma'|\mathcal{R}, \mathcal{Z} \mid (g(s^*) \rightarrow C[g_1(s^*_1), \ldots, g_n(s^*_n)], \{\sigma'\}) \in \text{DefR}(g(y^*))$
 and $1 \leq j \leq n$ where σ' “corresponds” to σ\}
 $\cup \{E[g(y^*)]\tau|\mathcal{R}, \mathcal{Z} \mid \tau \in \text{Call}(f(x^*), l \rightarrow r, \sigma)\}$

 Here, the substitution corresponding to σ is the substitution that is identical to
 σ up to a variable-renaming if restricted to y^*, cf. condition 6.

Example 14.49. Take the function len from Example 14.36 and add the rules
defining zip from Example 14.16. Furthermore, add the following rules:

4For a term $C[t_1, \ldots, t_n]$ such that C is over $\mathcal{C}(\mathcal{R})$ and $\text{root}(t_i) \in \text{Def}(\mathcal{R})$ for all $1 \leq i \leq n$, these terms are t_1, \ldots, t_n. 232
Chapter 14. Inductive Theorem Proving as a Decision Procedure

\[
\begin{align*}
\text{plen}(\text{pnil}) & \rightarrow \emptyset \\
\text{plen}(\text{pcons}(x, xs)) & \rightarrow s(\text{plen}(xs))
\end{align*}
\]

Then, the conjecture \(\text{plen}(\text{zip}(zs, zs)) \equiv \text{len}(zs)\) is complex. To see this, notice that \(\text{plen}\) is compatible with \(\text{zip}\), that \(\langle 1, 2 \rangle \in \text{ImpEq}(\text{zip})\), and that the definition schemes \(\text{Def}(\text{zip}(zs, zs))\) and \(\text{Def}(\text{len}(zs))\) are identical if the substitutions are restricted to \(zs\), recall Example 14.45 Finally, notice that all terms in \(M(\text{zip}(xs, \text{nil}) \rightarrow \text{pnil}, \sigma_1) = \emptyset\) and \(M(\text{zip}(\text{cons}(x, xs), \text{cons}(y, ys)) \rightarrow \text{pcons}(\text{pair}(x, y), \text{zip}(xs, ys)), \sigma_2) = \{\text{len}(xs)\}\) are pairwise variable-disjoint and satisfy the no-theory condition. \(\triangle\)

Theorem 14.50. Using the strategy \(\text{Expand} \cdot \text{Simplify}^* \cdot (\text{Theory}_1^J + \text{Theory}_2^J)^\dagger\), it is decidable whether a complex conjecture is an inductive theorem.

In order to extend complex conjectures from a single LIAC-based function to a LIAC-based set of functions, the notion a call schemes needs to be extended. Now, calls from one function to another function are considered. Notice that definition schemes do not need to be adapted since they only depend on the left-hand sides of rules.

Definition 14.51 (Call Schemes–Version 2). Let \(f, g\) be members of LIAC-based set of functions, let \(x^*, y^*\) consist of variables, and let \(\langle l \rightarrow r, \{\sigma\} \rangle \in \text{DefR}(f(x^*))\). Then the call scheme of \(f(x^*)\) to \(g(y^*)\) for the rule \(l \rightarrow r\) is given by \(\text{Call}(f(x^*), g(y^*), l \rightarrow r, \sigma) = \{\tau \mid g(y^*)\tau = g(t^*)\sigma \text{ where } g(t^*) \text{ is a subterm of } r\}\).

Example 14.52. Take the original definitions of \(\text{even}\) and \(\text{odd}\) from Example 14.39. Then \(\text{Def}(\text{even}(z)) = \{\sigma_1, \sigma_2\}\), where \(\sigma_1 = \{z \mapsto O\}\) and \(\sigma_2 = \{z \mapsto s(x)\}\). Also, \(\text{Call}(\text{even}(z), \text{odd}(z), \text{even}(s(x)) \rightarrow \text{odd}(x), \sigma_2) = \{\tau\}\) with \(\tau = \{z \mapsto x\}\). \(\triangle\)

Example 14.53. Take the functions \(\text{stitch}\) and \(\text{stitch}'\) from Example 14.24. For the third \(\text{stitch}\)-rule, \(\text{Call}(\text{stitch}(zs, zs), \text{stitch}'(zs, zs), \ldots, \{zs \mapsto \text{cons}(x, xs)\}) = \{\tau\}\) where \(\tau = \{zs \mapsto xs\}\). \(\triangle\)
Chapter 14. Inductive Theorem Proving as a Decision Procedure

Complex conjectures for LIAC-based sets of functions are now the straightforward extension of Definition 14.48.

Definition 14.54 (Complex Conjectures–Version 2). A complex conjecture is a set of atomic conjectures \(\{D[f_1(x_1^*)] \equiv E_1[g_1(y_1^*))[\varphi_1], \ldots, D[f_n(x_n^*)] \equiv E_n[g_n(y_n^*)][\varphi_n]\} \) such that the following conditions are satisfied:

1. \(\mathcal{R} \cup \{D[f_1(x_1^*]) \rightarrow E_1[g_1(y_1^*))[\varphi_1]], \ldots, D[f_n(x_n^*)] \rightarrow E_n[g_n(y_n^*)][\varphi_n]\} \) is terminating.

2. \(\varphi_i = \top \) for all \(1 \leq i \leq n \).

3. The terms \(D[f_i(x_i^*)] \) and \(E_i[g_i(y_i^*)] \) have compatibility sequences for all \(1 \leq i \leq n \), the set \(\mathcal{G} = \{f_1, \ldots, f_n\} \) is LIAC-based, and \(g_1, \ldots, g_n \) are LIAC-good.

4. \(x_i^*, y_i^* \) consist of variables for all \(1 \leq i \leq n \).

5. Whenever \(x_{k,i} = x_{k,j} \) for \(i < j \), there exists an \(\langle f_k, i, j, \Gamma \rangle \in \text{ImpEq}(\mathcal{G}) \) such that \(x_{k',i'} = x_{k',j'} \) for all \(\langle f_{k'}, i', j' \rangle \in \Gamma \).

6. \(\text{Def}(f_i(x_i^*)) \) and \(\text{Def}(g_i(y_i^*)) \) are identical up to variable-renamings if the substitutions are restricted to \(y_i^* \) for all \(1 \leq i \leq n \).

7. For all \(1 \leq i \leq n \) and any \(\langle l \rightarrow r, \{\sigma\} \rangle \in \text{Def}(f_i(x_i^*)) \), the terms in \(M_i(l \rightarrow r, \sigma) \) are pairwise variable-disjoint and satisfy the no-theory condition. Here, the set \(M_i(l \rightarrow r, \sigma) \) consists of all maximal subterms with a defined root symbol of any term in

\[
\{E_i[h_j(s_j^*)]|\sigma'|_{\mathcal{R},Z} | \langle g_i(s^*) \rightarrow C[h_1(s_1^*), \ldots, h_m(s_m^*)], \{\sigma'\} \rangle \in \text{Def}(g_i(y_i^*))
\]

and \(1 \leq j \leq m \) where \(\sigma' \) “corresponds” to \(\sigma \)

\[
\bigcup_{j=1}^{n} \{E_j[g_j(y_j^*)]|\tau|_{\mathcal{R},Z} | \tau \in \text{Call}(f_i(x_i^*), f_j(x_j^*), l \rightarrow r, \sigma)\}
\]

Example 14.55. Continuing Example 14.52, add the following rules defining not:
Chapter 14. Inductive Theorem Proving as a Decision Procedure

\[
\begin{align*}
\text{not}(\text{true}) & \rightarrow \text{false} \\
\text{not}(\text{false}) & \rightarrow \text{true}
\end{align*}
\]

Then the conjecture \{\text{not}(\text{even}(z)) \equiv \text{odd}(z), \text{not}(\text{odd}(z)) \equiv \text{even}(z)\} is complex. For this, notice in particular that \text{even}(z) and \text{odd}(z) satisfy the no-theory condition. \triangle

Example 14.56. Continuing Example 14.53, add the rules for \text{len} from Example 14.36 and for \text{plen} from Example 14.49. Then, the conjecture \{\text{plen}(\text{stitch}(zs,zs)) \equiv \text{len}(zs), \text{plen}(\text{stitch}'(zs,zs)) \equiv \text{len}(zs)\} is complex. \triangle

Theorem 14.57. Using the strategy \text{Expand}^* \cdot \text{Simplify}^* \cdot (\text{Theory}_1 + \text{Theory}_2)^1, where \text{Expand} is applied once to each atomic conjecture of the set, it is decidable whether a complex conjecture is an inductive theorem.

Example 14.58. All of the following conjectures are complex, but neither simple nor simple nested:

\[
\begin{align*}
\{\text{not}(\text{even}(x)) & \equiv \text{odd}(x), \text{not}(\text{odd}(x)) \equiv \text{even}(x)\} \\
\text{min}(x,y) & \equiv \text{max}(x,y) \\
\{\text{plen}(\text{stitch}(xs,xs)) = \text{len}(xs), \text{plen}(\text{stitch}'(xs,xs)) = \text{len}(xs)\} \\
\text{plen}(\text{zip}(xs,xs)) & \equiv \text{len}(xs)
\end{align*}
\]

According to Theorems 14.50 and 14.57, it can be decided whether these conjectures are inductive theorems. \triangle

14.5 Implementation

The inductive proof method based on the inference systems \(\mathcal{I}\) and \(\mathcal{I}'\) has been implemented in the tool \text{Sail2}, the successor of \text{Sail} [65]. The implementation of the inference rules is straightforward. In order to check for termination of \(\mathcal{R} \cup \mathcal{H}\) in the
side condition of \texttt{Expand}, the implementation of the methods for proving termination of CERSs developed in this dissertation in the termination tool \texttt{AProVE} is used.

Furthermore, functions for checking whether a conjecture is simple, simple nested, or complex have been implemented in \texttt{Sail2}. In order to perform these checks as efficiently as possible, the following information is pre-computed while parsing the Z-CERS:

1. The set $\text{ImpEq}(\mathcal{G})$ is computed for each LIAC-based set of functions \mathcal{G}. This requires calls to the external tool CVC3 \cite{24} in order to check for LIAC-satisfiability and LIAC-validity.

2. Information on the compatibility between function symbols is computed. This is done using rewriting with the Z-CERS, and in order to ensure that this rewriting process is terminating it is first checked whether the Z-CERS is terminating.

3. If all rules of the Z-CERS are unconstrained, it is determined which defined functions satisfy the no-theory condition. This check is done using Theorem 14.35, Theorem 14.40, and Theorem 14.42 and might require further calls to CVC3.

Notice that definition schemes and call schemes are currently not computed at parse time. This would be possible, however, by considering all possible patterns of variables in Definition 14.44 and Definition 14.51.

\section*{14.6 Summary}

This chapter has identified several classes of conjectures whose inductive validity can be decided using (an extension of) the inference system \mathcal{I} by the canonical strategy $\texttt{Expand}^* \cdot \texttt{Simplify}^* \cdot (\text{Theory}_1 + \text{Theory}_2)^\dagger$. Decidability of inductive validity is obtained
by restricting the shape of the rewrite rules and requiring certain compatibility properties of the defined functions.

The classes of decidable conjectures introduced in this chapter are significant generalizations of the decidable conjectures considered in previous work [111, 80, 82, 104]. First, the rewrite rules that are admitted are less restricted since calls to auxiliary functions and even mutual recursive definitions are allowed. Additionally, the decidable conjectures may contain non-linear basic subterms. Finally, the tool Sail2 provides the first implementation of decidable induction since the methods for checking whether a conjecture is decidable presented in [111, 80, 82, 104] have not been implemented. The implementation in Sail2 has been successfully evaluated on a collection of examples. This evaluation confirms that checking whether the inductive validity of a conjecture is decidable is indeed much faster than attempting to prove or disprove it, cf. Chapter 15.
Chapter 15

Conclusions and Evaluation

This dissertation has presented an integration of natural numbers or integers and collection data structures such as sets or multisets into the term rewriting framework, resulting in constrained equational rewrite systems (CERSs). In order to take full advantage of the pre-defined semantics of natural numbers or integers, the rewrite rules of a CERS are equipped with constraints from quantifier-free Presburger arithmetic and the rewrite relation of a CERS utilizes a decision procedure in order to check for validity of the instantiated constraints. Collection data structures are integrated in a way that closely corresponds to their intuitive semantics, and this approach results in a rewrite relation that is often terminating when a naive integration results in a non-terminating rewrite relation.

The main interest in this dissertation has been the development of methods for automatically proving termination of CERSs. To this extent, a dependency pair framework for CERSs has been developed in Chapter 5. Next, several termination techniques that can be applied within the dependency pair framework have been developed in Chapters 6–8. Implementation methods for the more complex termination techniques have been discussed in Chapter 9, and an empirical evaluation shows
Chapter 15. Conclusions and Evaluation

that an implementation based on these methods in the termination tool AProVE is very efficient and powerful (cf. Section 15.1).

The class of CERSs has been extended in two orthogonal ways:

1. Conditional CERSs add the capability of having rewrite rules that are equipped with conditions in addition to constraints. In contrast to constraints, these conditions contain user-defined functions, which requires that the truth of the conditions has to be established by recursively rewriting them.

The inherently recursive nature of conditional rewriting requires a different notion of terminating, namely \textit{operational termination}. It has been shown in Chapter 10 that operational termination of conditional CERSs can be reduced to termination of unconditional CERSs by a simple syntactic transformation. Thus, the methods for proving termination of CERSs can also be used for showing operational termination of conditional CERSs.

2. Using CERSs together with context-sensitive rewrite strategies provides a fine-grained control over the rewrite relation. This is often necessary in order to model the semantics of real-life programming languages more closely. For instance, context-sensitive rewriting is directly supported by \textit{Maude} and makes it possible to model lazy evaluation as used in \textit{Haskell}.

Using context-sensitive rewrite strategies makes reasoning about termination challenging. An adaptation of the method developed for CERSs to the context-sensitive case has been presented in Chapters 11 and 12.

These two orthogonal extensions can of course be combined as well.

In order to show the usefulness of CERSs in the context of showing partial correctness, an inductive theorem proving method for CERSs has been investigated in Chapter 13. This method provides a high degree of automation since it tightly couples inductive reasoning with a decision procedure.
Chapter 15. Conclusions and Evaluation

Inductive reasoning does not provide a decision procedure in general since proof attempts may fail or diverge. Since guaranteed yes/no answers are needed in many cases, Chapter 14 has investigated cases where inductive reasoning is a decision procedure.

15.1 Empirical Evaluation

In order to assess the practical contributions of this dissertation, all methods presented in Chapters 5–14 have been implemented and evaluated.

15.1.1 Termination Analysis

The termination analysis techniques for CERSs and CS-CERSs as presented in Chapters 5–12 have been implemented in the termination tool AProVE [84], resulting in AProVE-CERS. In order to assess the power and efficiency of the approach, the implementation has been tested on a collection of 150 examples (110 non-context-sensitive examples and 40 context-sensitive examples). The detailed results can be found in Appendices B.1 and B.2. Furthermore, all examples, the detailed results, and all termination proofs produced by AProVE-CERS are available at http://www.cs.unm.edu/~spf/tdps/.

The examples were taken from various sources, including the Termination Problem Data Base [162], and have been suitably adapted to make use of built-in integers and collection data structures. Several of the examples have been obtained from functional Maude modules [43]. Of the non-context-sensitive examples, a total of 41 were obtained from imperative programs [44, 45, 145, 36, 37, 49, 50] using the translation presented in Chapter 4. Nine examples were obtained from conditional CERSs using the transformation presented in Chapter 10.
Chapter 15. Conclusions and Evaluation

With a timeout of 60 seconds for each example, AProVE-CERS succeeds in proving termination of 140 examples (93.3%), taking an average time of about 2 seconds for one example. In particular, it succeeds on 36 (87.8%) of the examples obtained from imperative programs and on all nine examples obtained from conditional CERSs.

<table>
<thead>
<tr>
<th>Average Time</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.15 sec</td>
<td>93.33%</td>
</tr>
</tbody>
</table>

An empirical comparison with AProVE-Integer based on the methods presented in [75, 143] has been conducted on a subset of 80 examples where the methods of [75, 143] are applicable (i.e., examples that use neither context-sensitive strategies nor collection data structures).\(^1\) Out of these 80 examples, AProVE-CERS succeeds on 73, while AProVE-Integer succeeds on 72. There are examples that can only be handled by AProVE-CERS but not by AProVE-Integer, and vice versa. On examples that can be handled by both AProVE-CERS and AProVE-Integer, the system AProVE-CERS that is based on this dissertation is much faster than AProVE-Integer, on average by a factor of three (in the most extreme case, AProVE-CERS succeeds in 0.1 sec while AProVE-Integer needs 52.7 sec in order to prove termination).

<table>
<thead>
<tr>
<th>AProVE-CERS</th>
<th>AProVE-Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Time</td>
<td>Success Rate</td>
</tr>
<tr>
<td>3.86 sec</td>
<td>91.25%</td>
</tr>
<tr>
<td></td>
<td>10.36 sec</td>
</tr>
<tr>
<td></td>
<td>90.00%</td>
</tr>
</tbody>
</table>

15.1.2 Inductive Theorem Proving

The inductive theorem proving method based on the inference systems \(I\) and \(I'\) as presented in Chapters 13 and 14 has been implemented in the tool Sail2, the

\(^1\)Notice, however, that AProVE-Integer is applicable to examples where AProVE-CERS is not applicable since AProVE-Integer supports multiplication of the built-in integers, whereas AProVE-CERS is restricted to addition and subtraction.
successor of Sail [65]. Furthermore, functions for checking whether a conjecture is simple, simple nested, or complex as defined in Chapter 14 have been implemented in Sail2 as well.

The implementation has been tested on 28 examples of decidable conjectures, and the time spend for checking whether a conjecture is indeed decidable as well as the time needed for (dis-)proving it have been recorded. Recall that a proof attempt requires a call to AProVE-CERS in order to determine whether the Z-CERS together with the oriented conjectures is terminating. Also recall that a proof attempt requires calls the external SMT-solver CVC3 in order to check for LIAC-validity and Th_Z-validity. The following table contains average times in milliseconds. The detailed results can be found in Appendix B.3. Furthermore, all examples, the detailed results and all proofs produced by Sail2 are available at http://www.cs.unm.edu/~spf/sail2/.

<table>
<thead>
<tr>
<th>Checking</th>
<th>(Dis-)Proving</th>
<th>(Dis-)Proving w/o Time in CVC3</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.092 msec</td>
<td>14.981 msec</td>
<td>0.180 msec</td>
<td>127.421 msec</td>
</tr>
</tbody>
</table>

Notice that the most time-consuming part is the termination check using AProVE-CERS. Furthermore, checking whether a conjecture is a member of the class of decidable conjectures is orders of magnitude faster than deciding whether it is an inductive theorem. Notice that most of the time for the proof attempt is spent within the external tool CVC3. While the total time for the proof attempt can probably be shortened significantly by implementing a decision procedure for LIAC-validity and Th_Z-validity from scratch since this would eliminates the overhead of calling an external tool, the remaining parts of the proof attempt still require nearly twice as much time as checking whether a conjecture is a member of the class of conjectures whose inductive validity is decidable.
Chapter 15. Conclusions and Evaluation

15.2 Future Work

Several ideas on how the techniques and methods presented in this dissertation might be extended have already been mentioned in Chapters 3–14. These low-level ideas will not be repeated here. Instead, some high-level ideas and problems requiring future work will be outlined.

Having built-in integers and collection data structures is very useful for modeling programs written in Maude or OCaml, recall the examples in Chapter 1. Currently, the translation from Maude or OCaml into a CERS has to be performed by hand. While this is relatively straightforward for Maude since Maude is based on the term rewriting approach, it is more complicated for OCaml. With moderate implementation effort, an automatic translation should be possible. Indeed, the tool MTT [60] provides a translation from Maude modules into ordinary TRSs for the purpose of proving termination. CERSs seem to be a better candidate for this than ordinary TRSs, however, since CERSs support the equational attributes used in Maude.

Translating imperative programs into CERSs is highly non-trivial. Chapter 4 has shown how a simple class of imperative programs can be translated into CERSs. The class of imperative programs considered there could be extended relatively easily by allowing user-defined functions. Supporting dynamic data structures such as arrays or pointer-based lists or trees is more challenging. Initial progress has been reported in [155, 138], where it has been shown that a fragment of Java can be translated into ordinary TRSs. It should be possible to modify that translation to produce CERSs that can take advantage of the built-in integers.

The class of CERSs itself could also be extended. Notice that CERSs only support addition and subtraction of the built-in integers, but not multiplication. This is in contrast to the recent work in [75], which supports multiplication but does not support collection data structures and context-sensitive rewrite strategies. In prin-
Chapter 15. Conclusions and Evaluation

ciple, CERSs can use integers with multiplication as the built-in theory. But then
the problem of determining validity of constraints becomes undecidable in general,
thus resulting in an undecidable rewrite relation. Notice, however, that the rewrite
relation stays decidable on ground terms since validity of ground constraints can
be determined by evaluating them. This is similar to [75], where the operations on
integers are also restricted to the ground case. Some of the DP processors presented
in this dissertation rely on the assumption that validity of (non-ground) constraints
is decidable. While this is no longer true for integers with multiplication, there are
nonetheless sound but incomplete methods for this which could be used.

With the increased popularity of automatic termination tools, the issue of trust
becomes more and more important. Given a complex termination proof generated
by one of these systems, can it be ensured that the proof is indeed correct? For-
mally verifying correctness of automatic termination tools is currently not possible
due to their immense complexity. A promising approach to increase the trust in
automatic termination tools has gained a lot of attention lately: proof certification.
In proof certification, an automatically generated termination proof is checked for
correctness by an interactive proof assistant for higher-order logic such as Coq [27] or
Isabelle/HOL [135]. This approach is followed by CoLoR [28], A3PAT [47], and CeTA
[163] for ordinary TRSs. Extending one of these systems to support CERSs and the
methods developed in this dissertation is a worthwhile task.
Appendix A

Proofs

A.1 Proofs from Chapter 2

Proof of Lemma 2.21. Let \(C[f(s^*)] \sim_{\mathcal{E}} t \), i.e., there exist terms \(t_0, \ldots, t_n \) with \(n \geq 0 \) such that \(C[f(s^*)] = t_0 \vdash_{\mathcal{E}} \vdash_{\mathcal{E}} \cdots \vdash_{\mathcal{E}} t_n = t \). The claim is proved by induction on \(n \). If \(n = 0 \) then \(C[f(s^*)] = t \) and the claim is obvious.

If \(n > 0 \), the inductive assumption implies \(t_{n-1} = C''[f(s''^*)] \) with \(C'' \sim_{\mathcal{E}} C \) and \(s''^* \sim_{\mathcal{E}} s^* \). Since \(t_{n-1} \vdash_{\mathcal{E}} t_n \), there exists an equation \(u \approx v \) (or \(v \approx u \)) in \(\mathcal{E} \) such that \(t_{n-1}|_p = u\sigma \) and \(t_n = t_{n-1}[v\sigma]|_p \) for some position \(p \) and some substitution \(\sigma \). Let \(q \) be the position with \(t_{n-1}|_q = f(s''^*) \), i.e., \(C''|_q = \square \). Now, a case analysis on the relationship between the positions \(p \) and \(q \) is performed.

Case 1: \(p \parallel q \). Then, \(t_n = t_{n-1}[v\sigma]|_p = (C''[f(s''^*)])[v\sigma]|_p = (C''[v\sigma]|_p)[f(s''^*)] \) with \(C''[v\sigma]|_p \sim_{\mathcal{E}} C''[u\sigma]|_p = C'' \).

Case 2: \(p = q.q' \) for some position \(q' \neq \Lambda \). Then it is the case that \(t_n = t_{n-1}[v\sigma]|_p = (C''[f(s''^*)])[v\sigma]|_{q.q'} = C''[f(s''^*)][v\sigma]|_{q.q'} \). Since \(q' \neq \Lambda \), the position \(q' \) can be written as \(q' = i.q'' \) for some \(i \in \mathbb{N}^+ \) and some position \(q'' \). Then \(s_j^i = s_j^i \) if \(i \neq j \) and
Appendix A. Proofs

\(s'_i = s''_i[v\sigma]_{q''} \sim_\varepsilon s''_i[u\sigma]_{q''} = s''_i \), i.e., \(s'^*_i \sim_\varepsilon s''_i \).

Case 3: \(q = p.p' \) for some position \(p' \) (possibly \(p' = \Lambda \)). Since \(f \not\in \mathcal{F}(\varepsilon) \), the position \(p' \) can be written as \(p' = p'_1.p'_2 \) such that \(u|_{p'_1} \) is a variable \(x \) and \(x\sigma|_{p'_2} = f(s''_i) \).

Since the equation \(u \approx v \) (or \(v \approx u \)) is i.u.v., there exists a unique position \(p''_1 \) in \(v \) such that \(v|_{p''_1} = x \). This implies \(v\sigma|_{p''_1} = x\sigma|_{p''_2} = f(s''_i) \). Define the substitution \(\sigma' \) by \(\sigma'(y) = \sigma(y) \) for \(y \neq x \) and \(\sigma'(x) = \sigma(x)[\Box|_{p'_2} \). Let \(C' = (t_{n-1}[v\sigma]|_p)[\Box|_{p''_1} = t_{n-1}[v\sigma]|_p \sim_\varepsilon t_{n-1}[u\sigma]|_p = C'' \).

Thus, \(t_n = t_{n-1}[v\sigma]|_p = C'[f(s''_i)] \) and the claim follows.

Proof of Lemma 2.22. It suffices to show that \(\vdash_{\mathcal{E}_1} \circ \vdash_{\mathcal{E}_2} \subseteq \vdash_{\mathcal{E}_2} \circ \vdash_{\mathcal{E}_1} \). Thus, let \(s \vdash_{\mathcal{E}_1} t \vdash_{\mathcal{E}_2} u \), i.e., there exist positions \(p_1 \in \mathcal{P}\text{os}(s) \) and \(p_2 \in \mathcal{P}\text{os}(t) \), equations \(u_1 \approx v_1 \) (or \(v_1 \approx u_1 \)) in \(\mathcal{E}_1 \) and \(u_2 \approx v_2 \) (or \(v_2 \approx u_2 \)) in \(\mathcal{E}_2 \), and substitutions \(\sigma_1 \) and \(\sigma_2 \) such that

1. \(s|_{p_1} = u_1\sigma_1 \) and \(t = s[v_1\sigma_1]|_{p_1} \), and
2. \(t|_{p_2} = u_2\sigma_2 \) and \(u = t[v_2\sigma_2]|_{p_2} \).

\(s \vdash_{\mathcal{E}_2} \circ \vdash_{\mathcal{E}_1} u \) is shown by a case analysis on the relationship between \(p_1 \) and \(p_2 \).

Case 1: \(p_1 \parallel p_2 \). In this case \(s \vdash_{\mathcal{E}_2} \circ \vdash_{\mathcal{E}_1} u \) is immediate.

Case 2: \(p_2 = p_1.q \) for some position \(q \) (possibly \(q = \Lambda \)). Since \(v_1 \) does not contain symbols from \(\mathcal{E}_2 \), there exists a position \(q_1 \in \mathcal{P}\text{os}(v_1) \) such that \(v_1|_{q_1} = x \) is a variable and \(q = q_1.q_2 \) for some position \(q_2 \). Define the substitution \(\sigma'_1 \) to behave like \(\sigma_1 \), with the exception that \(\sigma'_1(x) = \sigma_1(x)[v_2\sigma_2]|_{q_2} \). Then \(u_1\sigma_1 \vdash_{\mathcal{E}_2} u_1\sigma'_1 \) since \(\mathcal{E}_1 \) is i.u.v. and thus \(s|_{p_1} = u_1\sigma_1 \vdash_{\mathcal{E}_2} u_1\sigma'_1 = v_1\sigma'_1 = t|_{p_1} \), i.e., \(s \vdash_{\mathcal{E}_2} \circ \vdash_{\mathcal{E}_1} t \).

Case 3: \(p_1 = p_2.q \) for some position \(q \). Analogous to the previous case. \(\square \)

Proof of Lemma 2.28. First, an easy induction shows that \(\sim_\varepsilon \) commutes over \(\to_{\mathcal{E}_\mathcal{R}} \), i.e., \(\sim_\varepsilon \circ \to_{\mathcal{E}_\mathcal{R}} \subseteq \to_{\mathcal{E}_\mathcal{R}} \circ \sim_\varepsilon \). Using this, \(s \to_{\mathcal{E}_\mathcal{R}} \hat{s} \) implies \(t \to_{\mathcal{E}_\mathcal{R}} t' \sim_\varepsilon \hat{s} \) for some \(t' \) since \(t \sim_\varepsilon s \) and \(s \to_{\mathcal{E}_\mathcal{R}} \hat{s} \). If \(t' \) is reducible by \(\to_{\mathcal{E}_\mathcal{R}} \), then \(\hat{s} \) is reducible.
by $\rightarrow_{\mathcal{E}\setminus \mathcal{R}}$ as well since $\sim_{\mathcal{E}}$ commutes over $\rightarrow_{\mathcal{E}\setminus \mathcal{R}}$. Therefore, t' is irreducible by $\rightarrow_{\mathcal{E}\setminus \mathcal{R}}$ since \widehat{s} is irreducible by $\rightarrow_{\mathcal{E}\setminus \mathcal{R}}$. Thus $t \rightarrow_{\mathcal{E}\setminus \mathcal{S}}^1 t'$ and $t \rightarrow_{\mathcal{E}\setminus \mathcal{S}}^1 \widehat{t}$, and the confluence of $\rightarrow_{\mathcal{E}\setminus \mathcal{R}}$ implies $t' \sim_{\mathcal{E}} \widehat{t}$. Therefore $\widehat{s} \sim_{\mathcal{E}} \widehat{t}$. \hfill \square

Proof of Lemma 2.30. Let $s \rightarrow_{\mathcal{R}/\mathcal{E}} t$, i.e., $s \sim_{\mathcal{E}} \circ \rightarrow_{\mathcal{R}} \circ \sim_{\mathcal{E}} t$. Since $\rightarrow_{\mathcal{R}} \subseteq \rightarrow_{\mathcal{E}\setminus \mathcal{R}}$, the strong \mathcal{E}-coherence of $\rightarrow_{\mathcal{E}\setminus \mathcal{R}}$ implies $s \rightarrow_{\mathcal{E}\setminus \mathcal{R}} \circ \sim_{\mathcal{E}} t$. \hfill \square

Proof of Lemma 2.31. The proof heavily relies on results from [101, 99]. First, notice that strong \mathcal{E}_i-coherence for $i = 1, 2$ implies that $\rightarrow_{\mathcal{E}_i \setminus \mathcal{R}_i}$ is coherent modulo \mathcal{E}_i (using the terminology of [101]). Using [101, Theorem 5], $\rightarrow_{\mathcal{E}_i \setminus \mathcal{R}_i}$ is Church-Rosser modulo \mathcal{E}_i.\footnote{I.e., $\iff_{\mathcal{E}_i \cup \mathcal{R}_i} \subseteq \rightarrow_{\mathcal{E}_i \setminus \mathcal{R}_i} \circ \sim_{\mathcal{E}_i} \circ \leftarrow_{\mathcal{E}_i \setminus \mathcal{R}_i}$.} By [99, Theorem 3], Church-Rosser is a modular property, i.e., $\rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2}$ is Church-Rosser modulo $\mathcal{E}_1 \cup \mathcal{E}_2$. Again by [101, Theorem 5] and since $\rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2}$ is terminating by assumption, $\rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2}$ is $\mathcal{E}_1 \cup \mathcal{E}_2$-convergent and coherent modulo $\mathcal{E}_1 \cup \mathcal{E}_2$. Thus, it remains to be shown that $\rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2}$ is strongly $\mathcal{E}_1 \cup \mathcal{E}_2$-coherent.

For this, it is shown that $\vdash_{\mathcal{E}_1 \cup \mathcal{E}_2} \circ \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2} \subseteq \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2} \circ \vdash_{\mathcal{E}_1 \cup \mathcal{E}_2}$. Thus, let $s \vdash_{\mathcal{E}_1 \cup \mathcal{E}_2} t \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2} u$, i.e., there exist positions $p_1 \in \text{Pos}(s)$ and $p_2 \in \text{Pos}(t)$, an equation $u_1 \approx v_1$ (or $v_1 \approx u_1$) in $\mathcal{E}_1 \cup \mathcal{E}_2$, a rule $l_i \rightarrow t_i \in \mathcal{R}_i \cup \mathcal{R}_2$, and substitutions σ_1 and σ_2 such that

1. $s|_{p_1} = u_1 \sigma_1$ and $t = s[v_1 \sigma_1]|_{p_1}$, and
2. $t|_{p_2} \sim_{\mathcal{E}_1 \cup \mathcal{E}_2} l_2 \sigma_2$ and $u = t[r_2 \sigma_2]|_{p_2}$.

Perform a case analysis on the relationship between p_1 and p_2.

Case 1: $p_1 \parallel p_2$. In this case $s \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2} \circ \vdash_{\mathcal{E}_1 \cup \mathcal{E}_2} u$ is immediate.

Case 2: $p_1 = p_2.q$ for some position $q \neq \Lambda$. Then $s|_{p_2} \vdash_{\mathcal{E}_1 \cup \mathcal{E}_2} t|_{p_2} \sim_{\mathcal{E}_1 \cup \mathcal{E}_2} l_2 \sigma_2$, i.e., $s \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1 \cup \mathcal{R}_2} u$.

Case 3.1: $p_2 = p_1.q$ for some position q (possibly $q = \Lambda$) and $s \vdash_{\mathcal{E}_i} t \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_{i-1}} u$.

247
Appendix A. Proofs

Since \(\mathcal{E}_1 \cup \mathcal{E}_2 \) is collapse-free and \(v_1 \) does not contain symbols from \(\mathcal{E}_2 \) or \(\mathcal{R}_2 \), there exists a position \(q_1 \in \mathcal{P}os(v_1) \) such that \(v_1|_{q_1} = x \) is a variable and \(q = q_1.q_2 \) for some position \(q_2 \). Define the substitution \(\sigma_1' \) to behave like \(\sigma_1 \), with the exception that \(\sigma_1'(x) = \sigma_1(x)[r_2\sigma_2]|_q_2 \). Then \(u_1\sigma_1 \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1} u_1\sigma_1' \) and thus \(s|_p = u_1\sigma_1 \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1} u_1\sigma_1' \). Define the substitution \(\sigma_1'' \) to behave like \(\sigma_1 \), with the exception that \(\sigma_1''(x) = \sigma_1(x)[r_2\sigma_2]|_q_2 \). Then \(u_1\sigma_1 \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1} u_1\sigma_1'' \) and thus \(s|_p = u_1\sigma_1 \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1} u_1\sigma_1'' \).

Case 3.2: \(p_2 = p_1.q \) for some position \(q \) (possibly \(q = \Lambda \)) and \(s \rightarrow_{\mathcal{E}_1} t \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1} u \). Then \(s \rightarrow_{\mathcal{E}_1} t \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1} u \). Using Lemma 2.22, \(s \rightarrow_{\mathcal{E}_1} t \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1} u \). Applying Lemma 2.22 again yields \(s \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_1} u \). Now the strong \(\mathcal{E}_i \)-coherence of \(s \rightarrow_{\mathcal{E}_1 \setminus \mathcal{R}_i} t \) implies \(s \rightarrow_{\mathcal{E}_1 \setminus \mathcal{R}_i} t \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_i} u \). Using induction on the number of \(s \rightarrow_{\mathcal{E}_1 \setminus \mathcal{R}_i} \) steps in \(s \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_i} \) and cases 1, 2 and 3.1 then implies \(s \rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2 \setminus \mathcal{R}_i} u \).

\[\square \]

A.2 Proofs from Chapter 3

Proof of Lemma 3.20.

1. Since \(\mathcal{E} \) is size-preserving, the \(\mathcal{E} \)-equivalence classes are finite. Furthermore, the \(\mathcal{E} \)-equivalence class of a given term \(s \) can be effectively computed using the equations. In order to decide whether \(s \sim_{\mathcal{E}} t \) holds true it then suffices to check whether \(t \) is in the \(\mathcal{E} \)-equivalence class of \(s \).

2. It needs to be decided whether there exist a rewrite rule \(l \rightarrow r \in \mathcal{S} \), a position \(p \in \mathcal{P}os(s) \), and a substitution \(\sigma \) such that \(s|_p \sim_{\mathcal{E}} l\sigma \). Since \(\mathcal{S} \) and \(\mathcal{P}os(s) \) are finite, it suffices to consider a single rule and a single position, without loss of generality consider \(p = \Lambda \). Thus, it needs to be decided whether there

\[\text{Here, the superscript } \geq p_2 \text{ in } \Rightarrow_{\mathcal{E}_1 \cup \mathcal{E}_2} \text{ denotes that equations are only applied at positions below } p_2. \]
exists a substitution \(\sigma \) such that \(s \sim_\mathcal{E} l\sigma \). In order to check this, it suffices to check whether there exists a term \(s' \) in the \(\mathcal{E} \)-equivalence class of \(s \) such that \(s' = l\sigma \) for some substitution \(\sigma \). But this is just syntactic matching, which is well-known to be decidable. Once such a substitution \(\sigma \) has been found it is easily possible to compute a term \(t \) with \(s \rightarrow_\mathcal{E} S t \).

3. It needs to decided whether there exist a constrained rewrite rule \(l \rightarrow r[\varphi] \in \mathcal{R} \), a position \(p \in \mathcal{P}os(s) \), and a \(Th \)-based substitution \(\sigma \) such that \(s|_p \overset{\Lambda}{\longrightarrow}_{\mathcal{E}} E S l\sigma \) and \(\varphi\sigma \) is \(Th \)-valid. Since \(\mathcal{R} \) and \(\mathcal{P}os(s) \) are finite, it suffices to consider a single rule and a single position, without loss of generality consider \(p = \Lambda \). Thus, it needs to decided whether there exists a substitution \(\sigma \) such that \(s \overset{\Lambda}{\longrightarrow}_{\mathcal{E}} E S l\sigma \). First, notice that a term \(s' \) with \(s \overset{\Lambda}{\longrightarrow}_{\mathcal{E}} E S s' \) can be computed by Lemma 3.20.2. It then suffices to check whether there exists a term \(s'' \) in the \(\mathcal{E} \)-equivalence class of \(s' \) such that \(s'' = l\sigma \) and \(\varphi\sigma \) is \(Th \)-valid for some \(Th \)-based substitution \(\sigma \). Candidate substitutions \(\sigma \) can be computed using syntactic matching, and it is easy to check whether such a substitution \(\sigma \) is \(Th \)-based. \(Th \)-validity of \(\varphi\sigma \) can then be decided due to the assumption on \(Th \). Once such a substitution \(\sigma \) has been found it is easily possible to compute a term \(t \) with \(s \rightarrow_{T_h} t \). \(\square \)

Proof of Lemma 3.26.

1. Let \(s' \sim_\mathcal{E} s \overset{SQ}{\rightarrow}_{T_h} t \). This means that \(s = C[f(u^*)] \) for some context \(C \) with \(f(u^*) \overset{\Lambda}{\longrightarrow}_{\mathcal{E}} l\sigma \) for some constrained rewrite rule \(l \rightarrow r[\varphi] \in \mathcal{R} \) and some \(Th \)-based substitution \(\sigma \) such that \(\varphi\sigma \) is \(Th \)-valid, all proper subterms of \(f(u^*) \) are irreducible by \(\mathcal{S} \rightarrow_{T_h} \mathcal{E} \), and \(t = C[r\sigma] \). Since \(s \sim_\mathcal{E} s' \) and all equations in \(\mathcal{E} \) are i.u.v. and do not contain symbols from \(\mathcal{D}(\mathcal{R}) \), an application of Lemma 2.21 implies \(s' = C'[f(u'^*)] \) for some context \(C' \sim_\mathcal{E} C \) and \(u'^* \sim_\mathcal{E} u^* \). Therefore, \(f(u'^*) \overset{\Lambda}{\longrightarrow}_{\mathcal{E}} l\sigma \) by Lemma 2.28 and \(\sigma \) can be used to rewrite \(s' = C'[f(u'^*)] \) to \(t' = C'[r\sigma] \sim_\mathcal{E} C[r\sigma] = t \).
Appendix A. Proofs

2. Let \(s \rightarrow_{\mathcal{E}\setminus S} t \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} u \), i.e., there exist positions \(p_1 \in \mathcal{P}os(s) \) and \(p_2 \in \mathcal{P}os(t) \), rules \(l_1 \rightarrow r_1 \in \mathcal{S} \) and \(l_2 \rightarrow r_2[\varphi_2] \in \mathcal{R} \), a substitution \(\sigma_1 \), and a \(\mathcal{T}h \)-based substitution \(\sigma_2 \) such that

(a) \(s|_{p_1} \sim_{\mathcal{E}} l_1\sigma_1 \) and \(t = s[r_1\sigma_1]_{p_1} \), and

(b) \(t|_{p_2} \xrightarrow{\Lambda}_{\mathcal{E}\setminus S} \sim_{\mathcal{E}} l_2\sigma_2 \), the instantiated \(\mathcal{T}h \)-constraint \(\varphi_2\sigma_2 \) is \(\mathcal{T}h \)-valid, all proper subterms of \(l\sigma_2 \) are irreducible by \(\xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{Q}} \), and \(u = t[r_2\sigma_2]_{p_2} \).

Next, a case analysis on the relationship between \(p_1 \) and \(p_2 \) is performed.

Case 1: \(p_1 \parallel p_2 \). In this case \(s \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} \circ \rightarrow_{\mathcal{E}\setminus S} u \) is immediate.

Case 2: \(p_1 = p_2.q \) for some position \(q \neq \Lambda \). In this case \(s|_{p_2} = f(s^*) \), \(t|_{p_2} = f(t^*) \), and \(s^* \rightarrow_{\mathcal{E}\setminus S} t^* \). Therefore, \(f(s^*) \xrightarrow{\Lambda}_{\mathcal{E}\setminus S} \sim_{\mathcal{E}} l_2\sigma_2 \) since \(\rightarrow_{\mathcal{E}\setminus S} \) is \(\mathcal{E} \)-convergent and \(f(t^*) \xrightarrow{\Lambda}_{\mathcal{E}\setminus S} \sim_{\mathcal{E}} l_2\sigma_2 \). Thus, \(s \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} s[r_2\sigma_2]_{p_2} = t[r_2\sigma_2]_{p_2} = u \).

Case 3: \(p_2 = p_1.q \) for some position \(q \), possibly \(q = \Lambda \). Since \(r_1 \) does not contain symbols from \(\mathcal{D}(\mathcal{R}) \), there exists a position \(q_1 \in \mathcal{P}os(r_1) \) such that \(r_1|_{q_1} = x \) is a variable and \(q = q_1.q_2 \) for some position \(q_2 \). Define the substitution \(\sigma'_1 \) to behave like \(\sigma_1 \), with the exception that \(\sigma'_1(x) = \sigma_1(x)[r_2\sigma_2]_{q_2} \). Then \(l_1\sigma_1 \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} l_1\sigma'_1 \) and thus \(s|_{p_1} \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} \circ \sim_{\mathcal{E}} l_1\sigma'_1 \) by Lemma 3.26.1 since \(s|_{p_1} \sim_{\mathcal{E}} l_1\sigma_1 \). Thus, \(s|_{p_1} \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} \circ \rightarrow_{\mathcal{E}\setminus S} r_1\sigma' \). Since \(r_1 \) is linear, \(s[r_1\sigma'_1]_{p_1} = t[r_1\sigma'_1]_{p_1} = u \) and thus \(s \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} \circ \rightarrow_{\mathcal{E}\setminus S} u \).

Proof of Corollary 3.27.

1. Assume that \(s \) starts an infinite \(\xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} \)-reduction

\[
\begin{align*}
 s & \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} s_1 \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} s_2 \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} s_3 \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} \ldots
\end{align*}
\]

Using Lemma 3.26.1 this implies

\[
\begin{align*}
 t & \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} t_1 \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} t_2 \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} t_3 \xrightarrow{S}\mathcal{Q}_{\mathcal{T}h\parallel \mathcal{E}\setminus \mathcal{R}} \ldots
\end{align*}
\]

250
Appendix A. Proofs

where \(s_i \sim_{\mathcal{E}} t_i \), i.e., \(t \) starts an infinite \(\xrightarrow{S,Q,Th,\parallel E\backslash R} \)-reduction as well. The other direction is shown the same way.

2. Let \(s \rightarrow_{\mathcal{E}\backslash S} t \) and assume that \(t \) starts an infinite \(\xrightarrow{S,Q,Th,\parallel E\backslash R} \)-reduction. Using (\(\rightarrow_{\mathcal{E}\backslash S} \circ \xrightarrow{S,Q,Th,\parallel E\backslash R} \subseteq \xrightarrow{S,Q,Th,\parallel E\backslash R} \circ \rightarrow_{\mathcal{E}\backslash S} \) from Lemma 3.26.2 repeatedly produces an infinite \(\xrightarrow{S,Q,Th,\parallel E\backslash R} \)-reduction starting with \(s \). \hfill \square

A.3 Proofs from Chapter 4

Proof sketch of Theorem 4.3. That the translation produces a CERS is immediate by inspection. For the second statement, consider the control flow graph associated with \(P \), where each control point produces a node in the control flow graph. As in [145], the edges in the control flow graph are labeled by the parallel assignment executed during that transition in the program and by the condition obtained from the while-loop, if-, or assume-statement (if applicable). A typical transition thus has the following form:

\[
\begin{array}{c}
\text{\(i \)}^{\text{th}} \text{ control point} \\
(x_1, \ldots, x_n) := (e_n, \ldots, e_n) \\
\phi
\end{array} \rightarrow
\begin{array}{c}
\text{\(j \)}^{\text{th}} \text{ control point}
\end{array}
\]

It now suffices to notice that the translation produces the rewrite rule

\[
\text{eval}_i(x_1, \ldots, x_n) \rightarrow \text{eval}_j(e_1, \ldots, e_n)[\phi]
\]

corresponding to this transition. \hfill \square

A.4 Proofs from Chapter 5

Proof of Theorem 5.6. Let \((Q, R, S, \mathcal{E})\) be an RCERS.
“⇒”: Assume that there exists a term t which starts an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction. Then t contains a subterm $f_1(u_1^*)$ where $f_1(u_1^*)$ starts an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction, but none of the terms in u_1^* starts an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction.

Consider an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction starting with $f_1(u_1^*)$. First, the arguments u_1^* are reduced with $\frac{S,Q}{\Theta_h\|E\setminus R}$ to terms v_1^*, and then a rewrite rule is applied to $f_1(v_1^*)$ at the root position, i.e., there exist a rule $l_1 \rightarrow r_1 \{\varphi_1\}$ in R and a Θ_h-based substitution σ_1 such that $f_1(v_1^*) \stackrel{\Lambda_1}{\Rightarrow_{E,S}} f_1(v_1^*_{\sigma_1}) \equiv_{E,l} l_1 \sigma_1$, the instantiated constraint $\varphi_1 \sigma$ is Θ_h-valid, and all proper subterms of $l_1 \sigma_1$ are irreducible by $\frac{S}{\Theta_h\|E\setminus Q}$. The reduction then yields $r_1 \sigma_1$ and the infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction continues with $r_1 \sigma_1$, i.e., the term $r_1 \sigma_1$ starts an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction as well. So far the reduction of $f_1(u_1^*)$ has the following form:

$$f_1(u_1^*) \frac{S,Q}{\Theta_h\|E\setminus R} f_1(v_1^*) \stackrel{\Lambda_1}{\Rightarrow_{E,S}} f_1(v_1^*_{\sigma_1}) \equiv_{E,l} l_1 \sigma_1 \rightarrow R r_1 \sigma_1$$

Here, the $\frac{S,Q}{\Theta_h\|E\setminus R}$-steps in $f_1(u_1^*) \frac{S,Q}{\Theta_h\|E\setminus R} f_1(v_1^*)$ are applied strictly below the root position. By the definition of $\equiv_{E,l}$, $l_1 = f_1(w_1^*)$ and $v_1^* \equiv_{E} w_1^* \sigma_1$, where the terms in $w_1^* \sigma_1$ are irreducible by $\frac{S}{\Theta_h\|E\setminus Q}$. Furthermore, the terms in $w_1^* \sigma_1$ do not start infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reductions by Corollary 3.27 since the terms in v_1^* do not start infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reductions.

Hence, for all variables x occurring in $f_1(u_1^*)$, the term $x \sigma_1$ does not start an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction. Since $r_1 \sigma_1$ starts an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction, there is a subterm $f_2(u_2^*)$ in r_1 such that $f_2(u_2^*) \sigma_1$ starts an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction, whereas the terms in $u_2^* \sigma_1$ do not start infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reductions.

The first dependency pair in the infinite $(\text{DP}(R), Q, R, S, E)$-chain that is going to be constructed is $f_1^i(w_1^*) \rightarrow f_2^i(u_2^*) \{\varphi_1\}$, obtained from the rewrite rule $l_1 \rightarrow r_1 \{\varphi_1\}$. The remaining dependency pairs of the infinite $(\text{DP}(R), Q, R, S, E)$-chain are determined the same way; let $f_1^{i-1}(u_i^{*_{i-1}}) \rightarrow f_1^i(u_i^*) \{\varphi_{i-1}\}$ be a dependency pair such that $f_i(u_i^*) \sigma_{i-1}$ starts an infinite $\frac{S,Q}{\Theta_h\|E\setminus R}$-reduction.
Appendix A. Proofs

but the terms in $u_i^*\sigma_{i-1}$ do not start infinite $\frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}}$-reductions. Again, $u_i^*\sigma_{i-1}$ is first reduce using $\frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}}$ to obtain v_i^*, and then a rewrite rule $f_i(w_i^*) \rightarrow r_i[\phi_i]$ is applied to $f(v_i^*)$ at the root position where $r_i\sigma_i$ starts an infinite $\frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}}$-reduction for a Th-based substitution σ_i with $\hat{v}_i^* \sim_\mathcal{E} w_i^*\sigma_i$.

As above, r_i contains a subterm $f_{i+1}(u_{i+1}^*)$ such that $f_{i+1}(u_{i+1}^*)\sigma_i$ starts an infinite $\frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}}$-reduction, whereas the terms in $u_{i+1}^*\sigma_i$ do not start infinite $\frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}}$-reductions. This produces the i^{th} dependency pair $f_i^*(w_i^*) \rightarrow f_{i+1}^*(u_{i+1}^[[\phi_i]]$). In this way, the infinite sequence

$$f_1^*(w_1^*) \rightarrow f_2^*(u_2)[[\phi_1]], \ f_2^*(w_2^*) \rightarrow f_3^*(u_3)[[\phi_2]], \ f_3^*(w_3^*) \rightarrow f_4^*(u_4)[[\phi_3]], \ldots$$

is obtained and it remains to be shown that it is a minimal $(\text{DP}(\mathcal{R}), \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$-chain. For this, notice that $f_{i+1}^*(u_{i+1}^*)\sigma_i \frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}} f_{i+1}^*(v_{i+1}^*) \frac{\Lambda}{\mathcal{E}\setminus\mathcal{S}} f_{i+1}^*(\hat{v}_{i+1}^*) \frac{\sim_\mathcal{E}}{\mathcal{S}} f_{i+1}^*(w_{i+1}^*)\sigma_{i+1}$ and $\phi_i\sigma_i$ is Th-valid for all $i \geq 1$. Furthermore, $f_i^*(w_i^*)\sigma_i$ is irreducible by $\frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{Q}}$ and $\frac{\Lambda}{\mathcal{E}\setminus\mathcal{S}}$. Since it is assumed that different (occurrences of) dependency pairs are variable-disjoint, it is possible to obtain a single Th-based substitution $\sigma = \sigma_1 \cup \sigma_2 \cup \ldots$ with $f_{i+1}^*(u_{i+1}^*)\sigma \frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}} \frac{\Lambda}{\mathcal{E}\setminus\mathcal{S}} \frac{\sim_\mathcal{E}}{\mathcal{S}} f_{i+1}^*(w_{i+1}^*)\sigma$ such that $\phi_i\sigma$ is Th-valid and $f_i^*(w_i^*)\sigma$ is irreducible by $\frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{Q}}$ and $\frac{\Lambda}{\mathcal{E}\setminus\mathcal{S}}$ for all $i \geq 1$. The chain is minimal by construction.

“\Leftarrow”: Assume that there exists an infinite minimal $(\text{DP}(\mathcal{R}), \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$-chain

$$f_1^*(w_1^*) \rightarrow f_2^*(u_2)[[\phi_1]], \ f_2^*(w_2^*) \rightarrow f_3^*(u_3)[[\phi_2]], \ldots$$

Hence, there is a Th-based substitution σ such that

$$f_2^*(u_2)^* \frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}} \frac{\Lambda}{\mathcal{E}\setminus\mathcal{S}} \frac{\sim_\mathcal{E}}{\mathcal{S}} f_2^*(w_2)^* \sigma$$

$$f_3^*(u_2)^* \frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{R}} \frac{\Lambda}{\mathcal{E}\setminus\mathcal{S}} \frac{\sim_\mathcal{E}}{\mathcal{S}} f_3^*(w_3)^* \sigma$$

$$\vdots$$

where $f_i^*(w_i^*)\sigma$ is irreducible by $\frac{s}{\text{Th}||\mathcal{E}\setminus\mathcal{Q}}$ and $\phi_i\sigma$ is Th-valid for all $i \geq 1$.

253
Appendix A. Proofs

Notice that every dependency pair \(f^\sharp_i(w^*_i) \rightarrow f^\sharp_{i+1}(u^*_{i+1})[\varphi_i] \) corresponds to a rule \(f_i(w^*_i) \rightarrow C_i[f_{i+1}(u^*_{i+1})][\varphi_i] \in \mathcal{R} \) for some context \(C_i \). Therefore, the infinite \(\xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}} \)-reduction

\[
\begin{align*}
 f_1(w^*_1)\sigma & \xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}} C_1[f_2(u^*_2)]\sigma \\
 s_i \sigma & \xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}} \circ \sim_{\mathcal{E}\setminus\mathcal{S}} \circ \sim_{\mathcal{E}} t_i+1\sigma \\
 s_i \sigma & \xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}} C_1[C_2[f_3(u^*_3)]]\sigma \\
 & \vdots
\end{align*}
\]

is obtained and \(\xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}} \) is thus not terminating. \(\square \)

A.5 Proofs from Chapter 6

Proof of Theorem 6.1. Let \(s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots \) be an infinite minimal \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\)-chain. Thus, there exists a \(\mathcal{T}_h \)-based substitution \(\sigma \) such that \(\varphi_1\sigma, \varphi_2\sigma, \ldots \) are \(\mathcal{T}_h \)-valid. In particular, \(\varphi_1, \varphi_2, \ldots \) are \(\mathcal{T}_h \)-satisfiable and the dependency pairs in the chain thus cannot be from \(\mathcal{P}' \).

Similarly, a reduction \(s_i \sigma \xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}} \circ \sim_{\mathcal{E}\setminus\mathcal{S}} \circ \sim_{\mathcal{E}} t_i+1\sigma \) can only use rules \(l \rightarrow r[\varphi] \) for which \(\varphi \) is \(\mathcal{T}_h \)-satisfiable, i.e., rules from \(\mathcal{R}' \) cannot be applied.

Finally, a term is irreducible by \(\xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{Q}} \) iff it is irreducible by \(\xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{Q}} \). Thus, there also exists an infinite minimal \((\mathcal{P} - \mathcal{P}', \mathcal{Q} - \mathcal{Q}', \mathcal{R} - \mathcal{R}', \mathcal{S}, \mathcal{E})\)-chain. \(\square \)

Proof of Theorem 6.3. Let \(s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots \) be an infinite minimal \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\)-chain using the \(\mathcal{T}_h \)-based substitution \(\sigma \). First, assume that the infinite minimal chain contains a dependency pair \(s \rightarrow t[\varphi] \) from \(\mathcal{P}' \). Since \(s \) is reducible by \(\xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{S}} \), there exists a rule \(l \rightarrow r \in \mathcal{S} \) such that \(s_p \sim_{\mathcal{E}} l\tau \) for some non-root position \(p \in \mathcal{P}os(s) \) and some substitution \(\tau \). Because \(s\sigma|_p = s|_p\sigma \sim_{\mathcal{E}} l\tau\sigma \), the term \(s\sigma \) is reducible by \(\xrightarrow{\mathcal{S},\mathcal{Q},\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{S}} \), contradicting Definition 5.3.
Appendix A. Proofs

Similarly, assume that some reduction \(s_i \sigma \xrightarrow{S,Q,\bar{\theta}}_{Th} t_{i+1} \) uses a rule \(l \rightarrow r[\varphi] \) from \(\mathcal{R} \), i.e., let \(u \xrightarrow{S,Q,\bar{\theta}}_{Th} v \) for some terms \(u, v \) using the rule \(l \rightarrow r[\varphi] \). Therefore, \(u \mid_p \xrightarrow{A_l} \xrightarrow{A_l} \) \(l \tau \) for some non-root position \(p \in \text{Pos}(u) \) and some \(Th \)-based substitution \(\tau \). Since \(\rightarrow_{E,S} \) is strongly \(E \)-coherent by Definition 3.12, this means that \(l \tau \) is irreducible by \(\xrightarrow{A_{E,S}} \). Now, since \(l \) is reducible by \(\xrightarrow{A_{E,S}} \), there exists a rule \(l' \rightarrow r' \in S \) such that \(l \mid_{p'} \sim_{E} l' \mu \) for some non-root position \(p' \in \text{Pos}(l) \) and some substitution \(\mu \). Since \(l \tau \mid_{p'} = l \mid_{p'} \tau \sim_{E} l' \mu \tau \), the term \(l \tau \) is reducible by \(\xrightarrow{A_{E,S}} \), contradicting the fact that \(l \tau \) is irreducible by \(\xrightarrow{A_{E,S}} \).

Finally, a term is irreducible by \(\xrightarrow{S,\bar{\theta}}_{Th} \) if it is irreducible by \(\xrightarrow{S,\bar{\theta}}_{Th} \). Thus, there also exists an infinite minimal \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, S, E) \)-chain.

Proof of Theorem 6.7. After a finite number of dependency pairs in the beginning, any infinite minimal \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, S, E) \)-chain only contains pairs from some SCC. Hence, every infinite minimal \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, S, E) \)-chain gives rise to an infinite minimal \((\mathcal{P}_i, \mathcal{Q}, \mathcal{R}, S, E) \)-chain for some \(1 \leq i \leq n \).

Proof of Theorem 6.11. It needs to be shown that there exists a substitution \(\mu \) that is \(Th \)-based for \(\mathcal{V}(s_1) \cup \mathcal{V}(s_2) \) such that \(\text{CAP}(t_1) \mu \xrightarrow{A_l} s_2 \), the constraints \(\varphi_1 \mu \) and \(\varphi_2 \mu \) are \(Th \)-valid, and \(s_1 \mu \) and \(s_2 \mu \) are irreducible by \(\xrightarrow{S,\bar{\theta}}_{Th} \) and \(\xrightarrow{A_{E,S}} \text{always} \) whenever \(s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2] \) is a \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, S, E) \)-chain, i.e.,

\[
t_1 \sigma \xrightarrow{S,\bar{\theta}}_{Th} u \xrightarrow{A_l} s_2 \sigma \quad \text{for a } Th \text{-based substitution } \sigma \text{ such that } \varphi_1 \sigma \text{ and } \varphi_2 \sigma \text{ are } Th \text{-valid and } s_1 \sigma \text{ and } s_2 \sigma \text{ are irreducible by } \xrightarrow{S,\bar{\theta}}_{Th} \text{ and } \xrightarrow{A_{E,S}} \text{ always.}
\]

\((†)\) \(\xrightarrow{A_{E,S}} \) implies \(\text{CAP}(t_1) \mu \xrightarrow{A_l} s_2 \mu \) for some substitution \(\mu \) that is \(Th \)-based for \(\mathcal{V}(s_1) \cup \mathcal{V}(s_2) \) such that \(\varphi_1 \mu \) and \(\varphi_2 \mu \) are \(Th \)-valid and \(s_1 \mu \) and \(s_2 \mu \) are irreducible by \(\xrightarrow{S,\bar{\theta}}_{Th} \) and \(\xrightarrow{A_{E,S}} \).
Appendix A. Proofs

\(\text{CAP}(t)\mu \xrightarrow{\mathcal{S},\mathcal{Q}}_{\mathcal{T}h\|\mathcal{E}\setminus\mathcal{R}} \ u\) implies that there exists a substitution \(\tau\) that is \(\mathcal{T}h\)\(-based for \(\mathcal{V}(t)\) such that \(u = \text{CAP}(t)\tau\), where \(\mu\) and \(\tau\) differ at most for the fresh variables introduced by \(\text{CAP}(t)\).

The property (\(\dagger\)) is shown by induction on \(t\). If \(\text{CAP}(t)\in \mathcal{V}\), then it is a fresh variable \(y\) of sort \(\text{univ}\) since \(\mu\) is \(\mathcal{T}h\)-based for \(\mathcal{V}(t)\) and \(\mu(x)\) is irreducible by \(\xrightarrow{\mathcal{S}}_{\mathcal{T}h\|\mathcal{E}\setminus\mathcal{Q}}\) for all \(x\in \mathcal{V}(t)\). Then, letting \(\tau = \{y \mapsto u\}\) establishes (\(\dagger\)).

Otherwise, \(t = f(t_1, \ldots, t_n)\), \(\text{CAP}(t) = f(\text{CAP}(t_1), \ldots, \text{CAP}(t_n))\), and there is no rule \(l \rightarrow r[\varphi] \in \mathcal{R}\) such that \(f(\text{CAP}(t_1), \ldots, \text{CAP}(t_n))\vartheta \xrightarrow{\Lambda_t \setminus \mathcal{S}}_{\mathcal{E}\setminus \mathcal{S}} \sim_{\mathcal{E}} l\vartheta\) for a substitution \(\vartheta\) that is \(\mathcal{T}h\)-based for \(\mathcal{V}(f(t_1, \ldots, t_n)) \cup \mathcal{V}(l)\) such that \(\varphi\vartheta\) is \(\mathcal{T}h\)-valid and all proper subterms of \(l\vartheta\) are irreducible by \(\xrightarrow{\mathcal{S}}_{\mathcal{T}h\|\mathcal{E}\setminus\mathcal{Q}}\). First, it is shown that the reduction \(f(\text{CAP}(t_1), \ldots, \text{CAP}(t_n))\mu \xrightarrow{\mathcal{S},\mathcal{Q}}_{\mathcal{T}h\|\mathcal{E}\setminus\mathcal{R}} \ u\) cannot take place at the root position. If the reduction takes place at the root position, then there exist a rule \(l \rightarrow r[\varphi] \in \mathcal{R}\) and a \(\mathcal{T}h\)-based substitution \(\rho\) such that \(f(\text{CAP}(t_1), \ldots, \text{CAP}(t_n))\mu \xrightarrow{\Lambda_t \setminus \mathcal{S}}_{\mathcal{E}\setminus \mathcal{S}} \sim_{\mathcal{E}} l\rho\), the instantiated constraint \(\varphi\rho\) is \(\mathcal{T}h\)-valid, and all proper subterms of \(l\rho\) are irreducible by \(\xrightarrow{\mathcal{S}}_{\mathcal{T}h\|\mathcal{E}\setminus\mathcal{Q}}\). Since it can be assumed that \(l\) is variable-disjoint from \(f(\text{CAP}(t_1), \ldots, \text{CAP}(t_n))\), define the substitution \(\vartheta = \mu \cup \rho\) which is \(\mathcal{T}h\)-based for \(\mathcal{V}(f(t_1, \ldots, t_n)) \cup \mathcal{V}(l)\). Since the instantiated constraint \(\varphi\vartheta\) is \(\mathcal{T}h\)-valid and all proper subterms of \(l\vartheta\) are irreducible by \(\xrightarrow{\mathcal{S}}_{\mathcal{T}h\|\mathcal{E}\setminus\mathcal{Q}}\) this is a contradiction to the assumption. Hence, the \(\xrightarrow{\mathcal{S},\mathcal{Q}}_{\mathcal{T}h\|\mathcal{E}\setminus\mathcal{R}}\)-step does not take place at the root position, i.e., there exists an \(1 \leq i \leq n\) with \(\text{CAP}(t_i)\mu \xrightarrow{\mathcal{S},\mathcal{Q}}_{\mathcal{T}h\|\mathcal{E}\setminus\mathcal{R}} u_i\) and \(u = f(\text{CAP}(t_1)\mu, \ldots, u_i, \ldots, \text{CAP}(t_n)\mu)\).

By the inductive assumption, this yields a substitution \(\delta\) that is \(\mathcal{T}h\)-based for \(\mathcal{V}(t_i)\) such that \(u_i = \text{CAP}(t_i)\delta\). Since the fresh variables introduced by \(\text{CAP}(t_i)\) are disjoint from the fresh variables introduced by \(\text{CAP}(t_j)\) for \(1 \leq j \neq i \leq n\) and since \(\mu\) and \(\delta\) differ at most for the fresh variables introduced by \(\text{CAP}(t_i)\), define the substitution \(\tau\) with \(\tau(x) = \delta(x)\) if \(x\) is a fresh variable introduced by \(\text{CAP}(t_i)\) and \(\tau(x) = \mu(x)\) otherwise. Then \(\tau\) is \(\mathcal{T}h\)-based for \(\mathcal{V}(t)\) and

\[
u = f(\text{CAP}(t_1)\mu, \ldots, \text{CAP}(t_i)\delta_i, \ldots, \text{CAP}(t_n)\mu)
\]

256
Appendix A. Proofs

= f(CAP(t_1)τ, \ldots, CAP(t_i)τ, \ldots, CAP(t_n)τ)

= CAP(t)τ

By (ii) and an induction on the number of \(S_\mathcal{Q}^{\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}} \)-steps, CAP(t)μ \xrightarrow{S_\mathcal{Q}^{\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}}} u \) for a substitution μ that is \(\mathcal{T}_h \)-based for \(\mathcal{V}(t) \) implies \(u = CAP(t)\delta \) for some substitution \(\delta \) that is \(\mathcal{T}_h \)-based for \(\mathcal{V}(t) \) such that \(\mu \) and \(\delta \) differ at most for the fresh variables introduced by \(CAP(t) \). Since \(t_1 = CAP(t_1)\sigma' \) for some substitution \(\sigma' \) that only instantiates fresh variables introduced by \(CAP(t) \), in particular \(t_1\sigma = CAP(t_1)\sigma' \xrightarrow{S_\mathcal{Q}^{\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}}} u \) implies \(u = CAP(t_1)\delta \) for some substitution \(\delta \) that is \(\mathcal{T}_h \)-based for \(\mathcal{V}(t_1) \) such that \(\sigma'\sigma \) and \(\delta \) differ at most for the fresh variables introduced by \(CAP(t_1) \). Thus \(CAP(t_1)\delta = u \xrightarrow{A_\mathcal{E}\!\setminus\mathcal{S}} \sigma' \sim_\mathcal{E} \sigma \) since \(u \xrightarrow{A_\mathcal{E}\!\setminus\mathcal{S}} \sigma' \sim_\mathcal{E} \sigma \). Now define μ by μ(x) = δ(x) if \(x \) is a fresh variable introduced by \(CAP(t_1) \) and μ(x) = ∅(x) otherwise. Notice that μ is \(\mathcal{T}_h \)-based for \(\mathcal{V}(s_1) \cup \mathcal{V}(s_2) \). Then \(CAP(t_1)μ = u \xrightarrow{A_\mathcal{E}\!\setminus\mathcal{S}} \sigma' \sim_\mathcal{E} \sigma = s_1μ \). Since \(s_1μ = s_1\sigma \) and \(s_2μ = s_2\sigma \), the terms \(s_1μ \) and \(s_2μ \) are irreducible by \(S_\mathcal{Q}^{\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{Q}} \) and \(\xrightarrow{A_\mathcal{E}\!\setminus\mathcal{S}} \) by Definition 5.3. Also, \(\varphi_1μ = \varphi_1σ \) and \(\varphi_2μ = \varphi_2σ \) are \(\mathcal{T}_h \)-valid.

Proof of Theorem 6.12. In the second case soundness is obvious. Otherwise, assume that there is an infinite minimal \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) \)-chain \(s_1 \rightarrow t_1∥\varphi_1, s_2 \rightarrow t_2∥\varphi_2, \ldots \) using the \(\mathcal{T}_h \)-based substitution \(σ \). It needs to be shown that every occurrence of (a variable renamed version of) \(s \rightarrow t∥\varphi \) in this chain can be replaced by \(s \rightarrow t'∥\varphi \). Thus, let \(tσ \xrightarrow{A_\mathcal{E}\!\setminus\mathcal{Q}} u \xrightarrow{A_\mathcal{E}\!\setminus\mathcal{S}} v \xrightarrow{A_\mathcal{E}\!\setminus\mathcal{S}} v_iσ \) for some \(i > 1 \).

First, consider the case where no \(S_\mathcal{Q}^{\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}} \)-step takes place above the position \(p \) considered in Theorem 6.12. Then \(t_p|σ = CAP(t_p)τσ \xrightarrow{S_\mathcal{Q}^{\mathcal{T}_h\|\mathcal{E}\setminus\mathcal{R}}} u_p|σ \). From (ii) in the proof of Theorem 6.11, \(u_p = CAP(t_p)μ \) for some substitution \(μ \) that is \(\mathcal{T}_h \)-based for \(\mathcal{V}(t_p) \), i.e., the reductions take place in \(τσ \). Let \(CAP(t_p) →_\mathcal{E}\!\setminus\mathcal{S} t, i.e., there is a rule \(l → r \in \mathcal{S} \), a position \(q ∈ \mathcal{P}os(CAP(t_p)) \), and a substitution \(ρ \) such that \(CAP(t_p)|q \sim_\mathcal{E} lrρ \) \(\hat{t} = t|p[r]q \). Then \(u_p|q = u_p|q = CAP(t_p)|qμ \sim_\mathcal{E} lrμ \), i.e., \(u_p = CAP(t_p)μ →_\mathcal{E}\!\setminus\mathcal{S} tμ \). Thus, \(u|tμ \xrightarrow{A_\mathcal{E}\!\setminus\mathcal{S}} v \) since \(→_\mathcal{E}\!\setminus\mathcal{S} \) is \(\mathcal{E}\!\setminus\mathcal{S} \)-based substitution.
Appendix A. Proofs

convergent. Hence, $t'\sigma = t[\hat{\tau}]_p\sigma = t\sigma[\hat{\tau}\sigma]_p \xrightarrow{S,Q_{Th||E\backslash R}} \mu[\hat{\tau}\mu] \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} s_i\sigma$ and $s \rightarrow t[\varphi]$ in the above chain can be replaced by $s \rightarrow t'[\varphi]$.

If an $\xrightarrow{S,Q_{Th||E\backslash R}}$-step takes place above the position p, then the proof is similar but the rule $l \rightarrow r[\varphi]$ from R that is used in the first reduction occurring above p takes the place of the next dependency pair $s_i \rightarrow t_i[\varphi_i]$. □

Proof of Theorem 6.15. In the second case soundness if obvious. Otherwise, it needs to be shown that every occurrence of (a variable renamed version of) $s \rightarrow t[\varphi]$ and the dependency pair following it in an infinite chain can be replaced by some dependency pair from P'. Thus, assume some infinite chain contains $\ldots, s \rightarrow t[\varphi], s' \rightarrow t'[\varphi'], v \rightarrow w[\psi], \ldots$.

Let the infinite chain use the substitution σ, i.e., $t\sigma \xrightarrow{S,Q_{Th||E\backslash R}} \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} s'\sigma$, $t'\sigma \xrightarrow{S,Q_{Th||E\backslash R}} \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} v\sigma$, and $\varphi\sigma$ and $\varphi'\sigma$ are Th-valid. Since σ is Th-based, the condition on t implies $t\sigma \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} s'\sigma$, where furthermore only rules from $S_{\text{base}} = \{l \rightarrow r \in S \mid \text{sort}(l) = \text{base}\}$ and equations from $E_{\text{base}} = \{u \approx v \in E \mid \text{sort}(u) = \text{base}\}$ are used. Since $s'\tau = t$, this implies $s'\tau\sigma \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} s'\sigma$, and the condition on s' implies that all reductions take place within the substitution, i.e., $x\tau\sigma \xrightarrow{\sim_{E}} x\sigma$ for all variables $x \in \mathcal{V}(s')$. But then $t'\tau\sigma \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} t'\sigma$ as well and therefore $t'\tau\sigma \xrightarrow{S,Q_{Th||E\backslash R}} \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} v\sigma$ by Lemmas 3.26 and 2.28. Furthermore, $\varphi'\tau\sigma$ is still Th-valid since application of rules from S_{base} and equations from E_{base} does not influence Th-validity. □

Proof of Theorem 6.17. In the second case soundness is obvious. Otherwise, it needs to be shown that every infinite minimal (P, Q, R, S, E)-chain can be converted into an infinite minimal $(\pi(P), Q, R, S, E)$-chain. Thus, assume that $s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots$ is an infinite minimal (P, Q, R, S, E)-chain using the Th_{z}-based substitution σ, i.e, $t_1\sigma \xrightarrow{S,Q_{Th_{z}}||E\backslash R} \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} s_{i+1}\sigma$ and $\varphi_i\sigma$ is Th_{z}-valid for all $i \geq 1$. Then $\pi(t_i\sigma) \xrightarrow{S,Q_{Th_{z}}||E\backslash R} \xrightarrow{\Lambda^1_{E\backslash S} \circ \sim_{E}} \pi(s_{i+1}\sigma)$ since all reductions take
Appendix A. Proofs

place below the root. The minimality of the \((\pi(\mathcal{P}), \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\)-chain obtained this way immediately follows from the minimality of the initial \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\)-chain. □

Proof of Lemma 6.23. Let \((\mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\) be an RCERS such that \(\mathcal{E}\) is size-preserving.

1. Since \(\mathcal{E}\) is size-preserving, the \(\mathcal{E}\)-equivalence classes are finite. Furthermore, the \(\mathcal{E}\)-equivalence class of a given term \(s\) can be effectively computed using the equations. In order to decide whether \(s \unrhd \mathcal{E} t\) it then suffices to check whether there exist a term \(s'\) in the \(\mathcal{E}\)-equivalence class of \(s\) and a term \(t'\) in the \(\mathcal{E}\)-equivalence class of \(t\) such that \(s' \rhd \mathcal{E} t'\). For this, recall that the syntactic subterm relation is easily decidable. \(s \unrhd \mathcal{E} t\) is decided in the same way.

2. Well-foundedness of \(\rhd \mathcal{E}\) is immediate once it has been shown that \(s \rhd \mathcal{E} t\) implies \(|s| > |t|\). Thus, let \(s \rhd \mathcal{E} t\), i.e., \(s \sim \mathcal{E} s' \rhd t' \sim \mathcal{E} t\) for some terms \(s', t'\).

First, it is shown that \(s \sim \mathcal{E} s'\) implies \(|s| = |s'|\). For this, an induction on \(n\) in \(s \vdash \mathcal{E} s'\) is performed. If \(n = 0\), then the claim is obvious. Otherwise, \(s \vdash \mathcal{E} s'' \vdash \mathcal{E} s'\), and the inductive assumption implies \(|s| = |s''|\). Now \(s'' \vdash \mathcal{E} s'\) implies that there exists an equation \(u \equiv v \) (or \(v \equiv u\)) in \(\mathcal{E}\) such that \(s'' = C[u\sigma]\) and \(s' = C[v\sigma]\) for some context \(C\) and some substitution \(\sigma\) and it thus suffices to show \(|u\sigma| = |v\sigma|\). But \(|u\sigma| = |v\sigma|\) is an immediate consequence of the assumption that the equation \(u \equiv v\) (or \(v \equiv u\)) is size-preserving and i.u.v.

Now \(|s| > |t|\) is easily obtained since \(s' \rhd t'\) implies \(|s'| > |t'|\).

3. For \(\rhd \mathcal{E}\), let \(s \rhd \mathcal{E} t\), i.e., \(s \sim \mathcal{E} s' \rhd t' \sim \mathcal{E} t\) for some terms \(s', t'\). Then \(s\sigma \sim \mathcal{E} s'\sigma \rhd t'\sigma \sim \mathcal{E} t\sigma\) since both \(\sim \mathcal{E}\) and \(\rhd\) are stable, i.e., \(s\sigma \rhd \mathcal{E} t\sigma\). Now stability of \(\rhd \mathcal{E}\) is obvious since both \(\rhd \mathcal{E}\) and \(\sim \mathcal{E}\) are stable.

4. Let \(s \rhd \mathcal{E} t\), i.e., \(s \sim \mathcal{E} o \rhd o \sim \mathcal{E} t\), and let \(s' \sim \mathcal{E} s\) and \(t' \sim \mathcal{E} t\). Thus, \(s' \sim \mathcal{E} o \rhd o \sim \mathcal{E} t'\), i.e., \(s' \rhd \mathcal{E} t'\). Since \(\rhd \mathcal{E} = \rhd \mathcal{E} \cup \sim \mathcal{E}\) the claim for \(\rhd \mathcal{E}\) is now immediate. □

Proof of Theorem 6.24. In the second case soundness is obvious. Otherwise,
Appendix A. Proofs

it needs to be shown that every infinite minimal \((P, Q, R, S, E)\)-chains contains only finitely many dependency pairs from \(P'\). Thus, consider an infinite minimal \((P, Q, R, S, E)\)-chain \(s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots\) using the \(Th\)-based substitution \(\sigma\) and apply the simple projection \(\pi\) to it.

Consider the instantiation \(s_i\sigma \rightarrow t_i[\varphi_i]\sigma\) of the \(i\)th dependency pair in this chain. Clearly, \(\pi(s_i\sigma) = \pi(s_i)\sigma\) and \(\pi(t_i\sigma) = \pi(t_i)\sigma\). Since \(\pi(s_i) \triangleright E \pi(t_i)\) by assumption, \(\pi(s_i\sigma) \triangleright E \pi(t_i\sigma)\) by Lemma 6.23.3. The sequence \(t_i\sigma \xrightarrow{S, Q} Th_{\|E\|R} \circ \xrightarrow{\Lambda} \triangleright E \setminus S \circ \xrightarrow{\Lambda}\)
\(s_{i+1}\sigma\) gives rise to the (possibly shorter) sequence \(\pi(t_i\sigma) \xrightarrow{S, Q} Th_{\|E\|R} \circ \xrightarrow{\epsilon} \setminus E \setminus S \circ \sim E \pi(s_{i+1}\sigma)\) since all steps take place below the root. Thus, \(t_i\sigma \xrightarrow{S, Q} Th_{\|E\|R} \circ \xrightarrow{\Lambda} \triangleright E \setminus S \circ \xrightarrow{\Lambda}\)
\(s_{i+1}\sigma \rightarrow_{DP(R)} t_{i+1}\sigma\) gives rise to \(\pi(t_i\sigma) \xrightarrow{S, Q} Th_{\|E\|R} \circ \xrightarrow{\epsilon} \setminus E \setminus S \circ \sim E \pi(s_{i+1}\sigma) \triangleright E \pi(t_{i+1}\sigma)\).

Hence, the infinite minimal \((P, Q, R, S, E)\)-chain gives rise to an infinite \(S, Q \rightarrow_{Th_{\|E\|R}} \setminus E \setminus S \setminus E \rightarrow_{E} \sim E\)-sequence starting with \(\pi(t_1\sigma)\). Now perform a case analysis.

Case 1: The infinite sequence contains only finitely many \(S, Q \rightarrow_{Th_{\|E\|R}} \setminus E \setminus S \setminus E\)-steps and only finitely many \(\rightarrow_{E} \setminus E \setminus S \setminus E\)-steps. Then, there exists an infinite \(\triangleright E \setminus E \setminus S \setminus E\)-sequence. This sequence cannot contain infinitely many \(\triangleright E \setminus E \setminus S \setminus E\)-steps stemming from dependency pairs in \(P'\) since otherwise Lemma 6.23.4 yields an infinite \(\triangleright E \setminus E \setminus S \setminus E\)-sequence, contradicting the well-foundedness of \(\triangleright E \setminus E \setminus S \setminus E\) (Lemma 6.23.2).

Case 2: The infinite sequence contains only finitely many \(S, Q \rightarrow_{Th_{\|E\|R}} \setminus E \setminus S \setminus E\)-steps but infinitely many \(\rightarrow_{E} \setminus E \setminus S \setminus E\)-steps. Recall the inclusion \(\sim E \circ \rightarrow_{E} \setminus E \setminus S \setminus E \subseteq \rightarrow_{E} \setminus E \setminus S \circ \sim E\) that follows from the strong \(E\)-coherence of \(\rightarrow_{E} \setminus E \setminus S \setminus E\) (Definition 3.12). Using this and the easily seen inclusion \(\triangleright \circ \rightarrow_{E} \setminus E \setminus S \setminus E \subseteq \rightarrow_{E} \setminus E \setminus S \circ \triangleright\), it is furthermore straightforward to show that

\[
\triangleright E \circ \rightarrow_{E} \setminus E \setminus S = \sim E \circ \triangleright \circ \sim E \circ \rightarrow_{E} \setminus E \setminus S
\]
\[
\subseteq \sim E \circ \triangleright \circ \rightarrow_{E} \setminus E \setminus S \circ \sim E
\]
\[
\subseteq \sim E \circ \rightarrow_{E} \setminus E \setminus S \circ \triangleright \circ \sim E
\]
\[
\subseteq \rightarrow_{E} \setminus E \setminus S \circ \sim E \circ \triangleright \circ \sim E
\]
\[
= \rightarrow_{E} \setminus E \setminus S \circ \triangleright E
\]
Appendix A. Proofs

By making repeated use of these inclusions, an infinite \(\rightarrow_{E \setminus S} \)-sequence is obtained, contradicting the assumption that \(\rightarrow_{E \setminus S} \) is terminating.

Case 3: The infinite sequence contains infinitely many \(\rightarrow_{E \setminus S} \)-steps. Recall Lemma 3.26 and the inclusions \(\sim_{E} \circ \rightarrow_{E \setminus S} \subseteq \rightarrow_{E \setminus S} \circ \sim_{E} \) and \(\rightarrow_{E \setminus S} \circ \rightarrow_{E \setminus S} \subseteq \rightarrow_{E \setminus S} \circ \rightarrow_{E \setminus S} \). Using the first of these inclusions and the easily seen inclusion \(\triangleright \circ \rightarrow_{E \setminus S} \subseteq \rightarrow_{E \setminus S} \circ \triangleright \), it is furthermore straightforward to show that

\[
\triangleright_{E} \circ \rightarrow_{E \setminus S} = \sim_{E} \circ \triangleright \circ \sim_{E} \circ \rightarrow_{E \setminus S} \\
\subseteq \sim_{E} \circ \triangleright \circ \sim_{E} \circ \rightarrow_{E \setminus S} \\
\subseteq \sim_{E} \circ \rightarrow_{E \setminus S} \circ \triangleright \circ \sim_{E} \\
\subseteq \rightarrow_{E \setminus S} \circ \triangleright \circ \sim_{E} \\
= \rightarrow_{E \setminus S} \circ \triangleright
\]

By making repeated use of these inclusions, an infinite \(\rightarrow_{E \setminus S} \)-sequence starting with the term \(\pi(t_{1}\sigma) \) is obtained. But this contradicts the minimality of the infinite \(\langle P, Q, R, S, E \rangle \)-chain since this implies that \(t_{1}\sigma \) also starts an infinite \(\rightarrow_{E \setminus S} \)-reduction. \(\square \)

A.6 Proofs from Chapter 7

Proof of Theorem 7.6. It needs to be shown that \(\succeq_{P_{1}} \) is reflexive, transitive, monotonic, and stable. Furthermore, it needs to be shown that \(\succ_{P_{1}} \) is well-founded and stable and that \(\succ_{P_{1}} \) is compatible with \(\succeq_{P_{1}} \).

\(\succeq_{P_{1}} \) is reflexive: \([s\sigma]_{P_{1}} \geq [s\sigma]_{P_{1}} \) is obvious for any ground substitution \(\sigma \).

\(\succeq_{P_{1}} \) is transitive: Let \(s \succeq_{P_{1}} t \succeq_{P_{1}} u \) and let \(\sigma \) be a ground substitution. Then \([s\sigma]_{P_{1}} \geq [t\sigma]_{P_{1}} \geq [u\sigma]_{P_{1}} \) by the assumption, and the transitivity of \(\geq \) on \(\mathbb{N} \) implies
Appendix A. Proofs

[f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n)\sigma]_{pol} \\
= \mathcal{P}ol(f)[s_1\sigma]_{pol}, \ldots, [s_{i-1}\sigma]_{pol}, [s\sigma]_{pol}, [s_{i+1}\sigma]_{pol}, \ldots, [s_n\sigma]_{pol}
and

[f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)\sigma]_{pol} \\
= \mathcal{P}ol(f)[s_1\sigma]_{pol}, \ldots, [s_{i-1}\sigma]_{pol}, [t\sigma]_{pol}, [s_{i+1}\sigma]_{pol}, \ldots, [s_n\sigma]_{pol}

[\sigma]_{pol} \geq [t\sigma]_{pol} follows from \(s \succ_{pol} t\) and thus \([f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n)\sigma]_{pol} \geq [f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)\sigma]_{pol}\) since \(\mathcal{P}ol(f) \in \mathbb{N}[x_1, \ldots, x_n]\) is weakly increasing in \(x_i\). Since this applies for all ground substitutions, \(f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \succ_{pol} f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n).\)

\(\succ_{pol}\) is stable: Let \(s \succ_{pol} t\) and let \(\tau\) be a substitution. Then \([s\tau\sigma]_{pol} \geq [t\tau\sigma]_{pol}\) for all ground substitutions \(\sigma\), i.e., \(s\tau \succ_{pol} t\tau\).

\(\succ_{pol}\) is well-founded: For a contradiction, assume that \(s_1 \succ_{pol} s_2 \succ_{pol} \ldots\) is an infinite descending sequence of terms. Let \(\sigma\) be an arbitrary ground substitution. Then \([s_i\sigma]_{pol} \succ [s_{i+1}\sigma]_{pol}\) for all \(i \geq 1\). But this is clearly impossible since \([s_i\sigma]_{pol} \in \mathbb{N}\) for all \(i \geq 1\).

\(\succ_{pol}\) is compatible with \(\succ_{pol}\): Let \(s \succ_{pol} t \succ_{pol} u \succ_{pol} v\), i.e., \([s\sigma]_{pol} \geq [t\sigma]_{pol} > [u\sigma]_{pol} \geq [v\sigma]_{pol}\) for all ground substitutions \(\sigma\). But then \([s\sigma]_{pol} > [v\sigma]_{pol}\) for all ground substitutions \(\sigma\) as well and therefore \(s \succ_{pol} v\). □

Proof of Theorem 7.8. In the second case soundness is obvious. Otherwise, it needs to be shown that every infinite minimal \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\)-chain contains only finitely many dependency pairs from \(\mathcal{P}'\). Thus, let \(s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots\) be an infinite minimal \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})\)-chain using the \(Th\)-based substitution \(\sigma\). This
Appendix A. Proofs

means that \(t_i \sigma \xrightarrow{S, Q} t_{i+1} \sigma \) and \(s_{i+1} \sigma = f^i(t_{i+1} \sigma) \) for all \(i \in \mathbb{N} \). Then \(t_i \sigma = f^i(t_{i+1} \sigma) \) and \(s_{i+1} \sigma = f^i(t_{i+1} \sigma) \) for some \(f^i \), where \(t_i \sigma \xrightarrow{S, Q} t_{i+1} \sigma \) for all \(1 \leq j \leq n \). It is shown that \(t_i \sigma \approx s_{i+1} \sigma \) for all \(i \geq 1 \).

For this, it is first shown that \(w \vdash \varepsilon w' \) implies \(w \approx w' \) for all \(w, w' \in T(\mathcal{F} \cup \mathcal{F}_{Th}, \mathcal{V}) \). If \(w \vdash \varepsilon w' \), then there exist an equation \(u \approx v \) (or \(v \approx u \)) in \(\mathcal{E} \), a position \(p \in Pos(w) \), and a substitution \(\sigma \) such that \(w|_p = u \sigma \) and \(w' = w[v \sigma]_p \). Notice that \(u \sigma \approx v \sigma \) by assumption, and monotonicity of \(\approx \) implies \(w \approx w' \). Using this result and similar reasoning, \(w \rightarrow_{\mathcal{E} \setminus S} w' \) implies \(w \approx w' \).

Next, it is shown that \(w \xrightarrow{S, Q} w' \) implies \(w \approx w' \) for all \(w, w' \in T(\mathcal{F} \cup \mathcal{F}_{Th}, \mathcal{V}) \). If \(w \xrightarrow{S, Q} w' \), then there exist a rule \(l \rightarrow r[\varphi] \) in \(\mathcal{R} \), a position \(p \in Pos(w) \), and a \(Th \)-based substitution \(\sigma \) such that \(w|_p \xrightarrow{\Lambda} l \sigma \), the constraint \(\varphi \sigma \) is \(Th \)-valid, and \(w' = w[r \sigma]_p \). Using the results from above, \(w|_p \approx l \sigma \), and monotonicity of \(\approx \) implies \(w \approx w[l \sigma]_p \). Notice that \(l \sigma \approx r \sigma \) by assumption, and monotonicity of \(\approx \) gives \(w[l \sigma]_p \approx w[r \sigma]_p \), i.e., \(w \approx w' \).

Thus, \(t_{i,j} \sigma \approx s_{i+1,j} \sigma \) for all \(1 \leq j \leq n \) and monotonicity of \(\approx \) implies \(t_i \sigma \approx s_{i+1} \sigma \) for all \(i \geq 1 \). Furthermore, \(s_i \sigma \approx t_i \sigma \) or \(s_i \sigma \succ t_i \sigma \) for all \(i \geq 1 \) since \(s_i \approx t_i \) for all \(s_i \rightarrow t_i[\varphi_i] \in \mathcal{P} \) and \(s_i \succ t_i \) for all \(s_i \rightarrow t_i[\varphi_i] \in \mathcal{P}' \). Hence, the infinite minimal chain gives rise to

\[
s_1 \sigma \succ_1 t_1 \sigma \approx s_2 \sigma \approx_2 t_2 \sigma \approx \ldots
\]

where \(\succ_1 \in \{ \approx, \succ \} \). If the above infinite minimal chain contains infinitely many dependency pairs from \(\mathcal{P}' \), then \(\succ_1 = \succ \) for infinitely many \(i \). In this case, the compatibility of \(\succ \) with \(\approx \) produces an infinite \(\succ \) chain, contradicting the well-foundedness of \(\succ \). Thus, only finitely many dependency pairs from \(\mathcal{P}' \) occur in the above infinite minimal chain.

\[\square\]

Proof of Theorem 7.16. Let \((\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E}) \) be a DP problem and let \(pol \) be a \(Th_{\mathbb{N}} \)-polynomial interpretation such that \(pol(f^i) \) is weakly increasing in all \(x_i \) with
Appendix A. Proofs

$i \in RedPos(f^2, \mathcal{P})$.

It needs to be shown that \succ_{pol} is \mathcal{F}-monotonic and f^i-monotonic at position i for all $f^i \in \mathcal{F}^i$ and all $i \in RedPos(f^2, \mathcal{P})$. Furthermore, it needs to be shown that \sim_{pol} is f^i-monotonic at position i whenever $i \notin RedPos(f^2, \mathcal{P})$, that \succ_{pol} is well-founded, and that \succ_{pol} is compatible with \preceq_{pol}.

\preceq_{pol} is reflexive, transitive, and \mathcal{F}-monotonic: This is shown as for ordinary polynomial interpretations in the proof of Theorem 7.6.

\succ_{pol} is f^i-monotonic at position i for all $i \in RedPos(f^2, \mathcal{P})$: This is shown similarly to the proof that \preceq_{pol} is monotonic in the proof of Theorem 7.6. Notice that $\mathcal{P}(f^2)$ is assumed to be weakly increasing in x_i for all $i \in RedPos(f^2, \mathcal{P})$.

\sim_{pol} is f^i-monotonic at position i for all $i \notin RedPos(f^2, \mathcal{P})$: Let $s \sim_{pol} t$ for terms $s, t \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{thsl}, \mathcal{V})$ and let $s_1, \ldots, s_{i-1}, s_{i+1}, s_n \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{thsl}, \mathcal{V})$. Then

$$[f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n)\sigma]_{pol} = \mathcal{P}(f)([s_1\sigma]_{pol}, \ldots, [s_{i-1}\sigma]_{pol}, [s\sigma]_{pol}, [s_{i+1}\sigma]_{pol}, \ldots, [s_n\sigma]_{pol})$$

and

$$[f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)\sigma]_{pol} = \mathcal{P}(f)([s_1\sigma]_{pol}, \ldots, [s_{i-1}\sigma]_{pol}, [t\sigma]_{pol}, [s_{i+1}\sigma]_{pol}, \ldots, [s_n\sigma]_{pol})$$

$[s\sigma]_{pol} = [t\sigma]_{pol}$ follows from $s \sim_{pol} t$ and thus $[f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n)\sigma]_{pol} = [f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)\sigma]_{pol}$. Since this reasoning applies for all ground substitutions, $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \sim_{pol} f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$.

\succ_{pol} is well-founded: For a contradiction, assume that $s_1 \succ_{pol} s_2 \succ_{pol} \ldots$ is an infinite descending sequence of terms. Let σ be an arbitrary ground substitution. Then $[s_i\sigma]_{pol} > [s_{i+1}\sigma]_{pol}$ and $[s_i\sigma]_{pol} \geq c_{pol}$ for all $i \geq 1$. But this is clearly impossible.
Appendix A. Proofs

\(\succ \) pol is compatible with \(\succeq \) pol: In order to show \(\succeq \) pol \(\circ \) \(\succ \) pol \(\circ \) \(\succeq \) pol \(\subseteq \) \(\succ \) pol, let
\(s \succeq \) pol \(t \succ \) pol \(u \succeq \) pol \(v\), i.e., \([s \sigma]_{pol} \geq [t \sigma]_{pol} \geq [u \sigma]_{pol} \geq [v \sigma]_{pol}\) and \([t \sigma]_{pol} \geq c_{pol}\) for all ground substitutions \(\sigma\). But then \([s \sigma]_{pol} \geq [v \sigma]_{pol}\) and \([s \sigma]_{pol} \geq c_{pol}\) for all ground substitutions \(\sigma\) as well and therefore \(s \succ \) pol \(v\).

Proof of Theorem 7.18. In the second case soundness is obvious. Otherwise, it needs to be shown that every infinite minimal \((P, Q, R, S, \mathcal{E})\)-chain contains only finitely many dependency pairs from \(P\). Thus, let \(s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots \) be an infinite minimal \((P, Q, R, S, \mathcal{E})\)-chain using the \(Th_{\mathbb{N}}\)-based substitution \(\sigma\). This means that \(t_i \sigma = f^2(t_{i,1} \sigma, \ldots, t_{i,n} \sigma)\) and \(s_{i+1} \sigma = f^2(s_{i+1,1} \sigma, \ldots, s_{i+1,n} \sigma)\) for some \(f^2\), where \(t_{i,j} \sigma \rightarrow_{Th_{\mathbb{N}}} S_{i,j}^* \rightarrow_{\mathcal{E}} S_{i+1,j} \sigma\) and \(\varphi_i \sigma\) is \(Th_{\mathbb{N}}\)-valid for all \(i \geq 1\).

Now \(t_i \sigma = f^2(t_{i,1} \sigma, \ldots, t_{i,n} \sigma)\) and \(s_{i+1} \sigma = f^2(s_{i+1,1} \sigma, \ldots, s_{i+1,n} \sigma)\) for some \(f^2\), where \(t_{i,j} \sigma \rightarrow_{Th_{\mathbb{N}}} S_{i,j}^* \rightarrow_{\mathcal{E}} S_{i+1,j} \sigma\) and \(\varphi_i \sigma\) is \(Th_{\mathbb{N}}\)-valid for all \(i \geq 1\). Notice that this implies \(t_{i,j} \sigma \rightarrow_{\mathcal{E}} S_{i+1,j} \sigma\) if \(j \notin \text{RedPos}(f^2, P)\). Next, it is shown that \(t_i \sigma \succeq s_{i+1} \sigma\) for all \(i \geq 1\).

Similarly to the proof of Theorem 7.8, \(t_{i,j} \sigma \succeq s_{i+1,j} \sigma\) if \(j \in \text{RedPos}(f^2, P)\) and \(t_{i,j} \sigma \succeq s_{i+1,j} \sigma\) if \(j \notin \text{RedPos}(f^2, P)\). Since \(\succeq\) is \(\mathcal{F}\)-monotonic and \(f^2\)-monotonic at the relevant positions, and since \(\succeq \cap \succeq^{-1}\) is \(f^2\)-monotonic at the relevant positions, \(t_i \sigma \succeq s_{i+1} \sigma\) is obtained and the proof continues as the proof of Theorem 7.8, where \(s_i \sigma \succeq t_i \sigma\) for all \(s_i \rightarrow t_i[\varphi_i] \in P - P'\) follows from \(s_i[\varphi_i] \succeq t_i[\varphi_i]\) and the \(Th_{\mathbb{N}}\)-validity of \(\varphi_i \sigma\), and similarly \(s_i \sigma \succeq t_i \sigma\) for all \(s_i \rightarrow t_i[\varphi_i] \in P'\).

Proof of Lemma 7.25. The claim is proved by induction on \(s\). If \(s\) is a constant \(c\), then \([s]_{pol} = Pol(c) \in \mathbb{N}\). Otherwise, \(s = f(s_1, \ldots, s_n)\) and the inductive assumption implies \([s_i]_{pol} \geq 0\) for all \(s_i\) of sort univ. Now \([s]_{pol} = Pol(f)([s_1]_{pol}, \ldots, [s_n]_{pol}) \geq 0\) since \(Pol(f) \in \mathbb{N}[x_1, \ldots, x_n]\) where \(Pol(f)\) only depends on a variable \(x_i\) if the \(i^{th}\) argument of \(f\) has sort univ.

Proof of Theorem 7.26. Similar to the proof of Theorem 7.16.

Proof of Theorem 7.28. In the second case soundness is obvious. Otherwise, it
needs to be shown that every infinite minimal \((P, Q, R, S, E)\)-chain contains only finitely many dependency pairs from \(P'\). Thus, let \(s_1 \to t_1[\varphi_1], s_2 \to t_2[\varphi_2], \ldots\) be an infinite minimal \((P, Q, R, S, E)\)-chain using the \(Th_Z\)-based substitution \(\sigma\), i.e., \(t_i \xrightarrow{S \circ \sigma^Q_{Th_Z || E \mathbin{\setminus \mu} R}} t_i \circ \varphi_i \circ \lambda \sigma_i \sigma i+1 \sigma \) and \(\varphi \sigma i \sigma \) is \(Th_Z\)-valid for all \(i \geq 1\). Now \(t_i \sigma = f_i \sigma (t_{i,1}, \ldots, t_{i,n})\) and \(s_{i+1} \sigma = f_i \sigma (s_{i+1,1}, \ldots, s_{i+1,n})\) for some \(f_i \sigma \in F\), where \(t_i \sigma \sim s_{i+1,1} \sigma \) and \(s_{i+1,1} \sigma \) is normal for all \(1 \leq j \leq n\). Notice that this implies \(t_i \sigma \sim s_{i+1} \sigma \) if the \(j\)th argument of \(f_i \sigma \) has sort \(base\). Next, it is shown that \(t_i \sigma \sim s_{i+1} \sigma \) for all \(i \geq 1\).

Similarly to the proof of Theorem 7.8, \(t_{i,j} \sigma \sim s_{i+1,j} \sigma \) if the \(j\)th argument of \(f_i \sigma \) has sort \(univ\) and \(t_{i,j} \sigma \sim s_{i+1,j} \sigma \) if the \(j\)th argument of \(f_i \sigma \) has sort \(base\). Since \(\sim\) is \(univ\)- and \(base\)-monotonic, \(t_i \sigma \sim s_{i+1} \sigma \) is obtained and the proof continues as the proof of Theorem 7.8, where \(s_i \sigma \sim t_i \sigma \) for all \(s_i \to t_i[\varphi_i] \in P - P'\) follows from \(s_i[\varphi_i] \sim t_i[\varphi_i]\) and the \(Th_Z\)-validity of \(\varphi \sigma i \sigma\), and similarly \(s_i \sigma \sim t_i \sigma \) for all \(s_i \to t_i[\varphi_i] \in P'\).

\[\square\]

A.7 Proofs from Chapter 8

Proof of Lemma 8.3.

1. The claim is shown by induction on the position \(p\) of the \(\xrightarrow{\sigma^{Q}_{\mu \subseteq R || E \mathbin{\setminus \mu} R}}\)-step. Since \(\sigma\) is normal this position is in \(s\) and \(s = f(s_1, \ldots, s_n)\).

If \(p = \Lambda\), then \(s \sigma \xrightarrow{\Lambda^1_{E \mathbin{\setminus \mu} S} \circ \varphi_i \circ \lambda \mu} \) and \(t = r \mu\) for some \(l \to r[\varphi] \in R(f) \subseteq \mathcal{U}_R(s)\) and some \(Th\)-based substitution \(\mu\) where \(\varphi \mu\) is \(Th\)-valid and all proper subterms of \(l \mu\) are irreducible by \(\xrightarrow{\Lambda^{Th}_E \mathbin{\setminus \mu} Q} \). Thus, \(s \sigma \xrightarrow{\Lambda^{Th}_E \mathbin{\setminus \mu} R(s)} t\) and the substitution \(\mu\) is normal. Now let \(u = r\) to obtain \(t = u \mu\) and \(\mathcal{U}_R(u) \subseteq R(f) \cup \bigcup_{r \to r'[\varphi] \in R(f)} \mathcal{U}_R(r') \subseteq \mathcal{U}_R(s)\).

If \(p \neq \Lambda\) then \(s \sigma = f(s_1, \ldots, s_i, \ldots, s_n)\) and \(t = f(s_1, \ldots, t_i, \ldots, s_n)\) where \(s_i \sigma \xrightarrow{\Lambda^{Th}_E \mathbin{\setminus \mu} R} t_i\). By the inductive assumption, \(s_i \sigma \xrightarrow{\Lambda^{Th}_E \mathbin{\setminus \mu} R(s_i)} t_i\) and

\[266\]
Appendix A. Proofs

thus $s_0 \xrightarrow{S_{\Th\|E\setminus \mathcal{U}_{\mathcal{R}(s_i)}}} t$. Furthermore, $\mathcal{U}_{\mathcal{R}}(s_i) \subseteq \mathcal{R}(f) \cup \bigcup_{t' \in \mathcal{E}(f)} \mathcal{U}_{\mathcal{R}'}(r') \cup \mathcal{U}_{\mathcal{R}'}(s_i) \subseteq \mathcal{U}_{\mathcal{R}}(s)$. This implies $s_0 \xrightarrow{S_{\Th\|E\setminus \mathcal{U}_{\mathcal{R}(s)}}} t$. Additionally, the inductive assumption implies that there is some term u_i and some normal substitution μ_i such that $t_i = u_i \mu_i$. Let u'_i result from u_i by replacing variables x by corresponding fresh variables x'. Define μ by $\mu(x') = \mu_i(x)$ for these fresh variables and $\mu(x) = \sigma(x)$ for all other variables. Then $t = u_\mu$ for $u = f(s_1, \ldots, u'_i, \ldots, s_n)$. Obviously $\mathcal{U}_{\mathcal{R}}(u'_i) = \mathcal{U}_{\mathcal{R}}(u_i)$ and the inductive assumption implies $\mathcal{U}_{\mathcal{R}}(u'_i) \subseteq \mathcal{U}_{\mathcal{R}}(s_i)$. As shown above, $\mathcal{U}_{\mathcal{R}}(s_i) \subseteq \mathcal{U}_{\mathcal{R}}(s)$ and thus $\mathcal{U}_{\mathcal{R}}(u'_i) \subseteq \mathcal{U}_{\mathcal{R}}(s)$. Thus, $\mathcal{U}_{\mathcal{R}}(u) \subseteq \mathcal{U}_{\mathcal{R}}(s)$ since $\mathcal{U}_{\mathcal{R}}(u)$ differs from $\mathcal{U}_{\mathcal{R}}(s)$ only by containing $\mathcal{U}_{\mathcal{R}'}(u'_i)$ instead of $\mathcal{U}_{\mathcal{R}'}(s_i)$ and since $\mathcal{U}_{\mathcal{R}'}(u'_i) \subseteq \mathcal{U}_{\mathcal{R}}(u_i) \subseteq \mathcal{U}_{\mathcal{R}}(s)$.

2. The claim immediately follows from the previous part. \hfill \Box

Proof of Theorem 8.7. The proof is similar to the proofs of Theorems 7.6, 7.16, and 7.26. \hfill \Box

Proof of Theorem 8.8. In the second case soundness is obvious. Otherwise, let $s_1 \rightarrow t_1[[\varphi_1]], s_2 \rightarrow t_2[[\varphi_2]], \ldots$ be an infinite minimal $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$-chain using the \Th-based substitution σ. This means that $t_i \sigma \xrightarrow{S_{\Th\|E\setminus \mathcal{R}}} \overset{\Lambda}{\rightarrow} \overset{\Lambda}{\rightarrow} \overset{\Lambda}{\rightarrow} \cdots$ is \Th-valid for all $i \geq 1$. It is now shown that rules from \mathcal{R}' are used for only finitely many i, i.e., that $t_i \sigma \xrightarrow{S_{\Th\|E\setminus \mathcal{R} \cup \mathcal{R}'}} \overset{\Lambda}{\rightarrow} \overset{\Lambda}{\rightarrow} \overset{\Lambda}{\rightarrow} \cdots$ for all $i \geq n$ for some $n \geq 1$.

For a contradiction, assume that rules from \mathcal{R}' are used for infinitely many i. By extending the proofs of Theorems 7.8, 7.18, and 7.28 and by making use of the assumption that (\gtrsim, \succ) is monotonic,

$$s_1 \sigma \gtrsim_1 t_1 \sigma (\gtrsim \cup \succ) s_2 \sigma \gtrsim_2 t_2 \sigma (\gtrsim \cup \succ) \ldots$$

where $\gtrsim_j \in \{\gtrsim, \succ\}$ and $t_i \sigma \succ s_{i+1} \sigma$ if the reduction $t_i \sigma \xrightarrow{S_{\Th\|E\setminus \mathcal{R}}} \overset{\Lambda}{\rightarrow} \overset{\Lambda}{\rightarrow} \overset{\Lambda}{\rightarrow} s_{i+1} \sigma$ uses a rule from \mathcal{R}'. As before, $\gtrsim_j = \succ$ for only finitely many j, i.e., there is an
Appendix A. Proofs

Infinite tail

\[s_k \sigma \gtrsim t_k \sigma \ (\gtrsim \cup \succ) \ s_{k+1} \sigma \gtrsim t_{k+1} \sigma \ (\gtrsim \cup \succ) \ldots \]

If this infinite tail uses rules from \(R' \) infinitely often, then \(t_i \sigma \succ s_{i+1} \sigma \) for infinitely many \(i \) and the compatibility of \(\succ \) with \(\gtrsim \) produces an infinite \(\succ \) chain, contradicting the well-foundedness of \(\succ \). Thus, rules from \(R' \) are used for only finitely many \(i \) and there thus exists an infinite minimal \((P - P', Q, R - R', S, E) \)-chain. \(\square \)

Before proving Lemma 8.14, some auxiliary results need to be obtained. Lemma 8.14 will be shown by well-founded induction using the following relation.

Definition A.1 (\(\vartriangleright \)). Let \(s \) and \(t \) be terms. Then \(s \vartriangleright t \) iff

\[s \longrightarrow_{\varepsilon \setminus S} \circ \sim_{\varepsilon} \cup \frac{S,Q}{\rightarrow_{Th||E\setminus R}} \circ \sim_{\varepsilon} \cup \succ_{\varepsilon} \ t. \]

In order to use \(\vartriangleright \) for inductive proofs, the following properties are needed.

Lemma A.2. Let \(s \) be a terminating term.

1. If \(s \vartriangleright t \), then \(t \) is terminating.
2. \(\vartriangleright \) is well-founded on terminating terms.

Proof. Let \(s \) be terminating.

1. If \(s \longrightarrow_{\varepsilon \setminus S} \circ \sim_{\varepsilon} \ t \) or \(s \frac{S,Q}{\rightarrow_{Th||E\setminus R}} \circ \sim_{\varepsilon} \ t \), then \(t \) is terminating by Corollary 3.27. If \(s \succ_{\varepsilon} \ t \) then \(t \) is terminating due to the inclusion \(\succ_{\varepsilon} \circ \frac{S,Q}{\rightarrow_{Th||E\setminus R}} \subseteq \frac{S,Q}{\rightarrow_{Th||E\setminus R}} \circ \succ_{\varepsilon} \) from the proof of Theorem 6.24.

2. Assume that \(\vartriangleright \) is not well-founded on terminating terms. Then, there exists an infinite \(\longrightarrow_{\varepsilon \setminus S} \circ \sim_{\varepsilon} \cup \frac{S,Q}{\rightarrow_{Th||E\setminus R}} \circ \sim_{\varepsilon} \cup \succ_{\varepsilon} \)-sequence containing only terminating terms.

If this sequence contains only finitely many \(\frac{S,Q}{\rightarrow_{Th||E\setminus R}} \circ \sim_{\varepsilon} \)-steps, then there is an infinite \(\longrightarrow_{\varepsilon \setminus S} \circ \sim_{\varepsilon} \cup \succ_{\varepsilon} \)-sequence. Since \(\succ_{\varepsilon} \) is well-founded, this sequence contains infinitely many \(\longrightarrow_{\varepsilon \setminus S} \circ \sim_{\varepsilon} \)-steps. Using the inclusions \(\succ_{\varepsilon} \circ \longrightarrow_{\varepsilon \setminus S} \).
Appendix A. Proofs

⊆ → E \setminus S from the proof of Theorem 6.24 and ∼E o →E \setminus S ⊆ →E \setminus S o ∼E from Definition 3.12, an infinite →E \setminus S-sequence is obtained, contradicting the assumption that →E \setminus S is terminating.

Otherwise, the sequence contains infinitely many →E \setminus S-steps. Using the inclusions ∼E o S.Q \stackrel{T_h}{\rightarrow} E \setminus R ⊆ S.Q \stackrel{T_h}{\rightarrow} E \setminus R ⊆ S.Q \stackrel{T_h}{\rightarrow} E \setminus R ⊆ →E \setminus S from Lemma 3.26 and →E \setminus S o S.Q \stackrel{T_h}{\rightarrow} E \setminus R ⊆ →E \setminus S from the proof of Theorem 6.24, an infinite S.Q \stackrel{T_h}{\rightarrow} E \setminus R-sequence starting with a terminating term is obtained, which is clearly impossible.

□

The first property will be used freely in the following. Next, it is shown that →E \setminus S and S.Q \stackrel{T_h}{\rightarrow} E \setminus R are finitely branching if E is size-preserving.

Lemma A.3. Let (Q, R, S, E) be an RCERS such that E is size-preserving. Then →E \setminus S and S.Q \stackrel{T_h}{\rightarrow} E \setminus R are finitely branching.

Proof. First, the property is shown for →E \setminus S. Since a term has only finitely many positions and since S is a finite set of rules, it suffices to show that →E \setminus S is finitely branching if only one position p and one rule l → r ∈ S is considered. Without loss of generality assume p = Λ, i.e., s ∼E lσ. Since E is size-preserving, the E-equivalence classes are finite and there are thus only finitely many substitutions σ for E-matching that differ on V(l). Therefore, →E \setminus S is finitely branching.

The proof for S.Q \stackrel{T_h}{\rightarrow} E \setminus R is similar, where it again suffices to consider only the root position and a single rule. Thus, s \stackrel{\Lambda_1}{\rightarrow} E \setminus S s' \stackrel{\Lambda_1}{\sim} lσ, where σ is Th-based. Since →E \setminus S is E-convergent and since E is size-preserving there are only finitely many possible terms s'. As above, there are only finitely many substitutions σ for each s', which implies that S.Q \stackrel{T_h}{\rightarrow} E \setminus R is finitely branching.

□

Proof of Lemma 8.14. The claim is shown by induction on ⊳. If t ∈ V then I(t) = t and nothing needs to be shown. If t = f(t_1, . . . , t_n) with f ∈ Δ then I(t) = f(I(t_1), . . . , I(t_n)) and the inductive assumption implies that I(t_i) is a finite
Appendix A. Proofs

term for all $1 \leq i \leq n$. But then $\mathcal{I}(t)$ is clearly a finite term as well. Finally, assume $\text{root}(t) \not\in \Delta$. Then the sets $\text{Red}_S(t)$, $\text{Red}_R(t)$, and $\mathcal{E}q_E(t)$ are finite since $\rightarrow_{\mathcal{E}\setminus S}$ and $\overrightarrow{s,q}_{\mathcal{T}h||\mathcal{E}\setminus R}$ are finitely branching by Lemma A.3 and \mathcal{E} is size-preserving, which implies that the \mathcal{E}-equivalence classes are finite. By the inductive assumption, $\mathcal{I}(t')$ is a finite term for any $\mathcal{I}(t') \in \text{Red}_S(t) \cup \text{Red}_R(t)$ and $\mathcal{I}(t_i)$ is a finite term for any $g(\mathcal{I}(t_1),\ldots,\mathcal{I}(t_n)) \in \mathcal{E}q_E(t)$ and all $1 \leq i \leq n$. Thus, $\mathcal{I}(t)$ is a finite term as well. □

Proof of Lemma 8.16. Let $t_1 \prec_T \ldots \prec_T t_n$ where all t_i have sort s. Then it is easy to see that $\text{Comp}_s(\{t_1,\ldots,t_n\}) = \Pi_s(t_1,\ldots,\Pi_s(t_i,\ldots,\Pi_s(t_n,\bot)\ldots)\ldots) \rightarrow_{\mathcal{R}_n}^* \Pi_s(t_i,\ldots,\Pi_s(t_n,\bot)\ldots) \rightarrow_{\mathcal{R}_n} t_i$ for any $1 \leq i \leq n$. □

Proof of Lemma 8.17. Let $s,t \in \mathcal{I}(\mathcal{F} \cup \mathcal{F}_{\mathcal{T}h}, \mathcal{V})$ and let σ be a $\mathcal{T}h$-based substitution such that s, t, and σ are terminating.

1. $\mathcal{I}(s\sigma) = s\mathcal{I}(\sigma)$ is proved by induction on s. If $s \in \mathcal{V}$ then this is immediate by the definition of $\mathcal{I}(\sigma)$. Otherwise, $s = f(s_1,\ldots,s_n)$ with $f \in \Delta$. But then

$$\begin{align*}
\mathcal{I}(s\sigma) &= \mathcal{I}(f(s_1\sigma,\ldots,s_n\sigma)) \\
 &= f(\mathcal{I}(s_1\sigma),\ldots,\mathcal{I}(s_n\sigma)) \\
 &= f(s_1\mathcal{I}(\sigma),\ldots,s_n\mathcal{I}(\sigma)) \\
 &= s\mathcal{I}(\sigma)
\end{align*}$$

by the inductive assumption.

2. $\mathcal{I}(s\sigma) \rightarrow_{\mathcal{R}_n}^* s\mathcal{I}(\sigma)$ is proved by induction on s. If $s \in \mathcal{V}$ then this is immediate by the definition of $\mathcal{I}(\sigma)$. Otherwise, $s = f(s_1,\ldots,s_n)$. If $f \in \Delta$ then $\mathcal{I}(s\sigma) = f(\mathcal{I}(s_1\sigma),\ldots,\mathcal{I}(s_n\sigma)) \rightarrow_{\mathcal{R}_n}^* f(s_1\mathcal{I}(\sigma),\ldots,s_n\mathcal{I}(\sigma)) = s\mathcal{I}(\sigma)$ by the inductive assumption. If $f \not\in \Delta$ then $\mathcal{I}(s\sigma) = \text{Comp}_{\text{sort}(s\sigma)}(\text{Red}_S(s\sigma) \cup \text{Red}_R(s\sigma) \cup \mathcal{E}q_E(s\sigma))$. Notice that $f(\mathcal{I}(s_1\sigma),\ldots,\mathcal{I}(s_n\sigma)) \in \mathcal{E}q_E(s\sigma)$ and therefore $\mathcal{I}(s\sigma) \rightarrow_{\mathcal{R}_n}^* f(\mathcal{I}(s_1\sigma),\ldots,\mathcal{I}(s_n\sigma)) \rightarrow_{\mathcal{R}_n}^* f(s_1\mathcal{I}(\sigma),\ldots,s_n\mathcal{I}(\sigma))$ by Lemma 8.16 and the inductive assumption.
Appendix A. Proofs

3. It suffices to show that $s \vdash_{\mathcal{E}} t$ implies $\mathcal{I}(s) \vdash_{\mathcal{E}(\Delta)} \mathcal{I}(t)$ since the statement then follows by induction on the number of $\vdash_{\mathcal{E}}$-steps in $s \sim_{\mathcal{E}} t$.

Thus, let $s \vdash_{\mathcal{E}} t$ and perform an induction on the position p where the step takes places. If $\text{root}(s) \notin \Delta$ then $\text{root}(t) \notin \Delta$ as well by the definition of Δ. Since $s \sim_{\mathcal{E}} t$, Definition 3.12 implies that whenever $s \rightarrow_{\mathcal{E}\setminus S} s'$, then $t \rightarrow_{\mathcal{E}\setminus S} t'$ for some $t' \sim_{\mathcal{E}} s'$. Thus, $\text{Red}_{S}(s) \subseteq \text{Red}_{S}(t)$. Similarly, Lemma 3.26.1 implies $\text{Red}_{R}(s) \subseteq \text{Red}_{R}(t)$. Finally, if $s \sim_{\mathcal{E}} g(t_1, \ldots, t_n)$, then $t \sim_{\mathcal{E}} g(t_1, \ldots, t_n)$, which immediately implies $\mathcal{E}_{q}(s) = \mathcal{E}_{q}(t)$. Using these properties, $\text{Red}_{S}(s) \cup \text{Red}_{R}(s) \cup \mathcal{E}_{q}(s) \subseteq \text{Red}_{S}(t) \cup \text{Red}_{R}(t) \cup \mathcal{E}_{q}(t)$. Since the same reasoning can be applied with s and t interchanged,

$$\text{Comp}_{\text{sort}}(\text{Comp}_{\text{sort}}(\mathcal{I}(s) \cup \text{Red}_{S}(s) \cup \mathcal{E}_{q}(s)))$$

$$= \text{Comp}_{\text{sort}}(\mathcal{I}(t) \cup \text{Red}_{R}(t) \cup \mathcal{E}_{q}(t))$$

and thus $\mathcal{I}(s) = \mathcal{I}(t)$.

Otherwise, $\text{root}(s) \in \Delta$. If $p = \Lambda$, then there exist an equation $u \approx v$ (or $v \approx u$) in \mathcal{E} and a substitution σ such that $s = u\sigma$ and $t = v\sigma$. By the definition of Δ, $u, v \in \mathcal{T}(\Delta, \mathcal{V})$. Hence, $\mathcal{I}(s) = \mathcal{I}(u\sigma) = u\mathcal{I}(\sigma) \vdash_{\mathcal{E}(\Delta)} v\mathcal{I}(\sigma) = \mathcal{I}(v\sigma) = \mathcal{I}(t)$ by I. If $\text{root}(s) \in \Delta$ and $p \neq \Lambda$, then $s = f(s_1, \ldots, s_i, \ldots, s_n)$ and $t = f(s_1, \ldots, t_i, \ldots, s_n)$ where $s_i \vdash_{\mathcal{E}} t_i$. Now the definition of \mathcal{I} gives $\mathcal{I}(s) = f(\mathcal{I}(s_1), \ldots, \mathcal{I}(s_i), \ldots, \mathcal{I}(s_n))$ and $\mathcal{I}(t) = f(\mathcal{I}(s_1), \ldots, \mathcal{I}(t_i), \ldots, \mathcal{I}(s_n))$. Thus $\mathcal{I}(s) \vdash_{\mathcal{E}(\Delta)} \mathcal{I}(t)$ since $\mathcal{I}(s_i) \vdash_{\mathcal{E}(\Delta)} \mathcal{I}(t_i)$ by the inductive assumption.

4. It suffices to show that $s \rightarrow_{\mathcal{E}\setminus S} t$ implies $\mathcal{I}(s) \sim_{1} \mathcal{I}(t)$ since the statement then follows by induction on the number of $\rightarrow_{\mathcal{E}\setminus S}$-steps in $s \rightarrow_{\mathcal{E}\setminus S} t$.

Thus, let $s \rightarrow_{\mathcal{E}\setminus S} t$ and perform an induction on the position p where the reduction takes places. If $\text{root}(s) \notin \Delta$, then $\mathcal{I}(t) \in \text{Red}_{S}(s)$, which implies $\mathcal{I}(s) \rightarrow_{\mathcal{R}_{n}}^{+} \mathcal{I}(t)$ by Lemma 8.16.

If $\text{root}(s) \in \Delta$, first consider the case $p = \Lambda$. Then, there exist a rule $l \rightarrow r \in \mathcal{S}$ and a substitution σ such that $s \sim_{\mathcal{E}} l\sigma \rightarrow_{\mathcal{S}} r\sigma = t$. Since $\text{root}(s) \in \Delta$, the
Appendix A. Proofs

definition of Δ implies that root(l) $\in \Delta$, $l \rightarrow r \in S(\Delta)$, and $r \in I(\Delta, \mathcal{V})$. Using 1, 2, and 3, $I(s) \sim_{\mathcal{E}(\Delta)} I(l\sigma) \rightarrow^*_{\mathcal{R}_n} lI(\sigma) \rightarrow^*_{\mathcal{S}(\Delta)} rI(\sigma) = I(r\sigma) = I(t)$, and thus $I(s) \sim_1 I(t)$. If root(s) $\in \Delta$ and $p \neq \Lambda$, then $s = f(s_1, \ldots, s_i, \ldots, s_n)$ and $t = f(s_1, \ldots, t_i, \ldots, s_n)$, where $s_i \rightarrow_{\mathcal{E}\setminus S} t_i$. Now $I(s_i) \sim_1 I(t_i)$ by the inductive assumption and therefore $I(s) = f(I(s_1), \ldots, I(s_i), \ldots, I(s_n)) \sim_1 f(I(s_1), \ldots, I(t_i), \ldots, I(s_n)) = I(t)$.

5. It suffices to show that $s \rightarrow^*_{\mathcal{T}_h\setminus \mathcal{E}\setminus \mathcal{R}} t$ implies $I(s) \sim_2 I(t)$. Then the statement follows by induction on the number of \$^*_{\mathcal{T}_h\setminus \mathcal{E}\setminus \mathcal{R}}$-steps in $s \rightarrow^*_{\mathcal{T}_h\setminus \mathcal{E}\setminus \mathcal{R}} t$.

Thus, let $s \rightarrow^*_{\mathcal{T}_h\setminus \mathcal{E}\setminus \mathcal{R}} t$ and perform an induction on the position p where the reduction takes places. If root(s) $\notin \Delta$, then $I(t) \in \mathcal{R}_{\mathcal{E}\setminus \mathcal{R}}(s)$, which implies $I(s) \rightarrow^+_{\mathcal{R}_n} I(t)$ by Lemma 8.16.

If root(s) $\in \Delta$, first consider the case $p = \Lambda$. Then, there exist a rule $l \rightarrow r[\varphi] \in \mathcal{R}$ and a \mathcal{T}_h-based substitution σ with $s = f(s') \xrightarrow{\Delta, \mathcal{E}\setminus S} \varphi \sigma \rightarrow_{\mathcal{R}} r\sigma = t$ such that $\varphi\sigma$ is \mathcal{T}_h-valid. Since root(l) = root(s) = f and $f \in \Delta$, the definition of Δ implies that $l \rightarrow r[\varphi] \in \mathcal{R}(\Delta)$ and $r \in I(\Delta, \mathcal{V})$. Using 1, 2, 3, and 4, $I(s) \sim_1 \circ \sim_{\mathcal{E}(\Delta)} I(l\sigma) \rightarrow^*_{\mathcal{R}_n} lI(\sigma) \rightarrow^*_{\mathcal{R}(\Delta)} rI(\sigma) = I(r\sigma) = I(t)$ where $\sigma I(\sigma) = \varphi\sigma$ is \mathcal{T}_h-valid, and thus $I(s) \sim_1 \circ \sim_2 I(t)$. If root($s$) $\in \Delta$ and $p \neq \Lambda$, then $s = f(s_1, \ldots, s_i, \ldots, s_n)$ and $t = f(s_1, \ldots, t_i, \ldots, s_n)$, where $s_i \rightarrow^*_{\mathcal{T}_h\setminus \mathcal{E}\setminus \mathcal{R}} t_i$. Now $I(s_i) \sim_2 I(t_i)$ by the inductive assumption and therefore $I(s) = f(I(s_1), \ldots, I(s_i), \ldots, I(s_n)) \sim_2 f(I(s_1), \ldots, I(t_i), \ldots, I(s_n)) = I(t)$.

6. Let $s\sigma \rightarrow^*_{\mathcal{T}_h\setminus \mathcal{E}\setminus \mathcal{R}} \circ \sim_{\mathcal{E}\setminus S} \circ \sim_1 t\sigma$. Using 3, 4, and 5, $I(s\sigma) \sim_2 \circ \sim_1 \circ \sim_{\mathcal{E}(\Delta)} I(t\sigma)$. Using 1 and 2 this implies $sI(\sigma) \sim_2 \circ \sim_1 \circ \sim_{\mathcal{E}(\Delta)} \circ \sim^*_{\mathcal{R}_n} tI(\sigma)$. □

Proof of Theorem 8.18. In the second case soundness is obvious. Otherwise, it needs to be shown that every infinite minimal $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$-chain contains only finitely many dependency pairs from \mathcal{P}'. This is done similarly to the proofs of previous theorems based on reduction pairs. Thus, let $s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots$ be an infinite minimal $(\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{E})$-chain using the \mathcal{T}_h-based substitution σ. There-
Appendix A. Proofs

fore, \(t_i \sigma \xrightarrow{S_i^{+}_{Th|E \setminus S} \circ \Lambda^1_{E \setminus S} \circ \sim^*_\epsilon} s_{i+1} \sigma \) and \(\varphi_i \sigma \) is \(Th \)-valid for all \(i \geq 1 \). Thus, \(t_i \sigma = f^i(t_i, \sigma, \ldots, t_i, \sigma) \) and \(s_{i+1} \sigma = f^i(s_{i+1}, \sigma, \ldots, s_{i+1}, \sigma) \) for some \(f^i \), where \(t_{i,j} \sigma \xrightarrow{S_i^{+}_{Th|E \setminus S} \circ \sim^*_{E \setminus S}} \sim^*_{E \setminus S} s_{i+j} \sigma \) for all \(1 \leq j \leq n \). Since \(t_{i,j} \in \mathcal{T}(\Delta, V) \) by the definition of \(\Delta \), Lemma 8.17.6 yields \(t_{i,j} \mathcal{I}(\sigma) \sim^*_2 \sim^*_1 \sim^*_{\epsilon} \circ \sim^*_{\epsilon(\Delta)} \circ \sim^*_{\sim^*_{\epsilon} \cap} s_{i+j} \mathcal{I}(\sigma) \) for all \(1 \leq j \leq n \).

As before, \(t_i \mathcal{I}(\sigma) \gtrsim s_{i+1} \mathcal{I}(\sigma) \) for all \(i \geq 1 \) and the proof continues unchanged. \(\square \)

Proof of Theorem 8.20. Combine the proofs of Theorems 8.8 and 8.18. \(\square \)

A.8 Proofs from Chapter 9

Proof of Lemma 9.1. Notice that \(s \mu \xrightarrow{\Lambda^1_{E \setminus S} \circ \Lambda^1_{\sim^*_\epsilon} \circ \sim^*_\epsilon} t \mu \) implies \(s \mu \sim^*_{\epsilon \cup S} t \mu \). \(\square \)

Proof of Lemma 9.3. In order to show that \(s \mu \xrightarrow{\Lambda^1_{E \setminus S} \circ \Lambda^1_{\sim^*_\epsilon}} t \mu \) implies \(\text{CAP}_S(s) \vartheta \xrightarrow{\Lambda^1_{\sim^*_\epsilon}} t \vartheta \) for some substitution \(\vartheta \), it is first shown that \(\text{CAP}_S(s) \mu \xrightarrow{\sim^*_{E \setminus S}} u \) implies \(u = \text{CAP}_S(s) \tau \) for some substitution \(\tau \) such that \(\mu \) and \(\tau \) differ at most for the fresh variables introduced by \(\text{CAP}_S \). This is shown by induction on \(s \). If \(\text{CAP}_S(s) \in \mathcal{V} \), then it is a fresh variable \(y \) and \(\tau = \{y \mapsto u\} \) establishes the claim. Otherwise, \(s = f(s_1, \ldots, s_n) \), \(\text{CAP}_S(s) = f(\text{CAP}_S(s_1), \ldots, \text{CAP}_S(s_n)) \) and there is no rule \(l \rightarrow r \in \mathcal{S} \) such that \(f(\text{CAP}_S(s_1), \ldots, \text{CAP}_S(s_n)) \) and \(l \) are \(E \)-unifiable. First, it is shown that the \(\xrightarrow{\sim^*_{E \setminus S}} \)-step in \(\text{CAP}_S(s) \mu \xrightarrow{\sim^*_{E \setminus S}} u \) cannot take place at the root position. If the reduction takes place at the root position, then there exist a rule \(l \rightarrow r \in \mathcal{S} \) and a substitution \(\rho \) such that \(f(\text{CAP}_S(s_1), \ldots, \text{CAP}_S(s_n)) \mu \sim^*_{\epsilon} \rho \). Since it can be assumed that \(l \) is variable-disjoint from \(f(\text{CAP}_S(s_1), \ldots, \text{CAP}_S(s_n)) \), define the substitution \(\vartheta = \mu \cup \rho \). Since then \(f(\text{CAP}_S(s_1), \ldots, \text{CAP}_S(s_n)) \vartheta \sim^*_{\epsilon} l \vartheta \), this gives a contradiction to the assumption. Thus, there exists an \(1 \leq i \leq n \) such that \(\text{CAP}_S(s_i) \mu \xrightarrow{\sim^*_{E \setminus S}} u_i \) and \(u = f(\text{CAP}_S(s_1) \mu, \ldots, u_i, \ldots, \text{CAP}_S(s_n) \mu) \). By the inductive assumption, there is a substitution \(\delta \) such that \(u_i = \text{CAP}_S(s_i) \delta \). Since the fresh
variables introduced by $\text{CAP}_S(s_i)$ are disjoint from the fresh variables introduced by $\text{CAP}_S(s_j)$ for $1 \leq j \neq i \leq n$ and since μ and δ differ at most for the fresh variables introduced by $\text{CAP}_S(s_i)$, define the substitution τ with $\tau(x) = \delta(x)$ if x is a fresh variable introduced by $\text{CAP}_S(s_i)$ and $\tau(x) = \mu(x)$ otherwise. Using the substitution defined this way, $u = f(\text{CAP}_S(s_1)\mu, \ldots, \text{CAP}_S(s_i)\delta, \ldots, \text{CAP}_S(s_n)\mu) = f(\text{CAP}_S(s_1)\tau, \ldots, \text{CAP}_S(s_i)\tau, \ldots, \text{CAP}_S(s_n)\tau) = \text{CAP}_S(s)\tau$.

By induction on the number of the $\rightarrow_{c\backslash S}$-steps, $\text{CAP}_S(s)\mu \rightarrow_{c\backslash S}^* u$ for a substitution μ implies $u = \text{CAP}_S(s)\delta$ for some substitution δ such that μ and δ differ at most for the fresh variables introduced by $\text{CAP}_S(s)$. Since $s = \text{CAP}_S(s)\sigma'$ for some substitution σ' which only instantiates the fresh variables introduced by $\text{CAP}_S(s)$, it is in particular true that $s\mu = \text{CAP}_S(s)\sigma'\mu \rightarrow_{c\backslash S}^* u$ implies $u = \text{CAP}_S(s)\delta$ for some substitution δ such that $\sigma'\mu$ and δ differ at most for the fresh variables introduced by $\text{CAP}_S(s)$. Thus $\text{CAP}_S(s)\delta = u \triangleright^A_E t\mu$ since $u \triangleright^A_E t\mu$. Now define the substitution η by $\eta(x) = \delta(x)$ if x is a fresh variable introduced by $\text{CAP}_S(s)$ and $\eta(x) = \mu(x)$ otherwise. Then $\text{CAP}_S(s)\eta = u \triangleright^A_E t\mu = t\eta$, i.e., $\text{CAP}_S(s)$ and t are E-unifiable.

\section{A.9 Proofs from Chapter 10}

\textbf{Proof of Lemma 10.6.} Assume $s' \sim_E s \xrightarrow{S}{T_h|E\backslash R} t$. It needs to be shown that $s' \xrightarrow{S}{T_h|E\backslash R} t' \sim_E t$ for some t'. Now $s \xrightarrow{S}{T_h|E\backslash R} t$ implies $s = C[f(u^*)]$ for some context C and some $f \in D(R)$, where $f(u^*) \triangleright^A_{E|S} \circ \triangleright^A_E l\sigma$ for some conditional constrained rewrite rule $s_1 \rightarrow^* t_1, \ldots, s_n \rightarrow^* t_n \mid l \rightarrow r[\varphi] \in R$ and some T_h-based substitution σ such that $\varphi\sigma$ is T_h-valid, $s_i\sigma \xrightarrow{S}{T_h|E\backslash R} t_i\sigma$ for all $1 \leq i \leq n$, and $t = C[r\sigma]$. Since $s' \sim_E s$ and all equations in E are i.u.v. and do not contain symbols from $D(R)$, an application of Lemma 2.21 implies $s' = C'[f(u'^*)]$ for some context C' with $C' \sim_E C$ and $u'^* \sim_E u^*$. Therefore, $f(u'^*) \triangleright^A_{E|S} \circ \triangleright^A_E l\sigma$ by Lemma 2.28. Thus, σ can be used to rewrite $s' = C'[f(u'^*)]$ to $t' = C'[r\sigma] \sim_E C[r\sigma] = t$.

274
Appendix A. Proofs

Proof of Lemma 10.13. Let \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) be a CERS.

“\(\Rightarrow\)”: Assume that \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) is not terminating and let \(s_0 \xrightarrow{S\mathcal{E}\|\mathcal{R}} s_1 \xrightarrow{S\mathcal{E}\|\mathcal{R}} s_2 \xrightarrow{S\mathcal{E}\|\mathcal{R}} \ldots\) be an infinite rewrite sequence. Construct an infinite proof tree \(\{T_i\}_{i \geq 0}\) as

\[
T_0 = s_0 \rightarrow^* t \quad \text{for some arbitrary term } t \quad \text{(an open goal)}
\]

\[
\begin{array}{c}
T_{i+1} = s_i \rightarrow s_{i+1} \\
\text{Repl} \\
\hline
T_i \\
\text{Tran} \\
\hline
s_{i+1} \rightarrow^* t
\end{array}
\]

Here, \(T_i\) is extended at its (only) open goal \(s_i \rightarrow^* t\). Therefore, \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) is not operationally terminating.

“\(\Leftarrow\)”: Assume that \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) is not operationally terminating. Thus, there exists an infinite proof tree \(\{T_i\}_{i \geq 0}\). Since \(\mathcal{R}\) is unconditional, the shared head of the \(T_i\) has the form \(s_0 \rightarrow^* t\) for some terms \(s_0\) and \(t\). Furthermore, the rule \text{Tran} is applied to this head. The leftmost subgoal thus generated is closed using \text{Repl} before the rightmost subgoal can be expanded further.

\[
\begin{array}{c}
s_0 \rightarrow s_1 \\
\text{Repl} \\
\hline
s_1 \rightarrow^* t
\end{array}
\]

\[
\begin{array}{c}
\text{Tran} \\
\hline
s_0 \rightarrow^* t
\end{array}
\]

Thus, \(s_0 \xrightarrow{S\mathcal{E}\|\mathcal{R}} s_1\). Applying the same argument to the subgoal \(s_1 \rightarrow^* t\) and continuing in the same fashion afterwards, the infinite rewrite sequence

\[
s_0 \xrightarrow{S\mathcal{E}\|\mathcal{R}} s_1 \xrightarrow{S\mathcal{E}\|\mathcal{R}} s_2 \xrightarrow{S\mathcal{E}\|\mathcal{R}} \ldots
\]

is obtained and \((\mathcal{R}, \mathcal{S}, \mathcal{E})\) is thus not terminating. \(\square\)

The following properties are immediate consequences of Lemma 10.6. They are used freely in the proof of Lemma 10.16.
Appendix A. Proofs

Property A.4. Given a proof tree

\[
\begin{array}{c}
T_1 \cdots T_n \\
\hline \\
 s \to t
\end{array}
\]

and a term \(s' \sim_{\varepsilon} s \), the following is also a proof tree:

\[
\begin{array}{c}
T_1 \cdots T_n \\
\hline \\
 s' \to t'
\end{array}
\]

Here, \(t' \sim_{\varepsilon} t \) is given by Lemma 10.6. \(\square \)

Property A.5. Let

\[
\begin{array}{c}
T_1 \\
\hline \\
 s_0 \to s_1
\end{array}
\quad
\begin{array}{c}
T_2 \\
\hline \\
 s_1 \to s_2
\end{array}
\quad \ldots
\quad
\begin{array}{c}
T_n \\
\hline \\
 s_{n-1} \to s_n \quad s_n \to^* t
\end{array}
\quad \text{Refl}
\quad \text{Tran}
\quad \text{Tran}
\quad \text{Tran}
\quad \text{Tran}
\quad \text{Tran}
\quad \text{Tran}
\end{array}
\]

be a proof tree where \(s_0 = s \) and \(s_n \sim_{\varepsilon} t \). Given a term \(s' \sim_{\varepsilon} s \),

\[
\begin{array}{c}
\tilde{T}_1 \\
\hline \\
 \tilde{s}_0 \to \tilde{s}_1
\end{array}
\quad
\begin{array}{c}
\tilde{T}_2 \\
\hline \\
 \tilde{s}_1 \to \tilde{s}_2
\end{array}
\quad \ldots
\quad
\begin{array}{c}
\tilde{T}_n \\
\hline \\
 \tilde{s}_{n-1} \to \tilde{s}_n \quad \tilde{s}_n \to^* t
\end{array}
\quad \text{Refl}
\quad \text{Tran}
\quad \text{Tran}
\quad \text{Tran}
\quad \text{Tran}
\quad \text{Tran}
\quad \text{Tran}
\end{array}
\]

is a proof tree with \(\tilde{s}_0 = s' \). Here, for any \(u \), the expression \(\tilde{u} \) denotes some term with \(\tilde{u} \sim_{\varepsilon} u \). The terms \(\tilde{s}_i \) are given by Lemma 10.6. Notice that \(\tilde{s}_n \sim_{\varepsilon} t \) since \(\tilde{s}_n \sim_{\varepsilon} s_n \) and \(s_n \sim_{\varepsilon} t \). \(\square \)
Appendix A. Proofs

Proof of Lemma 10.16. Properties A.4 and A.5 are used freely in this proof. The construction of \(\beta(T) \) is done by induction on the structure of \(T \). There are two cases, depending on whether the head goal of \(T \) is of the form \(s \rightarrow^* t \) or \(s \rightarrow t \). Notice that the second case is not a special case of the first case since \(\rightarrow^* \) and \(\rightarrow \) in proof trees are purely syntactic constructs.

I. The head goal is \(s \rightarrow^* t \):

First, assume that \(T \) is closed. Then, it has the shape

\[
\begin{array}{c}
\text{I} \\
T_1 \\
\hline
s_0 \rightarrow s_1 \\
\vdots \\
T_n \\
\hline
s_n \rightarrow^* t
\end{array}
\]

where \(s_0 = s \) and \(s_n \sim \varepsilon t \). By the induction assumption, for each subtree

\[
U_i = \frac{T_i}{s_{i-1} \rightarrow s_i}
\]

there exists a transformed tree \(\beta(U_i) \) of the form

\[
\begin{array}{c}
\text{I} \\
T_i^1 \\
\hline
s_{i-1} \rightarrow s_i^1 \\
\vdots \\
T_i^k \\
\hline
s_{i-1} \rightarrow^* s_i
\end{array}
\]

Now, the proof tree \(\beta(T) \) is built as follows:
Appendix A. Proofs

If T is not closed since some leftmost T_j^i is not closed, then $\beta(T)$ needs to be cut at the level of T_j^i. In either case, $\beta(T)$ is a well-formed proof tree if T is well-formed and $\beta(T) \subset \beta(T')$ if $T \subset T'$.

II. The head goal is $s \to t$:

Again, it is first assumed that T is closed. Then, it has the shape

$$
\begin{array}{c}
S_1 \\
\vdots \\
S_n
\end{array}
\begin{array}{c}
s_1^\sigma \to^* t_1^\sigma \\
\vdots \\
s_n^\sigma \to^* t_n^\sigma
\end{array}
\begin{array}{c}
\text{Repl}
\end{array}
\begin{array}{c}
s \to^* t
\end{array}
$$

for some rule $\rho : s_1 \to^* t_1, \ldots, s_n \to^* t_n \mid l \to r[\varphi]$ from R. In order to ease notation, it is without loss of generality assumed that the position in the Repl rule is $\rho = \Lambda$, i.e., $s^{\Lambda} \overset{e}{\to} s^{\Lambda} \circ \overset{e}{\sim} l^\sigma$ and $t = r^\sigma$. If the constrained rewrite rule that is used is unconditional, then this rule is also present in $U(R)$ and the following
Appendix A. Proofs

proof tree for \((U(\mathcal{R}), S, \mathcal{E})\) is obtained:

\[
\begin{array}{c}
\text{Repl} \\
\downarrow \\
\text{Refl} \\
\downarrow \\
\text{Tran}
\end{array}
\quad
\begin{array}{c}
s \to t \\
\downarrow \\
t \to^* t \\
\downarrow \\
s \to^* t
\end{array}
\]

Otherwise, \(U(\mathcal{R})\) contains rules of the form (1), (2), and (3) from Definition 10.14. Using these, proof trees for \((U(\mathcal{R}), S, \mathcal{E})\) with the following head goals are constructed:

\[
\begin{align*}
U_n^\rho(t_n, x_n^\ast)\sigma & \to^* r\sigma & (G_n) \\
U_n^\rho(s_n, x_n^\ast)\sigma & \to^* r\sigma & (H_n) \\
U_{n-1}^\rho(t_{n-1}, x_{n-1}^\ast)\sigma & \to^* r\sigma & (G_{n-1}) \\
U_{n-1}^\rho(s_{n-1}, x_{n-1}^\ast)\sigma & \to^* r\sigma & (H_{n-1}) \\
\vdots & & \\
U_1^\rho(t_1, x_1^\ast)\sigma & \to^* r\sigma & (G_1) \\
U_1^\rho(s_1, x_1^\ast)\sigma & \to^* r\sigma & (H_1) \\
s & \to^* r\sigma & (K)
\end{align*}
\]

For the following, notice that \(\varphi\sigma\) is \(Th\)-valid by assumption.

1. Proof tree for \((G_n)\):

 Using rule (3) from Definition 10.14, the following proof tree is constructed:

 \[
 \begin{array}{c}
 \text{Repl} \\
 \downarrow \\
 \text{Refl} \\
 \downarrow \\
 \text{Tran}
 \end{array}
 \quad
 \begin{array}{c}
 U_n^\rho(t_n, x_n^\ast)\sigma \to r\sigma \\
 \downarrow \\
r\sigma \to^* r\sigma \\
 \downarrow \\
r\sigma \to^* r\sigma
 \end{array}
 \quad
 \begin{array}{c}
 U_n^\rho(t_n, x_n^\ast)\sigma \to^* r\sigma
 \end{array}
 \]

2. Proof tree for \((H_k)\) using a proof tree for \((G_k)\):

 Assume that a proof tree \(T_k\) for the goal \((G_k) = U_k^\rho(t_k\sigma, x_k^\ast)\sigma \to^* r\sigma\) has already been constructed. By induction on the tree structure, it can furthermore be assumed that for the subtree

 \[
 U_k = S_k
 \]

 \[
 s_k\sigma \to^* t_k\sigma
 \]
Appendix A. Proofs

a transformed tree $\beta(U_k)$ of the form

\[
\begin{array}{c}
\frac{T^1_k}{u_0 \rightarrow u_1} \\
\frac{T^2_k}{u_1 \rightarrow u_2} \\
\vdots \\
\frac{T^l_k}{u_{l-1} \rightarrow u_l} \\
\frac{\text{Refl}}{u_l \rightarrow^* t_k \sigma} \\
\frac{\text{Tran}}{s_k \sigma \rightarrow^* t_k \sigma}
\end{array}
\]

with $u_0 = s_k \sigma$ and $u_l \sim_{E_t} t_k \sigma$ exists. Then, a proof tree for the goal

$U^p_k(s_k \sigma, x^*_k \sigma) \rightarrow^* r \sigma$ can be constructed as

\[
\begin{array}{c}
\frac{T'^1_k}{u'_0 \rightarrow u'_1} \\
\frac{T'^2_k}{u'_1 \rightarrow u'_2} \\
\vdots \\
\frac{T'^l_k}{u'_{l-1} \rightarrow u'_l} \\
\frac{\text{Tran}}{u'_l \rightarrow^* r \sigma} \\
\frac{\text{Tran}}{u'_l \rightarrow^* r \sigma}
\end{array}
\]

\[
U^p_k(s_k \sigma, x^*_k \sigma) \rightarrow^* r \sigma
\]

where $u'_l = U^p_k(u_i, x^*_k \sigma)$ and T'^l_k “corresponds” to T^l_k.

3. Proof tree for (G_{k-1}) using a proof tree for (H_k):

Assume that a proof tree T_k for the goal $(H_k) = U^p_k(s_k \sigma, x^*_k \sigma) \rightarrow^* r \sigma$ has already been constructed. Then, a proof tree for $U^p_{k-1}(t_{k-1} \sigma, x^*_{k-1} \sigma) \rightarrow^* r \sigma$ can be constructed as

\[
\begin{array}{c}
\frac{\text{Repl}}{U^p_{k-1}(t_{k-1} \sigma, x^*_{k-1} \sigma) \rightarrow U^p_k(s_k \sigma, x^*_k \sigma)} \\
\frac{\text{Tran}}{U^p_{k-1}(t_{k-1} \sigma, x^*_{k-1} \sigma) \rightarrow^* r \sigma}
\end{array}
\]

where the Repl-step uses rule (2) from Definition 10.14.

4. Proof tree for (K) using a proof tree for (H_1):
Appendix A. Proofs

Assume that a proof tree T_1 for the goal $(H_1) = U_1^\rho(s_1\sigma,x_1^*\sigma) \to^* r\sigma$ has already been constructed. Then, a proof tree for the goal $s \to^* t$ can be constructed as

\[
\begin{array}{c}
\text{Repl} \\
\hline
s \to U_1^\rho(s_1\sigma,x_1^*\sigma) \\
\end{array}
\]

\[
\begin{array}{c}
\text{Tran} \\
\hline
T_1 \\
\end{array}
\]

\[
s \to^* t
\]

where the Repl-step uses rule (1) from Definition 10.14.

As in case I, if the original proof tree is not closed, then the transformed tree is cut at some level. In either case, $\beta(T)$ is well-formed if T is well-formed and $\beta(T) \subset \beta(T')$ if $T \subset T'$.

Proof of Theorem 10.17. Assume that (R,S,E) is not operationally terminating. Thus, there exists an infinite proof tree $\{T_i\}_{i \geq 0}$ for (R,S,E). By Lemma 10.16, there exists an infinite sequence $\{\beta(T_i)\}_{i \geq 0}$ of proof trees for $(U(R),S,E)$. Additionally, $T_i \subset T_{i+1}$ implies $\beta(T_i) \subset \beta(T_{i+1})$ for all $i \geq 0$. Therefore, $\{\beta(T_i)\}_{i \geq 0}$ is an infinite proof tree for $(U(R),S,E)$, which is thus not operationally terminating.

Proof of Corollary 10.18. By Lemma 10.13, termination of $(U(R),S,E)$ implies operational termination of $(U(R),S,E)$ since $U(R)$ is unconditional. Thus, (R,S,E) is operationally terminating by Theorem 10.17.

A.10 Proofs from Chapter 11

Proof of Lemma 11.10.

1. Let $C[f(s^*)] \sim_E t$, i.e., there exist terms t_0,\ldots,t_n with $n \geq 0$ such that $C[f(s^*)] = t_0 \vdash_E t_1 \vdash_E \ldots \vdash_E t_n = t$. The claim is proved by induction on n. If $n = 0$ then $C[f(s^*)] = t$ and the claim is obvious.

281
Appendix A. Proofs

If \(n > 0 \), the inductive assumption implies \(t_{n-1} = C''[f(s'')] \) with \(C'' \sim_\varepsilon C' \) and \(s'' \sim_\varepsilon s^* \), where additionally \(C'' \) is active. Since \(t_{n-1} \vdash_\varepsilon t_n \), there exists an equation \(u \approx v \) (or \(v \approx u \)) in \(\mathcal{E} \) such that \(t_{n-1}|_p = u\sigma \) and \(t_n = t_{n-1}[v\sigma]_p \) for some position \(p \) and some substitution \(\sigma \). Let \(q \) be the position with \(t_{n-1}|_q = f(s'' \sigma) \), i.e., \(C''|_q = \Box \). Now perform a case analysis on the relationship between the positions \(p \) and \(q \).

Case 1: \(p \parallel q \). Then, \(t_n = t_{n-1}[v\sigma]_p = (C''[f(s'')] [v\sigma]_p = (C''[v\sigma]_p)[f(s'')] \) with \(C''[v\sigma]_p \sim_\varepsilon C''[u\sigma]_p = C'' \) and \(C''[v\sigma]_p \) is active.

Case 2: \(p = q.q' \) for some position \(q' \neq \Lambda \). In this case, \(t_n = t_{n-1}[v\sigma]_p = (C''[f(s'')] [v\sigma]_{q.q'} = C''[f(s'')] [v\sigma]_{q'} \). Since \(q' \neq \Lambda \), the position \(q' \) can be written as \(q' = i.q'' \) for some \(1 \leq i \leq \text{arity}(f) \) and some position \(q'' \). Then \(s'_i = s''_i \) if \(i \neq j \) and \(s'_i = s''_i[v\sigma]_{q''} \sim_\varepsilon s''_i[u\sigma]_{q''} = s''_i \), i.e., \(s'' \sim_\varepsilon s''' \).

Case 3: \(q = p.p' \) for some position \(p' \) (possibly \(p' = \Lambda \)). Since \(f \not\in \mathcal{F}(\mathcal{E}) \), the position \(p' \) can be written as \(p' = p'_1.p'_2 \) such that \(u|_{p'_1} \) is a variable \(x \) and \(x\sigma|_{p'_2} = f(s'') \). Since the equation \(u \approx v \) (or \(v \approx u \)) is i.u.v., there exists a unique position \(p''_1 \) in \(v \) such that \(v|_{p''_1} = x \). This implies \(v\sigma|_{p''_1} = x\sigma|_{p'_2} = f(s'') \).

Define the substitution \(\sigma' \) by \(\sigma'(y) = \sigma(y) \) for \(y \neq x \) and \(\sigma'(x) = x\sigma[\Box]|_{p'_2} \). Let \(C' = (t_{n-1}[v\sigma]|_p)[\Box]|_{p''_1} = t_{n-1}[v\sigma[\Box]|_{p''_1} p'_2] = t_{n-1}[v\sigma]_p \sim_\varepsilon t_{n-1}[u\sigma]_p = C'' \).

Since \(q \) is active in \(C'' \), the position \(p''_1 \) is active in \(u \) and Definition 11.7.2a implies that \(p''_1 \) is active in \(v \). Therefore, \(C' \) is active as well. Thus, \(t_n = t_{n-1}[v\sigma]_p = C''[f(s'')] \) and the claim follows.

2. Let \(s' \sim_\varepsilon s \xrightarrow{S|T\|\mathcal{E} \setminus \mathcal{R} \setminus \mu} t \). This means that \(s = C[f(u^*)] \) for some active context \(C \) with \(f(u^*) \xrightarrow{\Lambda^l_{\mathcal{E} \setminus S} \circ \Lambda^l_{\mathcal{E}}} l\sigma \) for some constrained rewrite rule \(l \rightarrow r[\varphi] \in \mathcal{R} \) and some \(Th \)-based substitution \(\sigma \) such that \(\varphi\sigma \) is \(Th \)-valid and \(t = C[r\sigma] \).

Since \(s \sim_\varepsilon s' \), Lemma 11.10.1 implies \(s' = C''[f(u'')] \) for some active context \(C' \) with \(C' \sim_\varepsilon C \) and \(u'' \sim_\varepsilon u^* \). Therefore, \(f(u'') \xrightarrow{\Lambda^l_{\mathcal{E} \setminus S} \circ \Lambda^l_{\mathcal{E}}} l\sigma \) by Lemma 2.28 and the substitution \(\sigma \) can be used to rewrite \(s' = C''[f(u'')] \) to \(t' = C''[r\sigma] \sim_\varepsilon l\sigma \).
Appendix A. Proofs

C[rσ] = t.

3. Let s →E\S t S Th|E\R,µ u, i.e., there exist positions p1 ∈ Pos(s) and p2 ∈ Pos^t(t), rules l_1 → r_1 ∈ S and l_2 → r_2[φ_2] ∈ R, a substitution σ_1, and a Th-based substitution σ_2 such that

(a) s|p_1 ∼_E l_1σ_1 and t = s[r_1σ_1]|p_1, and
(b) t|p_2 >_A E\S o >_A l_2σ_2, the instantiated Th-constraint φ_2σ_2 is Th-valid, and

u = t[r_2σ_2]|p_2.

Next, a case analysis on the relationship between p_1 and p_2 is performed.

Case 1: p_1 ∥ p_2. In this case s S Th|E\R,µ o →E\S u is immediate.

Case 2: p_1 = p_2.q for some position q ≠ Λ. In this case s|p_2 = f(s^*), t|p_2 = f(t^*), and s^* →E\S t^*. Therefore, f(s^*) >_A E\S o >_A l_2σ_2 since →E\S is E-convergent and strongly E-coherent and f(t^*) >_A E\S o >_A l_2σ_2. Thus,

s S Th|E\R,µ s[r_2σ_2]|p_2 = t[r_2σ_2]|p_2 = u.

Case 3: p_2 = p_1.q for some position q, possibly q = Λ. Since r_1 does not contain symbols from D(R), there exists a position q_1 ∈ Pos^t(r_1) such that r_1|q_1 = x is a variable and q = q_1.q_2 for some position q_2. Define the substitution σ_1’ to behave like σ_1, with the exception that σ_1’(x) = σ_1(x)[r_2σ_2]|q_2. Then

l_1σ_1 S Th|E\R,µ l_1σ_1’ using Definition 11.7.3a and thus s|p_1 S Th|E\R,µ o ∼_E l_1σ_1’ by Lemma 11.10.2 since s|p_1 ∼_E l_1σ_1. Thus, s|p_1 S Th|E\R,µ o →E\S r_1σ’. Since r_1 is linear, s[r_1σ’]|p_1 = t[r_1σ’]|p_1 = u and thus s S Th|E\R,µ o →E\S u.

Proof of Corollary 11.11.

1. Assume that a starts an infinite S Th|E\R,µ-reduction

\[s S Th|E\R,µ s_1 S Th|E\R,µ s_2 S Th|E\R,µ s_3 S Th|E\R,µ \cdots \]

Using Lemma 11.10.2 this implies

\[t S Th|E\R,µ t_1 S Th|E\R,µ t_2 S Th|E\R,µ t_3 S Th|E\R,µ \cdots \]

283
Appendix A. Proofs

where \(s_i \sim_{\mathcal{E}} t_i \), i.e., \(t \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction as well. The other direction is shown the same way.

2. Let \(s \overset{\mathcal{E}\setminus S}{\to} t \) and assume that \(t \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction. Using the inclusion \(\overset{\mathcal{E}\setminus S}{\to} \circ \overset{S}{\to}_{\mathcal{E}\setminus S} \subseteq \overset{S}{\to}_{\mathcal{E}\setminus S} \circ \overset{\mathcal{E}\setminus S}{\to} \) from Lemma 11.10.3 repeatedly produces an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction starting with \(s \). \(\square \)

Proof of Lemma 11.22.

1. If \(t \sim_{\mathcal{E}} t' \) and \(t \in \mathcal{M}_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty \), then \(t' \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction by Corollary 11.11.1. Notice that \(\text{root}(t) \in \mathcal{D}(\mathcal{R}) \), which implies \(t \overset{\Lambda}{\sim}_{\mathcal{E}} t' \), i.e., \(t = f(t_1, \ldots, t_n) \) and \(t' = f(t'_1, \ldots, t'_n) \) where \(t_i \sim_{\mathcal{E}} t'_i \) for all \(1 \leq i \leq n \). Assume \(t' \triangleright_{\mu} s \) such that \(s \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction. Then \(t'_i \geq_{\mu} s \) for some \(1 \leq i \leq n \) and \(t'_i \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction as well. But then \(t_i \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction by Corollary 11.11.1, contradicting \(t \in \mathcal{M}_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty \).

2. By the assumption, \(t' \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction. Notice that \(\text{root}(t) \in \mathcal{D}(\mathcal{R}) \) and thus \(t \overset{\Lambda}{\sim}_{\mathcal{E}\setminus S} t' \), i.e., \(t = f(t_1, \ldots, t_n) \) and \(t' = f(t'_1, \ldots, t'_n) \) where \(t_i \overset{\mathcal{E}\setminus S}{\to} t'_i \) for all \(1 \leq i \leq n \). Assume \(t' \triangleright_{\mu} s \) such that \(s \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction. Then \(t'_i \geq_{\mu} s \) for some \(1 \leq i \leq n \) and \(t'_i \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction as well. But then \(t_i \) starts an infinite \(\overset{S}{\to}_{\mathcal{E}\setminus S} \mathcal{R}, \mu \)-reduction by Corollary 11.11.2, contradicting \(t \in \mathcal{M}_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty \). \(\square \)

Proof of Lemma 11.23.

1. If \(C[t] \vdash_{\mathcal{E}} s \) at a position \(p \in \mathcal{P} \mathcal{O} \mathcal{s}(C) \), then there exist a substitution \(\sigma \) and an equation \(u \approx v \) (or \(v \approx u \)) in \(\mathcal{E} \) such that \(C[t] |_{p} = u\sigma \) and \(s = C[t]|_{v\sigma[p]} \). Now, the proof proceeds with an induction on \(p \).

If \(p = \Lambda \), then, since \(\text{root}(t) \in \mathcal{D}(\mathcal{R}) \), there is a variable \(x \in \mathcal{V}(u) \) with \(u \triangleright_{\mu} x \) and \(x\sigma \triangleright_{\mu} t \). Now Definition 11.7.2a implies \(v \triangleright_{\mu} x \). Let \(q \) be the position of \(x \) in \(v \) and let \(q' \) be the position of \(t \) in \(x\sigma \). Then \(s = v\sigma = C'[t] \) with \(C' = v\sigma[\square][q,q'] \),
where \(C' \) is a hiding context.

If \(p \neq \Lambda \), then \(C[t] = f(t_1, \ldots, t_{i-1}, C_1[t], t_{i+1}, \ldots, t_n) \) for a hiding context \(C_1 \). If \(p \) is inside one of the \(t_j \), then \(s = f(t'_1, \ldots, t'_{i-1}, C_1[t], t'_{i+1}, \ldots, t'_n) = C'[t] \) where \(C' \) is clearly a hiding context. Otherwise, \(C_1[t] \not\rightarrow s' \) and \(s = f(t_1, \ldots, t_{i-1}, s', t_{i+1}, \ldots, t_n) \). The inductive assumption implies \(s' = C_1'[t] \) for a hiding context \(C_1' \), which clearly implies \(s = C'[t] \) for a hiding context \(C' \).

2. If \(C[t] \rightarrow s \) at a position \(p \in Pos(C) \), then there exists a substitution \(\sigma \) and a rule \(l \rightarrow r \in \mathcal{S} \) such that \(C'[t]|_{p} = l\sigma \) and \(s = C[t][r\sigma]_{p} \). Now, the proof proceeds with an induction on \(p \).

If \(p = \Lambda \), then, since \(\text{root}(t) \in \mathcal{D}(\mathcal{R}) \), there is a variable \(x \in \mathcal{V}(l) \) with \(l \succeq \mu x \) and \(x\sigma \succeq \mu t \). By the assumption, \(r \succeq \mu x \). Let \(q \) be the position of \(x \) in \(r \) and let \(q' \) be the position of \(t \) in \(x\sigma \). Then \(s = r\sigma = C'[t] \) with \(C' = r\sigma[\Box]_{q,q'} \), where \(C' \) is a hiding context.

If \(p \neq \Lambda \), then \(C[t] = f(t_1, \ldots, t_{i-1}, C_1[t], t_{i+1}, \ldots, t_n) \) for a hiding context \(C_1 \). If \(p \) is inside one of the \(t_j \), then \(s = f(t'_1, \ldots, t'_{i-1}, C_1[t], t'_{i+1}, \ldots, t'_n) = C'[t] \) where \(C' \) is clearly a hiding context. Otherwise, \(C_1[t] \not\rightarrow s' \) and \(s = f(t_1, \ldots, t_{i-1}, s', t_{i+1}, \ldots, t_n) \). The inductive assumption implies \(s' = C_1'[t] \) for a hiding context \(C_1' \), which clearly implies \(s = C'[t] \) for a hiding context \(C' \). \(\square \)

Proof of Lemma 11.25.1. Let \(w \not\rightarrow_{\mu} s \succeq_{\mu} t \) with \(t \in \mathcal{M}^{\infty}_{(R,S,E,\mu)} \). Thus \(v \not\rightarrow_{\mu} s \succeq_{\mu} t \) since \(v \succeq_{\mu} w \not\rightarrow_{\mu} s \). The claim is shown by performing a case analysis on whether \(s \) is a subterm of \(u \).

1. \(u \not\rightarrow s \).

 (a) If \(u \not\rightarrow_{\mu} s \), then \(u \not\rightarrow_{\mu} s \succeq_{\mu} t \) contradicts \(u \in \mathcal{M}^{\infty}_{(R,S,E,\mu)} \) since \(u \not\rightarrow_{\mu} t \) with \(t \in \mathcal{M}^{\infty}_{(R,S,E,\mu)} \).

 (b) Otherwise, \(u \not\rightarrow_{\mu} s \). Then \(u \not\rightarrow_{\mu} s \succeq_{\mu} t \) and the claim follows from the hiding property of \(u \).
Appendix A. Proofs

2. \(u \not\Rightarrow s \).

Then \(u|_p = l\sigma \) and \(v = u[r\sigma]_p \) for a position \(p \in \text{Pos}(u) \), a substitution \(\sigma \), and an equation \(l \approx r \) (or \(r \approx l \)) in \(\mathcal{E} \). Now \(l\sigma \not\Rightarrow s \) since \(u \not\Rightarrow s \) and, in particular, \(\sigma(x) \not\Rightarrow s \) for all \(x \in \mathcal{V}(l) \). Also, \(u \) does not contain \(s \) as a subterm at a position \(\hat{p} \) with \(p \parallel \hat{p} \).

(a) First, assume that \(r\sigma \triangleright s \). Since \(\text{root}(t) \not\in \mathcal{F}(\mathcal{E}) \), \(\sigma(x) \triangleright_{\mu} t \) for some variable \(x \in \mathcal{V}(r) \). Let \(q \) be the outermost position in \(v \) above \(s \) that satisfies \(v|_q \triangleright_{\mu} s \).

(i) First, assume that \(q \) is above \(p \) or \(q = p \). Since \(r\sigma \triangleright_{\mu} s \triangleright_{\mu} t \), Definition 11.7.2a implies \(l\sigma \triangleright_{\mu} t \), i.e., \(u \triangleright_{\mu} l\sigma \triangleright_{\mu} t \). From the hiding property of \(u \), \(l\sigma = C[t] \) for a hiding context \(C \) and there exists an instance \(t' \) of a hidden term such that \(t' \xrightarrow{\Lambda} \mathcal{E} \circ \sim_{\mathcal{E}} t \). Then \(r\sigma = C'[t] \) where \(C' \) is a hiding context by Lemma 11.23.1. Now \(r\sigma \triangleright_{\mu} s \) implies \(s = C''[t] \), where \(C'' \) is a hiding context.

(ii) Otherwise, \(q = p.p' \) for a position \(p' \not\in \Lambda \) such that \(r|_{p'} \not\in \mathcal{V} \). Then \(r|_{p'} \triangleright_{\mu} x \), and Definition 11.7.2b (or Definition 11.7.2c) implies \(l \triangleright_{\mu} l' \triangleright_{\mu} x \) for some non-variable subterm \(l' \) of \(l \). Therefore, \(u \triangleright_{\mu} l'\sigma \triangleright_{\mu} t \) and the hiding property of \(u \) implies \(l'\sigma = C[t] \) for a hiding context \(C \) and there exists an instance \(t' \) of a hidden term such that \(t' \xrightarrow{\Lambda} \mathcal{E} \circ \sim_{\mathcal{E}} t \). Then, \(r|_{p'}\sigma = r\sigma|_{p'} = C'[t] \) for some hiding context \(C' \) and \(r\sigma|_{p'} \triangleright_{\mu} s \) implies \(s = C''[t] \), where \(C'' \) is a hiding context.

(b) If \(r\sigma \not\Rightarrow s \), then \(s \triangleright r\sigma \), i.e., \(s|_{q_1} = r\sigma \) for some position \(q_1 \). In this case, \(u \triangleright_{\mu} s[l\sigma]_{q_1} \).

(i) If \(t \) occurs above \(q_1 \), then \(s|_{q_2} = t \) and \(q_1 = q_2.q_3 \) for some position \(q_3 \not\in \Lambda \). Thus, \(u \triangleright_{\mu} s[l\sigma]_{q_1} \triangleright_{\mu} t[l\sigma]_{q_3} \) and the hiding property of \(u \) gives \(s[l\sigma]_{q_1} = C[t[l\sigma]_{q_3}] \) for a hiding context \(C \) and there exists an instance \(t' \) of a hidden term such that \(t' \xrightarrow{\Lambda} \mathcal{E} \circ \sim_{\mathcal{E}} t[l\sigma]_{q_3} \). Thus \(t' \xrightarrow{\Lambda} \mathcal{E} \circ \sim_{\mathcal{E}} t \) since \(t[l\sigma]_{q_3} \sim_{\mathcal{E}} t[r\sigma]_{q_3} = t \). Furthermore, \(s = s[r\sigma]_{q_1} = C[t] \).
Appendix A. Proofs

(ii) Otherwise, \(\sigma(x) \triangleright_{\mu} t \) for some variable \(x \in \mathcal{V}(r) \). In this case, \(u \triangleright_{-\mu} s[l_\sigma]_{q_1} \triangleright_{\mu} t \) and the hiding property of \(u \) implies \(s[l_\sigma]_{q_1} = C[t] \) for a hiding context \(C \) and there exists an instance \(t' \) of a hidden term such that \(t' \xrightarrow{\Lambda} \mathcal{E}_1 \circ \xrightarrow{\Lambda} t \). Thus, \(s = s[l_\sigma]_{q_1} = C'[t] \) for some context \(C' \). The context \(C' \) is hiding by Lemma 11.23.1. \(\square \)

Proof of Lemma 11.25.2. If \(u \rightarrow_{\mathcal{E} \setminus S} v \triangleright_{\mu} w \), then \(u \sim_{\mathcal{E}} u' \rightarrow_{S} v \triangleright_{\mu} w \). By Lemma 11.22, \(u' \in \mathcal{M}_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty \), and Lemma 11.25.1 implies that \(u' \) has the hiding property. Let \(w \triangleright_{-\mu} s \triangleright_{\mu} t \) with \(t \in \mathcal{M}_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty \). Thus \(v \triangleright_{-\mu} s \triangleright_{\mu} t \) since \(v \triangleright_{\mu} w \triangleright_{-\mu} s \). Perform a case analysis on whether \(s \) is a subterm of \(u' \).

1. \(u' \triangleright s \).

 (a) If \(u' \triangleright_{\mu} s \), then \(u' \triangleright_{\mu} s \triangleright_{\mu} t \) contradicts \(u' \in \mathcal{M}_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty \) since \(u' \triangleright_{\mu} t \) with \(t \in \mathcal{M}_{(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)}^\infty \).

 (b) Otherwise, \(u' \triangleright_{-\mu} s \). Then \(u' \triangleright_{-\mu} s \triangleright_{\mu} t \) and the claim follows from the hiding property of \(u' \).

2. \(u' \ntriangleright s \).

Then \(u'|_p = l_\sigma \) and \(v = u'[r_\sigma]_p \) for a position \(p \in \mathcal{P}(u') \), a substitution \(\sigma \), and a rule \(l \rightarrow r \in \mathcal{S} \). Now \(l_\sigma \ntriangleright s \) since \(u' \ntriangleright s \) and, in particular, \(\sigma(x) \ntriangleright s \) for all \(x \in \mathcal{V}(l) \). Also, \(u' \) does not contain \(s \) as a subterm at a position \(\hat{p} \) with \(p \parallel \hat{p} \).

(a) First, assume that \(r_\sigma \triangleright_{s} s \). Since \(\text{root}(t) \notin \mathcal{F}(\mathcal{E}) \), \(\sigma(x) \triangleright_{\mu} t \) for some variable \(x \in \mathcal{V}(r) \). Let \(q \) be the outermost position in \(v \) above \(s \) that satisfies \(v|_q \triangleright_{\mu} s \).

 (i) First, assume that \(q \) is above \(p \) or \(q = p \). Since \(r_\sigma \triangleright_{\mu} s \triangleright_{\mu} t \), Definition 11.7.3a implies \(l_\sigma \triangleright_{\mu} t \), i.e., \(u \triangleright_{-\mu} l_\sigma \triangleright_{\mu} t \). From the hiding property of \(u' \), \(l_\sigma = C[t] \) for a hiding context \(C \) and there exists an instance \(t' \) of a hidden term such that \(t' \xrightarrow{\Lambda} \mathcal{E}_1 \circ \xrightarrow{\Lambda} t \). Then \(r_\sigma = C'[t] \) where \(C' \) is a hiding context by Lemma 11.23.2. Now \(r_\sigma \triangleright_{\mu} s \) implies \(s = C''[t] \), where \(C'' \) is a hiding context.

287
Appendix A. Proofs

(ii) Otherwise, $q = p.p'$ for a position $p' \neq \Lambda$ such that $r|_{p'} \not\in \mathcal{V}$. Then $r|_{p'} \triangleright_{\mu} x$, and Definition 11.7.3b implies $l \triangleright_{\mu} l' \triangleright_{\mu} x$ for some non-variable subterm l' of l. Therefore, $u' \triangleright_{\mu} l'\sigma \triangleright_{\mu} t$ and the hiding property of u' implies $l'\sigma = C[t]$ for a hiding context C and there exists an instance t' of a hidden term such that $t' \overset{\Lambda}{\sim}_{\mathcal{E}\setminus S} o \overset{\Lambda}{\sim}_{\mathcal{E}} t$. Then, $r|_{p'}\sigma = r\sigma|_{p'} = C'[t]$ for some hiding context C' and $r\sigma|_{p'} \triangleright_{\mu} s$ implies $s = C''[t]$, where C'' is a hiding context.

(b) If $r\sigma \not\in s$, then $s \triangleright r\sigma$, i.e., $s|_{q_1} = r\sigma$ for some position q_1. In this case, $u' \triangleright_{\mu} s[l\sigma|_{q_1}$.

(i) If t occurs above q_1, then $s|_{q_2} = t$ and $q_1 = q_2.q_3$ for some position $q_3 \neq \Lambda$. Thus, $u' \triangleright_{\mu} s[l\sigma|_{q_1} \triangleright_{\mu} t[l\sigma|_{q_3}$. Now the hiding property of u' gives $s[l\sigma|_{q_1} = C[t[l\sigma|_{q_3}]$ for a hiding context C and there exists an instance t' of a hidden term such that $t' \overset{\Lambda}{\sim}_{\mathcal{E}\setminus S} o \overset{\Lambda}{\sim}_{\mathcal{E}} t[l\sigma|_{q_3}$. Thus $t' \overset{\Lambda}{\sim}_{\mathcal{E}\setminus S} o \overset{\Lambda}{\sim}_{\mathcal{E}} t$ since $t[l\sigma|_{q_3} \overset{\Lambda}{\sim}_{\mathcal{E}} t[r\sigma|_{q_3} = t$ and $\overset{\mathcal{E}}{\sim}$ is strongly \mathcal{E}-coherent by Definition 3.12. Furthermore, $s = s[r\sigma|_{q_1} = C[t]$.

(ii) Otherwise, $\sigma(x) \triangleright_{\mu} t$ for some variable $x \in \mathcal{V}(r)$. In this case, $u' \triangleright_{\mu} s[l\sigma|_{q_1} \triangleright_{\mu} t$ and the hiding property of u' implies $s[l\sigma|_{q_1} = C[t]$ for a hiding context C and there exists an instance t' of a hidden term such that $t' \overset{\Lambda}{\sim}_{\mathcal{E}\setminus S} o \overset{\Lambda}{\sim}_{\mathcal{E}} t$. Thus, $s = s[r\sigma|_{q_1} = C'[t]$ for some context C'. The context C' is hiding by Lemma 11.23.2.

\begin{proof}[Proof of Lemma 11.25.3] If $u \overset{s}{\rightarrow}_{\mathcal{E}\setminus \mathcal{R},\mu} v \triangleright_{\mu} w$, then $u = C[u']$ for an active context C such that $u' \overset{\Lambda}{\sim}_{\mathcal{E}\setminus S} o \overset{\Lambda}{\sim}_{\mathcal{E}} l\sigma \rightarrow_{\mathcal{R}} r\sigma$ for a constrained rewrite rule $l \rightarrow r[\varphi] \in \mathcal{R}$ and a $\mathcal{T}h$-based substitution σ. Since $C[l\sigma]$ starts an infinite $\overset{s}{\rightarrow}_{\mathcal{E}\setminus \mathcal{R},\mu}$-reduction, Lemma 11.22 implies $C[l\sigma] \in \mathcal{M}_{(\mathcal{R},\mathcal{S},\mathcal{E},\mu)}$. Also, Lemmas 11.25.1 and 11.25.2 imply that $C[l\sigma]$ has the hiding property. Let $w \triangleright_{\mu} s \triangleright_{\mu} t$ with $t \in \mathcal{M}_{(\mathcal{R},\mathcal{S},\mathcal{E},\mu)}$. Then $v \triangleright_{\mu} s \triangleright_{\mu} t$ since $v \triangleright_{\mu} w \triangleright_{\mu} s$. Perform a case analysis on whether s is a subterm of $C[l\sigma]$.
\end{proof}

288
Appendix A. Proofs

1. \(C[\sigma] \triangleright s \).
 (a) If \(C[\sigma] \triangleright_{\mu} s \), then \(C[\sigma] \triangleright_{\mu} s \triangleright_{\mu} t \) contradicts \(C[\sigma] \in \mathcal{M}_{(\mathcal{R},\mathcal{S},\mathcal{E},\mu)}^\infty \) since \(C[\sigma] \triangleright_{\mu} t \) with \(t \in \mathcal{M}_{(\mathcal{R},\mathcal{S},\mathcal{E},\mu)}^\infty \).
 (b) Otherwise, \(C[\sigma] \triangleright_{-\mu} s \). Then \(C[\sigma] \triangleright_{-\mu} s \triangleright_{\mu} t \) and the claim follows from the hiding property of \(C[\sigma] \).

2. \(C[\sigma] \not\triangleright s \).
 First, notice that \(v = C[r\sigma] \). Thus, \(C \not\triangleright s \) and \(l\sigma \not\triangleright s \) since \(C[\sigma] \not\triangleright s \). Also, in particular, \(\sigma(x) \not\triangleright s \) for all \(x \in \mathcal{V}(l) \). Finally, the root of \(s \) in \(v \) cannot be above \(\Box \) in \(C \) since these positions are active. Hence, \(v \triangleright_{-\mu} s \) implies \(v\sigma \triangleright_{-\mu} s \) such that \(s \) is an instance of a non-variable subterm of \(r \) occurring at a position from \(\mathcal{P}os^\mu(r) \), i.e., \(r \triangleright_{-\mu} r' \) with \(r' \notin \mathcal{V} \) such that \(r'\sigma = s \) and \(s|_p = t \) for an active position \(p \in \mathcal{P}os^\mu(s) \).
 (a) First, assume \(p \in \mathcal{P}os^\mu(r') \) and \(r'|_p \notin \mathcal{V} \). Then \(r'|_p \) is a hidden term and \(t = s|_p = r'\sigma|_p = r'|_p \sigma \) is an instance of a hidden term. Furthermore, \(C' = r'[\Box]_p \) is a hiding context, which implies that \(C'\sigma \) is a hiding context as well. Thus, \(s = r'\sigma = C'[r'|_p] \sigma = C'\sigma[r'|_p \sigma] \) and the claim follows.
 (b) Otherwise, \(p = p_1p_2 \) such that \(r'|_{p_1} = x \) for a variable \(x \in \mathcal{V} \). In this case, \(C' = r'[\Box]_{p_1} \) is a hiding context. Now \(l\sigma \triangleright t \) since \(x\sigma \triangleright_{\mu} t \). If \(l\sigma \triangleright_{\mu} t \), then \(C[\sigma] \triangleright_{\mu} l\sigma \triangleright_{\mu} x\sigma \triangleright_{\mu} t \) with \(t \in \mathcal{M}_{(\mathcal{R},\mathcal{S},\mathcal{E},\mu)}^\infty \), contradicting \(C[\sigma] \in \mathcal{M}_{(\mathcal{R},\mathcal{S},\mathcal{E},\mu)}^\infty \). Thus, \(l\sigma \triangleright_{-\mu} x\sigma \) and \(C[\sigma] \triangleright_{-\mu} x\sigma \triangleright_{\mu} t \) and the hiding property of \(C[l\sigma] \) implies \(x\sigma = \widehat{C}[t] \) for a hiding context \(\widehat{C} \) and there exists an instance \(t' \) of a hidden term such that \(t' \overset{\Delta}{\triangleright}_{\mathcal{E} \setminus \mathcal{S} \setminus \Box} \overset{\Delta}{\triangleright}_{\mathcal{E}} t \). Let \(C'' = C'\sigma[\widehat{C}] \). Then the context \(C'' \) is hiding and \(s = r'\sigma = r'\sigma[x\sigma[t|_{p_2}]_{p_1} = C''\sigma[\widehat{C}[t]] = C''[t] \), thus establishing the claim. \(\square \)

Proof of Theorem 11.26. If \(S \overset{T_h||\mathcal{E} \setminus \mathcal{R},\mu}{\rightarrow} \) is not terminating, then there exists a term \(t \) which starts an infinite \(S \overset{T_h||\mathcal{E} \setminus \mathcal{R},\mu}{\rightarrow} -\)reduction such that every proper subterm of \(t \) (even at inactive positions) is terminating w.r.t. \(S \overset{T_h||\mathcal{E} \setminus \mathcal{R},\mu}{\rightarrow} \). Thus, \(t \) trivially has the
Appendix A. Proofs

hiding property. Furthermore, there are terms \(t_i, s_i, \hat{t}_i \) such that

\[
t = \hat{t}_1 \xrightarrow{S^{\ast}_T} E_{\mathcal{R}}(\mu) t_1 \xrightarrow{S^*_{T \eta \mathcal{R}}} E_{\mathcal{R}}(\mu) s_1 \xrightarrow{\mu} \hat{t}_2 \xrightarrow{S^*_{T \eta \mathcal{R}}} E_{\mathcal{R}}(\mu) t_2 \xrightarrow{S^*_{T \eta \mathcal{R}}} E_{\mathcal{R}}(\mu) s_2 \xrightarrow{\mu} \hat{t}_3 \ldots
\]

where the \(S^*_{T \eta \mathcal{R}} \)-steps in \(\hat{t}_i \xrightarrow{S^*_{T \eta \mathcal{R}}} E_{\mathcal{R}}(\mu) t_i \) are applied strictly below the root position and the \(S^*_{T \eta \mathcal{R}} \)-step \(t_i \xrightarrow{S^*_{T \eta \mathcal{R}}} E_{\mathcal{R}}(\mu) s_i \) is applied at the root position. Furthermore, \(\hat{t}_i, t_i \in M^\infty_\mathcal{R}(\mathcal{S}, E, \mu) \) for all \(i \).

First, it is shown that every \(\hat{t}_i \) and every \(t_i \) has the hiding property. As shown above, \(\hat{t}_1 = t \) has the hiding property by assumption. Next, if \(\hat{t}_i \) has the hiding property, then \(t_i \) has the hiding property by Lemma 11.25.3, and Lemma 11.25.3 furthermore implies that \(\hat{t}_{i+1} \) has the hiding property if \(t_i \) has the hiding property.

Next, it is shown that \(t_i \xrightarrow{S^*_{T \eta \mathcal{R}}} E_{\mathcal{R}}(\mu), \mu \hat{t}_{i+1} \xrightarrow{\Lambda^1_{E_{\mathcal{S}}} \circ \Lambda^2} E_{\mathcal{R}}(\mu) \) for some \(\hat{t}_{i+1} \) and that every term in this sequence is terminating w.r.t. \(S^*_{T \eta \mathcal{R}} \). Since \(t_i \xrightarrow{S^*_{T \eta \mathcal{R}}} E_{\mathcal{R}}(\mu) s_i \xrightarrow{\mu} \hat{t}_{i+1} \) where the \(S^*_{T \eta \mathcal{R}} \)-step is applied at the root position, there exist a rule \(l_i \rightarrow r_i [\phi_i] \in \mathcal{R} \), a \(\eta \)-based substitution \(\sigma \), and a position \(p_i \in Pos^\mu(s_i) \) such that \(t_i \xrightarrow{\Lambda^1_{E_{\mathcal{S}}} \circ \Lambda^2} l_i \sigma, \phi_i \sigma \) is \(\eta \)-valid, \(s_i = r_i \sigma \), and \(s_i|_{p_i} = \hat{t}_{i+1} \). Perform a case analysis on the position \(p_i \).

If \(p_i \in Pos^\mu(r_i) \) and \(r_i|_{p_i} \notin \mathcal{V} \), then there exists the dependency pair \(l^\sharp \rightarrow (r_i|_{p_i})^\sharp[\phi_i] \in DP_\theta(\mathcal{R}, \mu) \) since \(\text{root}(r_i|_{p_i}) = \text{root}(\hat{t}_{i+1}) \in D(\mathcal{R}) \). But this clearly implies \(t_i^\sharp \xrightarrow{\Lambda^1_{E_{\mathcal{S}}} \circ \Lambda^2} l_i \sigma \) and thus \(t_i \xrightarrow{S^*_{T \eta \mathcal{R}}} E_{\mathcal{R}}(\mu), (r_i|_{p_i})^\sharp \sigma = \hat{t}_{i+1}^\sharp \). Furthermore, \(t_i^\sharp \) and \(\hat{t}_{i+1}^\sharp \) are terminating w.r.t. \(S^*_{T \eta \mathcal{R}} \) since \(t_i, \hat{t}_{i+1} \in M^\infty_\mathcal{R}(\mathcal{S}, E, \mu) \).

Otherwise, \(p_i \) is at or below the position of an active variable \(x_i \in r_i \). The variable \(x_i \) only occurs in inactive positions in \(l_i \) since \(l_i \sigma \not \xrightarrow{\mu} x_i \sigma \not \xrightarrow{\mu} \hat{t}_{i+1} \) and \(\hat{t}_{i+1} \in M^\infty_\mathcal{R}(\mathcal{S}, E, \mu) \) implies that \(l_i \sigma \notin M^\infty_\mathcal{R}(\mathcal{S}, E, \mu) \), which, by Lemma 11.22 contradicts \(t_i \in M^\infty_\mathcal{R}(\mathcal{S}, E, \mu) \) because \(t_i \xrightarrow{\Lambda^1_{E_{\mathcal{S}}} \circ \Lambda^2} l_i \sigma \). Since \(l_i \sigma \) has the hiding property by Lemma 11.25 (because \(t_i \) has the hiding property) and \(l_i \sigma \not \xrightarrow{-\mu} x_i \sigma \not \xrightarrow{\mu} \hat{t}_{i+1} \), Definition 11.24 implies \(x \sigma = C[\hat{t}_{i+1}] \) for a hiding context \(C \) and there exists an instance \(\hat{t}_{i+1} \) of a hidden term such that \(\hat{t}_{i+1} \xrightarrow{\Lambda^1_{E_{\mathcal{S}}} \circ \Lambda^2} \hat{t}_{i+1} \). Notice that \(C[\hat{t}_{i+1}] \) is irreducible by
Appendix A. Proofs

＞Λ_{E\backslash S} since l_i\sigma is irreducible by ＞Λ_{E\backslash S}. By letting s and s' be the appropriate sorts,

\[t_i^s \xrightarrow{S} T h_{E\backslash DP(R,\mu),\mu} U_s(x_i\sigma) \]
\[= U_s(C[t_{i+1}]) \]
\[\xrightarrow{S} T h_{E\backslash DP(R,\mu),\mu} U'_s(t_{i+1}) \]
\[\xrightarrow{S} T h_{E\backslash DP(R,\mu),\mu} \hat{t}_{i+1}^\sharp \]

where C is hiding

Also, \(t^s_1 \) and \(\hat{t}^\sharp_{i+1} \) are terminating w.r.t. \(S_t_{E\backslash R,\mu} \) since \(t_1, \hat{t}_{i+1} \in M^{(R,S,E,\mu)} \).

Using \(t^s_1 \xrightarrow{S} T h_{E\backslash DP(R,\mu),\mu} \hat{t}^\sharp_{i+1} \xrightarrow{A}_{E\backslash S} \hat{t}^\sharp_{i+1} \), the sequence

\[t = \hat{t}_1 \xrightarrow{S} T h_{E\backslash R,\mu} t_1 \xrightarrow{S} T h_{E\backslash R,\mu} s_1 \xrightarrow{\mu} \hat{t}_2 \xrightarrow{S} T h_{E\backslash R,\mu} t_2 \xrightarrow{S} T h_{E\backslash R,\mu} s_2 \xrightarrow{\mu} \hat{t}_3 \ldots \]

is transformed into

\[t^\sharp = \hat{t}_1 \xrightarrow{S} T h_{E\backslash R,\mu} t_1 \xrightarrow{S} T h_{E\backslash DP(R,\mu),\mu} \hat{t}_2^\sharp \xrightarrow{A}_{E\backslash S} \hat{t}_2 \xrightarrow{S} T h_{E\backslash R,\mu} t_2 \ldots \]

Using Lemma 11.10 and the strong \(E \)-coherence of \(\rightarrow_{E\backslash S} \), this gives rise to an infinite minimal \((DP(R,\mu),R,S,E,\mu)\)-chain. \(\square \)

A.11 Proofs from Chapter 12

Proof of Theorem 12.3. It needs to be shown that there exists a substitution \(\sigma \) that is \(Th \)-based for \(V(s_1) \cup V(s_2) \) such that \(cap(t_1)\sigma \xrightarrow{A}_{E\backslash S} s_2\sigma \), the terms \(s_1\sigma \) and \(s_2\sigma \) are irreducible by \(\rightarrow_{E\backslash S} \), and \(\varphi_1\sigma \) and \(\varphi_2\sigma \) are \(Th \)-valid whenever

\[s_1 \rightarrow t_1[\varphi_1], \]
\[s_2 \rightarrow t_2[\varphi_2] \]

is a \((P,R,S,E,\mu)\)-chain, i.e.,

291
Appendix A. Proofs

\[t_1 \sigma \xrightarrow{S_{Th||E\setminus R,\mu}} u \xrightarrow{\Delta^1_{E\setminus S}} s_1 \sigma \quad \text{for a } Th\text{-based substitution } \sigma \text{ such that } \varphi_1 \sigma \text{ and } \varphi_2 \sigma \text{ are } Th\text{-valid and } s_1 \sigma \text{ and } s_2 \sigma \text{ are normal forms w.r.t. } \Delta^2_{E\setminus S} \]

(†) implies \(CAP_\mu(t_1)\eta \xrightarrow{\Delta^1_{E\setminus S}} \xrightarrow{\Delta^1_{E\setminus S}} s_2 \eta \) for some substitution \(\eta \) that is \(Th \)-based for \(V(s_1) \cup V(s_2) \) such that \(s_1 \eta \) and \(s_2 \eta \) are normal forms w.r.t. \(\Delta^2_{E\setminus S} \) and \(\varphi_1 \eta \) and \(\varphi_2 \eta \) are \(Th \)-valid.

In order to show (†), it is first shown that for all terms \(t \) and all substitutions \(\eta \) that are \(Th \)-based for \(V(t) \),

\[CAP_\mu(t)\eta \xrightarrow{S_{Th||E\setminus R,\mu}} u \] implies that there exists a substitution \(\tau \) that is \(Th \)-based for \(V(t) \) such that \(u = CAP_\mu(t)\tau \), where \(\eta \) and \(\tau \) differ at most for the fresh variables introduced by \(CAP_\mu(t) \).

The property (†) is shown by induction on \(t \). If \(CAP_\mu(t) \in V \), then it is a fresh variable \(y \) of sort \(\text{univ} \) since \(\eta \) is \(Th \)-based for \(V(t) \). Letting \(\tau = \{ y \mapsto u \} \) establishes (†). Otherwise, \(t = f(t_1, \ldots, t_n) \), \(CAP_\mu(t) = f(t'_1, \ldots, t'_n) \) and there is no rule \(l \rightarrow r[\varphi] \in R \) such that \(f(t'_1, \ldots, t'_n)\vartheta \xrightarrow{\Delta^1_{E\setminus S}} \xrightarrow{\Delta^1_{E\setminus S}} l\vartheta' \) for a substitution \(\vartheta' \) that is \(Th \)-based for \(V(f(t_1, \ldots, t_n)) \cup V(l) \) where \(\varphi \vartheta \) is \(Th \)-valid. First, it is shown that the \(S_{Th||E\setminus R,\mu} \)-step cannot take place at the root position. If the reduction takes place at the root position, then there exist a rule \(l \rightarrow r[\varphi] \in R \) and a \(Th \)-based substitution \(\rho \) such that \(f(t'_1, \ldots, t'_n)\eta \xrightarrow{\Delta^1_{E\setminus S}} \xrightarrow{\Delta^1_{E\setminus S}} l\rho \) and \(\varphi \rho \) is \(Th \)-valid. Since it can be assumed that \(l \) is variable-disjoint from \(f(t'_1, \ldots, t'_n) \), it is possible to define the substitution \(\vartheta = \sigma \cup \rho \) where \(\vartheta \) is \(Th \)-based for \(V(f(t'_1, \ldots, t'_n)) \cup V(l) \). Since \(\varphi \vartheta \) is \(Th \)-valid this is a contradiction to the assumption. Hence, the \(S_{Th||E\setminus R,\mu} \)-step takes place below the root position, i.e., there exists an \(1 \leq i \leq n \) such that \(t'_i \eta \xrightarrow{S_{Th||E\setminus R,\mu}} u_i \) and \(u = f(t'_1, \ldots, u_i, \ldots, t'_n) \). Furthermore, \(i \in \mu(f) \), which implies \(t'_i = CAP_\mu(t_i) \).

By the inductive assumption, this yields a substitution \(\delta \) that is \(Th \)-based for \(V(t_i) \) such that \(u_i = CAP_\mu(t_i)\delta = t'_i\delta \). Since the fresh variables introduced by \(CAP_\mu(t_i) \) are disjoint from the fresh variables introduced by \(CAP_\mu(t_j) \) for \(1 \leq j \neq i \leq n \) and since
Appendix A. Proofs

η and δ differ at most for the fresh variables introduced by $\text{CAP}_\mu(t_1)$, it is possible to define the substitution τ with $\tau(x) = \delta(x)$ if x is a fresh variable introduced by $\text{CAP}_\mu(t_1)$ and $\tau(x) = \eta(x)$ otherwise. Then τ is $T\mu$-based for $\mathcal{V}(t)$ and

$$u = f(t'_1\eta, \ldots, t'_i\delta, \ldots, t'_n\eta)$$

$$= f(t'_1\tau, \ldots, t'_i\tau, \ldots, t'_n\tau)$$

$$= \text{CAP}_\mu(t)\tau$$

By (†) and an induction on the number of $S_{\mathcal{T}h\|E\setminus R,\mu}$-steps, $\text{CAP}_\mu(t)\eta \to^{S_{\mathcal{T}h\|E\setminus R,\mu}} u$ for a substitution η that is $T\mu$-based for $\mathcal{V}(t)$ implies $u = \text{CAP}_\mu(t)\delta$ for some substitution δ that is $T\mu$-based for $\mathcal{V}(t)$ such that η and δ differ at most for fresh variables introduced by $\text{CAP}_\mu(t)$. Since $t_1 = \text{CAP}_\mu(t_1)\sigma'$ for some substitution σ' that only instantiates fresh variables introduced by $\text{CAP}_\mu(t_1)$, in particular $t_1\sigma = \text{CAP}_\mu(t_1)\sigma'\sigma \to^S_{\mathcal{T}h\|E\setminus R,\mu} u$ implies $u = \text{CAP}_\mu(t_1)\delta$ for some substitution δ that is $T\mu$-based for $\mathcal{V}(t_1)$ such that σ'σ and δ differ at most for the fresh variables introduced by $\text{CAP}_\mu(t_1)$. Thus $\text{CAP}_\mu(t_1)\delta = u \xrightarrow{\Lambda_1}_{E\setminus S} \succeq^A_E s_2\sigma$ since $u \xrightarrow{\Lambda_1}_{E\setminus S} \succeq^A_E s_2\sigma$. Now define the substitution ξ by $\xi(x) = \delta(x)$ if x is a fresh variable introduced by $\text{CAP}_\mu(t_1)$ and $\xi(x) = \sigma(x)$ otherwise. Notice that ξ is $T\mu$-based for $\mathcal{V}(s_1) \cup \mathcal{V}(s_2)$. Then $\text{CAP}_\mu(t_1)\xi = u \xrightarrow{\Lambda_1}_{E\setminus S} \succeq^A_E s_2\sigma = s_2\xi$. Since $s_1\xi = s_1\sigma$ and $s_2\xi = s_2\sigma$, the terms $s_1\xi$ and $s_2\xi$ are normal forms w.r.t. $\xrightarrow{\Lambda_1}_{E\setminus S}$ by Definition 11.20. Also, $\varphi_1\xi = \varphi_1\sigma$ and $\varphi_2\xi = \varphi_2\sigma$ are $T\mu$-valid. □

Proof of Theorem 12.4. After a finite number of dependency pairs in the beginning, any infinite minimal $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain only contains pairs from some SCC. Hence, every infinite minimal $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain gives rise to an infinite minimal $(\mathcal{P}_i, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain for some $1 \leq i \leq n$. □

Proof of Lemma 12.8. Similar to the proof of Lemma 6.23. □

Proof of Theorem 12.9. In the second case soundness is obvious. Otherwise, it needs to be shown that every infinite minimal $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain contains only finitely many dependency pairs from \mathcal{P}'. Thus, let $s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots$ be
an infinite minimal \((P, R, S, E, \mu)\)-chain using the \(Th\)-based substitution \(\sigma\) and apply the simple projection \(\pi\) to it.

First, consider the instantiation \(s_i \sigma \rightarrow t_i \sigma\) of the \(i^{th}\) dependency pair. Clearly, \(\pi(s_i \sigma) = \pi(s_i)\) and \(\pi(t_i \sigma) = \pi(t_i)\) by assumption, \(\pi(s_i \sigma) \geq_{E, \mu} \pi(t_i \sigma)\) by Lemma 12.8.3. From \(t_i \sigma \xrightarrow{S} \xrightarrow{Th \parallel E \setminus R, \mu} \xrightarrow{\sim E \setminus S \cup \sim E} \pi(s_i \sigma)\), the (possibly shorter) sequence \(\pi(t_i \sigma) \xrightarrow{S} \xrightarrow{Th \parallel E \setminus R, \mu} \xrightarrow{\sim E \setminus S \cup \sim E} \pi(s_i \sigma)\) is obtained since all reductions take place below the root. Thus, \(s_i \sigma \rightarrow s_{i+1} \sigma\) implies \(\pi(t_i \sigma) \xrightarrow{S} \xrightarrow{Th \parallel E \setminus R, \mu} \xrightarrow{\sim E \setminus S \cup \sim E} \pi(t_{i+1} \sigma)\).

Therefore, the infinite minimal \((P, R, S, E, \mu)\)-chain is transformed into an infinite \(s_i \sigma \rightarrow t_i \sigma \parallel E \setminus R, \mu \cup \sim E \setminus S \cup \sim E\) sequence starting with \(\pi(t_1 \sigma)\). Now perform a case analysis.

Case 1: The infinite sequence contains only finitely many \(S \rightarrow Th \parallel E \setminus R, \mu\)-steps and only finitely many \(\rightarrow E \setminus S\)-steps. Then, there exists an infinite \(\rightarrow E \setminus S \cup \sim E\) sequence. This sequence cannot contain infinitely many \(\rightarrow E \setminus S\)-steps stemming from dependency pairs in \(P'\) since otherwise Lemma 12.8.4 yields an infinite \(\rightarrow E \setminus S\) sequence, contradicting the well-foundedness of \(\rightarrow E \setminus S\) (Lemma 12.8.2).

Case 2: The infinite sequence contains only finitely many \(S \rightarrow Th \parallel E \setminus R, \mu\)-steps but infinitely many \(\rightarrow E \setminus S\)-steps. Recall that \(\sim E \circ \rightarrow E \setminus S \subseteq \rightarrow E \setminus S \circ \sim E\) since \(\rightarrow E \setminus S\) is strongly \(E\)-coherent. Using this and the easily seen inclusion \(\rightarrow E \setminus S \subseteq \rightarrow E \setminus S \circ \rightarrow E \setminus S\), it is furthermore straightforward to show that

\[
\rightarrow E \setminus S = \sim E \circ \rightarrow E \setminus S \circ \sim E \circ \sim E \circ \rightarrow E \setminus S
\]

\[
\subseteq \sim E \circ \rightarrow E \setminus S \circ \sim E
\]

\[
\subseteq \sim E \circ \rightarrow E \setminus S \circ \rightarrow E \setminus S \circ \sim E
\]

\[
\subseteq \rightarrow E \setminus S \circ \sim E \circ \rightarrow E \setminus S \circ \sim E
\]

\[
= \rightarrow E \setminus S \circ \rightarrow E \setminus S
\]
Appendix A. Proofs

By making repeated use of these inclusions, an infinite $\rightarrow_{E \setminus S}$-sequence is obtained, contradiction the assumption that $\rightarrow_{E \setminus S}$ is terminating.

Case 3: The infinite sequence contains infinitely many $\rightarrow_{E \setminus \mathcal{R}, \mu}$-steps. Recall Lemma 11.10 and the inclusions $\sim_{E} \circ \rightarrow_{E \setminus \mathcal{R}, \mu} \subseteq \rightarrow_{E \setminus \mathcal{R}, \mu} \circ \sim_{E}$ and $\rightarrow_{E \setminus S} \circ \rightarrow_{E \setminus \mathcal{R}, \mu} \subseteq \rightarrow_{E \setminus \mathcal{R}, \mu} \circ \sim_{E}$. Using the first of these inclusions and the easily seen inclusion $\triangleright_{\mu} \circ \rightarrow_{E \setminus \mathcal{R}, \mu} \subseteq \rightarrow_{E \setminus \mathcal{R}, \mu} \circ \triangleright_{\mu}$, it is furthermore straightforward to show that

$$\triangleright_{E, \mu} \circ \rightarrow_{E \setminus \mathcal{R}, \mu} = \sim_{E} \circ \triangleright_{\mu} \circ \sim_{E} \circ \rightarrow_{E \setminus \mathcal{R}, \mu} \subseteq \sim_{E} \circ \rightarrow_{E \setminus \mathcal{R}, \mu} \circ \sim_{E} \circ \rightarrow_{E \setminus \mathcal{R}, \mu} \subseteq \sim_{E} \circ \rightarrow_{E \setminus \mathcal{R}, \mu} \circ \triangleright_{\mu} \circ \sim_{E} \subseteq \rightarrow_{E \setminus \mathcal{R}, \mu} \circ \triangleright_{E, \mu}$$

By making repeated use of these inclusions, an infinite $\rightarrow_{E \setminus \mathcal{R}, \mu}$-sequence starting with $\pi(t_{1}\sigma)$ is obtained. But this contradicts the minimality of the infinite minimal $(\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$-chain since then $t_{1}\sigma$ starts an infinite $\rightarrow_{E \setminus \mathcal{R}, \mu}$ reduction. \blacksquare

Proof of Theorem 12.11. Similar to the proofs from Chapter 7. \blacksquare

Before proving Lemma 12.16, several auxiliary results need to be obtained. The first result is similar to Lemma 2.21 but considers \mathcal{S}.

Lemma A.6. If $s \rightarrow_{E \setminus \mathcal{S}}^{*} \sim_{E} C[f(t^{*})]$ for a context C and an $f \not\in \mathcal{F}(\mathcal{E}) \cup \mathcal{F}(\mathcal{S})$, then $s = D[f(s^{*})]$ for a context D such that $f(s^{*}) \geq_{E \setminus \mathcal{S}}^{\Lambda} \mathcal{S}$.

Proof. Due to Lemma 2.21, it suffices to consider $s \rightarrow_{\mathcal{S}}^{*} C[f(t^{*})]$. If $s \rightarrow_{\mathcal{S}} t = C[f(t^{*})]$, then there exists a rule $l \rightarrow r \in \mathcal{S}$ such that $s|_{p} = l\sigma$ and $t = s[r\sigma]_{p}$ for some position p and some substitution σ. Let q be the position with $t|_{q} = f(t^{*})$, i.e., $C|_{q} = \Box$. Now, a case analysis on the relationship between the positions p and q is performed.

295
Appendix A. Proofs

Case 1: $p \parallel q$. Then, $s = t[l_\sigma]_p = (C[f(t^*)])[l_\sigma]_p = (C[l_\sigma]_p)[f(t^*)]$.

Case 2: $p = q.q'$ for some position $q' \neq \Lambda$. Then, $s = t[l_\sigma]_p = (C[f(t^*)])[l_\sigma]_{q.q'} = C[f(t^*)][l_\sigma]_q$. Since $q' \neq \Lambda$, the position q' can be written as $q' = i.q''$ for some $1 \leq i \leq \text{arity}(f)$ and some position q''. Then $s_j = t_j$ if $i \neq j$ and $s_i = t_i[l_\sigma]_{q''} \rightarrow_\mathcal{E} t_i[l_\sigma]_{q'} = t_i$, i.e., $s \rightarrow_\mathcal{E} t^*$.

Case 3: $q = p.p'$ for some position p' (possibly $p' = \Lambda$). Since $f \not\in \mathcal{F}(\mathcal{S})$, the position p' can be written as $p' = p'_1.p'_2$ such that $r|_{p'_1}$ is a variable x and $x_\sigma|_{p'_2} = f(t^*)$. There exists a position p'_2' in \mathcal{L} such that $l|_{p'_2} = x$. This implies $l_\sigma|_{p''_2} = x_\sigma|_{p'} = f(t^*)$. Thus, $s = t[l_\sigma]_p = D[f(t^*)]$ where $D = C[l_\sigma[\square]_{p''_2}]$ and the claim follows. □

Next, it can be shown that $\rightarrow_{\mathcal{E}\setminus\mathcal{S}}$ and $\rightarrow_{\mathcal{E}\setminus\mathcal{R},\mu}$ are finitely branching if \mathcal{E} is size-preserving.

Lemma A.7. Let $(\mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)$ be a CS-CERS such that \mathcal{E} is size-preserving. Then $\rightarrow_{\mathcal{E}\setminus\mathcal{S}}$ and $\rightarrow_{\mathcal{T}_h,\mu}$ are finitely branching.

Proof. Similar to the proof of Lemma A.3. □

Now it can be shown that $\mathcal{T}_1(t)$ is indeed well-defined.

Proof of Lemma 12.16. According to Definition 12.15, in order to get an infinite term as a result of $\mathcal{T}_1(t)$, it is necessary to perform an infinite number of applications of $\text{Red}_\mathcal{R}$ since $\rightarrow_{\mathcal{E}\setminus\mathcal{S}}$ and $\triangleright_\mathcal{E}$ are well-founded, $\rightarrow_{\mathcal{E}\setminus\mathcal{S}}$ and $\rightarrow_{\mathcal{T}_h,\mu}$ are finitely branching by Lemma A.7, and the \mathcal{E}-equivalence classes are finite. This means that t is terminating and there exists an infinite sequence $t \triangleright_1 s_1 \triangleright_2 s_2 \ldots$ where $\triangleright_i \in \{\triangleright_1, \triangleright_{\mathcal{E}\setminus\mathcal{S}}, \sim_\mathcal{E}, \rightarrow_{\mathcal{T}_h,\mu}\}$ and $\triangleright_i = \rightarrow_{\mathcal{T}_h,\mu}$ for infinitely many i. By considering two consecutive occurrences of $\rightarrow_{\mathcal{T}_h,\mu}$ in this sequence and by using the inclusions $\sim_\mathcal{E} \circ \rightarrow_{\mathcal{E}\setminus\mathcal{S}} \subseteq \rightarrow_{\mathcal{E}\setminus\mathcal{S}} \circ \sim_\mathcal{E}$ obtained from the strong \mathcal{E}-coherence of $\rightarrow_{\mathcal{E}\setminus\mathcal{S}}$ and the easily seen inclusions $\triangleright \circ \rightarrow_{\mathcal{E}\setminus\mathcal{S}} \subseteq \rightarrow_{\mathcal{E}\setminus\mathcal{S}} \circ \triangleright$ and $\triangleright \circ \sim_\mathcal{E} \subseteq \sim_\mathcal{E} \circ \triangleright$, a sequence $t \rightarrow_{\mathcal{E}\setminus\mathcal{S}} u_1 \triangleright t_1 \rightarrow_{\mathcal{T}_h,\mu} \circ \rightarrow_{\mathcal{E}\setminus\mathcal{S}}$.

296
Appendix A. Proofs

\[u_2 \gg t_2 \xrightarrow{S} \theta_{\Pi \mathcal{E} \mathcal{R}_{\mu}} \circ \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim t_{i+1} \ldots \] where root(\(t_i\)) \(\not\in\) \(\Delta^1\) and \(t_i\) is terminating for all \(i \geq 1\) is obtained. It can be assumed without loss of generality that it is not the case that \(t_i \gg \circ \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim t_{i+1}\) (since otherwise the modified sequence obtained from \(\ldots \gg t_{i-1} \xrightarrow{S} \theta_{\Pi \mathcal{E} \mathcal{R}_{\mu}} \circ \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim u_i \gg \circ \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim t_{i+1} \xrightarrow{S} \theta_{\Pi \mathcal{E} \mathcal{R}_{\mu}} \ldots\) by using the inclusions \(\sim \circ \xleftarrow{\mathcal{E}_{\mathcal{S}}} \subseteq \xrightarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim \), \(\gg \circ \xleftarrow{\mathcal{E}_{\mathcal{S}}} \subseteq \xrightarrow{\mathcal{E}_{\mathcal{S}}} \circ \gg\), and \(\gg \circ \sim \subseteq \xrightarrow{\mathcal{E}_{\mathcal{S}}} \circ \gg\) mentioned above can be considered instead).

For all \(i \geq 1\), there exist a rule \(l_i \rightarrow r_i[\varphi_i] \in \mathcal{R}\), a \(\theta\)-based substitution \(\sigma_i\), and an active position \(p_i\) in \(t_i\) such that \(t_i = C_i[t_i^!][p_i], l_i' \xrightarrow{\Lambda} \mathcal{E}_{\mathcal{S}} \gg \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim t_i \circ \sim \circ \sim u_{i+1}\), and \(u_{i+1} \gg t_{i+1}\). Now \(u_{i+1} \gg t_{i+1}\) and root(\(t_{i+1}\)) \(\not\in\) \(\mathcal{F}(\mathcal{E}) \cup \mathcal{F}(\mathcal{S})\) (since root(\(t_{i+1}\)) \(\not\in\) \(\Delta^1\) and \(\mathcal{F}(\mathcal{E}) \cup \mathcal{F}(\mathcal{S}) \subseteq \Delta^1\)) imply by Lemma A.6 that \(C_i[r_i \sigma_i] \gg t_{i+1}'\) for some \(t_{i+1}'\) with root(\(t_{i+1}'\)) = root(\(t_{i+1}\)) and \(t_{i+1}' \xrightarrow{\Lambda} \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim t_{i+1}\). There are three possibilities:

1. \(t_{i+1}'\) is a subterm of \(C_i[r_i \sigma_i][p_i]\) at a position above \(p_i\), i.e., \(t_{i+1}' \gg r_i \sigma_i\). Then \(C_i[r_i \sigma_i][p_i] \gg t_{i+1}'\) since \(p_i\) is an active position.

2. \(t_{i+1}'\) is a subterm of \(C_i[r_i \sigma_i][p_i]\) at a position that is independent of \(p_i\). Then \(t_i \gg t_{i+1}' \xrightarrow{\Lambda} \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim t_{i+1}\), contradicting the assumption.

3. \(t_{i+1}'\) is a subterm of \(C_i[r_i \sigma_i][p_i]\) at a position strictly below \(p_i\), i.e., \(r_i \sigma_i \gg t_{i+1}'\).

Notice that there is no variable \(x \in \mathcal{V}(r_i)\) with \(\sigma_i(x) \gg t_{i+1}'\) since this would imply \(l_i \sigma_i \gg t_{i+1}'\). Then \(l_i' \gg t_{i+1}'\) for some \(t_{i+1}''\) such that \(t_{i+1}'' \xrightarrow{\Lambda} \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim t_{i+1}\) by Lemma A.6, which implies \(t_i \gg t_{i+1}' \xrightarrow{\Lambda} \xleftarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim t_{i+1}\), contradicting the assumption. Therefore, there exists a term \(r'_i\) with \(r'_i \not\in \mathcal{V}\) and \(r_i \gg r'_i\) such that \(r'_i \sigma_i = t_{i+1}'\). Now, root(\(r'_i\)) = root(\(t_{i+1}'\)) \(\not\in\) \(\Delta^1\) and \(\mathcal{F}^{-\mu}(r_i) \subseteq \Delta^1\) imply \(r_i \gg r'_i\) and thus \(C_i[r_i \sigma_i][p_i] \gg t_{i+1}'\).

The resulting sequence is thus \(t \xrightarrow{\mathcal{E}_{\mathcal{S}}} u_1 \gg t_1 \xrightarrow{S} \theta_{\Pi \mathcal{E} \mathcal{R}_{\mu}} \circ \leftarrow \mathcal{E}_{\mathcal{S}} \circ \sim u_3 \ldots\)

Using the inclusions \(\sim \circ \xrightarrow{\mathcal{E}_{\mathcal{S}}} \subseteq \xrightarrow{\mathcal{E}_{\mathcal{S}}} \circ \sim\) and \(\leftarrow \mathcal{E}_{\mathcal{S}} \circ \gg\)
Appendix A. Proofs

\[
\subseteq \xrightarrow{S^+_{TH}} \epsilon \setminus R, \mu \circ \xrightarrow{E}_{\epsilon, \mu} S \text{ from Lemma 11.10 and } \Delta \epsilon, \mu \circ \xrightarrow{S^+_{TH}} \epsilon \setminus R, \mu \subseteq \xrightarrow{S^+_{TH}} \epsilon \setminus R, \mu \circ \Delta \epsilon, \mu
\]
from the proof of Theorem 12.9, an infinite \(\xrightarrow{S^+_{TH}} \epsilon \setminus R, \mu \) sequence starting with \(t \) is obtained, contradicting the assumption that \(t \) is terminating. \(\square \)

Proof of Lemma 12.17. Let \(s, t \in T(F \cup F_{TH}, V) \) and let \(\sigma \) be a \(TH \)-based substitution.

1. \(T^1(s\sigma) = sT^1(\sigma) \) is proved by induction on \(s \). If \(s \in V \) then this is immediate by the definition of \(T^1(\sigma) \). Otherwise, \(s = f(s_1, \ldots, s_n) \) with \(f \in \Delta^1 \). But then
\[
T^1(s\sigma) = T^1(f(s_1\sigma, \ldots, s_n\sigma)) = f(T^1(s_1\sigma), \ldots, T^1(s_n\sigma)) = f(s_1T^1(\sigma), \ldots, s_nT^1(\sigma)) = sT^1(\sigma)
\]
by the inductive assumption.

2. \(T^1(s\sigma) \xrightarrow{\ast_{R_{TH}}} sT^1(\sigma) \) is proved by induction on \(s \). If \(s \in V \) then this is immediate by the definition of \(T^1(\sigma) \). Otherwise, \(s = f(s_1, \ldots, s_n) \). By the assumption, if \(i \notin \mu(f) \), then \(s_i \in T(\Delta^1, V) \) and hence \(T^1(s_i\sigma) = s_iT^1(\sigma) \) by 1. If \(i \in \mu(f) \), then \(T^1(s_i\sigma) \xrightarrow{\ast_{R_{TH}}} s_iT^1(\sigma) \) by the inductive assumption. If \(f \in \Delta^1 \) or \(s \) is not terminating, then \(T^1(s\sigma) = T^1(f(s_1, \ldots, s_n\sigma)) = f(T^1(s_1\sigma), \ldots, T^1(s_n\sigma)) \xrightarrow{\ast_{R_{TH}}} f(s_1T^1(\sigma), \ldots, s_nT^1(\sigma)) = sT^1(\sigma) \). If \(f \notin \Delta^1 \) and \(s \) is terminating, then \(T^1(s\sigma) = Comp_{\text{sort}(s\sigma)}(\text{Red}_{S}^1(s\sigma) \cup Red_R^1(s\sigma) \cup Eq^1_{\epsilon}(s\sigma)) \).
The definition of \(Eq^1_{\epsilon}(s\sigma) \) implies \(f(T^1(s_1\sigma), \ldots, T^1(s_n\sigma)) \in Eq^1_{\epsilon}(s\sigma) \) and thus \(T^1(s\sigma) \xrightarrow{\ast_{R_{TH}}} f(T^1(s_1\sigma), \ldots, T^1(s_n\sigma)) \xrightarrow{\ast_{R_{TH}}} f(s_1T^1(\sigma), \ldots, s_nT^1(\sigma)) \) by Lemma 8.16.

3. It suffices to show that \(s \vdash_{\epsilon} t \) implies \(T^1(s) \vdash_{\epsilon^1} T^1(t) \) since the statement then follows by induction on the number of \(\vdash_{\epsilon} \)-steps in \(s \sim_{\epsilon} t \).
Thus, let \(s \vdash_{\epsilon} t \) and perform an induction on the position \(p \) where the step takes places. If \(\text{root}(s) \notin \Delta^1 \) and \(s \) is terminating, then \(\text{root}(t) \notin \Delta^1 \) as

298
Appendix A. Proofs

well by the definition of Δ^1 and t is terminating by Corollary 11.11.1. Since $s \sim_{\mathcal{E}} t$, Definition 3.12 implies that whenever $s \rightarrow_{\mathcal{E} \setminus S} s'$, then $t \rightarrow_{\mathcal{E} \setminus S} t'$ for some $t' \sim_{\mathcal{E}} s'$. Thus, $\text{Red}^1_\mathcal{S}(s) \subseteq \text{Red}^1_\mathcal{R}(t)$. Similarly, Lemma 11.10.2 implies $\text{Red}^1_\mathcal{R}(s) \subseteq \text{Red}^1_\mathcal{R}(t)$. Finally, if $s \sim_{\mathcal{E}} g(s_1, \ldots, s_n)$, then $t \sim_{\mathcal{E}} g(s_1, \ldots, s_n)$, which immediately implies $\mathcal{E}q^1_\mathcal{E}(s) = \mathcal{E}q^1_\mathcal{E}(t)$.

Using these properties, $\text{Red}^1_\mathcal{S}(s) \cup \text{Red}^1_\mathcal{R}(s) \cup \mathcal{E}q^1_\mathcal{E}(s) \subseteq \text{Red}^1_\mathcal{S}(t) \cup \text{Red}^1_\mathcal{R}(t) \cup \mathcal{E}q^1_\mathcal{E}(t)$. Since the same reasoning can be applied with s and t interchanged,

$$
\text{Comp}_{\text{sort}}(\mathcal{R}^1_\mathcal{S}(t) \cup \mathcal{R}^1_\mathcal{R}(t) \cup \mathcal{E}q^1_\mathcal{E}(t))
$$

and thus $\mathcal{I}^1(s) = \mathcal{I}^1(t)$.

Otherwise, $\text{root}(s) \in \Delta^1$ or s is not terminating. If $p = \Lambda$, then there exist an equation $u \approx v$ (or $v \approx u$) in \mathcal{E} and a substitution σ such that $s = u\sigma$ and $t = v\sigma$. By the definition of Δ^1, $u, v \in \mathcal{T}(\Delta^1, \mathcal{V})$. Hence, $\mathcal{I}^1(s) = \mathcal{I}^1(u\sigma) = u\mathcal{I}^1(\sigma) \vdash_{\mathcal{E}} v\mathcal{I}^1(\sigma) = \mathcal{I}^1(v\sigma) = \mathcal{I}^1(t)$ by 1. If $p \neq \Lambda$ then $s = f(s_1, \ldots, s_i, \ldots, s_n)$, $t = f(s_1, \ldots, t_i, \ldots, s_n)$, and $s_i \vdash_{\mathcal{E}} t_i$. Now $\mathcal{I}(s_i) \vdash_{\mathcal{E}} \mathcal{I}(t_i)$ by the inductive assumption, which implies

$$
\mathcal{I}(s) = f(\mathcal{I}^1(s_1), \ldots, \mathcal{I}^1(s_i), \ldots, \mathcal{I}^1(s_n))
$$

and

$$
\mathcal{I}(t) = f(\mathcal{I}^1(s_1), \ldots, \mathcal{I}^1(s_i), \ldots, \mathcal{I}^1(s_n))
$$

4. It suffices to show that $s \rightarrow_{\mathcal{E} \setminus S} t$ implies $\mathcal{I}^1(s) \sim_1 \mathcal{I}^1(t)$ since the statement then follows by induction on the number of $\rightarrow_{\mathcal{E} \setminus S}$-steps in $s \rightarrow_{\mathcal{E} \setminus S}^* t$.

Thus, let $s \rightarrow_{\mathcal{E} \setminus S} t$ and perform an induction on the position p where the reduction takes places. If $\text{root}(s) \not\in \Delta^1$ and s is terminating, then $\mathcal{I}^1(t) \in \text{Red}^1_\mathcal{S}(s)$, which implies $\mathcal{I}^1(s) \rightarrow_{\mathcal{R}^1_\mathcal{R}}^+ \mathcal{I}^1(t)$ by Lemma 8.16.

If $\text{root}(s) \in \Delta^1$ or s is not terminating, first consider the case $p = \Lambda$. Then, there exist a rule $l \rightarrow r \in \mathcal{S}$ and a substitution σ such that $s \sim_{\mathcal{E}} l\sigma \rightarrow_{\mathcal{S}}$.
Appendix A. Proofs

$r\sigma = t$. Using 1 and 3, $\mathcal{I}^1(s) \sim_{\mathcal{E}} \mathcal{I}^1(l\sigma) = \mathcal{I}^1(l\sigma) \rightarrow_{\mathcal{S}} r\mathcal{I}^1(\sigma) = \mathcal{I}^1(r\sigma) = \mathcal{I}^1(t)$, and thus $\mathcal{I}^1(s) \rightarrow_{\mathcal{E} \setminus \mathcal{S}} \mathcal{I}^1(t)$. If $\text{root}(s) \in \Delta^1$ and $p \neq \Lambda$, then $s = f(s_1, \ldots, s_i, \ldots, s_n)$ and $t = f(s_1, \ldots, t_i, \ldots, s_n)$, where $s_i \rightarrow_{\mathcal{E} \setminus \mathcal{S}} t_i$. This implies $\mathcal{I}^1(s_i) \rightsquigarrow_1 \mathcal{I}^1(t_i)$ by the inductive assumption and therefore $\mathcal{I}^1(s) = f(\mathcal{I}^1(s_1), \ldots, \mathcal{I}^1(s_i), \ldots, \mathcal{I}^1(s_n)) \rightsquigarrow_1 f(\mathcal{I}^1(s_1), \ldots, \mathcal{I}^1(t_i), \ldots, \mathcal{I}^1(s_n)) = \mathcal{I}^1(t)$.

5. It suffices to show that $s \overset{\mathcal{S}}{\rightarrow}_{Th|\mathcal{E} \setminus \mathcal{R}, \mu} t$ implies $\mathcal{I}^1(s) \rightsquigarrow_2 \mathcal{I}^1(t)$ since the statement then follows by induction on the number of $\overset{\mathcal{S}}{\rightarrow}_{Th|\mathcal{E} \setminus \mathcal{R}, \mu}$-steps in $s \overset{\mathcal{S}}{\rightarrow}_{Th|\mathcal{E} \setminus \mathcal{R}, \mu} t$.

Thus, let $s \overset{\mathcal{S}}{\rightarrow}_{Th|\mathcal{E} \setminus \mathcal{R}, \mu} t$ and perform an induction on the position p where the reduction takes places. If root(s) $\notin \Delta^1$, then $\mathcal{I}^1(t) \in \text{Red}^1_\mathcal{R}(s)$, which implies $\mathcal{I}^1(s) \rightarrow_{\mathcal{R}_n} \mathcal{I}^1(t)$ by Lemma 8.16.

If root(s) $\in \Delta^1$, first consider the case $p = \Lambda$. Then, there exist a rule $l \rightarrow r[\varphi] \in \mathcal{R}$ and a Th-based substitution σ with $s = f(s^*) \overset{\Delta^1}{\rightarrow}_{\mathcal{E} \setminus \mathcal{S}} \Lambda \overset{\Lambda}{\rightarrow}_{\mathcal{E}} r\sigma = t$ such that $\varphi\sigma$ is Th-valid. Since root(l) = root(s) = f and $f \in \Delta^1$, the definition of Δ^1 implies that $l \rightarrow r[\varphi] \in \mathcal{R}(\Delta^1), r \in \mathcal{T}(\Delta^1, \mathcal{V})$, and $l' \in \mathcal{T}(\Delta^1, \mathcal{V})$ whenever $l >_{\mu} l'$. Using 1, 2, 3, and 4, $\mathcal{I}^1(s) \rightsquigarrow_1 \mathcal{I}^1(r\sigma) = \mathcal{I}^1(t)$ where $\varphi\mathcal{I}^1(\sigma) = \varphi\sigma$ is Th-valid, and thus $\mathcal{I}^1(s) \rightsquigarrow_2 \mathcal{I}^1(t)$. If root($s$) $\in \Delta^1$ and $p \neq \Lambda$, then $s = f(s_1, \ldots, s_i, \ldots, s_n)$ and $t = f(s_1, \ldots, t_i, \ldots, s_n)$, where $s_i \overset{\mathcal{S}}{\rightarrow}_{Th|\mathcal{E} \setminus \mathcal{R}, \mu} t_i$ for an $i \in \mu(f)$. Now $\mathcal{I}^1(s_i) \rightsquigarrow_2 \mathcal{I}^1(t_i)$ by the inductive assumption since s_i is terminating and therefore $\mathcal{I}^1(s) = f(\mathcal{I}^1(s_1), \ldots, \mathcal{I}^1(s_i), \ldots, \mathcal{I}^1(s_n)) \rightsquigarrow_2 f(\mathcal{I}^1(s_1), \ldots, \mathcal{I}^1(t_i), \ldots, \mathcal{I}^1(s_n)) = \mathcal{I}^1(t)$.

6. Let $s\sigma \overset{\mathcal{S}}{\rightarrow}_{Th|\mathcal{E} \setminus \mathcal{R}, \mu} \rightarrow_{\mathcal{E} \setminus \mathcal{S}} \mathcal{I}^1(t\sigma)$. Using 3, 4, and 5, $\mathcal{I}^1(s\sigma) \rightsquigarrow_2 \mathcal{I}^1(t\sigma)$. Using 1 and 2 this implies $s\mathcal{I}^1(\sigma) \rightsquigarrow_2 \mathcal{I}^1(t\sigma)$. □

Proof of Theorem 12.18. Similar to the proof of Theorem 8.18 and making use of Lemma 12.17.6. □

Before proving Lemma 12.24, some auxiliary results need to be obtained. Lemma
Appendix A. Proofs

12.24 will be shown by well-founded induction using the following relations. This is similar to Definition A.1.

Definition A.8 \((\equiv^2, \equiv^2)\). Let \(s\) and \(t\) be terms. Then \(s \equiv^2 t\) iff \(s \rightarrow_{\mathcal{E}\setminus S} \cup \triangleright_{\mathcal{E}} t\) and \(s \equiv^2 t\) iff \(s \rightarrow_{\mathcal{E}\setminus S} \cup \overrightarrow{\mathcal{S} \rightarrow_{\mathcal{T}h||\mathcal{E}\setminus \mathcal{R}, \mu} \cup \triangleright_{\mathcal{E}, \mu} t}\).

In order to use \(\equiv^2\) and \(\equiv^2\) for inductive proofs, they need to be well-founded.

Lemma A.9.

1. If \(s\) is terminating and \(s \equiv^2 t\), then \(t\) is terminating.
2. \(\equiv^2\) is well-founded.
3. \(\equiv^2\) is well-founded on terminating terms.

Proof.

1. If \(s \rightarrow_{\mathcal{E}\setminus S} t\), then \(t\) is terminating by Corollary 11.11.2. If \(s \rightarrow_{\mathcal{T}h||\mathcal{E}\setminus \mathcal{R}, \mu} t\) then \(t\) is clearly terminating if \(s\) is terminating. If \(s \triangleright_{\mathcal{E}, \mu} t\) then \(t\) is terminating due to the inclusion \(\triangleright_{\mathcal{E}, \mu} \circ \overrightarrow{\mathcal{S} \rightarrow_{\mathcal{T}h||\mathcal{E}\setminus \mathcal{R}, \mu} \subseteq \overrightarrow{\mathcal{S} \rightarrow_{\mathcal{T}h||\mathcal{E}\setminus \mathcal{R}, \mu} \circ \triangleright_{\mathcal{E}, \mu}}\) from the proof of Theorem 12.9.

2. Assume that \(\equiv^2\) is not well-founded. Then, there exists an infinite \(\rightarrow_{\mathcal{E}\setminus S} \cup \triangleright_{\mathcal{E}}\)-sequence. Since \(\triangleright_{\mathcal{E}}\) is well-founded by Lemma 6.23.2, this sequence contains infinitely many \(\rightarrow_{\mathcal{E}\setminus S}\)-steps. Using the inclusion \(\triangleright_{\mathcal{E}} \circ \rightarrow_{\mathcal{E}\setminus S} \subseteq \rightarrow_{\mathcal{E}\setminus S} \circ \triangleright_{\mathcal{E}}\) from the proof of Theorem 6.24, an infinite \(\rightarrow_{\mathcal{E}\setminus S}\) sequence is obtained, contradicting the assumption that \(\rightarrow_{\mathcal{E}\setminus S}\) is terminating.

3. Assume that \(\equiv^2\) is not well-founded on terminating terms. Then, there exists an infinite \(\overrightarrow{\mathcal{S} \rightarrow_{\mathcal{T}h||\mathcal{E}\setminus \mathcal{R}, \mu} \cup \rightarrow_{\mathcal{E}\setminus S} \cup \triangleright_{\mathcal{E}, \mu}}\)-sequence containing only terminating terms.

If this sequence contains only finitely many \(\rightarrow_{\mathcal{T}h||\mathcal{E}\setminus \mathcal{R}, \mu}\)-steps, then an infinite \(\rightarrow_{\mathcal{E}\setminus S} \cup \triangleright_{\mathcal{E}, \mu}\)-sequence is obtained. Since \(\triangleright_{\mathcal{E}, \mu}\) is well-founded by Lemma
Appendix A. Proofs

12.8.2, this sequence contains infinitely many \(\rightarrow_{\mathcal{E}\setminus \mathcal{S}} \)-steps. Using the inclusion \(\triangleright_{\mathcal{E}, \mu} \circ \rightarrow_{\mathcal{E}\setminus \mathcal{S}} \subseteq \rightarrow_{\mathcal{E}\setminus \mathcal{S}} \circ \triangleright_{\mathcal{E}, \mu} \) from the proof of Theorem 12.9, an infinite \(\rightarrow_{\mathcal{E}\setminus \mathcal{S}} \)-sequence is obtained, contradicting the assumption that \(\rightarrow_{\mathcal{E}\setminus \mathcal{S}} \) is terminating.

Otherwise, the sequence contains infinitely many \(\overrightarrow{S_{th\|\mathcal{E}\setminus \mathcal{R}, \mu}} \)-steps. Using the inclusions \(\rightarrow_{\mathcal{E}\setminus \mathcal{S}} \circ \overrightarrow{S_{th\|\mathcal{E}\setminus \mathcal{R}, \mu}} \subseteq \overrightarrow{S_{th\|\mathcal{E}\setminus \mathcal{R}, \mu}} \circ \rightarrow_{\mathcal{E}\setminus \mathcal{S}} \) from Lemma 11.10.3 and \(\triangleright_{\mathcal{E}, \mu} \circ \overrightarrow{S_{th\|\mathcal{E}\setminus \mathcal{R}, \mu}} \subseteq \overrightarrow{S_{th\|\mathcal{E}\setminus \mathcal{R}, \mu}} \circ \triangleright_{\mathcal{E}, \mu} \) from the proof of Theorem 12.9, an infinite \(\overrightarrow{S_{th\|\mathcal{E}\setminus \mathcal{R}, \mu}} \)-sequence starting with a terminating term is obtained, which is clearly impossible. \(\square \)

The first property will be used freely in the following.

Proof of Lemma 12.24. The first claim is proved by induction on \(\overrightarrow{\mathcal{T}^2} \), which, by Lemma A.9.2, is well-founded.

If \(t \in \mathcal{V} \) then \(\overrightarrow{\mathcal{T}^2}(t) = t \) and nothing needs to be shown. If \(t = f(t_1, \ldots, t_n) \) with \(f \in \Delta^2 \) then \(\overrightarrow{\mathcal{T}^2}(t) = f(\overrightarrow{\mathcal{T}^2}(t_1), \ldots, \overrightarrow{\mathcal{T}^2}(t_n)) \) and the inductive assumption implies that \(\overrightarrow{\mathcal{T}^2}(t_i) \) is a finite term for all \(1 \leq i \leq n \). This implies that \(\overrightarrow{\mathcal{T}^2}(t) \) is a finite term. Finally, let \(\text{root}(t) \notin \Delta^2 \). Then the sets \(\overrightarrow{\text{Red}_S^2}(t) \) and \(\overrightarrow{\mathcal{E}_q^2}(t) \) are finite since \(\rightarrow_{\mathcal{E}\setminus \mathcal{S}} \) is finitely branching by Lemma A.7 and \(\mathcal{E} \) is size-preserving, which implies that the \(\mathcal{E} \)-equivalence classes are finite. By the inductive assumption, \(\overrightarrow{\mathcal{T}^2}(t') \) is a finite term for any \(t' \in \overrightarrow{\text{Red}_S^2}(t) \) and \(\overrightarrow{\mathcal{T}^2}(t_i) \) is a finite term for any \(g(\overrightarrow{\mathcal{T}^2}(t_1), \ldots, \overrightarrow{\mathcal{T}^2}(t_m)) \in \overrightarrow{\mathcal{E}_q^2}(t) \) and all \(1 \leq i \leq m \). But then \(\overrightarrow{\mathcal{T}^2}(t) \) is a finite term as well.

Similarly, the second claim is proved by induction on \(\overrightarrow{\mathcal{T}^2} \), which, by Lemma A.9.3, is well-founded on terminating terms.

If \(t \in \mathcal{V} \) then \(\overrightarrow{\mathcal{T}^2}(t) = t \) and nothing needs to be shown. If \(t = f(t_1, \ldots, t_n) \) with \(f \in \Delta^2 \) then \(\overrightarrow{\mathcal{T}^2}(t) = f(\overline{t_1}, \ldots, \overline{t_n}) \) and the inductive assumption implies that \(\overline{t_i} = \overrightarrow{\mathcal{T}^2}(t_i) \) is a finite term for all \(1 \leq i \leq n \) with \(i \in \mu(f) \). If \(1 \leq i \leq n \) with \(i \notin \mu(f) \), then \(\overline{t_i} = \overrightarrow{\mathcal{T}^2}(t_i) \), which is a finite term by the first claim. Together, this implies that \(\overrightarrow{\mathcal{T}^2}(t) \)
is a finite term. Finally, let root(t) \notin \Delta^2. Then the sets \text{Red}_E^2(t), \text{Red}_R^2(t), \mathcal{E}q_E^2(t), and \overline{\mathcal{E}q_E^2}(t) are finite since \rightarrow_{\mathcal{E}\setminus S} and \xrightarrow{S}_{\mathcal{T}h\setminus \mathcal{E}\setminus \mathcal{R}\setminus \mu} are finitely branching by Lemma A.7 and \mathcal{E} is size-preserving, which implies that the \mathcal{E}\text{-equivalence classes are finite. By the inductive assumption, } \mathcal{T}^2(t') \text{ is a finite term for any } \mathcal{T}^2(t') \in \text{Red}_E^2(t) \cup \text{Red}_R^2(t) \text{ and } \overline{t_i} \text{ is a finite term for any } g(\overline{t_1}, \ldots, \overline{t_m}) \in \mathcal{E}q_E^2(t) \text{ and all } 1 \leq i \leq m \text{ as above. Furthermore, } \overline{\mathcal{T}^2}(s) \text{ is a finite term for all } \mathcal{T}^2(s) \in \overline{\mathcal{E}q_E^2}(t) \text{ by the first claim. But then } \mathcal{T}^2(t) \text{ is a finite term as well.} \quad \square

Next, some simple notation is introduced.

Definition A.10. For any term t and any terminating substitution \sigma define the substitution \sigma_t as \sigma_t(x) = \mathcal{T}^2(\sigma(x)) if x \in \mathcal{V}^\mu(t) and \sigma_t(x) = \overline{\mathcal{T}^2}(\sigma(x)) otherwise.

Lemma A.11. If s\sigma is terminating and \mathcal{V}^\mu(s) \cap \mathcal{V}^{-\mu}(s) = \emptyset, then s\sigma_s = [s, \sigma].

Proof. Trivial. \(\square\)

Proof of Lemma 12.25. Let \(s, t \in \mathcal{T}(\mathcal{F} \cup \mathcal{F}_{\mathcal{T}h}, \mathcal{V})\) and let \(\sigma\) be a \(\mathcal{T}h\)-based substitution such that \(s, t, s\sigma\) are terminating.

1. \(\mathcal{T}^2(s\sigma) = s\mathcal{T}^2(\sigma)\) is proved by induction on \(s\). If \(s \in \mathcal{V}\) then this is immediate by the definition of \(\mathcal{T}^2(\sigma)\). Otherwise, \(s = f(s_1, \ldots, s_n)\) with \(f \in \Delta^2\). But then \(\mathcal{T}^2(s\sigma) = \mathcal{T}^2(f(s_1\sigma, \ldots, s_n\sigma)) = f(\mathcal{T}^2(s_1\sigma), \ldots, \mathcal{T}^2(s_n\sigma)) = f(s_1\mathcal{T}^2(\sigma), \ldots, s_n\mathcal{T}^2(\sigma)) = s\mathcal{T}^2(\sigma)\) by the inductive assumption.

2. \(\mathcal{T}^2(s\sigma) = [s, \sigma]\) is proved by induction on \(s\). If \(s \in \mathcal{V}\) then this is immediate by the definition of \([s, \sigma]\). Otherwise, \(s = f(s_1, \ldots, s_n)\) with \(f \in \Delta^2\) and thus \(\mathcal{T}^2(s\sigma) = \mathcal{T}^2(f(s_1\sigma, \ldots, s_n\sigma)) = f(s_1\overline{\sigma}, \ldots, s_n\overline{\sigma})\). For \(i \in \mu(f)\), the inductive assumption gives \(s_i\overline{\sigma} = \mathcal{T}^2(s_i\sigma) = [s_i, \sigma]\). For \(i \notin \mu(f)\), 1 implies \(s_i\overline{\sigma} = \mathcal{T}^2(s_i\sigma) = s_i\mathcal{T}^2(\sigma)\). Together this implies \(\mathcal{T}^2(s\sigma) = f(s_1\overline{\sigma}, \ldots, s_n\overline{\sigma}) = [s, \sigma]\).

3. \(\mathcal{T}^2(s\sigma) \xrightarrow{\ast_{\mathcal{R}_1}} s\mathcal{T}^2(\sigma)\) is proved by induction on \(s\). If \(s \in \mathcal{V}\) then this is immediate by the definition of \(\mathcal{T}^2(\sigma)\). Otherwise, \(s = f(s_1, \ldots, s_n)\). If \(f \in \Delta^2\)
Appendix A. Proofs

then \(\overline{T}(s\sigma) = f(\overline{T}(s_1\sigma), \ldots, \overline{T}(s_n\sigma)) \rightarrow_{\mathcal{R}_n} f(s_1\overline{T}(\sigma), \ldots, s_n\overline{T}(\sigma)) = s\overline{T}(\sigma) \) by the inductive assumption. Otherwise, \(\overline{T}(s\sigma) = \text{Comp}_{\text{sort}(s)}(\overline{\text{Red}}_{\overline{E}}(s\sigma) \cup \overline{\mathcal{E}}q_{\overline{E}}(s\sigma)) \). Notice that \(f(\overline{T}(s_1\sigma), \ldots, \overline{T}(s_n\sigma)) \in \overline{\mathcal{E}}q_{\overline{E}}(s\sigma) \), which gives the desired \(\overline{T}(s\sigma) \rightarrow_{\mathcal{R}_n} f(\overline{T}(s_1\sigma), \ldots, \overline{T}(s_n\sigma)) \rightarrow_{\mathcal{R}_n} f(s_1\overline{T}(\sigma), \ldots, s_n\overline{T}(\sigma)) \) using Lemma 8.16 and the inductive assumption.

4. \(\overline{T}(s\sigma) \rightarrow_{\mathcal{R}_n} [s, \sigma] \) is proved by induction on \(s \). If \(s \in \mathcal{V} \) then this is immediate by the definition of \([s, \sigma]\). Otherwise, \(s = f(s_1, \ldots, s_n) \). If \(f \in \Delta^2 \), then \(\overline{T}(s\sigma) = \overline{T}(f(s_1, \ldots, s_n)) = f(\overline{s_1\sigma}, \ldots, \overline{s_n\sigma}) \). If \(f \notin \Delta^2 \), then \(f(\overline{s_1\sigma}, \ldots, \overline{s_n\sigma}) \in \mathcal{E}q_{\overline{E}}(s\sigma) \) and thus \(\overline{T}(s\sigma) \rightarrow_{\mathcal{R}_n} f(\overline{s_1\sigma}, \ldots, \overline{s_n\sigma}) \) by Lemma 8.16. For \(i \in \mu(f) \), the inductive assumption implies \(\overline{s_i\sigma} = \overline{T}(s_i\sigma) \rightarrow_{\mathcal{R}_n} [s_i, \sigma] \). For \(i \notin \mu(f) \), 3 implies \(\overline{s_i\sigma} = \overline{T}(s_i\sigma) \rightarrow_{\mathcal{R}_n} s_i\overline{T}(\sigma) \). Together this implies \(\overline{T}(s\sigma) \rightarrow_{\mathcal{R}_n} f(\overline{s_1\sigma}, \ldots, \overline{s_n\sigma}) \rightarrow_{\mathcal{R}_n} [s, \sigma] \).

5. The statement is proved by induction on \(s \). If \(s \in \mathcal{V} \) then \(\overline{T}(s) = s = \overline{T}(s) \). Otherwise, \(s = f(s_1, \ldots, s_n) \). If \(f \in \Delta^2 \subseteq \overline{\Delta}^2 \), then \(\overline{T}(s) = \overline{T}(f(s_1, \ldots, s_n)) = f(\overline{s_1}, \ldots, \overline{s_n}) \). If \(i \in \mu(f) \), the inductive assumption implies \(\overline{s_i} = \overline{T}(s_i) \rightarrow_{\mathcal{R}_n} \overline{T}(s_i) \). If \(i \notin \mu(f) \), then \(\overline{s_i} = \overline{T}(s_i) \) is immediate. Therefore, \(\overline{T}(s) \rightarrow_{\mathcal{R}_n} f(\overline{T}(s_1), \ldots, \overline{T}(s_n)) = \overline{T}(s) \). If \(f \notin \Delta^2 \), then \(\overline{T}(s) \in \overline{\mathcal{E}}q_{\overline{E}}(s) \) and thus \(\overline{T}(s) \rightarrow_{\mathcal{R}_n} \overline{T}(s) \) by Lemma 8.16.

6. It suffices to show that \(s \vdash_{\mathcal{E}} t \) implies \(\overline{T}(s) \vdash_{\mathcal{E}(\overline{\Delta}^2)} \overline{T}(t) \) since the statement then follows by induction on the number of \(\vdash_{\mathcal{E}} \)-steps in \(s \sim_{\mathcal{E}} t \).

Thus, let \(s \vdash_{\mathcal{E}} t \) and perform an induction on the position \(p \) where the step takes places. If \(\text{root}(s) \notin \overline{\Delta}^2 \), then \(\text{root}(t) \notin \overline{\Delta}^2 \) as well by the definition of \(\overline{\Delta}^2 \). Since \(s \sim_{\mathcal{E}} t \), the strong \(\mathcal{E} \)-coherence of \(\vdash_{\mathcal{E}\backslash \mathcal{S}} \) implies that whenever \(s \rightarrow_{\mathcal{E}\backslash \mathcal{S}} s' \), then \(t \rightarrow_{\mathcal{E}\backslash \mathcal{S}} t' \) for some \(t' \sim_{\mathcal{E}} s' \). Thus, \(\overline{\text{Red}}_{\overline{S}}(s) \subseteq \overline{\text{Red}}_{\overline{S}}(t) \). Similarly, if \(s \sim_{\mathcal{E}} g(s_1, \ldots, s_n) \), then \(t \sim_{\mathcal{E}} g(s_1, \ldots, s_n) \), which immediately implies \(\overline{\mathcal{E}}q_{\overline{E}}(s) = \overline{\mathcal{E}}q_{\overline{E}}(t) \). Using these properties, \(\overline{\text{Red}}_{\overline{S}}(s) \cup \overline{\mathcal{E}}q_{\overline{E}}(s) \subseteq \overline{\text{Red}}_{\overline{S}}(t) \cup \overline{\mathcal{E}}q_{\overline{E}}(t) \). Since the same reasoning can be applied with \(s \) and \(t \) interchanged, \(\text{Comp}_{\text{sort}(s)}(\overline{\text{Red}}_{\overline{S}}(s) \cup \overline{\mathcal{E}}q_{\overline{E}}(s)) \).
Appendix A. Proofs

\[E_{q^2}(s) = \text{Comp}_{\text{sort}}(t)(\text{Red}_{S}^2(t) \cup E_{q^2}(t)) \] and thus \(\mathcal{T}^2(s) = \mathcal{T}^2(t) \).

Otherwise, root(s) \(\in \Delta^2 \). If \(p = \Lambda \), then there exist an equation \(u \approx v \) (or \(v \approx u \)) in \(E \) and a substitution \(\sigma \) such that \(s = u\sigma \) and \(t = v\sigma \). By the definition of \(\Delta^2 \), \(u, v \in \mathcal{T}(\Delta^2, V) \). Thus, \(\mathcal{T}^2(s) = \mathcal{T}^2(u\sigma) = u\mathcal{T}^2(\sigma) \vdash_{\mathcal{E}(\Delta^2)} v\mathcal{T}^2(\sigma) = \mathcal{T}^2(v\sigma) = \mathcal{T}^2(t) \) by 1. If \(p \neq \Lambda \), then \(s = f(s_1, \ldots, s_i, \ldots, s_n) \) and \(t = f(s_1, \ldots, t_i, \ldots, s_n) \) such that \(s_i \vdash_{\mathcal{E}} t_i \). Now \(\mathcal{T}^2(s_i) \vdash_{\mathcal{E}(\Delta^2)} \mathcal{T}^2(t_i) \) by the inductive assumption and therefore \(\mathcal{T}^2(s) \vdash_{\mathcal{E}(\Delta^2)} \mathcal{T}^2(t) \) because the definition of the mapping \(\mathcal{T}^2 \) implies that \(\mathcal{T}^2(s) = f(\mathcal{T}^2(s_1), \ldots, \mathcal{T}^2(s_i), \ldots, \mathcal{T}^2(s_n)) \) and \(\mathcal{T}^2(t) = f(\mathcal{T}^2(s_1), \ldots, \mathcal{T}^2(t_i), \ldots, \mathcal{T}^2(s_n)) \).

7. It suffices to show that \(s \vdash_{\mathcal{E}} t \) implies \(\mathcal{T}^2(s) \vdash_{\mathcal{E}(\Delta^2)} \mathcal{T}^2(t) \) since the statement then follows by induction on the number of \(\vdash_{\mathcal{E}} \)-steps in \(s \sim_{\mathcal{E}} t \) since \(\Delta^2 \subseteq \overline{\Delta}^2 \).

Thus, let \(s \vdash_{\mathcal{E}} t \) and perform an induction on the position \(p \) where the step takes places. If \(\text{root}(s) \notin \Delta^2 \), then \(\text{root}(t) \notin \Delta^2 \) as well by the definition of \(\Delta^2 \). Since \(s \sim_{\mathcal{E}} t \), the strong \(\mathcal{E} \)-coherence of \(\vdash_{\mathcal{E}\setminus S} \) implies that whenever \(s \vdash_{\mathcal{E}\setminus S} s' \), then \(t \vdash_{\mathcal{E}\setminus S} t' \) for some \(t' \sim_{\mathcal{E}} s' \). Thus, \(\text{Red}_{S}^2(s) \subseteq \text{Red}_{S}^2(t) \). Similarly, Lemma 11.10.2 implies \(\text{Red}_{R}^2(s) \subseteq \text{Red}_{R}^2(t) \). Finally, if \(s \sim_{\mathcal{E}} g(s_1, \ldots, s_n) \), then \(t \sim_{\mathcal{E}} g(s_1, \ldots, s_n) \), which immediately implies \(\mathcal{E}_{q^2}(s) = \mathcal{E}_{q^2}(t) \). Also, \(\mathcal{E}_{q^2}(s) = \mathcal{E}_{q^2}(t) \) since \(s \sim_{\mathcal{E}} t \). Using these properties, \(\text{Comp}_{\text{sort}}(\text{Red}_{S}^2(s) \cup \text{Red}_{R}^2(s) \cup \mathcal{E}_{q^2}(s) \cup \overline{\mathcal{E}_{q^2}(s)}) \subseteq \text{Comp}_{\text{sort}}(\text{Red}_{S}^2(t) \cup \text{Red}_{R}^2(t) \cup \mathcal{E}_{q^2}(t) \cup \overline{\mathcal{E}_{q^2}(t)}) \). Since the same reasoning can be applied with \(s \) and \(t \) interchanged, \(\text{Comp}_{\text{sort}}(\text{Red}_{S}^2(s) \cup \text{Red}_{R}^2(s) \cup \mathcal{E}_{q^2}(s) \cup \overline{\mathcal{E}_{q^2}(s)}) = \text{Comp}_{\text{sort}}(\text{Red}_{S}^2(t) \cup \text{Red}_{R}^2(t) \cup \mathcal{E}_{q^2}(t) \cup \overline{\mathcal{E}_{q^2}(t)}) \) and thus \(\mathcal{T}^2(s) = \mathcal{T}^2(t) \).

Otherwise, \(\text{root}(s) \in \Delta^2 \). If \(p = \Lambda \), then there exist an equation \(u \approx v \) (or \(v \approx u \)) in \(E \) and a substitution \(\sigma \) such that \(s = u\sigma \) and \(t = v\sigma \). By the definition of \(\Delta^2 \), \(u, v \in \mathcal{T}(\Delta^2, V) \). Since \(E \) is strongly conservative, \(u\sigma_u = [u, \sigma] \) and \(v\sigma_v = [v, \sigma] \) by Lemma A.11. Moreover, for all variables \(x \), Definition 11.7.2a implies \(\sigma_u(x) = \sigma_v(x) \), i.e., \(\sigma_u = \sigma_v \). Hence,
Appendix A. Proofs

\[T^2(s) = T^2(u\sigma) \]
\[= [u, \sigma] \quad \text{by 2} \]
\[= u\sigma_u \]
\[= u\sigma_v \]
\[\vdash_{\varepsilon(\Delta^2)} v\sigma_v \]
\[= [v, \sigma] \]
\[= T^2(v\sigma) \quad \text{by 2} \]
\[= T^2(t) \]

If \(p \neq \Lambda \) then \(s = f(s_1, \ldots, s_i, \ldots, s_n) \), \(t = f(s_1, \ldots, t_i, \ldots, s_n) \), and \(s_i \vdash_{\varepsilon} t_i \).

Notice that \(T^2(s) = f(\overline{s_1}, \ldots, \overline{s_i}, \ldots, \overline{s_n}) \) and \(T^2(t) = f(\overline{s_1}, \ldots, \overline{t_i}, \ldots, \overline{s_n}) \). If \(i \in \mu(f) \), then \(\overline{s_i} = T^2(s_i) \vdash_{\varepsilon(\Delta^2)} T^2(t_i) = \overline{t_i} \) by the inductive assumption. If \(i \not\in \mu(f) \), then \(\overline{s_i} = T^2(s_i) \vdash_{\varepsilon(\Delta^2)} T^2(t_i) = \overline{t_i} \) by 6. Thus, \(T^2(s) \vdash_{\varepsilon(\Delta^2)} T^2(t) \) in either case.

8. It suffices to show that \(s \vdash_{\varepsilon \setminus S} t \) implies \(T^2(s) \rightsquigarrow_1 T^2(t) \) since the statement then follows by induction on the number of \(\varepsilon \setminus S \)-steps in \(s \vdash_{\varepsilon \setminus S} t \).

Thus, let \(s \vdash_{\varepsilon \setminus S} t \) and perform an induction on the number of \(\varepsilon \setminus S \)-steps. If \(\text{root}(s) \not\in \Delta^2 \), then \(T^2(t) \in \overline{\text{Red}_{\Delta^2}(s)} \), which implies \(T^2(s) \rightarrow_{\text{Red}_{\Delta^2}} T^2(t) \) by Lemma 8.16.

If \(\text{root}(s) \in \Delta^2 \), first consider the case \(p = \Lambda \). Then, there exist a rule \(l \rightarrow r \in S \) and a substitution \(\sigma \) such that \(s \sim_{\varepsilon} l\sigma \rightarrow_{S} r\sigma = t \). Since \(\text{root}(s) \in \Delta^2 \), the definition of \(\Delta^2 \) implies that \(\text{root}(l) \in \Delta^2 \), \(l \rightarrow r \in S(\Delta^2) \), and \(r \in T(\Delta^2, \nu) \). Using 1, 3, and 6, \(T^2(s) \sim_{\varepsilon(\overline{\Delta^2})} T^2(l\sigma) \rightarrow_{\text{Red}_{\Delta^2}} T^2(s) \rightarrow_{S(\Delta^2)} rT^2(\sigma) = T^2(r\sigma) = T^2(t) \), and thus \(T^2(s) \rightsquigarrow_1 T^2(t) \). If \(\text{root}(s) \in \Delta^2 \) and \(p \neq \Lambda \), then \(s = f(s_1, \ldots, s_i, \ldots, s_n) \) and \(t = f(s_1, \ldots, t_i, \ldots, s_n) \), where \(s_i \vdash_{\varepsilon \setminus S} t_i \). By the inductive assumption, \(T^2(s_i) \rightsquigarrow_1 T^2(t_i) \) and therefore \(T^2(s) = f(T^2(s_1), \ldots, T^2(s_i), \ldots, T^2(s_n)) \rightsquigarrow_1 f(T^2(s_1), \ldots, T^2(t_i), \ldots, T^2(s_n)) = T^2(t) \).

9. It suffices to show that \(s \vdash_{\varepsilon \setminus S} t \) implies \(T^2(s) \rightsquigarrow_1 T^2(t) \) since the statement
Appendix A. Proofs

then follows by induction on the number of $\rightarrow_{E\setminus S}$-steps in $s \rightarrow_{E\setminus S}^* t$.

Thus, let $s \rightarrow_{E\setminus S} t$ and perform an induction on the position p where the reduction takes place. If $\text{root}(s) \notin \Delta^2$, then $T^2(t) \in \text{Red}_S^2(s)$, which implies $T^2(s) \rightarrow_{\mathcal{R}_H}^* T^2(t)$ by Lemma 8.16.

If $\text{root}(s) \in \Delta^2$, first consider the case $p = \Lambda$. Then, there exist a rule $l \rightarrow r \in \mathcal{S}$ and a substitution σ such that $s \sim_{E} l\sigma \rightarrow_{S} r\sigma = t$. By the definitions of Δ^2 and Δ^2, root$(l) \in \Delta^2$, $l \rightarrow r \in \mathcal{S}(\Delta^2)$, and $r \in T(\Delta^2, \mathcal{V})$. Since $\mathcal{S}(\Delta^2)$ is strongly conservative, $l\sigma = [l, \sigma]$ and $r\sigma = [r, \sigma]$ by Lemma A.11. Moreover, $\sigma_l(x) \rightarrow_{\mathcal{R}_H}^* \sigma_r(x)$ for all variables x. To see this, notice that by strong conservativeness of $\mathcal{S}(\Delta^2)$, the substitutions σ_l and σ_r differ at most on variables $x \in \mathcal{V}^\mu(l) - \mathcal{V}^\mu(r)$.

For these variables $\sigma_l(x) = I^2(\sigma(x)) \rightarrow_{\mathcal{R}_H}^* T^2(\sigma(x)) = \sigma_r(x)$ by 5. Hence,

$$
\begin{align*}
T^2(s) & \sim_{E(\Delta^2)} T^2(l\sigma) & \text{by } 7 \\
& \rightarrow_{\mathcal{R}_H}^* [l, \sigma] & \text{by } 4 \\
& = l\sigma_l \\
& \rightarrow_{\mathcal{R}_H}^* l\sigma_r \\
& \rightarrow_{\mathcal{S}(\Delta^2)} r\sigma_r \\
& = [r, \sigma] \\
& = T^2(r\sigma) & \text{by } 2 \\
& = T^2(t)
\end{align*}
$$

If $p \neq \Lambda$, then $s = f(s_1, \ldots, s_i, \ldots, s_n)$, $t = f(s_1, \ldots, t_i, \ldots, s_n)$, and $s_i \rightarrow_{E\setminus S} t_i$. Also, $T^2(s) = f(s_1, \ldots, s_i, \ldots, s_n)$ and $T^2(t) = f(s_1, \ldots, t_i, \ldots, s_n)$. If $i \in \mu(f)$, then $s_i = T^2(s_i) \sim_1 T^2(t_i) = t_i$ by the inductive assumption. If $i \notin \mu(f)$, then $s_i = T^2(s_i) \sim_1 T^2(t_i) = t_i$ by 8. Thus, $T^2(s) \sim_1 T^2(t)$ in either case.

10. It suffices to show that $s \rightarrow_{\mathcal{T}_H\parallel E\setminus \mathcal{R}, \mu}^* t$ implies $T^2(s) \sim_2 T^2(t)$ since the statement then follows by induction on the number of $\rightarrow_{\mathcal{T}_H\parallel E\setminus \mathcal{R}, \mu}$-steps in $s \rightarrow_{\mathcal{T}_H\parallel E\setminus \mathcal{R}, \mu}^* t$.

Thus, let $s \rightarrow_{\mathcal{T}_H\parallel E\setminus \mathcal{R}, \mu}^* t$ and perform an induction on the position p where the reduction takes place. If $\text{root}(s) \notin \Delta^2$, then $T^2(t) \in \text{Red}_S^1(s)$, which implies
\[I^2(s) \rightarrow_{R_{II}}^* I^2(t) \] by Lemma 8.16.

If root(s) ∈ Δ^2, first consider the case p = Λ. Then, there exist a rule \(l \rightarrow r[\varphi] \in R \) and a Th-based substitution \(\sigma \) with \(s = f(s^*) \xrightarrow{\Delta E \setminus S} l \sigma \rightarrow_{R} r \sigma = t \) such that \(\varphi \sigma \) is Th-valid. Since root(l) = root(s) = f and \(f \in \Delta^2 \), the definitions of \(\overline{\Delta}^2 \) and \(\Delta^2 \) implies that \(l \rightarrow r[\varphi] \in R(\Delta^2) \), \(r \in F(\Delta^2, V) \), and \(F^\mu(r) \subseteq \Delta^2 \). Since \(R(\Delta^2) \) is strongly conservative, \(l\sigma = [l, \sigma] \) and \(r\sigma = [r, \sigma] \) by Lemma A.11. Moreover, \(\sigma_l(x) \rightarrow_{R_{II}}^{*} \sigma_r(x) \) for all variables \(x \). To see this, notice that by strong conservativeness of \(R(\Delta^2) \), the substitutions \(\sigma_l \) and \(\sigma_r \) differ at most on variables \(x \in V^\mu(l) - V^\mu(r) \). For these variables, \(\sigma_l(x) = I^2(\sigma(x)) \rightarrow_{R_{II}}^{*} I^2(\sigma(x)) = \sigma_r(x) \) by 5. Also, notice that \(\varphi\sigma_r \) is Th-valid since \(\sigma_r(x) = \sigma(x) \) for variables of sort base since \(\sigma \) is Th-based. Hence,

\[
\begin{align*}
I^2(s) & \leadsto_1^{*} I^2(\sigma) & \text{by 7 and 9} \\
\rightarrow_{R_{II}}^{*} & \left[l, \sigma \right] & \text{by 4} \\
= & l\sigma_l \\
\rightarrow_{R_{II}}^{*} & l\sigma_r \\
\rightarrow_{R(\Delta^2), \mu} & r\sigma_r \\
= & [r, \sigma] \\
= & I^2(r\sigma) & \text{by 2} \\
= & I^2(t)
\end{align*}
\]

If \(p \neq \Lambda \), then \(s = f(s_1, \ldots, s_i, \ldots, s_n) \), \(t = f(s_1, \ldots, t_i, \ldots, s_n) \), and there exists \(i \in \mu(f) \) such that \(s_i \xrightarrow{S} I_{Th \setminus E \setminus R, \mu} t_i \). Also, \(I^2(s) = f(\overline{s_1}, \ldots, \overline{s_i}, \ldots, \overline{s_n}) \) and \(I^2(t) = f(\overline{s_1}, \ldots, \overline{t_i}, \ldots, \overline{s_n}) \) where \(\overline{s_i} = I^2(s_i) \leadsto_2 I^2(t_i) = \overline{t_i} \) by the inductive assumption.

11. If \(s \xrightarrow{S} I_{Th \setminus E \setminus R, \mu} \circ \rightarrow_{E \setminus S}^f \circ \leadsto_{E} t \), then \(I^2(s) \leadsto_1^{*} \circ \leadsto_{E(\overline{s})}^f I^2(t) \) using 7, 9, and 10. \(\square \)

Proof of Theorem 12.26. In the second case soundness is obvious. Otherwise, it needs to be shown that every infinite minimal \((P, R, S, E, \mu)\)-chain contains only
Appendix A. Proofs

finitely many dependency pairs from \(\mathcal{P}' \). Let \(s_1 \rightarrow t_1[\varphi_1], s_2 \rightarrow t_2[\varphi_2], \ldots \) be an infinite minimal \((\mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{E}, \mu)\)-chain with the \(\mathcal{T}h \)-based substitution \(\sigma \). Thus, \(t_i \sigma \sim^{\mathcal{T}h}_S \varphi_i \) and \(\varphi_i \sigma \) is \(\mathcal{T}h \)-valid for all \(i \geq 1 \). By the definition of \(\Delta^2 \), root(\(t'_i \)) \(\in \Delta^2 \) for all \(t'_i \notin \mathcal{V} \) such that \(t_i \triangleright \mu \triangleright t'_i \). Similarly to the proof of Lemma 12.25.11 and using Lemma 12.25, \(t_i \sigma t_i = [t_i, \sigma] = I^2(t_i \sigma) \sim^{\mathcal{T}h}_S \varphi_i \) is \(\mathcal{T}h \)-valid and \(s_i \rightarrow t_i[\varphi_i] \in \mathcal{P} \) since \(\mathcal{P} \) is strongly conservative.

As in the previous proofs, \(t_i \sigma t_i \triangleright s_i \sigma t_i \triangleright t_i \sigma t_i \) for all \(i \geq 1 \) since \(\varphi_i \sigma t_i = \varphi_i \sigma \) is \(\mathcal{T}h \)-valid and \(s_i \rightarrow t_i[\varphi_i] \in \mathcal{P} \) since \(\mathcal{P} \) is strongly conservative. Hence, the infinite minimal chain gives rise to

\[
\begin{align*}
 s_1 \sigma t_1 & \triangleright s_1 \sigma t_1 \triangleright s_2 \sigma t_2 \triangleright s_2 \sigma t_2 \triangleright \ldots
\end{align*}
\]

where \(\triangleright \in \{\triangleright, \succ\} \). If the above infinite minimal chain contains infinitely many dependency pairs from \(\mathcal{P}' \), then \(\triangleright \) is \(\triangleright \) for infinitely many \(i \). In this case, the compatibility of \(\triangleright \) with \(\triangleright \) produces an infinite \(\triangleright \) chain, contradicting the well-foundedness of \(\triangleright \). Thus, only finitely many dependency pairs from \(\mathcal{P}' \) occur in the above infinite minimal chain.

\[
\Box
\]

A.12 Proofs from Chapter 13

Proof of Lemma 13.7. Let \(t \) be a \(\mathcal{Z} \)-free term.

1. \(t \) is trivially \(\mathcal{Z} \)-normal since it does not contain any occurrence of \(+ \) or \(- \), which implies that \(t \) satisfies the conditions of Definition 13.5. \[\Box \]

2. Obvious.

Proof sketch of Lemma 13.8. In a first step, a term \(t' \) with \(t \rightarrow^{t_i} \mathcal{E}_{\mathcal{R}_2} \mathcal{S}_{\mathcal{R}_2} t' \) is computed. Then, \(t' \) is brought into right-associated form such that the arguments
of nested occurrences of + are sorted w.r.t. $>_T$. Formally, this can be achieved by suitably applying the equations from E_{ThZ}.

\[\square\]

Proof of Lemma 13.11. Let (R, S, E) be a Z-CERS and let s be a Z-normal term such that $s \rightarrow_{R, Z} t$. Let p be the position used for $s \rightarrow_{R, Z} t$, i.e., $s|_p = l \sigma$ for some $l \rightarrow r [\varphi] \in R$.

1. Since $\text{sort}(l) \neq \text{int}$, also $\text{sort}(s|_p) \neq \text{int}$ and the path from Λ to p in s does not contain any function symbol with resulting sort int since F does not contain any function symbols with resulting sort int. Thus, since s is Z-normal, the only subterm of $t = s[r \sigma]|_p$ that might prevent t from being Z-normal is $r \sigma$.

Notice that $\sigma(x)$ is Z-normal for all $x \in V(r)$. Thus, $r \sigma$ is Z-normal by Lemma 13.7 since r is Z-free.

2. Obvious since rewriting does not introduce new function symbols that do not occur in the rewrite rules.

3. Since s is Z-normal, $s|_p$ is Z-normal and thus $s|_p \rightarrow_{E_{ThZ} \cup S_{ThZ}}^\Lambda l \sigma$. The remaining conditions in the definitions of $\rightarrow_{R, Z}$ and $\rightarrow_{ThZ}^{S_{ThZ}}$ are identical and thus $s \rightarrow_{ThZ}^{S_{ThZ}} t$.

Proof of Lemma 13.12. If $s \rightarrow_{ThZ}^{S_{ThZ}} t$, then $s|_p \rightarrow_{E_{ThZ} \cup S_{ThZ}}^\Lambda l \sigma$, $r = s[r \sigma]|_p$, and $\varphi \sigma$ is ThZ-valid for some position $p \in \mathcal{P}os(s)$ and some $l \rightarrow r [\varphi] \in R$.

Since $s|_p \rightarrow_{E_{ThZ} \cup S_{ThZ}}^* l \sigma$, $\text{norm}(s|_p) = \text{norm}(l \sigma)$ by Lemma 13.8. Since l is Z-free, $\text{norm}(l \sigma) = l\text{norm}(\sigma)$ and thus $\text{norm}(s|_p) = l\text{norm}(\sigma)$. Notice that p is also a position in $\text{norm}(s)$ because $\text{sort}(s|_p) \neq \text{int}$. Furthermore, $\text{norm}(s)|_p = \text{norm}(s|_p)$, which implies $\text{norm}(s)|_p = l\text{norm}(\sigma)$. Since $\varphi \text{norm}(\sigma)$ is ThZ-valid, $\text{norm}(s) \rightarrow_{R, Z} \text{norm}(s)[r \text{norm}(\sigma)]|_p = \text{norm}(s[r \text{norm}(\sigma)]|_p) = \text{norm}(s[r \sigma]|_p) = \text{norm}(t)$.

Proof of Theorem 13.20. Let \mathcal{R} be a normal Z-CERS and let $\overline{\mathcal{R}} = \{ l \rightarrow r \mid l \rightarrow r [\varphi] \in \mathcal{R} \}$ be the ordinary TRS obtained from \mathcal{R} by dropping the constraints.

First, it is shown that \mathcal{R} is quasi-reductive iff $\overline{\mathcal{R}}$ is quasi-reductive. The direction
Appendix A. Proofs

from left to right is immediate since \(\rightarrow_{\mathcal{R},Z} \subseteq \rightarrow_{\mathcal{R}} \). For the direction from right to left, let \(f(t_1, \ldots, t_n) \) be a \(Z \)-normal ground term with \(f \in \mathcal{D}(\mathcal{R}) \) and \(t_1, \ldots, t_n \in T(\mathcal{C}(\mathcal{R}) \cup \mathcal{F}_{Th_Z}) \). Since \(\overline{\mathcal{R}} \) is quasi-reductive, there exists a rule \(l \rightarrow r \in \overline{\mathcal{R}} \) such that \(f(t_1, \ldots, t_n) = l\sigma \). By Definition 13.18.4, there exists a rule \(l \rightarrow r' [\varphi] \in \mathcal{R} \) such that \(f(t_1, \ldots, t_n) = l\sigma \) and \(\varphi\sigma \) is \(Th_Z \)-valid. Therefore, \(f(t_1, \ldots, t_n) \) is reducible by \(\rightarrow_{\mathcal{R},Z} \).

It thus suffices to determine whether \(\overline{\mathcal{R}} \) is quasi-reductive. But this can easily be done, for instance using the narrowing-based method for left-linear constructor-based ordinary TRSs in [78, 94] that furthermore computes a set of missing patterns, i.e., left-hand sides for rules that need to be added in order to make \(\overline{\mathcal{R}} \) quasi-reductive. \(\square \)

Proof sketch of Theorem 13.21. It will be shown below that normal \(Z \)-CERSs satisfy the following property:

Whenever \(s \rightarrow_{\mathcal{R},Z} t_1 \) and \(s \rightarrow_{\mathcal{R},Z} t_2 \) such that the reductions take place at the same position, then \(t_1 = t_2 \).

Thus, normal \(Z \)-CERSs satisfy the crucial property needed in order to show confluence of orthogonal ordinary TRSs and the proof used for this result in [17, Corollary 6.3.11] applies for normal \(Z \)-CERSs as well since normal \(Z \)-CERSs are left-linear.

To show the above property, it can without loss of generality be assumed that the reductions \(s \rightarrow_{\mathcal{R},Z} t_1 \) and \(s \rightarrow_{\mathcal{R},Z} t_2 \) take place at the root position. Thus, there exist rules \(l_1 \rightarrow r_1[\varphi_1], l_2 \rightarrow r_2[\varphi_2] \) and substitutions \(\sigma_1, \sigma_2 \) such that \(s = l_1\sigma_1 = l_2\sigma_2 \) and \(\varphi_1\sigma_1, \varphi_2\sigma_2 \) are \(Th_Z \)-valid. By Definition 13.18.2, \(l_1 = l_2 \) and therefore \(\sigma_1 = \sigma_2 \). Now, Definition 13.18.3 implies that the rules \(l_1 \rightarrow r_1[\varphi_1] \) and \(l_2 \rightarrow r_2[\varphi_2] \) are identical, i.e., \(t_1 = r_1\sigma_1 = r_2\sigma_2 = t_2 \). \(\square \)

Proof of Lemma 13.26. Consider a ground substitution \(\sigma \). Since \(\mathcal{R} \) is quasi-reductive, there exists a constructor ground substitution \(\tilde{\sigma} \) such that \(\sigma(x) \rightarrow^*_{\mathcal{R},Z} \tilde{\sigma}(x) \) for all \(x \in \mathcal{V} \). Then \(s\sigma \rightarrow^*_{\mathcal{R},Z} s\tilde{\sigma} \leftrightarrow^*_{\mathcal{C}_Z \cup \mathcal{F}_{Th_Z}} \text{norm}(s\tilde{\sigma}) = \text{snorm}(\tilde{\sigma}) \leftrightarrow^*_{\mathcal{R},Z} \text{tnorm}(\tilde{\sigma}) = \)
Appendix A. Proofs

\begin{proof}[Proof of Lemma 13.31] Since both \(u\) and \(l\) are \(Z\)-free, \(\sigma(x)\) is \(Z\)-free for all variables \(x\). But then \(C[r]\sigma\) and \(t\sigma\) are \(Z\)-free as well.
\end{proof}

\begin{proof}[Proof of Lemma 13.32] Let \(\mathcal{R}\) be a quasi-reductive \(Z\)-CERS, let \(s \equiv t[\varphi]\) be an atomic constraint, and let \(u\) be a basic term such that \(s = C[u]\).

1. Since \(u\) is basic and \(\sigma\) is a \(Z\)-normal constructor ground substitution, the term \(u\sigma\) has the form \(f(u_1, \ldots, u_n)\) where \(u_1, \ldots, u_n\) are \(Z\)-normal constructor ground terms. Thus, since \(\mathcal{R}\) is quasi-reductive, there exists a rule \(l \rightarrow r[\psi] \in \mathcal{R}\) such that \(u\sigma\) is an instance of \(l\), i.e., \(u\sigma = l\tau\) for some \(\tau\). Furthermore, \(\psi\tau\) is \(Th_{\mathcal{Z}}\)-valid. Without loss of generality it can be assumed that \(s\) and \(l\) are variable-disjoint, and the substitution \(\sigma\) can thus be extended to obtain \(u\sigma = l\sigma\). Furthermore, \(\psi\sigma\) is \(Th_{\mathcal{Z}}\)-valid. Since \(\sigma\) is an unifier of \(u\) and \(l\), there exists a substitution \(\theta\) such that \(\sigma = u\theta\) where \(u = \text{mgu}(u, l)\). Thus, \(s\sigma = C[u]\sigma = C[u]u\theta = C\theta[l\sigma] = C\theta[l\theta] \rightarrow_{\mathcal{R},\mathcal{Z}} C\theta[r\theta] \leftarrow_{\text{Expd}_{u(s,t,\varphi),\mathcal{Z}}} t\theta = t\sigma\).

For this, notice that \(\varphi\theta = \varphi\sigma\) and \(\psi\theta = \psi\sigma\) are \(Th_{\mathcal{Z}}\)-valid.

2. Let \(v \leftarrow_{\text{Expd}_{u(s,t,\varphi),\mathcal{Z}}} w\). Then \(v = \widehat{C}[C[l]\sigma\sigma]\) and \(w = \widehat{C}[t\sigma\sigma]\) (or \(w = \widehat{C}[C[r]\sigma\sigma]\) and \(v = \widehat{C}[t\sigma\sigma]\)) for some context \(\widehat{C}\) and some substitution \(\widehat{\sigma}\), where \(\sigma = \text{mgu}(u, l)\), \(s = C[u]\), \(l \rightarrow r[\psi] \in \mathcal{R}\), and \(\varphi\sigma\sigma \land \psi\sigma\sigma\) is \(Th_{\mathcal{Z}}\)-valid. Then \(v = \widehat{C}[C[r]\sigma\sigma] \leftarrow_{\mathcal{R},\mathcal{Z}} \widehat{C}[C[l]\sigma\sigma] = \widehat{C}[C\sigma[l\sigma]\sigma] = \widehat{C}[C\sigma[u\sigma]\sigma] = \widehat{C}[C[u]\sigma\sigma] = \widehat{C}[s\sigma\sigma] \rightarrow_{s \rightarrow t[\varphi],\mathcal{Z}} \widehat{C}[t\sigma\sigma] = w\).
\end{proof}

\begin{proof}[Proof of Lemma 13.37] Perform a case analysis on the inference rule that is applied in \(\langle E_n, H_n \rangle \vdash_{\mathcal{I}} \langle E_{n+1}, H_{n+1} \rangle\). If this inference rule is Simplify, then \(E_n = E \uplus \{s \equiv t[\varphi]\}\), \(E_{n+1} = E \cup \{s' \equiv t[\varphi]\}\), and \(H_{n+1} = H_n\), where \(s[\varphi] \rightarrow_{\mathcal{R} \cup H_n,\mathcal{Z}} s'[\varphi]\).

First, consider the inclusion \(\subseteq\). For this, let \(v \leftarrow_{\mathcal{R} \cup E_n \cup H_n,\mathcal{Z}} w\) for \(Z\)-normal ground terms \(v, w\). If \(v \leftarrow_{\mathcal{R} \cup E_n \cup H_n,\mathcal{Z}} w\), then \(v \leftarrow_{\mathcal{R} \cup E_{n+1} \cup H_{n+1},\mathcal{Z}} w\) is immediate. Otherwise,

312
Appendix A. Proofs

\[v = C[s\sigma], \ w = C[t\sigma] \ (or \ w = C[s\sigma], \ v = C[t\sigma]), \ and \ \varphi \sigma \ is \ Th_{\mathcal{Z}}-valid \ for \ a \ ground \ substitution \ \sigma. \ Now \ s[\varphi] \rightarrow_{R \cup H_n, \mathcal{Z}} s'[\varphi] \ implies \ that \ s = D[l\tau], \ s' = D[r\tau], \ and \ \varphi \Rightarrow \psi \tau \ is \ Th_{\mathcal{Z}}-valid \ for \ some \ l \rightarrow r[\psi] \in R \cup H_n = R \cup H_{n+1} \ and \ some \ ground \ substitution \ \tau. \ Since \ \varphi \Rightarrow \psi \tau \ and \ \varphi \sigma \ are \ Th_{\mathcal{Z}}-valid, \ \psi \tau \sigma \ is \ Th_{\mathcal{Z}}-valid \ as \ well. \ Therefore, \ v = C[s\sigma] = C[D\sigma[l\tau\sigma]] \rightarrow_{R \cup H_{n+1}, \mathcal{Z}} C[D\sigma[r\tau\sigma]] = C[s'\sigma] \rightarrow_{E_{n+1}, \mathcal{Z}} C[t\sigma] = w. \ For \ the \ inclusion \ "\supseteq", \ it \ again \ suffices \ to \ consider \ the \ case \ where \ v = C[s'\sigma], \ w = C[t\sigma] \ (or \ w = C[s'\sigma], \ v = C[t\sigma]), \ and \ \varphi \sigma \ is \ Th_{\mathcal{Z}}-valid. \ Similar \ to \ above, \ v = C[s'\sigma] = C[D\sigma[r\tau\sigma]] \leftarrow_{R \cup H_n, \mathcal{Z}} C[D\sigma[l\tau\sigma]] = C[s\sigma] \rightarrow_{E_n, \mathcal{Z}} C[t\sigma] = w.

For \ Delete, \ the \ inclusion \ "\supseteq" \ is \ obvious \ since \ an \ atomic \ conjecture \ is \ removed \ from \ \mathcal{E}_n. \ For \ "\subseteq", \ it \ suffices \ to \ notice \ that \ v \leftarrow_{\{s \equiv s[\varphi]\}, \mathcal{Z}} w \ for \ \mathcal{Z}-normal \ ground \ terms \ v \ and \ w \ implies \ w = v.

For \ Theory, \ the \ inclusion \ "\supseteq" \ is \ again \ obvious. \ For \ "\subseteq", \ let \ v \leftarrow_{\{s \equiv t[\varphi]\}, \mathcal{Z}} w \ for \ \mathcal{Z}-normal \ ground \ terms \ v \ and \ w. \ Thus, \ there \ exists \ a \ ground \ substitution \ \sigma \ such \ that \ v = C[s\sigma], \ w = C[t\sigma] \ (or \ w = C[s'\sigma], \ v = C[t\sigma]), \ and \ \varphi \sigma \ is \ Th_{\mathcal{Z}}-valid. \ Since \ \varphi \Rightarrow s \equiv t \ is \ LIAC-valid \ and \ \varphi \sigma \ is \ Th_{\mathcal{Z}}-valid, \ s\sigma \equiv t\sigma \ is \ LIAC-valid. \ Since \ \sigma \ is \ \mathcal{Z}-normal, \ this \ implies \ s\sigma = t\sigma \ and \ thus \ v = w.

For \ Expand, \ the \ inclusion \ "\subseteq" \ is \ obvious. \ For \ "\supseteq", \ it \ suffices \ to \ show \ that \ v \leftarrow_{\text{Expand}(s,t,\varphi), \mathcal{Z}} w \ implies \ v \leftarrow_{R \cup E_n \cup H_n, \mathcal{Z}} w \ for \ all \ \mathcal{Z}-normal \ ground \ terms \ v, w. \ But \ this \ follows \ from \ Lemma \ 13.32.2 \ since \ s \equiv t[\varphi] \in E_n. \ \Box

Proof of Lemma 13.38. The proof is by induction on the length \(k\) of the derivation \(\langle E_n, H_n \rangle \vdash_{\mathcal{I}}^* \langle \emptyset, H \rangle\). If \(k = 0\), then \(E_n = \emptyset\) and the claim is obvious. Otherwise, \(\langle E_n, H_n \rangle \vdash_{\mathcal{I}} \langle E_{n+1}, H_{n+1} \rangle \vdash_{\mathcal{I}}^* \langle \emptyset, H \rangle\) where \(\leftarrow_{E_{n+1}, \mathcal{Z}} \subseteq \rightarrow_{R \cup H_{n+1}, \mathcal{Z}} \circ \rightarrow_{R \cup H, \mathcal{Z}}^* \) by the inductive assumption. Now, perform a case analysis on the inference rule that is applied in \(\langle E_n, H_n \rangle \vdash_{\mathcal{I}} \langle E_{n+1}, H_{n+1} \rangle\).

If this inference rule is Simplify, then \(E_n = E \cup \{s \equiv t[\varphi]\}, \ E_{n+1} = E \cup \{s' \equiv t'[\varphi]\}\), and \(H_{n+1} = H_n\), where \(s[\varphi] \rightarrow_{R \cup H_n, \mathcal{Z}} s'[\varphi]\). Let \(v \leftarrow_{E_n, \mathcal{Z}} w\) for \(\mathcal{Z}\)-normal ground
Appendix A. Proofs

terms \(v, w \). If \(v \leftrightarrow_{E, Z} w \), then the claim is immediate from the inductive assumption. Otherwise, \(v \leftrightarrow_{(s \equiv t[\varphi]), Z} w \), i.e., \(v = C[s\sigma] \) and \(w = C[t\sigma] \) (or \(v = C[t\sigma] \) and \(w = C[s\sigma] \)) where \(\varphi\sigma \) is \(Th_Z \)-valid. Since \(v' := C[s'\sigma] \leftrightarrow_{E,n+1,Z} w \), the inductive assumption implies \(v' \rightarrow^*_{R \cup H, Z} \circ \leftarrow^*_{R \cup H, Z} w \). It now suffices to show \(v \rightarrow_{R \cup H, Z} v' \) since then \(v \rightarrow_{R \cup H, Z} v' \rightarrow^*_{R \cup H, Z} \circ \leftarrow^*_{R \cup H, Z} w \). For this, recall that \(s[\varphi] \rightarrow_{R \cup H_n, Z} s'[\varphi] \) implies \(s = D[l_\tau], s' = D[r_\tau] \), and \(\varphi \Rightarrow \psi_\tau \) is \(Th_Z \)-valid for some \(l \rightarrow r[\psi] \in R \cup H_n \) and some ground substitution \(\tau \). As in the proof of Lemma 13.37, \(v = C[s\sigma] = C[D\sigma[l_\tau\sigma]] \rightarrow_{R \cup H_n, Z} C[D\sigma[r_\tau\sigma]] = C[s'\sigma] = v' \) and the claim follows since \(H_n \subseteq H \).

If the inference rule Delete was applied, then \(E_n = E \cup \{ s \equiv s[\varphi] \} \), \(E_{n+1} = E \), and \(H_{n+1} = H_n \). If \(v \leftrightarrow_{E, Z} w \), then the claim follows from the inductive assumption. Otherwise, \(v = w \) and the claim is immediate.

If the inference rule Theory\(_1\) was applied, then \(E_n = E \cup \{ s \equiv t[\varphi] \} \), \(E_{n+1} = E \), and \(H_{n+1} = H_n \), where \(\varphi \Rightarrow s \simeq t \) is LIAC-valid. Again, if \(v \leftrightarrow_{E, Z} w \), then the claim follows from the inductive assumption. Otherwise, \(v = C[s\sigma] \) and \(w = C[t\sigma] \) (or \(v = C[t\sigma] \) and \(w = C[s\sigma] \)) where \(\varphi\sigma \) is \(Th_Z \)-valid. Thus, \(s\sigma \simeq t\sigma \) is LIAC-valid, which implies \(s\sigma = t\sigma \) since \(\sigma \) is \(Z \)-normal. Hence \(v = w \) and thus \(v \rightarrow^*_{R \cup H, Z} \circ \leftarrow^*_{R \cup H, Z} w \).

Finally, assume that the inference rule Expand was applied. Thus, \(E_n = E \cup \{ s \equiv t[\varphi] \} \), \(E_{n+1} = E \cup \text{Expd}_u(s, t, \varphi) \), and \(H_{n+1} = H_n \). As in the other cases, \(v \leftrightarrow_{E, Z} w \) is taken care of by the inductive assumption. Otherwise, \(v = C[s\sigma] \) and \(w = C[t\sigma] \) (or \(v = C[t\sigma] \) and \(w = C[s\sigma] \)) where \(\varphi\sigma \) is \(Th_Z \)-valid. By Lemma 13.32.1, \(v \rightarrow_{R, Z} \circ \leftarrow_{\text{Expd}_u(s, t, \varphi), Z} w \) and thus \(v \rightarrow_{R, Z} \circ \leftarrow_{E_{n+1}, Z} w \). Now the inductive assumption implies \(v \rightarrow^*_{R \cup H, Z} \circ \leftarrow^*_{R \cup H, Z} w \). \(\square \)

Proof of Lemma 13.39. Let \(s \rightarrow t[\varphi] \in H \) and \(v \rightarrow_{(s \rightarrow t[\varphi]), Z} w \) for \(Z \)-normal ground terms \(v \) and \(w \), i.e., \(v = C[s\sigma] \) and \(w = C[t\sigma] \) for a \(Z \)-normal ground substitution \(\sigma \) such that \(\varphi\sigma \) is \(Th_Z \)-valid.

First, assume that \(\sigma(y) \) is reducible by \(\rightarrow_{R, Z} \) for at least one variable \(y \in V(s) \cup \rho \rightarrow_{R, Z} \circ \leftarrow_{\text{Expd}_u(s, t, \varphi), Z} w \) and thus \(v \rightarrow_{R, Z} \circ \leftarrow_{E_{n+1}, Z} w \). Now the inductive assumption implies \(v \rightarrow^*_{R \cup H, Z} \circ \leftarrow^*_{R \cup H, Z} w \). \(\square \)
Appendix A. Proofs

\(\mathcal{V}(t) \). Since \(\rightarrow_{R,Z} \) is terminating, there exists a substitution \(\tilde{\sigma} \) such that \(\sigma(x) \rightarrow_{R,Z}^* \tilde{\sigma}(x) \) and \(\tilde{\sigma}(x) \) is irreducible by \(\rightarrow_{R,Z} \) for all variables \(x \in \mathcal{V}(s) \cup \mathcal{V}(t) \). Then, if \(C[\tilde{s}\tilde{\sigma}] \rightarrow_{R,Z} \circ \rightarrow_{R \cup H,Z}^* \circ \rightarrow_{R \cup H,Z}^* C[t\tilde{\sigma}] \) has been shown, \(v = C[\sigma] \rightarrow_{R,Z} \circ \rightarrow_{R \cup H,Z}^* \circ \rightarrow_{R \cup H,Z}^* C[t\sigma] = w \) follows as well since \(C[\sigma] \rightarrow_{R,Z}^* C[\tilde{\sigma}] \) and \(Ct[\tilde{\sigma}] \rightarrow_{R,Z}^* C[t\sigma] \).

Thus, it can be assumed that \(\sigma(x) \) is irreducible by \(\rightarrow_{R,Z} \) for all \(x \in \mathcal{V}(s) \cup \mathcal{V}(t) \). Since \(R \) is quasi-reductive, \(\sigma \) is a \(\mathbb{Z} \)-normal constructor ground substitution. There exists an \(n \) such that \(\langle E, \emptyset \rangle \vdash I \langle E_n, H_n \rangle \vdash I \langle E_{n+1}, H_{n+1} \rangle \vdash I \langle \emptyset, H \rangle \) where \(H_{n+1} = H_n \cup \{ s \rightarrow t[\varphi] \} \), \(E_n = E'_n \cup \{ s \equiv t[\varphi] \} \), and \(E_{n+1} = E'_n \cup \text{Expd}_n(s, t, \varphi) \) such that \(\rightarrow_{R \cup (s,t)[\varphi],Z} \) is terminating. Then, by Lemma 13.32.1, \(s\sigma \rightarrow_{R,Z} \circ \leftarrow_{\text{Expd}_n(s,t,\varphi),Z} t\sigma \) and thus \(v = C[\sigma] \rightarrow_{R,Z} \circ \leftarrow_{E_{n+1},Z} C[t\sigma] = w \). Therefore, \(v \rightarrow_{R,Z} \circ \rightarrow_{R \cup H,Z}^* \circ \rightarrow_{R \cup H,Z}^* C[t\sigma] \).

\(\square \)

Proof of Theorem 13.40. By Lemma 13.37, \(\leftarrow_{R \cup E,Z} = \leftarrow_{R \cup H,Z} \) on \(\mathbb{Z} \)-normal ground terms. Thus, it suffices to show that \(\leftarrow_{R \cup H,Z} = \leftarrow_{R,Z} \) on \(\mathbb{Z} \)-normal ground terms. For this, the following principle of Koike and Toyama [115] as reported in [7, 9] is used (where \(\rightarrow_1 = \rightarrow_{R,Z} \), \(\rightarrow_2 = \rightarrow_{H,Z} \), and \(A \) is the set of \(\mathbb{Z} \)-normal ground terms):

Let \(\rightarrow_1, \rightarrow_2 \) be binary relations on a set \(A \) and let \(\rightarrow_{1 \cup 2} = \rightarrow_1 \cup \rightarrow_2 \).

Assume that

1. \(\rightarrow_{1 \cup 2} \) is well-founded.
2. \(\rightarrow_2 \subseteq \rightarrow_1 \circ \rightarrow_{1 \cup 2} \circ \leftarrow_{1 \cup 2}^* \)

Then \(\leftarrow_{1}^* = \leftarrow_{1 \cup 2}^* \).

The first condition, i.e., that \(\rightarrow_{R \cup H,Z} \) is terminating, follows from the condition of Expand. The second condition, i.e., \(\rightarrow_{H,Z} \subseteq \rightarrow_{R,Z} \circ \rightarrow_{R \cup H,Z} \circ \leftarrow_{R \cup H,Z}^* \), follows from Lemma 13.39. \(\square \)

Proof of Theorem 13.42. Let \(\langle E, \emptyset \rangle \vdash I \langle E_n, H_n \rangle \vdash I \perp \) where \(E_n = E'_n \cup \{ s \equiv t[\varphi] \} \)
such that $\varphi \Rightarrow s \simeq t$ is not LIAC-valid. Therefore, there exists a \mathbb{Z}-normal constructor ground substitution σ such that $\varphi\sigma$ is $T\mathbb{Z}$-valid and $s\sigma \simeq t\sigma$ is not LIAC-valid, which implies $s\sigma \neq t\sigma$ since σ is \mathbb{Z}-normal. Since $s\sigma \leftrightarrow_{E_{n,\mathbb{Z}}} t\sigma$, Lemma 13.37 implies $s\sigma \rightarrow^*_{R \cup E_{n,\mathbb{Z}}} t\sigma$. If all atomic conjectures in E are inductive theorems, then this implies $s\sigma \rightarrow^*_{R, \mathbb{Z}} t\sigma$, which gives $s\sigma \rightarrow^*_{R, \mathbb{Z}} o \rightarrow^*_{R, \mathbb{Z}} t\sigma$ because $\rightarrow_{R, \mathbb{Z}}$ is confluent and thus Church-Rosser. But $s\sigma \rightarrow^*_{R, \mathbb{Z}} o \rightarrow^*_{R, \mathbb{Z}} t\sigma$ is not possible since $s\sigma \neq t\sigma$ and both terms are irreducible by $\rightarrow_{R, \mathbb{Z}}$ since s and t do not contain defined symbols and σ is a \mathbb{Z}-normal constructor ground substitution. \hfill \Box

A.13 Proofs from Chapter 14

Proof of Theorem 14.6. Let $g(x^*) \equiv t$ be a simple conjecture and consider a rule $g(l^*) \rightarrow C[g(r^*_1), \ldots, g(r^*_m)][\varphi] \in \mathcal{R}(g)$. Provided $g(x^*)$ and $g(l^*)$ are unifiable and $\varphi\sigma$ is $T\mathbb{Z}$-satisfiable for $\sigma = \text{mgu}(g(x^*), g(l^*))$, application of Expand to $g(x^*) \equiv t$ produces (amongst others) $C\sigma[g(r^*_1)\sigma, \ldots, g(r^*_m)\sigma] \equiv t\sigma[\varphi\sigma]$. After application of Expand, the set H of hypotheses consists of the rule $g(x^*) \rightarrow t$.

Now, if $x_i = x_j$ for $i < j$, then $(i, j) \in \text{ImpEq}(g)$. First, since $\varphi\sigma$ is $T\mathbb{Z}$-satisfiable, $l_i \simeq l_j \wedge \varphi$ is $T\mathbb{Z}$-satisfiable. Thus, since $x_i = x_j$ implies $l_i\sigma = l_j\sigma$, the definition of ImpEq yields $r_{k,i}\sigma = r_{k,j}\sigma$ for all $1 \leq k \leq m$. Hence, Simplify applies m times to the conjecture $C\sigma[g(r^*_1)\sigma, \ldots, g(r^*_m)\sigma] \equiv t\sigma[\varphi\sigma]$ using the hypothesis $g(x^*) \rightarrow t \in H$ and $C\sigma[t\tau_1, \ldots, t\tau_m] \equiv t\sigma[\varphi\sigma]$ is obtained, where $\tau_i = \{x^* \mapsto r^*_i\sigma\}$. Since both sides are from $T(\tilde{C}(\mathcal{R}), \mathcal{V})$, either Theory$_1$ or Theory$_2$ can be applied to this conjecture. \hfill \Box

Proof of Theorem 14.12. Let $\{g_1(x^*_1) \equiv t_1, \ldots, g_n(x^*_n) \equiv t_n\}$ be a simple set of conjectures. Consider the atomic conjecture $g_k(x^*_k) \equiv t_k$ from this set and the rule $g_k(l^*) \rightarrow C[g_k(r^*_1), \ldots, g_k(r^*_m)][\varphi] \in \mathcal{R}(g)$. Provided $g_k(x^*_k)$ and $g_k(l^*)$ are

3 A relation \rightarrow is Church-Rosser iff $s \leftarrow^* t$ implies $s \rightarrow^* o \leftarrow^* t$ for all s, t. It is well-known that this property is equivalent to confluence, see, e.g., [17].
unifiable and \(\varphi \sigma \) is \(Th_{\mathbb{Z}} \)-satisfiable for \(\sigma = \text{mgu}(g_{k}(x_{k}^{*}), g_{k}(l^{*})) \), application of Expand to \(g_{k}(x_{k}^{*}) \equiv t_{k} \) produces (amongst others) \(C\sigma[g_{k_{1}}(r_{1}^{*})\sigma, \ldots, g_{k_{m}}(r_{m}^{*})\sigma] \equiv t_{k}\llbracket \varphi \sigma \rrbracket \). After application of Expand to each atomic conjecture in the simple set of conjectures, the set \(H \) consists of the rules \(g_{1}(x_{1}^{*}) \rightarrow t_{1}, \ldots, g_{n}(x_{n}^{*}) \rightarrow t_{n} \).

Now, if \(x_{k_{i},i_{k}} = x_{k_{j},j_{k}} \) for any \(1 \leq k \leq m \) and \(i_{k} < j_{k} \), then there exists an \(\langle g_{k_{i}}, i_{k}, j_{k}, \Gamma \rangle \in \text{ImpEq}(\mathcal{G}) \) such that \(x_{k'i'} = x_{k'j'} \) for all \(\langle g_{k'}, i', j' \rangle \in \Gamma \). In particular, all such restrictions for \(g_{k} \) are satisfied. As in the proof of Theorem 14.6, the definition of \(\text{ImpEq} \) thus implies \(r_{k_{i},i_{k}} = r_{k_{j},j_{k}} \) since \(x_{k'i'} = x_{k'j'} \) implies \(l_{i'} \sigma = l_{j'} \sigma \).

Thus, Simplify applies \(m \) times to \(C\sigma[g_{k_{1}}(r_{1}^{*})\sigma, \ldots, g_{k_{m}}(r_{m}^{*})\sigma] \equiv t_{k}\llbracket \varphi \sigma \rrbracket \) using the hypotheses \(g_{1}(x_{1}^{*}) \rightarrow t_{1}, \ldots, g_{n}(x_{n}^{*}) \rightarrow t_{n} \in H \) and \(C\sigma[t_{k_{1}}\tau_{1}, \ldots, t_{k_{m}}\tau_{m}] \equiv t\llbracket \varphi \sigma \rrbracket \) is obtained, where \(\tau_{i} = \{x_{k_{i}}^{*} \mapsto r_{i}^{*}\sigma\} \). Since both sides of are from \(\mathcal{T}(\tilde{\mathcal{C}}(\mathcal{R}), \mathcal{V}) \), either Theory\textsubscript{1} or Theory\textsubscript{2} can be applied to this conjecture. \(\square \)

Proof of Lemma 14.18. The statement is proved by induction on \(C_{\mathcal{Q}} \). If \(C_{\mathcal{Q}} \) is a \(Q \)-context, then

\[
g(x_{1}, \ldots, x_{j-1}, C_{\mathcal{Q}}[z_{1}, \ldots, z_{n}], x_{j+1}, \ldots, x_{m}) \rightarrow^{*}_{\mathcal{R}, \mathcal{Z}}
\]

\[
D[g(x_{1}, \ldots, x_{j-1}, z_{i}, x_{j+1}, \ldots, x_{m}), \ldots, g(x_{1}, \ldots, x_{j-1}, z_{i}, x_{j+1}, \ldots, x_{m})]
\]

by Definition 14.15 where \(z_{i} \notin \mathcal{V}(D) \) for all \(1 \leq i \leq n \). Thus, it only remains to be shown that \(D \) is a repeated \(g \)-context. But this easily follows since \(g \) is LIAC-based and \(C_{\mathcal{Q}} \) is a context over \(\tilde{\mathcal{C}}(\mathcal{R}) \).

If \(C_{\mathcal{Q}} \) is a repeated \(Q \)-context of the form \(C[C_{1}, \ldots, C_{k}] \) for repeated \(Q \)-contexts \(C_{1}, C_{2}, \ldots, C_{k} \), then the inductive assumption implies that there exists a repeated \(g \)-context \(D \) with \(z_{i} \notin \mathcal{V}(D) \) for all \(1 \leq i \leq n \) such that

\[
g(x_{1}, \ldots, x_{j-1}, C_{\mathcal{Q}}[z_{1}, \ldots, z_{n}], x_{j+1}, \ldots, x_{m}) =
\]

\[
g(x_{1}, \ldots, x_{j-1}, C[C_{1}, \ldots, C_{k}][z_{1}, \ldots, z_{n}], x_{j+1}, \ldots, x_{m}) \rightarrow^{*}_{\mathcal{R}, \mathcal{Z}}
\]

\[
D[g(x_{1}, \ldots, x_{j-1}, u_{1}, x_{j+1}, \ldots, x_{m}), \ldots, g(x_{1}, \ldots, x_{j-1}, u_{d}, x_{j+1}, \ldots, x_{m})]
\]
Appendix A. Proofs

with \(u_l = C_{e_l}[z_1, \ldots, z_n] \) for all \(1 \leq l \leq d \). Furthermore, the inductive assumption implies that there exist repeated \(g \)-context \(D_1, \ldots, D_d \) with \(z_i \notin \mathcal{V}(D_l) \) for all \(1 \leq i \leq n \) and \(1 \leq l \leq d \) such that

\[
g(x_1, \ldots, x_{j-1}, u_l, x_{j+1}, \ldots, x_m) \to^{*}_{\mathcal{R}, \mathcal{Z}} \]

\[
D_l[g(x_1, \ldots, x_{j-1}, z_{l_{k_l}}, x_{j+1}, \ldots, x_m), \ldots, g(x_1, \ldots, x_j, z_{l_{k_j}}, x_{j+1}, \ldots, x_m)]
\]

for all \(1 \leq l \leq d \), where \(l_1, \ldots, l_{k_l} \in \{1, \ldots, n\} \). Therefore,

\[
g(x_1, \ldots, x_{j-1}, C_Q[z_1, \ldots, z_n], x_{j+1}, \ldots, x_m) \to^{*}_{\mathcal{R}, \mathcal{Z}} \]

\[
D[g(x_1, \ldots, x_{j-1}, u_1, x_{j+1}, \ldots, x_m), \ldots, g(x_1, \ldots, x_{j-1}, u_d, x_{j+1}, \ldots, x_m)] \to^{*}_{\mathcal{R}, \mathcal{Z}}
\]

\[
D[D_1, \ldots, D_d][g(x_1, \ldots, x_{j-1}, z_{1}, x_{j+1}, \ldots, x_m), \ldots, g(x_1, \ldots, x_{j-1}, z_{d_{k_d}}, x_{j+1}, \ldots, x_m)]
\]

for a repeated \(g \)-context \(C_g := D[D_1, \ldots, D_d] \). Furthermore, notice that \(\mathcal{V}(C_g) = \mathcal{V}(D[D_1, \ldots, D_d]) = \mathcal{V}(D) \cup \mathcal{V}(D_1) \cup \ldots \cup \mathcal{V}(D_d) \) does not contain any of the \(z_i \). \(\square \)

Proof of Lemma 14.20. Define a sequence of terms by \(s_d = f_d(x_{d,1}, \ldots, x_{d,m_d}) \) and \(s_i = f_i(x_{i,1}, \ldots, x_{i,j-1}, s_{i+1}, x_{i,j+1}, \ldots, x_{i,m_i}) \) for all \(1 \leq i \leq d-1 \). The lemma is proved by showing the following statement for all \(1 \leq i \leq d \):

\[
s_i[C[g_1(r_1^*), \ldots, g_n(r_n^*)]] \to^{*}_{\mathcal{R}, \mathcal{Z}} D[s_i(g_{j_1}(r_1^*)_1), \ldots, s_i(g_{j_i}(r_i^*)_i)] \text{ for some indices } j_1, \ldots, j_i \in \{1, \ldots, n\} \text{ and a repeated } f_i \text{-context } D \text{ with } \mathcal{V}(D) \subseteq \mathcal{V}(C) \cup \hat{\mathcal{V}}.
\]

Here, \(\hat{\mathcal{V}} = \{x_{k,j} \mid 1 \leq k \leq d-1 \text{ and } 1 \leq j \leq m_k\} \).

Since \(s[C[g_1(r_1^*), \ldots, g_n(r_n^*)]] = s_1[C[g_1(r_1^*), \ldots, g_n(r_n^*)]]\sigma \) for some substitution \(\sigma \) that instantiates at most the \(x_{i,j} \) for \(i \neq d \) by terms from \(T(\hat{\mathcal{C}}(R), \mathcal{V}) \), the statement of the lemma thus follows.

The statement \((\dagger) \) is proved by induction on \(d-i \). In the base case, \(i = d \) and \(s_d[C[g_1(r_1^*), \ldots, g_n(r_n^*)]] = C[g_1(r_1^*), \ldots, g_n(r_n^*)] \) already has the required form.

In the step case, \(i < d \) and the inductive assumption for \(i+1 \) implies
Appendix A. Proofs

\[s_i(C[g_1(r^*_1), \ldots, g_n(r^*_n)]) = \]
\[f_i(y^*_i, s_{i+1}(C[g_1(r^*_1), \ldots, g_n(r^*_n)]), z^*_i) \rightarrow^*_{R,Z} \]
\[f_i(y^*_i, E[s_{i+1}(g_{j_1}(r^*_1)), \ldots, s_{i+1}(g_{j_n}(r^*_n))], z^*_i) \]

for a repeated \(f_{i+1} \)-context \(E \) with \(\mathcal{V}(E) \subseteq \mathcal{V}(C) \cup \hat{\mathcal{V}} \). Here, \(y^*_i \) contains \(x_{i,1}, \ldots, x_{i,j_i-1} \) and \(z^*_i \) contains \(x_{i,j_i+1}, \ldots, x_{i,m_i} \). By Lemma 14.18, there exists a repeated \(f_i \)-context \(D \) such that

\[f_i(y^*_i, E[s_{i+1}(g_{j_1}(r^*_1)), \ldots, s_{i+1}(g_{j_n}(r^*_n))], z^*_i) \rightarrow^*_{R,Z} \]
\[D[f_i(y^*_i, s_{i+1}(g_{d_1}(r^*_{d_1})), z_i), \ldots, f_i(y^*_i, s_{i+1}(g_{d_k}(r^*_{d_k})), z_i)] = \]
\[D[s_i(g_{d_1} r^*_{d_1}), \ldots, s_i(g_{d_k} r^*_{d_k})] \]

where furthermore \(\mathcal{V}(D) \subseteq \mathcal{V}(E) \cup \hat{\mathcal{V}} \subseteq \mathcal{V}(C) \cup \hat{\mathcal{V}} \). ☐

Proof of Theorem 14.23. Let \(D[f(x^*)] \equiv t \) be a simple nested conjecture and consider a rule \(f(l^*) \rightarrow C[f(r^*_1), \ldots, f(r^*_n)] \) \(\varphi \in \mathcal{R}(f) \). Provided \(f(x^*) \) and \(f(l^*) \) are unifiable and \(\varphi \sigma \) is \(Th_{\mathbb{Z}} \)-satisfiable for \(\sigma = \text{mgu}(f(x^*), f(l^*)) \), application of \texttt{Expand} to \(D[f(x^*)] \equiv t \) produces (amongst others) \(D[C\sigma[f(r^*_1)]\sigma, \ldots, f(r^*_n)\sigma] \equiv t\sigma[\varphi\sigma] \). After application of \texttt{Expand}, the set \(H \) of hypotheses consists of the rule \(D[f(x^*)] \rightarrow t \). By Lemma 14.20,

\[D[C\sigma[f(r^*_1)]\sigma, \ldots, f(r^*_n)\sigma] \rightarrow^*_{R,Z} E[D[f(r^*_{d_1})\sigma], \ldots, D[f(r^*_{d_k})\sigma]] \]

for some context \(E \) over \(\hat{\mathcal{C}}(\mathcal{R}) \).

Now, if \(x_i = x_j \) for \(i < j \), then \(\langle i, j \rangle \in \texttt{ImpEq}(f) \). Since \(x_i = x_j \) implies \(l_i\sigma = l_j\sigma \), the definition of \texttt{ImpEq} yields \(r_{d_k,i}\sigma = r_{d_k,j}\sigma \) for all \(1 \leq k \leq e \) as in the proof of Theorem 14.6. Hence, \texttt{Simplify} applies \(m \) times to the conjecture using the hypothesis \(D[f(x^*)] \rightarrow t \in H \) and \(E[t\tau_1, \ldots, t\tau_e] \equiv t\sigma[\varphi\sigma] \) is obtained, where \(\tau_k = \{ x^* \mapsto r^*_{d_k}\sigma \} \).

Since both sides are from \(\mathcal{T}(\hat{\mathcal{C}}(\mathcal{R}), \mathcal{V}) \), either \texttt{Theory}_1 or \texttt{Theory}_2 is applicable. ☐

Proof of Theorem 14.27. Adapt the proof of Theorem 14.23 in the same way the proof of Theorem 14.6 was adapted to obtain the proof of Theorem 14.12. ☐
Appendix A. Proofs

Proof of Theorem 14.30. Identical to the proof of Theorem 13.40, but the proofs of Lemma 13.37 and Lemma 13.38 have to be adapted as follows.

In Lemma 13.37, in order to show $\iff^*_{R \cup E_n \cup H_n, z} \subseteq \iff^*_{R \cup E_{n+1} \cup H_{n+1}, z}$ if the inference rule Theory_1' was applied, assume that $v \iff (s \equiv t[\varphi]), z \iff w$ for Z-normal ground terms v and w. Thus, there exists a ground substitution σ such that $v = C[s\sigma], w = C[t\sigma]$ (or $w = C[s\sigma], v = C[t\sigma]$), and $\varphi\sigma$ is Th_Z-valid. Since $\varphi' \Rightarrow s' \simeq t'$ is LIAC-valid, $s' \equiv t'[\varphi']$ is an inductive theorem of R. Thus, the conjecture $s \equiv t[\varphi]$ is an inductive theorem of R as well. Since $\varphi\sigma$ is Th_Z-valid, this implies $s\sigma \iff^*_{R, Z} t\sigma$ and thus $v \iff^*_{R, Z} w$.

For the proof of Lemma 13.38, it suffices to consider the case where the inference rule Theory_1' was applied. Then, $E_n = E \cup \{s \equiv t[\varphi]\}, E_{n+1} = E$, and $H_{n+1} = H_n$, where $\varphi' \Rightarrow s' \simeq t'$ is LIAC-valid for a safe generalization $s' \equiv t'[\varphi']$ of $s \equiv t[\varphi]$. As before, if $v \iff_{E, Z} w$, then the claim follows from the inductive assumption. Otherwise, $v = C[s\sigma]$ and $w = C[t\sigma]$ (or $v = C[t\sigma]$ and $w = C[s\sigma]$) where $\varphi\sigma$ is Th_Z-valid. As above, the conjecture $s \equiv t[\varphi]$ is an inductive theorem of R since $s' \equiv t'[\varphi']$ is an inductive theorem of R. Thus, $s\sigma \iff^*_{R, Z} t\sigma$, which implies $s\sigma \iff^*_{R, Z} t\sigma$ since $\rightarrow_{R, Z}$ is confluent and thus Church-Rosser. Therefore, $v \iff_{R \cup H, Z} w$ is immediate.

Proof of Theorem 14.31. Let $\langle E, \emptyset \rangle \vdash^*_T \langle E_n, H_n \rangle \vdash^*_T \perp$ where $E_n = E_n' \cup \{s \equiv t[\varphi]\}$ such that $\varphi' \Rightarrow s' \simeq t'$ is not LIAC-valid for a safe generalization $s' \equiv t'[\varphi']$ of $s \equiv t[\varphi]$. Therefore, there exists a Z-normal constructor ground substitution σ' such that $\varphi'\sigma'$ is Th_Z-valid and $s'\sigma' \simeq t'\sigma'$ is not LIAC-valid, which implies $s'\sigma' \not\simeq t'\sigma'$ since σ' is Z-normal. Assume that $s' \equiv t'[\varphi']$ is an inductive theorem of R. Then, $s'\sigma' \iff^*_{R, Z} t'\sigma'$ which gives $s'\sigma' \iff^*_{R, Z} t'\sigma'$ because $\rightarrow_{R, Z}$ is confluent and thus Church-Rosser. But $s'\sigma' \iff^*_{R, Z} t'\sigma'$ is not possible since $s'\sigma' \not\simeq t'\sigma'$ and both terms are irreducible by $\rightarrow_{R, Z}$ since s' and t' do not contain defined symbols and σ' is a constructor ground substitution.
Appendix A. Proofs

Thus, \(s' \equiv t'[\varphi'] \) is not an inductive theorem of \(\mathcal{R} \), which implies that \(s \equiv t[\varphi] \) is not an inductive theorem of \(\mathcal{R} \), either. Thus, there exists a \(\mathbb{Z} \)-normal constructor ground substitution \(\sigma \) such that \(\varphi \sigma \) is \(Th_\mathbb{Z} \)-valid but \(s \sigma \not\leftrightarrow ^*_\mathcal{R},\mathbb{Z} t \sigma \). Since \(s \sigma \leftrightarrow _{E_n,\mathbb{Z}} t \sigma \), Lemma 13.37 implies \(s \sigma \leftrightarrow ^*_\mathcal{R},\mathbb{Z} t \sigma \). If all atomic conjectures in \(E \) are inductive theorems, then this would implies \(s \sigma \leftrightarrow ^*_\mathcal{R},\mathbb{Z} t \sigma \), contradicting \(s \sigma \not\leftrightarrow ^*_\mathcal{R},\mathbb{Z} t \sigma \). \(\square \)

Proof of Theorem 14.33. “\(\Leftarrow \)” is trivial since \(\mathcal{R} \) is quasi-reductive and terminating. For “\(\Rightarrow \)”, assume that \(C[x_{t_1}, \ldots, x_{t_n}] \simeq D[x_{s_1}, \ldots, x_{s_m}] \) is not LIAC-valid. Then, it needs to be shown that this contradicts that

\[
C[t_1, \ldots, t_n] \equiv D[s_1, \ldots, s_m] \text{ is an inductive theorem of } \mathcal{R}
\]

(\dagger)

For this, it is first shown that (\dagger) implies \(\{t_1, \ldots, t_n\} = \{s_1, \ldots, s_m\} \). Otherwise, without loss of generality, let \(s_i \not\in \{t_1, \ldots, t_n\} \) and let \(\sigma \) be a \(\mathbb{Z} \)-free constructor ground substitution for the variables in \(t_1, \ldots, t_n, s_1, \ldots, s_i-1, s_{i+1}, \ldots, s_m \). Since \(\mathcal{R} \) is quasi-reductive and the \(t_j, s_k \) are variable-disjoint, there exist a \(q \in T(\hat{\mathcal{C}}(\mathcal{R}), \mathcal{V}) \) with \(C[t_1, \ldots, t_n] \sigma \rightarrow ^*_{\mathcal{R},\mathbb{Z}} q \) and a context \(D' \) over \(\hat{\mathcal{C}}(\mathcal{R}) \) such that \(D[s_1, \ldots, s_m] \sigma \rightarrow ^*_{\mathcal{R},\mathbb{Z}} D'[s_i, \ldots, s_i] \). Now, (\dagger) implies that \(q \equiv D'[s_i, \ldots, s_i] \) is an inductive theorem of \(\mathcal{R} \). This implies \(q = D'[q_i, \ldots, q_i] \) such that \(s_i \equiv q_i \) is an inductive theorem. But this contradicts the assumption that \(s_i \) satisfies the no-theory condition.

Next, perform an induction on the contexts \(C \) and \(D \). If \(C = \Box \), then the conjecture in (\dagger) has the form \(t = D[t, \ldots, t] \) where \(D \) contains at least one occurrence of \(\Box \). If \(D = \Box \), then \(C[x_i] \simeq D[x_i] \) is trivially LIAC-valid, contradicting the assumption. If \(D \neq \Box \), then (\dagger) contradicts the fact that no term with a sort different from \(\text{int} \) is equal to one of its proper subterms in the theory LIAC.

Similarly, \(D = \Box \) results in contradictions. Thus, the case where \(C \neq \Box \) and \(D \neq \Box \) remains, i.e., \(C = c(C_1, \ldots, C_e) \) for some constructor \(c \). Then, the conjecture in (\dagger) has the form \(c(C_1, \ldots, C_e)[t_1, \ldots, t_n] \equiv D[s_1, \ldots, s_m] \). Inductive validity of this conjecture implies that \(D = c(D_1, \ldots, D_e) \) and the conjectures \(C_i[t_1, \ldots, t_n] \equiv \)
Appendix A. Proofs

$D_i[s_1, \ldots, s_m]$ are inductive theorems for all $1 \leq i \leq e$. The desired contradiction then follows from the inductive assumption. \qed

Proof of Theorem 14.35. Let $s^*, t, q \in T(\hat{C}(\mathcal{R}), \mathcal{V})$ such that s^* and t do not contain any of the variables x^* in q. Let $q[s^*]$ denote the term obtained from q by replacing x_i by s_i for all i.

First, it is shown by induction on t that $q[s^*] = t$ iff $q \in Q_{s^*}(t)$. If $q[s^*] = x$ for a variable $x \notin \mathcal{V}(q)$, then $q = x_i$ and $s_i = x$ for some i. Hence, $q \in Q_{s^*}(t)$.

If $q[s^*] = c(t_1, \ldots, t_k)$, then there are two possibilities. If q is a variable x_i, then $s_i = c(t_1, \ldots, t_k)$ and thus $q \in Q_{s^*}(t)$. Otherwise, $q = c(q_1, \ldots, q_k)$ where $q_i[s^*] = t_i$ for all i. By the inductive assumption, $q_i \in Q_{s^*}(t_i)$ and thus $q \in Q_{s^*}(c(t_1, \ldots, t_k))$.

Now, the statement of the lemma can be shown. For this, assume that f does not satisfy the no-theory condition. Thus, $f(x^*) \equiv q$ is an inductive theorem for some $q \in T(\hat{C}(\mathcal{R}), \mathcal{V})$. In particular, for the non-recursive rule $f(s^*) \rightarrow r \in \mathcal{R}(f)$ that was chosen in the construction of $Q(f)$, $f(s^*) \equiv q[s^*]$ is an inductive theorem. Thus, $q[s^*] = r$ since both $q[s^*]$ and r do not contain defined symbols and \mathcal{R} is confluent and thus Church-Rosser. By the property shown above, $q \in Q_{s^*}(r)$. It now needs to be shown that $\widehat{l} := l \downarrow_{f(x^*) \rightarrow q} = r \downarrow_{f(x^*) \rightarrow q} =: \widehat{r}$ for all $l \rightarrow r \in \mathcal{R}(f)$. Since $l \equiv r$ is an inductive theorem of \mathcal{R} and $f(x^*) \equiv q$ is an inductive theorem by the assumption, $\widehat{l} \equiv \widehat{r}$ is an inductive theorem as well. Since \mathcal{R} is Church-Rosser and $\widehat{l}, \widehat{r} \in T(\hat{C}(\mathcal{R}), \mathcal{V})$, it follows that $\widehat{l} = \widehat{r}$. \qed

Proof of Theorem 14.40. Let \mathcal{R}' be the unrolling of f_i. It is first shown that $f_i(s^*) \downarrow_{\mathcal{R}, \mathcal{Z}} = f_i(s^*) \downarrow_{\mathcal{R}', \mathcal{Z}}$ for all \mathcal{Z}-normal constructor ground terms s^*. This is shown by induction on the number of reduction steps in $f_i(s^*) \rightarrow \downarrow^*_{\mathcal{R}, \mathcal{Z}} q = f_i(s^*) \downarrow_{\mathcal{R}, \mathcal{Z}}$. Since \mathcal{R} is quasi-reductive, $q \in T(\mathcal{C}(\mathcal{R}) \cup \mathcal{F}_{Th_{\mathcal{Z}}})$ and at least one reduction step is needed. If exactly one reduction step is needed, then the used rewrite rule is non-recursive and thus also contained in \mathcal{R}'. Otherwise, $f_i(s^*) = f_i(l^*)\sigma$ for some $f_i(l^*) \rightarrow
Appendix A. Proofs

C[f_{i-1}(x_1^*), \ldots, f_{i-1}(x_n^*)] \in R(f_i). After application of this rewrite rule, the term C\sigma[f_{i-1}(x_1^*)\sigma, \ldots, f_{i-1}(x_n^*)\sigma] is obtained and applying f_{i-1}(l_1^*) \rightarrow r_1, \ldots, f_{i-1}(l_n^*) \rightarrow r_n using substitutions \mu_j (i.e., f_{i-1}(x_j^*)\sigma = f_{i-1}(l_j^*)\mu_j) gives C\sigma[r_1\mu_1, \ldots, r_n\mu_n]. It now suffices to show that f_i(s^*) \rightarrow_{R', \Xi} C\sigma[r_1\mu_1, \ldots, r_n\mu_n] since the claim then follows from the inductive assumption. For each 1 \leq j \leq n, let \tau_j = \{x_j^* \mapsto l_j^*\} and \tau = \tau_1 \cup \ldots \cup \tau_n. Next, extend \tau to behave like \sigma on all variables not occurring in x_1^*, \ldots, x_n^*.

Without loss of generality, the rules f_{i-1}(l_1^*) \rightarrow r_1, \ldots, f_{i-1}(l_n^*) \rightarrow r_n are variable-disjoint and contain only fresh variables, which implies that \mu = \mu_1 \cup \ldots \mu_n is well-defined. Then, \sigma = \tau\mu and f_i(s^*) = f_i(l^*)\sigma = f_i(l^*)\tau\mu \rightarrow_{R', \Xi} C\tau\mu[r_1\mu_1, \ldots, r_n\mu] = C\sigma[r_1\mu_1, \ldots, r_n\mu].

Now, the statement of the theorem can be proved. For this, assume that f_i does not satisfy the no-theory condition w.r.t. R. Then, f_i(x_1, \ldots, x_n) \equiv q is an inductive theorem of R for some q \in T(\hat{C}(R), \mathcal{V}). Thus, f_i(x_1, \ldots, x_n)\sigma \leftrightarrow_{R', \Xi} q\sigma for all \mathbb{Z}\text{-normal constructor ground substitutions. Since R is confluent and thus Church-Rosser and } q\sigma \text{ is irreducible by } \rightarrow_{R', \Xi}, \text{ this implies } f_i(x_1, \ldots, x_n)\sigma \downarrow_{R', \Xi} = q\sigma. \text{ By the above, } f_i(x_1, \ldots, x_n)\sigma \downarrow_{R', \Xi} = q\sigma. \text{ Since this is true for all } \mathbb{Z}\text{-normal constructor ground substitutions, } f_i(x_1, \ldots, x_n) \equiv q \text{ is an inductive theorem of } R', \text{ i.e., } f_i \text{ does not satisfy the no-theory condition w.r.t. } R'.

Proof of Theorem 14.42. Recall from the proof of Theorem 14.35 that q[s^*] = t iff q \in Q_{s^*}(t) for s^*, t, q \in T(\hat{C}(R), \mathcal{V}) such that s^* and t do not contain any of the variables x^* in q. Assume that f does not satisfy the no-theory condition. Thus, f(x^*) \equiv q \text{ is an inductive theorem for some } q \in T(\hat{C}(R), \mathcal{V}). \text{ In particular, for the non-recursive rule } f(s^*) \rightarrow r \in R(f) \text{ that was chosen in the construction of } Q(f), f(s^*) \equiv q[s^*] \text{ is an inductive theorem. Thus, } q[s^*] = r \text{ since both } q[s^*] \text{ and } r \text{ do not contain defined symbols and } R \text{ is confluent and thus Church-Rosser. By the property from above, } q \in Q_{s^*}(r).

It now needs to be shown that \downarrow_{f(x^*) \rightarrow q} = \text{CAP}_D(r \downarrow_{f(x^*) \rightarrow q}) \text{ is LIAC-satisfiable for
Appendix A. Proofs

all \(l \rightarrow r \in \mathcal{R}(f) \). For this, it suffices to shown that whenever \(s \in \mathcal{T}(\hat{\mathcal{C}}(\mathcal{R}), \mathcal{V}) \) and \(s \equiv t \) is an inductive theorem, then \(s = \text{CAP}_D(t)\sigma \) for some constructor substitution \(\sigma \) that only instantiates the variables introduced by \(\text{CAP}_D \). The claim then follows since \(l \downarrow f(x^*) \rightarrow q \in \mathcal{T}(\hat{\mathcal{C}}(\mathcal{R}), \mathcal{V}) \) and \(l \downarrow f(x^*) \rightarrow q \equiv r \downarrow f(x^*) \rightarrow q \) is an inductive theorem since both \(l \equiv r \) and \(f(x^*) \equiv q \) are inductive theorems by the assumption. The property is shown by induction on \(t \). If \(t \) is a variable, then \(s = t = \text{CAP}_D(t) \) since each sort has at least two distinct constructor ground terms. If \(\text{root}(t) \) is a defined symbol, then \(\text{CAP}_D(t) \) is a fresh variable \(z \), which implies \(s = \text{CAP}_D(t)\sigma \) for \(\sigma = \{ z \mapsto s \} \). If \(t = c(t_1, \ldots , t_n) \) for some \(c \in \hat{\mathcal{C}}(\mathcal{R}) \), then \(s = c(s_1, \ldots , s_n) \) such that \(s_i \equiv t_i \) is an inductive theorem for all \(1 \leq i \leq n \) since \(\mathcal{R} \) is Church-Rosser and \(s \in \mathcal{T}(\hat{\mathcal{C}}(\mathcal{R}), \mathcal{V}) \).

Now \(\text{CAP}_D(t) = c(\text{CAP}_D(t_1), \ldots, \text{CAP}_D(t_n)) \) and the inductive assumption implies \(s_i = \text{CAP}_D(t_i)\sigma_i \) for some \(\sigma_i \) that only instantiates the variables introduced by \(\text{CAP}_D \). Since the variables introduced by \(\text{CAP}_D(t_i) \) and \(\text{CAP}_D(t_j) \) are disjoint whenever \(i \neq j \), the substitution \(\sigma := \sigma_1 \cup \ldots \cup \sigma_n \) satisfies \(s = \text{CAP}_D(t)\sigma \). \(\square \)

Proof of Theorem 14.50. Let \(D[f(x^*)] \equiv E[g(y^*)] \) be a complex conjecture and consider a rule \(f(l^*) \rightarrow C[f(r_1^*), \ldots , f(r_m^*)] \in \mathcal{R}(f) \). Provided \(f(x^*) \) and \(f(l^*) \) are unifiable with \(\sigma = \text{mgu}(f(x^*), f(l^*)) \), application of \(\text{Expand} \) to \(D[f(x^*)] \equiv E[g(y^*)] \) produces (amongst others) \(D[C\sigma[f(r_1^*)\sigma, \ldots , f(r_m^*)\sigma] \equiv E[g(y^*)\sigma] \). After application of \(\text{Expand} \), the set \(H \) of hypotheses consists of the rule \(D[f(x^*)] \rightarrow E[g(y^*)] \). By Lemma 14.20,

\[
D[C\sigma[f(r_1^*)\sigma, \ldots , f(r_m^*)\sigma]] \rightarrow_{\hat{\mathcal{C}}(\mathcal{R})} D'[D[f(r_{d_1}^*)\sigma], \ldots , D[f(r_{d_k}^*)\sigma]]
\]

for some context \(D' \) over \(\hat{\mathcal{C}}(\mathcal{R}) \). Due to the condition on the definition schemes \(\text{Def}(f(x^*)) \) and \(\text{Def}(g(y^*)) \), there exists a rule \(g(s^*) \rightarrow C'[g_1(t_1^*), \ldots , g_m(t_m^*)] \in \mathcal{R}(g) \) such that \(g(y^*\sigma) = g(s^*) \). Applying this rule to \(E[g(y^*)\sigma] \) yields the term \(E[C'\sigma[g_1(t_1^*)\sigma, \ldots , g_m(t_m^*)\sigma]] \) and Lemma 14.20 implies

\[
E[C'\sigma[g_1(t_1^*)\sigma, \ldots , g_m(t_m^*)\sigma]] \rightarrow_{\hat{\mathcal{C}}(\mathcal{R})} D''[E[g_{e_1}(t_1^*)\sigma], \ldots , E[g_{e_k}(t_{e_k})\sigma]]
\]

for some context \(D'' \) over \(\hat{\mathcal{C}}(\mathcal{R}) \).

324
Appendix A. Proofs

As before, the ImpEq-condition implies that Simplify applies m times using the hypothesis $D[f(x^*)] \rightarrow E[g(y^*)] \in H$ and

$$D'[E[g(y^*)\tau_1], \ldots, E[g(y^*)\tau_k]] \equiv D''[E[g_{e_1}(t_{e_1}^*)\sigma], \ldots, E[g_{e_k'}(t_{e_k'}')]\sigma]$$

is obtained where $\tau_j = \{x^* \mapsto r_{d_j}^*\sigma\}$. Since $\tau_j \in \text{Call}(f(x^*), l \rightarrow r, \sigma)$, the final condition in Definition 14.48 implies that either Theory_1' or Theory_2' is applicable after normalization w.r.t. \mathcal{R}.

Proof of Theorem 14.57. Adapt the proof of Theorem 14.27 in the same way the proof of Theorem 14.23 was adapted to obtain the proof of Theorem 14.50.
Appendix B

Evaluation

B.1 Termination

AProVE-CERS is the implementation of the methods developed in this dissertation, while AProVE-Integer is based in [75, 143]. An “N/A” in the column for AProVE-Integer denotes that the methods from [75, 143] are not applicable to that example. The examples themselves and all proofs generated by AProVE-CERS and AProVE-Integer are available at http://www.cs.unm.edu/~spf/tdps/.

<table>
<thead>
<tr>
<th>File</th>
<th>AProVE-CERS</th>
<th>AProVE-Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total time (sec)</td>
<td>Result</td>
</tr>
<tr>
<td>01.patrs</td>
<td>0.19</td>
<td>YES</td>
</tr>
<tr>
<td>02.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
<tr>
<td>03.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
<tr>
<td>04.patrs</td>
<td>0.01</td>
<td>YES</td>
</tr>
<tr>
<td>08.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
<tr>
<td>09.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
<tr>
<td>13.patrs</td>
<td>0.07</td>
<td>YES</td>
</tr>
<tr>
<td>15.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>16.patrs</td>
<td>0.11</td>
<td>YES</td>
</tr>
<tr>
<td>17.patrs</td>
<td>0.17</td>
<td>YES</td>
</tr>
<tr>
<td>18.patrs</td>
<td>0.19</td>
<td>YES</td>
</tr>
<tr>
<td>19.patrs</td>
<td>0.19</td>
<td>YES</td>
</tr>
<tr>
<td>20.patrs</td>
<td>0.08</td>
<td>YES</td>
</tr>
</tbody>
</table>
Appendix B. Evaluation

<table>
<thead>
<tr>
<th>File</th>
<th>AProVE-CERS</th>
<th></th>
<th>AProVE-Integer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total time (sec)</td>
<td>Result</td>
<td>Total time (sec)</td>
<td>Result</td>
</tr>
<tr>
<td>21.patrs</td>
<td>0.11</td>
<td>YES</td>
<td>2.57</td>
<td>YES</td>
</tr>
<tr>
<td>22.patrs</td>
<td>0.11</td>
<td>YES</td>
<td>2.20</td>
<td>YES</td>
</tr>
<tr>
<td>23.patrs</td>
<td>0.11</td>
<td>YES</td>
<td>2.12</td>
<td>YES</td>
</tr>
<tr>
<td>24.patrs</td>
<td>0.17</td>
<td>YES</td>
<td>6.52</td>
<td>YES</td>
</tr>
<tr>
<td>5.3.patrs</td>
<td>0.11</td>
<td>YES</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>5.4.patrs</td>
<td>0.18</td>
<td>YES</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>5.5.patrs</td>
<td>0.31</td>
<td>YES</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A01.patrs</td>
<td>0.04</td>
<td>YES</td>
<td>0.31</td>
<td>YES</td>
</tr>
<tr>
<td>A02.patrs</td>
<td>0.03</td>
<td>YES</td>
<td>0.28</td>
<td>YES</td>
</tr>
<tr>
<td>A03.patrs</td>
<td>0.05</td>
<td>YES</td>
<td>2.69</td>
<td>YES</td>
</tr>
<tr>
<td>A06.patrs</td>
<td>0.06</td>
<td>YES</td>
<td>5.64</td>
<td>YES</td>
</tr>
<tr>
<td>A07.patrs</td>
<td>0.11</td>
<td>YES</td>
<td>1.19</td>
<td>YES</td>
</tr>
<tr>
<td>A08.patrs</td>
<td>0.08</td>
<td>YES</td>
<td>4.44</td>
<td>YES</td>
</tr>
<tr>
<td>A11.patrs</td>
<td>0.03</td>
<td>YES</td>
<td>0.38</td>
<td>YES</td>
</tr>
<tr>
<td>A12.patrs</td>
<td>0.03</td>
<td>YES</td>
<td>0.36</td>
<td>YES</td>
</tr>
<tr>
<td>A13.patrs</td>
<td>0.07</td>
<td>YES</td>
<td>0.67</td>
<td>YES</td>
</tr>
<tr>
<td>A14.patrs</td>
<td>0.16</td>
<td>YES</td>
<td>22.69</td>
<td>YES</td>
</tr>
<tr>
<td>a.01.patrs</td>
<td>0.11</td>
<td>YES</td>
<td>1.36</td>
<td>YES</td>
</tr>
<tr>
<td>a.03.patrs</td>
<td>0.94</td>
<td>YES</td>
<td>60.02</td>
<td>TIMEOUT</td>
</tr>
<tr>
<td>a.04.patrs</td>
<td>0.04</td>
<td>YES</td>
<td>0.39</td>
<td>YES</td>
</tr>
<tr>
<td>a.05.patrs</td>
<td>0.04</td>
<td>YES</td>
<td>0.32</td>
<td>YES</td>
</tr>
<tr>
<td>a.06.patrs</td>
<td>0.04</td>
<td>YES</td>
<td>0.52</td>
<td>YES</td>
</tr>
<tr>
<td>a.07.patrs</td>
<td>0.03</td>
<td>YES</td>
<td>0.40</td>
<td>YES</td>
</tr>
<tr>
<td>a.08.patrs</td>
<td>0.03</td>
<td>YES</td>
<td>0.32</td>
<td>YES</td>
</tr>
<tr>
<td>a.09.patrs</td>
<td>0.03</td>
<td>YES</td>
<td>0.39</td>
<td>YES</td>
</tr>
<tr>
<td>a.10.patrs</td>
<td>0.10</td>
<td>YES</td>
<td>52.72</td>
<td>YES</td>
</tr>
<tr>
<td>a.11.patrs</td>
<td>0.16</td>
<td>YES</td>
<td>6.75</td>
<td>YES</td>
</tr>
<tr>
<td>c.01.patrs</td>
<td>0.10</td>
<td>YES</td>
<td>1.83</td>
<td>YES</td>
</tr>
<tr>
<td>c.02.patrs</td>
<td>0.11</td>
<td>YES</td>
<td>1.46</td>
<td>YES</td>
</tr>
<tr>
<td>c.03.patrs</td>
<td>0.10</td>
<td>YES</td>
<td>2.60</td>
<td>YES</td>
</tr>
<tr>
<td>c.04.patrs</td>
<td>0.07</td>
<td>YES</td>
<td>2.51</td>
<td>YES</td>
</tr>
<tr>
<td>c.05.patrs</td>
<td>0.09</td>
<td>YES</td>
<td>7.38</td>
<td>YES</td>
</tr>
<tr>
<td>choice.patrs</td>
<td>60.00</td>
<td>TIMEOUT</td>
<td>60.04</td>
<td>TIMEOUT</td>
</tr>
<tr>
<td>complete2.patrs</td>
<td>60.00</td>
<td>TIMEOUT</td>
<td>10.22</td>
<td>YES</td>
</tr>
<tr>
<td>complete3.patrs</td>
<td>0.47</td>
<td>YES</td>
<td>1.99</td>
<td>YES</td>
</tr>
<tr>
<td>countdown.patrs</td>
<td>0.16</td>
<td>YES</td>
<td>0.26</td>
<td>YES</td>
</tr>
<tr>
<td>cscharp1.patrs</td>
<td>0.09</td>
<td>YES</td>
<td>0.46</td>
<td>YES</td>
</tr>
<tr>
<td>cscharp2.patrs</td>
<td>0.07</td>
<td>YES</td>
<td>0.49</td>
<td>YES</td>
</tr>
<tr>
<td>cscharp3.patrs</td>
<td>0.06</td>
<td>YES</td>
<td>0.39</td>
<td>YES</td>
</tr>
</tbody>
</table>
Appendix B. Evaluation

<table>
<thead>
<tr>
<th>File</th>
<th>AProVE-CERS</th>
<th>AProVE-Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total time (sec)</td>
<td>Result</td>
</tr>
<tr>
<td>divMinus.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
<tr>
<td>div.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
<tr>
<td>eratosthenes.patrs</td>
<td>0.44</td>
<td>YES</td>
</tr>
<tr>
<td>eratosthenes_small.patrs</td>
<td>0.2</td>
<td>YES</td>
</tr>
<tr>
<td>gcd_minmax.patrs</td>
<td>0.05</td>
<td>YES</td>
</tr>
<tr>
<td>gcd.patrs</td>
<td>0.07</td>
<td>YES</td>
</tr>
<tr>
<td>horner.patrs</td>
<td>0.07</td>
<td>YES</td>
</tr>
<tr>
<td>increase1.patrs</td>
<td>0.02</td>
<td>YES</td>
</tr>
<tr>
<td>increase2.patrs</td>
<td>0.05</td>
<td>YES</td>
</tr>
<tr>
<td>increase3.patrs</td>
<td>0.08</td>
<td>YES</td>
</tr>
<tr>
<td>increase4.patrs</td>
<td>0.03</td>
<td>YES</td>
</tr>
<tr>
<td>indirect.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
<tr>
<td>mergesort_multiset.patrs</td>
<td>0.14</td>
<td>YES</td>
</tr>
<tr>
<td>mergesort_set.patrs</td>
<td>0.14</td>
<td>YES</td>
</tr>
<tr>
<td>minsert multiset.patrs</td>
<td>0.08</td>
<td>YES</td>
</tr>
<tr>
<td>minsert_set.patrs</td>
<td>0.08</td>
<td>YES</td>
</tr>
<tr>
<td>multiset_set.patrs</td>
<td>0.17</td>
<td>YES</td>
</tr>
<tr>
<td>mult.patrs</td>
<td>0.06</td>
<td>YES</td>
</tr>
<tr>
<td>nat-list-max.patrs</td>
<td>0.11</td>
<td>YES</td>
</tr>
<tr>
<td>nat-mset-min.patrs</td>
<td>0.09</td>
<td>YES</td>
</tr>
<tr>
<td>operations_multiset.patrs</td>
<td>0.48</td>
<td>YES</td>
</tr>
<tr>
<td>operations_set.patrs</td>
<td>0.41</td>
<td>YES</td>
</tr>
<tr>
<td>pathological.patrs</td>
<td>0.1</td>
<td>YES</td>
</tr>
<tr>
<td>poly2.patrs</td>
<td>60.00</td>
<td>TIMEOUT</td>
</tr>
<tr>
<td>poly4.patrs</td>
<td>0.32</td>
<td>YES</td>
</tr>
<tr>
<td>practical1.patrs</td>
<td>0.13</td>
<td>YES</td>
</tr>
<tr>
<td>practical2.patrs</td>
<td>60.00</td>
<td>TIMEOUT</td>
</tr>
<tr>
<td>practical3.patrs</td>
<td>60.11</td>
<td>TIMEOUT</td>
</tr>
<tr>
<td>quicksort_ins_multiset.patrs</td>
<td>0.20</td>
<td>YES</td>
</tr>
<tr>
<td>quicksort_ins_set.patrs</td>
<td>0.20</td>
<td>YES</td>
</tr>
<tr>
<td>quicksort_ugly_multiset.patrs</td>
<td>0.25</td>
<td>YES</td>
</tr>
<tr>
<td>quicksort_ugly_set.patrs</td>
<td>0.24</td>
<td>YES</td>
</tr>
<tr>
<td>quicksort_union_multiset.patrs</td>
<td>0.25</td>
<td>YES</td>
</tr>
<tr>
<td>quicksort_union_set.patrs</td>
<td>0.25</td>
<td>YES</td>
</tr>
<tr>
<td>random_full_no_wrap.patrs</td>
<td>0.23</td>
<td>YES</td>
</tr>
<tr>
<td>random_full.patrs</td>
<td>0.09</td>
<td>YES</td>
</tr>
<tr>
<td>randomFull1UpDown.patrs</td>
<td>0.37</td>
<td>YES</td>
</tr>
<tr>
<td>random_no_wrap.patrs</td>
<td>0.11</td>
<td>YES</td>
</tr>
<tr>
<td>random.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
</tbody>
</table>
Appendix B. Evaluation

<table>
<thead>
<tr>
<th>File</th>
<th>AProVE-CERS</th>
<th>AProVE-Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total time (sec)</td>
<td>Result</td>
</tr>
<tr>
<td>removal.patrs</td>
<td>0.05</td>
<td>YES</td>
</tr>
<tr>
<td>round.patrs</td>
<td>0.18</td>
<td>MAYBE</td>
</tr>
<tr>
<td>sequents.patrs</td>
<td>0.73</td>
<td>MAYBE</td>
</tr>
<tr>
<td>size_multiset.patrs</td>
<td>0.07</td>
<td>YES</td>
</tr>
<tr>
<td>size_set.patrs</td>
<td>0.06</td>
<td>YES</td>
</tr>
<tr>
<td>sqrt.patrs</td>
<td>0.05</td>
<td>YES</td>
</tr>
<tr>
<td>sumLog.patrs</td>
<td>0.30</td>
<td>MAYBE</td>
</tr>
<tr>
<td>sum_multiset.patrs</td>
<td>0.10</td>
<td>YES</td>
</tr>
<tr>
<td>sumto_no_if.patrs</td>
<td>0.03</td>
<td>YES</td>
</tr>
<tr>
<td>sumto.patrs</td>
<td>0.04</td>
<td>YES</td>
</tr>
<tr>
<td>sumUp.patrs</td>
<td>0.03</td>
<td>YES</td>
</tr>
<tr>
<td>terminate.patrs</td>
<td>0.22</td>
<td>YES</td>
</tr>
<tr>
<td>test1.patrs</td>
<td>0.08</td>
<td>YES</td>
</tr>
<tr>
<td>test2.patrs</td>
<td>0.09</td>
<td>YES</td>
</tr>
<tr>
<td>test3.patrs</td>
<td>0.01</td>
<td>YES</td>
</tr>
<tr>
<td>test4.patrs</td>
<td>0.39</td>
<td>YES</td>
</tr>
<tr>
<td>test5.patrs</td>
<td>0.00</td>
<td>YES</td>
</tr>
<tr>
<td>test6.patrs</td>
<td>0.00</td>
<td>YES</td>
</tr>
<tr>
<td>unsatCond1.patrs</td>
<td>0.00</td>
<td>YES</td>
</tr>
</tbody>
</table>

B.2 Context-Sensitive Termination

The following table contains the results of AProVE-CERS. Notice that [75, 143] does not consider context-sensitive rewriting, i.e., AProVE-Integer is not applicable to these examples. The examples themselves and all proofs generated by AProVE-CERS are available at http://www.cs.unm.edu/~spf/tdps/.
Appendix B. Evaluation

<table>
<thead>
<tr>
<th>File</th>
<th>Total time (sec)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>from.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>head.patrs</td>
<td>0.29</td>
<td>YES</td>
</tr>
<tr>
<td>index.patrs</td>
<td>0.48</td>
<td>YES</td>
</tr>
<tr>
<td>length.patrs</td>
<td>0.23</td>
<td>YES</td>
</tr>
<tr>
<td>misc.patrs</td>
<td>0.15</td>
<td>YES</td>
</tr>
<tr>
<td>pi.patrs</td>
<td>0.18</td>
<td>YES</td>
</tr>
<tr>
<td>prefix.patrs</td>
<td>0.44</td>
<td>YES</td>
</tr>
<tr>
<td>primes.patrs</td>
<td>0.19</td>
<td>YES</td>
</tr>
<tr>
<td>quot.patrs</td>
<td>0.41</td>
<td>YES</td>
</tr>
<tr>
<td>second.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>sel.patrs</td>
<td>0.25</td>
<td>YES</td>
</tr>
<tr>
<td>silly01.patrs</td>
<td>0.47</td>
<td>MAYBE</td>
</tr>
<tr>
<td>silly02.patrs</td>
<td>0.13</td>
<td>YES</td>
</tr>
<tr>
<td>silly03.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>silly04.patrs</td>
<td>0.13</td>
<td>YES</td>
</tr>
<tr>
<td>silly05.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>silly06.patrs</td>
<td>0.15</td>
<td>YES</td>
</tr>
<tr>
<td>silly07.patrs</td>
<td>0.16</td>
<td>YES</td>
</tr>
<tr>
<td>silly08.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>silly09.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>silly10.patrs</td>
<td>0.13</td>
<td>YES</td>
</tr>
<tr>
<td>silly11.patrs</td>
<td>0.18</td>
<td>YES</td>
</tr>
<tr>
<td>silly12.patrs</td>
<td>0.14</td>
<td>YES</td>
</tr>
<tr>
<td>silly13.patrs</td>
<td>0.35</td>
<td>YES</td>
</tr>
<tr>
<td>silly14.patrs</td>
<td>0.22</td>
<td>YES</td>
</tr>
<tr>
<td>silly15.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>silly16.patrs</td>
<td>0.40</td>
<td>MAYBE</td>
</tr>
<tr>
<td>silly17.patrs</td>
<td>0.16</td>
<td>YES</td>
</tr>
<tr>
<td>tail.patrs</td>
<td>0.12</td>
<td>YES</td>
</tr>
<tr>
<td>take.patrs</td>
<td>0.18</td>
<td>YES</td>
</tr>
<tr>
<td>terms.patrs</td>
<td>0.19</td>
<td>YES</td>
</tr>
</tbody>
</table>

B.3 Induction

The following table contains the results of Sail2. The examples themselves and all (dis-)proofs generated by Sail2 are available at http://www.cs.unm.edu/~spf/sail2/.
Appendix B. Evaluation

<table>
<thead>
<tr>
<th>Conjecture</th>
<th>Checking (msec)</th>
<th>(Dis-)Proving (msec)</th>
<th>(Dis-)Proving w/o Time in CVC3 (msec)</th>
<th>Termination (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oddlist(alternate(xs,xs)) ≡ xs</code></td>
<td>0.087</td>
<td>12.508</td>
<td>0.164</td>
<td>226.461</td>
</tr>
<tr>
<td><code>evenlist(alternate(xs,xs)) ≡ xs</code></td>
<td>0.080</td>
<td>12.779</td>
<td>0.163</td>
<td>254.837</td>
</tr>
<tr>
<td><code>oddlist(alternate(xs,ys)) ≡ xs</code></td>
<td>0.080</td>
<td>12.537</td>
<td>0.172</td>
<td>226.667</td>
</tr>
<tr>
<td><code>evenlist(alternate(xs,ys)) ≡ ys</code></td>
<td>0.078</td>
<td>12.552</td>
<td>0.182</td>
<td>140.106</td>
</tr>
<tr>
<td><code>app(xs, ys) ≡ ys</code></td>
<td>0.032</td>
<td>12.341</td>
<td>0.126</td>
<td>36.791</td>
</tr>
<tr>
<td><code>half(double(x)) ≡ x</code></td>
<td>0.080</td>
<td>11.760</td>
<td>0.139</td>
<td>136.888</td>
</tr>
<tr>
<td><code>even(double(x)) ≡ true</code></td>
<td>0.064</td>
<td>11.510</td>
<td>0.127</td>
<td>87.391</td>
</tr>
<tr>
<td><code>not(even(x)) ≡ odd(x)</code></td>
<td>0.186</td>
<td>13.168</td>
<td>0.211</td>
<td>188.983</td>
</tr>
<tr>
<td><code>geq(x, x) ≡ false</code></td>
<td>0.059</td>
<td>11.554</td>
<td>0.133</td>
<td>96.108</td>
</tr>
<tr>
<td><code>not(geq(x, x)) ≡ true</code></td>
<td>0.055</td>
<td>11.611</td>
<td>0.134</td>
<td>95.516</td>
</tr>
<tr>
<td><code>not(even(x)) ≡ true</code></td>
<td>0.087</td>
<td>11.561</td>
<td>0.185</td>
<td>93.591</td>
</tr>
<tr>
<td><code>not(odd(x)) ≡ false</code></td>
<td>0.088</td>
<td>11.574</td>
<td>0.144</td>
<td>94.273</td>
</tr>
<tr>
<td><code>maxlist(xs, xs) ≡ xs</code></td>
<td>0.055</td>
<td>32.083</td>
<td>0.209</td>
<td>106.579</td>
</tr>
<tr>
<td><code>maxlist(xs, xs) ≡ xs</code></td>
<td>0.074</td>
<td>12.029</td>
<td>0.186</td>
<td>94.276</td>
</tr>
<tr>
<td><code>max(x, x) ≡ x</code></td>
<td>0.054</td>
<td>11.538</td>
<td>0.118</td>
<td>95.318</td>
</tr>
<tr>
<td><code>min(x, x) ≡ x</code></td>
<td>0.052</td>
<td>11.574</td>
<td>0.127</td>
<td>85.469</td>
</tr>
<tr>
<td><code>min(x, y) ≡ max(x, y)</code></td>
<td>0.199</td>
<td>14.365</td>
<td>0.219</td>
<td>165.281</td>
</tr>
<tr>
<td><code>minus(x, x) ≡ O</code></td>
<td>0.044</td>
<td>11.488</td>
<td>0.116</td>
<td>34.796</td>
</tr>
<tr>
<td><code>mix(xs, xs) ≡ xs</code></td>
<td>0.063</td>
<td>11.907</td>
<td>0.168</td>
<td>55.986</td>
</tr>
<tr>
<td><code>mix′(xs, xs) ≡ xs</code></td>
<td>0.033</td>
<td>13.075</td>
<td>0.125</td>
<td>32.788</td>
</tr>
<tr>
<td><code>plus(x, y) ≡ x</code></td>
<td>0.058</td>
<td>40.278</td>
<td>0.259</td>
<td>274.004</td>
</tr>
<tr>
<td><code>prefix(xs, xs) ≡ xs</code></td>
<td>0.058</td>
<td>32.077</td>
<td>0.213</td>
<td>67.236</td>
</tr>
<tr>
<td><code>fst(stitch(xs, xs)) ≡ xs</code></td>
<td>0.122</td>
<td>12.414</td>
<td>0.238</td>
<td>124.539</td>
</tr>
<tr>
<td><code>fst(stitch′(xs, xs)) ≡ xs</code></td>
<td>0.122</td>
<td>16.685</td>
<td>0.251</td>
<td>115.536</td>
</tr>
<tr>
<td><code>fst(stitch(xs, ys)) ≡ xs</code></td>
<td>0.295</td>
<td>15.916</td>
<td>0.322</td>
<td>271.960</td>
</tr>
<tr>
<td><code>fst(stitch′(xs, ys)) ≡ xs</code></td>
<td>0.083</td>
<td>12.081</td>
<td>0.176</td>
<td>84.801</td>
</tr>
<tr>
<td><code>fst(zip(xs, ys)) ≡ xs</code></td>
<td>0.079</td>
<td>12.782</td>
<td>0.182</td>
<td>157.786</td>
</tr>
<tr>
<td><code>plen(zip(xs, ys)) ≡ len(xs)</code></td>
<td>0.197</td>
<td>13.712</td>
<td>0.244</td>
<td>123.819</td>
</tr>
<tr>
<td><code>ptwise(xs, xs) ≡ true</code></td>
<td>0.058</td>
<td>32.077</td>
<td>0.213</td>
<td>67.236</td>
</tr>
<tr>
<td><code>fst(stitch(xs, xs)) ≡ xs</code></td>
<td>0.122</td>
<td>12.414</td>
<td>0.238</td>
<td>124.539</td>
</tr>
<tr>
<td><code>fst(stitch′(xs, xs)) ≡ xs</code></td>
<td>0.122</td>
<td>16.685</td>
<td>0.251</td>
<td>115.536</td>
</tr>
<tr>
<td><code>fst(stitch(xs, ys)) ≡ xs</code></td>
<td>0.295</td>
<td>15.916</td>
<td>0.322</td>
<td>271.960</td>
</tr>
<tr>
<td><code>fst(stitch′(xs, ys)) ≡ xs</code></td>
<td>0.083</td>
<td>12.081</td>
<td>0.176</td>
<td>84.801</td>
</tr>
<tr>
<td><code>fst(zip(xs, ys)) ≡ xs</code></td>
<td>0.079</td>
<td>12.782</td>
<td>0.182</td>
<td>157.786</td>
</tr>
<tr>
<td><code>plen(zip(xs, ys)) ≡ len(xs)</code></td>
<td>0.197</td>
<td>13.712</td>
<td>0.244</td>
<td>123.819</td>
</tr>
</tbody>
</table>
Bibliography

Bibliography

333
Bibliography

Bibliography

[38] Mark Braverman. Termination of integer linear programs. In Ball and Jones [22], pages 372–385.

Bibliography

