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Abstract

This dissertation presents a prototype model and methodology for validating a simple

agent-based model against the basic Hotelling monopoly model and a few basic extensions.

Hotelling's Rule identi�es the expected behavior of a market for a nonrenewable resource.

The statement is simple - marginal pro�t will increase at the prevailing rate of interest - but

the implications are far-reaching and not broadly understood. Agent-based modeling is a

computer modeling and simulation methodology. It has its origins in biology and physics,

but has become a powerful tool in the social sciences for examining systems in which the

well-understood behaviors of individuals result in unanticipated outcomes.

Validation of the basic Hotelling monopoly model is a necessary step in wider acceptance

of agent-based modeling as a predictive and analytical tool in natural resource economics.

An agent-based model is a valid predictive tool if, given rules to express preferences, it is

possible to predict the large-scale outcomes of the choices made by individuals over time. An



vii

agent-based model is a valid analytical tool if it provides a means to explore the behaviors

that lead to known results, much like nonlinear regression.

This simple agent-based model is found to be valid for the basic Hotelling monopoly

model. The agent-based model is validated with caveats for the Hotelling monopoly model

with extensions to include basic production technologies. The caveats are based on small

deviations, the magnitudes of which depend on the speci�c form of costs associated with a

production technology. It is argued that those deviations are not unlike the deviations that

a human would make.

An extension of the Hotelling monopoly model to a small oligopoly exhibits emergent

cooperation-like properties, despite the absence of explicit interagent communication. De-

pending on the number of producers and the initial distribution of resource stocks, the

behavior is either collusion-like or Cournot-like. The Cournot-like outcome occurs when

only some of the producers lower production, resulting in a rise in the market price, which

causes the other producers to experience a Hotelling's Rule increase in marginal pro�t with-

out reducing their own production. This continues at each time step, so that the latter

producers maintain a constant, higher production level while the others continue to decrease

production.

The outcomes of the agent-based models are reassessed with the costs previously arising

from production technologies replaced by taxes associated with �scal policies. Each �scal

regime is evaluated in terms of its e�cacy and the unintended consequences of the policy. The

policy goals examined are preservation for future generations, internalization of externalities

(Pigouvian taxation), and revenue generation. This comparison uses data from the agent-

based models, examining agent error as one of the unintended consequences of �scal policy.

The basics of agent-based modeling are presented. This methodology is suited to prob-

lems in which the immediate preferences of the agents can be stated as equations or rules

but complexity in their interactions with the environment or each other make predicting the

outcomes di�cult.
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Glossary

Abbreviations and specialized terms

ABM Agent-based model or agent-based modeling. Agent-based modeling is a tech-

nique for making models - primarily computer models - in which the indi-

vidual agent (e.g. people, �rms, countries) are represented in terms of their

state (wealth, for example) and behaviors (buy more stu�, for example).

The initials ABM are also used in reference to an agent-based model. The

ambiguity in usage is usually resolved by context, but in this dissertation,

the initials ABM are used only to refer to a model.

Agent An agent is an actor in an ABM. It could be an individual, a �rm, a country,

or an aggregation of other agents (Epstein and Axtell (1996, p. 4)).

Artifact The Random House Dictionary de�nes artifact as �a spurious observation or

result arising from preparatory or investigative procedures.�1 In the context

of modeling and simulation, an artifact is typically an outcome that is the

result of the way the simulation was done rather than a characteristic of the

underlying model.

Emergent An emergent behavior is one that arises from the the interactions or aggre-

gate behavior of agents. It is not programmed into the model and often

1http://dictionary.reference.com/browse/artifact (accessed 20 April 20100).
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comes as a surprise to the modeler. Emergence refers to the presence of

one or more emergent properties, or to the capability to produce emergent

properties. The term appears throughout the literature on complexity, see

Epstein and Axtell (1996, p. 33) for example.

Monte Carlo This is the city in Monaco famous for its casino. The term is used to refer to

a technique for solving numerical problems for which an exact computation

either does not exist or is computationally expensive (Meteopolis and Ulam,

1949). The problematic calculation is replaced with a stochastic represen-

tation of its solution space. This latter step typically involves distribution

sampling, a term with which Monte Carlo sampling is sometimes confused

(Hendry, 1984). A simulation of an agent-based model in which certain

variables are sampled from distributions is a Monte Carlo sample.
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Chapter 1

Introduction

�They're more what you'd call guidelines than actual rules.�

-Hector Barbosa in Pirates of the Caribbean:

The Curse of the Black Pearl

With regard to Hotelling's Rule, Captain Barbosa might well have said �it's more what you'd

call an outcome than an actual rule.� Hotelling (1931) observes that the owner of a �nite

natural resource is indi�erent to either exploiting it or leaving it in situ unless the marginal

pro�t increases at the prevailing interest rate. The rationale is that, if the return is lower

than this, the resource owner will shift assets to a better performing investment. If the

return is greater, the owner will leave the resource where it is as it appreciates faster than

the prevailing interest rate. In other words, the resource will not be produced at all unless

it can be produced at a rate that returns the prevailing interest rate.

Hotelling noted that this sets the upper limit on a monopoly producer's pro�t from

production. To explain this, it is necessary to appeal to the law of demand. For a downward-

sloping demand curve, the monopoly producer can only increase the price by decreasing the

production level. Hotelling's Rule says that if the producer decreases production at a rate

that makes the marginal pro�t change by the interest rate, total pro�t from the resource will
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be maximized. If the production level is changed in any other way, total pro�t will be less

than the maximum.

Hotelling's Rule is often called the r-percent rule and paraphrased as �the price must

increase by r percent,� r referring to the interest rate.1 The producer pro�t, or scarcity rent,

is paid by the consumer, and is also called user cost. If pro�t is increasing by r-percent, then

user cost is also increasing by r-percent. Using dynamic optimization, Hotelling shows that

the r-percent rule is the outcome of the producer maximizing pro�t, rather than a rule for

the producer to follow.

The responsibility for naming it a rule may fall on Robert Solow, who �rst used the term

�Hotelling's rule� in his Ely Lecture presented to the 1973 conference of the American Eco-

nomic Association (Solow, 1974, p 12). In reference to this, Solow re�ects that �Hotelling's

concept is not a 'rule' at all in the appropriate sense. It doesn't enjoin anything. Phelps's

Golden Rule is and does. Hotelling's principle is a description of what a foresighted com-

petitive market would do, under simple conditions. Neither Phelps's nor Hartwick's rule has

that property. They have to be imposed.�2 Nonetheless, the term �Hotelling's Rule� appears

in countless texts and papers and is well-known - even beloved - to generations of natural

resource economists.

Hotelling's observation applies to the conditions imposed on the original model: a pro-

ducer of an exhaustible resource with perfect information and a costless technology. Hotelling's

primary goal was to illustrate how dynamic equilibrium produces a result that is not evident

using the conventional (at that time) methods of static equilibrium. Hotelling's methodology

has stood the test of time, although calculus of variations, to which Hotelling appeals for

dynamic optimization, has since been supplanted by optimal control theory.

This dissertation has three objectives: to establish a framework for validation of an agent-

based modeling approach to nonrenewable resource production planning and analysis; to use

1Strictly speaking, price is not identical to marginal pro�t, particularly in a monopoly market.
2From a personal communication dated 25 May 2010.
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this framework to validate a simple optimizing agent-based model (ABM); and to explore

any new aspects of the problem that are brought to light by agent-based modeling.

The ABM developed speci�cally for the Hotelling monopoly model is extremely simple.

It will be shown that, when incorporating highly stylized production technologies, the same

ABM makes slight deviates from the optimal production. These deviations result in total

pro�ts that are less than optimal by from less than one percent to up to ten percent, de-

pending on how the technology comes into the cost equation. I argue that the errors3 made

by the agent in the model are similar to the errors that a human would make in the face of

uncertainties in demand or resource extent. That argument, however, is based on elementary

principles of agent-based modeling, which will be introduced and discussed in Chapter 3.

The ABM will also be extended to an oligopoly market where it will be shown that,

despite the absence of communication between the agents, the production paths mimic either

collusive or Cournot equilibrium depending on initial conditions. Finally, the results from the

ABM simulations are re-examined as stylized �scal policies. The e�ciencies and unintended

consequences of the policies are discussed in conjunction with the kinds of errors made by

the ABM.

The preceding points are presented in greater detail in the following sections. The over-

arching idea is that, much as Hotelling's Rule sets the upper limit on a producer's pro�t, this

simple ABM presents the worst that an optimizing producer might do. Certainly a more so-

phisticated ABM - or a human - could make better production path decisions. The intent of

3The term error is used throughout the following discussion of the ABM results. This is not

error in the econometric sense, but an ABM production decision that deviates from the Hotelling's

Rule optimum production path. Since the Hotelling's Rule production path results in the maximum

possible total pro�t, the e�ect of that deviation can be measured in terms of the resulting shortfall

in total pro�t. Quantitative error, then, is that shortfall as a percentage of the Hotelling's Rule

optimal total pro�t. Because the decision rules applied by the ABM are intended to mimic a human

decision process (however naive), the term error also reinforces that parallel without being overly

anthropomorphic.



Chapter 1. Introduction 4

agent-based modeling is to have the software agents make decisions using the same informa-

tion and rules that are available to a human. Agent-based modeling, however, requires much

less time and expense than experiments with humans and allows sampling of a much larger

parameter space than is available through data collection. Agent-based modeling presents

the possibility of exploring dozens of production technologies, to consider uncertain and pos-

sibly changing resource extents, and to incorporate stochastic uncertainties in demand and

interest rates. In addition to what-if analysis for production planning, agent-based modeling

provides a laboratory for testing theories for why resource producers follow production paths

that appear to deviate from Hotelling's Rule. It is hoped that, by validating the approach,

this dissertation sets the stage for these and other uses of agent-based modeling in resource

economics.

1.1 The inverse demand function and its parameters

All of the ABMs in this dissertation use the inverse demand function introduced by

Hotelling (1931, sec. 4) for a monopoly producer. The details are presented in Section 3.2.

Similarly, the parameter values for all simulations in this dissertation are from Section 3.2.

1.2 A simple ABM and Hotelling's outcome

The background and theory of Hotelling's Rule are presented in Chapters 2 and 3, respec-

tively. The basic model is of a monopoly producer of a nonrenewable resource. The producer

employs a technology that is costless, or for which the cost is absorbed in the price. That

is, the technology imposes no costs that are dependent on time, the production level, or the

amount of remaining stock. Hotelling's Rule states that if the producer is maximizing total

pro�t, the marginal pro�t will increase at the interest rate. For a normal demand function,

that means decreasing production each period at a rate that causes the percent change in
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marginal pro�t to equal the interest rate. Given a speci�c demand function and a �nal state

of stock depletion, this determines the production path. The initial stock level is the only

additional information needed to determine the initial production level.

The process described above is straightforward, given knowledge of the demand func-

tion. If the demand function is di�erentiable and the constraint equation is integrable, the

production path can be expressed in closed form. Otherwise, the production path will be

expressed as a summation or, in the case that the demand function is not di�erentiable, as

a complicated numerical expression. In any case, the optimal production path is explicit.

For the ABM, the production path is determined heuristically. An overview of agent-

based modeling is given in Section 2.3, but for the moment, think of an agent as a robot or

android. That is, an actor that can only do what it is told. In the monopoly ABM, there is

a single producer agent, and this agent is given one task: extract a nonrenewable resource at

a rate that maximizes total pro�t over the lifetime of the resource. The details of the agent's

behaviors are discussed in Chapter 4 and can be summarized by noting that the agent uses

basic arithmetic to decide whether to increase, decrease or maintain the current production

level based on estimated total pro�t. This decision is made in each production period (days)

and amounts to Bayesian updating.

At the beginning of each simulation, there is a short period during which the producer

agent searches for the optimal starting production level. On average, the search takes approx-

imately ten time-steps. For comparison, the most basic model in this dissertation completes

in 1958 time-steps. Once the producer agent �nds the optimal production level, it begins

adjusting production to maximize total pro�t. Aside from the brief period at the beginning,

the production path is very similar to the optimal (Hotelling's Rule) production path, being

about one percent too high at the initial downturn, and ending a fraction of a percent too

soon. This error is illustrated in Figure 1.1 with the error greatly exaggerated.

Total pro�t for the ABM is a fraction of one percent lower than the optimal production

path. However, the ABM's percent change in marginal pro�t is nearly �fteen percent higher
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Figure 1.1: An example of the initial production level error.
The heavy black line is the Hotelling's Rule optimum production path. The thinner red
line is the production path as determined by the ABM. At the beginning, the agent starts
increasing production by ∆q. In this example, the heavy line is the Hotelling's Rule optimal
production path. The production level after the �rst increment is too low, and after the
second increment it is also too low, but after the third increment, the production level is too
high. At this point, the agent begins a constant downward production path but, because
the initial production level is above the optimum, the stock is depleted more quickly than
optimal, and the stock is depleted sooner than the Hotelling's Rule optimum.

than the r-percent rule. It will be shown that, although this di�ers from Hotelling's Rule,

the consequences are very small.

The preceding results, discussed in detail in Chapter 6, are the �rst step in demonstrating

the utility of agent-based modeling in natural resource economics. In addition, the results

also show that, although the r-percent rule is optimal, production paths can di�er from the

r-percent rule and still produce nearly optimal total pro�t. The low sensitivity to deviations

from the r-percent rule has important implications for studies in actual resource markets.

The ABM in these models is intentionally simplistic. However, real producers may only

have a general idea of the demand function they face, have sparse and out-of-date information
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on competitors or product substitutes, and contend with a multitude of other unknown or

uncertain factors. It is possible that these producers would use crude approximations not

unlike this one.

This dissertation focuses entirely on Hotelling's monopoly model (Hotelling, 1931, sec.

4), in which the rate-of-change of marginal pro�t is endogenous. In the competitive model

(Hotelling, 1931, sec. 2), the corresponding price rate-of-change is imposed exogenously. In

the latter case, Hotelling shows that resource owners would either divest themselves when

price change is less than the interest rate, or forestall production when price change is greater

than the interest rate. By establishing the use of agent-based modeling for the monopoly

Hotelling model, the framework in this dissertation serves as starting point for developing a

model that endogenizes the price mechanism of a competitive market.

1.3 The ABM and production technologies

Production technologies come into dynamic optimization problems in the form of costs.

The production model in Section 1.2 employs a costless production technology. That is, there

are no costs that depend on time, production level, or stock. Real production technologies

may have costs associated with all three, often in combination. For example, there may be

lease costs that a�ect the optimal production path. Most production technologies have costs

that depend on the production level, and these costs may be polynomial or exponential in

the production level. In most resources there are also stock-dependent costs. These are costs

associated with extraction becoming more expensive, such as the deepening of a mine or

decreasing pressure in a well. Another source of stock cost is the tendency to exploit higher

grade ore �rst, causing the yield to decrease as the stock is depleted.

For simplicity, this ABM assumes that costs are separable and examines each one in-

dividually. To the extent that separability holds, the e�ect of a technology which imposes

costs from more than one regime is likely to be a superposition. Nonseparable costs are not
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considered in these models.

The following sections summarize the behavior of this ABM in each cost regime. In

brief, the extent to which the ABM producer deviates from the optimal production path

varies with cost structure. For error measured in terms of deviation from optimal, the ABM

producer is una�ected by a �xed cost. Under a marginal cost, the ABM producer makes

a small error that increases to about eight percent with cost level. With a stock cost the

error is as high as ten percent and depends on whether any stock will be left unproduced.

In the marginal cost and stock cost models, it is argued that part of the error is an artifact

of the simulation, and part represents an issue also faced by a human production planner.

That is, a small error in estimating future price leads to a small production path error early

on, with rami�cations over the lifetime of the resource. The ABM in this case can make

daily adjustments to the production level, making up, partially, for earlier errors. A human

production planner may not have such �exibility.

1.3.1 Lease and capital costs

Extractive industries tend to require large capital investments, and capital can be re-

garded as a quasi-�xed cost (Young, 1992). A lease incurs a �xed cost irrespective of the

amount of resource extracted. Intuitively, a �xed cost provides an incentive to accelerate

depletion of the resource stock in order to reduce total cost, and Section 3.4 shows that this

is what is expected theoretically. In terms of total pro�t, the simulation result from the

monopoly ABM is indistinguishable from the theoretical result. This is not surprising, since,

theoretically, the optimum is a straight line descending production path with the same slope

as the costless model.
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1.3.2 Marginal costs

Extractive technologies, like most production technologies, incur costs that are propor-

tional to the level of production. Scott (1967) uses a quarrying example to illustrate that

economy of scale considerations at low levels of production, and problems of marketing,

delivery and storage at high levels of production, lead to a U-shaped marginal cost curve.

Cobb-Douglas models in which production level appears are found in econometric models

of nickel (Stollery, 1983) and copper (Young, 1992), for example. For simplicity, marginal

cost is linear in production level for the monopoly ABM model with marginal cost. Because

the ABM producer overshoots the optimal initial production level, as explained in Section

1.2, there is also an error in the marginal cost model. In this model, however, the size of

the error increases with increasing cost. The e�ect is linear and proportional to the cost,

amounting to an error in total pro�t from zero, at zero cost, to eight percent at the high end

of the range of costs simulated. In all cases the agent picks in initial production level that is

too high, resulting in the resource being depleted in less time than optimal.

1.3.3 Stock and cumulative production costs

Costs that depend on the stock level are typically costs related to the cumulative pro-

duction. Lecomber (1979, p 54) sites the examples of decreasing pressure over the lifetime

of an oil well, increased transportation costs as a mine becomes deeper, and a reduction

in yield as the quality of ore decreases.4 Like marginal cost models, stock cost models are

often quadratic or in Cobb-Douglas form (Young, 1992). For simplicity, stock cost is linear

in stock level for the monopoly ABM model with stock cost. The e�ect is similar to that in

the marginal cost model: in the cases where the stock is completely depleted, the ABM pro-

ducer selects a production path that is higher than optimum, therefore depleting the stock

sooner than optimal. However, with the increasing stock cost arises the possibility that at

4Slade (1984) also points out that yield in copper mining depends on price: when the price is

high, more expensive processing is used, which increases the yield.
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some time before the stock is depleted, cost exceeds revenue, and marginal pro�t becomes

negative. This is the critical stock cost - the stock cost below which the resource will be

physically depleted, and above which production will cease before the stock is physically

depleted. When marginal pro�t becomes negative, the simulation terminates, leaving up to

sixty percent of the stock unproduced for the highest stock cost simulated. The range of

stock costs simulated is chosen so that the critical stock cost is approximately mid-range.

Like the marginal cost model, deviation from the optimal production path increases as

stock cost increases. Unlike the marginal cost model, however, the deviation is not linear with

cost and actually improves as stock cost approaches the critical stock cost. The total pro�t

for the ABM is approximately equal to the theoretical optimum at the critical stock cost,

and di�ers by about ten percent at about half of the critical stock cost. ABM performance

again begins to fall below the theoretical optimum at costs above the critical stock cost.

The performance of the ABM at costs below the critical stock cost is related the coarseness

of the production change strategy. The straight line decreasing production path optimizes

total pro�t for zero cost, but is too steep for non-zero stock cost, with the error increasing as

stock cost increases. At about one-half of the critical stock cost, the ABM producer begins

switching to a level production path, which is too level at that stock cost, but as the optimal

production path continues to level o�, moving closer to the level ABM production path until

the critical stock cost is reached.

Above the critical stock cost, the range over which the production level yields non-

negative marginal pro�t narrows as the stock cost increases. The narrowing of the range

increases the liklihood that an error in the production level will result in negative marginal

pro�t, triggering termination of the simulation. As a result, production ceases earlier than

optimal, and this error increases with increasing stock cost.

Overall, then, the performance of the ABM worsens as stock cost increases from zero,

then improves as stock cost reaches critical stock cost, then worsens again as stock increases

above critical cost.
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Like the marginal cost model, the errors in the stock cost model are due to the initial

production being too high, for the reasons given in Section 1.2. For the stock cost model,

that error increases with increasing stock cost only to the point when the heuristic begins

choosing the �at production path. Then, as the stock cost increases, the error decreases

until the stock cost reaches the critical stock cost. At the critical stock cost, the optimal

production path would be �at, so there is very little error in the production path chosen by

the heuristic. Above the critical stock cost, the error in the initial production level results

in production levels that reach negative marginal pro�t too soon, with this error increasing

as stock cost increases.

1.4 The ABM in an oligopoly market

The oligopoly ABM is the monopoly ABM with more than one producer. This has

some important implications. The producers don't interact directly, a�ecting each other

only through the market price, which is based on total production. Having no information

about the other producers, each producer estimates the marginal price assuming a monopoly

market. This is intended to a) keep the ABM as simple as possible, and b) illustrate a worst

case outcome. That is, any real-world producer will know if there are competitors, but a

real-world producer is likely to make some erroneous assumptions about market structure.

Mistakenly assuming a monopoly market is likely to be the worst case producer error.

The market in the oligopoly is responding to the total production. Each ABM producer,

assuming itself a monopoly, estimates marginal price based on its own production changes.

For example, if there are �ve identical producers and they all decrease production level in the

same period by the same amount, each will overestimate the marginal price by a factor of �ve.

This is canceled out, however, because each producer underestimates the required production

change based on the overestimated marginal price. The change to total production is the

sum of the changes made by all �ve producers, and the production change made by each

producer has the desired e�ect after all.
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If the producers are not identical, however, they will not be making margin price calcula-

tions at the same time and, therefore, will not be adjusting production levels simultaneously.

In the oligopoly ABM, asymmetry among the producers is introduced by giving each one

an initial resource stock from a tight distribution about a mean. The resource stock level

is used to estimate the straight-line descending production path, so that each producer will

have, in principle, a di�erent initial production path. In practice, however, the step sizes in

the ramp-up to the production path are large compared with the distribution of production

paths, so that multiple producers are likely to �nd the same production path. With �ve

producers, they typically fall into two groups, one at a production path slightly above the

other. What happens next depends on the relative stock levels of the group members.

If there isn't much di�erence in the stock levels of the producers, they will behave much

as they would with uniform stock levels. That is, changing production simultaneously,

overestimating marginal price and underestimating production levels. These producers will

all follow the straight-line descending production path, appearing to collude to divide the

monopoly rent.

If, on the other hand, some of the producers reach their production path a period earlier

than the others, they will begin on the straight-line descending path one period earlier than

the others. The others have seen their marginal pro�t increase without reducing their pro-

duction, so they will maintain production. In the next period, the bigger producers again

decrease production, causing price to increase, leading the smaller producers to mistakenly

conclude that maintaining their production level is increasing their marginal pro�t. This

continues until the smaller producers deplete their stocks, which happens well before the

others since they've been producing at a constant higher level. At this point the remaining

producers see a spike in marginal price, since the total market production has decreased dras-

tically, but it doesn't a�ect their behavior: they continue along the straight-line descending

production path until their stocks are also depleted.

The latter outcome is a Cournot equilibrium, since each producer is making production

decisions based on the production decisions of the others (as seen through the marginal
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price), and total production is greater than the collusive level, but considerably less than

the perfectly competitive level.

In either case, the outcome has the appearance of cooperative behavior, yet the producers

have no means to cooperate. This has limited implications for real-world producers, since the

likelihood is small that many producers will have the same technology at the same production

levels and with nearly identical stock levels. The collusion-like outcome is validated by

converging to the costless monopoly results. The Cournot-like behavior, though unexpected,

illustrates the possibility for discovering new behaviors with agent-based models.

1.5 The ABM and the consequences of taxation

The models summarized in Section 1.3 examine costs as a consequence of production. If,

on the other hand, the costs are treated as taxes on an otherwise costless technology, total

welfare now encompasses the e�ectiveness of the taxes in achieving their �scal goals. In all

cases, taxes result in a transfer of producer surplus to public welfare. When equilibrium price

or quantity is a�ected by taxation, total welfare must take deadweight loss into account.

The e�ects of the di�erent cost models as taxes are based on the results discussed in

Section 1.3. In addition to the �xed cost, marginal cost and stock cost models, an additional

cost model is introduced in this discussion: royalties, which are levied as a percentage of

pro�t. Suppose the goal of a tax policy is to extend the viable lifetime of a nonrenewable

resource, or to mitigate a pollution externality, or to create revenue to fund public education.

These ABMs show which policies slow production and which accelerate it, which reduce

pollution externalities and which worsen them, and how much deadweight loss each policy

incurs. These results are consistent with the literature and extend the theoretical models by

illlustrating the additional impact of the planning errors discussed in Section ??.
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1.6 Chapter organization

The preceding is a high-level overview, the details of which are explored in the following

chapters. Chapter 2 presents the related research and places this work in the context of the

literature. Section 2.3 introduces the basics of agent-based modeling. Agent-based modeling

is not new to the �eld of Economics but neither is its use widespread. Section 2.4 also

includes a high-level overview of MASON, the ABM framework used for these models, which

provides the basic tools for simulation and data visualization.

Chapter 3 reviews the theory behind Hotelling's Rule and presents the theoretically

expected outcomes when introducing di�erent production technologies. The basic approach

is through optimal control theory, carrying the general solutions as far as they can be taken,

then proceeding with a speci�c demand function from Hotelling. This chapter focuses entirely

on the mathematical results: their interpretation will come into play in the discussions of

Chapter 6.

Chapter 4 de�nes and describes the speci�c ABM used in this study. The behavior

of interest initially is pro�t maximization given a �nite resource, and in this model the

producer agent is endowed with the heuristic decision process described in Section 4.3. The

optimization heuristic is a simple set of rules and some basic mathematics with which a

producer can make a crude estimate of total pro�t given a small set of production paths.

The details of the actual simulation process are also presented in Chapter 4.

The simulation results are shown in Chapter 5, primarily in the form of graphs. Some

of the results are presented as time-series plots, which is natural given dynamic simulation,

but much of the results of interest occur in phase space: a space de�ned by the objective

(pro�t maximization), the theoretical constraint (interest rate) and the behavioral outcome

variable (percent change in marginal pro�t).

Chapter 6 discusses the results presented in Chapter 5 and compares them with the

theoretical expectations developed in Chapter 3. The behavioral interpretation of the math-
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ematics is combined with the economics interpretation of the simulations.

Chapter 7 examines the e�ect of taxes in the context of the ABM. In general, taxes take

the form of the various cost structures presented in the preceding chapters, where a cost for

the producer is income for the policy-maker.

Chapter 8 summarizes the relationship between theoretical and practical (meaning com-

puter simulated) outcomes. This chapter will also discuss some of the ways in which the

ABM models can be extended to explore additional aspects of natural resource production.
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Chapter 2

Background

Gaudet (2007) presents an excellent historical and contextual background for Hotelling's

1931 paper, from which the points in this paragraph are excerpted. The potential exhaus-

tion of natural resources was a politically charged topic in the early twentieth century. Early

economic models of exhaustible natural resources were based on static equilibrium, moti-

vating Hotelling to develop a dynamical model. The result was a �rst-order optimization,

with reference to speci�c cases requiring calculus of variations. Though straightforward by

modern standards, the approach was mathematically sophisticated for the time, so the key

�nding languished until interest in exhaustible resources reemerged in the 1970s. Modern

natural resource economics arose in response to the Club of Rome report �Limits to Growth�

(Meadows et al., 1972), which was interpreted as predicting depletion of petroleum by 1992

and other key resources within 100 years.1

Literature relating population growth to limited resources dates back, at least, to Jonathan

Swift's satire �A Modest Proposal for Preventing the Children of Poor People in Ireland From

Being a Burden on Their Parents or Country, and for Making Them Bene�cial to the Pub-

lick,� published anonymously in 1729. Nearly 70 years later, also publishing anonymously,

1The report estimates the lifetime of known reserves at the time of writing, noting that new

reserves will be found, but that these resources are, utlimately, �nite.
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Thomas Malthus introduced exponential growth models in �An Essay on the Principle of

Population, as it a�ects the future improvement of society with remarks on the speculations

of Mr. Godwin, M. Condorcet, and other writers.� Malthus's developed his now famous

economic models to refute the writings of William Godwin and the Marquis de Condorcet

that implied there were no limits to growth in Europe.

Between Swift and Malthus, Adam Smith, in 1776, published �The Wealth of Nations,�

setting the stage for market-based analysis of exhaustible resources. Then, 19 years after

Malthus, David Ricardo published his �Principles of Political Economy and Taxation,� intro-

ducing the notion of economic pro�ts in the form of rent. Ricardian rent re�ects that, for two

pieces of land that are indentical in every other way (including marginal cost), a landowner

receives additional rent for the more productive land. In �Principals of Political Economy,�

John Stuart Mill, in 1848, integrated Adam Smith's free markets, malthusian limits on re-

sources, and ricardian rents with a model of the role of technological advancement.

By the time of the Club of Rome report, economists were prepared to respond to it,

and at the core of that response was Hotelling's 1931 paper, the central point of Robert

Solow's 1973 Ely Lecture to the American Economics Association (Solow, 1974). Solow's

paper, along with a number of other papers from 1974, are introduced in the following

sections. Thera are a number of historical reviews of the literature descending from Hotelling.

Devarajan and Fisher (1981) review the �rst �fty years of theoretical developments based on

the Hotelling model. Much of that work is shown to pertain to issues that Hotelling raised

but did not pursue, such as the e�ects of cumulative production and uncertainty in stock

size. Krautkraemer (1998) adds another decade and a half and includes developments in

the econometric search for evidence of Hotelling's Rule. Another ten years are added to the

Hotelling time line by Livernois (2009).

There are two broad areas of interest in the Hotelling's Rule literature: theoretical ef-

forts to widen the scope of Hotelling's Rule, and econometric e�orts to �nd evidence of the

Hotelling's Rule outcome. Section 2.1 reviews developments in the theory, while Section 2.2

examines the evidence for scarcity rents in nonrenewable resource markets.
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2.1 The evolving theory of nonrenewable resources

The essence of Hotelling's �nding is that in any market for a nonrenewable resource,

monopoly to competitive, market prices will exceed marginal costs by the scarcity rent.

Furthermore, economically e�cient production of the resource will require that the rent, and

therefore, net price, will increase at the discount rate. Were the latter not the case, resource

owners would either divest if prices rise slower than this, or let the resource stock appreciate

in situ if prices rise more quickly.

Resource rents are made up of ricardian rent plus scarcity rent. Suppose that there are

two pieces of land that are identical in every way (including marginal cost), di�ering only

in the quality of a resource they hold. The land owner may receive rents (payments above

marginal cost) for both pieces of land due to the presence of the resource. The owner will

receive a larger rent for the piece of land with higher quality resource, and this is ricardian

rent. If the resource is being extracted, the rent will increase by r-percent, and this increase

is scarcity rent. That is, ricardian rent re�ects the fact that the land has a valuable attribute,

and scarcity rent re�ects that fact that the attribute can be used up.

Many important aspects of natural resource markets follow from Hotelling's Rule. Not

only is it optimal for the owner of a resource to pro�t from its scarcity, but it is the only

way that the resource will be produced. The economic pro�t that arises because a resource

is becoming more scarce is called scarcity rent, because the market price is greater than the

marginal cost. Scarcity rent is also often called the user cost because it re�ects an additional

cost that is related to using up the resource. That is, it is the opportunity cost of forgoing

the future bene�t, including appreciation, of the next unit being produced.

Another consequence of Hotelling's Rule is that higher quality resources will be extracted

before lower quality. Consider the previous example of two identical pieces of land that di�er

only in the quality of resource they contain. Presumably, the higher-quality deposit results

in lower cost per ton of processed ore. As the lower cost (higher quality) ore is produced,

the user cost (scarcity rent) increases until total cost equals that of the higher cost (lower



Chapter 2. Background 19

quality) ore. Then, the lower quality ore will be produced.

The production of nonrenewable resources is made complex by the existence of multiple

grades (or costs) of deposits, changes in known reserves (discovery), trends in substitutes and

and in backstop technologies. These complexities tend to weaken or obscure the coupling

between prices and scarcity rent. Solow (1974, p. 3) suggests that if extraction costs fall

by more than scarcity rents increase, the trend in market price may be downward. He

notes, however, that eventually scarcity rent will dominate market price. Krautkraemer

(1998) presents theoretical extensions to the Hotelling model to take into account variable

stock levels due to exploration, cost of capital, capacity constraints, ore quality, and market

imperfections.

Heal (1976) presents a model in which stock e�ects produce a declining resource value.

Levhari and Liviatan (1977) explore the conditions under which a resource becomes eco-

nomically nonviable but not physically depleted, a situation that arises with cumulative

production (stock) costs. Livernois and Martin (2001) explore circumstances in which mar-

ket prices rise while scarcity rents decline to zero because of resource degradation.

Pindyck (1978) and Livernois and Uhler (1987) suggest that bringing new deposits into

production as the result of exploration produces a U-shaped price path. Slade (1982) pro-

poses a U-shaped price trend due to technological advances early in production and scarcity

rents late in production. Similarly, Dasgupta and Heal (1980) and Arrow and Chang (1982)

propose models of exploration that produce a saw-tooth price curve. Cairns and Van Quyen

(1998) propose a model that combines exploration and stock e�ects in which the price trend

is downward for most of the stock lifetime, but rises to the choke price at the end. The

evidence for these price curves is discussed in the next section.

Much of the preceding theoretical development is motivated by studies of various resource

markets in which no long-term price increase is evidenced. Each represents a major under-

taking to explore a simple extension of the Hotelling model, with the exception of Cairns

and Van Quyen (1998), which incorporates two simple extensions.
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Hotelling presents a perfectly competitive model and a monopoly model, then makes

suggestions as to what happens in a duopoly market (Hotelling, 1931, sec. 15). He notes

that with an exhaustible resource, where each competitor is optimizing based on the assumed

optimization of the others, there is an incentive for a competitor to unilaterally raise its price

by a small amount.

Consider, for example, a duopoly at Cournot equilibrium. For a product that is not

exhaustible, there is an incentive for a producer to lower its price slightly, taking sales from

the competitor unless the competitor reciprocates, ultimately driving pro�ts to zero. For

a nonrenewable resource, however, lowering price and taking sales early in the lifetime of

the stock for a small increase in pro�t leaves the higher-price producer in the position of

having additional stock late in the lifetime of the stock, when pro�ts are higher. Thus, with

a nonrenewable resource there is a disincentive to cheat by lowering price.

If, from the initial Cournot equilbrium, the cheater increases price sightly, there are two

possible outcomes. If the competitor reciprocates, market price goes immediately to the

higher price, and they both enjoy increased pro�t (until they reach the monopoly equilib-

rium). If the competitor does not reciprocate, the competitor is forced into the role of the

price-lowering cheater described in the previous paragraph.

Salant (1976) presents a model of prices in an oligopoly market for an exhaustible re-

source. An intriguing outcome of this model is that, for a market where some competitors

form a cartel and the rest do not, a portion of the scarcity rents is transferred away from

the cartel to be shared by the competitive fringe.

Stiglitz (1976) observes that a monopoly in an exhaustible resource market has less market

power than in the market for a non-exhaustible resource. This point is supported by Lewis

et al. (1979) and con�rmed by Pindyck (1987). This result is challenged by Gaudet and

Lasserre (1988), however, who point out the Stiglitz model assumes in�nite input capacity,

while inputs in the exhaustible models are, by de�nition, limited. By treating the monopoly

and competitive models as having the same input capacity constraint, Gaudet and Lasserre
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show that the monopolist's market power is the same whether the resource is exhaustible or

not.

The principal barrier to theoretical expansion of the Hotelling model is that dynamic

optimization is di�cult to characterize in general terms. Hotelling found it necessary to

resort to speci�c demand functions in order to explore implications of the base, costless

model. Livernois (2009) notes that the Hotelling model becomes complex when extended

to include factors like resource degradation. Krautkraemer (1998) makes general statements

about the stock cost term by breaking the base case into a bene�t term and a cost term, but

does not carry the theoretical development into the extensions.

At present, there is no literature on agent-based models of nonrenewable resources.

Agent-based modeling can be a laboratory for exploring and experimenting with proposed

extensions to the Hotelling model. Agent-based modeling is a causal framework, meaning

that the researcher must express the behavior in terms of what an agent - a resource pro-

ducer, for example - would do under conditions that arise in simulation. For an exploration

model in which the resource deposits are discovered in decreasing quality (Pindyck, 1987,

Livernois and Uhler, 1987), the new deposits come into existence sequentially: each deposit

is exploited until its costs equal those of the next most costly (lesser quality) deposit, then

production shifts to that one. In other models the quality of newly discovered deposits is

random (Swierzbinski and Mendelsohn, 1989), which has the e�ect of �attening the price

curve. In a hypothetical agent-based model, the producer agent would be given a behav-

ioral rule to �produce whichever deposit is least costly to produce,� which would work for

either class of exploration model. In this hypothetical agent-based model, a parameter would

determine whether new deposits are discovered in decreasing quality or random quality.

A limitation to extending the theory of Hotelling's model to oligopoly markets is that

a market structure must be assumed. For the agent-based models in this dissertation, an

oligopoly market is the same as a monopoly market with additional agents. The market

structure is, therefore, an endogenous feature of the simulation, with the outcome depending

on the kinds of communication the modeler has given the agents.
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Agent-based modeling in support of theoretical development is said to have an objective

of �qualitative insight and theory generation� (Tesfatsion, 2006). In the sense of any model,

it is predictive. The modeler de�nes the behavior space (rules and initial conditions) and

explores the outcome space.

2.2 Studies of the markets for nonrenewable resources

A decade before the birth of modern environmental and natural resource economics in

the 1970s, Barnett and Morse (1963) �nds that, over the period 1870 to 1957, resource prices

show no discernible trend, despite continuous and often rapid increases in their production.

More then a decade and a half later, Smith (1979) con�rms these �ndings using more so-

phisticated techniques on data from 1900 to 1973. Fisher (1981, p. 102-103) concurs that

there are no discernible trends in overall resource prices in the results of Barnett and Morse

(1963), but notes that factor costs fell more rapidly than resource prices during this period,

so there is evidence for some increase in rents during that time. Alternatively, Brown and

Field (1978) assert that Barnett and Morse neglected to include some factor costs, notably

transportation. Brown and Field point out that the �rst three-quarters of the twentieth

century - the period covered by the study - was a period of dramatic technical and social

change. "In a world of rapid technological change ... unit extraction cost will fail to increase

even though a natural resource is becoming more scarce." (Brown and Field, 1978, p. 231)

Halvorsen and Smith (1991) note that �the principal obstacle to empirical tests of the

theory of exhaustible resources has been data availability.� Since mine owners do not reveal

actual marginal costs, so that actual user cost is not observable, many of the market studies

are essentially assessments of the suitability of proxies for these.

Nordhaus (1973) compares the price paths of di�erent sources and grades of energy

resources with the price paths of the good produced using them. Nordhaus (1973, p. 566)

observes that, on the average, scarcity rents on energy resources were "quite modest," or
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�about one dollar per barrel of petroleum.�2 He notes that the exception was petroleum

itself, for which market prices were 2.4 times his calculated optimal price, which includes

scarcity rent. A year later, Nordhaus (1974) found no trend in scarcity rents in mineral

prices between 1900 and 1970. Nordhaus is responsible for the term "backstop technology,"

referring to nuclear power as the technology that would, ultimately, limit the maximum price

on petroleum and eliminate energy scarcity (Nordhaus, 1973, p. 532).

Some researchers have found evidence of U-shaped price curves, such as Slade (1982), who

postulated that the price trend was due to falling input costs early in production and rising

scarcity costs at the end of resource lifetime. Berck and Roberts (1996) examine a larger data

set that includes most of the data used by Slade. They �nd that price predictions depend

on whether prices are modeled as trend-stationary or as di�erence-stationary. They also

�nd that trend-stationary models predict rising resource prices while di�erence-stationary

models are ambiguous.

Heal and Barrow (1980) develop an arbitrage model which is an attempt to detect,

directly, the Hotelling outcome. They assert that, in an e�cient resource market, �there

will be a strong association between the rates of change of resource prices and the rates of

return on other assets.� They found, however, that changes in interest rates were the relevant

explanatory variables, not the interest rate levels. They conclude that simple equilibrium

theory is inadequate to the complexity of the problem.

Stollery (1983) estimates the cost function for the price-leader in the nickel market and

infers user cost by subtracting marginal cost from market price. User cost is found to be low

initially, but to increase by 15 percent. Farrow (1985), using proprietary mine data, presents

a model to estimate the in situ value of the stock and compares that with the price trend.

He does not �nd evidence of Hotelling's Rule.

Halvorsen and Smith (1984) introduce duality to estimate in situ stock value for Canadian

2For the years 1970-1973, crude oil prices averaged less than three dollars per barrel in current

dollars. http://www.eia.doe.gov/aer/txt/ptb1107.html (accessed 14 April 2011)
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metal mines and �nd that user cost decreased considerably. Chermak and Patrick (2001)

also appeal to duality to estimate in situ stock value, and �nd that, for 29 natural gas wells,

the trend is consistent with Hotelling's Rule.

Agostini (2006) found no evidence of U.S. copper companies exercising oligopoly market

power before 1978, when U.S. copper went on the world market. He suggests a possible

explanation is that the copper �rms did exercise market power for brief periods, but limited

prices during periods of high demand as a barrier to new entrants. Halvorsen and Smith

(1991) conclude that �the ability of the theory of exhaustible resources to describe and predict

the actual behavior of resource markets remains an open question.�

Agent-based modeling can be used as a method for nonlinear regression. Given a set

of target outcomes (market data), a hypothetical ABM can systematically vary behavioral

rules and initial conditions until simulation outcomes converge to the target outcomes. For

example, in the Agostini (2006) model, the hypothetical ABM producers might switch from

pro�t maximizing to risk averse as the price approaches a threshold. The threshold itself

can be fuzzy in this hypothetical model, meaning it has a stochastic distribution which may,

in turn, be dependent on price history, trends in substitutes or complements, and so on.

Agent-based modeling to explore behavior space in order to explain outcomes is said

to have an objective of "empirical understanding� (Tesfatsion, 2006), and such models are

referred to as �generative� (Epstein and Axtell, 1996). It is analytical : the modeler de�nes

the target outcome space, then varies the behavior space (rules and initial conditions) until

outcomes fall within the target outcome space.

2.3 The basics of agent-based modeling

In economics there are two di�erent uses of the term agent. In the principal-agent prob-

lem, an agent is someone who does something for the principal (Varian, 1992, p. 441).

Alternatively, an agent is de�ned as a self-interested actor with an endogenous state (e.g.
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income and wealth), as well as a representation of behavior (e.g. utility function for a con-

sumer, production function for a producer). Though typically implicit in economic models,

there may also be exogenous state variables (e.g. GDP) and behaviors (e.g. a supply or

demand function.)

In agent-based modeling, the model is a computer program representation of each agent.

In agent-based modeling, the term endogenous is used to imply autonomy. By contrast, the

term exogenous is used to imply that agents are being told what to do. In a simple ABM of

�ocking birds, for example, if each bird decides on the best distance to be from all nearby

birds, that is an endogenous behavior rule. The fact that they want to be together at all,

however, may be imposed, making that an exogenous behavior rule. In its broadest usage,

agent-based modeling also includes computer simulations of a model in which agents interact

via their behaviors and modify their own states, the states of other agents, or the exogenous

state.

The last statement begs some de�nitions. Practitioners of modeling and simulation will

often use the terms model and simulation in ways that make them sound interchangeable

(Department of Defense, 1998, p. 138). They are not, however, and confused readers are in

good company on this topic. Just as in economics or architecture, a computer model is an

abstraction of reality. That is, it is not a complete description of reality, for many features

of reality have been omitted (because they're thought to be irrelevant) or abstracted (in

detail to reduce complexity in parameter space or in behavior, or to reduce complexity in

outcome space). By analogy, an architectural model may omit the details of subsurface soil

(parameter space), use decals to represent windows and doors (behavior space), and have

removable parts to expose functionality (outcome space).

Simulation is what a model does, or what you do with it. As an example of the �rst

meaning, a model may include some number of birds and the simple rules they follow: stay

close together, but not too close. Simulation would involve running a computer program

that start all the birds in some position, gives them each a chance to react according to

their rule, then records their new positions, and does this over and over for some period of
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time. Depending on the rules, the motion (as portrayed by dots on a screen, for example)

may look like �ocking, or it may look like swarming. As an example of the second meaning

of simulation, you might use that model "to simulate a �ock of starlings", or "to simulate

crowds moving through a theme park." In other words, simulation is an abstraction of what

it does, much like modeling is an abstraction of what it is.

In any model, there are things about the agents that distinguish them from each other

and cause them to interact with each other or their environment. For example, in a basic

economic model, an agent may have a variable Wealth and a variable Preference, which

represents a preference for guns or butter as a real number between 0 and 1, with 0 for guns

and 1 for butter. The variables Wealth and Preference are a representation of an agent's

state. This particular model is not interesting without a means for agents to change state,

and that is accomplished through behavioral rules. Something like �buy guns and butter in

the ratio re�ected by Preference until Wealth is depleted.� In general, what is interesting in

a behavioral model like this is its development over time. That is, 1) each agent acts on its

state, 2) the action results in a change of state, 3) the new state results in new actions. The

time evolution of a model is performed in simulation, which simulates the passage of time

and any other exogenous changes while the actions of the agents bring about any endogenous

changes. The initial and terminal conditions are also aspects of simulation, so that the same

model may be used to simulate prosperity or poverty (average Wealth is either large or

small).

A model may include a large number of these agents, all with di�erent preferences. The

number and types of agents, the things they are able to a�ect, and the rules they use to

a�ect those changes are all part of the model. What happens in the course of the agents

changing is the outcome of simulation.

Early agent-based models attempted to replicate simpli�ed insect behaviors, such as

group movement (Reynolds, 1987) or an ant colony's quest for food (Epstein and Axtell,

1996). In the former, optimizing interactions between individuals leads to new behaviors like

�ocking or swarming, while in the latter, self-optimization by individuals leads to positive
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group outcomes. In either case, the individual actors are the agents (each bee, bird, or ant),

and each agent has simple rules for its own behavior. The group behavior is not programmed,

and is said to be an emergent outcome of the model. It is the goal of autonomous agent-based

models to discover or explain emergent behaviors or outcomes. Other agent-based models

are computational models: the simulate large ensembles of individually optimized equations.

Both uses arise in this study, with autonomous agents as pro�t-maximizing producers, and

computational agents as their Hotelling's-Rule-following counterparts.

In the social sciences, one early adopter of agent-based modeling is Axelrod (1997b),

whose models started out as an extension of earlier work on the Prisoner's Dilemma in game

theory (Axelrod, 1987). Agent-based modeling arose as computation became faster, cheaper,

and widely available. Many of the behavioral models developed theoretically in the preced-

ing decades, such as those of Axelrod (1987) and those of Schelling (1978) were well suited

to agent-based modeling. Epstein and Axtell, both jointly and separately, developed agent-

based models including an adaptation of a cultural transmission model by Axelrod (Axtell

et al., 1996), the emergence of classes (Axtell et al., 1999) and civil violence (Epstein, 2002).

McFadzean et al. (2001) introduce agent-based modeling as a computational laboratory for

trade networks, and Tesfatsion (2001) applies the approach to an adaptive search model of

the labor market. The dynamic and emergent behaviors of agents in combat are examined

in Reynolds and Dixon (2001) and Dixon and Reynolds (2003), while the latter also presents

models of how a national bond market crisis spreads globally. Gilbert and Troitzsch (2005)

provide an overview of various topics in modeling and simulation of social systems, includ-

ing agent-based modeling. Tesfatsion (2006) presents examples of agent-based models that

correspond to and often extend traditional economic models.

A note about the initials ABM. They are used to refer to the methodology of agent-based

modeling, or to an agent-based model. That is �we will use ABM to explore Hotelling's

Rule by constructing multiple ABMs, each representing a di�erent cost structure.� In this

dissertation, agent-based modeling is referenced in its entirety, while the initials ABM are

reserved for a model.
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Although many ABMs are ad hoc computer programs, groups within the agent-based

community have developed programs to automate the modeling and simulation process to

some extent. One approach is to provide a complete agent-based modeling and simulation

program with which the user may create an agent-based model and run simulations. These

programs work much like spreadsheet or painting software. An example is the NetLogo

project at the Center for Connected Learning and Computer-Based Modeling. A simple

NetLogo model can be constructed and simulated quickly, and there is large body of example

models as well as an extensive user community. Though it is technically not programming,

writing rules for behavior in NetLogo's unique language becomes very much like writing

computer programs.

The other approach to agent-based software is to provide a library of programs to manage

the modeling details of how to store and change agent state and how to communication

between agents, as well as simulation issues such as keeping (and advancing) system time,

managing simulation events, displaying state in real time, and saving simulation results.

These libraries are written in a speci�c computer language such as Java or Objective-C, and

a user is expected to do some programming to create the necessary agents and to program

any behaviors required. MASON, a project at George Mason University, is an example, and

is used for the modeling and simulation presented in the following chapters. More details on

MASON are presented in the next section.

As an example of a simple ABM, consider the segregation model of Schelling (1971). This

model was originally developed with coins and a checkerboard, but has since been a popular

model for software agents. The general model is a checkerboard where each cell is occupied

by an agent of one type (a copper coin, for example), an agent of another type (a silver

coin, for example), distributed randomly, and there are a few unoccupied squares. Each

agent has a preference for a certain percentage of neighbors to be of the same type. Each

agent is given an opportunity to move into an unoccupied squares. The emergent behavior

is that even with a mild preference for like neighbors (33 percent for example), in only a few

turns the board is segregated into clusters of only copper coins or only silver coins. In this
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model, there are two agent types, each agent has a state that is the percentage of neighbors

of the same type, and each agent has a behavioral rule: move to an unoccupied square if the

percentage of like neighbors is less then the preference (e.g. 33 percent).3

2.4 The MASON agent-based modeling platform

MASON (Luke et al., 2003) is a project of two organizations at George Mason University,

the Evolutionary Computation Laboratory and the George Mason University Center for So-

cial Complexity.4 MASON is one of a class of agent-based modeling and simulation software

that provides a set of programs to support modeling and simulation, but the user must do

some programming to make it work. This class of software is often referred to as a toolkit,

and the overall software as an agent-based modeling tool. MASON is written entirely in the

Java programming language, requiring a MASON modeler to be able to program in Java.

Most agent-based modeling tools use discrete-event simulation, meaning that time passes

in discrete units and some assumptions are made about the intervening period. In some cases

it is assumed that state variables evolved continuously during that time (bodies in motion

tend to stay in motion, for example). In other cases, the discrete time unit is intrinsic to

state, such as interest that is compounded daily. As with other discrete-event tools, the

central feature of MASON is a means for scheduling time steps. In this sense, MASON

regards each agent as an event on a schedule. Typically, after completing any actions for a

time step, agents either put themselves back, or are put back, on the schedule for the next

time step. MASON also provides a means to initialize agents at the start of a simulation,

3Strictly speaking, the original is a cellular automata model, but it is easily cast from a model

of the state of a square on the checkerboard to a decision of a coin to move into one, making it an

agent-based model. The Schelling Segregation Model is a common example in agent-based modeling

texts and courses. See, for example, Clark (1991) or Laurie and Jaggi (2003).
4Information and software downloads can be found at

http://cs.gmu.edu/~eclab/projects/mason/ (last accessed 21 May 2011)
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and a means to stop the simulation when a particular state occurs (such as an agent running

out of money or a certain time having elapsed).

The MASON Hotelling model developed for this dissertation can be downloaded5 and

anyone with the MASON software can compile it and have it running in a minute or two.

MASON provides a variety of prede�ned graphical user interface (GUI) windows, some of

which are shown in the Appendices. The MASON windows (GUI components) serve two

purposes: 1) to provide a way to display features of a model and changes of state during a

simulation, and 2) to provide a means to set or change the parameters of a simulation. In

this sense, the act of model-building is extended a bit beyond the Java programming phase

by giving the user some limited means to a�ect the model or its simulation. The models

described in Chapter 4 can be selected, initialized and run with the information provided in

the following paragraphs.

The interactive aspect of the MASON Hotelling model provides the non-programmer

user a means to participate in de�ning the model. Speci�cally, although each model of a

market structure was programmed in Java, the user is able to select from among twenty

market models. Similarly, the user can select from two demand functions.6 Additionally, the

user can select the number of producers and the interest (discount) rate before starting the

simulation. Once the simulation is initialized, the user can modify the state of any agent,

such as starting production level, initial stock, and costs.

In more general agent-based modeling terms, selecting among the market models amounts

to selecting among behavior rules, while setting the demand function and other values is a

matter of setting simulation parameters. It would take a very long time to explore all the

permutations available at the time of writing, and the number of additional market models

5http://www.unm.edu/~ddixon/ACE (last accessed 21 May 2011)
6There are 20 market models (all of which are included in this dissertation) and 2 inverse

demand functions (of which only one is used in this dissertation) as of May 2011. (The unused

demand function is the competitive market model from Hotelling (1931, sec. 2)).
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and demand functions is theoretically unlimited. 7

7A comment like this is not without caveats. Performance is a decreasing concern as compu-

tational capabilities increase rapidly, but the program could reach the point where just selecting

among the options could take a very, very long time.
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Chapter 3

Theory

"Problems of exhaustible assets cannot avoid the calculus of variations" noted Hotelling

(1931, p. 140), which may have been why his work languished until the 1970s (Gaudet,

2007, p. 1035). Since its advent, optimal control theory (Pontryagin, 1959, Pontryagin et al.,

1962) has become a standard tool for dynamic optimization in economics. Chiang (1992)

notes that, unlike calculus of variations, optimal control can be used with functions that are

piecewise continuous or that have corner solutions. The introductory optimal control problem

in Chiang (1992) is the Hotelling model. Caputo (2005) observes that optimal control theory

is more conducive to economic theory and intuition than calculus of variations.

The following is an optimal control development of the Hotelling monopoly model. The

terminology and some notation derive from Kamien and Schwartz (1981), in particular,

the use of m(t) as the current value multiplier. The notation for partial derivatives is bor-

rowed from Caputo (2005), and the economic interpretations are in�uenced by Krautkraemer

(1998).
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3.1 Basic theory

The Hotelling monopoly model begins with a known �xed stock x0 of a nonrenewable

resource. The problem for the resource owner is to determine a production path q(t) that

maximizes present value total net pro�t over the productive lifetime, T , of the resource. In

general, net pro�t π (q (t) , x (t) , t) is a function of production level, remaining stock level

x(t) and time. Assuming a constant discount rate r, the optimal control problem is

max
q
J (q (t) , x (t)) =

ˆ T

0

e−rtπ (q (t) , x (t) , t) dt (3.1)

subject to

ẋ (t) = −q (t)

x (0) = x0

x (t) ≥ 0 (3.2)

q (t) ≥ 0 (3.3)

x0 ≥
T̂

0

q (t) dt (3.4)

The �rst constraint is also the state equation and will be discussed subsequently. The

next two constraints are the initial and terminal boundary conditions on the stock variable.

The fourth constraint ensures that production is never negative, and the �fth ensures that

total production never exceeds total resource stock.

The current-value Hamiltonian to maximize (3.1) with resource stock costate variable

m(t) is de�ned as

H (q (t) , x (t) , t,m) ≡ π (q (t) , x (t) , t)−m (t) q (t) (3.5)
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The current-value formulation has the advantage that, since the ABM will be making deci-

sions based on current state values, a direct comparison can be made between the state of

the ABM at time t and the optimal state of the Hamiltonian at time t. The costate variable

m(t) is interpreted as the current-value shadow price of the resource stock at time t. This is

the user cost, the value of the next unit of remaining stock to be extracted.

The �rst order necessary conditions include the state equation

∂H (q (t) , x (t) , t,m)

∂m
= ẋ (t) = −q (t) (3.6)

which imposes the dynamical constraint that the remaining stock be reduced at the rate

of production, where ẋ (t) is the time derivative of x (t). The �rst order necessary costate

equation is

ṁ (t) = rm (t)− ∂H (q (t) , x (t) , t,m)

∂x (t)
(3.7)

where ṁ (t) is the time derivative of m (t). If the Hamiltonian has no stock e�ect (no x (t)

dependency), this equation requires that the shadow price increase at the discount rate. That

is, the shadow price increases at the same rate of an alternative investment. Depending on

its sign, the stock e�ect may accelerate or decelerate the increase in the shadow price, or,

for a su�ciently positive stock e�ect, cause the shadow price to decrease over time.

The �rst order necessary optimality condition is

∂H (q (t) , x (t) , t,m)

∂q (t)
= 0 (3.8)

which is the condition for static optimum, requiring that the Hamiltonian be maximized at

all times. The transversality condition on the state variable is that
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m (T ) = 0, x (T ) = 0, m (T )x (T ) = 0 (3.9)

which constrains the ending shadow price to be non-negative and the ending stock level to be

non-negative, but requires that the shadow value (mx) of the terminal stock must be zero.

That is, either the stock is physically depleted and x (T ) = 0, or the ending shadow price

m (T ) is zero. For nonzero ending stock, the requirement that the shadow price goes to zero

is intuitive, since terminating while there is remaining stock implies that it is not economic

to extract the next unit of stock. If the stock variable is constrained to end at some value,

the transversality condition on the Hamiltonian is that

e−rTH (T ) = 0 (3.10)

This ensures that the stock variable is stationary at the terminal time T (Chiang, 1992, p.

182).

The following relations are introduced for notational simplicity

πq (q (t) , x (t) , t) =
∂

∂q
π (q (t) , x (t) , t)

πx (q (t) , x (t) , t) =
∂

∂x
π (q (t) , x (t) , t)

Hq (q (T ) , x (T ) , T,m) =
∂H (q (t) , x (t) , t,m)

∂q

∣∣∣∣
t=T

Substituting for the Hamiltonian in (3.7)

ṁ (t) = rm (t)− πx (q (t) , x (t) , t) (3.11)

so that πx (q (t) , x (t) , t) is the Hamiltonian stock e�ect to which the previous remarks apply.

That is, the rate at which the shadow price changes is either accelerated or decelerated by
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πx (q (t) , x (t) , t) depending on its sign and, if πx (q (t) , x (t) , t) = 0, shadow price increases

at the discount rate.

Substituting for the Hamiltonian in (3.8)

πq (q (t) , x (t) , t)−m (t) = 0

πq (q (t) , x (t) , t) = m (t) (3.12)

which establishes the link between marginal pro�t and shadow price. Substituting (3.12)

into (3.11) to eliminate ṁ (t), then dividing by πq (q (t) , x (t) , t)

π̇q (q (t) , x (t) , t)

πq (q (t) , x (t) , t)
= r − πx (q (t) , x (t) , t)

πq (q (t) , x (t) , t)
(3.13)

which is the general expression of Hotelling's Rule. For a production technology that has no

dependence on the stock level, this simpli�es to

π̇q (q (t) , x (t) , t)

πq (q (t) , x (t) , t)
= r (3.14)

which is the relation �rst articulated by Hotelling. It states that, along the optimal produc-

tion path, the percent change in marginal net pro�t is equal to the discount rate. Thus, for

a marginal net pro�t increase at a rate below r, it is optimal for the owner to extract the

resource immediately and invest the returns with a return of r. However, for a marginal net

pro�t increase at a rate above r, it is optimal for the owner to leave the resource in situ and

let it appreciate faster than the alternative investment.
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3.1.1 A bene�t-cost treatment

In the preceding discussion, in Hotelling's original models, and for the purposes of this

dissertation, the object of (3.1) is maximization of the producer's pro�t. Krautkraemer

(1998) takes a more general, bene�t-cost approach that is instructive when expanding the

scope to include total welfare or social bene�t.

If a resource yields gross social bene�t B (q (t) , x (t) , t) and the production technology

incurs costs C (q (t) , x (t) , t), equation (3.5) becomes

H (q (t) , x (t) , t,m) ≡ [B (q (t) , x (t) , t)− C (q (t) , x (t) , t)]−m (t) q (t) (3.15)

In this case, the optimality condition (3.8) is

Bq (q (t) , x (t) , t)− Cq (q (t) , x (t) , t)−m (t) = 0

Bq (q (t) , x (t) , t) = Cq (q (t) , x (t) , t) +m (t) (3.16)

This condition requires that, at every moment in time, the marginal bene�t from producing

the resource exactly equals the marginal cost, which includes the user cost. Since the user

cost represents the cost of forgoing future bene�t, this is bene�t in the present that comes

at the expense of bene�t in the future. When the same party is bene�ted in either case,

it represents and intertemporal preference. When they are di�erent parties it represents an

externality.

3.2 The Hotelling monopoly demand function

Hotelling's inverse demand function for the monopoly market Hotelling (1931, sec. 4) is
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p =
(
1− e−Kq

)
/q (3.17)

This is a stylized demand not linked to any real market. It is not known why Hotelling chose

it, but it has two pedagogical strengths. First, it yields tractable expressions for revenue and

marginal pro�t and secondly, it has no �nite static maximum with respect to q. That is, it

can only be maximized in the dynamic context. Additionally, revenue

p (q) q = 1− e−Kq

increases monotonically with q, a characteristic that is exploited in the models for which

revenue must be held above cost. Because the revenue function increases monotonically,

there is a unique minimum production level qmin which corresponds to a minimum revenue.

Equation (3.17) is the inverse demand function used throughout this dissertation, in the

theoretical development and in the agent-based models. For Hotelling's costless production

technology, the optimal production path is easily solved in closed form. However, for the

nonzero-cost technologies, it is necessary to appeal to numerical solutions. In those cases,

and in the agent-based models, the parameter values used are

K = 5

r = (1 + 0.1)1/365.25 − 1 ≈ 2.16× 10−4

x0 = 100

These are all stylized and unitless values. K is the choke price and this value is chosen to

be consistent with the other models used by Hotelling. The discount rate is ten percent

per annum and is expressed in daily terms for use in and comparison with the agent-based

models. The initial stock x0 is chosen so that simulations of the agent-based models are long

enough to be instructive yet short enough to be repeated many times.
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3.3 A costless monopoly model

Costless production technology means that there is no cost term, so that pro�t is equal

to revenue:

π (q (t)) = p (q (t)) q (t) . (3.18)

An optimizing costless monopoly producer, facing the full demand function, determines the

optimal production path q (t) based on the discount rate r, the extent of stock x0, and any

other boundary conditions. For the costless model, the stock is physically depleted at time

T . Given a speci�c inverse demand function, the procedure (after Hotelling (1931, sec. 4))

is:

1. Solve (3.12) for the production path q (t) in terms of m(t).

2. Solve (3.11) to get m(t).

3. Replace m(t) in q(t) and solve (3.10) to get q (T ) in terms of T .

4. Integrate (3.4) using the equality condition (because the stock is physically depleted)

to get T in terms of initial stock x0.

5. Solve q(0) to get the initial production level.

For any reasonable inverse demand function (or approximation thereof) the terminal time T

will be �nite.

With the inverse demand function in Section 3.2, from step 1

π (q (t)) = 1− e−Kq(t) (3.19)



Chapter 3. Theory 40

πq (q (t)) = Ke−Kq(t) (3.20)

m (t) = Ke−Kq(t) (3.21)

q (t) =
ln (K/m (t))

K
(3.22)

Equation (3.21) indicates that shadow price varies inversely with production level and has a

maximum of K, the choke price.

Note that since there is no x(t) term in (3.19), πx = 0, so that from step 2

ṁ (t) = rm (t)

m (t) = m0e
rt (3.23)

wherem0 is the initial shadow price. The shadow price increases over time, which is intuitive,

given that, under production, the resource becomes more scarce over time.

From step 3

q (t) =
1

K

(
ln
K

m0

− rt
)

(3.24)

If the stock is to be physically depleted, the transversality condition (3.10)

H(T ) = 0

applies. This means that

H (T ) = 0 = 1− e−Kq(T ) −mT qT
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for which q(T ) = 0 is the solution. Now (3.24) can be solved for T

0 =
1

K

(
ln
K

m0

− rT
)

T =
ln (K/m0)

r
(3.25)

Substituting this back into (3.24) gives the production path

q (t) =
r

K
(T − t) (3.26)

Equation (3.25) shows that higher discount rates promote more rapid depletion, which is

expected, as a higher discount rate increases the opportunity cost of not extracting. Equation

(3.26) shows that production follows a straight-line descending path that is increasingly steep

as the discount rate increases, as expected. The production level is also inversely proportional

to the choke price K. This is related to the inverse relationship of production with shadow

price: since shadow price is increasing toward K, production is decreasing proportional to

its inverse.

From step 4

x0 =

T̂

0

q (t) dt =

T̂

0

r

K
(T − t) dt =

r

2K
T 2 (3.27)

T =

√
2Kx0
r

(3.28)

Equation (3.28) makes explicit what was implied before: a higher discount results in a shorter

resource lifetime. Also, resource lifetime is proportional to the square root of its extent.

Finally, from step 5
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q (0) = r
K

(T − 0) =

√
2rx0
K

(3.29)

The initial production level is proportional to the lifetime of the resource, which is propor-

tional to the square root of its extent. The initial production level is proportional to the

square root of the discount rate, moving production earlier as the discount rate increases,

as expected. The inverse square root relation to choke price K is related to the inverse

relationship between production and shadow price, as discussed previously.

Since x(T ) = 0, the transversality condition (3.9) imposes no constraint on m(t), which

is

m (t) = Ke−r(T−t) (3.30)

That is, the shadow price of the remaining stock increases to the choke price K as the stock

is physically depleted. Note also from (3.26) that

q̇ = − r

K
(3.31)

which is constant and negative. As mentioned previously, production follows a straight-line

descending path. Finally, note that

π̇q (q (t) , t)

πq (q (t) , t)
=
−K2q̇e−Kq(t)

Ke−Kq(t)
= r

which is Hotelling's Rule.

The production path given by (3.26) maximizes present-value net pro�t over the lifetime

of the resource. This is, by de�nition, the most pro�t a producer can ever get with this
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production technology and this demand function. Integrating (3.19) over the stock lifetime

T , the theoretical maximum pro�t, therefore, is

Πmax =

ˆ T

0

(
1− e−Kq(t)

)
e−rtdt =

1

r

[
1− e−rT (1 + rT )

]
(3.32)

For purposes of comparison with other models that cannot be solved in closed form, using

the values from Section 3.2, the stock lifetime is 1958 days, and Πmax = 358.33.

3.4 A �xed cost model

Natural resource production often incurs �xed cost, including capital costs, leases or other

per-period fees or taxes. Extractive industries tend to require large capital investments, and

capital can be regarded as a quasi-�xed cost (Young, 1992). Hsiao and Chang (2002) have

a groundwater optimization model of in which well-drilling is a �xed cost.

Consider a �xed, per-period cost c0, so that net pro�t is

π (p (q (t)) , q (t)) = p (q (t)) · q (t)− c0

Because the cost is not dependent on q (t) or x (t), this cost does not a�ect the dynamical

constraints, appearing only in the solutions to the boundary conditions.

Inserting the demand function in p (q (t)) (Section 3.2) this is

π (q (t)) = 1− e−Kq(t) − c0

One characteristic of the revenue part of this is that it is monotonically increasing with q.
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It can be anticipated, therefore, that there is some minimum production level, qmin, below

which net pro�t is negative. Net pro�t is non-negative as long as

c0 ≤ 1− e−Kq(t)

so that

qmin =
1

K
ln

(
1

1− c0

)
(3.33)

Marginal pro�t is positive as long as production remains above this level. For nonzero c0,

terminal production q(T ) cannot be zero. Clearly, qmin is zero for c0 = 0.

The transversality condition (3.10)

H(T ) = 0

applies, which means that

1− e−KqT − c0 −mT qT = 0

Using (3.21) to substitute mT

e−KqT (1−KqT ) = 1− c0

eKqT =
1 +KqT
1− c0

(3.34)

Equation (3.34) must be solved numerically. The solution is shown in Figure 3.1. The �gure

shows that qT > qmin for all costs, so that the qT > qmin constraint is non-binding. Figure
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Figure 3.1: Fixed cost model - numerical solutions for terminal production level qT .
The optimal production path starts at production level q(0) and decreases continuously to
the terminal production level, qT . The production level is, at all times, well above the zero
pro�t production level, qmin. Terminal time T , which decreases with increasing cost, is also
shown. The bottom graph shows total net pro�t, which is also user cost, as a function of
the �xed cost rate.

3.1 also shows that terminal time T decreases sharply as cost increases, and that total net

pro�t (user cost) decreases steadily over the cost range. These are the theoretical outcomes

against which the ABMs are to be compared.

Note, in Figure 3.1, that q(0) is slightly steeper than qmin, while qT is asymptotically

parallel to q(0). Thus, as the �xed cost increases, more of total production is pushed toward

the present.

Replacing m0 in (3.23) with mT e
−rT
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m (t) = m0e
rt = mT e

−rT ert

then using (3.21)

m (t) = Ke−KqT e−r(T−t)

so that

q (t) =
1

K
ln

[
K

Ke−KqT e−r(T−t)

]
= qT +

r

K
(T − t) (3.35)

Thus, the initial production level is

q (0) = qT +
rT

K
(3.36)

which is also shown in Figure 3.1.

Stock lifetime T is calculated from

x0 =

T̂

0

q (t) dt

= qTT +
rT 2

2K

so that

T =
K

r

(√
q2T +

2rx0
K
− qT

)
(3.37)
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which is shown in Figure 3.1. Substituting (3.37) back into (3.36)

q (0) =

√
q2T +

2rx0
K

(3.38)

Total pro�t is

ΠFC =

T̂

0

(
1− e−Kq(t) − c0

)
e−rtdt

=
1

r

[
1− c0 − e−rT

(
1− c0 + rTe−KqT

)]
(3.39)

which reduces to (3.32) for c0 = 0 (for which qT = 0). This is also shown in Figure 3.1, and

the GAUSS code to solve for qT and to compute q(0), T and total pro�t is included in the

Appendices.

3.5 A marginal cost model

Extractive technologies, like most production technologies, incur costs that are propor-

tional to the level of production. Scott (1967) uses a quarrying example to illustrate that

economy of scale considerations at low levels of production, and problems of marketing,

delivery and storage at high levels of production, lead to a U-shaped marginal cost curve.

Cobb-Douglas models in which production level appears are found in econometric models of

nickel (Stollery, 1983) and copper (Young, 1992), for example. Conrad and Clark (1987, p.

165) give an example of a linear marginal cost associated with disposal of pollutants. For

simplicity, this model considers a stylized linear marginal cost with marginal cost c1, so that

the net pro�t function is

π (p (q (t)) , q (t) , t) = p (q (t)) · q (t)− c1 · q (t)
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In terms of the demand function in Section 3.2 this is

π (q (t)) = 1− e−Kq(t) − c1q (t) (3.40)

The transversality condition depends on whether or not q(t) can go to zero when t = T .

There is no minimum production level qmin as long as the cost goes to zero faster than the

revenue. This is the case as long as

e−Kq(t) ≤ 1− c1q (t) (3.41)

Figure 3.2 shows graphs of the left-hand and right-hand sides of (3.41) for the parameter

values presented in Section 3.2. The graphs show that, for all marginal costs lower than

the choke price (c1 < K), pro�t is non-negative as q(t) goes to zero. There is, however, a

maximum production level constraint, qmax, above which pro�t is negative. The locus of

points at which the dashed line intersects the solid lines de�nes the values of qmax. It will

be shown that this constraint is not binding, however.

The solution proceeds as for the costless monopoly model, with the same form for the

shadow price (3.21). Thus

q (t) =
1

K

(
ln

K

m0ert + c1

)
(3.42)

The transversality condition H (T ) = 0 is satis�ed when q(T ) = 0, so

0 =
1

K

(
ln

K

m0erT + c1

)
m0 = (K − c1) e−rT

q (t) =
1

K

(
ln

K

(K − c1) e−r(T−t) + c1

)
(3.43)



Chapter 3. Theory 49

Unlike the costless and �xed cost models, the rate of change in the production path is

not constant, since

e−Kq(t) =
(K − c1) e−r(T−t) + c1

K

−Kq̇e−Kq(t) =
r (K − c1) e−r(T−t)

K
(3.44)

q̇e−Kq(t) = − r

K

[
(K − c1) e−r(T−t) + c1

K
− c1
K

]
q̇ = − r

K

[
1− c1

K
eKq(t)

]
(3.45)

The terminal time T is found by integrating

x0 =

T̂

0

1

K
ln

K

(K − c1) e−r(T−t) + c1
dt (3.46)

Kx0 =

T̂

0

ln
K

(K − c1) e−r(T−t) + c1
dt

Equation (3.46) is solved numerically in GAUSS using the parameters from Section 3.2. The

numerical solution for T as a function of marginal cost is shown in Figure 3.3. Once T for a

given marginal cost is known, the initial production level is determined from

q (0) =
1

K

(
ln

K

(K − c1) e−rT + c1

)
(3.47)

Values of q(0) corresponding to the numerical solutions for T are also shown in Figure 3.3.

Also shown in the �gure are the ranges of the rate of change in production, q̇(t), computed

from (3.45). Note that q̇(t) starts negative and becomes more negative over the course of
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production, so that q(0) is the maximum production level. It is clear from this plot that

qmax is always above q(0), which is always above q(t), so that the maximum constraint never

holds. The GAUSS procedures for solving T and computing total pro�t, ΠMCare included

in the Appendices.

To compute percent change in marginal net pro�t, substitute for the exponential on the

left-hand side of (3.44) and simplify

−Kq̇ (K − c1) e−r(T−t) + c1
K

=
r (K − c1) e−r(T−t)

K

q̇ = − r

K

(K − c1) e−r(T−t)

(K − c1) e−r(T−t) + c1

= − r

K

(
1 +

c1
K − c1

er(T−t)
)−1

From this it is obvious both that the magnitude of the rate of change decreases with increasing

c1, and that the magnitude increases over time for a given c1. Finally,

π̇q
πq

=
−K2q̇e−Kq(t)

Ke−Kq(t) − c1

= −Kq̇ K

K − c1eKq(t)

= −K
[
− r

K

[
1− c1

K
eKq(t)

]] [ K

K − c1eKq(t)

]
= r

[
K − c1eKq(t)

K

] [
K

K − c1eKq(t)

]
= r

which is Hotelling's Rule.
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3.6 A stock cost model

Stock costs - costs associated with cumulative production - are mentioned speci�cally by

Hotelling (1931, p. 152) as a detail omitted from his model. Stock e�ects appear in many

forms in natural resource production models. Lecomber (1979, p 54) sites the examples of

decreasing pressure over the lifetime of an oil well, increased transportation costs as a mine

becomes deeper, and a reduction in yield as the quality of ore decreases.1 Like marginal cost

models, stock cost models are often quadratic or in Cobb-Douglas form (Young, 1992).

The functional forms of stock e�ects in general vary broadly. In �shery models, for

example, the stock variable may appear in the growth function as second-degree polynomials

(Hanley et al., 1997, sec. 7.4). In econometric analysis of oil production in the U.K., Pesaran

(1990) �nds that production cost is inversely proportional to remaining stock. Pindyck

(1978) presents a production model that includes growth from exploration, and �nds an

inverse relation between exploration and stock. Slade (1982) �nds evidence of a cost curve

that is U-shaped in cumulative production. Tietenberg and Lewis (2000, p. 149) present a

resource model for which the stock cost is linear with cumulative production.

For simplicity, this model employs a stock cost that is linear in the stock variable x (t).

The stock cost cS is

cs (x(t)) = c2 (x0 − x(t)) (3.48)

where c2 is the marginal cost of stock depletion. Note that

x0 − x(t) =

tˆ

0

q(t′)dt′

1Slade (1984) also points out that yield in copper mining depends on price: when the price is

high, more expensive processing is used, which increases the yield.
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so that cS is identical to a cost based on cumulative production.

The net pro�t function is

π (p (q (t)) , q (t) , t) = p (q (t)) · q (t)− c2 (x0 − x(t))

which, for the inverse demand function in Section 3.2, is

π (q (t) , x (t)) = 1− e−Kq(t) − c2 [x0 − x (t)] (3.49)

The derivative of the Hamiltonian is no longer zero

∂H (q (t) , x (t) , t,m)

∂x (t)
= πx = c2 (3.50)

so that, unlike the preceding models, the general form of Hotelling's Rule (3.13)

π̇q (q (t) , x (t) , t)

πq (q (t) , x (t) , t)
= r − πx (q (t) , x (t) , t)

πq (q (t) , x (t) , t)

applies rather than (3.14)

π̇q (q (t) , x (t) , t)

πq (q (t) , x (t) , t)
= r.

With cost based on cumulative production, it is possible for marginal cost to exceed

marginal revenue as the stock diminishes. Again it is necessary to invoke the non-negative

pro�t constraint, but unlike the �xed cost and marginal cost models, this constraint can be

binding.

If production is to halt when cost exceeds revenue, the producer will optimize such that

(3.49) is non-negative at all times. For some values of c2, this can be maintained until the
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stock is physically depleted, and terminal shadow price can be positive. In other cases,

however, this results in production ceasing before the stock is physically depleted, so that

x (T ) > 0. In this case, the transversality condition (3.9) requires that m (T ) = 0.

The �rst order necessary condition for Hq proceeds as for the costless model up to (3.22).

From the �rst order necessary condition for Hx (3.11)

ṁ (t) = rm (t)− c2

or

ṁ (t)− rm (t) = −c2 (3.51)

Solving for the homogeneous part

˙dm (t)

dt
− rm (t) = 0

m (t) = Cert (3.52)

which is equivalent to

m (t) e−rt = C.

Di�erentiating the term on the left

d

dt

[
m (t) e−rt

]
= e−rt [ṁ (t)− rm (t)] (3.53)

Multiplying both sides of 3.51 by e−rt and integrating
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ˆ
[ṁ (t)− rm (t)] e−rtdt = −c2

ˆ
e−rtdt.

Substituting the term in the left integral with 3.53 and integrating the term on the right

ˆ
d

dt

[
m (t) e−rt

]
dt =

c2
r

[
e−rt − 1

]
+ C.

Multiplying both sides by ert

m (t) =
c2
r

[
1− ert

]
+ Cert

Solving for C using the yet-to-be-determined terminal shadow price mT ,

mT =
c2
r

[
1− erT

]
+ CerT

C = mT e
−rT − c2

r

[
e−rT − 1

]
so that

m (t) =
c2
r

[
1− ert

]
+
{
mT e

−rT − c2
r

[
e−rT − 1

]}
ert

=
c2
r
− c2

r
ert +mT e

−rT ert − c2
r
e−rT ert +

c2
r
ert.

and �nally

m (t) =
c2
r

[
1− e−r(T−t)

]
+mT e

−r(T−t). (3.54)
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There are two forms for the terminal Hamiltonian, depending on whether x (T ) = 0 or

x (T ) > 0. For x (T ) = 0, m (T ) > 0, so

H (T ) = 1− e−Kq(T ) − c2x0 −mT q (T ) = 0

which yields

e−Kq(T ) =
1− c2x0

1 +Kq (T )
(3.55)

This has a unique solution for q (T ) given c2, as long as c2 <
1
x0
. This is solved numerically

in GAUSS.

The condition x (T ) > 0 arises because marginal pro�t becomes negative before the stock

is physically depleted. Marginal pro�t going to zero implies also that shadow price of the

next unit of resource is zero. That is, m (T ) = 0, which is the transversality condition for

x (T ) > 0. Pro�t going to zero provides an additional constraint on q (T ),

1− e−Kq(t) − c2 [x0 − x (T )] = 0 (3.56)

The �rst order necessary condition (3.21) implies that, if m (T ) = 0, then e−Kq(T ) = 0, so

that (3.56) becomes

x (T ) = x0 −
1

c2
(3.57)

Clearly, this only holds for c2 ≥ 1
x0
. Thus, c2 = 1

x0
marks the transition between physical

depletion of the stock with a non-zero terminal shadow price, and economic depletion, with

some physical stock remaining and a zero terminal shadow price. That is
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m (T ) > 0 , x (T ) = 0 for c2 <
1
x0

m (T ) = 0 , x (T ) > 0 for c2 >
1
x0

Finally, in this regime, the terminal Hamiltonian is

H (T ) = 1− c2 (x0 − x (T )) = 0

which is satis�ed by the terminal stock level (3.57). Finally, terminal time T is found by

integrating

x0 − x (T ) =

T̂

0

q (t) dt (3.58)

where

q (t) =
1

K
ln

K
c2
r

[1− e−r(T−t)] +mT e−r(T−t)
(3.59)

The numerical solutions for the x (T ) = 0 regime involve solving for q (T ) using (3.55),

computing m (T ) from (3.21), then numerically integrating (3.59) to �nd the T that solves

(3.58) with x (T ) = 0. For the x (T ) > 0 regime, mT is assumed zero, and (3.59) is integrated

to �nd the T that solves (3.58) where x (T ) is found using (3.57). The GAUSS procedures

for solving q (T ) and T and for computing m0, mT , xT , and total pro�t, ΠSCare included in

the Appendices.

On a �nal note, (3.13) implies that the percent change in marginal net pro�t changes

over time, since πx is constant while πq, equation (3.20), is a function of time. The percent

change in marginal net pro�t is positive for
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r >
πx
πq

=
c2

Ke−Kq(t)

percent change in marginal net pro�t is computed from the derivative of πq with respect to

time

π̇q
πq

=
d
dt
Ke−Kq(t)

Ke−Kq(t)
= −Kq̇ (3.60)

where q̇ is the time rate of change in production. This is found by taking the derivative of

(3.21) with respect to time

d

dt
Ke−Kq(t) =

d

dt
m (t)

−K2q̇e−Kq(t) = ṁ

Substituting (3.12) into the left-hand side, and (3.60) into the right-hand side,

−Km (t) q̇(t) = rm (t)− c2

q̇(t) = − 1

K

(
r − c2

m (t)

)
The slope of the production path changes over time, can be positive for some values of

c2, and becomes in�nite when m(T ) is zero. These outcomes have the following economic

interpretations. For a small stock cost, the shadow price increases as the stock is physically

depleted, as before, but the �nal shadow price is lower if the stock cost is higher. At the

critical stock cost, the terminal shadow price is zero and the instantaneous slope of the

production path is in�nite. This re�ects the fact that the opportunity cost of the next unit

of production, were there one, would be zero. For stock costs above the critical stock cost,

the shadow price becomes zero before the stock is physically depleted, with more stock left

at higher stock costs. In this case the opportunity cost of the remaining stock is zero.
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3.7 Oligopoly models

Perhaps the most straightforward de�nition of an oligopoly market is in terms of what

it is not. It is not a monopoly market - there is more than one producer. Nor is it a

perfectly competitive market, if a perfectly competitive market is de�ned as one in which

there is a large number of producers, no one of which can a�ect the market equilibrium

when acting independently. There are only a few ways in which an oligopoly producer can

a�ect equilibrium, however, each depending on the reaction of the rest of the producers

in the market. For example, total pro�t is maximized in a monopoly market, so if all

the oligopolists can agree to hold their combined production to the monopoly level, the

average pro�t per producer is maximum. This is an example of a collusion. At the other

extreme, they can engage in price competition, driving the price down to marginal cost and

eliminating economic pro�t altogether, and possibly driving higher-cost producers out of

the market. This is the outcome of the price-competition, or Bertrand, oligopoly model.

The other possible outcomes are modeled based on quantity competition (Cournot oligopoly

model), market leadership (Stackelburg oligopoly model) or product di�erentiation (Bertrand

oligopoly with product di�erentiation). These models have the distinction of giving the

producers levels of pro�t intermediate between collusion and perfect competition.

Qualitatively, the expectations of an oligopoly market are:

• If the total production path is similar to the monopoly production path, it is a collusive

market

• If total production is high and market price trends down to marginal cost then price

competition is occurring

• If total production is higher than monopoly but lower than price competition, then

there is production-level cooperation (Cournot or Stackelburg) or price competition

with product di�erentiation (Bertrand).
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Table 3.1: Production path comparison.
model q(0) slope qT π̇q/πq

costless
√

2rx0
K

− r
K

0 r

�xed
cost

√
q2T + 2rx0

K
− r
K

> 0* r

marginal
cost

1
K

(
ln K

(K−c1)e−rT+c1

)
− r
K

[
1− c1

K
eKq(t)

]
0 r

stock
cost

c2 <
1
x0

1
K

ln K
c2
r
[1−e−rT ]+mT e−rT − r

K

(
1− c2

rK
eKq(t)

)
> 0** r − c2/πq

c2 ≥ 1
x0

1
K

ln K
c2
r
[1−e−rT ]

− r
K

(
1− c2

rK
eKq(t)

)
→∞*** r − c2/πq

* Solved numerically from (3.34)
** Solved numerically from (3.55)
*** Truncated at qT �∞ by the numerical integration (3.58)

3.8 Summary

This chapter develops optimal control solutions to the production paths for the Hotelling

costless model plus extensions for �xed cost, marginal cost, and stock cost production tech-

nologies. For the inverse demand function in Section 3.2, only the costless model can be

solved in closed form. The others are solved numerically using the parameter values in

Section 3.2.

Table 3.1 compares the production paths for the models in terms of initial production

level q (0), the slope of the production path, the terminal production level qT , and the

percent change in marginal pro�t π̇q/πq. For the �xed cost model, the initial production level

increases with cost. For the marginal cost model, Figure 3.3 shows that initial production

level decreases with cost. For the stock cost model, Figure 3.4 shows that initial production

level also decreases with cost.

For the �xed cost model, the downward slope of the production path is identical to the

costless model. For the marginal cost model, the production path becomes less steep with
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increasing cost. For the stock cost model, the slope also becomes less steep with increasing

cost, becoming positive for c2 > 1/x0. This is illustrated by the curves for starting and

ending shadow price, m(0) and mT in Figure 3.55. Recall that the production path trends in

the opposite direction of the shadow price. In the �gure, shadow price trends upward when

m(0) is below mT , and downward otherwise. Thus, the production path is increasing for

c2 > 1/x0. In all other cases and all other models, the production path trends downward.

Note also that in the stock cost model the shadow price eventually descends to zero as cost

increases, and that at costs above this, the �nal stock reserve is non-zero. These are the

costs at which the stock is economically depleted before it is physically depleted.

For the costless and marginal cost models the ending production level is zero. For the

�xed cost model, Figure 3.1 shows that the ending production level trends upward with

increasing cost, nearly parallel to the starting production level. Thus, despite the fact that

the production path has the same downward slope as the costless model, the production

level starts and ends higher as cost increases. The higher production levels result in more

rapid physical depletion of the stock. For the stock cost model the ending production level

increases from zero as c2 increases, going to in�nity for c2 ≥ 1/x0. Were there a closed-form

solution for this model, an additional capacity constraint would have to be added, but the

numerical solution terminates when cumulative production reaches x0, before reaching the

instantaneous in�nite production level.
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Figure 3.2: The marginal cost model - theoretical values for minimum and maximum pro-
duction for selected marginal costs.
Pro�t is positive whenever the dashed line is below the solid line for a given marginal cost.
For all costs less than 5 (the choke price), pro�t is non-negative in the vicinity of q = 0.
The point where the dashed line crosses the solid line is qmax for that marginal cost. Thus,
pro�t is non-negative over 0 ≤ q ≤ qmax for all marginal costs less than 5, and pro�t is zero
for all marginal costs greater than or equal to 5.
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Figure 3.3: Marginal cost model - numerical solutions for terminal time T.
T is solved numerically from equation (3.46). Initial production level q(0) is solved using T .
Also shown is the production maximum qmax computed from equation (3.41) using the
equality condition. The lower graph shows the production rate of change as a function of
marginal cost, with the arrow depicting the trajectory over time for a speci�c marginal
cost. Also shown in the bottom plot is total pro�t as a function of marginal cost.
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Figure 3.4: Stock cost model - theoretical values for terminal time, initial production level,
starting and ending shadow price, ending stock level, producer pro�t, and user cost as a
function of stock cost.
The top plot shows the numerical solutions for initial production q (0), starting shadow price
m (0) and ending shadow price m (T ) as a function of stock cost parameter c2. The middle
plot shows the numerical solutions for terminal stock x (T ), total producer pro�tΠSC , and
user cost as a function of c2. The bottom plot shows termination time T , percent change
in marginal net pro�t and percent change in marginal net pro�t plus stock cost. This last
value should equal the discount rate (see equation 3.13).
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Chapter 4

The Hotelling Agent-based Models

The mathematical models used in this dissertation for Hotelling's Rule are presented in

Chapter 3. This chapter will present the agent-based models (ABMs) that correspond to

those mathematical models. This will, necessarily, include some discussion of the overall

ABM architecture, as well as some discussion of how the models will behave in simulation.

The details of the simulations will be discussed in Chapter 5. Chapter 6 will tie together the

mathematical models, the ABMs, and the simulation results.

4.1 ABM architecture

There are two general de�nitions of an agent in economics. The principal-agent model

de�nes an agent as someone who acts on the part of another (Varian, 1992, p. 441). In other

cases an agent is de�ned as a self-interested actor with an endogenous state (e.g. income

and wealth), as well as a representation of behavior (e.g. utility function for a consumer,

production function for a producer)1. Though typically implicit in economic models, there

may also be exogenous state variables (e.g. GDP) and behaviors (e.g. a supply or demand

1The term is not de�ned, but de�nition can be inferred from the literature. See, for example,

Hartley (1996).
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function.) In agent-based modeling, the model is a computer program representation of the

agents. In its broadest usage, agent-based modeling also includes computer simulations of a

model in which agents interact via their behaviors and modify their own states, the states of

other agents, or the exogenous state (Epstein and Axtell, 1996, p. 4). Implicit in agent-based

modeling is that the agents are autonomous (Tesfatsion, 2006, p. 843).

In an ABM, it can be assumed that an agent is capable of solving the equations in the

Chapter 3. This is the basis for the computational agent ABMs in Section 4.5. For the

monopolist in a computation model, the initial production level is an initial condition and

the only required behavioral rule is to decrease production such that marginal pro�t increases

by r percent each time period.

The rest of the ABMs used in this dissertation suppose that the producers have no infor-

mation about the demand function itself, each determining autonomously its own optimal

production path. The extent of the resource is known exactly, but the market structure and

demand function are unknown. These are adaptive agents for which the behavioral rule is

a heuristic to continually adjust the production level so that estimated total pro�t is maxi-

mized. Pro�t estimates are based on the observed market response to changes in production

level. In addition to the costless basic models, there are models with non-zero cost which

may be constant (per period), marginal (per unit production) or cumulative (proportional

to the stock level).

4.2 Simulation architecture

The models are constructed and the simulations run using the MASON2 agent-based

modeling and simulation library and framework. They are based on and incorporated into a

set of programs included with MASON to demonstrate the MASON Console environment.

The Console provides a general graphical interface for editing model parameters, running

2http://cs.gmu.edu/~eclab/projects/mason/ (last accessed on 23 May 2011)
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simulations and for viewing model variables as time-series graphs or numerical tables.

The graphical interface for each Hotelling model provides the ability to select a demand

function and one of the various market models, including monopoly and oligopoly variations

of the computation agent model, the adaptive agent costless model, models with di�erent

distributions of initial stock, an overt collusion model, and Monte Carlo ensembles of costless,

�xed-cost, marginal-cost, stock-cost and ad valorem cost monopolies. These models are

described in the following sections. In the oligopoly models, the user is able to change the

number of producers in the market. Once a speci�c demand function and market model has

been selected, the user can change model-speci�c variables, such as the mean and standard

deviation for cost variables and initial stock levels. While running, the simulation displays a

custom window showing real-time plots of current pro�t, current percent change in marginal

pro�t, stock level and production level. Each model optionally writes a �le of key dynamical

variables. These �les were used to produce the plots presented in Chapter 5. Images of the

interface and results windows are included in the Appendices.

Each model has two agent types: a market agent and a producer agent. In a given model

there is a single market agent and one or more producer agents. The simulation is initialized

with Monte Carlo draws to produce values for the stochastic variables, then the simulation

proceeds, one time-step at a time, until all producers have stopped. The producers stop

either because the resource stock level is zero, or pro�t in the current period is negative.3

Because the agents are autonomous, the simulation behaviors are mediated by information

that is communicated between agents, speci�cally between each �rm agent and the market

agent. These exchanges occur as four distinct actions during each time-step, as illustrated in

Figure 4.1. The size of a simulation time-step is arbitrary, though the default discount rate

3In some models, pro�t goes negative even though an alternative production level would produce

positive pro�t. A more advanced heuristic could explore alternative production levels to determine

if this is the case, but the simple heuristic does not. This is not dissimilar to a situation in which

the owner of the resource prefers to shut down leaving a small reserve rather than take the risk of

incurring further negative pro�ts while searching for a pro�table production path.
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is assumed daily and compounds to ten percent per annum. Changing the discount rate, via

the GUI, changes the implied time-step.

4.2.1 The market agent

The market agent, called Market, is assigned a demand function and controls any market

information provided to the producers. For the computational agent models, this means that

the market agent computes the initial production level for each producer. Both the speci�c

market agent and the demand function are user-selectable: changing from one model to

another is simply a matter of changing the market agent and/or the market agent's demand

function. The market agent represents a speci�c market structure and production technology,

for example, there is a costless market agent, a �xed-cost market agent, an oligopoly market

agent and so on.

4.2.2 The producer agent

In contrast, the producer agent, called Firm, is the same for all models. The producer

agent computes pro�t, marginal price, marginal pro�t and the percent change in marginal

pro�t for each time period. This information is used by the producer agent at the beginning

of each time period to compute the production level for the time period. At the end of the

time period, the agent subtracts that production level from the remaining stock, and the

market agent collects the production level, remaining stock, pro�t and costs for the real-time

displays. The user may choose to also write these data to a �le for post-processing.

Although the producer is the optimizing agent, production level computation is done by

the market agent on behalf of the producer agent so that the details can vary depending on

the market model. For example, in the computational agent model, the production path is

in closed mathematical form, while in the rest of the models, a simple heuristic is used for

optimization. The heuristic is described in the following section.
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4.3 A simple optimization heuristic

The �rst step in designing the model is to �nd an optimization heuristic that is as sim-

ple as possible while reproducing plausible behavior. Algorithmic simplicity contributes to

robustness, that is, the ability to produce consistent behavior under the planned variety of

production technologies and market structures. For example, in a tournament of bidding

algorithms, Rust et al. (1992) found that the simplest algorithms consistently beat the more

complex. Another advantage to simplicity is analytic transparency. The di�culty in associ-

ating speci�c outcomes with speci�c behaviors increases as the complexity of the algorithms

increases. From an experimental control perspective, it is also easier to detect, explain and

compute the impact of algorithmic artifacts for a simple algorithm. Algorithmic artifacts

may results from the size of the simulation time-step, the size of changes in production

level, or numerical errors in calculating pro�t, cost or production level changes. A possible

added bene�t of a simple algorithm is shorter computation times, since proper Monte Carlo

sampling calls for large numbers of simulations.

The core of the heuristic is a simple estimation of the present value of total pro�t over

the lifetime of the resource. The heuristic uses the pro�t estimation in two di�erent ways,

depending on the phase of the simulation. The phases are:

1. Increase production level from zero until the estimated present value of total pro�t

begins to fall. This is called the ramp-up phase. This phase begins at time zero and

is repeated at every time step until the heuristic determines that production is on or

near the optimal production path.

2. Estimate the present value of total pro�t in each time period based on the three

candidate strategies: increase production, reduce production, or maintain current pro-

duction. The strategy that yields the highest present value total pro�t is implemented.

This is the optimization phase. The phase begins once the heuristic is on or near

the optimal production path, and is repeated every time step for the lifetime of the
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resource.

Each phase encompasses a number of time-steps. The ramp-up phase is not intended to

simulate a real-world process, but it is a way for the heuristic to reach an e�cient initial

production level autonomously. The ramp-up phase provides an opportunity to estimate

marginal pro�t for use by the optimization heuristic. The increments in production level

during the ramp-up phase are coarse in order to keep the phase brief, but the coarseness

makes it unlikely that an agent will reach the theoretically optimum production level exactly.

This introduces a source of error that is useful in exploring the consequence of setting the

initial production level sub-optimally.

For both the ramp-up phase and the optimization phase, future pro�t is estimated for

three strategies, one with constant decreasing production, one which maintains the current

production level, and one with constant increasing production. The decreasing strategy

assumes a constant decrease of ∆q∗ each time-step, which will produce a straight-line de-

creasing production path that goes to zero when the resource stock is physically depleted.

This is a simple geometric calculation that uses only information available to the agent. The

increasing strategy assumes a constant increase per period that is one percent of the pro-

duction level in the current period. This, too, is a simple calculation using only information

available to the agent. The one percent increment is arbitrary, it is intended to be small, thus

preventing large swings in production level. It is also advantageous that it be di�erent in

magnitude from the decreasing strategy, reducing the likelihood of non-damping oscillations.

4.3.1 The use of discrete summations

The following sections present the calculations used by the agents to determine the best

optimization strategy. In contrast to the integrals presented in Chapter 3, these are discrete

summations, and the derivatives are all discrete (e.g.∆q, ∆p, ∆π). This re�ects the fact that

the simulation itself employs discrete time. A producer agent has very little information

and estimates future pro�t by counting up the discounted pro�t per period until the stock
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is physically depleted. Further advantage is taken of the fact that the producer agent's

strategies all assume constant changes to the production level ∆q, so that the amount of the

change itself comes out of the summations.

Just as the continuous solutions presented in Chapter 3 would serve as the limits on dis-

crete theoretical models, they provide the limits on the ABM results as well. Furthermore,

the continuous solutions provide insights into the qualitative e�ects of parameters, such as

initial stock and costs, that otherwise may be obscure in the descrete theoretical models.

Finally, the potential exists in the ABMs to decouple the planning period and the produc-

tion period, producing daily but planning quarterly, for example. Ultimately, however, the

continuous solutions set the theoretical limits on the simulation results.

4.3.2 The heuristic algorithm

Estimated discounted total pro�t is computed with all production in the future and pro�t

discounted accordingly. For a costless model, the total pro�t calculation is the summation

Πτ =
τ−1∑
i=0

qipi (1 + r)−i

where

Πτ = estimated total pro�t

qi = production level in period i

pi = price in period i

r = discount rate

τ = remaining lifetime of the stock
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With a constant change in production level 4q � which can be negative, positive, or zero

� the production level in period i is

qi = qn + i4q

where qn is the base production level, meaning the production level at the time the estimate

is being computed, and i enumerates the production periods into the future. The choice of

value for 4q is discussed at the end of this section. The production period i starts at zero

for the current production period n. Because the inverse demand function is unknown to

the agent, price is estimated based on the most recent marginal price

pi = pn +4qi
(
4p
4q

)
i−1

where pn is the price in the current period, and

(
4p
4q

)
i−1

=
pi−1 − pi−2
qi−1 − qi−2

(4.1)

is the estimated marginal price based on price and production level changes between the

previous two periods. Estimated future pro�t becomes

Πτ (4q) =
τ−1∑
i=0

(qn + i4q)
[
pn + i4q

(
4p
4q

)
i−1

]
(1 + r)−i

= qnpnA+4q
[
pn + qn

(
4p
4q

)
i−1

]
B + (4q)2

(
4p
4q

)
i−1

C (4.2)

where

A =
τ−1∑
i=0

(1 + r)−i =
1 + r

r

[
1− (1 + r)−τ

]
(4.3)
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B =
τ−1∑
i=0

i (1 + r)−i =
1

r

[
A− τ

(1 + r)τ−1

]
(4.4)

C =
τ−1∑
i=0

i2 (1 + r)−i =
1

r

[
2B + A− τ 2

(1 + r)τ−1

]
(4.5)

The lifetime of the remaining stock comes from the constraint that total production equal

total current stock

xn =
τ−1∑
i=0

(qn + i4q) = τqn +4q τ (τ − 1)

2

τ =
−
(
qn − 4q2

)
±
√(

q − 4q
2

)2
+ 2xn4q

4q
(4.6)

where xn is the reserve stock in the current period. There exists some minimum constant

production change ∆q∗ for which the total remaining stock is exhausted, at which point

production goes to zero. For a given current production level qn and stock level xn, there is

only one ∆q∗ and one τ that satis�es this. The lifetime in this case is constrained by

qn +
τ−1∑
i=0

∆q∗ = 0 (4.7)

and the constraint that total production equal the current stock by

τ−1∑
i=0

(qn + i∆q∗) = xn (4.8)

Solving (4.7) for ∆q∗ and substituting into (4.8)

τ =
2xn
qn
− 1 (4.9)



Chapter 4. The Hotelling Agent-based Models 73

Substituting this back into (4.7),

∆q∗ = − q2n
2xn − qn

(4.10)

This is the lowest (most negative)4q that will result in a straight-line decreasing production

path for which production goes to zero as the stock is physically depleted. This also satis�es

the constraint that the term in the radical in (4.6) be non-negative.

4.3.3 The inverse demand function and its parameters

For all of the ABMs discussed in this dissertation, the inverse demand function from

Hotelling and discussed in Section 3.2 is used. The parameter values from Section 3.2 are

also used in every simulation. As a consequence, any two graphs throughout this disser-

tation can be compared to assess the impacts of the respective production technology or

market structure. Although the simulations are, by necessity, numerical, it is hoped that

this similarity produces results that are qualitatively general, given the demand function.

4.4 Monopoly models

Initially, consistent with Hotelling, costless production is considered. The introduction of

nonzero cost will be presented in Section 4.7. In the computational agent models, production

decisions are based on optimization constrained by the inverse demand function. That is,

the producer agent implements the theoretical optimal control solution. In the adaptive

agent models, production decisions use a heuristic that estimates future pro�t as described

in Section 4.3.

The theoretical maximum pro�t is shown in (3.32). The equivalent summation expression

is
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Πmax =
T−1∑
i=0

(
1− e−Kqi

)
(1 + r)−i =

1 + r

r

[
1− (1 + r)−T

]
− (1 + r)−T − e−rT

er (1 + r)−1 − 1
(4.11)

With the values given in Section 3.3, the discrete Πmax = 358.53, as compared to the

continuous Πmax = 358.33, the di�erence being due to numerical errors. In practical terms,

the monopoly models are special cases of the oligopoly models, so simulation results of the

monopoly models are discussed in their respective oligopoly sections in Chapter 5.

4.5 The computational agent model

The computational agent models are used to benchmark the adaptive agent models. That

is, these models are only used to show the theoretical optimal control solution as it would

be implemented by perfectly optimizing agents. These are not behavioral models per se:

the agents compute the production path using the solution to the constrained optimization

equations. Because they are not adaptive, the computational agent models are extremely

sensitive to numerical errors in simulation, as will be shown in Section 5.5.

In the computational agent models, the agent computes the �rst-period production level

from (3.29). The agent has only two behavioral rules:

1. Adjust the production level to increase the marginal pro�t each period at the interest

rate. For the demand function in Section 3.2, this is equivalent to reducing production

by r/K (3.31).

2. Maintain the production level above zero until the stock is depleted.

The second rule is necessary because of numerical errors and the discrete nature of agent-

based simulation. That is, since the resource-owner is adjusting quantity on a per-period

basis (as opposed to continuously), the production level may reach zero while there is stock
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remaining. This is prevented by foregoing the reduction in a given period if the amount

reduced is greater than or equal to the current production level until there is no stock

remaining. Because these simulations have �ne granularity (time step size is one day), this

will typically only a�ect the �nal period. This is not entirely an artifact of simulation,

however: end of life considerations may a�ect real-world production decisions if planning

periods are long. In these cases, Hotelling's Rule behavior may not be evident at end of

life even if all other conditions are met. Aside from the terminal boundary condition, the

production path should be nearly identical to the optimal (3.26) and total pro�t within

numerical error of the theoretical maximum (3.32).

4.6 The adaptive agent models

All of the models except the benchmark computational agent models are adaptive agent

models. In the adaptive agent models, the agent has no knowledge of the demand function,

and can only infer it from the observed behavior of the market. Namely, the change in

price that results from changes in the production level. The agent has two behavioral rules,

corresponding to the two phases of the heuristic:

1. In the ramp-up phase, increase the production level from zero until estimated total

pro�t begins to decrease. The default ramp-up rate is an increase of 0.01 units of

production per period.

2. In the optimization phase, in each period, each agent estimates total pro�t based on

the three production strategies, then executes the strategy that maximizes estimated

total pro�t.
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4.7 Production technologies with nonzero cost

The production technology models with nonzero cost are the costless adaptive agent

models with a nonzero cost term. This does not require a change in the producer agents,

which are implemented with cost variables, all of which were zero for the costless adaptive

agent model. Since revenue may now become less than cost, the behavioral rules are modi�ed

to avoid negative pro�ts. This is discussed in Chapter 5 with regard to speci�c cost functions.

4.7.1 Fixed cost model

Recall from Section 3.4 that, for the �xed cost model, there is a minimum production

level qmin below which pro�t is negative. For the discrete calculations used by the heuristic,

the constraint (4.7) becomes

qn +
τ−1∑
i=0

∆q∗ = qmin (4.12)

which, when substituted into equation (4.8), means that equation (4.10) becomes

4q∗ =
q2n − q2min

2xn − qn + qmin
(4.13)

This is the largest possible reduction in production that results in a straight-line decreasing

production path that reaches qmin at the moment the stock is physically depleted. The

adaptive agent heuristic determines qmin by increasing production starting from zero and

recording the production level at which pro�t becomes positive.

The estimate of future pro�t is
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ΠFC
τ = ΠNC

τ − c0
τ−1∑
i=0

(1 + r)−i

= ΠNC
τ − c0A

where ΠNC
τ is the no-cost future pro�t estimate (4.2) and A is from (4.3).

A �xed cost does not appear in πq or πx, so according to equation (3.13), there is no e�ect

on the optimal percent change in marginal pro�t. The optimal production path is a�ected,

however, since the initial production level q(0) and the terminal production level qT both

increase with cost, as shown in Figure 3.1.

4.7.2 Marginal cost model

With no minimum production level constraint, the marginal cost model is identical to

the costless model. The change comes in the estimate of future pro�t

ΠMC
τ = ΠNC

τ − c1
τ−1∑
i=0

(qn + i∆q) (1 + r)−i

= ΠNC
τ − c1

[
qn

τ−1∑
i=0

(1 + r)−i + ∆q
τ−1∑
i=0

i (1 + r)−i
]

= ΠNC
τ − c1 (qnA+ ∆qB)

where ΠNC
τ is the costless future pro�t estimate (4.2) and A and B are from equations (4.3)

and (4.4).

4.7.3 Stock cost model

With the addition of a stock cost as in (3.48), the future pro�t estimate becomes
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ΠSC
τ = ΠNC

τ −
τ−1∑
i=0

c2 (x0 − xi) (1 + r)−i

= ΠNC
τ − c2x0

τ−1∑
i=0

(1 + r)−i + c2

τ−1∑
i=0

xi (1 + r)−i

= ΠNC
τ − c3

τ−1∑
i=0

(1 + r)−i + c2

τ−1∑
i=0

(xn + ∆xi) (1 + r)−i (4.14)

where c3 ≡ c2x0. The discrete form of equation (3.6) is ∆x = −q. Assuming that q is

changing by the constant increment ∆q, then ∆xi = − (qn + i∆q). Now, (4.14) becomes

ΠSC
τ = ΠNC

τ − (c3 − c2xn)
τ−1∑
i=0

(1 + r)−i − c2
τ−1∑
i=0

(qn + i∆q) (1 + r)−i

= ΠNC
τ − (c3 − c2xn + c2qn)

τ−1∑
i=0

(1 + r)−i − c2∆q
τ−1∑
i=0

i (1 + r)−i

= ΠNC
τ − [c3 − c2 (xn − qn)]A− c2B∆q

where ΠNC
τ is the costless future pro�t estimate (4.2) and A and B are from (4.3) and (4.4).

4.8 Other sources of uncertainty

If the producer is not certain of the extent of the resource x0, the consequent error in

the lifetime of the stock will a�ect estimates of future pro�ts. This, in turn, may a�ect the

production strategy selected by the heuristic outlined above. Although the heuristic can

adjust the rate of change as the stock is depleted, the total pro�t is sensitive to an error in

the initial production level. An initial quantity that is too high will, in general, result in

the resource being depleted too quickly, leaving unrealized pro�t in the future. An initial

quantity that is too low will, in general, result in the resource being depleted too slowly,

with unrealized pro�t in the present.
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Errors in initial stock level, or initial reserves x0, are similar to errors in the initial

production level, so Monte Carlo sampling in the neighborhood of the initial production level

will give an indication of sensitivity to errors in x0. The relation between initial production

level and initial stock is given by equation (3.29). The coarseness of the heuristic strategy

serves as a proxy for errors in computing optima, including errors in x0. This is illustrated

in the discussion in Section 5.5.

Other sources of uncertainty in the interest rate, in the demand function, and in the

production technology cost function could be explored in a similar manner. Uncertainty

in the demand function can take on various forms, the simplest being random errors in

constants and systematic errors in functional form. In the former, a su�ciently large sample

reveals a constant variance while, in the latter, a large sample reveals variance that changes

over the range of production. Uncertainty enters the cost function in ways similar to the

demand function.These issues are beyond the scope of this dissertation.
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Figure 4.1: The details of a time-step
The dashed box represents a single simulation time-step, during which four distinct actions
mediate the exchange of information between each producer agent and the market agent.

Each producer 
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a production level

Initialization

The market sums
total production

and sets the price

Any producers
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Done

The market
documents 

total production, 
price, profits, etc.
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marginal price
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No
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Chapter 5

The Hotelling Simulations

The mathematical models for Hotelling's Rule are presented in Chapter 3. The corre-

sponding ABMs are described in Chapter 4. This chapter will present the simulation results

and discuss their characteristics. The discussion of how the simulation results compare with

the theoretical models is saved for Chapter 6, which will tie together the mathematical

models, the ABMs and the simulation results.

The ABMs are oligopoly models for which the monopoly results are special cases. The

oligopoly ABMs have one market agent and one or more producer agents, depending on

the number of producers in the market. The number of producers is a user-set variable

in the GUI. In all oligopoly models except the explicit collusion model, each producer is

unaware of the others. In terms of the ABM architecture, this is done by not providing any

communication between producer agents.

The ensemble models are models in which there are multiple producer agents and multiple

market agents. Each pair of producer agent and market agent behaves like a monopoly with

dedicated stock and a dedicated market. Ensembles are a way to collect data about large

number of monopolists while running only one simulation. In these models, the monopolists

are all di�erent because each one has been given production technology cost parameters

drawn at random from statistical distributions. This method of mapping the parameter space
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onto the outcome space is called Monte Carlo sampling. Monte Carlo sampling is preferred

to stepping over the range of values in regular intervals, which can produce spurious trends

that are artifacts of the size of the interval. Also, by sampling at random intervals, the

Monte Carlo technique is less likely to skip over small intervals in which there are unusual

outcomes.

The �rst sections will discuss the costless oligopoly models. The monopoly model for

each production technology is presented as an oligopoly with one producer. The following

sections will address the ensemble models. The last section will examines the e�ciency of

the heuristic by introducing intentional error into the initial production level.

The models in Sections 5.1 and 5.2 are intentionally wrong. In these models the pro-

ducer always behaves as though it is a monopoly market, even though the models include

oligopolies of two to six producers. The object is to compare the erroneous results from the

computational agent models and those of the adaptive agent models. The total discounted

pro�t is compared of each model is compared with

5.0.1 The inverse demand function and its parameters

Recall from Chapter 4 that all ABMs use the inverse demand function from Section 3.2.

Similarly, the parameter values for all simulations in this chapter are from Section 3.2. The

graphs in the chapter can be compared directly, so that, given the demand function, the

qualitative di�erences - in terms of the relative impacts of di�erent technologies and the

e�ect of added producers - can be stressed.

5.1 The computational agent models

In the computational agent model, only the costless model is presented, since the produc-

tion path cannot be solved in closed form for the production technologies with nonzero cost.
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The computational agent model serves two di�erent purposes. The monopoly computational

agent model reproduces the theoretically optimal production path and is a benchmark for

the adaptive agent models. The oligopoly computational agent models, on the other hand,

represent the worst case, meaning the greatest possible error an optimizing agent is likely to

make in the presence of competitors. Recall that the producer agents in these models are

unaware of each other, and each producer agent sets a production plan as though it were a

monopoly market. The computational agents set the initial production level based on there

being no other product in the market. This is wrong by a factor of the number of producers

in the market. The adaptive agents, however, revise the production plan in each period and,

as a result, the production paths converge toward the optimal for the respective market size.

Figure 5.3 shows the time-series results of simulations of the monopoly and oligopoly

computational agent models with from two to six producers. The theoretical optimum is

shown as the heavy solid line. With only one producer, which is following the theoretically

optimum production path, the theoretical and monopoly ABM curves are identical, as ex-

pected. All models have identical production paths because all computational agents set

the production path based on the optimal control solution for a monopoly. In all cases, the

monopoly curve is completely obscured by the theoretical optimum curve.

Output per producer is identical in each model, so total production in the oligopoly

models is equal to the production level in the monopoly model times the number of producers.

The price curves re�ect the higher levels of production as the number of producers increases

in each model. The percent change in marginal pro�t scales with the number of producers,

as well. This is a consequence of each producer optimizing under the assumption of being

a monopoly. The percent change in marginal pro�t for the monopoly model is equal to the

discount rate, while it is the discount rate times the number of producers in the oligopoly

models. Finally, producer pro�t decreases with the number of producers, re�ecting the lower

prices with higher total production levels. In essence, these results are showing that, with an

incorrect assumption about the market structure, an agent that strictly follows Hotelling's

Rule performs very poorly. The following section will show how an adaptive agent, which
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appears to follow Hotelling's Rule when the conditions are optimal, is also able to make

production path corrections that reduce the penalty for an incorrect assumption of the

market structure.

5.2 The adaptive agent models

As discussed in Section 4.6, the adaptive agents use a simple heuristic to select an opti-

mal production path. Figure 5.4 shows the the time-series results from the adaptive agent

model corresponding to the computational agent model in Section 5.1. In these models, each

producer has the same beginning stock. Unlike the computational agent model, where the

production path is �xed for all producers, the heuristic leads to di�erent production paths

depending on the number of producers in the market. This is a results of each producer

agent using an estimate of the marginal price (4.1) based on assuming that the entire mar-

ket response was due to that individual's production changes. The production path shows

the error due to the coarseness of the ramp-up production increases. The monopoly curve

starts somewhat above the Hotelling's Rule curve, and ends somewhat before. The heuristic

stopped the ramp-up phase at the �rst time-stamp in which the decreasing strategy was

most pro�table, but the large ramp-up increase in production caused it to over-shoot the

optimum. Note that the price curves fan out, unlike the convergence to the choke price seen

in Figure 5.3. This is a result of the daily Bayesian updates which allow the heuristic to

adapt to changes in the market due to all the producers, even though the producers are

unaware of each other. The percent change in marginal pro�t ∆πq/πq is 3.03× 10−4 for the

monopoly producer, which is somewhat higher than the optimum of 2.61 × 10−4. This is

also an artifact of the coarseness of the ramp-up increments, which place initial production

above the optimum, permitting a steeper rate of decrease over the lifetime of the stock. As

the ramp-up increment is decreased, the error is reduced somewhat, but persists because of

the discrete time steps of the simulation.

The ∆πq/πq curve in Figure 5.4 reveals that, for N=4, 5 and 6, the producers alter-
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Table 5.1: Comparison of the computational agent models and the adaptive agent models
(∆πq/πq values are multiplied by 10,000).

computational
agent models

adaptive
agent models

N Πtotal ∆πq/πq Πtotal ∆πq/πq

Theoretical optimum 358.53 2.61 358.53 2.61
Monopoly 1 358.07 2.61 357.82 3.04
Oligopoly 2 306.31 5.22 313.16 2.82
Oligopoly 3 265.42 7.83 283.17 2.71
Oligopoly 4 232.72 10.43 258.51 1.83
Oligopoly 5 206.23 13.04 240.41 1.86
Oligopoly 6 184.51 15.65 225.36 1.89

nated between the decreasing strategy and the constant production strategy for the �rst

approximately 100 days. For the monopoly producer, total discounted pro�t is within a

few hundredths of a percent of the optimum 358.53. Table 5.1 compares the total pro�t

and percent change in marginal pro�t ∆πq/πq for the computational agent model and the

adaptive agent model. Note that, for N=6, the computational agent model achieves only 51

percent of optimal pro�t, whereas the adaptive agent model captures nearly 63 percent of

optimal pro�t.

These models illustrate that it is less costly to mistakenly assume monopoly market power

under heuristic optimization than when applying Hotelling's Rule explicitly. No real-world

producer is likely to be unaware of competitors. Rather, these models serve as a worst case

proxy for errors in assumptions about market structure in general. The simulation artifacts in

the adaptive agent model are not unlike errors that are likely to happen in reality. Real-world

production planners may be subject to uncertainty in stock or interest rates. or stickiness

in wages or prices.
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5.2.1 A pooled-stock oligopoly model

For the adaptive agent models in Section 5.2, each producer agent is endowed with x0

initial stock. For example, the total stock in the N=6 model is 6x0. For the models in this

section, the total stock is constant as the number of producers increases. For a duopoly,

each producer begins with a stock of x0/2, and with ten producers, each producer begins

with a stock of x0/10. This model is slightly di�erent from the previous in two ways. First,

the ramp-up increment is divided by the number of producers, and second, initial stock

levels are given a small random variation. The ramp-up increment is scaled because, with an

initial stock of x0 the default increment of 0.01 is small compared with the optimal starting

production level of 0.1022. For an initial stock of x0/5, however, an increment of 0.01 is large

compared with the starting production level of approximately 0.01. The random variation is

introduced to avoid any artifacts due the ratio between total stock and ramp-up increment.

The adaptive agent duopoly production path in Figure 5.5 re�ects a collusion-like out-

come, as do models for N=3 and N=4. That is, the adaptive producer agents arrive at a

collusive market structure using only the optimization heuristic. For an oligopoly of �ve

producers, however, something completely di�erent occurs, as seen in Figure 5.5. In this

model, after the ramp-up phase, some producers begin reducing production while others

continue unchanged.

This behavior is an emergent property of the heuristic. Initially, the total stock of 100 is

distributed among the �ve producers in near equal amounts, with small random deviations.

In this model, the initial stock allocations are 20.11, 20.09, 19.90, 19.88, and 20.02 for

Firm 1 through 5, respectively. These sum to 100, as in all the pooled-stock models. The

�ve �rms begin the ramp-up phases together, and all �ve reach the optimal production

path aver 53 iterations. At this point, Firms 1 and 2, with the largest allocations, select

a decreasing strategy, while the rest of the �rms select zero change strategies. That an

individual producer chooses a �at production strategy is not unexpected, as shown by the

small steps at the beginning of the percent change in marginal pro�t curves in Figure 5.4.
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This shows that the estimate of total pro�t is sensitive to small di�erences in total reserves

for this particular disitribution of stocks. The smaller producers �nd the level production

path optimal because the decreases in production by the two largest producers cause price

increases that are su�cient for the remaining producers to estimate increasing pro�ts at

constant production levels. That is, Firms 3, 4, and 5 are self-optimizing to higher total

production than the collusive outcome (as per Cournot-Nash equilibrium) by maintaining

constant production levels while Firms 1 and 2 decrease theirs.

The results for adaptive agent models with from one to ten producers are shown in Figure

5.6. For a single producer, this model is e�ectively identical to the monopoly producer in

Figure 5.4. As the number of �rms increases, the production paths present evidence of what

Hotelling calls the �retardation of production under monopoly� (Hotelling, 1931, sec. 7) in

that the lifetime of the stock decreases as the number of producers increases. The models with

�ve, seven and ten producers show the Cournot outcome, while the rest show the collusion

outcome. All of these models appear to reach the theoretically optimal pro�t. These models

show that total collusion-level pro�ts are not necessarily and indicator of collusion. Note

also, in Figure 5.6, the discontinuities in the percent change in marginal pro�t curves where

producers change strategies at the end stock life.

5.2.2 Accuracy and precision of the heuristic

The artifacts discussed in the preceding two sections beg the question of errors in the

heuristic ramp-up and their impact on total pro�t. Figure 5.1 shows the simulation results

from �fty Monte Carlo samples of the adaptive agent monopoly model. For each simulation,

the �fth ramp-up increase was given a small adjustment ε ∼ N (0, 0.00001). The left-hand

plot shows the relationship between optimal initial production level and total pro�t. The

upper curve represents samples which reached the ramp-up cuto� on the ninth day, the lower

curve on the tenth day. The lower curve is essentially an extension of the upper: at the far

right-hand side of the upper curve, it is no longer optimal to end ramp-up on the ninth
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Figure 5.1: Monte Carlo samples of heuristic outcomes.

day, so the next increment is to end ramp-up on the tenth day at the far left-hand end of

the lower curve. The day on which ramp-up ends a�ects total pro�t in that the fewer days

lost to non-optimum ramp-up production levels, the higher the total pro�t. The curves end

abruptly at the low end because any lower sample ended ramp-up on the previous day. The

right hand plot shows the relationship between percent change in marginal pro�t and total

pro�t. The distribution of points is nearly identical, re�ecting a nearly linear relationship

between initial production level and the percent change in marginal pro�t. From Hotelling's

Rule, maximum pro�t should occur for an initial production level of 0.1022 and a percent

change in marginal pro�t of 0.000261. The curves peak very near these values. The key

outcome of these plots is that the distributed error in the heuristic initial production level

results in a error range of 0.45 out of about 358, or less than 0.14 percent.

Figure 5.1 also illustrates the impact of error in the estimate of x0. According to equation

(3.29), a one percent error in x0 translates into a one-half percent error in initial production

q0, and from equation (3.32), that, in turn, translates into an error of 0.84 percent in the

theoretical maximum pro�t. For the heuristic, however, Figure 5.1 shows a 10 percent error

in q0 leading to a 0.11 percent error in total pro�t. This is almost two orders of magnitude

less impact than theory predicts. The heuristic lessens the impact on total pro�t from an



Chapter 5. The Hotelling Simulations 89

underestimate of the stock by making Bayesian updates to the production level in each

time-step.

5.3 A collusion model

The collusion model is an extension of the pooled-stock model in Section 5.2.1. This is

the only one in which the producer agents communicate with each other. The initial stock is

divided among the producers with small random �uctuations, as discussed in Section 5.2.1.

The producer with the greatest stock is considered the market leader. The market leader

has the same behaviors as the producers in Section 5.2.1, assuming that it is in a monopoly

market. At the point in a time-step when the producers decide on a production level (see

Figure 4.1), all the follower producers mimic the leader's production changes, scaled by their

relative stock levels. See Figure 5.7.

This model does not address issues associated with cheating in a collusive market, but

cheating is a simple extension of the current model. The ability for producers to cheat would

be introduced at the point of the calculation to scale the leader's production changes. For

a cheating follower, this could be a small increase above the scaled production share. For

a cheating leader, it would be a matter of the leader communicating one production level

change and implementing another.

5.4 Nonzero-cost models

Three cost functions are examined: a �xed (per day) cost, a marginal (per unit) cost, and

a stock (cumulative production) cost. The possibility that cost may exceed revenue imposes

the following expansions of the behavioral rules (changes in italic):

1. In the ramp-up phase, increase the production level from zero until estimated total
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pro�t is positive and begins to decrease.

2. In the optimization phase, in each period, estimate future pro�t based on the three pro-

duction strategies, then execute the strategy that maximizes future pro�t. Production

ceases if pro�t becomes negative.

For the �xed cost and marginal cost models, the non-negative pro�t restriction only comes

into play when cost exceeds any feasible level of revenue, in which case the ramp-up phase

ends with negative pro�t and the simulation terminates. In stock cost models, however,

cost increases over time, and may exceed any feasible level of revenue before the stock is

physically depleted. This is explored further in the section on the stock cost model.

For the inverse demand function in Section 3.2 there are no closed-form optimal control

solutions when marginal or cumulative costs are included. The adaptive agent heuristic,

however, considers only per period pro�t, marginal pro�t and marginal price. Qualitatively,

Monte Carlo sampling should show a trend toward the costless behavior as cost decreases.

That is, for the �xed and marginal cost models, percent change in marginal pro�t should

approach equation (3.14). For the stock cost models, percent change in marginal pro�t

should approach equation (3.13).

5.4.1 Fixed cost model

The �xed cost model is the pooled-stock adaptive agent model with a �xed cost c0 ∼

N (0.012, 0.0016) truncated such that c0 ≥ 0. The mean and standard deviation were chosen

such that ±3σ = 0.24 spans the revenue range of the heuristic's �rst six ramp-up iterations

based on equation (3.19), which is now revenue rather than pro�t. Time-series plots for

�fty Monte Carlo monopoly simulations are shown in Figure 5.8. For many of the samples,

the heuristic selects the �at production level strategy, resulting in a zero percent change

in marginal pro�t until the �nal few time-steps. In other samples, the heuristic selects the

decreasing strategy followed by a �at strategy, resulting in percent change in marginal pro�t
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curves that sweep upward then fall to zero. The diamonds in the percent change in marginal

pro�t plot indicate sharp spikes (to several hundreds on the scaled y-axis), indicating that

the heuristic selects a rapid taper down to zero production over the �nal two or three time-

steps as stock reaches physical depletion. Note that optimal percent change in marginal cost

is 2.6 in this graph.

The heavy dashed line in the production path plot indicates theoretical qmin from equation

(3.33). This is the envelope for optimal terminal production levels.

The results of the Monte Carlo monopoly simulations are summarized in Figure 5.11.

Note that the results cluster based on the heuristic qmin, and that qmin is in multiples of

0.01. This is because 0.01 is the default ramp-up production change and qmin is recorded by

the heuristic during the ramp-up phase. The inset graph compares the heuristic values for

qmin with the theoretical values from (3.33). The graphs show a distinct trend in percent

change in marginal pro�t with regard to �xed cost. The dashed lines are the theoretical

values discussed in Section 3.4.

5.4.2 Marginal cost model

The marginal cost model is the costless model with a constant marginal cost c1 ∼

N (1.0, 0.110889) truncated such that c1 ≥ 0. The time-series data for the marginal cost

model are shown in Figure 5.9. The plot shows only three unique production paths because

the initial value is weakly dependent on marginal cost, and the step size in the ramp-up

heuristic is much greater than the variations between starting production levels. The time-

series data also reveal that percent change in marginal pro�t is always close to the optimal

2.6, and trends toward it in the course of the simulation.

The results from �fty Monte Carlo monopoly simulations are shown in Figure 5.12. In

these models, percent change in marginal pro�t is sensitive to the initial production level.

A percent change in marginal pro�t below optimum implies that the initial production level
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is too low, preventing the heuristic from optimally reducing production each time step.

Similarly, a percent change in marginal pro�t above optimum implies an initial production

level that is too high. In all cases, the percent change in marginal pro�t trends downward.

5.4.3 Stock cost model

The stock cost model is the adaptive agent model with pooled stock. In this model,

the optimum production path can be either decreasing or increasing over time, depending

on the value of the stock cost parameter c2. Also, for higher values of c2 it is expected

that production will stop before the stock is physically depleted. These characteristics are

discussed in Section 3.6.

Before Monte Carlo sampling the parameter space, it is instructive examine the classes

of behavior anticipated. Figure 5.10 shows a time-series plot for �ve representative values

of stock cost. The stock cost parameter c2 is shown as �sc� in the legend. The zero cost

model is included for comparison and is identical to the costless monopoly model in Section

5.2.1. The model with c2 = 0.001 is included to show the deviation of a small cost from the

costless model. The model with c2 = 0.005 is included to show the behavior in the vicinity

of transition from decreasing production to increasing production discussed in Section 3.6 in

the discussion of Figure 3.4. The model with c2 = 0.010 is 1/x0, which is the cost at which

the producer will begin to leave some of the stock unproduced as discussed in Section 3.6,

and the model with c2 = 0.013 is included to show the behavior well into the regime for

which the physical stock is greater than zero when production stops.

Interesting to note here is that, for small stock cost (much less than 0.10) or large stock

cost (signi�cantly greater than 0.10), the production paths are fairly smooth. In the vicinity

of 0.10, however, the heuristic makes frequent changes resulting in a highly volatile percent

change in marginal pro�t. The percent change in marginal cost plot has been smoothed

with a boxcar length of 100 days. Note also that, for smaller stock costs, the percent change

in marginal pro�t turns toward negative in�nity very quickly, and, at least for 0.005, and
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then comes down from positive in�nity thereafter. This arises because, in this period, the

production level is very close to the zero marginal pro�t regime. Marginal pro�t appears

in the denominator of percent change in marginal pro�t, hence the switch between negative

and positive in�nity as marginal pro�t crosses through zero.

Figure Figure (5.13) shows the outcome space results from 50 Monte Carlo samples with

stock cost taken from c2 ∼ N (0.01, 0.000016), truncated such that c2 ≥ 0. Very little can

be drawn from the percent change in marginal pro�t plot other than to note, as in the time-

series plot, that percent change in marginal pro�t can be highly dynamic. The pro�t and

user cost plot shows that the heuristic is near optimal at zero stock cost and when stock

cost is 0.10. The error in the heuristic is especially large in the range between zero and

0.10. The initial production level plot provides a clue as to why: initial production levels

are consistently too high, resulting in lower pro�ts and an ine�ciently rapid reduction in

stock. Finally, the upper right plot shows the consequences: a much shortened lifetime for

stock costs below 0.10, and too much stock left unexploited for stock costs above 0.10. The

dashed lines are the theoretical values, as discussed in Section 3.6.

5.5 Theoretical e�ciency

To put the foregoing results into perspective, Figure 5.2 shows the e�ect of error on the

theoretical costless model. These are families of curves of total net pro�t from the theoretical

costless monopoly model in Section (3.3). The initial production level q0 is varied plus or

minus 15 percent about the optimum of 0.1022. The production path slope is also varied so

that percent change in marginal pro�t varies plus or minus 15 percent about the optimum

of 2.61× 10−4.

The widely spaced diagonal lines (on the left in the left �gure, on the right in the right

�gure) result from the initial production level being so low that the downward slope of the

production path reduces production to zero before the stock is physically depleted. This
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represents a gross error in production planning and not one likely to be seen in real-world

applications.

The closely spaced nearly horizontal lines in both �gures (on the right in the left �gure,

on the left in the right �gure) represent the performance of the Hotelling Rule optimal

production path under slight deviations in q0 and ∆πq/πq. The inverted triangles point to

the optimal control solution. The close spacing of these lines is an indication that, even for

the theoretical solution, there is only a small penalty for small errors in initial production or

the slope in the production path. That is, although Hotelling's Rule is the optimum, total

discounted pro�ts are only weakly a�ected from small deviations from Hotelling's Rule.

There is less than one percent error in pro�t for errors of plus on minus twenty percent in

initial production and plus or minus ten percent in percent change in marginal pro�t.

Figure 5.2: Errors in the computational agent model.
The optimal initial production level and optimal π̇q/πq are indicated with an inverted trian-
gle.
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Figure 5.11: The �xed cost model - outcome space.
In the upper-left plot, the dashed line indicates optimum percent change in marginal pro�t.
The arrows indicate the movement of the percent change in marginal pro�t during the
simulation. The numbers below groups of arrows indicate the day number when the
ramp-up phase was completed. The symbols re�ect the heuristic value of qmin for each
sample. The symbols correspond to values of qmin which are shown in the legend. The inset
graph compares simulation stock lifetimes (dots) with theoretical (dashed line).
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Figure 5.12: Marginal cost model - outcome space.
Marginal cost models (constant unit cost). The arrows depict the trajectory in the course
of the simulation, starting at the X and ending at the arrowhead. The dashed lines indicate
the theoretical optima.
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Figure 5.13: Stock cost model - outcome space.
The arrows depict the percent change in marginal pro�t trajectory in the course of the
simulation, starting at the symbol and ending at the arrowhead. Note that y-values on this
graph are 10,000 times those of the others. The inset plots stock lifetime and ending stock
level versus marginal cost of stock.
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Chapter 6

Analysis of the Simulation Results

The mathematical models for Hotelling's Rule are presented in Chapter 3. The corre-

sponding ABMs are described in Chapter 4. Chapter 5 presents the simulation results and

their characteristics. This chapter will attempt to tie together the mathematical models, the

ABMs and the simulation results.

The theoretical model developed in Chapter 3 shows that Hotelling's Rule - increasing

percent change in marginal pro�t by r-percent each period - is incontrovertibly the production

path to maximize present value pro�t given the assumptions of the model. The import of

those assumptions is, ultimately, the subject of the ABM results in Chapter 5. In general,

however, it is observed in the ABM results that the returns on e�ort to optimize are small,

as discussed in Section 5.5, which is pursued further in Section 6.1. That is, although the

r-percent rule is the very best strategy to maximize pro�t, other strategies may produce

results that look as good from a reasonable distance. Support for this observation is given

in the following sections discussing the individual models.

The ABM optimizing heuristic is described in detail in Section 4.3, but it can be summa-

rized in the following way. The program makes a day-by-day decision to continue, increase,

or reduce the production level based on a simple estimate of total pro�t. The only knowledge

of how the market will react to those changes is an estimate based on previous days: how
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much the price went down when production was increased, and vice versa. A heuristic is

often referred to as a rule of thumb. Heuristics can be very sophisticated, but this one is

not. However, as the results show, it doesn't need to be. The results consistently show,

however, an artifact - or �ngerprint - of the heuristic. Because production changes are made

in steps rather than continuously, the heuristic typically �nds production paths that are

not-quite-optimal. This characteristic is used to examine the sensitivity of the outcome to

the step size.

6.1 The e�cacy of the heuristic

The inverse demand function in Section 3.2 is the basic demand function used by Hotelling

to demonstrate the r-percent rule for an optimizing monopolist. As a costless model it is

appealing because the pro�t (3.19) and marginal pro�t (3.20) functions are straightforward

to derive and simple to manipulate. There is no static optimum for a monopolist facing

the full market demand. That is, there is no �nite optimal production path without the

constraints imposed in dynamic optimization.

The solution to the dynamic constraint m(t) in (3.23) is called the shadow price. It

represents the price (or opportunity cost) of the next unit to be extracted (or which would

be extracted if one remained, in the case of completely exhausted stock). For a natural

resource, the shadow price is often called the user cost. The shadow price and optimal

production level are inversely linked: in the optimal solution for the costless model, as the

stock is exhausted, the shadow price edges up to the choke price, which pushes the optimal

production level down toward zero. For all but some of the stock cost models, production

level and shadow price each reach their �nal value just as the stock is depleted.

For reasons explained in Chapter 2, the percent change in marginal pro�t is the central

characteristic of interest in the Hotelling models. The simulation results presented in Chapter

5, however, reveal that the optimizing producer behaviors outlined by Hotelling are far more
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important than the r-percent outcome. The evidence for this is presented in the following

paragraphs.

For the costless monopoly model, the optimal production level decreases at a constant

rate, which is r/K, the discount rate divided by the choke price. Consider only the monopoly

outcome, the thin solid line in Figure 5.4, and the Hotelling's Rule theoretical optimum,

which is the thick solid line. The ABM production path starts slightly higher and is a little

steeper than optimum. Because of the size of the increments in the ramp-up phase, the

heuristic will not, in general, exactly match the optimal production path. The e�ect on total

producer pro�t (or user cost) is very slight - the thinner ABM curve in the bottom plot of

Figure 5.4 is barely distinguishable from the thick Hotelling optimum.

The steeper production path selected by the heuristic results in a higher percent change

in marginal pro�t,1 as illustrated in the third plot of Figure 5.4. Note that although there is

only a slight di�erence between the heuristic and Hotelling in the production path, resulting

in a nearly imperceptibly lower producer pro�t, the percent change in marginal pro�t for

the heuristic is nearly 20 percent higher. This is the �rst evidence that a deviation from

Hotelling's Rule of the percent change in marginal pro�t is not a reliable indicator that a

producer is not operating optimally.

While it is correct to say that the error introduced by the size of production increments is

an artifact of simulation, it also re�ects the kinds of errors made in real-world production. A

production planner will have incomplete or uncertain information on the demand function,

future discount rates, and the extent of the resource. Additionally, factor inputs or output

requirements may be sticky - they can't be changed in�nitesimally or on short notice.

To understand how well the heuristic performs in the absence of these artifacts, examine

Figure 5.1. For this plot, the basic heuristic is not changed - the increments are still large -

but the base value is nudged by a small amount that is randomly distributed. This means

1The percent change in marginal pro�t is labeled ∆πq/πq in the graph as a reminder that this

is calculated from discrete changes in the simulation and is not a di�erential with respect to time.
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that, within 50 Monte Carlo samples, some production paths are likely to be nearly identical

to the Hotelling's Rule path, and others o� by more than the error previously described in

Figure 5.4. The samples in which the initial production level are closest to the theoretical

optimum of 0.1022 result in the highest producer pro�t in Figure 5.1. That peak corresponds

to a percent change in marginal pro�t of 0.000261, also the theoretical optimum.

6.2 The penalty for mistaking the number of competitors

The theoretical Hotelling's Rule curves in in the adaptive agent model shown in Figure 5.4

are identical to the monopoly curves in the computational agent models in Figure 5.3. Aside

from the monopoly ABM curve in 5.4, the remaining curves are generated from models with

more than one producer. In both �gures, the computational agent model and the adaptive

agent model, these curves re�ect the behavior of producers who behave as though it is a

monopoly market even though it is not. For the computational agent model, that means

reducing the production level by r/K each period. For the adaptive agent model, it means

a producer assumes that only its change in production results in observed price changes.

Table 5.1 makes it clear that the error of assuming a monopoly market when there are

competitors is more costly in the computational agent model. With six competitors, the

monopoly assumption reduces total pro�t by about 18 percent. The percent change in

marginal pro�t for the adaptive agent model is between 0.0002 and 0.0003, while for the

computational agent model it ranges from 0.00261 to nearly 0.0015. The adaptive behavior

of the heuristic is able to compensate somewhat for a mistake in assuming the size of the

market.

While it is not likely that a real-world producer will mistakenly assume a monopoly

market, errors in assumptions about the market structure are likely. These plots quantify

the worst case consequences of an error in estimating market structure. It is also evident

that daily Bayesian updates by the heuristic can compensate somewhat for the error.
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6.3 The emergent oligopoly models

The theory of oligopoly models is described qualitatively in Section 3.7. Three di�erent

approaches to an oligopoly market are taken in the ABMs: adaptive with identical stock,

adaptive with conserved stock, and adaptive collusion.

In the adaptive identical stock model, each producer treats the market as though it were

a monopoly, and each producer has an initial stock of 100. That is, for the duopoly model,

the total market stock is 200, while the total stock is 500 for �ve producers. This model

is discussed in the Sections 6.1 and 6.2, and serves primarily as a comparison with the

computational agent model in Figure 5.3. In the computational agent model, each producer

also assumes a monopoly and blindly follows Hotelling's Rule by reducing production by r/K

each period, which is why all production paths overlap in the top plot of Figure 5.3. Because

total production increases with the number of producers, however, prices are lower as the

number of producers increases, as seen in the second plot. For N producers, the reduction

in total production per day is Nr/K, so percent change in marginal pro�t increases with the

number of producers, as seen in the third plot. Finally, the bottom plot shows that pro�t per

producer decreases as the number of producers increases. By comparison, Figure 5.4 shows

that the heuristic in the adaptive identical stock model is able to adjust somewhat, so that

percent change in marginal pro�t does not scale by the number of producers, as seen in the

plot, and pro�t per producer is not quite as low as for the computational agent model. As

discussed in Section 6.2, the mistake of assuming monopoly powers in an oligopoly market

is costly if one optimizes analytically, but much less so if one optimizes heuristically.

In order to make a direct comparison between the production paths of monopoly and

oligopoly markets, the adaptive conserved-stock model maintains a total market stock of 100

that is divided roughly equally among the producers. Thus, in the duopoly, each producer

begins with a stock of approximately 50, while in the �ve-producer model the initial stock

is about 20 for each producer. The division of initial stock is given a very small random

variation so that the individual producers are distinguishable. This model led to two di�erent
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outcomes, depending on the number of producers. This is re�ected in two di�erent curve

shapes in the upper plot of Figure 5.5, which shows individual outputs for an oligopoly of �ve

producers. The nearly identical diagonal lines give the appearance that some producers are

colluding to share monopoly pro�ts. The other curves, however, show that some producers

elected to maintain nearly constant production levels until their stocks where physically

depleted. Figure 5.6 shows that this is not unique for �ve producers, it is also seen with

seven and with ten producers. Each of these outcomes is surprising.Figure 5.6 shows that,

for �ve, seven and ten producers.

The collusive outcome is surprising because of the simple nature of the heuristic. The

producers don't communicate and, therefore, cannot collude. The only evidence one producer

has that there are others is in the observed marginal price. That is, a producer assumes that

its own change in production is solely responsible for any change in price. This results in a

distorted sense of the demand function which leads to the monopoly outcome only because

all of the producers are making the same decisions at the same time.

The non-collusion outcome is the unanticipated consequence of the randomized distribu-

tion of stock levels. The producers with the largest stock reach the time to begin reducing

production before the smaller producers. This happens because the target reduction rate

(4.10) is inversely proportional to current stock level. The pro�table production level is

slightly lower for higher stock levels. For some divisions of the total stock, that small di�er-

ence is enough to let the larger producers switch from the ramp-up phase to the optimizing

phase one time step sooner than the the smaller producers.

When the larger producers begin reducing their production levels, this causes an increase

in the market price, so the smaller producers see an increase in their pro�t without reducing

their own production levels. This only occurs in the models for �ve, seven and ten producers,

in which the variation in initial stock levels was great enough to lead to a timing di�erence

among producers. The drop at about Day 1000 is when the producers that did not reduce

their production levels physically depleted their stocks.
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There are three things that suggest that this is a Cournot-Nash outcome:

1. The producers optimize production levels based on the production decisions of others

2. Once the producers have elected their strategies, for producers that decide to decrease

production, changing to a strategy of level production would reduce estimated pro�ts.

For the producers that decide not to change production, decreasing production would

reduce estimated pro�ts. In this way, a given distribution of strategies is a Nash

equilibrium.

3. Total production is greater than for a monopoly or collusion market, but less than

perfect competition. Similarly, total pro�t is less than a monopoly, but more than

perfect competition.

6.4 Overt collusion is indistinguishable from optimiza-

tion

In contrast to the preceding model, in the collusion model the producers do communicate.

This model also distributes the total stock evenly but with random variations. The producer

with the largest stock is then considered the market leader (see Section 5.3). The market

leader optimizes using the heuristic, and all the rest of the producers do whatever the leader

does, scaled by their relative stock levels. That is, if the leader lowers production by 0.01,

another producer with a stock that is 90 percent of the leader's will lower production by

0.009. This approach results in lock-step production identical to a monopoly as shown in

Figure 5.7. Again, the heuristic tends to �nd an initial production level slightly higher than

theoretically optimal (the thick line in Figure 5.7) resulting in a production path slightly

steeper than optimal. Qualitatively, the overt collusion production path in Figure 5.7 is

indistinguishable from the collusion-like outcomes (the unbroken diagonal lines) in Figure
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Figure 5.6. Based on production path alone, it is not possible to discern intentional collusion

from summed individual pro�t maximization.

6.5 The nonzero cost models

The performance of the ABM heuristic in the face of nonzero costs varies widely based on

the cost structure. For a �xed cost, the accuracy of the heuristic is very close to Hotelling's

Rule. For a marginal cost, the heuristic has decreasing accuracy with increasing cost. For

the stock cost model, the accuracy varies considerably over the cost range.

6.5.1 The �xed cost model

For the �xed cost model, the theoretically optimal production path (3.35) decreases

continuously from q(0) to qT . The �xed cost model has an ending production level qT that

increases with cost. If the cost is greater than zero, the production level must not go to zero,

as this will result in negative pro�t, as discussed in Section 3.4. The time-series plot of the

�xed cost model in Figure 5.8 shows that the heuristic tends to decrease too rapidly, then

level o� at qT . For this reason, as the upper-left plot in Figure 5.11 shows, percent change

in marginal pro�t values start lower than Hotelling's Rule and trend to well above it. Even

so, total pro�t is within one percent of the theoretical given a level of �xed price, as seen in

the lower-left plot in Figure 5.11.

What is clear from the production paths in the top-right plot in Figure 5.11 is that a �xed

cost accelerates the depletion of the stock. This is intuitive: for a per period cost, the total

cost is less if the stock is depleted more quickly. This shows that a producer that is simply

maximizing pro�t will achieve nearly optimal pro�t in the face of a �xed cost. Consumers

will see the same user costs, but over a shorter period of time, as the lifetime of the resource

is reduced as �xed costs increase.
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6.5.2 The marginal cost model

The production path for the marginal cost model (3.43) ranges from �at, when c1 = K,

to decreasing with the same slope as the costless model, −r/K, when the cost is zero. The

production paths in the plot at the top of Figure 5.12 appear to be too steep, resulting in

percent change in marginal pro�t values somewhat higher than Hotelling's Rule, as seen

in the middle plot in Figure 5.12. This is borne out by the upper-left plot in Figure 5.12,

showing that starting percent change in marginal pro�t values ranging from less than 0.00030

to as high as 0.00040. All of them trend downward toward the optimum of 0.00026 in the

course of simulation. The clusters in these curves are an artifact of the large ramp-up that

set initial production in multiples of 0.01. This is seen in the lower-right plot in Figure 5.12,

where the staring production levels fall into to groups, with the least cost sample in each

group at the top, near the optimum. This error, which contributes to the error in the slope

of the production path, leads to decreasing accuracy with increasing cost, as seen in the

lower-left plot in Figure 5.12. The error appears linear, at a rate of about �ve percent per

unit marginal cost.

The upper-right plot in Figure 5.12 shows that the lifetime of the stock is extended

by a marginal cost, as anticipated from microeconomic equilibrium theory. This plot also

shows that the lowest cost sample from each cluster for a given initial production level is the

most accurate. This shows that a producer that is simply maximizing pro�t will forgo some

pro�t as marginal costs increase, bene�ting consumers with slightly lower user costs and a

prolonged resource lifetime.

6.5.3 The stock cost model

The production paths in the top plot of Figure 5.10 are an illustration of the complexity

of this cost model compared with the �xed cost and marginal cost models. The zero cost plot

is a monotonically descending curve, identical to the costless production path, as it should
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be. A small stock cost, 0.001, produces the solid curve, which starts downward, then bows

up, �nally curving rapidly downward to zero as the stock is depleted. The remaining paths

curve upward monotonically and end abruptly: these are the production paths for which

stock cost eventually equals revenue. In theory, these production paths are seen for costs of

0.01 or greater, yet here it appears for a stock cost of 0.005. The reason for this is found in

the upper-right plot in Figure 5.13. Note that for 50 on the cost axis (corresponding to a

stock cost of 0.005), the stock lifetime is well below optimum, yet the stock is fully depleted.

It appears that the heuristic treats this like a case where cost will eventually exceed revenue,

keeping the production level high until the stock is depleted. The upper-left plot in Figure

5.13 shows that percent change in marginal pro�t starts large and negative (note that the

scale of this plot is 10,000 times greater than in the preceding cost models). This means that

production starts out increasing at a rapid rate (driving percent change in marginal pro�t

downward at a rapid rate). Then, as the stock is depleted, the percent change in marginal

pro�t becomes large and positive (at the arrow head) as the production level curves rapidly

downward. The lower-right plot in Figure 5.13 shows that, in addition to production being

ine�ciently high, initial production levels start out well above theoretical optimum as well.

The middle plot in Figure 5.10 shows that the heuristic oscillates rapidly between in-

creasing and decreasing production when the stock cost is 0.001. Note that these curves are

smoothed over 100 periods. The actual excursions in percent change in marginal pro�t are

orders of magnitude greater than they appear here. This is the cost at which the optimal

production path begins leaving some of the stock behind, as seen in the middle plot of Figure

3.4.

The smoothness of the curves resembling an upper case letter "D" at other costs is

also the result of smoothing. These curves show evidence that the production path crosses

over from negative marginal pro�t to positive marginal pro�t. Marginal pro�t appears as

the denominator in percent change in marginal pro�t, which goes toward negative in�nity as

marginal pro�t approaches zero from the negative side, then percent change in marginal pro�t

decreases from in�nity as marginal pro�t moves away from zero in the positive direction.
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This is evidenced by the 0.005 curve between days 310 and 400. Note that this cost is close

to the cost at which m(0) and mT cross in the top plot in Figure 3.4, which is the cost at

which the optimal production path goes from downward sloping to upward sloping.

The dynamics of these plots reveal an inaccuracy of the coarse strategies available to

the heuristic. When the optimal production path is nearly �at, as with a cost of 0.001,

the heuristic switches rapidly between stationary, decreasing and increasing strategies. The

coarse strategies lead to ine�ciently high production levels at costs below 0.01, and to an

error in terminating too early for costs above 0.01, as seen by the T plot in Figure 5.13.

The latter is a threading-the-needle problem: as stock cost rises toward revenue limits, the

heuristic has a narrowing range over which to adjust strategies. One error can result in a

negative marginal pro�t for a period, which is su�cient to terminate production, as per the

modi�ed Rule 2 in Section 5.4.

This should not be viewed as strictly a computational limitation of this heuristic. Real

production levels are sticky : they cannot be varied in�nitesimally because of labor, trans-

portation, sales, and other constraints. A human mine operator may realize that a minor

adjustment to the production plan will move marginal pro�t back into the black, but only

for a short time, as this is end of life for this resource. Or, the mine operator may be under

corporate restrictions that make that determination irrelevant.

One feature of interest in this model is the performance of the heuristic at a stock cost of

0.01. This is the stock cost at which stock cost equals revenue just as the stock is depleted.

It is also, as evidenced by the plots in Figure 5.13, the nonzero stock cost for which the

heuristic is most accurate. This is the only stock cost for which stock lifetime, ending stock

level, and producer pro�t are all equivalent to the optimum. This is despite having an initial

production level that is much higher than optimum, as shown in the lower-right plot in

Figure 5.13.

All of the preceding discussion of heuristic errors aside, producer pro�t deviates by less

than ten percent at the worst. This is equivalent to a ten percent reduction in user cost, but
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at the cost of a nearly one-third reduction in the resource lifetime.

6.6 Summary

The latter models in Section 6.3 show that, in an oligopoly market with producers opti-

mizing independently, the result is either collusion-like behavior, or Cournot-like behavior,

depending on the market structure. This implies that, in the absence of a smoking gun, a

collusive market outcome is not prima facie evidence of collusion in an oligopoly resource

market.

The nonzero cost models are �xed cost, linear marginal cost, and linear stock cost. These

represent highly stylized production technologies, though they have real-world parallels. An

example of a �xed cost is drilling water wells (Hsiao and Chang, 2002). An example linear

marginal cost is the transport of polutants (Conrad and Clark, 1987). Linear stock costs are

seen in some mineral production models (Tietenberg and Lewis, 2000).

For the nonzero cost models, the behavior of the independently optimizing producer is

qualitatively consistent with the Hotelling's Rule optimum. The performance of the adaptive

producer varies depending on cost structure, ranging from uniformly accurate under a �xed

cost, a small inaccuracy that increases with cost for a marginal cost structure, and a widely

varying accuracy with a stock cost structure. Although lost producer pro�ts translate into

reduced user costs, it is universally at the expense of foreshortening the resource lifetime.
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Chapter 7

Policy Implications

Whether privately or publicly held, nonrenewable resources impact public welfare and,

therefore, often come under public policy purview. Those who formulate policy typically

have multiple and sometimes con�icting goals. Of interest to policy-makers is the relative

e�ectiveness of the tools at their disposal given a natural resource, its ownership, and the

market in which it's traded.

Agent-based modeling is well suited to representing the disparate interests of resource

owners, consumers, taxpayers, politicians, environmentalists, regulators, and other parties

a�ected by or otherwise interested in nonrenewable resources. Although an ABM that fully

endogenizes all of these interests is beyond the scope of this dissertation, the simulation

results presented in Chapter 5 make it possible to explore an important consideration for

policy-makers: the unintended consequences of taxation.

Chapter 3 presents costs as a consequence of production technologies. Suppose, instead,

that those cost functions represent �scal regimes:. E.g. the �xed cost is a franchise tax, the

marginal cost is a severance tax, and the stock cost is an environmental restoration bond.

Given a set of stylized policy goals, which of these �scal regimes best accomplishes those

goals? Which minimizes market distortion in the form of deadweight loss?
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Despite a highly simplistic optimization strategy, the ABM discussed in the preceding

chapters is e�ective at �nding production paths that are optimum in terms of maximizing

producer pro�t. In Chapter 6 it is shown that some cost structures can result in a transfer of

producer pro�ts to consumer surplus through lower user cost. If, in addition, the producer

cost is also tax revenue, the net impact of a tax on public welfare may be neutral or even

positive. The net impact depends on the de�nition of public welfare.

Optimality is in the eye of the beholder: what is optimal for a mine's holding company

may not be optimal in terms of public welfare. For the policy-maker interested in maximizing

public welfare, the preferred mechanism is to give the resource owner incentives to move the

production plan closer to the socially optimal path. The challenge for the policy-maker is

to eschew the unintended consequences that may arise from the unseen - and unseeable -

measures of optimality employed by the �rm or �rms in the regulated industry.

This chapter examines the simulation results in Chapter 5 in terms of net impact to

public welfare. The agent-based models are presented in Chapter 4. Despite a highly sim-

plistic optimization strategy, the basic ABM is e�ective at �nding production paths that are

optimum in terms of maximizing producer pro�t. This is regarded as the baseline laissez

faire model with no taxation. Then, the cost structures considered in Chapters 3 and 4 are

viewed as taxes. The results discussed in Chapter 6 are revisited here to provide insights

into the impacts that can be expected from di�erent �scal regimes.

7.1 Policy objectives

Public economic policy concerns itself, generally, with social welfare - the well-being of

society as a whole. Natural resources certainly impact the economic components of consumer

and producer surplus. From a public policy point of view, social welfare often incorporates

more than economic surplus. For example, a mining industry may create negative external-

ities in the form of pollution. Often, public �scal policies are intended to transfer some of
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the public cost of pollution - illness, peeled paint, etc. - to the producer with a Pigouvian

tax, thus internalizing that cost. In classic microeconomic equilibrium theory, the increased

cost of taxation results in a reduced equilibrium quantity, thereby also reducing the amount

of pollution produced. This is not necessarily the outcome for a nonrenewable resource,

however.

Many nonrenewable natural resources are publicly owned. Mineral rights, for example,

are typically publicly owned and leased to private producers. In these cases, public policy

strives to balance current demand for the resource with the wellbeing of future generations

(Lecomber, 1979). An important consideration introduced by Hotelling and revisited by

subsequent authors is that there is no reason to believe that society discounts the wellbeing of

future generations at the same rate that the producer discounts future pro�t. This represents

a signi�cant mismatch between optimality for the producer and the social optimum. For a

number of U.S. States, natural resources are a major source of public revenue (See Table

7.1). When big producer pro�ts also mean big royalties, optimality for the producer may well

align with the social optimum. Public preferences vary over time, as will the productivity

of resource owners, so that public and private optima are likely to be in disequilibrium in

general, with only brief periods of concord.

The broad goal of nonrenewable resource policies is to align privately optimal resource

depletion with the social optimum (Burness, 1976). The policy mechanisms include sector-

speci�c rules, such as limitations and quotas, and taxation (Hartwick and Olewiler, 1986).

This chapter will consider taxation as a policy tool to bring a resource owner's privately

optimal production path in line with the social optimum.

Considerations that may be included in the socially optimal production path include

forestalling resource depletion (Hotelling, 1931) and internalizing externalities (Dasgupta

and Heal, 1980, p. 52). Taxation as a policy tool is also a revenue source (Stiglitz, 2000, p.

718) and this is also a consideration in social optimality. These are discussed in the following

sections.
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7.1.1 Policies to forestall depletion

The Conservationists in the United States at the turn of the twentieth century promoted

the e�cient development of nonrenewable resources, which typically meant slowing their

exploitation (Hotelling, 1931, Gaudet, 2007). Since that time, this has been a main theme

in U.S. natural resource policy, much of which includes government ownership of resources.

Implicit in this argument is that the welfare of future generations is no less important than the

current generation. That is, public welfare is not discounted. This is a concerned expressed

by Hotelling and reiterated by Solow, Krautkraemer, and Gaudet. The other argument of

the Conservationists is that competition for nonrenewable resources is wasteful, and point

also illustrated by Hotelling. That there are e�ciencies inherent in putting resources under a

single owner (Lecomber, 1979, p. 113) is used to support arguments for government control

of nonrenewable resources.

Much of the lexicon of the Conservation Movement appears in contemporary sustainabil-

ity discussions. For example, the term �future generations� appears frequently in European

Union policy statements about sustainability1.

It should be noted that policies to slow nonrenewable resource production are at odds

with other policies to protect or promote the industries that develop them. Many extrac-

tive industries are subject to government subsides that e�ectively accelerate the depletion

of nonrenewable resources. Extractive industries are also subsidized by government-funded

research, which reduces uncertainty and lowers development costs, thereby accelerating de-

pletion(Lecomber, 1979, p. 119).

1See, for example, the position statements of the European Union on sustainable use of natural

resources, http://ec.europa.eu/environment/natres/ (accessed 25 February 2011)
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7.1.2 Policies to internalize externalities

The extraction and production of many nonrenewable resources leads to externalities

in the forms of air pollution, water pollution, scenic degradation, or other amenity ef-

fects(Hanley et al., 1997). Additionally, U.S. States that are resource rich may seek compen-

sation for the exportation of those resource (Burness, 1976, p. 294). Policies to internalize

externalities are typically Pigouvian taxes (Dasgupta and Heal, 1980, p. 52). For unlimited

production, these taxes add to the cost of production, shifting the supply curve upward and

lowering the market-clearing equilibrium quantity. This is a textbook use of Pigouvian taxes

(Pindyck and Rubinfeld, 2005, Ch. 18). For a nonrenewable resource, however, taxes will

reduce rents, but will not necessarily reduce the equilibrium quantity, and may increase it.

This is the result with a �xed tax rate, such as a franchise tax, which a�ects the producer's

optimal production path in the same was as the �xed cost shown in Section 3.4.

Krautkraemer (1998) makes a distinction between �ow externalities and stock external-

ities. Flow externalities are those that arise because of the level of production, such as

air pollution. Stock externalities are those that arise from the cumulative e�ects of pro-

duction, such as site degradation and atmospheric accumulation of greenhouse gases. Flow

externalities represent a per-unit social cost, while stock externalities represent a cumulative

production social cost. While it may appear appropriate that �ow externalities be addressed

by marginal taxes and that stock externalities be addressed by cumulative production taxes,

the relative e�ciencies of these �scal regimes indicate otherwise. It is shown in the following

sections that marginal taxation results in minimal market distortion while a cumulative pro-

duction tax incurs a highly variable deadweight loss. When planning errors are taken into

consideration (see Section ?? for a discussion of error in this context), there are cumulative

production tax regimes that have both low deadweight loss and low vulnerability to planning

error. This is discussed in Section 7.3.
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Table 7.1: Natural resource taxes as revenue: states for which natural resource taxes consti-
tute more than ten percent of total tax revenue.

State Percent of total tax revenue

Alaska 77.3%
Wyoming 43.6%

North Dakota 34.3%
New Mexico 19.2%
Montana 14.5%
Oklahoma 13.1%

Source: U.S. Census Bureau

7.1.3 Taxes as revenue

For all the justi�cation that may have been given upon their introduction, governments

now rely on resource taxes and fees as a signi�cant and irreplaceable source of revenue.

Thirty-four U.S. States levy resource taxes, which make up nearly two percent of all state

tax revenues.2 For the six states listed in Table 7.1, however, natural resource taxes consti-

tute more than ten percent of total tax revenue. Policy-makers in these states may �nd it

di�cult to balance the policy objectives of conservation and reduced externalities when such

a signi�cant fraction of tax revenue is at stake.

7.2 The agent-based models in the policy context

Chapters 3 and 4 examined the behavior of the simple ABM for �xed costs, marginal costs,

and stock costs. In this chapter, those cost structures are viewed both as costs to the producer

and as revenue to the �scal authority. This will provide a means to investigate the e�ciency

of the �scal policies in terms of transferring producer surplus to social welfare, where social

welfare is composed of consumer surplus and tax revenue. The results in Chapters 5 and 6

are revisited here to provide insights into the impacts that can be expected from the �scal

policy objectives discussed in Section 7.1.

2From the U.S. Census Bureau
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Tax policies are designed to use the market mechanism to align the owner's optimal

production path with the social optimum. An ABM of the scope described in the opening

section of this chapter would be required to examine the bene�ts and drawbacks of restric-

tions and quotas, so this is not examined in this dissertation. What are examined are taxes

that impact pro�t in the form of �xed costs, per-unit costs, royalties, or stock (cumulative

production) costs. The ABM results from each cost model are presented and discussed in

the policy context.

To recap the behavior of the ABM, in each production period, the agent has the choice to

reduce production, increase production, or maintain the current level. The amount by which

the agent can reduce production is limited to a reduction that will exactly exhaust the total

resource. The increment by which the agent can increase production is one percent. The

choice to reduce, increase or maintain production is based on a crude estimate of lifetime

income from the resource. Projected discounted future income is based on a rough estimate

of the demand function based on the intertemporal change in price.

7.2.1 The inverse demand function and its parameters

All of the ABMs discussed in the chapter come from Chapter 4, and they all use the

inverse demand function from Section 3.2. Similarly, the parameter values for all simulations

in this chapter are from Section 3.2. The graphs in the chapter can be compared directly,

and should be considered general results given the demand function.

7.2.2 Franchise taxes

A franchise tax is a �xed cost incurred by the producer per day even if there is no

production. A mineral rights lease is an example of a franchise tax. The State of Idaho, for

example, auctions oil and gas leases for starting bids of $0.25 per acre, and the successful

bidder also pays $1.00 annual rental per acre. Idaho also assesses an additional $1.00 per
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acre annual penalty if the lease is not producing after six years.3

The stylized �xed cost monopoly model from Section 5.4.1 is used to simulate a franchise

tax. Figure 7.1 shows the result of 50 Monte Carlo simulations over �xed tax rates distributed

over N(0.12, 0.0016). This range provides samples from near costless to 0.20, the rate at

which the production path �attens out. Higher tax rates result in more rapid depletion of

the resource, with the commensurate loss in total revenue. From the point of view of slowing

the rate of depletion, this policy is an abject failure. For the same reason, it fails as a means

to slow production to reduce a pollution externality. It is also ine�cient at transferring

producer pro�t to tax revenue. This is evidenced by the downward slope of the total revenue

curve in the upper right-hand plot in 7.1, which represents increasing deadweight loss, as

presented in Section 7.3. This is consistent with the �ndings of Burness (1976, Table I).

Recall from the discussion in Chapter 5 that there is no signi�cant planning error with a

�xed cost.

7.2.3 Unit severance taxes

Some U.S. States assess severance taxes based on the quantity of the resource extracted.

The State of Ohio, for example, assesses a tax of $0.10 per barrel for oil, $0.09 per ton for

coal, and $0.025 per 1,000 cubic feet of natural gas.4 Burness (1976, Table II) �nds that

unit severance taxes will extend the resource lifetime in a competitive market, but have no

e�ect on a monopolist's output. Also, in a monopoly market, taxes are paid entirely from

producer pro�ts.

The stylized marginal cost monopoly model from Section 5.4.2 is used to simulate a

severance tax. Figure 7.2 shows the result of 50 Monte Carlo simulations over unit tax rates

distributed over N(1.0, 0.110889). This range provides samples from near costless to 2.00

3http://www.idl.idaho.gov/bureau/minerals/min_leasing/leasing.htm (accessed 21 February

2011)
4http://codes.ohio.gov/orc/5749 (accessed 21 February 2011)
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per unit, which, at the optimal starting production level, is about 0.20 per period (similar

to the �xed rate in the previous section). In this model, the higher tax rate puts weak

upward pressure on the stock lifetime, while e�ciently transferring producer pro�t into tax

revenue. As a policy to prolong the lifetime of the resource, this is mildly successful. As a

means to lower production levels to reduce pollution externalities, it is not e�ective. It is an

e�cient means to generate tax revenue, however. The weak e�ect on resource lifetime places

this outcome between the competitive and monopoly models of Burness. Deadweight loss,

implied by the slope of the total revenue curve, is small, especially considering that planning

error increases with the marginal tax rate (see Chapter 5).

7.2.4 Ad valorem taxes

Other U.S. States assess severance taxes based on the market value of the resource. The

State of New Mexico, for example, imposes an oil and natural gas tax of 3.75 percent of

assessed value based on the price received.5 An ad valorem tax has the e�ect of increasing

the price in much the same way as a severance tax. Burness (1976) �nds that an ad valorem

tax has the same e�ect as a unit tax.

7.2.5 Royalties

While an ad valorem tax is applied to revenue, a royalty is applied to net pro�t. For

oil and gas produced in the Gulf of Mexico, the U.S. government collects royalty payments

ranging from 12 and a half percent for onshore and deep water wells (greater than 400 meters)

and 16 and two-thirds percent for shallow water wells.6

The royalty cost model is not developed in Section 5.4.3, but the derivation is straight-

5http://www.tax.newmexico.gov/All-Taxes/Pages/Oil-and-Gas-Production-Taxes.aspx (ac-

cessed 21 February 2011)
6http://www.doi.gov/budget/2009/09Hilites/BH019.pdf (accessed 21 February 2011)
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forward. Consider the Hamiltonian for ad valorem tax rate ρ

H (q (t) , x (t) , t,m) = π (q (t) , x (t) , t)− ρπ (q (t) , x (t) , t)−m (t) q (t) (7.1)

The production path is functionally identical to a costless model with a constant multiplier

1− ρ

H (q (t) , x (t) , t,m) = (1− ρ) π (q (t) , x (t) , t)−m (t) q (t)

Tax revenue is total revenue times ρ and the optimal production path is identical to the

costless model for this demand function.

The royalty model is a modi�ed version of the stylized costless monopoly model from

Section 5.2.1. The model is modi�ed to compute a cost in each period that is a �xed fraction

of revenue in the current period. This model is used to simulate the producer response to

a royalty tax. Figure 7.3 shows the result of 50 Monte Carlo simulations over royalty rates

distributed over N(0.1, 0.00110889). This range provides samples from near costless to a 20

percent tax rate. In this model, the tax rate has no e�ect on the stock lifetime, and e�ciently

transfers producer pro�t into tax revenue. Thus, as a policy to prolong the lifetime of the

resource or to lower production levels to reduce pollution externalities, it is not e�ective. It

is an e�cient means to generate tax revenue. Here, again, planning errors are small.

7.2.6 Cumulative production fees/bonds/taxes

Cumulative production taxes might represent the costs of site cleanup and mitigation,

which increase as more earth is displaced or enhanced recovery techniques are employed.

Under some circumstances, this �scal policy may resemble the reclamation bonds required

under the Surface Mining Control and Reclamation Act of 1977 (McDaniel, 1977). Heaps

(1985) �nds that cumulative production taxation will result in higher rates of extraction but

over shorter periods of time, resulting in less total resource being extracted.
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The stylized stock cost monopoly model from Section 5.4.3 is used to simulate a cu-

mulative production tax. Figure 7.4 shows the result of 50 Monte Carlo simulations over

cumulative production tax rates distributed over N(0.005, 0.000009). This range provides

samples from near costless, to a cost that results in shutdown after producing only 50% of

the physical stock. There is a distinct kink in the curves at a tax rate of about 100 × 10−4

(the critical point). Below this rate, the agent is able to optimize normally. At the critical

point, future pro�ts become negative, and the agent increases production until cost exceeds

revenue. At this point, the agent ceases production, even if there is remaining stock. The

stock remaining is shown in the upper right-hand graph. These results are consistent with

those of Heaps.

As a policy tool, cumulative production taxation increases the rate of depletion, as shown

by the �rst downward section of the upper-left-hand graph (pre-critical-point). The transfer

of producer pro�t to tax revenue is highly ine�cient, particularly in the pre-critical-point

regime, as shown by the rapid drop in the total revenue curve. Much of the initial drop is

due to planning error. Similarly, there is increasing planning error above the critical point.

There is very little planning error at the critical point, though there is signi�cant deadweight

loss here.

7.3 The e�ciency of �scal regimes

Figure 7.5 compares the e�ciency of the �scal regimes in terms of the deadweight losses

they create, and the e�cacy of the �scal regimes in terms of slowing production and fore-

stalling depletion. Deadweight loss in this case is presented as a fraction of the theoretical

maximum producer pro�t as determined from Hotelling's Rule for a costless monopoly pro-

ducer found in Section 5.2.1. The formula is

DWLi,j = 1− Πij + Cij
Πmax
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where

DWLij = deadweight loss for policy iand rate j

Πij = producer pro�t under policy iat rate j

Cij = total tax revenue under policy i at rate j

Πmax = Hotelling's Rule maximum producer pro�t

The results from a simple optimizing agent-based model (ABM) indicate that cumulative

production taxation is largely counter-productive, while unit severance tax accomplishes

e�cient transfer of pro�ts to taxes and extends the life of a nonrenewable resource. In

the case of pollution by-product externalities, the two-pronged goal of internalizing costs

and reducing excess supply is only achieved with unit severance taxes. These results are

consistent with theoretical �ndings (Heaps, 1985, Burness, 1976).
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Figure 7.1: Franchise taxes.
The per-period cost leads to accelerated depletion. Higher tax rates lead to higher levels of
production which, in turn, lead to lower total revenue. See the discussion in Section 7.2.2.
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Figure 7.2: Severance taxes.
Higher tax rates extend the lifetime of the stock slightly. Total revenue is conserved:
taxation is a direct transfer from the producer to the taxing authority. See the discussion
in Section 7.2.3.
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Figure 7.3: Royalties.
The rate is a fraction of total revenue. The lifetime of the stock is una�ected, as is total
revenue. The tax is simply a transfer from the producer to the taxing authority. See the
discussion in Section 7.2.5.
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Figure 7.4: Cumulative taxation.
The tax is on cumulative production per period. The rate is multiplied by 10,000. The rate
of 100 is the point at which terminal cost equals terminal marginal revenue. At higher
cumulative production tax rates, some stock remains, being too costly to produce. See the
discussion in Section 7.2.6.
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Figure 7.5: Fiscal policy e�ciency and e�cacy
Deadweight loss is expressed as a fraction of the maximum (Hotelling's Rule) producer
pro�t. The cumulative production tax regime is broken into physical depletion (no stock
remaining at the end) and non-depletion (the stock becomes too costly to produce and is
not exploited). See the discussion in Section 7.3.



135

Chapter 8

Conclusions and Future Directions

Were this study to be distilled into a single graphic, it might be Figure 5.1. This �gure

says that, for this model, Hotelling got it right, but that getting it wrong only costs 0.14

percent for the inverse demand function in Section 3.2. In essence, this is saying that

constrained optimization yields the highest pro�t, but a crude approximation can come very

close to the optimum. If there is an information cost associated with computing the optimal

path, the resource owner may �nd that the marginal bene�t is less than the marginal cost.

These results, as interesting as they may be, are not why this dissertation could be summed

up by Figure 5.1. This �gure says three things: 1) the ABM results fall in a distribution

in the vicinity of the optimal path; 2) the mean of that distribution is very close to the

theoretical optimum; and 3) the distribution of errors in the ABM can be quanti�ed from

this �gure.

The importance of quantifying the performance of an ABM is central to the objectives

of this dissertation. This is the topic of Section 8.2.
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8.1 The rationale for agent-based modeling

The richness of agent-based modeling lies in the ability to assign to agents actions that

are expressed in ways similar to how real-world actors behave. It would be di�cult to ex-

press, in mathematic terms, outcomes from a population of heterogeneous consumers whose

behaviors are based on a sequence of decisions relating to nonlinear individual preferences.

Constructing such an agent-based model, however, is straightforward. Furthermore, explor-

ing deviations from the base behaviors may be a simple task in an ABM yet could require a

whole new mathematical model. Additionally, simulations of ABMs frequently reveal emer-

gent outcomes - outcomes that are not a direct result of agent rules - while mathematical

models do not.

The ABMs in this dissertation are extremely simple by design. In addition to traditional

arguments for parsimony, the simplest model can be thought of as the worst case. If adding

sophistication improves the accuracy of the model, then the model may be that much closer

to reproducing the behavior of interest. If, alternatively, more sophisticated rules worsen the

accuracy, those rules are easily jettisoned.

8.2 Reaching the objectives

The three objectives of this dissertation were introduced in Chapter 1. They are 1) to

establish a framework for validation of an agent-based modeling approach to nonrenewable

resource production planning and analysis; 2) to use this framework to validate a simple

optimizing ABM; and 3) to explore any new aspects of the problem that are brought to light

by agent-based modeling. Each of these is discussed in the following sections.
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8.2.1 The ABM framework

The procedures outlined in the preceding Chapters can be easily extrapolated as a general

approach. In this way, it is a prototype for more rigorous validation of agent-based modeling

for nonrenewable resource production planning. The procedure outlined is to 1) develop the

underlying theory to the extent possible, 2) implement an ABM with behaviors to correspond

with the theoretical model, and 3) quantify the di�erences between theoretical and ABM

outcomes.

Developing the theoretical model may require making simplifying assumptions or impos-

ing implied constraints on the problem space, and it is important to make note of these.

Unless the modeler implements the behavior directly, an ABM will not observe assumptions

like non-negative production or the law of demand. Some solutions to the theoretical model

may have to be completed numerically, as is the case in this dissertation. The range of

the parameter space for the numerical solutions is another assumption about the theoretical

model. Baseline correspondence between theory and the ABM can be established only for

an ABM that implements the assumptions of the theoretical model. The baseline correspon-

dence is necessary to evaluate the performance of the ABM outside of the initial parameter

range, if that is a goal of the research.

There are no formal de�nitions for the development of ABMs like the theory of com-

putability in mathematics and computer science (Turing, 1936). Some authors present guide-

lines on building ABMs (Arthur, 1993, 2006, Axelrod, 2006, 1997a, Epstein, 2006, Axelrod

and Tesfatsion, 2006). The baseline ABM is one that is intended to produce the same re-

sults as the theoretical model. If the theory is sound and the ABM represents the behaviors

that are appropriate for the theoretical model, Monte Carlo sampling the simulation results

provides a distribution how the ABM deviates from theory.

Monte Carlo sampling is a common means for collecting simulation data from an ABM

(Cook and Skinner, 2005). Hutchins (2010) adopts a hypothesis testing approach to compare

the distribution of ABM simulations with a theoretical model. This approach emphasizes the
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backwards-induction nature of validating and verifying computer models and simulations.

For the ABMs that are extensions of the baseline, con�dence estimates can be bootstrapped

from the characteristics of the �t to theory in the baseline model.

The application of rigorous statistical and analytical techniques is out of the scope of this

dissertation. In order to focus on the process, the assessments of the accuracy and precision

of the ABM simulations are primarily qualitative with occasional quantitative points of

reference. An application of this approach to a real-world production technology with a real

demand function and actual parameters would certainly merit more exhaustive analysis.

8.2.2 Validating the basic Hotelling ABM

The measures used to validate the basic Hotelling ABM are primarily qualitative, as dis-

cussed in the preceding section. This is consistent with the highly stylized demand function

and production technologies. The preceding two sentences must be associated as a caveat

with any statement in this dissertation about the validation of the models. In this sense the

process represents qualitative validation.

It is important to recall that, although the goal is to reproduce Hotelling's Rule outcomes

using the ABM, Hotelling's Rule is not encoded in the model. The ABM is simply a producer

making estimates of total pro�t based on simple changes to the production path. In the

following paragraphs, the term accuracy is used as a measure of the extent to which the

behavioral model in the ABM reproduces the outcomes predicted by the mathematical model

from Hotelling's Rule. There is no a priori means to estimate this accuracy quantitatively.

Qualitatively, Hotelling's Rule is purported to be the outcome for just such a producer, so

some similarity in the outcomes is expected.

The basic monopoly ABM reproducers the Hotelling theoretical outcome for the demand

function and parameters in Section 3.2 with an accuracy within 0.84±0.011 percent (see

Section 5.2.2). This is not a statistically rigorous measure of the error, but given the stylized
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nature of the mode, there is no reason to believe the error is signi�cantly greater. With the

all the aforementioned caveats, this ABM is validated for this application.

The other models in this dissertation are presented as illustrations of the kinds of errors

that can be associated with ABMs and the extent to which they re�ect errors made by real

people. Qualitatively, however, errors in the �xed cost model appear to be on the order

of the errors in the base model. The marginal cost and stock cost models, however, are

candidates for the addition of more sophisticated rules. Both the marginal cost and stock

cost models exhibit error due to the size of changes in production. This is a simulation

artifact and is illustrated in Section 1.2 and discussed for the respective models in Sections

6.5.2 and 6.5.3. Both models would likely bene�t from �ner granularity in the production

level choices. Additionally, the stock cost model could be improved with a simple trial-and-

error rule to maintain positive pro�t as stock costs increase.

The Hotelling ABMs are assessed in terms of the e�ectiveness of speci�c stylized �scal

regimes in Chapter 7. This is an example of using agent-based modeling to explore unin-

tended consequences. These outcomes cannot be generalized beyond the stylized demand

function and �scal regimes, although the results are qualitatively consistent with theory.

8.2.3 Exploring emergence

Emergent properties are essentially unexpected behaviors. The classic example is the

model of a �ock of birds. The individual agents - birds in this case - are given a simple rule:

stay close to your neighbors but not too close. For some values of closeness, the motion

takes on the appearance of a �ock of geese. For other values of closeness, the motion looks

like swarming insects. In either case, the group behavior is an emergent property, because

it wasn't programed in the model or the simulation.

Section 6.3 presents an oligopoly extension of the base Hotelling ABM model in which

there are emergent outcomes. For some distributions of initial stock, the market behaves as
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though the agents were colluding. For other distributions of the initial stock, the market

behaves as though the agents have reached a Cournot-Nash equilibrium. For either case the

model is identical and it has no way for one agent to know what any other agent is doing

other than the aggregate e�ect on price.

Emergent outcomes are not uncommon in even very basic ABMs, but there is an element

of serendipity to their discovery. This particular discovery suggests a more exhaustive in-

vestigation of the behaviors and a search for real-world counterparts. This, and other ideas,

are presented in the next section.

8.3 Future directions

A few ideas for future work have already arisen in this chapter. It is the intent that this

be the �rst of many steps in establishing the utility and validity of agent-based modeling in

natural resource economics. In terms of the validation framework, there is much to be done

in terms of formalizing the procedures. This should include the addition of formal tests like

the hypothesis testing done by Hutchins (2010).

Some natural extensions of the Hotelling ABM include incorporating real-world demand

functions and production functions, real costs and taxes composed from multiple regimes,

renewable backstop technologies, overt competitive behaviors, cat-and-mouse games with

regulators, and so on. Much of this is achievable with little or no modi�cation to the MASON

program developed for this project and available online at http://www.unm.edu/~ddixon .

As is often the case with ABMs, the e�ort to analyze these results is likely orders of magnitude

greater than the e�ort to create the models.
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Appendix A

GAUSS procedure to solve for qmax in
the marginal cost model

#inc lude inthp . sd f
#inc lude qnewtonmt . sd f
l i b r a r y pgraph ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QNewton
∗
∗ Returns the f i t n e s s o f the
∗ the cur rent va lues o f
∗
∗ mc = marginal co s t
∗ K = choke p r i c e
∗ r = da i l y i n t e r e s t r a t e
∗
∗ This f i n d s the value o f Tmax that
∗ makes t o t a l product ion equal to x0 .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QNewton( s t r u c t PV Qparam , s t r u c t DS qNewtonData ) ;
l o c a l Qvar , mc , K, l e f t S i d e , r i gh tS ide , qDelta ;
// get the Q parameter
Qvar = pvUnpack (Qparam ,"Q" ) ;
// put i t i n to the data ob j e c t
qNewtonData . dataMatrix [ 2 ] = Qvar ;
// get the parameter ( s )
mc = qNewtonData . dataMatrix [ 1 ] ;
K = qNewtonData . dataMatrix [ 3 ] ;
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// compute the l e f t and r i d e s i d e s
l e f t S i d e = exp(−K∗Qvar ) ;
r i gh tS i d e = 1 − mc ∗ Qvar ;
// the f i t n e s s i s the d i f f e r e n c e squared
qDelta = l e f t S i d e − r i gh tS i d e ;
i f (Qvar <= 0 and mc < 5 ) ;
// s t e e r i t away from zero
qDelta = 100 ;
end i f ;
r e tp ( qDelta ^2) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QmaxFuncC
∗
∗ Returns the maximum product ion
∗ l e v e l f o r a g iven marginal co s t
∗
∗ mc = marginal co s t
∗ K = choke p r i c e
∗ r = da i l y i n t e r e s t r a t e
∗
∗ Computes
∗
∗ Qmax = maximum product ion l e v e l
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QmaxFuncC( s t r u c t DS ∗qFuncData , mc ) ;
e x t e rna l s t r u c t PV Qparam ;
ex t e rna l s t r u c t QNewtonmtControl qnewtControl ;
e x t e rna l s t r u c t QNewtonmtOut QmaxOpt ;
l o c a l Qmax;
// put mc in to the data
qFuncData−>dataMatrix [ 1 ] = mc ;
// s o l v e f o r optimal Qmax
QmaxOpt = QNewtonmt(&QNewton , Qparam , ∗qFuncData , qnewtControl ) ;
// put Tmax in to the data
Qmax = pvUnpack (QmaxOpt . par , "Q" ) ;
r e tp (mc~Qmax) ;
endp ;
/∗ DECLARE STRUCTURES ∗/
s t r u c t DS qData ;
s t r u c t DS ∗pqData ;
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s t r u c t PV Qparam ;
s t r u c t QNewtonmtControl qnewtControl ;
s t r u c t QNewtonmtOut QmaxOpt ;
/∗ ASSIGN VALUES ∗/
mc = 1 ; // base value
K = 5 ; // constant
r = 1.1^(1/365.25)−1; // constant
Qmax = 100 . 0 ; // s t a r t i n g value
/∗ CREATE CONTROL STRUCTURES ∗/
qnewtControl = QNewtonmtControlCreate ;
Qparam = pvCreate ;
Qparam = pvPack (Qparam ,Qmax, "Q" ) ;
pqData = &qData ;
qData . dataMatrix = mc | Qmax | K | r ;
qnewtControl . output = 1 ; /∗ pr in t r e s u l t s ∗/
p r i n t "mc = " qData . dataMatrix [ 1 ] ;
p r i n t "Qmax = " qData . dataMatrix [ 2 ] ;
p r i n t "K = " qData . dataMatrix [ 3 ] ;
p r i n t " r = " qData . dataMatrix [ 4 ] ;
// a vec to r o f un i t co s t va lue s from 0 to 5 .0
c = seqa (0 , 0 . 1 , 5 0 ) ;
// a vec to r o f p r o f i t s o l u t i o n s f o r each value o f the un i t co s t
piV = {} ;
f o r n ( 1 , 5 0 , 1 ) ;
Qmax = 100 . 0 ; // s t a r t i n g value
piV = piV | QmaxFuncC(pqData , c [ n ] ) ;
endfor ;
p r i n t piV ;
o u t f i l e = "unitqmax " ;
l e t varnames = unit_cost q_max ;
su c c e s s = saved (piV , o u t f i l e , varnames ) ;
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Appendix B

GAUSS procedure for numerical

solutions to marginal cost model

#inc lude inthp . sd f
#inc lude qnewtonmt . sd f
l i b r a r y pgraph ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QOpt
∗
∗ Returns the optimal product ion path
∗ at time t g iven the va lue s o f
∗
∗ mc = marginal co s t
∗ Tmax = termina l time o f product ion
∗ K = choke p r i c e
∗ r = da i l y i n t e r e s t r a t e
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QOpt( s t r u c t DS ∗qOptData , t ) ;
l o c a l mc ,Tmax,K, r ;
mc = qOptData−>dataMatrix [ 1 ] ;
Tmax = qOptData−>dataMatrix [ 2 ] ;
K = qOptData−>dataMatrix [ 3 ] ;
r = qOptData−>dataMatrix [ 4 ] ;
r e tp (1/K∗( ln (K) − ln ( (K − mc)∗ exp(−r ∗(Tmax − t ) ) + mc ) ) ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QTotal
∗
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∗ Returns the t o t a l product ion over
∗ the per iod (0 ,Tmax) g iven the va lue s o f
∗
∗ mc = marginal co s t
∗ Tmax = termina l time o f product ion
∗ K = choke p r i c e
∗ r = da i l y i n t e r e s t r a t e
∗
∗ This i s used to s o l v e f o r Tmax
∗ by f i nd i n g the Tmax that makes
∗ t o t a l product ion equal to t o t a l
∗ s tock .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QTotal ( s t r u c t DS ∗qTotalData ) ;
l o c a l Tmax, lim , qTot ;
e x t e rna l s t r u c t inthpContro l in tCont ro l ;
Tmax = qTotalData−>dataMatrix [ 2 ] ;
i f (Tmax <= 0 ) ;
re tp ( 0 ) ;
e nd i f ;
l im = Tmax | 0 ;
qTot = inthp4(&QOpt , qTotalData , intContro l , l im ) ;
r e tp ( qTot ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QNewton
∗
∗ Returns the f i t n e s s o f the
∗ the cur rent va lue s o f
∗
∗ mc = marginal co s t
∗ K = choke p r i c e
∗ r = da i l y i n t e r e s t r a t e
∗ x0 = t o t a l s tock
∗
∗ This f i n d s the value o f Tmax that
∗ makes t o t a l product ion equal to x0 .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QNewton( s t r u c t PV Tparam , s t r u c t DS qNewtonData ) ;
l o c a l Tmax, x0 , qTot , qDelta ;
// get the T parameter
Tmax = pvUnpack (Tparam ,"T" ) ;



Appendix B. GAUSS procedure for numerical solutions to marginal cost model 156

// put i t i n to the data ob j e c t
qNewtonData . dataMatrix [ 2 ] = Tmax;
// get the x0 parameter
x0 = qNewtonData . dataMatrix [ 5 ] ;
// compute t o t a l produt ion g iven these parameters
qTot = QTotal(&qNewtonData ) ;
// the f i t n e s s i s the d i f f e r e n c e squared
qDelta = x0 − qTot ;
r e tp ( qDelta ^2) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ PiQ
∗
∗ Returns the p r o f i t at time t
∗ given the cur rent va lue s o f
∗
∗ mc = marginal co s t
∗ K = choke p r i c e
∗ r = da i l y i n t e r e s t r a t e
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc PiQ( s t r u c t DS ∗piQData , t ) ;
l o c a l mc , K, r , q , piQ ;
mc = piQData−>dataMatrix [ 1 ] ;
K = piQData−>dataMatrix [ 3 ] ;
r = piQData−>dataMatrix [ 4 ] ;
q = QOpt( piQData , t ) ;
piQ = (1 − exp(−K ∗ q ) − mc ∗ q)∗ exp(−r ∗ t ) ;
r e tp ( piQ ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ PiTotal
∗
∗ Returns the t o t a l p r o f i t g iven
∗ the cur rent va lue s o f
∗
∗ mc = marginal co s t
∗ Tmax = termina l time o f product ion
∗ K = choke p r i c e
∗ r = da i l y i n t e r e s t r a t e
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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proc PiTotal ( s t r u c t DS ∗piTotalData ) ;
l o c a l Tmax, l im ;
ex t e rna l s t r u c t inthpContro l in tCont ro l ;
Tmax = piTotalData−>dataMatrix [ 2 ] ;
l im = Tmax | 0 ;
i f (Tmax <= 0 ) ;
re tp ( 0 ) ;
e nd i f ;
r e tp ( inthp4(&PiQ , piTotalData , intContro l , l im ) ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ PiFuncC
∗
∗ Returns the t o t a l opt imized
∗ p r o f i t as a func i t on o f mc ,
∗ given the va lue s o f
∗
∗ K = choke p r i c e
∗ r = da i l y i n t e r e s t r a t e
∗ x0 = t o t a l s tock
∗
∗ Computes
∗
∗ Tmax = termina l time o f product ion
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc PiFuncC( s t r u c t DS ∗piFuncData , mc ) ;
e x t e rna l s t r u c t PV Tparam ;
ex t e rna l s t r u c t QNewtonmtControl qnewtControl ;
e x t e rna l s t r u c t QNewtonmtOut TmaxOpt ;
l o c a l Tmax, piTot ;
// put mc in to the data
piFuncData−>dataMatrix [ 1 ] = mc ;
// s o l v e f o r optimal Tmax
TmaxOpt = QNewtonmt(&QNewton , Tparam , ∗piFuncData , qnewtControl ) ;
// put Tmax in to the data
Tmax = pvUnpack (TmaxOpt . par , "T" ) ;
piFuncData−>dataMatrix [ 2 ] = Tmax;
// comput t o t a l p r o f i t based on mc and Tmax
piTot = PiTotal ( piFuncData ) ;
r e tp (mc~Tmax~PiTot ) ;
endp ;
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/∗ DECLARE STRUCTURES ∗/
s t r u c t DS qData ;
s t r u c t DS ∗pqData ;
s t r u c t PV Tparam ;
s t r u c t inthpContro l in tCont ro l ;
s t r u c t QNewtonmtControl qnewtControl ;
s t r u c t QNewtonmtOut TMaxOpt ;
/∗ ASSIGN VALUES ∗/
mc = 1 ; // base value
Tmax = 2235 . 255 ; // s t a r t i n g value
K = 5 ; // constant
r = 1.1^(1/365.25)−1; // constant
x0 = 100 ; // constant
/∗ CREATE CONTROL STRUCTURES ∗/
in tCont ro l = inthpContro lCreate ;
qnewtControl = QNewtonmtControlCreate ;
Tparam = pvCreate ;
Tparam = pvPack (Tparam ,Tmax, "T" ) ;
pqData = &qData ;
qData . dataMatrix = mc | Tmax | K | r | x0 ;
// qnewtControl . output = 1 ; /∗ pr in t r e s u l t s ∗/
p r i n t "PiZero = " PiFuncC(pqData , 0 ) ;
p r i n t "mc = " qData . dataMatrix [ 1 ] ;
p r i n t "Tmax = " qData . dataMatrix [ 2 ] ;
p r i n t "K = " qData . dataMatrix [ 3 ] ;
p r i n t " r = " qData . dataMatrix [ 4 ] ;
p r i n t "x0 = " qData . dataMatrix [ 5 ] ;
p r i n t "QTotal = " QTotal ( pqData ) ;
// a vec to r o f un i t co s t va lue s from 0 to 5 .0
c = seqa (0 , 0 . 04 , 5 0 ) ;
// a vec to r o f p r o f i t s o l u t i o n s f o r each value o f the un i t co s t
piV = {} ;
f o r n ( 1 , 5 0 , 1 ) ;
piV = piV | PiFuncC(pqData , c [ n ] ) ;
endfor ;
// o u t f i l e = " uni tnumer ica l3 " ;
// l e t varnames = unit_cost t_max pi_tota l ;
// su c c e s s = saved (piV , o u t f i l e , varnames ) ;
// r e g r e s s Tmax as a func t i on o f co s t and co s t squared ( because the r e s i d u a l s looked pa rabo l i c )
_o l s r e s = 1 ;
{ nam,m, b , stb , vc , std , s i g , cx , rsq , r e s id , dbw } = o l s ("" , piV [ . , 2 ] , piV [ . , 1 ] ~ piV [ . , 1 ] ^ 2~ piV [ . , 1 ] ^ 3 ) ;
p r i n t r e s i d ;
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Appendix C

GAUSS procedure for numerical

solutions to the stock cost model

#inc lude inthp . sd f
#inc lude qnewtonmt . sd f
l i b r a r y pgraph ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QOpt
∗
∗ Returns the optimal product ion path
∗ at time t g iven the va lue s o f
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QOpt( s t r u c t DS ∗qOptData , t ) ;
l o c a l sc ,Tmax,K, r ,mT, deltaT , ert ,m, q ;
sc = qOptData−>dataMatrix [ 1 ] ;
Tmax = qOptData−>dataMatrix [ 2 ] ;
K = qOptData−>dataMatrix [ 3 ] ;
r = qOptData−>dataMatrix [ 4 ] ;
mT = qOptData−>dataMatrix [ 7 ] ;
deltaT = Tmax − t ;
q = 0 ;
i f 0 == sc ;
q = r /K∗deltaT ;
e l s e ;
e r t = exp(−r ∗ deltaT ) ;
m = sc / r ∗ (1 − e r t ) + mT ∗ e r t ;
q = 1 / K ∗ ln ( K / m) ;
end i f ;



Appendix C. GAUSS procedure for numerical solutions to the stock cost model160

retp (q ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QTotal
∗
∗ Returns the t o t a l product ion over
∗ the per iod (0 ,Tmax) g iven the
∗ cur r ent va lue s o f the parameters
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QTotal ( s t r u c t DS ∗qTotalData ) ;
l o c a l Tmax, lim , qTot ;
e x t e rna l s t r u c t inthpContro l in tCont ro l ;
Tmax = qTotalData−>dataMatrix [ 2 ] ;
l im = Tmax | 0 ;
qTot = inthp4(&QOpt , qTotalData , intContro l , l im ) ;
r e tp ( qTot ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QCurrent
∗
∗ Returns the cur rent t o t a l product ion over
∗ the per iod (0 , t ) g iven the cur r ent va lue s
∗ o f the parameters
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QCurrent ( s t r u c t DS ∗qTotalData ) ;
l o c a l Tmax, lim , qTot , t ;
e x t e rna l s t r u c t inthpContro l in tCont ro l ;
t = qTotalData−>dataMatrix [ 6 ] ;
qTot = 0 ;
i f (0 < t ) ;
l im = t | 0 ;
qTot = inthp4(&QOpt , qTotalData , intContro l , l im ) ;
end i f ;
r e tp ( qTot ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QNewtonT
∗
∗ This f i n d s the square o f the
∗ d i f f e r e n c e between t o t a l product ion
∗ and x0−xT given the cur rent va lue s
∗ o f the parameters .
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QNewtonT( s t r u c t PV Tparam , s t r u c t DS qNewtonData ) ;
l o c a l Tmax, sc , K, x0 , mT, dx , xT , qTot , qDelta ;
// get the T parameter
Tmax = pvUnpack (Tparam ,"T" ) ;
// put i t i n to the data ob j e c t
qNewtonData . dataMatrix [ 2 ] = Tmax;
// get the parameters
x0 = qNewtonData . dataMatrix [ 5 ] ;
xT = qNewtonData . dataMatrix [ 8 ] ;
// compute t o t a l produt ion g iven these parameters
qTot = 0 ;
i f (0 < Tmax) ;
qTot = QTotal(&qNewtonData ) ;
e nd i f ;
// the f i t n e s s i s the d i f f e r e n c e squared
qDelta = ( x0 − xT − qTot )/ x0 ;
re tp ( qDelta ^2) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ QNewtonQT
∗
∗ Returns the square o f the d i f f e r e n c e
∗ between
∗
∗ exp(−K∗qT)
∗
∗ and
∗
∗ sc / K ∗ qT
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc QNewtonQT( s t r u c t PV Qparam , s t r u c t DS qNewtonData ) ;
l o c a l qT , sc , K, r , ekt , linQ , qDelta , x0 ;
// get the Q parameter
qT = pvUnpack (Qparam ,"QT" ) ;
// get the parameters
sc = qNewtonData . dataMatrix [ 1 ] ;
K = qNewtonData . dataMatrix [ 3 ] ;
r = qNewtonData . dataMatrix [ 4 ] ;
x0 = qNewtonData . dataMatrix [ 5 ] ;
// compute the exponent i a l and l i n e a r terms
ekt = exp(−K ∗ qT ) ;
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l inQ = (1 − sc ∗ x0 ) / (1 + K ∗qT ) ;
i f ( abs ( ekt ) < abs ( l inQ ) ) ;
qDelta = ( l inQ − ekt )/ ekt ;
e l s e ;
qDelta = ( ekt − l inQ )/ l inQ ;
end i f ;
// the f i t n e s s i s the d i f f e r e n c e squared
retp ( qDelta ^2) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ PiX
∗
∗ Returns the pre sent value o f
∗ the p r o f i t at time t g iven
∗ the cur rent va lue s o f the
∗ parameters .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc PiX( s t r u c t DS ∗piQData , t ) ;
l o c a l sc , K, r , mT, q , qCumulative , piX ;
ex t e rna l s t r u c t inthpContro l in tCont ro l ;
sc = piQData−>dataMatrix [ 1 ] ;
K = piQData−>dataMatrix [ 3 ] ;
r = piQData−>dataMatrix [ 4 ] ;
mT = piQData−>dataMatrix [ 7 ] ;
piQData−>dataMatrix [ 6 ] = t ; // pass the cur rent time to QCurrent
q = QOpt( piQData , t ) ;
qCumulative = QCurrent ( piQData ) ; // t h i s i s the same as x0 − x
piX = (1 − exp(−K ∗ q ) − sc ∗ qCumulative )∗ exp(−r ∗ t ) ;
r e tp ( piX ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ CostX
∗
∗ Returns the pre sent value o f
∗ the co s t at time t g iven
∗ the cur rent va lue s o f the
∗ parameters .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc CostX ( s t r u c t DS ∗piQData , t ) ;
l o c a l sc , K, r , mT, q , qCumulative , costX ;
ex t e rna l s t r u c t inthpContro l in tCont ro l ;
sc = piQData−>dataMatrix [ 1 ] ;
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K = piQData−>dataMatrix [ 3 ] ;
r = piQData−>dataMatrix [ 4 ] ;
mT = piQData−>dataMatrix [ 7 ] ;
piQData−>dataMatrix [ 6 ] = t ; // pass the cur rent time to QCurrent
q = QOpt( piQData , t ) ;
qCumulative = QCurrent ( piQData ) ; // t h i s i s the same as x0 − x
costX = sc ∗ qCumulative ∗ exp(−r ∗ t ) ;
r e tp ( costX ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ PiTotal
∗
∗ Returns the t o t a l p r o f i t g iven
∗ the cur rent va lues o f the
∗ parameters .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc PiTotal ( s t r u c t DS ∗piTotalData ) ;
l o c a l Tmax, lim , piTot ;
e x t e rna l s t r u c t inthpContro l in tCont ro l ;
Tmax = piTotalData−>dataMatrix [ 2 ] ;
piTot = 0 ;
i f (0 < Tmax) ;
l im = Tmax | 0 ;
piTot = inthp4(&PiX , piTotalData , intContro l , l im ) ;
end i f ;
r e tp ( piTot ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ TotalCost
∗
∗ Returns the t o t a l co s t g iven
∗ the cur rent va lues o f the
∗ parameters .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc TotCost ( s t r u c t DS ∗ costTotalData ) ;
l o c a l Tmax, lim , totCost ;
e x t e rna l s t r u c t inthpContro l in tCont ro l ;
Tmax = costTotalData−>dataMatrix [ 2 ] ;
totCost = 0 ;
i f (0 < Tmax) ;
l im = Tmax | 0 ;
totCost = inthp4(&CostX , costTotalData , intContro l , l im ) ;
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end i f ;
r e tp ( totCost ) ;
endp ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ PiFuncC
∗
∗ Returns the t o t a l opt imized
∗ p r o f i t as a func i t on o f mc ,
∗ given the cur rent va lue s o f
∗ the parameters .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc PiFuncC( s t r u c t DS ∗piFuncData , sc ) ;
e x t e rna l s t r u c t PV QTparam ;
ex t e rna l s t r u c t QNewtonmtControl qnewtControl ;
e x t e rna l s t r u c t QNewtonmtOut TmaxOpt ;
ex t e rna l s t r u c t QNewtonmtOut QTmaxOpt ;
l o c a l qT , K, mT, Tmax, piTot , dx , x0 , xT , r , eKT;
s t r u c t PV Tparam ;
Tparam = pvCreate ;
// the newton s o l v e r i s e s p e c i a l l y s e n s i t i v e to
// the s t a r t i n g value , so t h i s i s a rough hack
// at an es t imate f o r Tmax
i f (0 == sc ) ;
// the r i g h t answer i s 1957
Tparam = pvPack (Tparam ,2000 ,"T" ) ;
e l s e ;
// t h i s i s based s o l e l y on the f a c t that sc = 0.0035 i s
// prob lemat ic un l e s s the s t a r t i n g es t imate i s c l o s e
// to the ac tua l va lue (638)
Tparam = pvPack (Tparam ,2/ sc , "T" ) ;
end i f ;
// put sc in to the data
piFuncData−>dataMatrix [ 1 ] = sc ;
K = piFuncData−>dataMatrix [ 3 ] ;
r = piFuncData−>dataMatrix [ 4 ] ;
x0 = piFuncData−>dataMatrix [ 5 ] ;
///////////////////////////////////////////////////////////////////////
//
// F i r s t , f i g u r e out qT , which r e qu i r e s numerica l f i t t i n g i f xT i s going to be nonzero
//
i f (0 == sc ) ;
qT = 0 ;
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// c a l c u l a t e mT
mT = K ∗ exp(−K ∗ qT ) ;
// c a l c u l a t e xT
xT = 0 ;
e l s e i f ( sc < 1/x0 ) ;
// s o l v e f o r optimal qT
QTmaxOpt = QNewtonmt(&QNewtonQT, QTparam , ∗piFuncData , qnewtControl ) ;
qT = pvUnpack (QTmaxOpt . par , "QT" ) ;
// c a l c u l a t e mT
eKT = exp(−K ∗ qT ) ;
mT = K ∗ eKT;
// c a l c u l a t e xT
xT = 0 ;
e l s e ;
qT = 100 ;
// c a l c u l a t e mT
mT = 0 ;
// c a l c u l a t e xT
xT = x0 − 1 / sc ;
e nd i f ;
// put i t in the s t r u c tu r e
piFuncData−>dataMatrix [ 7 ] = mT;
piFuncData−>dataMatrix [ 8 ] = xT ;
piFuncData−>dataMatrix [ 9 ] = qT ;
///////////////////////////////////////////////////////////////////////
//
// Second , f i nd the Tmax that uses up the s tock (down to xT i f i t s nonzero )
//
// s o l v e f o r optimal Tmax
TmaxOpt = QNewtonmt(&QNewtonT , Tparam , ∗piFuncData , qnewtControl ) ;
// put Tmax in to the data
Tmax = pvUnpack (TmaxOpt . par , "T" ) ;
piFuncData−>dataMatrix [ 2 ] = Tmax;
// compute t o t a l p r o f i t based on sc and Tmax
piTot = PiTotal ( piFuncData ) ;
r e tp ( sc~qT~mT~Tmax~xT~PiTot ) ;
endp ;
/∗ DECLARE STRUCTURES ∗/
s t r u c t DS qData ;
s t r u c t DS ∗pqData ;
s t r u c t PV Tparam ;
s t r u c t PV QTparam ;
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s t r u c t inthpContro l in tCont ro l ;
s t r u c t QNewtonmtControl qnewtControl ;
s t r u c t QNewtonmtOut TMaxOpt ;
s t r u c t QNewtonmtOut QTMaxOpt ;
/∗ ASSIGN VALUES ∗/
sc = 0 .000026 ; // base value
Tmax = 600 ; // s t a r t i n g value
K = 5 ; // constant
r = 1.1^(1/365.25)−1; // constant
x0 = 100 ; // constant
t = 1 ;
mT = 0 . 0 1 ;
qT = 0 . 0 1 ;
xT = 0 ;
/∗ CREATE CONTROL STRUCTURES ∗/
in tCont ro l = inthpContro lCreate ;
qnewtControl = QNewtonmtControlCreate ;
Tparam = pvCreate ;
Tparam = pvPack (Tparam ,Tmax, "T" ) ;
QTparam = pvCreate ;
QTparam = pvPack (QTparam ,qT,"QT" ) ;
pqData = &qData ;
qData . dataMatrix = sc | Tmax | K | r | x0 | t | mT | xT | qT ;
// qnewtControl . output = 1 ; /∗ pr in t r e s u l t s ∗/
// a vec to r o f s tock co s t va lue s up to .05
c = seqa (0 , 0 .0005 , 100 ) ;
p r i n t " sc \tqT\tmT\tTmax\txT\ tPiTot " ;
// a vec to r o f p r o f i t s o l u t i o n s f o r each value o f the s tock co s t
piV = {} ;
f o r n ( 1 , 1 00 , 1 ) ;
p iSe t = PiFuncC(pqData , c [ n ] ) ;
tCost = TotCost ( pqData ) ;
piV = piV | p iSe t~tCost ;
endfor ;
p r i n t piV ;
o u t f i l e = " stocknumer i ca l2 " ;
l e t varnames = stock_cost q_t m_t t_max x_t p i_tota l co s t_tota l ;
s u c c e s s = saved (piV , o u t f i l e , varnames ) ;
// r e g r e s s Tmax as a func t i on o f co s t and co s t squared ( because the r e s i d u a l s looked pa rabo l i c )
// _o l s r e s = 1 ;
// { nam,m, b , stb , vc , std , s i g , cx , rsq , r e s id , dbw } = o l s ("" , piV [ . , 2 ] , piV [ . , 1 ] ) ;
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Appendix D

The MASON Hotelling package

MASON1 is a Java software library to support discrete-event multiagent simulation. The

MASON software distribution includes a collection of sample applications presented in the

Console application, shown in Figure D.2. The panel on the left lists the sample ABMs

provided in MASON. The panel on the right shows the title display for the Hotelling's Rule

Model application created for this project.

Figure D.1: Hotelling's Rule Model in the MASON

1http://cs.gmu.edu/~eclab/projects/mason/
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When the Hotelling's Rule Model application is selected, the control panel is displayed

in Figure D.2. Below the control panel is the market display, which allows the user to view

statistics for speci�c �rms. To the right of the control panel are plot panels displaying

the dynamical variables in the simulation. The control panel allows the user to select the

number of �rms and the market model (monopoly, oligopoly, etc.) The simulation is started

by clicking the triangular button at the bottom of the control panel.

Figure D.2: Hotelling's Rule Model control panel.

Figure D.3 shows the display after selecting an oligopoly market of �ve �rms with shared

stock. In the market display, the red dot represents the market and the white dots represent

each of the �rms, numbered from zero going clockwise from the top. By clicking on the red

dot, the user can see current market statistics, such as current market price. By clicking on

a white dot, the user can see current �rm statistics, such as production level, stock level,

costs, etc. Figure D.4 shows a running simulation.



Appendix D. The MASON Hotelling package 169

Figure D.3: An oligopoly market with �ve �rms.
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Figure D.4: A running simulation.
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